Science.gov

Sample records for grapevine r2r3-myb transcription

  1. A systems-oriented analysis of the grapevine R2R3-MYB transcription factor family uncovers new insights into the regulation of stilbene accumulation

    PubMed Central

    Wong, Darren Chern Jan; Schlechter, Rudolf; Vannozzi, Alessandro; Höll, Janine; Hmmam, Ibrahim; Bogs, Jochen; Tornielli, Giovanni Battista; Castellarin, Simone Diego; Matus, José Tomás

    2016-01-01

    R2R3-MYB transcription factors (TFs) belong to a large and functionally diverse protein superfamily in plants. In this study, we explore the evolution and function of this family in grapevine (Vitis vinifera L.), a high-value fruit crop. We identified and manually curated 134 genes using RNA-Seq data, and named them systematically according to the Super-Nomenclature Committee. We identified novel genes, splicing variants and grapevine/woody-specific duplicated subgroups, suggesting possible neo- and sub-functionalization events. Regulatory network analysis ascribed biological functions to uncharacterized genes and validated those of known genes (e.g. secondary cell wall biogenesis and flavonoid biosynthesis). A comprehensive analysis of different MYB binding motifs in the promoters of co-expressed genes predicted grape R2R3-MYB binding preferences and supported evidence for putative downstream targets. Enrichment of cis-regulatory motifs for diverse TFs reinforced the notion of transcriptional coordination and interaction between MYBs and other regulators. Analysis of the network of Subgroup 2 showed that the resveratrol-related VviMYB14 and VviMYB15 share common co-expressed STILBENE SYNTHASE genes with the uncharacterized VviMYB13. These regulators have distinct expression patterns within organs and in response to biotic and abiotic stresses, suggesting a pivotal role of VviMYB13 in regulating stilbene accumulation in vegetative tissues and under biotic stress conditions. PMID:27407139

  2. Isolation and Molecular Characterization of Thirteen R2R3-MYB Transcription Factors from Epimedium sagittatum

    PubMed Central

    Huang, Wenjun; Sun, Wei; Lv, Haiyan; Xiao, Gong; Zeng, Shaohua; Wang, Ying

    2013-01-01

    Epimedium sagittatum (Sieb. et Zucc.) Maxim, a popular traditional Chinese medicinal plant, has been widely used for treating sexual dysfunction and osteoporosis in China. The main bioactive components in herba epimedii are prenylated flavonol glycosides, which are end products of a branch of the flavonoid biosynthetic pathway. The MYB transcription factors (TF) act as activators or repressors to regulate the flavonoid pathway. In this study, 13 full-length cDNA clones of R2R3-MYB TFs from E. sagittatum (designated as EsMYB1 to EsMYB13) were isolated and characterized. Sequence similarity and phylogenetic analysis placed nine R2R3-MYB members of E. sagittatum into five subgroups of the Arabidopsis R2R3-MYB family, while four members were not clustered into a defined subgroup. The number and length of introns from Epimedium R2R3-MYB genes varied significantly, but intron positions and phases were well conserved. Expression patterns of Epimedium R2R3-MYB genes in various tissues showed diverse. Finally, it is suggested that five Epimedium R2R3-MYB genes may be involved in regulating the flavonoid pathway and could be used as valuable candidate genes for metabolic engineering studies in future. Sequence information of 13 R2R3-MYB genes discovered here will also provide an entry point into the overview of whole R2R3-MYB family in Epimedium. PMID:23271373

  3. Isolation and molecular characterization of thirteen R2R3-MYB transcription factors from Epimedium sagittatum.

    PubMed

    Huang, Wenjun; Sun, Wei; Lv, Haiyan; Xiao, Gong; Zeng, Shaohua; Wang, Ying

    2012-12-27

    Epimedium sagittatum (Sieb. et Zucc.) Maxim, a popular traditional Chinese medicinal plant, has been widely used for treating sexual dysfunction and osteoporosis in China. The main bioactive components in herba epimedii are prenylated flavonol glycosides, which are end products of a branch of the flavonoid biosynthetic pathway. The MYB transcription factors (TF) act as activators or repressors to regulate the flavonoid pathway. In this study, 13 full-length cDNA clones of R2R3-MYB TFs from E. sagittatum (designated as EsMYB1 to EsMYB13) were isolated and characterized. Sequence similarity and phylogenetic analysis placed nine R2R3-MYB members of epimedii into five subgroups of the Arabidopsis R2R3-MYB family, while four members were not clustered into a defined subgroup. The number and length of introns from epimedii R2R3-MYB genes varied significantly, but intron positions and phases were well conserved. Expression patterns of epimedii R2R3-MYB genes in various tissues showed diverse. Finally, it is suggested that five epimedii R2R3-MYB genes may be involved in regulating the flavonoid pathway and could be used as valuable candidate genes for metabolic engineering studies in future. Sequence information of 13 R2R3-MYB genes discovered here will also provide an entry point into the overview of whole R2R3-MYB family in epimedii.

  4. Diversification of R2R3-MYB Transcription Factors in the Tomato Family Solanaceae.

    PubMed

    Gates, Daniel J; Strickler, Susan R; Mueller, Lukas A; Olson, Bradley J S C; Smith, Stacey D

    2016-08-01

    MYB transcription factors play an important role in regulating key plant developmental processes involving defense, cell shape, pigmentation, and root formation. Within this gene family, sequences containing an R2R3 MYB domain are the most abundant type and exhibit a wide diversity of functions. In this study, we identify 559 R2R3 MYB genes using whole genome data from four species of Solanaceae and reconstruct their evolutionary relationships. We compare the Solanaceae R2R3 MYBs to the well-characterized Arabidopsis thaliana sequences to estimate functional diversity and to identify gains and losses of MYB clades in the Solanaceae. We identify numerous R2R3 MYBs that do not appear closely related to Arabidopsis MYBs, and thus may represent clades of genes that have been lost along the Arabidopsis lineage or gained after the divergence of Rosid and Asterid lineages. Despite differences in the distribution of R2R3 MYBs across functional subgroups and species, the overall size of the R2R3 subfamily has changed relatively little over the roughly 50 million-year history of Solanaceae. We added our information regarding R2R3 MYBs in Solanaceae to other data and performed a meta-analysis to trace the evolution of subfamily size across land plants. The results reveal many shifts in the number of R2R3 genes, including a 54 % increase along the angiosperm stem lineage. The variation in R2R3 subfamily size across land plants is weakly positively correlated with genome size and strongly positively correlated with total number of genes. The retention of such a large number of R2R3 copies over long evolutionary time periods suggests that they have acquired new functions and been maintained by selection. Discovering the nature of this functional diversity will require integrating forward and reverse genetic approaches on an -omics scale.

  5. A sugarcane R2R3-MYB transcription factor gene is alternatively spliced during drought stress

    PubMed Central

    Guo, Jinlong; Ling, Hui; Ma, Jingjing; Chen, Yun; Su, Yachun; Lin, Qingliang; Gao, Shiwu; Wang, Hengbo; Que, Youxiong; Xu, Liping

    2017-01-01

    MYB transcription factors of the R2R3-MYB family have been shown to play important roles in many plant processes. A sugarcane R2R3-MYB gene (ScMYB2) and its two alternative forms of transcript (ScMYB2S1 and ScMYB2S2) were identified in this study. The deduced protein of ScMYB2S1 is a typical plant R2R3-MYB protein, while ScMYB2S2 encodes a truncated protein. Real-time qPCR analysis revealed that ScMYB2S1 is suppressed under PEG-simulated drought stress in sugarcane, while ScMYB2S2 is induced at later treatment stage. A senescence symptom was observed when ScMYB2S1 was injected into tobacco leaves mediated by Agrobacterium, but no symptom for ScMYB2S2. Further investigation showed that the expression levels of 4 senescence-associated genes, NtPR-1a, NtNYC1, NtCAT3 and NtABRE, were markedly induced in tobacco leaves after ScMYB2S1-injection, while they were not sensitive to ScMYB2S2-injection. Moreover, MDA and proline were also investigated after injection. Similarly, MDA and proline levels were induced by ABA and ScMYB2S1, while inhibited by ScMYB2S2. We propose that ScMYB2, by alternatively splicing two transcripts (ScMYB2S1 and ScMYB2S2), is involved in an ABA-mediated leaf senescence signaling pathway and play positive role in respond to drought-induced senescence in sugarcane. The results of this study provide information for further research in sugarcane stress processes. PMID:28167824

  6. An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles.

    PubMed

    Medina-Puche, Laura; Molina-Hidalgo, Francisco Javier; Boersma, Maaike; Schuurink, Robert C; López-Vidriero, Irene; Solano, Roberto; Franco-Zorrilla, José-Manuel; Caballero, José Luis; Blanco-Portales, Rosario; Muñoz-Blanco, Juan

    2015-06-01

    Eugenol is a volatile phenylpropanoid that contributes to flower and ripe fruit scent. In ripe strawberry (Fragaria × ananassa) fruit receptacles, eugenol is biosynthesized by eugenol synthase (FaEGS2). However, the transcriptional regulation of this process is still unknown. We have identified and functionally characterized an R2R3 MYB transcription factor (emission of benzenoid II [FaEOBII]) that seems to be the orthologous gene of PhEOBII from Petunia hybrida, which contributes to the regulation of eugenol biosynthesis in petals. The expression of FaEOBII was ripening related and fruit receptacle specific, although high expression values were also found in petals. This expression pattern of FaEOBII correlated with eugenol content in both fruit receptacle and petals. The expression of FaEOBII was repressed by auxins and activated by abscisic acid, in parallel to the ripening process. In ripe strawberry receptacles, where the expression of FaEOBII was silenced, the expression of cinnamyl alcohol dehydrogenase1 and FaEGS2, two structural genes involved in eugenol production, was down-regulated. A subsequent decrease in eugenol content in ripe receptacles was also observed, confirming the involvement of FaEOBII in eugenol metabolism. Additionally, the expression of FaEOBII was under the control of FaMYB10, another R2R3 MYB transcription factor that regulates the early and late biosynthetic genes from the flavonoid/phenylpropanoid pathway. In parallel, the amount of eugenol in FaMYB10-silenced receptacles was also diminished. Taken together, these data indicate that FaEOBII plays a regulating role in the volatile phenylpropanoid pathway gene expression that gives rise to eugenol production in ripe strawberry receptacles.

  7. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers.

    PubMed

    Sagawa, Janelle M; Stanley, Lauren E; LaFountain, Amy M; Frank, Harry A; Liu, Chang; Yuan, Yao-Wu

    2016-02-01

    Carotenoids are yellow, orange, and red pigments that contribute to the beautiful colors and nutritive value of many flowers and fruits. The structural genes in the highly conserved carotenoid biosynthetic pathway have been well characterized in multiple plant systems, but little is known about the transcription factors that control the expression of these structural genes. By analyzing a chemically induced mutant of Mimulus lewisii through bulk segregant analysis and transgenic experiments, we have identified an R2R3-MYB, Reduced Carotenoid Pigmentation 1 (RCP1), as the first transcription factor that positively regulates carotenoid biosynthesis during flower development. Loss-of-function mutations in RCP1 lead to down-regulation of all carotenoid biosynthetic genes and reduced carotenoid content in M. lewisii flowers, a phenotype recapitulated by RNA interference in the wild-type background. Overexpression of this gene in the rcp1 mutant background restores carotenoid production and, unexpectedly, results in simultaneous decrease of anthocyanin production in some transgenic lines by down-regulating the expression of an activator of anthocyanin biosynthesis. Identification of transcriptional regulators of carotenoid biosynthesis provides the 'toolbox' genes for understanding the molecular basis of flower color diversification in nature and for potential enhancement of carotenoid production in crop plants via genetic engineering.

  8. Characterization of a citrus R2R3-MYB transcription factor that regulates the flavonol and hydroxycinnamic acid biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavonols and hydroxycinnamic acids are important phenylpropanoid metabolites in plants. In this study, we isolated and characterized a citrus R2R3-MYB transcription factor CsMYBF1, encoding a protein belonging to the flavonol-specific MYB subgroup. Ectopic expression of CsMYBF1 in tomato led to an ...

  9. The Eucalyptus grandis R2R3-MYB transcription factor family: evidence for woody growth-related evolution and function.

    PubMed

    Soler, Marçal; Camargo, Eduardo Leal Oliveira; Carocha, Victor; Cassan-Wang, Hua; San Clemente, Hélène; Savelli, Bruno; Hefer, Charles A; Paiva, Jorge A Pinto; Myburg, Alexander A; Grima-Pettenati, Jacqueline

    2015-06-01

    The R2R3-MYB family, one of the largest transcription factor families in higher plants, controls a wide variety of plant-specific processes including, notably, phenylpropanoid metabolism and secondary cell wall formation. We performed a genome-wide analysis of this superfamily in Eucalyptus, one of the most planted hardwood trees world-wide. A total of 141 predicted R2R3-MYB sequences identified in the Eucalyptus grandis genome sequence were subjected to comparative phylogenetic analyses with Arabidopsis thaliana, Oryza sativa, Populus trichocarpa and Vitis vinifera. We analysed features such as gene structure, conserved motifs and genome location. Transcript abundance patterns were assessed by RNAseq and validated by high-throughput quantitative PCR. We found some R2R3-MYB subgroups with expanded membership in E. grandis, V. vinifera and P. trichocarpa, and others preferentially found in woody species, suggesting diversification of specific functions in woody plants. By contrast, subgroups containing key genes regulating lignin biosynthesis and secondary cell wall formation are more conserved across all of the species analysed. In Eucalyptus, R2R3-MYB tandem gene duplications seem to disproportionately affect woody-preferential and woody-expanded subgroups. Interestingly, some of the genes belonging to woody-preferential subgroups show higher expression in the cambial region, suggesting a putative role in the regulation of secondary growth.

  10. Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp.

    PubMed

    Hsu, Chia-Chi; Chen, You-Yi; Tsai, Wen-Chieh; Chen, Wen-Huei; Chen, Hong-Hwa

    2015-05-01

    Orchidaceae are well known for their fascinating floral morphologic features, specialized pollination, and distinctive ecological strategies. With their long-lasting flowers of various colors and pigmentation patterning, Phalaenopsis spp. have become important ornamental plants worldwide. In this study, we identified three R2R3-MYB transcription factors PeMYB2, PeMYB11, and PeMYB12. Their expression profiles were concomitant with red color formation in Phalaenopsis spp. flowers. Transient assay of overexpression of three PeMYBs verified that PeMYB2 resulted in anthocyanin accumulation, and these PeMYBs could activate the expression of three downstream structural genes Phalaenopsis spp. Flavanone 3-hydroxylase5, Phalaenopsis spp. Dihydroflavonol 4-reductase1, and Phalaenopsis spp. Anthocyanidin synthase3. In addition, these three PeMYBs participated in the distinct pigmentation patterning in a single flower, which was revealed by virus-induced gene silencing. In the sepals/petals, silencing of PeMYB2, PeMYB11, and PeMYB12 resulted in the loss of the full-red pigmentation, red spots, and venation patterns, respectively. Moreover, different pigmentation patterning was regulated by PeMYBs in the sepals/petals and lip. PeMYB11 was responsive to the red spots in the callus of the lip, and PeMYB12 participated in the full pigmentation in the central lobe of the lip. The differential pigmentation patterning was validated by RNA in situ hybridization. Additional assessment was performed in six Phalaenopsis spp. cultivars with different color patterns. The combined expression of these three PeMYBs in different ratios leads to a wealth of complicated floral pigmentation patterning in Phalaenopsis spp.

  11. Multiple R2R3-MYB Transcription Factors Involved in the Regulation of Anthocyanin Accumulation in Peach Flower

    PubMed Central

    Zhou, Hui; Peng, Qian; Zhao, Jianbo; Owiti, Albert; Ren, Fei; Liao, Liao; Wang, Lu; Deng, Xianbao; Jiang, Quan; Han, Yuepeng

    2016-01-01

    Anthocyanin accumulation is responsible for flower coloration in peach. Here, we report the identification and functional characterization of eight flavonoid-related R2R3-MYB transcription factors, designated PpMYB10.2, PpMYB9, PpMYBPA1, Peace, PpMYB17, PpMYB18, PpMYB19, and PpMYB20, respectively, in peach flower transcriptome. PpMYB10.2 and PpMYB9 are able to activate transcription of anthocyanin biosynthetic genes, whilst PpMYBPA1 and Peace have a strong activation on the promoters of proanthocyanin (PA) biosynthetic genes. PpMYB17-20 show a strong repressive effect on transcription of flavonoid pathway genes such as dihydroflavonol 4-reductase. These results indicate that anthocyanin accumulation in peach flower is coordinately regulated by a set of R2R3-MYB genes. In addition, PpMYB9 and PpMYB10.2 are closely related but separated into two groups, designated MYB9 and MYB10, respectively. PpMYB9 shows a strong activation on the PpUGT78A2 promoter, but with no effect on the promoter of PpUGT78B (commonly called PpUFGT in previous studies). In contrast, PpMYB10.2 is able to activate the PpUFGT promoter, but not for the PpUGT78A2 promoter. Unlike the MYB10 gene that is universally present in plants, the MYB9 gene is lost in most dicot species. Therefore, the PpMYB9 gene represents a novel group of anthocyanin-related MYB activators, which may have diverged in function from the MYB10 genes. Our study will aid in understanding the complex mechanism regulating floral pigmentation in peach and functional divergence of the R2R3-MYB gene family in plants. PMID:27818667

  12. Genome-wide analysis of the R2R3-MYB transcription factor gene family in sweet orange (Citrus sinensis).

    PubMed

    Liu, Chaoyang; Wang, Xia; Xu, Yuantao; Deng, Xiuxin; Xu, Qiang

    2014-10-01

    MYB transcription factor represents one of the largest gene families in plant genomes. Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide, and recently the genome has been sequenced. This provides an opportunity to investigate the organization and evolutionary characteristics of sweet orange MYB genes from whole genome view. In the present study, we identified 100 R2R3-MYB genes in the sweet orange genome. A comprehensive analysis of this gene family was performed, including the phylogeny, gene structure, chromosomal localization and expression pattern analyses. The 100 genes were divided into 29 subfamilies based on the sequence similarity and phylogeny, and the classification was also well supported by the highly conserved exon/intron structures and motif composition. The phylogenomic comparison of MYB gene family among sweet orange and related plant species, Arabidopsis, cacao and papaya suggested the existence of functional divergence during evolution. Expression profiling indicated that sweet orange R2R3-MYB genes exhibited distinct temporal and spatial expression patterns. Our analysis suggested that the sweet orange MYB genes may play important roles in different plant biological processes, some of which may be potentially involved in citrus fruit quality. These results will be useful for future functional analysis of the MYB gene family in sweet orange.

  13. An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles1

    PubMed Central

    Medina-Puche, Laura; Molina-Hidalgo, Francisco Javier; Boersma, Maaike; Schuurink, Robert C.; López-Vidriero, Irene; Solano, Roberto; Franco-Zorrilla, José-Manuel; Caballero, José Luis; Blanco-Portales, Rosario; Muñoz-Blanco, Juan

    2015-01-01

    Eugenol is a volatile phenylpropanoid that contributes to flower and ripe fruit scent. In ripe strawberry (Fragaria × ananassa) fruit receptacles, eugenol is biosynthesized by eugenol synthase (FaEGS2). However, the transcriptional regulation of this process is still unknown. We have identified and functionally characterized an R2R3 MYB transcription factor (EMISSION OF BENZENOID II [FaEOBII]) that seems to be the orthologous gene of PhEOBII from Petunia hybrida, which contributes to the regulation of eugenol biosynthesis in petals. The expression of FaEOBII was ripening related and fruit receptacle specific, although high expression values were also found in petals. This expression pattern of FaEOBII correlated with eugenol content in both fruit receptacle and petals. The expression of FaEOBII was repressed by auxins and activated by abscisic acid, in parallel to the ripening process. In ripe strawberry receptacles, where the expression of FaEOBII was silenced, the expression of CINNAMYL ALCOHOL DEHYDROGENASE1 and FaEGS2, two structural genes involved in eugenol production, was down-regulated. A subsequent decrease in eugenol content in ripe receptacles was also observed, confirming the involvement of FaEOBII in eugenol metabolism. Additionally, the expression of FaEOBII was under the control of FaMYB10, another R2R3 MYB transcription factor that regulates the early and late biosynthetic genes from the flavonoid/phenylpropanoid pathway. In parallel, the amount of eugenol in FaMYB10-silenced receptacles was also diminished. Taken together, these data indicate that FaEOBII plays a regulating role in the volatile phenylpropanoid pathway gene expression that gives rise to eugenol production in ripe strawberry receptacles. PMID:25931522

  14. The Phenylpropanoid Pathway Is Controlled at Different Branches by a Set of R2R3-MYB C2 Repressors in Grapevine1

    PubMed Central

    Cavallini, Erika; Matus, José Tomás; Finezzo, Laura; Zenoni, Sara; Loyola, Rodrigo; Guzzo, Flavia; Schlechter, Rudolf; Ageorges, Agnès; Arce-Johnson, Patricio

    2015-01-01

    Because of the vast range of functions that phenylpropanoids possess, their synthesis requires precise spatiotemporal coordination throughout plant development and in response to the environment. The accumulation of these secondary metabolites is transcriptionally controlled by positive and negative regulators from the MYB and basic helix-loop-helix protein families. We characterized four grapevine (Vitis vinifera) R2R3-MYB proteins from the C2 repressor motif clade, all of which harbor the ethylene response factor-associated amphiphilic repression domain but differ in the presence of an additional TLLLFR repression motif found in the strong flavonoid repressor Arabidopsis (Arabidopsis thaliana) AtMYBL2. Constitutive expression of VvMYB4a and VvMYB4b in petunia (Petunia hybrida) repressed general phenylpropanoid biosynthetic genes and selectively reduced the amount of small-weight phenolic compounds. Conversely, transgenic petunia lines expressing VvMYBC2-L1 and VvMYBC2-L3 showed a severe reduction in petal anthocyanins and seed proanthocyanidins together with a higher pH of crude petal extracts. The distinct function of these regulators was further confirmed by transient expression in tobacco (Nicotiana benthamiana) leaves and grapevine plantlets. Finally, VvMYBC2-L3 was ectopically expressed in grapevine hairy roots, showing a reduction in proanthocyanidin content together with the down-regulation of structural and regulatory genes of the flavonoid pathway as revealed by a transcriptomic analysis. The physiological role of these repressors was inferred by combining the results of the functional analyses and their expression patterns in grapevine during development and in response to ultraviolet B radiation. Our results indicate that VvMYB4a and VvMYB4b may play a key role in negatively regulating the synthesis of small-weight phenolic compounds, whereas VvMYBC2-L1 and VvMYBC2-L3 may additionally fine tune flavonoid levels, balancing the inductive effects of

  15. The soybean R2R3 MYB transcription factor GmMYB100 negatively regulates plant flavonoid biosynthesis.

    PubMed

    Yan, Junhui; Wang, Biao; Zhong, Yunpeng; Yao, Luming; Cheng, Linjing; Wu, Tianlong

    2015-09-01

    Soybean flavonoids, a group of important signaling molecules in plant-environment interaction, ubiquitously exist in soybean and are tightly regulated by many genes. Here we reported that GmMYB100, a gene encoding a R2R3 MYB transcription factor, is involved in soybean flavonoid biosynthesis. GmMYB100 is mainly expressed in flowers, leaves and immature embryo, and its level is decreased after pod ripening. Subcellular localization assay indicates that GmMYB100 is a nuclear protein. GmMYB100 has transactivation ability revealed by a yeast functional assay; whereas bioinformatic analysis suggests that GmMYB100 has a negative function in flavonoid biosynthesis. GmMYB100-overexpression represses the transcript levels of flavonoid-related genes in transgenic soybean hairy roots and Arabidopsis, and inhibits isoflavonoid (soybean) and flavonol (Arabidopsis) production in transgenic plants. Furthermore, the transcript levels of six flavonoid-related genes and flavonoid (isoflavonoid and flavone aglycones) accumulation are elevated in the GmMYB100-RNAi transgenic hairy roots. We also demonstrate that GmMYB100 protein depresses the promoter activities of soybean chalcone synthase and chalcone isomerase. These findings indicate that GmMYB100 is a negative regulator in soybean flavonoid biosynthesis pathway.

  16. Characterization of a Citrus R2R3-MYB Transcription Factor that Regulates the Flavonol and Hydroxycinnamic Acid Biosynthesis

    PubMed Central

    Liu, Chaoyang; Long, Jianmei; Zhu, Kaijie; Liu, Linlin; Yang, Wei; Zhang, Hongyan; Li, Li; Xu, Qiang; Deng, Xiuxin

    2016-01-01

    Flavonols and hydroxycinnamic acids are important phenylpropanoid metabolites in plants. In this study, we isolated and characterized a citrus R2R3-MYB transcription factor CsMYBF1, encoding a protein belonging to the flavonol-specific MYB subgroup. Ectopic expression of CsMYBF1 in tomato led to an up-regulation of a series of genes involved in primary metabolism and the phenylpropanoid pathway, and induced a strong accumulation of hydroxycinnamic acid compounds but not the flavonols. The RNAi suppression of CsMYBF1 in citrus callus caused a down-regulation of many phenylpropanoid pathway genes and reduced the contents of hydroxycinnamic acids and flavonols. Transactivation assays indicated that CsMYBF1 activated several promoters of phenylpropanoid pathway genes in tomato and citrus. Interestingly, CsMYBF1 could activate the CHS gene promoter in citrus, but not in tomato. Further examinations revealed that the MYBPLANT cis-elements were essential for CsMYBF1 in activating phenylpropanoid pathway genes. In summary, our data indicated that CsMYBF1 possessed the function in controlling the flavonol and hydroxycinnamic acid biosynthesis, and the regulatory differences in the target metabolite accumulation between two species may be due to the differential activation of CHS promoters by CsMYBF1. Therefore, CsMYBF1 constitutes an important gene source for the engineering of specific phenylpropanoid components. PMID:27162196

  17. Analysis of the DNA-Binding Activities of the Arabidopsis R2R3-MYB Transcription Factor Family by One-Hybrid Experiments in Yeast

    PubMed Central

    Kelemen, Zsolt; Sebastian, Alvaro; Xu, Wenjia; Grain, Damaris; Salsac, Fabien; Avon, Alexandra; Berger, Nathalie; Tran, Joseph; Dubreucq, Bertrand; Lurin, Claire; Lepiniec, Loïc; Contreras-Moreira, Bruno; Dubos, Christian

    2015-01-01

    The control of growth and development of all living organisms is a complex and dynamic process that requires the harmonious expression of numerous genes. Gene expression is mainly controlled by the activity of sequence-specific DNA binding proteins called transcription factors (TFs). Amongst the various classes of eukaryotic TFs, the MYB superfamily is one of the largest and most diverse, and it has considerably expanded in the plant kingdom. R2R3-MYBs have been extensively studied over the last 15 years. However, DNA-binding specificity has been characterized for only a small subset of these proteins. Therefore, one of the remaining challenges is the exhaustive characterization of the DNA-binding specificity of all R2R3-MYB proteins. In this study, we have developed a library of Arabidopsis thaliana R2R3-MYB open reading frames, whose DNA-binding activities were assayed in vivo (yeast one-hybrid experiments) with a pool of selected cis-regulatory elements. Altogether 1904 interactions were assayed leading to the discovery of specific patterns of interactions between the various R2R3-MYB subgroups and their DNA target sequences and to the identification of key features that govern these interactions. The present work provides a comprehensive in vivo analysis of R2R3-MYB binding activities that should help in predicting new DNA motifs and identifying new putative target genes for each member of this very large family of TFs. In a broader perspective, the generated data will help to better understand how TF interact with their target DNA sequences. PMID:26484765

  18. Three R2R3-MYB Transcription Factors Regulate Distinct Floral Pigmentation Patterning in Phalaenopsis spp.1[OPEN

    PubMed Central

    Hsu, Chia-Chi; Chen, You-Yi; Tsai, Wen-Chieh; Chen, Wen-Huei; Chen, Hong-Hwa

    2015-01-01

    Orchidaceae are well known for their fascinating floral morphologic features, specialized pollination, and distinctive ecological strategies. With their long-lasting flowers of various colors and pigmentation patterning, Phalaenopsis spp. have become important ornamental plants worldwide. In this study, we identified three R2R3-MYB transcription factors PeMYB2, PeMYB11, and PeMYB12. Their expression profiles were concomitant with red color formation in Phalaenopsis spp. flowers. Transient assay of overexpression of three PeMYBs verified that PeMYB2 resulted in anthocyanin accumulation, and these PeMYBs could activate the expression of three downstream structural genes Phalaenopsis spp. Flavanone 3-hydroxylase5, Phalaenopsis spp. Dihydroflavonol 4-reductase1, and Phalaenopsis spp. Anthocyanidin synthase3. In addition, these three PeMYBs participated in the distinct pigmentation patterning in a single flower, which was revealed by virus-induced gene silencing. In the sepals/petals, silencing of PeMYB2, PeMYB11, and PeMYB12 resulted in the loss of the full-red pigmentation, red spots, and venation patterns, respectively. Moreover, different pigmentation patterning was regulated by PeMYBs in the sepals/petals and lip. PeMYB11 was responsive to the red spots in the callus of the lip, and PeMYB12 participated in the full pigmentation in the central lobe of the lip. The differential pigmentation patterning was validated by RNA in situ hybridization. Additional assessment was performed in six Phalaenopsis spp. cultivars with different color patterns. The combined expression of these three PeMYBs in different ratios leads to a wealth of complicated floral pigmentation patterning in Phalaenopsis spp. PMID:25739699

  19. A R2R3-MYB Transcription Factor Regulates the Flavonol Biosynthetic Pathway in a Traditional Chinese Medicinal Plant, Epimedium sagittatum

    PubMed Central

    Huang, Wenjun; Khaldun, A. B. M.; Chen, Jianjun; Zhang, Chanjuan; Lv, Haiyan; Yuan, Ling; Wang, Ying

    2016-01-01

    Flavonols as plant secondary metabolites with vital roles in plant development and defense against UV light, have been demonstrated to be the main bioactive components (BCs) in the genus Epimedium plants, several species of which are used as materials for Herba Epimedii, an important traditional Chinese medicine. The flavonol biosynthetic pathway genes had been already isolated from Epimedium sagittatum, but a R2R3-MYB transcription factor regulating the flavonol synthesis has not been functionally characterized so far in Epimedium plants. In this study, we isolated and characterized the R2R3-MYB transcription factor EsMYBF1 involved in regulation of the flavonol biosynthetic pathway from E. sagittatum. Sequence analysis indicated that EsMYBF1 belongs to the subgroup 7 of R2R3-MYB family which contains the flavonol-specific MYB regulators identified to date. Transient reporter assay showed that EsMYBF1 strongly activated the promoters of EsF3H (flavanone 3-hydroxylase) and EsFLS (flavonol synthase), but not the promoters of EsDFRs (dihydroflavonol 4-reductase) and EsANS (anthocyanidin synthase) in transiently transformed Nicotiana benthamiana leaves. Both yeast two-hybrid assay and transient reporter assay validated EsMYBF1 to be independent of EsTT8, or AtTT8 bHLH regulators of the flavonoid pathway as cofactors. Ectopic expression of EsMYBF1 in transgenic tobacco resulted in the increased flavonol content and the decreased anthocyanin content in flowers. Correspondingly, the structural genes involved in flavonol synthesis were upregulated in the EsMYBF1 overexpression lines, including NtCHS (chalcone synthase), NtCHI (chalcone isomerase), NtF3H and NtFLS, whereas the late biosynthetic genes of the anthocyanin pathway (NtDFR and NtANS) were remarkably downregulated, compared to the controls. These results suggest that EsMYBF1 is a flavonol-specific R2R3-MYB regulator, and involved in regulation of the biosynthesis of the flavonol-derived BCs in E. sagittatum. Thus

  20. The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes

    PubMed Central

    Shan, Tianlei; Rong, Wei; Xu, Huijun; Du, Lipu; Liu, Xin; Zhang, Zengyan

    2016-01-01

    The necrotrophic fungus Rhizoctonia cerealis is a major pathogen of sharp eyespot that is a devastating disease of wheat (Triticum aestivum). Little is known about roles of MYB genes in wheat defense response to R. cerealis. In this study, TaRIM1, a R. cerealis-induced wheat MYB gene, was identified by transcriptome analysis, then cloned from resistant wheat CI12633, and its function and preliminary mechanism were studied. Sequence analysis showed that TaRIM1 encodes a R2R3-MYB transcription factor with transcription-activation activity. The molecular-biological assays revealed that the TaRIM1 protein localizes to nuclear and can bind to five MYB-binding site cis-elements. Functional dissection results showed that following R. cerealis inoculation, TaRIM1 silencing impaired the resistance of wheat CI12633, whereas TaRIM1 overexpression significantly increased resistance of transgenic wheat compared with susceptible recipient. TaRIM1 positively regulated the expression of five defense genes (Defensin, PR10, PR17c, nsLTP1, and chitinase1) possibly through binding to MYB-binding sites in their promoters. These results suggest that the R2R3-MYB transcription factor TaRIM1 positively regulates resistance response to R. cerealis infection through modulating the expression of a range of defense genes, and that TaRIM1 is a candidate gene to improve sharp eyespot resistance in wheat. PMID:27364458

  1. Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB transcription factor PtrMYB152 in Arabidopsis

    SciTech Connect

    Wang, Shucai; Li, Eryang; Porth, Ilga; Chen, Jin-Gui; Mansfield, Shawn D.; Douglas, Carl

    2014-05-23

    Poplar has 192 annotated R2R3 MYB genes, of which only three have been shown to play a role in the regulation of secondary cell wall formation. Here we report the characterization of PtrMYB152, a poplar homolog of the Arabidopsis R2R3 MYB transcription factor AtMYB43, in the regulation of secondary cell wall biosynthesis. The expression of PtrMYB152 in secondary xylem is about 18 times of that in phloem. When expressed in Arabidopsis under the control of either 35S or PtrCesA8 promoters, PtrMYB152 increased secondary cell wall thickness, which is likely caused by increased lignification. Accordingly, elevated expression of genes encoding sets of enzymes in secondary wall biosynthesis were observed in transgenic plants expressing PtrMYB152. Arabidopsis protoplast transfection assays suggested that PtrMYB152 functions as a transcriptional activator. Taken together, our results suggest that PtrMYB152 may be part of a regulatory network activating expression of discrete sets of secondary cell wall biosynthesis genes.

  2. Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB transcription factor PtrMYB152 in Arabidopsis.

    PubMed

    Wang, Shucai; Li, Eryang; Porth, Ilga; Chen, Jin-Gui; Mansfield, Shawn D; Douglas, Carl J

    2014-05-23

    Poplar has 192 annotated R2R3 MYB genes, of which only three have been shown to play a role in the regulation of secondary cell wall formation. Here we report the characterization of PtrMYB152, a poplar homolog of the Arabidopsis R2R3 MYB transcription factor AtMYB43, in the regulation of secondary cell wall biosynthesis. The expression of PtrMYB152 in secondary xylem is about 18 times of that in phloem. When expressed in Arabidopsis under the control of either 35S or PtrCesA8 promoters, PtrMYB152 increased secondary cell wall thickness, which is likely caused by increased lignification. Accordingly, elevated expression of genes encoding sets of enzymes in secondary wall biosynthesis were observed in transgenic plants expressing PtrMYB152. Arabidopsis protoplast transfection assays suggested that PtrMYB152 functions as a transcriptional activator. Taken together, our results suggest that PtrMYB152 may be part of a regulatory network activating expression of discrete sets of secondary cell wall biosynthesis genes.

  3. Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes.

    PubMed Central

    Meissner, R C; Jin, H; Cominelli, E; Denekamp, M; Fuertes, A; Greco, R; Kranz, H D; Penfield, S; Petroni, K; Urzainqui, A; Martin, C; Paz-Ares, J; Smeekens, S; Tonelli, C; Weisshaar, B; Baumann, E; Klimyuk, V; Marillonnet, S; Patel, K; Speulman, E; Tissier, A F; Bouchez, D; Jones, J J; Pereira, A; Wisman, E

    1999-01-01

    More than 92 genes encoding MYB transcription factors of the R2R3 class have been described in Arabidopsis. The functions of a few members of this large gene family have been described, indicating important roles for R2R3 MYB transcription factors in the regulation of secondary metabolism, cell shape, and disease resistance, and in responses to growth regulators and stresses. For the majority of the genes in this family, however, little functional information is available. As the first step to characterizing these genes functionally, the sequences of >90 family members, and the map positions and expression profiles of >60 members, have been determined previously. An important second step in the functional analysis of the MYB family, through a process of reverse genetics that entails the isolation of insertion mutants, is described here. For this purpose, a variety of gene disruption resources has been used, including T-DNA-insertion populations and three distinct populations that harbor transposon insertions. We report the isolation of 47 insertions into 36 distinct MYB genes by screening a total of 73 genes. These defined insertion lines will provide the foundation for subsequent detailed functional analyses for the assignment of specific functions to individual members of the R2R3 MYB gene family. PMID:10521515

  4. Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB transcription factor PtrMYB152 in Arabidopsis

    PubMed Central

    Wang, Shucai; Li, Eryang; Porth, Ilga; Chen, Jin-Gui; Mansfield, Shawn D.; Douglas, Carl J.

    2014-01-01

    Poplar has 192 annotated R2R3 MYB genes, of which only three have been shown to play a role in the regulation of secondary cell wall formation. Here we report the characterization of PtrMYB152, a poplar homolog of the Arabidopsis R2R3 MYB transcription factor AtMYB43, in the regulation of secondary cell wall biosynthesis. The expression of PtrMYB152 in secondary xylem is about 18 times of that in phloem. When expressed in Arabidopsis under the control of either 35S or PtrCesA8 promoters, PtrMYB152 increased secondary cell wall thickness, which is likely caused by increased lignification. Accordingly, elevated expression of genes encoding sets of enzymes in secondary wall biosynthesis were observed in transgenic plants expressing PtrMYB152. Arabidopsis protoplast transfection assays suggested that PtrMYB152 functions as a transcriptional activator. Taken together, our results suggest that PtrMYB152 may be part of a regulatory network activating expression of discrete sets of secondary cell wall biosynthesis genes. PMID:24852237

  5. PacMYBA, a sweet cherry R2R3-MYB transcription factor, is a positive regulator of salt stress tolerance and pathogen resistance.

    PubMed

    Shen, Xinjie; Guo, Xinwei; Guo, Xiao; Zhao, Di; Zhao, Wei; Chen, Jingsheng; Li, Tianhong

    2017-03-01

    Plant R2R3-MYB transcription factors play crucial roles in stress responses. We previously isolated a R2R3-MYB homolog from sweet cherry cv. Hong Deng, designated PacMYBA (GenBank accession No. KF974774). To explore the role of PacMYBA in the plant stress response, we heterologously expressed PacMYBA in transgenic Arabidopsis thaliana plants. In a previous study, we demonstrated that PacMYBA is mainly localized to the nucleus and could be induced by abscisic acid (ABA). Analysis of the promoter sequence of PacMYBA revealed that it contains several stress-related cis-elements. QPCR results showed that PacMYBA is induced by salt, salicylic (SA), and jasmonic acid (JA) in sweet cherry leaves. Transgenic Arabidopsis plants heterologously expressing PacMYBA exhibited enhanced salt-tolerance and increased resistance to Pseudomonas syringe pv. tomato (Pst) DC3000 infection. Overexpression of PacMYBA decreased the osmotic potential (OP), increased the free proline content, and increased the peroxidase content in transgenic Arabidopsis plants. Furthermore, overexpression of PacMYBA also affected the expression levels of salt stress- and pathogen defense-related genes in the transgenic plants. These results indicate that PacMYBA is a positive regulator of salt stress tolerance and pathogen resistance.

  6. Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa)

    PubMed Central

    Park, Jong-Sug; Kim, Jung-Bong; Cho, Kang-Jin; Cheon, Choong-Ill; Sung, Mi-Kyung; Choung, Myoung-Gun

    2008-01-01

    The MYB transcription factors play important roles in the regulation of many secondary metabolites at the transcriptional level. We evaluated the possible roles of the Arabidopsis R2R3-MYB transcription factors in flavonoid biosynthesis because they are induced by UV-B irradiation but their associated phenotypes are largely unexplored. We isolated their genes by RACE-PCR, and performed transgenic approach and metabolite analyses in lettuce (Lactuca sativa). We found that one member of this protein family, AtMYB60, inhibits anthocyanin biosynthesis in the lettuce plant. Wild-type lettuce normally accumulates anthocyanin, predominantly cyanidin and traces of delphinidin, and develops a red pigmentation. However, the production and accumulation of anthocyanin pigments in AtMYB60-overexpressing lettuce was inhibited. Using RT-PCR analysis, we also identified the complete absence or reduction of dihydroflavonol 4-reductase (DFR) transcripts in AtMYB60- overexpressing lettuce (AtMYB60-117 and AtMYB60-112 lines). The correlation between the overexpression of AtMYB60 and the inhibition of anthocyanin accumulation suggests that the transcription factorAtMYB60 controls anthocyanin biosynthesis in the lettuce leaf. Clarification of the roles of the AtMYB60 transcription factor will facilitate further studies and provide genetic tools to better understand the regulation in plants of the genes controlled by the MYB-type transcription factors. Furthermore, the characterization of AtMYB60 has implications for the development of new varieties of lettuce and other commercially important plants with metabolic engineering approaches. PMID:18317777

  7. Purple foliage coloration in tea (Camellia sinensis L.) arises from activation of the R2R3-MYB transcription factor CsAN1

    PubMed Central

    Sun, Binmei; Zhu, Zhangsheng; Cao, Panrong; Chen, Hao; Chen, Changming; Zhou, Xin; Mao, Yanhui; Lei, Jianjun; Jiang, Yanpin; Meng, Wei; Wang, Yingxi; Liu, Shaoqun

    2016-01-01

    Purple foliage always appears in Camellia sinensis families; however, the transcriptional regulation of anthocyanin biosynthesis is unknown. The tea bud sport cultivar ‘Zijuan’ confers an abnormal pattern of anthocyanin accumulation, resulting in a mutant phenotype that has a striking purple color in young foliage and in the stem. In this study, we aimed to unravel the underlying molecular mechanism of anthocyanin biosynthetic regulation in C. sinensis. Our results revealed that activation of the R2R3-MYB transcription factor (TF) anthocyanin1 (CsAN1) specifically upregulated the bHLH TF CsGL3 and anthocyanin late biosynthetic genes (LBGs) to confer ectopic accumulation of pigment in purple tea. We found CsAN1 interacts with bHLH TFs (CsGL3 and CsEGL3) and recruits a WD-repeat protein CsTTG1 to form the MYB-bHLH-WDR (MBW) complex that regulates anthocyanin accumulation. We determined that the hypomethylation of a CpG island in the CsAN1 promoter is associated with the purple phenotype. Furthermore, we demonstrated that low temperature and long illumination induced CsAN1 promoter demethylation, resulting in upregulated expression to promote anthocyanin accumulation in the foliage. The successful isolation of CsAN1 provides important information on the regulatory control of anthocyanin biosynthesis in C. sinensis and offers a genetic resource for the development of new varieties with enhanced anthocyanin content. PMID:27581206

  8. Purple foliage coloration in tea (Camellia sinensis L.) arises from activation of the R2R3-MYB transcription factor CsAN1.

    PubMed

    Sun, Binmei; Zhu, Zhangsheng; Cao, Panrong; Chen, Hao; Chen, Changming; Zhou, Xin; Mao, Yanhui; Lei, Jianjun; Jiang, Yanpin; Meng, Wei; Wang, Yingxi; Liu, Shaoqun

    2016-09-01

    Purple foliage always appears in Camellia sinensis families; however, the transcriptional regulation of anthocyanin biosynthesis is unknown. The tea bud sport cultivar 'Zijuan' confers an abnormal pattern of anthocyanin accumulation, resulting in a mutant phenotype that has a striking purple color in young foliage and in the stem. In this study, we aimed to unravel the underlying molecular mechanism of anthocyanin biosynthetic regulation in C. sinensis. Our results revealed that activation of the R2R3-MYB transcription factor (TF) anthocyanin1 (CsAN1) specifically upregulated the bHLH TF CsGL3 and anthocyanin late biosynthetic genes (LBGs) to confer ectopic accumulation of pigment in purple tea. We found CsAN1 interacts with bHLH TFs (CsGL3 and CsEGL3) and recruits a WD-repeat protein CsTTG1 to form the MYB-bHLH-WDR (MBW) complex that regulates anthocyanin accumulation. We determined that the hypomethylation of a CpG island in the CsAN1 promoter is associated with the purple phenotype. Furthermore, we demonstrated that low temperature and long illumination induced CsAN1 promoter demethylation, resulting in upregulated expression to promote anthocyanin accumulation in the foliage. The successful isolation of CsAN1 provides important information on the regulatory control of anthocyanin biosynthesis in C. sinensis and offers a genetic resource for the development of new varieties with enhanced anthocyanin content.

  9. Overexpression of soybean R2R3-MYB transcription factor, GmMYB12B2, and tolerance to UV radiation and salt stress in transgenic Arabidopsis.

    PubMed

    Li, X W; Wang, Y; Yan, F; Li, J W; Zhao, Y; Zhao, X; Zhai, Y; Wang, Q Y

    2016-05-25

    MYB, v-myb avian myeloblastosis viral oncogene homolog, proteins play central roles in plant stress response. Previously, we identified a novel R2R3-MYB transcription factor, GmMYB12B2, which affected the expression levels of some key enzyme genes involved in flavonoid biosynthesis in transgenic Arabidopsis. In the present study, we analyzed the expression levels of GmMYB12B2 under salt, low temperature, drought, abscisic acid (ABA), and ultraviolet (UV) radiation treatments in soybean using semi-quantitative reverse transcription polymerase chain reaction. The expression of GmMYB12B2 was drastically induced by UV irradiation and salt treatment, but no response was detected under low temperature, drought, and ABA stresses. A detailed characterization of the GmMYB12B2 overexpression lines revealed that GmMYB12B2 might be involved in response of plants to UV radiation and salt stresses. Transgenic Arabidopsis lines constitutively expressing GmMYB12B2 showed an increased tolerance to salt and UV radiation treatment compared with wild-type plants. The expression levels of certain salt stress-responsive genes, such as DREB2A and RD17, were found to be elevated in the transgenic plants. These results indicate that GmMYB12B2 acts as a regulator in the plant stress response.

  10. Expression of the R2R3-MYB transcription factor TaMYB14 from Trifolium arvense activates proanthocyanidin biosynthesis in the legumes Trifolium repens and Medicago sativa.

    PubMed

    Hancock, Kerry R; Collette, Vern; Fraser, Karl; Greig, Margaret; Xue, Hong; Richardson, Kim; Jones, Chris; Rasmussen, Susanne

    2012-07-01

    Proanthocyanidins (PAs) are oligomeric flavonoids and one group of end products of the phenylpropanoid pathway. PAs have been reported to be beneficial for human and animal health and are particularly important in pastoral agricultural systems for improved animal production and reduced greenhouse gas emissions. However, the main forage legumes grown in these systems, such as Trifolium repens and Medicago sativa, do not contain any substantial amounts of PAs in leaves. We have identified from the foliar PA-accumulating legume Trifolium arvense an R2R3-MYB transcription factor, TaMYB14, and provide evidence that this transcription factor is involved in the regulation of PA biosynthesis in legumes. TaMYB14 expression is necessary and sufficient to up-regulate late steps of the phenylpropanoid pathway and to induce PA biosynthesis. RNA interference silencing of TaMYB14 resulted in almost complete cessation of PA biosynthesis in T. arvense, whereas Nicotiana tabacum, M. sativa, and T. repens plants constitutively expressing TaMYB14 synthesized and accumulated PAs in leaves up to 1.8% dry matter. Targeted liquid chromatography-multistage tandem mass spectrometry analysis identified foliar PAs up to degree of polymerization 6 in leaf extracts. Hence, genetically modified M. sativa and T. repens plants expressing TaMYB14 provide a viable option for improving animal health and mitigating the negative environmental impacts of pastoral animal production systems.

  11. A R2R3-MYB transcription factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary cell wall biosynthesis and deposition in transgenic Arabidopsis.

    PubMed

    Sun, Xiang; Gong, Si-Ying; Nie, Xiao-Ying; Li, Yang; Li, Wen; Huang, Geng-Qing; Li, Xue-Bao

    2015-07-01

    Secondary cell wall (SCW) is an important industrial raw material for pulping, papermaking, construction, lumbering, textiles and potentially for biofuel production. The process of SCW thickening of cotton fibers lays down the cellulose that will constitute the bulk (up to 96%) of the fiber at maturity. In this study, a gene encoding a MYB-domain protein was identified in cotton (Gossypium hirsutum) and designated as GhMYBL1. Quantitative real-time polymerase chain reaction (RT-PCR) analysis revealed that GhMYBL1 was specifically expressed in cotton fibers at the stage of secondary wall deposition. Further analysis indicated that this protein is a R2R3-MYB transcription factor, and is targeted to the cell nucleus. Overexpression of GhMYBL1 in Arabidopsis affected the formation of SCW in the stem xylem of the transgenic plants. The enhanced SCW thickening also occurred in the interfascicular fibers, xylary fibers and vessels of the GhMYBL1-overexpression transgenic plants. The expression of secondary wall-associated genes, such as CesA4, CesA7, CesA8, PAL1, F5H and 4CL1, were upregulated, and consequently, cellulose and lignin biosynthesis were enhanced in the GhMYBL1 transgenic plants. These data suggested that GhMYBL1 may participate in modulating the process of secondary wall biosynthesis and deposition of cotton fibers.

  12. A novel R2R3 MYB transcription factor NtMYBJS1 is a methyl jasmonate-dependent regulator of phenylpropanoid-conjugate biosynthesis in tobacco.

    PubMed

    Gális, Ivan; Simek, Petr; Narisawa, Tomoko; Sasaki, Mami; Horiguchi, Tatsuya; Fukuda, Hiroo; Matsuoka, Ken

    2006-05-01

    Target metabolic and large-scale transcriptomic analyses of tobacco (Nicotiana tabacum L.) Bright Yellow-2 (BY-2) cells were employed to identify novel gene(s) involved in methyl jasmonate (MJ)-dependent function in plants. At the metabolic level, we describe the specific accumulation of several phenylpropanoid-polyamine conjugates in MJ-treated BY-2 cells. Furthermore, global gene expression analysis of MJ-treated cells using a 16K cDNA microarray containing expressed sequence tags (ESTs) from BY-2 cells revealed 828 genes that were upregulated by MJ treatment within 48 h. Using time-course expression data we identified a novel MJ-inducible R2R3 MYB-type transcription factor (NtMYBJS1) that was co-expressed in a close temporal pattern with the core phenylpropanoid genes phenylalanine ammonia-lyase (PAL) and 4-coumarate:CoA ligase (4CL). Overexpression of NtMYBJS1 in tobacco BY-2 cells caused accumulation of specific phenylpropanoid conjugates in the cells. Subsequent microarray analysis of NtMYBJS1 transgenic lines revealed that a limited number of genes, including PAL and 4CL, were specifically induced in the presence of the NtMYBJS1 transgene. These results, together with results of both antisense expression analysis and of gel mobility shift assays, strongly indicate that the NtMYBJS1 protein functions in tobacco MJ signal transduction, inducing phenylpropanoid biosynthetic genes and the accumulation of phenylpropanoid-polyamine conjugates during stress.

  13. Novel R2R3-MYB transcription factors from Prunus Americana regulates differential patterns of anthocyanin accumulation in tobacco and citrus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The levels of anthocyanins in plants vary widely among cultivars, developmental stages and environmental stimuli. Previous studies have reported that the expression of various MYBs regulate anthocyanin pigmentation during growth and development. Here we examine the activity of three novel R2R3-MYB ...

  14. The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin.

    PubMed

    Jung, Chun Suk; Griffiths, Helen M; De Jong, Darlene M; Cheng, Shuping; Bodis, Mary; Kim, Tae Sung; De Jong, Walter S

    2009-12-01

    A dominant allele at the D locus (also known as I in diploid potato) is required for the synthesis of red and purple anthocyanin pigments in tuber skin. It has previously been reported that D maps to a region of chromosome 10 that harbors one or more homologs of Petunia an2, an R2R3 MYB transcription factor that coordinately regulates the expression of multiple anthocyanin biosynthetic genes in the floral limb. To test whether D acts similarly in tuber skin, RT-PCR was used to evaluate the expression of flavanone 3-hydroxylase (f3h), dihydroflavonol 4-reductase (dfr) and flavonoid 3',5'-hydroxylase (f3'5'h). All three genes were expressed in the periderm of red- and purple-skinned clones, while dfr and f3'5'h were not expressed, and f3h was only weakly expressed, in white-skinned clones. A potato cDNA clone with similarity to an2 was isolated from an expression library prepared from red tuber skin, and an assay developed to distinguish the two alleles of this gene in a diploid potato clone known to be heterozygous Dd. One allele was observed to cosegregate with pigmented skin in an F(1) population of 136 individuals. This allele was expressed in tuber skin of red- and purple-colored progeny, but not in white tubers, while other parental alleles were not expressed in white or colored tubers. The allele was placed under the control of a doubled 35S promoter and transformed into the light red-colored cultivar Désirée, the white-skinned cultivar Bintje, and two white diploid clones known to lack the functional allele of D. Transformants accumulated pigment in tuber skin, as well as in other tissues, including young foliage, flower petals, and tuber flesh.

  15. Divergent selection drives genetic differentiation in an R2R3-MYB transcription factor that contributes to incipient speciation in Mimulus aurantiacus.

    PubMed

    Streisfeld, Matthew A; Young, Wambui N; Sobel, James M

    2013-03-01

    Identifying the molecular genetic basis of traits contributing to speciation is of crucial importance for understanding the ecological and evolutionary mechanisms that generate biodiversity. Despite several examples describing putative "speciation genes," it is often uncertain to what extent these genetic changes have contributed to gene flow reductions in nature. Therefore, considerable interest lies in characterizing the molecular basis of traits that actively confer reproductive isolation during the early stages of speciation, as these loci can be attributed directly to the process of divergence. In Southern California, two ecotypes of Mimulus aurantiacus are parapatric and differ primarily in flower color, with an anthocyanic, red-flowered morph in the west and an anthocyanin-lacking, yellow-flowered morph in the east. Evidence suggests that the genetic changes responsible for this shift in flower color have been essential for divergence and have become fixed in natural populations of each ecotype due to almost complete differences in pollinator preference. In this study, we demonstrate that a cis-regulatory mutation in an R2R3-MYB transcription factor results in differential regulation of enzymes in the anthocyanin biosynthetic pathway and is the major contributor to differences in floral pigmentation. In addition, molecular population genetic data show that, despite gene flow at neutral loci, divergent selection has driven the fixation of alternate alleles at this gene between ecotypes. Therefore, by identifying the genetic basis underlying ecologically based divergent selection in flower color between these ecotypes, we have revealed the ecological and functional mechanisms involved in the evolution of pre-mating isolation at the early stages of incipient speciation.

  16. A Novel R2R3-MYB Transcription Factor BpMYB106 of Birch (Betula platyphylla) Confers Increased Photosynthesis and Growth Rate through Up-regulating Photosynthetic Gene Expression.

    PubMed

    Zhou, Chenguang; Li, Chenghao

    2016-01-01

    We isolated a R2R3-MYB transcription factor BpMYB106, which regulates photosynthesis in birch (Betula platyphylla Suk.). BpMYB106 mainly expresses in the leaf and shoot tip of birch, and its protein is localized in the nucleus. We further fused isolated a 1588 bp promoter of BpMYB106 and analyzed it by PLACE, which showed some cis-acting elements related to photosynthesis. BpMYB106 promoter β-glucuronidase (GUS) reporter fusion studies gene, the result, showed the GUS reporter gene in transgenic birch with BpMYB106 promoter showed strong activities in shoot tip, cotyledon margins, and mature leaf trichomes. The overexpression of BpMYB106 in birch resulted in significantly increased trichome density, net photosynthetic rate, and growth rate as compared with the wild-type birch. RNA-Seq profiling revealed the upregulation of several photosynthesis-related genes in the photosynthesis and oxidative phosphorylation pathways in the leaves of transgenic plants. Yeast one-hybrid analysis, coupled with transient assay in tobacco, revealed that BpMYB106 binds a MYB binding site MYB2 in differentially expressed gene promoters. Thus, BpMYB106 may directly activate the expression of a range of photosynthesis related genes through interacting with the MYB2 element in their promoters. Our study demonstrating the overexpression of BpMYB106-a R2R3-MYB transcription factor-upregulates the genes of the photosynthesis and oxidative phosphorylation pathways to improve photosynthesis.

  17. Maize R2R3 Myb genes: Sequence analysis reveals amplification in the higher plants.

    PubMed

    Rabinowicz, P D; Braun, E L; Wolfe, A D; Bowen, B; Grotewold, E

    1999-09-01

    Transcription factors containing the Myb-homologous DNA-binding domain are widely found in eukaryotes. In plants, R2R3 Myb-domain proteins are involved in the control of form and metabolism. The Arabidopsis genome harbors >100 R2R3 Myb genes, but few have been found in monocots, animals, and fungi. Using RT-PCR from different maize organs, we cloned 480 fragments corresponding to a 42-44 residue-long sequence spanning the region between the conserved DNA-recognition helices (Myb(BRH)) of R2R3 Myb domains. We determined that maize expresses >80 different R2R3 Myb genes, and evolutionary distances among maize Myb(BRH) sequences indicate that most of the amplification of the R2R3 Myb gene family occurred after the origin of land plants but prior to the separation of monocots and dicots. In addition, evidence is provided for the very recent duplication of particular classes of R2R3 Myb genes in the grasses. Together, these findings render a novel line of evidence for the amplification of the R2R3 Myb gene family in the early history of land plants and suggest that maize provides a possible model system to examine the hypothesis that the expansion of Myb genes is associated with the regulation of novel plant cellular functions.

  18. A Novel R2R3-MYB Transcription Factor BpMYB106 of Birch (Betula platyphylla) Confers Increased Photosynthesis and Growth Rate through Up-regulating Photosynthetic Gene Expression

    PubMed Central

    Zhou, Chenguang; Li, Chenghao

    2016-01-01

    We isolated a R2R3-MYB transcription factor BpMYB106, which regulates photosynthesis in birch (Betula platyphylla Suk.). BpMYB106 mainly expresses in the leaf and shoot tip of birch, and its protein is localized in the nucleus. We further fused isolated a 1588 bp promoter of BpMYB106 and analyzed it by PLACE, which showed some cis-acting elements related to photosynthesis. BpMYB106 promoter β-glucuronidase (GUS) reporter fusion studies gene, the result, showed the GUS reporter gene in transgenic birch with BpMYB106 promoter showed strong activities in shoot tip, cotyledon margins, and mature leaf trichomes. The overexpression of BpMYB106 in birch resulted in significantly increased trichome density, net photosynthetic rate, and growth rate as compared with the wild-type birch. RNA-Seq profiling revealed the upregulation of several photosynthesis-related genes in the photosynthesis and oxidative phosphorylation pathways in the leaves of transgenic plants. Yeast one-hybrid analysis, coupled with transient assay in tobacco, revealed that BpMYB106 binds a MYB binding site MYB2 in differentially expressed gene promoters. Thus, BpMYB106 may directly activate the expression of a range of photosynthesis related genes through interacting with the MYB2 element in their promoters. Our study demonstrating the overexpression of BpMYB106—a R2R3-MYB transcription factor—upregulates the genes of the photosynthesis and oxidative phosphorylation pathways to improve photosynthesis. PMID:27047502

  19. The R2R3 MYB transcription factor PavMYB10.1 involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry (Prunus avium L.).

    PubMed

    Jin, Wanmei; Wang, Hua; Li, Maofu; Wang, Jing; Yang, Yuan; Zhang, Xiaoming; Yan, Guohua; Zhang, Hong; Liu, Jiashen; Zhang, Kaichun

    2016-11-01

    Sweet cherry is a diploid tree species and its fruit skin has rich colours from yellow to blush to dark red. The colour is closely related to anthocyanin biosynthesis and is mainly regulated at the transcriptional level by transcription factors that regulate the expression of multiple structural genes. However, the genetic and molecular bases of how these genes ultimately determine the fruit skin colour traits remain poorly understood. Here, our genetic and molecular evidences identified the R2R3 MYB transcription factor PavMYB10.1 that is involved in anthocyanin biosynthesis pathway and determines fruit skin colour in sweet cherry. Interestingly, we identified three functional alleles of the gene causally leading to the different colours at mature stage. Meanwhile, our experimental results of yeast two-hybrid assays and chromatin immunoprecipitation assays revealed that PavMYB10.1 might interact with proteins PavbHLH and PavWD40, and bind to the promoter regions of the anthocyanin biosynthesis genes PavANS and PavUFGT; these findings provided to a certain extent mechanistic insight into the gene's functions. Additionally, genetic and molecular evidences confirmed that PavMYB10.1 is a reliable DNA molecular marker to select fruit skin colour in sweet cherry.

  20. A R2R3-MYB transcription factor, GmMYB12B2, affects the expression levels of flavonoid biosynthesis genes encoding key enzymes in transgenic Arabidopsis plants.

    PubMed

    Li, Xiao-Wei; Li, Jing-Wen; Zhai, Ying; Zhao, Yan; Zhao, Xu; Zhang, Hai-Jun; Su, Lian-Tai; Wang, Ying; Wang, Qing-Yu

    2013-12-10

    Isoflavones play diverse roles in plant-microbe interactions and are potentially important for human nutrition and health. To study the regulation of isoflavonoid synthesis in soybean, the R2R3-MYB transcription factor GmMYB12B2 was isolated and characterized. Yeast expression experiments demonstrated that GmMYB12B2 showed transcriptional activity. GmMYB12B2 was localized in the nucleus when it was transiently expressed in onion epidermal cells. Real-time quantitative PCR analysis revealed that GmMYB12B2 transcription was increased in roots and mature seeds compared with other organs. The gene expression level in immature embryos was consistent with the accumulation of isoflavones. CHS8 is a key enzyme in plant flavonoid biosynthesis. Transient expression experiments in soybean calli demonstrated that CHS8 was regulated by GmMYB12B2 and produced more fluorescence. The expression levels of some key enzymes in flavonoid biosynthesis were examined in transgenic Arabidopsis lines. The results showed that the expression levels of PAL1, CHS and FLS in transgenic plants were significantly higher than those in wild type plants. However, the expression level of DFR was lower, and the expression levels of CHI, F3H and F3'H were the same in all lines. GmMYB12B2 expression caused a constitutive increase in the accumulation of flavonoids in transgenic Arabidopsis lines compared with wild type plants.

  1. Changing a conserved amino acid in R2R3-MYB transcription repressors results in cytoplasmic accumulation and abolishes their repressive activity in Arabidopsis.

    PubMed

    Zhou, Meiliang; Sun, Zhanmin; Wang, Chenglong; Zhang, Xinquan; Tang, Yixiong; Zhu, Xuemei; Shao, Jirong; Wu, Yanmin

    2015-10-01

    Sub-group 4 R2R3-type MYB transcription factors, including MYB3, MYB4, MYB7 and MYB32, act as repressors in phenylpropanoid metabolism. These proteins contain the conserved MYB domain and the ethylene-responsive element binding factor-associated amphiphilic repression (EAR) repression domain. Additionally, MYB4, MYB7 and MYB32 possess a putative zinc-finger domain and a conserved GY/FDFLGL motif in their C-termini. The protein 'sensitive to ABA and drought 2' (SAD2) recognizes the nuclear pore complex, which then transports the SAD2-MYB4 complex into the nucleus. Here, we show that the conserved GY/FDFLGL motif contributes to the interaction between MYB factors and SAD2. The Asp → Asn mutation in the GY/FDFLGL motif abolishes the interaction between MYB transcription factors and SAD2, and therefore they cannot be transported into the nucleus and cannot repress their target genes. We found that MYB4(D261N) loses the capacity to repress expression of the cinnamate 4-hydroxylase (C4H) gene and biosynthesis of sinapoyl malate. Our results indicate conservation among MYB transcription factors in terms of their interaction with SAD2. Therefore, the Asp → Asn mutation may be used to engineer transcription factors.

  2. TaMYB13-1, a R2R3 MYB transcription factor, regulates the fructan synthetic pathway and contributes to enhanced fructan accumulation in bread wheat

    PubMed Central

    Kooiker, Maarten; Drenth, Janneke; Glassop, Donna; McIntyre, C. Lynne; Xue, Gang-Ping

    2013-01-01

    Fructans are the major component of temporary carbon reserve in the stem of temperate cereals, which is used for grain filling. Three families of fructosyltransferases are directly involved in fructan synthesis in the vacuole of Triticum aestivum. The regulatory network of the fructan synthetic pathway is largely unknown. Recently, a sucrose-upregulated wheat MYB transcription factor (TaMYB13-1) was shown to be capable of activating the promoter activities of sucrose:sucrose 1-fructosyltransferase (1-SST) and sucrose:fructan 6-fructosyltransferase (6-SFT) in transient transactivation assays. This work investigated TaMYB13-1 target genes and their influence on fructan synthesis in transgenic wheat. TaMYB13-1 overexpression resulted in upregulation of all three families of fructosyltransferases including fructan:fructan 1-fructosyltransferase (1-FFT). A γ-vacuolar processing enzyme (γ-VPE1), potentially involved in processing the maturation of fructosyltransferases in the vacuole, was also upregulated by TaMYB13-1 overexpression. Multiple TaMYB13 DNA-binding motifs were identified in the Ta1-FFT1 and Taγ-VPE1 promoters and were bound strongly by TaMYB13-1. The expression profiles of these target genes and TaMYB13-1 were highly correlated in recombinant inbred lines and during stem development as well as the transgenic and non-transgenic wheat dataset, further supporting a direct regulation of these genes by TaMYB13-1. TaMYB13-1 overexpression in wheat led to enhanced fructan accumulation in the leaves and stems and also increased spike weight and grain weight per spike in transgenic plants under water-limited conditions. These data suggest that TaMYB13-1 plays an important role in coordinated upregulation of genes necessary for fructan synthesis and can be used as a molecular tool to improve the high fructan trait. PMID:23873993

  3. VcBBX, VcMYB21, and VcR2R3MYB Transcription Factors Are Involved in UV-B-Induced Anthocyanin Biosynthesis in the Peel of Harvested Blueberry Fruit.

    PubMed

    Nguyen, Chau T T; Lim, Sooyeon; Lee, Jeong Gu; Lee, Eun Jin

    2017-03-15

    This study was carried out to better understand the mechanism responsible for increasing the anthocyanins in blueberries after UV-B radiation at 6.0 kJ m(-2) for 20 min. UV-B induced upregulation of genes involved in anthocyanin biosynthesis in blueberry fruit compared to a nontreated control. Phenylalanine ammonia lyase, chalcone synthase, and flavanone 3'-hydroxylase, which are enzymes that function upstream of anthocyanin biosynthesis, were significantly expressed by UV-B. Expression levels of VcBBX, VcMYB21, and VcR2R3MYB transcription factors (TFs) were upregulated by UV-B in the same manner as the anthocyanin biosynthesis genes. The significant increase in the expression of TFs occurred immediately after UV-B treatment and was then maximized within 3 h. In accordance with these changes, individual anthocyanin contents in the fruits treated with UV-B significantly increased within 6 h and were 2-3-fold higher than the control. Our results indicated that UV-B radiation stimulates an increase in anthocyanin biosynthesis, which could be upregulated by the TFs studied.

  4. Genome-wide identification and characterization of R2R3MYB family in Rosaceae.

    PubMed

    González, Máximo; Carrasco, Basilio; Salazar, Erika

    2016-09-01

    Transcription factors R2R3MYB family have been associated with the control of secondary metabolites, development of structures, cold tolerance and response to biotic and abiotic stress, among others. In recent years, genomes of Rosaceae botanical family are available. Although this information has been used to study the karyotype evolution of these species from an ancestral genome, there are no studies that treat the evolution and diversity of gene families present in these species or in the botanical family. Here we present the first comparative study of the R2R3MYB subfamily of transcription factors in three species of Rosaceae family (Malus domestica, Prunus persica and Fragaria vesca). We described 186, 98 and 86 non-redundant gene models for apple, peach and strawberry, respectively. In this research, we analyzed the intron-exon structure and genomic distribution of R2R3MYB families mentioned above. The phylogenetic comparisons revealed putative functions of some R2R3MYB transcription factors. This analysis found 44 functional subgroups, seven of which were unique for Rosaceae. In addition, our results showed a highly collinearity among some genes revealing the existence of conserved gene models between the three species studied. Although some gene models in these species have been validated under several approaches, more research in the Rosaceae family is necessary to determine gene expression patterns in specific tissues and development stages to facilitate understanding of the regulatory and biochemical mechanism in this botanical family.

  5. Subspecialization of R2R3-MYB Repressors for Anthocyanin and Proanthocyanidin Regulation in Forage Legumes

    PubMed Central

    Albert, Nick W.

    2015-01-01

    The synthesis of anthocyanin pigments and proanthocyanidins (condensed tannins) is regulated by MYB-bHLH-WDR (MBW) transcription factor complexes in all angiosperms studied to date. Tr-MYB133 and Tr-MYB134 were isolated from Trifolium repens and encode R2R3-MYBs that antagonize the activity of MBW activation complexes. These two genes are conserved in other legume species, and form two sub-clades within the larger anthocyanin/proanthocyanidin clade of MYB repressors. However, unlike petunia and Arabidopsis, these R2R3-MYB repressors do not prevent ectopic accumulation of anthocyanins or proanthocyanidins. Instead, they are expressed when anthocyanins or proanthocyanidins are being synthesized, and provide feedback regulation to MBW complexes. This feedback occurs because Tr-MYB133 and Tr-MYB134 are themselves regulated by MBW complexes. Tr-MYB133 is regulated by MBW complexes containing anthocyanin-related R2R3-MYB proteins (Tr-RED LEAF), while Tr-MYB134 is regulated by complexes containing the proanthocyanidin R2R3-MYBs (Tr-MYB14). Other features of the MBW gene regulation networks are also conserved within legumes, including the ability for the anthocyanin MBW complexes to activate the expression of the AN1/TT8 clade bHLH factor. The regulation of Tr-MYB133 and Tr-MYB134 by distinct, pathway-specific MBW complexes has resulted in subspecialization for controlling anthocyanin or proanthocyanidin synthesis. PMID:26779194

  6. Subspecialization of R2R3-MYB Repressors for Anthocyanin and Proanthocyanidin Regulation in Forage Legumes.

    PubMed

    Albert, Nick W

    2015-01-01

    The synthesis of anthocyanin pigments and proanthocyanidins (condensed tannins) is regulated by MYB-bHLH-WDR (MBW) transcription factor complexes in all angiosperms studied to date. Tr-MYB133 and Tr-MYB134 were isolated from Trifolium repens and encode R2R3-MYBs that antagonize the activity of MBW activation complexes. These two genes are conserved in other legume species, and form two sub-clades within the larger anthocyanin/proanthocyanidin clade of MYB repressors. However, unlike petunia and Arabidopsis, these R2R3-MYB repressors do not prevent ectopic accumulation of anthocyanins or proanthocyanidins. Instead, they are expressed when anthocyanins or proanthocyanidins are being synthesized, and provide feedback regulation to MBW complexes. This feedback occurs because Tr-MYB133 and Tr-MYB134 are themselves regulated by MBW complexes. Tr-MYB133 is regulated by MBW complexes containing anthocyanin-related R2R3-MYB proteins (Tr-RED LEAF), while Tr-MYB134 is regulated by complexes containing the proanthocyanidin R2R3-MYBs (Tr-MYB14). Other features of the MBW gene regulation networks are also conserved within legumes, including the ability for the anthocyanin MBW complexes to activate the expression of the AN1/TT8 clade bHLH factor. The regulation of Tr-MYB133 and Tr-MYB134 by distinct, pathway-specific MBW complexes has resulted in subspecialization for controlling anthocyanin or proanthocyanidin synthesis.

  7. Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus Lupulus L.)

    PubMed Central

    2012-01-01

    depends on variable activation by combinations of R2R3Myb, bHLH and WDR TF homologues and inhibition by a Myb repressor. PMID:22340661

  8. Genome-Wide Identification of R2R3-MYB Genes and Expression Analyses During Abiotic Stress in Gossypium raimondii

    PubMed Central

    He, Qiuling; Jones, Don C.; Li, Wei; Xie, Fuliang; Ma, Jun; Sun, Runrun; Wang, Qinglian; Zhu, Shuijin; Zhang, Baohong

    2016-01-01

    The R2R3-MYB is one of the largest families of transcription factors, which have been implicated in multiple biological processes. There is great diversity in the number of R2R3-MYB genes in different plants. However, there is no report on genome-wide characterization of this gene family in cotton. In the present study, a total of 205 putative R2R3-MYB genes were identified in cotton D genome (Gossypium raimondii), that are much larger than that found in other cash crops with fully sequenced genomes. These GrMYBs were classified into 13 groups with the R2R3-MYB genes from Arabidopsis and rice. The amino acid motifs and phylogenetic tree were predicted and analyzed. The sequences of GrMYBs were distributed across 13 chromosomes at various densities. The results showed that the expansion of the G. Raimondii R2R3-MYB family was mainly attributable to whole genome duplication and segmental duplication. Moreover, the expression pattern of 52 selected GrMYBs and 46 GaMYBs were tested in roots and leaves under different abiotic stress conditions. The results revealed that the MYB genes in cotton were differentially expressed under salt and drought stress treatment. Our results will be useful for determining the precise role of the MYB genes during stress responses with crop improvement. PMID:27009386

  9. The Onion (Allium cepa L.) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis.

    PubMed

    Schwinn, Kathy E; Ngo, Hanh; Kenel, Fernand; Brummell, David A; Albert, Nick W; McCallum, John A; Pither-Joyce, Meeghan; Crowhurst, Ross N; Eady, Colin; Davies, Kevin M

    2016-01-01

    Bulb color is an important consumer trait for onion (Allium cepa L., Allioideae, Asparagales). The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red), flavonols (pale yellow), and chalcones (bright yellow). Flavonoid regulation is poorly characterized in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs) that commonly activate anthocyanin (SG6, MYB1) or flavonol (SG7, MYB29) production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5). MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressed and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic (Allium sativum L.) plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum majus of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species.

  10. The Onion (Allium cepa L.) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis

    PubMed Central

    Schwinn, Kathy E.; Ngo, Hanh; Kenel, Fernand; Brummell, David A.; Albert, Nick W.; McCallum, John A.; Pither-Joyce, Meeghan; Crowhurst, Ross N.; Eady, Colin; Davies, Kevin M.

    2016-01-01

    Bulb color is an important consumer trait for onion (Allium cepa L., Allioideae, Asparagales). The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red), flavonols (pale yellow), and chalcones (bright yellow). Flavonoid regulation is poorly characterized in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs) that commonly activate anthocyanin (SG6, MYB1) or flavonol (SG7, MYB29) production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5). MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressed and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic (Allium sativum L.) plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum majus of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species. PMID:28018399

  11. Genome-wide analysis of citrus R2R3MYB genes and their spatiotemporal expression under stresses and hormone treatments.

    PubMed

    Xie, Rangjin; Li, Yongjie; He, Shaolan; Zheng, Yongqiang; Yi, Shilai; Lv, Qiang; Deng, Lie

    2014-01-01

    The R2R3MYB proteins represent one of the largest families of transcription factors, which play important roles in plant growth and development. Although genome-wide analysis of this family has been conducted in many species, little is known about R2R3MYB genes in citrus, In this study, 101 R2R3MYB genes has been identified in the citrus (Citrus sinesis and Citrus clementina) genomes, which are almost equal to the number of rice. Phylogenetic analysis revealed that they could be subdivided into 21 subgroups. The evolutionary relationships and the intro-exon organizations were also analyzed, revealing strong gene conservation but also the expansions of particular functional genes during the plant evolution. Tissue-specific expression profiles showed that 95 citrus R2R3MYB genes were expressed in at least one tissue and the other 6 genes showed very low expression in all tissues tested, suggesting that citrus R2R3MYB genes play important roles in the development of all citrus organs. The transcript abundance level analysis during abiotic conditions (NaCl, abscisic acid, jasmonic acid, drought and low temperature) identified a group of R2R3MYB genes that responded to one or multiple treatments, which showed a promising for improving citrus adaptation to stresses. Our results provided an essential foundation for the future selection of the citrus R2R3MYB genes for cloning and functional dissection with an aim of uncovering their roles in citrus growth and development.

  12. Positive selection and functional divergence of R2R3-MYB paralogous genes expressed in inflorescence buds of Scutellaria species (Labiatae).

    PubMed

    Huang, Bing-Hong; Pang, Erli; Chen, Yi-Wen; Cao, Huifen; Ruan, Yu; Liao, Pei-Chun

    2015-03-13

    Anthocyanin is the main pigment forming floral diversity. Several transcription factors that regulate the expression of anthocyanin biosynthetic genes belong to the R2R3-MYB family. Here we examined the transcriptomes of inflorescence buds of Scutellaria species (skullcaps), identified the expression R2R3-MYBs, and detected the genetic signatures of positive selection for adaptive divergence across the rapidly evolving skullcaps. In the inflorescence buds, seven R2R3-MYBs were identified. MYB11 and MYB16 were detected to be positively selected. The signature of positive selection on MYB genes indicated that species diversification could be affected by transcriptional regulation, rather than at the translational level. When comparing among the background lineages of Arabidopsis, tomato, rice, and Amborella, heterogeneous evolutionary rates were detected among MYB paralogs, especially between MYB13 and MYB19. Significantly different evolutionary rates were also evidenced by type-I functional divergence between MYB13 and MYB19, and the accelerated evolutionary rates in MYB19, implied the acquisition of novel functions. Another paralogous pair, MYB2/7 and MYB11, revealed significant radical amino acid changes, indicating divergence in the regulation of different anthocyanin-biosynthetic enzymes. Our findings not only showed that Scutellaria R2R3-MYBs are functionally divergent and positively selected, but also indicated the adaptive relevance of regulatory genes in floral diversification.

  13. Identification, cloning and characterization of R2R3-MYB gene family in canola (Brassica napus L.) identify a novel member modulating ROS accumulation and hypersensitive-like cell death.

    PubMed

    Chen, Bisi; Niu, Fangfang; Liu, Wu-Zhen; Yang, Bo; Zhang, Jingxiao; Ma, Jieyu; Cheng, Hao; Han, Feng; Jiang, Yuan-Qing

    2016-04-01

    The R2R3-MYB proteins comprise one of the largest families of transcription factors in plants. Although genome-wide analysis of this family has been carried out in some plant species, little is known about R2R3-MYB genes in canola (Brassica napus L.). In this study, we have identified 76 R2R3-MYB genes in the canola genome through mining of expressed sequence tags (ESTs). The cDNA sequences of 44 MYB genes were successfully cloned. The transcriptional activities of BnaMYB proteins encoded by these genes were assayed in yeast. The subcellular localizations of representative R2R3-MYB proteins were investigated through GFP fusion. Besides, the transcript abundance level analysis during abiotic conditions and ABA treatment identified a group of R2R3-MYB genes that responded to one or more treatments. Furthermore, we identified a previously functionally unknown MYB gene-BnaMYB78, which modulates reactive oxygen species (ROS)-dependent cell death in Nicotiana benthamiana, through regulating the transcription of a few ROS- and defence-related genes. Taken together, this study has provided a solid foundation for understanding the roles and regulatory mechanism of canola R2R3-MYB genes.

  14. Identification, cloning and characterization of R2R3-MYB gene family in canola (Brassica napus L.) identify a novel member modulating ROS accumulation and hypersensitive-like cell death

    PubMed Central

    Chen, Bisi; Niu, Fangfang; Liu, Wu-Zhen; Yang, Bo; Zhang, Jingxiao; Ma, Jieyu; Cheng, Hao; Han, Feng; Jiang, Yuan-Qing

    2016-01-01

    The R2R3-MYB proteins comprise one of the largest families of transcription factors in plants. Although genome-wide analysis of this family has been carried out in some plant species, little is known about R2R3-MYB genes in canola (Brassica napus L.). In this study, we have identified 76 R2R3-MYB genes in the canola genome through mining of expressed sequence tags (ESTs). The cDNA sequences of 44 MYB genes were successfully cloned. The transcriptional activities of BnaMYB proteins encoded by these genes were assayed in yeast. The subcellular localizations of representative R2R3-MYB proteins were investigated through GFP fusion. Besides, the transcript abundance level analysis during abiotic conditions and ABA treatment identified a group of R2R3-MYB genes that responded to one or more treatments. Furthermore, we identified a previously functionally unknown MYB gene-BnaMYB78, which modulates reactive oxygen species (ROS)-dependent cell death in Nicotiana benthamiana, through regulating the transcription of a few ROS- and defence-related genes. Taken together, this study has provided a solid foundation for understanding the roles and regulatory mechanism of canola R2R3-MYB genes. PMID:26800702

  15. The oil palm VIRESCENS gene controls fruit colour and encodes a R2R3-MYB.

    PubMed

    Singh, Rajinder; Low, Eng-Ti Leslie; Ooi, Leslie Cheng-Li; Ong-Abdullah, Meilina; Nookiah, Rajanaidu; Ting, Ngoot-Chin; Marjuni, Marhalil; Chan, Pek-Lan; Ithnin, Maizura; Manaf, Mohd Arif Abdul; Nagappan, Jayanthi; Chan, Kuang-Lim; Rosli, Rozana; Halim, Mohd Amin; Azizi, Norazah; Budiman, Muhammad A; Lakey, Nathan; Bacher, Blaire; Van Brunt, Andrew; Wang, Chunyan; Hogan, Michael; He, Dong; MacDonald, Jill D; Smith, Steven W; Ordway, Jared M; Martienssen, Robert A; Sambanthamurthi, Ravigadevi

    2014-06-30

    Oil palm, a plantation crop of major economic importance in Southeast Asia, is the predominant source of edible oil worldwide. We report the identification of the virescens (VIR) gene, which controls fruit exocarp colour and is an indicator of ripeness. VIR is a R2R3-MYB transcription factor with homology to Lilium LhMYB12 and similarity to Arabidopsis production of anthocyanin pigment1 (PAP1). We identify five independent mutant alleles of VIR in over 400 accessions from sub-Saharan Africa that account for the dominant-negative virescens phenotype. Each mutation results in premature termination of the carboxy-terminal domain of VIR, resembling McClintock's C1-I allele in maize. The abundance of alleles likely reflects cultural practices, by which fruits were venerated for magical and medicinal properties. The identification of VIR will allow selection of the trait at the seed or early-nursery stage, 3-6 years before fruits are produced, greatly advancing introgression into elite breeding material.

  16. The Evolutionary History of R2R3-MYB Proteins Across 50 Eukaryotes: New Insights Into Subfamily Classification and Expansion

    PubMed Central

    Du, Hai; Liang, Zhe; Zhao, Sen; Nan, Ming-Ge; Phan Tran, Lam-Son; Lu, Kun; Huang, Yu-Bi; Li, Jia-Na

    2015-01-01

    R2R3-MYB proteins (2R-MYBs) are one of the main transcription factor families in higher plants. Since the evolutionary history of this gene family across the eukaryotic kingdom remains unknown, we performed a comparative analysis of 2R-MYBs from 50 major eukaryotic lineages, with particular emphasis on land plants. A total of 1548 candidates were identified among diverse taxonomic groups, which allowed for an updated classification of 73 highly conserved subfamilies, including many newly identified subfamilies. Our results revealed that the protein architectures, intron patterns, and sequence characteristics were remarkably conserved in each subfamily. At least four subfamilies were derived from early land plants, 10 evolved from spermatophytes, and 19 from angiosperms, demonstrating the diversity and preferential expansion of this gene family in land plants. Moreover, we determined that their remarkable expansion was mainly attributed to whole genome and segmental duplication, where duplicates were preferentially retained within certain subfamilies that shared three homologous intron patterns (a, b, and c) even though up to 12 types of patterns existed. Through our integrated distributions, sequence characteristics, and phylogenetic tree analyses, we confirm that 2R-MYBs are old and postulate that 3R-MYBs may be evolutionarily derived from 2R-MYBs via intragenic domain duplication. PMID:26047035

  17. Genome-wide identification of cassava R2R3 MYB family genes related to abscission zone separation after environmental-stress-induced abscission

    PubMed Central

    Liao, Wenbin; Yang, Yiling; Li, Yayun; Wang, Gan; Peng, Ming

    2016-01-01

    Cassava plants (Manihot esculenta Crantz) resist environmental stresses by shedding leaves in leaf pulvinus abscission zones (AZs), thus leading to adaptation to new environmental conditions. Little is known about the roles of cassava R2R3 MYB factors in regulating AZ separation. Herein, 166 cassava R2R3 MYB genes were identified. Evolutionary analysis indicated that the 166 R2R3 MYB genes could be divided into 11 subfamilies. Transcriptome analysis indicated that 26 R2R3 MYB genes were expressed in AZs across six time points during both ethylene- and water-deficit stress-induced leaf abscission. Comparative expression profile analysis of similar SOTA (Self Organizing Tree Algorithm) clusters demonstrated that 10 R2R3 MYB genes had similar expression patterns at six time points in response to both treatments. GO (Gene Ontology) annotation confirmed that all 10 R2R3 MYB genes participated in the responses to stress and ethylene and auxin stimuli. Analysis of the putative 10 R2R3 MYB promoter regions showed that those genes primarily contained ethylene- and stress-related cis-elements. The expression profiles of the genes acting downstream of the selected MYBs were confirmed to be involved in cassava abscission zone separation. All these results indicated that R2R3 MYB plays an important regulatory role in AZ separation. PMID:27573926

  18. Anthocyanin leaf markings are regulated by a family of R2R3-MYB genes in the genus Trifolium.

    PubMed

    Albert, Nick W; Griffiths, Andrew G; Cousins, Greig R; Verry, Isabelle M; Williams, Warren M

    2015-01-01

    Anthocyanin pigments accumulate to form spatially restricted patterns in plants, particularly in flowers, but also occur in vegetative tissues. Spatially restricted anthocyanin leaf markings are poorly characterised in plants, but are common in forage legumes. We hypothesised that the molecular basis for anthocyanin leaf markings in Trifolium spp. is due to the activity of a family of R2R3-MYB genes. R2R3-MYB genes were identified that are associated with the two classic pigmentation loci in T. repens. The R locus patterns 'red leaf', 'red midrib' and 'red fleck' are conditioned by a single MYB gene, RED LEAF. The 'diffuse red leaf' trait is regulated by the RED LEAF DIFFUSE MYB gene. The V locus was identified through mapping two V-linked traits, 'V-broken yellow' (Vby) and 'red leaflet' (Vrl). Two highly similar R2R3-MYB genes, RED V-a and RED V-b, mapped to the V locus and co-segregated with the RED V pigmentation pattern. Functional characterisation of RED LEAF and RED V was performed, confirming their function as anthocyanin regulators and identifying a C-terminal region necessary for transactivation. The mechanisms responsible for generating anthocyanin leaf markings in T. repens provide a valuable system to compare with mechanisms that regulate complex floral pigmentation.

  19. Tomato R2R3-MYB Proteins SlANT1 and SlAN2: Same Protein Activity, Different Roles

    PubMed Central

    Bassolino, Laura; Povero, Giovanni; Spelt, Cornelis; Buti, Sara; Giuliano, Giovanni; Quattrocchio, Francesca; Koes, Ronald; Perata, Pierdomenico; Gonzali, Silvia

    2015-01-01

    Anthocyanins are water-soluble polyphenolic compounds with a high nutraceutical value. Despite the fact that cultivated tomato varieties do not accumulate anthocyanins in the fruit, the biosynthetic pathway can be activated in the vegetative organs by several environmental stimuli. Little is known about the molecular mechanisms regulating anthocyanin synthesis in tomato. Here, we carried out a molecular and functional characterization of two genes, SlAN2 and SlANT1, encoding two R2R3-MYB transcription factors. We show that both can induce ectopic anthocyanin synthesis in transgenic tomato lines, including the fruit. However, only SlAN2 acts as a positive regulator of anthocyanin synthesis in vegetative tissues under high light or low temperature conditions. PMID:26308527

  20. Overexpression of a R2R3 MYB gene MdSIMYB1 increases tolerance to multiple stresses in transgenic tobacco and apples.

    PubMed

    Wang, Rong-Kai; Cao, Zhong-Hui; Hao, Yu-Jin

    2014-01-01

    MYB transcription factors (TFs) involve in plant abiotic stress tolerance and response in various plant species. In this study, rapid amplification of cDNA ends (RACE) was conducted to isolate the R2R3-MYB TF gene MdSIMYB1 from apples (Malus × domestica). The gene transcripts were abundant in the leaves, flowers and fruits, compared to other organs, and were induced by abiotic stresses and plant hormones. We observed the subcellular localization of an MdSIMYB1-GFP fusion protein in the nucleus. Furthermore, the MdSIMYB1 gene was introduced into the tobacco genome and ectopically expressed in transgenic lines. The results indicate that MdSIMYB1 transgenic tobacco seed germination is insensitive to abscisic acid and NaCl treatment. Additionally, it was found that the ectopic expression of MdSIMYB1 enhanced the tolerance of plants to high salinity, drought and cold tolerance by upregulating the stress-responsive genes NtDREB1A, NtERD10B and NtERD10C. Meanwhile, the transgenic tobacco exhibited robust root growth because of the enhanced expression of the auxin-responsive genes NtIAA4.2, NtIAA4.1 and NtIAA2.5 under stress conditions, which is conducive to stress tolerance. Finally, transgenic apple lines were obtained and tested. Transgenic apple lines that were overexpressing MdSIMYB1 exhibited a higher tolerance to abiotic stress than the wild-type control, but suppression of MdSIMYB1 resulted in lower tolerance. Our results indicate that MdSIMYB1 may be utilized as a target gene for enhancing stress tolerance in important crops.

  1. Functional diversification of the potato R2R3 MYB anthocyanin activators AN1, MYBA1, and MYB113 and their interaction with basic helix-loop-helix cofactors

    PubMed Central

    Liu, Yuhui; Lin-Wang, Kui; Espley, Richard V.; Wang, Li; Yang, Hongyu; Yu, Bin; Dare, Andrew; Varkonyi-Gasic, Erika; Wang, Jing; Zhang, Junlian; Wang, Di; Allan, Andrew C.

    2016-01-01

    In potato (Solanum tuberosum L.), R2R3 MYBs are involved in the regulation of anthocyanin biosynthesis. We examined sequences of these MYBs in cultivated potatoes, which are more complex than diploid potato due to ploidy and heterozygosity. We found amino acid variants in the C-terminus of the MYB StAN1, termed R0, R1, and R3, due to the presence of a repeated 10-amino acid motif. These variant MYBs showed some expression in both white and pigmented tubers. We found several new alleles or gene family members of R2R3 MYBs, StMYBA1 and StMYB113, which were also expressed in white potato tubers. From functional analysis in tobacco, we showed that the presence of a C-terminal 10-amino acid motif is optimal for activating anthocyanin accumulation. Engineering a motif back into a MYB lacking this sequence enhanced its activating ability. Versions of StMYBA1 and StMYB113 can also activate anthocyanin accumulation in tobacco leaves, with the exception of StMYB113-3, which has a partial R2R3 domain. We isolated five family members of potato StbHLH1, and one StJAF13, to test their ability to interact with MYB variants. The results showed that two alleles of StbHLH1 from white skin and red skin are non-functional, while three other StbHLH1s have different co-regulating abilities, and need to be activated by StJAF13. Combined with expression analysis in potato tuber, results suggest that StbHLH1 and StJAF13 are key co-regulators of anthocyanin biosynthesis, while the transcripts of MYB variants StAN1, StMYBA1, and StMYB113 are well expressed, even in the absence of pigmentation. PMID:26884602

  2. Functional diversification of the potato R2R3 MYB anthocyanin activators AN1, MYBA1, and MYB113 and their interaction with basic helix-loop-helix cofactors.

    PubMed

    Liu, Yuhui; Lin-Wang, Kui; Espley, Richard V; Wang, Li; Yang, Hongyu; Yu, Bin; Dare, Andrew; Varkonyi-Gasic, Erika; Wang, Jing; Zhang, Junlian; Wang, Di; Allan, Andrew C

    2016-04-01

    In potato (Solanum tuberosum L.), R2R3 MYBs are involved in the regulation of anthocyanin biosynthesis. We examined sequences of these MYBs in cultivated potatoes, which are more complex than diploid potato due to ploidy and heterozygosity. We found amino acid variants in the C-terminus of the MYB StAN1, termed R0, R1, and R3, due to the presence of a repeated 10-amino acid motif. These variant MYBs showed some expression in both white and pigmented tubers. We found several new alleles or gene family members of R2R3 MYBs,StMYBA1 and StMYB113, which were also expressed in white potato tubers. From functional analysis in tobacco, we showed that the presence of a C-terminal 10-amino acid motif is optimal for activating anthocyanin accumulation. Engineering a motif back into a MYB lacking this sequence enhanced its activating ability. Versions of StMYBA1 and StMYB113 can also activate anthocyanin accumulation in tobacco leaves, with the exception of StMYB113-3, which has a partial R2R3 domain. We isolated five family members of potato StbHLH1, and one StJAF13, to test their ability to interact with MYB variants. The results showed that two alleles of StbHLH1 from white skin and red skin are non-functional, while three other StbHLH1s have different co-regulating abilities, and need to be activated by StJAF13. Combined with expression analysis in potato tuber, results suggest that StbHLH1 and StJAF13a re key co-regulators of anthocyanin biosynthesis, while the transcripts of MYB variants StAN1,StMYBA1, and StMYB113 are well expressed, even in the absence of pigmentation.

  3. Identification of a R2R3-MYB gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (Nelumbo Adans.).

    PubMed

    Sun, Shan-Shan; Gugger, Paul F; Wang, Qing-Feng; Chen, Jin-Ming

    2016-01-01

    The lotus (Nelumbonaceae: Nelumbo Adans.) is a highly desired ornamental plant, comprising only two extant species, the sacred lotus (N. nucifera Gaerten.) with red flowers and the American lotus (N. lutea Willd.) with yellow flowers. Flower color is the most obvious difference of two species. To better understand the mechanism of flower color differentiation, the content of anthocyanins and the expression levels of four key structural genes (e.g., DFR, ANS, UFGT and GST) were analyzed in two species. Our results revealed that anthocyanins were detected in red flowers, not yellow flowers. Expression analysis showed that no transcripts of GST gene and low expression level of three UFGT genes were detected in yellow flowers. In addition, three regulatory genes (NnMYB5, NnbHLH1 and NnTTG1) were isolated from red flowers and showed a high similarity to corresponding regulatory genes of other species. Sequence analysis of MYB5, bHLH1 and TTG1 in two species revealed striking differences in coding region and promoter region of MYB5 gene. Population analysis identified three MYB5 variants in Nelumbo: a functional allele existed in red flowers and two inactive forms existed in yellow flowers. This result revealed that there was an association between allelic variation in MYB5 gene and flower color difference. Yeast two-hybrid experiments showed that NnMYB5 interacts with NnbHLH1, NlbHLH1 and NnTTG1, and NnTTG1 also interacts with NnbHLH1 and NlbHLH1. The over-expression of NnMYB5 led to anthocyanin accumulation in immature seeds and flower stalks and up-regulation of expression of TT19 in Arabidopsis. Therefore, NnMYB5 is a transcription activator of anthocyanin synthesis. This study helps to elucidate the function of NnMYB5 and will contribute to clarify the mechanism of flower coloration and genetic engineering of flower color in lotus.

  4. Identification of a R2R3-MYB gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (Nelumbo Adans.)

    PubMed Central

    Sun, Shan-Shan

    2016-01-01

    The lotus (Nelumbonaceae: Nelumbo Adans.) is a highly desired ornamental plant, comprising only two extant species, the sacred lotus (N. nucifera Gaerten.) with red flowers and the American lotus (N. lutea Willd.) with yellow flowers. Flower color is the most obvious difference of two species. To better understand the mechanism of flower color differentiation, the content of anthocyanins and the expression levels of four key structural genes (e.g., DFR, ANS, UFGT and GST) were analyzed in two species. Our results revealed that anthocyanins were detected in red flowers, not yellow flowers. Expression analysis showed that no transcripts of GST gene and low expression level of three UFGT genes were detected in yellow flowers. In addition, three regulatory genes (NnMYB5, NnbHLH1 and NnTTG1) were isolated from red flowers and showed a high similarity to corresponding regulatory genes of other species. Sequence analysis of MYB5, bHLH1 and TTG1 in two species revealed striking differences in coding region and promoter region of MYB5 gene. Population analysis identified three MYB5 variants in Nelumbo: a functional allele existed in red flowers and two inactive forms existed in yellow flowers. This result revealed that there was an association between allelic variation in MYB5 gene and flower color difference. Yeast two-hybrid experiments showed that NnMYB5 interacts with NnbHLH1, NlbHLH1 and NnTTG1, and NnTTG1 also interacts with NnbHLH1 and NlbHLH1. The over-expression of NnMYB5 led to anthocyanin accumulation in immature seeds and flower stalks and up-regulation of expression of TT19 in Arabidopsis. Therefore, NnMYB5 is a transcription activator of anthocyanin synthesis. This study helps to elucidate the function of NnMYB5 and will contribute to clarify the mechanism of flower coloration and genetic engineering of flower color in lotus. PMID:27635336

  5. Fine mapping of the pleiotropic locus B for black spine and orange mature fruit color in cucumber identifies a 50 kb region containing a R2R3-MYB transcription factor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spine and skin colors on fruits are two important fruit quality traits in cucumber for variety improvement. In this study, we investigated the inheritance of spine and mature fruit colors with segregation populations developed from the cross between two inbred lines WI7200 (black spine and orang...

  6. Identification of 30 MYB transcription factor genes and analysis of their expression during abiotic stress in peanut (Arachis hypogaea L.).

    PubMed

    Chen, Na; Yang, Qingli; Pan, Lijuan; Chi, Xiaoyuan; Chen, Mingna; Hu, Dongqing; Yang, Zhen; Wang, Tong; Wang, Mian; Yu, Shanlin

    2014-01-01

    The MYB superfamily constitutes one of the most abundant groups of transcription factors and plays central roles in developmental processes and defense responses in plants. In the work described in this article, 30 unique peanut MYB genes that contained full-length cDNA sequences were isolated. The 30 genes were grouped into three categories: one R1R2R3-MYB, nine R2R3-MYBs and 20 MYB-related members. The sequence composition of the R2 and R3 repeats was conserved among the nine peanut R2R3-MYB proteins. Phylogenetic comparison of the members of this superfamily between peanut and Arabidopsis revealed that the putative functions of some peanut MYB proteins were clustered into the Arabidopsis functional groups. Expression analysis during abiotic stress identified a group of MYB genes that responded to at least one stress treatment. This is the first comprehensive study of the MYB gene family in peanut.

  7. Characterization and expression profiling of MYB transcription factors against stresses and during male organ development in Chinese cabbage (Brassica rapa ssp. pekinensis).

    PubMed

    Saha, Gopal; Park, Jong-In; Ahmed, Nasar Uddin; Kayum, Md Abdul; Kang, Kwon-Kyoo; Nou, Ill-Sup

    2016-07-01

    MYB proteins comprise a large family of plant transcription factors that play regulatory roles in different biological processes such as plant development, metabolism, and defense responses. To gain insight into this gene superfamily and to elucidate its roles in stress resistance, we performed a comprehensive genome-wide identification, characterization, and expression analysis of MYB genes in Chinese cabbage (Brassica rapa ssp. pekinensis). We identified 475 Chinese cabbage MYB genes, among which most were from R2R3-MYB (256 genes) and MYB-related (202) subfamilies. Analysis of sequence characteristics, phylogenetic classification, and protein motif structures confirmed the existence of several categories (1R, 2R, 3R, 4R, and 5R) of Chinese cabbage MYB genes, which is comparable with MYB genes of other crops. An extensive in silico functional analysis, based on established functional properties of MYB genes from different crop species, revealed 11 and four functional clades within the Chinese cabbage R2R3-MYB and MYB-related subfamilies, respectively. In this study, we reported a MYB-like group within the MYB-related subfamily contains 77 MYB genes. Expression analysis using low temperature-treated whole-genome microarray data revealed variable transcript abundance of 1R/2R/3R/4R/5R-MYB genes in 11 clusters between two inbred lines of Chinese cabbage, Chiifu and Kenshin, which differ in cold tolerance. In further validation tests, we used qRT-PCR to examine the cold-responsive expression patterns of 27 BrMYB genes; surprisingly, the MYB-related genes were induced more highly than the R2R3-MYB genes. In addition, we identified 10 genes with corresponsive expression patterns from a set of salt-, drought-, ABA-, JA-, and SA-induced R2R3-MYB genes. We identified 11 R2R3-MYBs functioning in resistance against biotic stress, including 10 against Fusarium oxysporum f.sp. conglutinans and one against Pectobacterium carotovoram subsp. caratovorum. Furthermore, based on

  8. A Group of Grapevine MYBA Transcription Factors Located in Chromosome 14 Control Anthocyanin Synthesis in Vegetative Organs with Different Specificities Compared to the Berry Color Locus.

    PubMed

    Matus, José Tomás; Cavallini, Erika; Loyola, Rodrigo; Höll, Janine; Finezzo, Laura; Dal Santo, Silvia; Vialet, Sandrine; Commisso, Mauro; Roman, Federica; Schubert, Andrea; Alcalde, José Antonio; Bogs, Jochen; Ageorges, Agnès; Tornielli, Giovanni Battista; Arce-Johnson, Patricio

    2017-04-02

    Grapevine organs accumulate anthocyanins in a cultivar-specific and environmentally induced manner. The MYBA1-A2 genes within the berry color locus in chromosome 2 represent the major genetic determinants of fruit color. The simultaneous occurrence of transposon insertions and point mutations in these genes is responsible for most white-skinned phenotypes. However, red pigmentation found in vegetative organs suggests the presence of additional regulators. This work describes a genomic region of chromosome 14 containing three closely related R2R3-MYB genes, named MYBA5, MYBA6 and MYBA7. Ectopic expression of the latter two in grapevine hairy roots promoted anthocyanin accumulation without affecting other phenylpropanoids. Transcriptomic profiling of HR expressing MYBA1, MYBA6 and MYBA7 showed that these regulators share the activation of late biosynthetic and modification/transport-related genes but differ in the activation of the FLAVONOID-3'5'-HYDROXYLASE (F3'5'H) family. However, an alternatively spliced MYBA6 variant was incapable of activating anthocyanin synthesis due to the lack of a MYC1 interaction domain. MYBA1, MYBA6.1 and MYBA7 activated the promoters of UDP-GLUCOSE:FLAVONOID 3-O-GLUCOSYLTRANSFERASE (UFGT) and ANTHOCYANIN 3-O-GLUCOSIDE-6″-O-ACYLTRANSFERASE (3AT) but only MYBA1 induced F3'5'H in concordance with the low proportion of tri-hydroxylated anthocyanins found in MYBA6-A7 HR. This putative new color locus is related to the red/cyanidic pigmentation of vegetative organs in black and white-skinned cultivars and forms part of the UV-B radiation response pathway orchestrated by ELONGATED HYPOCOTYL 5 (VviHY5). These results demonstrate the involvement of additional anthocyanin regulators in grapevine and suggest an evolutionary divergence between the two grape color loci for controlling additional targets of the flavonoid pathway. This article is protected by copyright. All rights reserved.

  9. Overexpression of MusaMYB31, a R2R3 type MYB transcription factor gene indicate its role as a negative regulator of lignin biosynthesis in banana

    PubMed Central

    Ganapathi, T. R.

    2017-01-01

    Lignin and polyphenols are important cellular components biosynthesized through phenylpropanoid pathway. Phenylpropanoid pathway in plants is regulated by some important transcription factors including R2R3 MYB transcription factors. In this study, we report the cloning and functional characterization of a banana R2R3-MYB transcription factor (MusaMYB31) by overexpression in transgenic banana plants and evaluated its potential role in regulating biosynthesis of lignin and polyphenols. Sequence analysis of MusaMYB31 indicated its clustering with members of subgroup 4 (Sg4) of R2R3MYB family which are well known for their role as repressors of lignin biosynthesis. Expression analysis indicated higher expression of MusaMYB31 in corm and root tissue, known for presence of highly lignified tissue than other organs of banana. Overexpression of MusaMYB31 in banana cultivar Rasthali was carried out and four transgenic lines were confirmed by GUS histochemical staining, PCR analysis and Southern blot. Histological and biochemical analysis suggested reduction of cell wall lignin in vascular elements of banana. Transgenic lines showed alteration in transcript levels of general phenylpropanoid pathway genes including lignin biosynthesis pathway genes. Reduction of total polyphenols content in transgenic lines was in line with the observation related to repression of general phenylpropanoid pathway genes. This study suggested the potential role of MusaMYB31 as repressor of lignin and polyphenols biosynthesis in banana. PMID:28234982

  10. Overexpression of MusaMYB31, a R2R3 type MYB transcription factor gene indicate its role as a negative regulator of lignin biosynthesis in banana.

    PubMed

    Tak, Himanshu; Negi, Sanjana; Ganapathi, T R

    2017-01-01

    Lignin and polyphenols are important cellular components biosynthesized through phenylpropanoid pathway. Phenylpropanoid pathway in plants is regulated by some important transcription factors including R2R3 MYB transcription factors. In this study, we report the cloning and functional characterization of a banana R2R3-MYB transcription factor (MusaMYB31) by overexpression in transgenic banana plants and evaluated its potential role in regulating biosynthesis of lignin and polyphenols. Sequence analysis of MusaMYB31 indicated its clustering with members of subgroup 4 (Sg4) of R2R3MYB family which are well known for their role as repressors of lignin biosynthesis. Expression analysis indicated higher expression of MusaMYB31 in corm and root tissue, known for presence of highly lignified tissue than other organs of banana. Overexpression of MusaMYB31 in banana cultivar Rasthali was carried out and four transgenic lines were confirmed by GUS histochemical staining, PCR analysis and Southern blot. Histological and biochemical analysis suggested reduction of cell wall lignin in vascular elements of banana. Transgenic lines showed alteration in transcript levels of general phenylpropanoid pathway genes including lignin biosynthesis pathway genes. Reduction of total polyphenols content in transgenic lines was in line with the observation related to repression of general phenylpropanoid pathway genes. This study suggested the potential role of MusaMYB31 as repressor of lignin and polyphenols biosynthesis in banana.

  11. The strawberry transcription factor FaMYB1 inhibits the biosynthesis of proanthocyanidins in Lotus corniculatus leaves.

    PubMed

    Paolocci, Francesco; Robbins, Mark P; Passeri, Valentina; Hauck, Barbara; Morris, Phil; Rubini, Andrea; Arcioni, Sergio; Damiani, Francesco

    2011-01-01

    Proanthocyanidins (PAs) are agronomically important biopolymers in higher plants composed primarily of catechin and epicatechin units. The biosynthesis of these natural products is regulated by transcription factors including proteins of the R2R3MYB class. To gain insight into the genetic control of the catechin and epicatechin branches of the PA pathway in forage legumes, here the effects of the expression of FaMYB1, a flavonoid R2R3MYB repressor from strawberry, in Lotus corniculatus (birdsfoot trefoil), were tested. It was found that in leaves of T(0) transgenic lines the degree of PA inhibition correlated with the level of FaMYB1 expression. These effects were heritable in the transgene-positive plant T(1) generation and were tissue specific as the suppression of proanthocyanidin biosynthesis was most pronounced in mesophyll cells within the leaf, whereas other flavonoid and phenolic compounds were substantially unaltered. The data suggest that FaMYB1 may counter-balance the activity of the endogenous transcriptional MYB-bHLH-WD40 (MBW) complex promoting proanthocyanidin biosynthesis via the catechin and epicatechin branches and that FaMYB1 does not interfere with the expression levels of a resident R2R3MYB activator of PAs. It is proposed that in forage legumes leaf cell commitment to synthesize proanthocyanidins relies on the balance between the activity of activator and repressor MYBs operating within the MBW complex.

  12. The AtMYB12 activation domain maps to a short C-terminal region of the transcription factor.

    PubMed

    Stracke, Ralf; Turgut-Kara, Neslihan; Weisshaar, Bernd

    2017-03-11

    The Arabidopsis thaliana R2R3-MYB transcription factor MYB12 is a light-inducible, flavonol-specific activator of flavonoid biosynthesis. The transactivation activity of the AtMYB12 protein was analyzed using a C-terminal deletion series in a transient A. thaliana protoplast assay with the goal of mapping the activation domain (AD). Although the deletion of the last 46 C-terminal amino acids did not affect the activation capacity, the deletion of the last 98 amino acids almost totally abolished transactivation of two different target promoters. A domain swap experiment using the yeast GAL4 DNA-binding domain revealed that the region from positions 282 to 328 of AtMYB12 was sufficient for transactivation. In contrast to the R2R3-MYB ADs known thus far, that of AtMYB12 is not located at the rearmost C-terminal end of the protein. The AtMYB12 AD is conserved in other experimentally proven R2R3-MYB flavonol regulators from different species.

  13. Engineering phenolics metabolism in the grasses using transcription factors

    SciTech Connect

    Grotewold, Erich

    2013-07-26

    The economical competitiveness of agriculture-derived biofuels can be significantly enhanced by increasing biomass/acre yields and by furnishing the desired carbon balance for facilitating liquid fuel production (e.g., ethanol) or for high-energy solid waste availability to be used as biopower (e.g., for electricity production). Biomass production and carbon balance are tightly linked to the biosynthesis of phenolic compounds, which are found in crops and in agricultural residues either as lignins, as part of the cell wall, or as soluble phenolics which play a variety of functions in the biology of plants. The grasses, in particular maize, provide the single major source of agricultural biomass, offering significant opportunities for increasing renewable fuel production. Our laboratory has pioneered the use of transcription factors for manipulating plant metabolic pathways, an approach that will be applied here towards altering the composition of phenolic compounds in maize. Previously, we identified a small group of ten maize R2R3-MYB transcription factors with all the characteristics of regulators of different aspects of phenolic biosynthesis. Here, we propose to investigate the participation of these R2R3-MYB factors in the regulation of soluble and insoluble maize phenolics, using a combination of over-expression and down-regulation of these transcription factors in transgenic maize cultured cells and in maize plants. Maize cells and plants altered in the activity of these regulatory proteins will be analyzed for phenolic composition by targeted metabolic profiling. Specifically, we will I) Investigate the effect of gain- and loss-of-function of a select group of R2R3-MYB transcription factors on the phenolic composition of maize plants and II) Identify the biosynthetic genes regulated by each of the selected R2R3-MYB factors. While a likely outcome of these studies are transgenic maize plants with altered phenolic composition, this research will significantly

  14. Over-expression of a subgroup 4 R2R3 type MYB transcription factor gene from Leucaena leucocephala reduces lignin content in transgenic tobacco.

    PubMed

    Omer, Sumita; Kumar, Santosh; Khan, Bashir M

    2013-01-01

    KEY MESSAGE : LlMYB1 , a subgroup 4 R2R3-type MYB transcription factor gene from Leucaena leucocephala appears to be a repressor of lignin biosynthesis pathway by regulating the transcription of general phenylpropanoid pathway genes. R2R3MYB transcription factors are known to play a wide role in regulating the phenylpropanoid pathway in plants. In this study, we report isolation, cloning and characterization of an R2R3MYB transcription factor gene (LlMYB1) from an economically important tree species, Leucaena leucocephala. LlMYB1 consists of 705 bp coding sequence corresponding to 235 amino acids. Sequence alignment revealed that the N-terminal (MYB) domain of the gene shares up to 95 % similarity with subgroup 4 (Sg4) members of R2R3Myb gene family functionally known to be lignin repressors. Highly divergent C-terminal region of the gene carried an ERF-associated amphiphilic repression (EAR) motif, another characteristic of the Sg4. The gene was phylogenetically grouped closest with AmMYB308, a known repressor of monolignol biosynthetic pathway genes. Spatio-temporal expression studies at different ages of seedlings using quantitative real-time PCR (QRT-PCR) showed highest transcript level of the gene in 10 day old stem tissues. Over-expression of the gene in transgenic tobacco showed statistically significant decline in the transcript levels of the general phenylpropanoid pathway genes and reduction in lignin content. Our study suggests that LlMYB1 might be playing the role of a repressor of lignin biosynthesis in L. leucocephala.

  15. The Arabidopsis thaliana Transcription Factor AtMYB102 Functions in Defense Against the Insect Herbivore Pieris rapae

    PubMed Central

    De Vos, Martin; Denekamp, Marten; Dicke, Marcel; Vuylsteke, Marnik; Van Loon, LC; Smeekens, Sjef CM

    2006-01-01

    In Arabidopsis thaliana the R2R3-MYB transcription factor family consists of over 100 members and is implicated in many biological processes, such as plant development, metabolism, senescence, and defense. The R2R3-MYB transcription factor gene AtMYB102 has been shown to respond to salt stress, ABA, JA, and wounding, suggesting that AtMYB102 plays a role in the response of plants to dehydration after wounding. Here, we studied the role of AtMYB102 in the response of A. thaliana to feeding by larvae of the white cabbage butterfly Pieris rapae. A. thaliana reporter lines expressing GUS under control of the AtMYB102 promoter revealed that AtMYB102 is expressed locally at the feeding sites of herbivore-damaged leaves, but not systemically in uninfested plant parts. Knockout AtMYB102 transposon-insertion mutant plants (myb102) allowed a faster development of P. rapae caterpillars than wild-type Col-0 plants. Moreover, the number of caterpillars that had developed into pupae within 14 days was significantly higher on myb102, indicating that in wild-type plants AtMYB102 contributes to basal resistance against P. rapae feeding. Microarray analysis of wild-type Col-0 and AtMYB102 overexpressing 35S::MYB102 plants revealed a large number of differentially expressed genes. Besides several defense-related genes, a relatively large number of genes is associated with cell wall modifications. PMID:19517001

  16. Transcriptional control of flavonoid biosynthesis: fine-tuning of the MYB-bHLH-WD40 (MBW) complex.

    PubMed

    Li, Shutian

    2014-01-01

    Flavonoids are plant secondary polyphenolic metabolites and fulfil many vital biological functions, offering a valuable metabolic and genetic model for studying transcriptional control of gene expression. Arabidopsis thaliana mainly accumulates 3 types of flavonoids, including flavonols, anthocyanins, and proanthocyanidins (PAs). Flavonoid biosynthesis involves a multitude of well-characterized enzymatic and regulatory proteins. Three R2R3-MYB proteins (MYB11, MYB12, and MYB111) control flavonol biosynthesis via activating the early biosynthetic steps, whereas the production of anthocyanins and PAs requires the MYB-bHLH-WD40 (MBW) complex to activate the late biosynthetic genes. Additional regulators of flavonoid biosynthesis have recently come to light, which interact with R2R3-MYBs or bHLHs to organize or disrupt the formation of the MBW complex, leading to enhanced or compromised flavonoid production. This mini-review gives an overview of how these novel players modulate flavonoid metabolism and thus plant developmental processes and further proposes a fine-tuning mechanism to complete the complex regulatory network controlling flavonoid biosynthesis.

  17. Genome-wide analysis of the MYB transcription factor superfamily in soybean

    PubMed Central

    2012-01-01

    Background The MYB superfamily constitutes one of the most abundant groups of transcription factors described in plants. Nevertheless, their functions appear to be highly diverse and remain rather unclear. To date, no genome-wide characterization of this gene family has been conducted in a legume species. Here we report the first genome-wide analysis of the whole MYB superfamily in a legume species, soybean (Glycine max), including the gene structures, phylogeny, chromosome locations, conserved motifs, and expression patterns, as well as a comparative genomic analysis with Arabidopsis. Results A total of 244 R2R3-MYB genes were identified and further classified into 48 subfamilies based on a phylogenetic comparative analysis with their putative orthologs, showed both gene loss and duplication events. The phylogenetic analysis showed that most characterized MYB genes with similar functions are clustered in the same subfamily, together with the identification of orthologs by synteny analysis, functional conservation among subgroups of MYB genes was strongly indicated. The phylogenetic relationships of each subgroup of MYB genes were well supported by the highly conserved intron/exon structures and motifs outside the MYB domain. Synonymous nucleotide substitution (dN/dS) analysis showed that the soybean MYB DNA-binding domain is under strong negative selection. The chromosome distribution pattern strongly indicated that genome-wide segmental and tandem duplication contribute to the expansion of soybean MYB genes. In addition, we found that ~ 4% of soybean R2R3-MYB genes had undergone alternative splicing events, producing a variety of transcripts from a single gene, which illustrated the extremely high complexity of transcriptome regulation. Comparative expression profile analysis of R2R3-MYB genes in soybean and Arabidopsis revealed that MYB genes play conserved and various roles in plants, which is indicative of a divergence in function. Conclusions In this

  18. Molecular characterization of Quercus suber MYB1, a transcription factor up-regulated in cork tissues.

    PubMed

    Almeida, Tânia; Menéndez, Esther; Capote, Tiago; Ribeiro, Teresa; Santos, Conceição; Gonçalves, Sónia

    2013-01-15

    The molecular processes associated with cork development in Quercus suber L. are poorly understood. A previous molecular approach identified a list of genes potentially important for cork formation and differentiation, providing a new basis for further molecular studies. This report is the first molecular characterization of one of these candidate genes, QsMYB1, coding for an R2R3-MYB transcription factor. The R2R3-MYB gene sub-family has been described as being involved in the phenylpropanoid and lignin pathways, both involved in cork biosynthesis. The results showed that the expression of QsMYB1 is putatively mediated by an alternative splicing (AS) mechanism that originates two different transcripts (QsMYB1.1 and QsMYB1.2), differing only in the 5'-untranslated region, due to retention of the first intron in one of the variants. Moreover, within the retained intron, a simple sequence repeat (SSR) was identified. The upstream regulatory region of QsMYB1 was extended by a genome walking approach, which allowed the identification of the putative gene promoter region. The relative expression pattern of QsMYB1 transcripts determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) revealed that both transcripts were up-regulated in cork tissues; the detected expression was several times higher in newly formed cork harvested from trees producing virgin, second or reproduction cork when compared with wood. Moreover, the expression analysis of QsMYB1 in several Q. suber organs showed very low expression in young branches and roots, whereas in leaves, immature acorns or male flowers, no expression was detected. These preliminary results suggest that QsMYB1 may be related to secondary growth and, in particular, with the cork biosynthesis process with a possible alternative splicing mechanism associated with its regulatory function.

  19. Transcriptional analysis of tendril and inflorescence development in grapevine (Vitis vinifera L.).

    PubMed

    Díaz-Riquelme, José; Martínez-Zapater, José M; Carmona, María J

    2014-01-01

    In grapevine (Vitis vinifera L.), the lateral meristem can give rise to either tendrils or inflorescences which are determined organs. To get insights into the processes of tendril and inflorescence development, we characterized the transcriptional variation taking place in both organs. The results of the global transcriptional analyses along tendril and inflorescence development suggested that these two homologous organs initially share a common transcriptional program related to cell proliferation and growth functions. In later developmental stages they showed organ specific gene expression programs related to the particular differentiation processes taking place in each organ. In this way, tendrils showed higher transcription of genes related to photosynthesis, hormone signaling and secondary metabolism than inflorescences, while inflorescences displayed higher transcriptional activity for genes encoding transcription factors, mainly those belonging to the MADS-box gene family. The expression profiles of selected transcription factors related with inflorescence and flower meristem identity and with flower organogenesis were generally conserved with respect to their homologs in model species. Regarding tendrils, it was interesting to find that genes related with reproductive development in other species were also recruited for grapevine tendril development. These results suggest a role for those genes in the regulation of basic cellular mechanisms common to both developmental processes.

  20. Transcriptional analysis of late ripening stages of grapevine berry

    PubMed Central

    2011-01-01

    Background The composition of grapevine berry at harvest is a major determinant of wine quality. Optimal oenological maturity of berries is characterized by a high sugar/acidity ratio, high anthocyanin content in the skin, and low astringency. However, harvest time is still mostly determined empirically, based on crude biochemical composition and berry tasting. In this context, it is interesting to identify genes that are expressed/repressed specifically at the late stages of ripening and which may be used as indicators of maturity. Results Whole bunches and berries sorted by density were collected in vineyard on Chardonnay (white cultivar) grapevines for two consecutive years at three stages of ripening (7-days before harvest (TH-7), harvest (TH), and 10-days after harvest (TH+10)). Microvinification and sensory analysis indicate that the quality of the wines made from the whole bunches collected at TH-7, TH and TH+10 differed, TH providing the highest quality wines. In parallel, gene expression was studied with Qiagen/Operon microarrays using two types of samples, i.e. whole bunches and berries sorted by density. Only 12 genes were consistently up- or down-regulated in whole bunches and density sorted berries for the two years studied in Chardonnay. 52 genes were differentially expressed between the TH-7 and TH samples. In order to determine whether these genes followed a similar pattern of expression during the late stages of berry ripening in a red cultivar, nine genes were selected for RT-PCR analysis with Cabernet Sauvignon grown under two different temperature regimes affecting the precocity of ripening. The expression profiles and their relationship to ripening were confirmed in Cabernet Sauvignon for seven genes, encoding a carotenoid cleavage dioxygenase, a galactinol synthase, a late embryogenesis abundant protein, a dirigent-like protein, a histidine kinase receptor, a valencene synthase and a putative S-adenosyl-L-methionine:salicylic acid carboxyl

  1. Low-temperature-induced transcription factors in grapevine enhance cold tolerance in transgenic Arabidopsis plants.

    PubMed

    Takuhara, Yuki; Kobayashi, Masayuki; Suzuki, Shunji

    2011-06-15

    We report the characterization of low-temperature-induced transcription factors in grapevine (Vitis vinifera). Four transcription factors were identified in low-temperature-treated grapevine. The expression of V. vinifera C-repeat-binding factors, VvCBF2, VvCBF4, and VvCBFL, and V. vinifera B-box-type zinc finger protein, VvZFPL, was immediately induced and upregulated in leaves by the low-temperature treatment. Similar induction of the gene expression was observed in low-temperature-treated stems and flowers, although VvZFPL was constitutively expressed in flowers. Tendrils expressed all the four genes constitutively. In berry skin, VvCBF2 and VvCBFL were induced by the low-temperature treatment before the onset of véraison, while only VvCBF2 was induced under the low-temperature condition after the onset of véraison. The overexpression of VvCBF2 and VvZFPL in Arabidopsis plants led to longer hypocotyls than the control plants. The rosette leaves of these plants were smaller and had lower chlorophyll contents than those of the control plants, resulting in a pale green color. Finally, the VvCBF2- and VvZFPL-overexpressing plants revealed growth retardation. These results suggest that VvCBF2 and VvZFPL may affect photomorphogenesis and growth in grapevine. Meanwhile, no morphological changes were detected in the VvCBF4- and VvCBFL-overexpressing plants. The cold tolerance test demonstrated that all of the overexpressing plants remained viable and noticeably healthy compared with the control plants even after exposure to severe cold treatment, suggesting that VvCBF2, VvCBF4, VvCBFL, or VvZFPL may enhance cold tolerance in grapevine.

  2. A dominant negative mutant of an Arabidopsis R2R3 Myb (AtMyb90) blocks flower pigment production in tobacco

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A spontaneous mutation converted a hyper-pigmented (anthocyanins), CaMV-35S-pro::AtMYB90 containing, transgenic tobacco line into one displaying wild-type pigmentation in all tissues except for flower petals, which, counter-intuitively, showed anthocyanin levels dramatically below wild-type in the p...

  3. The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis

    PubMed Central

    Malacarne, Giulia; Coller, Emanuela; Czemmel, Stefan; Vrhovsek, Urska; Engelen, Kristof; Goremykin, Vadim; Bogs, Jochen; Moser, Claudio

    2016-01-01

    In grapevine, flavonoids constitute one of the most abundant subgroups of secondary metabolites, influencing the quality, health value, and typicity of wines. Their synthesis in many plant species is mainly regulated at the transcriptional level by modulation of flavonoid pathway genes either by single regulators or by complexes of different regulators. In particular, bZIP and MYB factors interact synergistically in the recognition of light response units present in the promoter of some genes of the pathway, thus mediating light-dependent flavonoid biosynthesis. We recently identified VvibZIPC22, a member of clade C of the grapevine bZIP family, in a quantitative trait locus (QTL) specifically associated with kaemperol content in mature berries. Here, to validate the involvement of this candidate gene in the fine regulation of flavonol biosynthesis, we characterized its function by in vitro and in vivo experiments. A role for this gene in the control of flavonol biosynthesis was indeed confirmed by its highest expression at flowering and during UV light-mediated induction, paralleled by accumulation of the flavonol synthase 1 transcript and flavonol compounds. The overexpression of VvibZIPC22 in tobacco caused a significant increase in several flavonoids in the flower, via induction of general and specific genes of the pathway. In agreement with this evidence, VvibZIPC22 was able to activate the promoters of specific genes of the flavonoid pathway, alone or together with other factors, as revealed by transient reporter assays. These findings, supported by in silico indications, allowed us to propose VvibZIPC22 as a new regulator of flavonoid biosynthesis in grapevine. PMID:27194742

  4. Transcriptional changes of gibberellin oxidase genes in grapevines with or without gibberellin application during inflorescence development.

    PubMed

    Jung, Chan Jin; Hur, Youn Young; Jung, Sung-Min; Noh, Jung-Ho; Do, Gyung-Ran; Park, Seo-June; Nam, Jong-Chul; Park, Kyo-Sun; Hwang, Hae-Sung; Choi, Doil; Lee, Hee Jae

    2014-03-01

    The concept that gibberellin (GA) application on seeded grapevines induces seedlessness has been known for decades in viticulture. GA was applied to inflorescence clusters of seeded diploid grapevine cultivar 'Tamnara' (Vitis spp.) at 14 days before full bloom (DBF). Morphological and molecular effects of GA application were examined on the induction of parthenocarpic fruit development. With GA application, ovaries were enlarged and pollen tube growth was completely inhibited. Vitis GA oxidase enzymes, key determinants for GA level, were characterized through phylogenetic analysis with Arabidopsis GA oxidase enzymes. Five VvGA 20-oxidase (VvGA20ox), three VvGA 3-oxidase (VvGA3ox), and nine VvGA 2-oxidase (VvGA2ox) family proteins, and one VvGA methyltransferase (VvGAMT) and one Vitis cytochrome P450 714A1 proteins were identified, and their expression patterns were analyzed during inflorescence development from 14 DBF to 5 days after full bloom (DAF). VvGA2ox1, VvGA20ox3, and VvGA3ox2 were the most abundantly expressed genes in each gene family at 7, 5, and 2 DBF, respectively. Following GA application at 14 DBF inducing seedlessness, GA catabolic genes such as VvGAMT2, VvGA2ox3, and VvGA2ox4 were up-regulated at 12 DBF, full bloom, and 5 DAF, respectively. Conversely, most GA biosynthetic genes, VvGA20oxs and VvGA3oxs, were down-regulated at near full bloom, and the timing of their peak expression was changed. These results suggest that GA application at pre-bloom changes the GA biosynthesis into GA catabolic pathway at near full bloom by altering the transcription level and timing of GA oxidase genes during grapevine inflorescence development.

  5. Development of duplex SYBR Green I-based real-time quantitative reverse-transcription PCR for detection and discrimination of grapevine viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A SYBR® Green-based real-time quantitative reverse transcription PCR (qRT-PCR) assay in combination with melt curve analysis (MCA) was developed for the detection of nine grapevine viruses. The detection limits for singleplex qRT-PCR for all nine grapevine viruses were determined to be in the range ...

  6. An ancestral allele of grapevine transcription factor MYB14 promotes plant defence

    PubMed Central

    Duan, Dong; Fischer, Sabine; Merz, Patrick; Bogs, Jochen; Riemann, Michael; Nick, Peter

    2016-01-01

    Stilbene synthase is a key enzyme for the production of the phytoalexin resveratrol. Some clones of Vitis sylvestris, a wild European grapevine species which is almost extinct, have been shown to accumulate more resveratrol in response to different forms of stress. In the current study, we asked whether the induction of stilbene synthase transcripts in Hoe29, one of the V. sylvestris clones with elevated stilbene inducibility, might result from the elevated induction of the transcription factor MYB14. The MYB14 promoter of Hoe29 and of Ke83 (a second stilbene-inducible genotype) harboured distinct regions and were applied to a promoter–reporter system. We show that stilbene synthase inducibility correlates with differences in the induction of MYB14 transcripts for these two genotypes. Both alleles were induced by UV in a promoter–reporter assay, but only the MYB14 promoter from Hoe29 was induced by flg22, consistent with the stilbene synthase expression of the donor genotypes, where both respond to UV but only Hoe29 is responsive to Plasmopara viticola during defence. We mapped upstream signals and found that a RboH-dependent oxidative burst, calcium influx, a MAPK cascade, and jasmonate activated the MYB14 promoter, whereas salicylic acid was ineffective. Our data suggest that the Hoe29 allele of the MYB14 promoter has potential as a candidate target for resistance breeding. PMID:26842984

  7. Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses

    PubMed Central

    2014-01-01

    Background Ultraviolet (UV) radiation modulates secondary metabolism in the skin of Vitis vinifera L. berries, which affects the final composition of both grapes and wines. The expression of several phenylpropanoid biosynthesis-related genes is regulated by UV radiation in grape berries. However, the complete portion of transcriptome and ripening processes influenced by solar UV radiation in grapes remains unknown. Results Whole genome arrays were used to identify the berry skin transcriptome modulated by the UV radiation received naturally in a mid-altitude Tempranillo vineyard. UV radiation-blocking and transmitting filters were used to generate the experimental conditions. The expression of 121 genes was significantly altered by solar UV radiation. Functional enrichment analysis of altered transcripts mainly pointed out that secondary metabolism-related transcripts were induced by UV radiation including VvFLS1, VvGT5 and VvGT6 flavonol biosynthetic genes and monoterpenoid biosynthetic genes. Berry skin phenolic composition was also analysed to search for correlation with gene expression changes and UV-increased flavonols accumulation was the most evident impact. Among regulatory genes, novel UV radiation-responsive transcription factors including VvMYB24 and three bHLH, together with known grapevine UV-responsive genes such as VvMYBF1, were identified. A transcriptomic meta-analysis revealed that genes up-regulated by UV radiation in the berry skin were also enriched in homologs of Arabidopsis UVR8 UV-B photoreceptor-dependent UV-B -responsive genes. Indeed, a search of the grapevine reference genomic sequence identified UV-B signalling pathway homologs and among them, VvHY5-1, VvHY5-2 and VvRUP were up-regulated by UV radiation in the berry skin. Conclusions Results suggest that the UV-B radiation-specific signalling pathway is activated in the skin of grapes grown at mid-altitudes. The biosynthesis and accumulation of secondary metabolites, which are

  8. A Grapevine Anthocyanin Acyltransferase, Transcriptionally Regulated by VvMYBA, Can Produce Most Acylated Anthocyanins Present in Grape Skins1

    PubMed Central

    Rinaldo, Amy R.; Cavallini, Erika; Jia, Yong; Moss, Sarah M.A.; McDavid, Debra A.J.; Hooper, Lauren C.; Robinson, Simon P.; Tornielli, Giovanni B.; Zenoni, Sara; Ford, Christopher M.; Boss, Paul K.; Walker, Amanda R.

    2015-01-01

    Anthocyanins are flavonoid compounds responsible for red/purple colors in the leaves, fruit, and flowers of many plant species. They are produced through a multistep pathway that is controlled by MYB transcription factors. VvMYBA1 and VvMYBA2 activate anthocyanin biosynthesis in grapevine (Vitis vinifera) and are nonfunctional in white grapevine cultivars. In this study, transgenic grapevines with altered VvMYBA gene expression were developed, and transcript analysis was carried out on berries using a microarray technique. The results showed that VvMYBA is a positive regulator of the later stages of anthocyanin synthesis, modification, and transport in cv Shiraz. One up-regulated gene, ANTHOCYANIN 3-O-GLUCOSIDE-6″-O-ACYLTRANSFERASE (Vv3AT), encodes a BAHD acyltransferase protein (named after the first letter of the first four characterized proteins: BEAT [for acetyl CoA:benzylalcohol acetyltransferase], AHCT [for anthocyanin O-hydroxycinnamoyltransferase], HCBT [for anthranilate N-hydroxycinnamoyl/benzoyltransferase], and DAT [for deacetylvindoline 4-O-acetyltransferase]), belonging to a clade separate from most anthocyanin acyltransferases. Functional studies (in planta and in vitro) show that Vv3AT has a broad anthocyanin substrate specificity and can also utilize both aliphatic and aromatic acyl donors, a novel activity for this enzyme family found in nature. In cv Pinot Noir, a red-berried grapevine mutant lacking acylated anthocyanins, Vv3AT contains a nonsense mutation encoding a truncated protein that lacks two motifs required for BAHD protein activity. Promoter activation assays confirm that Vv3AT transcription is activated by VvMYBA1, which adds to the current understanding of the regulation of the BAHD gene family. The flexibility of Vv3AT to use both classes of acyl donors will be useful in the engineering of anthocyanins in planta or in vitro. PMID:26395841

  9. MYB89 Transcription Factor Represses Seed Oil Accumulation1[OPEN

    PubMed Central

    Li, Dong; Jin, Changyu; Duan, Shaowei; Zhu, Yana; Qi, Shuanghui; Liu, Kaige; Gao, Chenhao; Ma, Haoli; Liao, Yuncheng

    2017-01-01

    In many higher plants, seed oil accumulation is precisely controlled by intricate multilevel regulatory networks, among which transcriptional regulation mainly influences oil biosynthesis. In Arabidopsis (Arabidopsis thaliana), the master positive transcription factors, WRINKLED1 (WRI1) and LEAFY COTYLEDON1-LIKE (L1L), are important for seed oil accumulation. We found that an R2R3-MYB transcription factor, MYB89, was expressed predominantly in developing seeds during maturation. Oil and major fatty acid biosynthesis in seeds was significantly promoted by myb89-1 mutation and MYB89 knockdown; thus, MYB89 was an important repressor during seed oil accumulation. RNA sequencing revealed remarkable up-regulation of numerous genes involved in seed oil accumulation in myb89 seeds at 12 d after pollination. Posttranslational activation of a MYB89-glucocorticoid receptor fusion protein and chromatin immunoprecipitation assays demonstrated that MYB89 inhibited seed oil accumulation by directly repressing WRI1 and five key genes and by indirectly suppressing L1L and 11 key genes involved in oil biosynthesis during seed maturation. These results help us to understand the novel function of MYB89 and provide new insights into the regulatory network of transcriptional factors controlling seed oil accumulation in Arabidopsis. PMID:27932421

  10. A Grapevine TTG2-Like WRKY Transcription Factor Is Involved in Regulating Vacuolar Transport and Flavonoid Biosynthesis

    PubMed Central

    Amato, Alessandra; Cavallini, Erika; Zenoni, Sara; Finezzo, Laura; Begheldo, Maura; Ruperti, Benedetto; Tornielli, Giovanni Battista

    2017-01-01

    A small set of TTG2-like homolog proteins from different species belonging to the WRKY family of transcription factors were shown to share a similar mechanism of action and to control partially conserved biochemical/developmental processes in their native species. In particular, by activating P-ATPases residing on the tonoplast, PH3 from Petunia hybrida promotes vacuolar acidification in petal epidermal cells whereas TTG2 from Arabidopsis thaliana enables the accumulation of proanthocyanidins in the seed coat. In this work we functionally characterized VvWRKY26 identified as the closest grapevine homolog of PhPH3 and AtTTG2. When constitutively expressed in petunia ph3 mutant, VvWRKY26 can fulfill the PH3 function in the regulation of vacuolar pH and restores the wild type pigmentation phenotype. By a global correlation analysis of gene expression and by transient over-expression in Vitis vinifera, we showed transcriptomic relationships of VvWRKY26 with many genes related to vacuolar acidification and transport in grapevine. Moreover, our results indicate an involvement in flavonoid pathway possibly restricted to the control of proanthocyanidin biosynthesis that is consistent with its expression pattern in grape berry tissues. Overall, the results show that, in addition to regulative mechanisms and biological roles shared with TTG2-like orthologs, VvWRKY26 can play roles in fleshy fruit development that have not been previously reported in studies from dry fruit species. This study paves the way toward the comprehension of the regulatory network controlling vacuolar acidification and flavonoid accumulation mechanisms that contribute to the final berry quality traits in grapevine. PMID:28105033

  11. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis

    PubMed Central

    2012-01-01

    Background The MYB gene family comprises one of the richest groups of transcription factors in plants. Plant MYB proteins are characterized by a highly conserved MYB DNA-binding domain. MYB proteins are classified into four major groups namely, 1R-MYB, 2R-MYB, 3R-MYB and 4R-MYB based on the number and position of MYB repeats. MYB transcription factors are involved in plant development, secondary metabolism, hormone signal transduction, disease resistance and abiotic stress tolerance. A comparative analysis of MYB family genes in rice and Arabidopsis will help reveal the evolution and function of MYB genes in plants. Results A genome-wide analysis identified at least 155 and 197 MYB genes in rice and Arabidopsis, respectively. Gene structure analysis revealed that MYB family genes possess relatively more number of introns in the middle as compared with C- and N-terminal regions of the predicted genes. Intronless MYB-genes are highly conserved both in rice and Arabidopsis. MYB genes encoding R2R3 repeat MYB proteins retained conserved gene structure with three exons and two introns, whereas genes encoding R1R2R3 repeat containing proteins consist of six exons and five introns. The splicing pattern is similar among R1R2R3 MYB genes in Arabidopsis. In contrast, variation in splicing pattern was observed among R1R2R3 MYB members of rice. Consensus motif analysis of 1kb upstream region (5′ to translation initiation codon) of MYB gene ORFs led to the identification of conserved and over-represented cis-motifs in both rice and Arabidopsis. Real-time quantitative RT-PCR analysis showed that several members of MYBs are up-regulated by various abiotic stresses both in rice and Arabidopsis. Conclusion A comprehensive genome-wide analysis of chromosomal distribution, tandem repeats and phylogenetic relationship of MYB family genes in rice and Arabidopsis suggested their evolution via duplication. Genome-wide comparative analysis of MYB genes and their expression analysis

  12. The grapevine basic helix-loop-helix (bHLH) transcription factor positively modulates CBF-pathway and confers tolerance to cold-stress in Arabidopsis.

    PubMed

    Xu, Weirong; Zhang, Ningbo; Jiao, Yuntong; Li, Ruimin; Xiao, Dongming; Wang, Zhenping

    2014-08-01

    Basic helix-loop-helix (bHLH)-type transcription factors play diverse roles in plant physiological response and stress-adaptive regulation network. Here, we identified one grapevine bHLH transcription factor from a cold-tolerant accession 'Heilongjiang seedling' of Chinese wild Vitis amurensis (VabHLH1) as a transcriptional activator involved in cold stress. We also compared with its counterpart from a cold-sensitive Vitis vinifera cv. Cabernet Sauvignon (VvbHLH1). These two putative proteins are characterized by the presence of the identically conserved regions of 54 amino acid residues of bHLH signature domain, and shared 99.1% amino acid identity, whereas several stress-related cis-regulatory elements located in both promoter regions differed in types and positions. Expressions of two bHLHs in grapevine leaves were induced by cold stress, but evidently differ between two grapevine genotypes upon cold exposure. Two grapevine bHLH proteins were exclusively localized to the nucleus and exhibited strong transcriptional activation activities in yeast cells. Overexpression of either VabHLH1 or VvbHLH1 transcription factor did not affect the growth and development of transgenic Arabidopsis plants, but enhanced tolerance to cold stress. The improved tolerance in VabHLH1- or VvbHLH1-overexpressing Arabidopsis plants is associated with multiple physiological and biochemical changes that occurred during the time-course cold stress. These most common changes include the evaluated levels of proline, decreased amounts of malondialdehyde and reduced membrane injury as reflected by electrolyte leakage. VabHLH1 and VvbHLH1 displayed overlapping, but not identical, roles in activating the corresponding CBF cold signaling pathway, especially in regulating the expression of CBF3 and RD29A. Our findings demonstrated that two grapevine bHLHs act as positive regulators of the cold stress response, modulating the level of COR gene expression, which in turn confer tolerance to cold

  13. The Arabidopsis Transcription Factor MYB77 Modulates Auxin Signal Transduction[W

    PubMed Central

    Shin, Ryoung; Burch, Adrien Y.; Huppert, Kari A.; Tiwari, Shiv B.; Murphy, Angus S.; Guilfoyle, Tom J.; Schachtman, Daniel P.

    2007-01-01

    Auxin is a key plant hormone that regulates plant development, apical dominance, and growth-related tropisms, such as phototropism and gravitropism. In this study, we report a new Arabidopsis thaliana transcription factor, MYB77, that is involved in auxin response. In MYB77 knockout plants, we found that auxin-responsive gene expression was greatly attenuated. Lateral root density in the MYB77 knockout was lower than the wild type at low concentrations of indole-3-acetic acid (IAA) and also under low nutrient conditions. MYB77 interacts with auxin response factors (ARFs) in vitro through the C terminus (domains III and IV) of ARFs and the activation domain of MYB77. A synergistic genetic interaction was demonstrated between MYB77 and ARF7 that resulted in a strong reduction in lateral root numbers. Experiments with protoplasts confirmed that the coexpression of MYB77 and an ARF C terminus enhance reporter gene expression. R2R3 MYB transcription factors have not been previously implicated in regulating the expression of auxin-inducible genes. Also it was previously unknown that ARFs interact with proteins other than those in the Aux/IAA family via conserved domains. The interaction between MYB77 and ARFs defines a new type of combinatorial transcriptional control in plants. This newly defined transcription factor interaction is part of the plant cells' repertoire for modulating response to auxin, thereby controlling lateral root growth and development under changing environmental conditions. PMID:17675404

  14. Identification and possible role of a MYB transcription factor from saffron (Crocus sativus).

    PubMed

    Gómez-Gómez, Lourdes; Trapero-Mozos, Almudena; Gómez, Maria Dolores; Rubio-Moraga, Angela; Ahrazem, Oussama

    2012-03-15

    The MYB family is the most abundant group of transcription factors described for plants. Plant MYB genes have been shown to be involved in the regulation of many aspects of plant development. No MYB genes are described for saffron, the dried stigma of Crocus sativus, utilized as a colorant for foodstuffs. In this study, we used RACE-PCR to isolate a full length cDNA of 894bp with a 591bp open reading frame, encoding a putative CsMYB1 from C. sativus. Comparison between gDNA and cDNA revealed no introns. Homology studies indicated that the deduced amino acid sequence is similar to members of the R2R3 MYB subfamily. Expression analysis showed the presence of high transcript levels in stigma tissue and low levels in tepals, whereas no signal was detected in either anthers or leaves. The RT-PCR analysis revealed that CsMYB1 expression is developmentally regulated during stigma development. Furthermore, expression analysis in stigmas from different Crocus species showed a correlation with stigma morphology. No transcripts were found in stigma tissues of Crocus species characterized by branched stigma morphology. Taken together, these results suggest that CsMYB1 may be involved in the regulation of stigma morphology in Crocus.

  15. MYB115 and MYB134 transcription factors regulate proanthocyanidin synthesis and structure.

    PubMed

    James, Amy Midori; Ma, Dawei; Mellway, Robin D; Gesell, Andreas; Yoshida, Kazuko; Walker, Vincent; Tran, Lan T; Stewart, Don; Reichelt, Michael; Suvanto, Jussi; Salminen, Juha-Pekka; Gershenzon, Jonathan; Seguin, Armand; Constabel, C Peter

    2017-03-27

    The accumulation of proanthocyanidins is regulated by a complex of transcription factors composed of R2R3 MYB, basic helix-loop-helix (bHLH), and WD-40 proteins which activate the promoters of biosynthetic genes. In poplar, MYB134 is known to regulate proanthocyanidin biosynthesis by activating key flavonoid genes. Here we characterize a second MYB regulator of proanthocyanidins, MYB115. Transgenic poplar overexpressing MYB115 showed a high proanthocyanidin phenotype and reduced salicinoid accumulation, similar to the effects of MYB134 overexpression. Transcriptomic analysis of MYB115- and MYB134-overexpressing poplar plants identified a set of common upregulated genes encoding proanthocyanidin biosynthetic enzymes and several novel uncharacterized MYB transcriptional repressors. Transient expression experiments demonstrated the capacity of both MYB134 and MYB115 to activate flavonoid promoters, but only in the presence of a bHLH cofactor. Yeast two-hybrid experiments confirmed the direct interaction of these transcription factors. The unexpected identification of dihydromyricetin in leaf extracts of both MYB115- and MYB134-overexpressing poplars led to the discovery of enhanced flavonoid B-ring hydroxylation and increased proportion of prodelphinidins in proanthocyanidin of the transgenics. The dramatic hydroxylation phenotype of MYB115 overexpressors is likely due to upregulation of both flavonoid 3,'5'- hydroxylases and cytochrome b5. Overall, this work provides new insight into the complexity of the gene regulatory network for proanthocyanidin synthesis in poplar.

  16. Transcriptional Characterization of a Widely-Used Grapevine Rootstock Genotype under Different Iron-Limited Conditions.

    PubMed

    Vannozzi, Alessandro; Donnini, Silvia; Vigani, Gianpiero; Corso, Massimiliano; Valle, Giorgio; Vitulo, Nicola; Bonghi, Claudio; Zocchi, Graziano; Lucchin, Margherita

    2016-01-01

    Iron chlorosis is a serious deficiency that affects orchards and vineyards reducing quality and yield production. Chlorotic plants show abnormal photosynthesis and yellowing shoots. In grapevine iron uptake and homeostasis are most likely controlled by a mechanism known as "Strategy I," characteristic of non-graminaceous plants and based on a system of soil acidification, iron reduction and transporter-mediated uptake. Nowadays, grafting of varieties of economic interest on tolerant rootstocks is widely used practice against many biotic and abiotic stresses. Nevertheless, many interspecific rootstocks, and in particular those obtained by crossing exclusively non-vinifera genotypes, can show limited nutrient uptake and transport, in particular for what concerns iron. In the present study, 101.14, a commonly used rootstock characterized by susceptibility to iron chlorosis was subjected to both Fe-absence and Fe-limiting conditions. Grapevine plantlets were grown in control, Fe-deprived, and bicarbonate-supplemented hydroponic solutions. Whole transcriptome analyses, via mRNA-Seq, were performed on root apices of stressed and unstressed plants. Analysis of differentially expressed genes (DEGs) confirmed that Strategy I is the mechanism responsible for iron uptake in grapevine, since many orthologs genes to the Arabidopsis "ferrome" were differentially regulated in stressed plant. Molecular differences in the plant responses to Fe absence and presence of bicarbonate were also identified indicating the two treatments are able to induce response-mechanisms only partially overlapping. Finally, we measured the expression of a subset of genes differentially expressed in 101.14 (such as IRT1, FERRITIN1, bHLH38/39) or known to be fundamental in the "strategy I" mechanism (AHA2 and FRO2) also in a tolerant rootstock (M1) finding important differences which could be responsible for the different degrees of tolerance observed.

  17. Transcriptional Characterization of a Widely-Used Grapevine Rootstock Genotype under Different Iron-Limited Conditions

    PubMed Central

    Vannozzi, Alessandro; Donnini, Silvia; Vigani, Gianpiero; Corso, Massimiliano; Valle, Giorgio; Vitulo, Nicola; Bonghi, Claudio; Zocchi, Graziano; Lucchin, Margherita

    2017-01-01

    Iron chlorosis is a serious deficiency that affects orchards and vineyards reducing quality and yield production. Chlorotic plants show abnormal photosynthesis and yellowing shoots. In grapevine iron uptake and homeostasis are most likely controlled by a mechanism known as “Strategy I,” characteristic of non-graminaceous plants and based on a system of soil acidification, iron reduction and transporter-mediated uptake. Nowadays, grafting of varieties of economic interest on tolerant rootstocks is widely used practice against many biotic and abiotic stresses. Nevertheless, many interspecific rootstocks, and in particular those obtained by crossing exclusively non-vinifera genotypes, can show limited nutrient uptake and transport, in particular for what concerns iron. In the present study, 101.14, a commonly used rootstock characterized by susceptibility to iron chlorosis was subjected to both Fe-absence and Fe-limiting conditions. Grapevine plantlets were grown in control, Fe-deprived, and bicarbonate-supplemented hydroponic solutions. Whole transcriptome analyses, via mRNA-Seq, were performed on root apices of stressed and unstressed plants. Analysis of differentially expressed genes (DEGs) confirmed that Strategy I is the mechanism responsible for iron uptake in grapevine, since many orthologs genes to the Arabidopsis “ferrome” were differentially regulated in stressed plant. Molecular differences in the plant responses to Fe absence and presence of bicarbonate were also identified indicating the two treatments are able to induce response-mechanisms only partially overlapping. Finally, we measured the expression of a subset of genes differentially expressed in 101.14 (such as IRT1, FERRITIN1, bHLH38/39) or known to be fundamental in the “strategy I” mechanism (AHA2 and FRO2) also in a tolerant rootstock (M1) finding important differences which could be responsible for the different degrees of tolerance observed. PMID:28105035

  18. Differential expression of anthocyanin biosynthetic genes and transcription factor PcMYB10 in pears (Pyrus communis L.).

    PubMed

    Li, Li; Ban, Zhao-Jun; Li, Xi-Hong; Wu, Mao-Yu; Wang, Ai-Li; Jiang, Yu-Qian; Jiang, Yun-Hong

    2012-01-01

    Anthocyanin biosynthesis in various plants is affected by environmental conditions and controlled by the transcription level of the corresponding genes. In pears (Pyrus communis cv. 'Wujiuxiang'), anthocyanin biosynthesis is significantly induced during low temperature storage compared with that at room temperature. We further examined the transcriptional levels of anthocyanin biosynthetic genes in 'Wujiuxiang' pears during developmental ripening and temperature-induced storage. The expression of genes that encode flavanone 3-hydroxylase, dihydroflavonol 4-reductase, anthocyanidin synthase, UDP-glucose: flavonoid 3-O-glucosyltransferase, and R2R3 MYB transcription factor (PcMYB10) was strongly positively correlated with anthocyanin accumulation in 'Wujiuxiang' pears in response to both developmental and cold-temperature induction. Hierarchical clustering analysis revealed the expression patterns of the set of target genes, of which PcMYB10 and most anthocyanin biosynthetic genes were related to the same cluster. The present work may help explore the molecular mechanism that regulates anthocyanin biosynthesis and its response to abiotic stress at the transcriptional level in plants.

  19. The purple cauliflower arises from activation of a MYB transcription factor.

    PubMed

    Chiu, Li-Wei; Zhou, Xiangjun; Burke, Sarah; Wu, Xianli; Prior, Ronald L; Li, Li

    2010-11-01

    Anthocyanins are responsible for the color of many flowers, fruits, and vegetables. An interesting and unique Purple (Pr) gene mutation in cauliflower (Brassica oleracea var botrytis) confers an abnormal pattern of anthocyanin accumulation, giving the striking mutant phenotype of intense purple color in curds and a few other tissues. To unravel the nature of the Pr mutation in cauliflower, we isolated the Pr gene via a combination of candidate gene analysis and fine mapping. Pr encoded a R2R3 MYB transcription factor that exhibited tissue-specific expression, consistent with an abnormal anthocyanin accumulation pattern in the mutant. Transgenic Arabidopsis (Arabidopsis thaliana) and cauliflower plants expressing the Pr-D allele recapitulated the mutant phenotype, confirming the isolation of the Pr gene. Up-regulation of Pr specifically activated a basic helix-loop-helix transcription factor and a subset of anthocyanin structural genes encoding flavonoid 3'-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase to confer ectopic accumulation of pigments in the purple cauliflower. Our results indicate that the genetic variation including a Harbinger DNA transposon insertion in the upstream regulatory region of the Pr-D allele is responsible for the up-regulation of the Pr gene in inducing phenotypic change in the plant. The successful isolation of Pr provides important information on the regulatory control of anthocyanin biosynthesis in Brassica vegetables, and offers a genetic resource for development of new varieties with enhanced health-promoting properties and visual appeal.

  20. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes.

    PubMed

    Chagné, David; Lin-Wang, Kui; Espley, Richard V; Volz, Richard K; How, Natalie M; Rouse, Simon; Brendolise, Cyril; Carlisle, Charmaine M; Kumar, Satish; De Silva, Nihal; Micheletti, Diego; McGhie, Tony; Crowhurst, Ross N; Storey, Roy D; Velasco, Riccardo; Hellens, Roger P; Gardiner, Susan E; Allan, Andrew C

    2013-01-01

    Anthocyanin accumulation is coordinated in plants by a number of conserved transcription factors. In apple (Malus × domestica), an R2R3 MYB transcription factor has been shown to control fruit flesh and foliage anthocyanin pigmentation (MYB10) and fruit skin color (MYB1). However, the pattern of expression and allelic variation at these loci does not explain all anthocyanin-related apple phenotypes. One such example is an open-pollinated seedling of cv Sangrado that has green foliage and develops red flesh in the fruit cortex late in maturity. We used methods that combine plant breeding, molecular biology, and genomics to identify duplicated MYB transcription factors that could control this phenotype. We then demonstrated that the red-flesh cortex phenotype is associated with enhanced expression of MYB110a, a paralog of MYB10. Functional characterization of MYB110a showed that it was able to up-regulate anthocyanin biosynthesis in tobacco (Nicotiana tabacum). The chromosomal location of MYB110a is consistent with a whole-genome duplication event that occurred during the evolution of apple within the Maloideae family. Both MYB10 and MYB110a have conserved function in some cultivars, but they differ in their expression pattern and response to fruit maturity.

  1. Characterization of RsMYB28 and RsMYB29 transcription factor genes in radish (Raphanus sativus L.).

    PubMed

    Luo, X B; Liu, Z; Xu, L; Wang, Y; Zhu, X W; Zhang, W; Chen, W; Zhu, Y L; Su, X J; Everlyne, M; Liu, L W

    2016-09-23

    Glucosinolates (GSLs) are important secondary metabolites in Brassicaceae plants. Previous studies have mainly focused on GSL contents, types, and biosynthesis-related genes, but the molecular characterization patterns of GSL biosynthesis-related transcription factors remain largely unexplored in radish (Raphanus sativus L.). To isolate transcription factor genes regulating the GSL biosynthesis, genomic DNA and cDNA sequences of RsMYB28 and RsMYB29 genes were isolated in radish. Two R2R3-MYB domains were identified in the deduced amino acid sequences. Subcellular localization and yeast-one hybrid assays indicated that both the RsMYB28 and RsMYB29 genes were located in the nucleus and possessed transactivation activity. Reverse transcription quantitative analysis showed that the RsMYB28 and RsMYB29 genes were expressed in seeds, leaves, stems, and roots at the seedling, taproot thickening, and mature stages. Both genes were highly expressed during the seedling and taproot thickening stages. The expression level of RsMYB28 was found to be up-regulated following wounding, glucose, and abscisic acid treatments, whereas RsMYB29 was up-regulated following wounding and methyl jasmonate treatments. These results provide insights into the biological function and characterization of the RsMYB28 and RsMYB29 genes, and facilitate further dissection of the molecular regulatory mechanism underlying the GSL biosynthesis in radish.

  2. Grafting with rootstocks induces extensive transcriptional re-programming in the shoot apical meristem of grapevine

    PubMed Central

    2013-01-01

    Background Grafting is widely used in the agriculture of fruit-bearing crops; rootstocks are known to confer differences in scion biomass in addition to improving other traits of agricultural interest. However, little is known about the effect of rootstocks on scion gene expression. The objective of this study was to determine whether hetero-grafting the grapevine variety Vitis vinifera cv. 'Cabernet Sauvignon N’ with two different rootstocks alters gene expression in the shoot apex in comparison to the auto-grafted control. Cabernet Sauvignon was hetero-grafted with two commercial rootstock genotypes and auto-grafted with itself. Vigor was quantified by measurements of root, stem, leaf and trunk biomass. Gene expression profiling was done using a whole genome grapevine microarray; four pools of five shoot apex samples were harvested 4 months after grafting for each scion/rootstock combination. Results The rootstocks increased stem biomass or conferred increased vigor by the end of the first growth cycle. Globally hetero-grafting two different genotypes together triggered an increase in shoot apex gene expression; however no genes were differentially expressed between the two hetero-grafts. The functional categories related to DNA, chromatin structure, histones, flavonoids and leucine rich repeat containing receptor kinases were the most enriched in the up-regulated genes in the shoot apex of hetero-grafted plants. Conclusions The choice of rootstock genotype had little effect on the gene expression in the shoot apex; this could suggest that auto- and hetero-grafting was the major factor regulating gene expression. PMID:24083813

  3. PtoMYB92 is a Transcriptional Activator of the Lignin Biosynthetic Pathway During Secondary Cell Wall Formation in Populus tomentosa.

    PubMed

    Li, Chaofeng; Wang, Xianqiang; Ran, Lingyu; Tian, Qiaoyan; Fan, Di; Luo, Keming

    2015-12-01

    Wood is the most abundant biomass in perennial woody plants and is mainly made up of secondary cell wall. R2R3-MYB transcription factors are important regulators of secondary wall biosynthesis in plants. In this study, we describe the identification and characterization of a poplar MYB transcription factor PtoMYB92, a homolog of Arabidopsis MYB42 and MYB85, which is involved in the regulation of secondary cell wall biosynthesis. PtoMYB92 is specifically expressed in xylem tissue in poplar. Subcellular localization and transcriptional activation analysis suggest that PtoMYB92 is a nuclear-localized transcriptional activator. Overexpression of PtoMYB92 in poplar resulted in an increase in secondary cell wall thickness in stems and ectopic deposition of lignin in leaves. Quantitative real-time PCR showed that PtoMYB92 specifically activated the expression of lignin biosynthetic genes. Furthermore, transient expression assays using a β-glucuronidase (GUS) reporter gene revealed that PtoMYB92 is an activator in the lignin biosynthetic pathway during secondary cell wall formation. Taken together, our results suggest that PtoMYB92 is involved in the regulation of secondary cell wall formation in poplar by controlling the biosynthesis of monolignols.

  4. Jasmonic acid-isoleucine formation in grapevine (Vitis vinifera L.) by two enzymes with distinct transcription profiles.

    PubMed

    Böttcher, Christine; Burbidge, Crista A; di Rienzo, Valentina; Boss, Paul K; Davies, Christopher

    2015-07-01

    The plant hormone jasmonic acid (JA) is essential for stress responses and the formation of reproductive organs, but its role in fruit development and ripening is unclear. Conjugation of JA to isoleucine is a crucial step in the JA signaling pathway since only JA-Ile is recognized by the jasmonate receptor. The conjugation reaction is catalyzed by JA-amido synthetases, belonging to the family of Gretchen Hagen3 (GH3) proteins. Here, in vitro studies of two grapevine (Vitis vinifera L. cv Shiraz) GH3 enzymes, VvGH3-7 and VvGH3-9, demonstrated JA-conjugating activities with an overlapping range of amino acid substrates, including isoleucine. Expression studies of the corresponding genes in grape berries combined with JA and JA-Ile measurements suggested a primary role for JA signaling in fruit set and cell division and did not support an involvement of JA in the ripening process. In response to methyl JA (MeJA) treatment, and in wounded and unwounded (distal) leaves, VvGH3-9 transcripts accumulated, indicating a participation in the JA response. In contrast, VvGH3-7 was unresponsive to MeJA and local wounding, demonstrating a differential transcriptional regulation of VvGH3-7 and VvGH3-9. The transient induction of VvGH3-7 in unwounded, distal leaves was suggestive of the involvement of an unknown mobile wound signal.

  5. McMYB12 Transcription Factors Co-regulate Proanthocyanidin and Anthocyanin Biosynthesis in Malus Crabapple

    PubMed Central

    Tian, Ji; Zhang, Jie; Han, Zhen-yun; Song, Ting-ting; Li, Jin-yan; Wang, Ya-ru; Yao, Yun-cong

    2017-01-01

    The flavonoid compounds, proanthocyanidins (PAs), protect plants from biotic stresses, contribute to the taste of many fruits, and are beneficial to human health in the form of dietary antioxidants. In this study, we functionally characterized two Malus crabapple R2R3-MYB transcription factors, McMYB12a and McMYB12b, which co-regulate PAs and anthocyanin biosynthesis. McMYB12a was shown to be mainly responsible for upregulating the expression of anthocyanin biosynthetic genes by binding to their promoters, but to be only partially responsible for regulating PAs biosynthetic genes. In contrast, McMYB12b showed preferential binding to the promoters of PAs biosynthetic genes. Overexpression of McMYB12a and McMYB12b in tobacco (Nicotiana tabacum) altered the expression of flavonoid biosynthetic genes and promoted the accumulation of PAs and anthocyanins in tobacco petals. Conversely, transient silencing their expression in crabapple plants, using a conserved gene region, resulted in reduced PAs and anthocyanin production a green leaf phenotype. Meanwhile, transient overexpression of the two genes and silenced McMYB12s in apple (Malus domestica) fruit had a similar effect as overexpression in tobacco and silenced in crabapple. This study reveals a new mechanism for the coordinated regulation of PAs and anthocyanin accumulation in crabapple leaves, which depends on an auto-regulatory balance involving McMYB12a and McMYB12b expression. PMID:28255171

  6. [Cloning and sequence analysis of MYB transcriptional regulator SmP gene of Saussurea medusa Maxim].

    PubMed

    Jin, Zhi-Ping; Zhao, De-Xiu; Qiao, Chuan-Ling; Qu, Wen-Quan; Chen, Ya-Qiong; Fu, Chun-Xiang

    2003-05-01

    A full-length cDNA encoding a MYB-related regulatory gene was isolated from a cDNA library prepared from mRNAs of the red line callus of S. medusa by TD-PCR. The cDNA, designated SmP, is 969 nucleotides long and has an open reading frame of 771 bp with a deduced amino acid sequence of 256 residues. The putative protein of SmP has two typical conversed R2R3-Myb DNA-binding domains in N-terminal and displays a rather high degree of similarity to OsMYB from rice and LBMI from tobacco, showing 73% and 70% identity within the DNA-binding domains. However, the C-terminal domain of the SmP protein does not show obvious similarity to any other known protein sequence. It is rich in hydrophilic amino acids, especially in serine residues (18.38%), partly organized in homopolymeric stretches, a feature often found in activation domain of transcription factors.

  7. McMYB12 Transcription Factors Co-regulate Proanthocyanidin and Anthocyanin Biosynthesis in Malus Crabapple.

    PubMed

    Tian, Ji; Zhang, Jie; Han, Zhen-Yun; Song, Ting-Ting; Li, Jin-Yan; Wang, Ya-Ru; Yao, Yun-Cong

    2017-03-03

    The flavonoid compounds, proanthocyanidins (PAs), protect plants from biotic stresses, contribute to the taste of many fruits, and are beneficial to human health in the form of dietary antioxidants. In this study, we functionally characterized two Malus crabapple R2R3-MYB transcription factors, McMYB12a and McMYB12b, which co-regulate PAs and anthocyanin biosynthesis. McMYB12a was shown to be mainly responsible for upregulating the expression of anthocyanin biosynthetic genes by binding to their promoters, but to be only partially responsible for regulating PAs biosynthetic genes. In contrast, McMYB12b showed preferential binding to the promoters of PAs biosynthetic genes. Overexpression of McMYB12a and McMYB12b in tobacco (Nicotiana tabacum) altered the expression of flavonoid biosynthetic genes and promoted the accumulation of PAs and anthocyanins in tobacco petals. Conversely, transient silencing their expression in crabapple plants, using a conserved gene region, resulted in reduced PAs and anthocyanin production a green leaf phenotype. Meanwhile, transient overexpression of the two genes and silenced McMYB12s in apple (Malus domestica) fruit had a similar effect as overexpression in tobacco and silenced in crabapple. This study reveals a new mechanism for the coordinated regulation of PAs and anthocyanin accumulation in crabapple leaves, which depends on an auto-regulatory balance involving McMYB12a and McMYB12b expression.

  8. A novel MYB transcription factor, GmMYBJ1, from soybean confers drought and cold tolerance in Arabidopsis thaliana.

    PubMed

    Su, Lian-Tai; Li, Jing-Wen; Liu, De-Quan; Zhai, Ying; Zhang, Hai-Jun; Li, Xiao-Wei; Zhang, Qing-Lin; Wang, Ying; Wang, Qing-Yu

    2014-03-15

    MYB transcription factors play important roles in the regulation of plant growth, developmental metabolism and stress responses. In this study, a new MYB transcription factor gene, GmMYBJ1, was isolated from soybean [Glycine max (L.)]. The GmMYBJ1 cDNA is 1296bp in length with an open reading frame (ORF) of 816 bp encoding for 271 amino acids. The amino acid sequence displays similarities to the typical R2R3 MYB proteins reported in other plants. Transient expression analysis using the GmMYBJ1-GFP fusion gene in onion epidermal cells revealed that the GmMYBJ1 protein is targeted to the nucleus. Quantitative RT-PCR analysis demonstrated that GmMYBJ1 expression was induced by abiotic stresses, such as drought, cold, salt and exogenous abscisic acid (ABA). Compared to wild-type (WT) plants, transgenic Arabidopsis overexpressing GmMYBJ1 exhibited an enhanced tolerance to drought and cold stresses. These results indicate that GmMYBJ1 has the potential to be utilized in transgenic breeding lines to improve abiotic stress tolerance.

  9. A Conserved Network of Transcriptional Activators and Repressors Regulates Anthocyanin Pigmentation in Eudicots[C][W][OPEN

    PubMed Central

    Albert, Nick W.; Davies, Kevin M.; Lewis, David H.; Zhang, Huaibi; Montefiori, Mirco; Brendolise, Cyril; Boase, Murray R.; Ngo, Hanh; Jameson, Paula E.; Schwinn, Kathy E.

    2014-01-01

    Plants require sophisticated regulatory mechanisms to ensure the degree of anthocyanin pigmentation is appropriate to myriad developmental and environmental signals. Central to this process are the activity of MYB-bHLH-WD repeat (MBW) complexes that regulate the transcription of anthocyanin genes. In this study, the gene regulatory network that regulates anthocyanin synthesis in petunia (Petunia hybrida) has been characterized. Genetic and molecular evidence show that the R2R3-MYB, MYB27, is an anthocyanin repressor that functions as part of the MBW complex and represses transcription through its C-terminal EAR motif. MYB27 targets both the anthocyanin pathway genes and basic-helix-loop-helix (bHLH) ANTHOCYANIN1 (AN1), itself an essential component of the MBW activation complex for pigmentation. Other features of the regulatory network identified include inhibition of AN1 activity by the competitive R3-MYB repressor MYBx and the activation of AN1, MYB27, and MYBx by the MBW activation complex, providing for both reinforcement and feedback regulation. We also demonstrate the intercellular movement of the WDR protein (AN11) and R3-repressor (MYBx), which may facilitate anthocyanin pigment pattern formation. The fundamental features of this regulatory network in the Asterid model of petunia are similar to those in the Rosid model of Arabidopsis thaliana and are thus likely to be widespread in the Eudicots. PMID:24642943

  10. An Ancient Duplication of Apple MYB Transcription Factors Is Responsible for Novel Red Fruit-Flesh Phenotypes1[C][W

    PubMed Central

    Chagné, David; Lin-Wang, Kui; Espley, Richard V.; Volz, Richard K.; How, Natalie M.; Rouse, Simon; Brendolise, Cyril; Carlisle, Charmaine M.; Kumar, Satish; De Silva, Nihal; Micheletti, Diego; McGhie, Tony; Crowhurst, Ross N.; Storey, Roy D.; Velasco, Riccardo; Hellens, Roger P.; Gardiner, Susan E.; Allan, Andrew C.

    2013-01-01

    Anthocyanin accumulation is coordinated in plants by a number of conserved transcription factors. In apple (Malus × domestica), an R2R3 MYB transcription factor has been shown to control fruit flesh and foliage anthocyanin pigmentation (MYB10) and fruit skin color (MYB1). However, the pattern of expression and allelic variation at these loci does not explain all anthocyanin-related apple phenotypes. One such example is an open-pollinated seedling of cv Sangrado that has green foliage and develops red flesh in the fruit cortex late in maturity. We used methods that combine plant breeding, molecular biology, and genomics to identify duplicated MYB transcription factors that could control this phenotype. We then demonstrated that the red-flesh cortex phenotype is associated with enhanced expression of MYB110a, a paralog of MYB10. Functional characterization of MYB110a showed that it was able to up-regulate anthocyanin biosynthesis in tobacco (Nicotiana tabacum). The chromosomal location of MYB110a is consistent with a whole-genome duplication event that occurred during the evolution of apple within the Maloideae family. Both MYB10 and MYB110a have conserved function in some cultivars, but they differ in their expression pattern and response to fruit maturity. PMID:23096157

  11. Co-evolution between Grapevine rupestris stem pitting-associated virus and Vitis vinifera L. leads to decreased defence responses and increased transcription of genes related to photosynthesis.

    PubMed

    Gambino, Giorgio; Cuozzo, Danila; Fasoli, Marianna; Pagliarani, Chiara; Vitali, Marco; Boccacci, Paolo; Pezzotti, Mario; Mannini, Franco

    2012-10-01

    Grapevine rupestris stem pitting-associated virus (GRSPaV) is a widespread virus infecting Vitis spp. Although it has established a compatible viral interaction in Vitis vinifera without the development of phenotypic alterations, it can occur as distinct variants that show different symptoms in diverse Vitis species. The changes induced by GRSPaV in V. vinifera cv 'Bosco', an Italian white grape variety, were investigated by combining agronomic, physiological, and molecular approaches, in order to provide comprehensive information about the global effects of GRSPaV. In two years, this virus caused a moderate decrease in physiological efficiency, yield performance, and sugar content in berries associated with several transcriptomic alterations. Transcript profiles were analysed by a microarray technique in petiole, leaf, and berry samples collected at véraison and by real-time RT-PCR in a time course carried out at five grapevine developmental stages. Global gene expression analyses showed that transcriptomic changes were highly variable among the different organs and the different phenological phases. GRSPaV triggers some unique responses in the grapevine at véraison, never reported before for other plant-virus interactions. These responses include an increase in transcripts involved in photosynthesis and CO(2) fixation, a moderate reduction in the photosynthesis rate and some defence mechanisms, and an overlap with responses to water and salinity stresses. It is hypothesized that the long co-existence of grapevine and GRSPaV has resulted in the evolution of a form of mutual adaptation between the virus and its host. This study contributes to elucidating alternative mechanisms used by infected plants to contend with viruses.

  12. General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species

    PubMed Central

    2010-01-01

    Background Downy mildew is a destructive grapevine disease caused by Plasmopara viticola (Berk. and Curt.) Berl. and de Toni, which can only be controlled by intensive fungicide treatments. Natural sources of resistance from wild grapevine (Vitis) species are used in conventional breeding approaches, but the signals and effectors involved in resistance in this important crop species are not well understood. Results Early transcriptional changes associated with P. viticola infection in susceptible V. vinifera and resistant V. riparia plants were analyzed using the Combimatrix microarray platform. Transcript levels were measured 12 and 24 h post-inoculation, reflecting the time points immediately preceding the onset of resistance in V. riparia, as determined by microscopic analysis. Our data indicate that resistance in V. riparia is induced after infection, and is not based on differences in basal gene expression between the two species. The strong and rapid transcriptional reprogramming involves the induction of pathogenesis-related proteins and enzymes required for the synthesis of phenylpropanoid-derived compounds, many of which are also induced, albeit to a lesser extent, in V. vinifera. More interestingly, resistance in V. riparia also involves the specific modulation of numerous transcripts encoding components of signal transduction cascades, hypersensitive reaction markers and genes involved in jasmonate biosynthesis. The limited transcriptional modulation in V. vinifera represents a weak attempted defense response rather than the activation of compatibility-specific pathways. Conclusions Several candidate resistance genes were identified that could be exploited in future biotechnological approaches to increase disease resistance in susceptible grapevine species. Measurements of jasmonic acid and methyl jasmonate in infected leaves suggest that this hormone may also be involved in V. riparia resistance to P. viticola. PMID:20167053

  13. Mapping of an anthocyanin-regulating MYB transcription factor and its expression in red and green pear, Pyrus communis.

    PubMed

    Pierantoni, Luca; Dondini, Luca; De Franceschi, Paolo; Musacchi, Stefano; Winkel, Brenda S J; Sansavini, Silviero

    2010-12-01

    'Max Red Bartlett' is a red bud mutation of the yellow pear (Pyrus communis L.) cultivar 'Williams' (known as 'Bartlett' in North America). Anthocyanins are the most important pigments for red colour in fruits. Synthesis of anthocyanins is mediated by a number of well-characterized enzymes that include chalcone synthase (CHS), flavanone-3-hydroxylase (F3H), dihydroflavonol-4-reductase (DFR), anthocyanidin synthase (ANS), and UDP-glucose:flavonoid-3-O-glucosyltransferase (UFGT). Expression of the genes encoding these five enzymes was examined in pear fruit skin in order to elucidate the molecular mechanism for red coloration. In addition, the gene PcMYB10, encoding an R2R3 MYB transcription factor involved in anthocyanin biosynthetic pathway regulation, was isolated from both 'Williams' and 'Max Red Bartlett'. Analysis of the deduced amino acid sequence suggests that this gene is an ortholog of anthocyanin regulators known in other plant species. Its expression level was significantly higher in 'Max Red Bartlett' (red pear) compared with the original yellow variety 'Williams'. Although the map position of PcMYB10 corresponds to that of MdMYBa and MdMYB10, which control pigmentation of apple fruit skin, PcMYB10 is not directly responsible for red versus yellow colour in the two pear varieties, as the mutation underlying this difference maps to a different region of the pear genome.

  14. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles.

    PubMed

    Cramer, Grant R; Ergül, Ali; Grimplet, Jerome; Tillett, Richard L; Tattersall, Elizabeth A R; Bohlman, Marlene C; Vincent, Delphine; Sonderegger, Justin; Evans, Jason; Osborne, Craig; Quilici, David; Schlauch, Karen A; Schooley, David A; Cushman, John C

    2007-04-01

    Grapes are grown in semiarid environments, where drought and salinity are common problems. Microarray transcript profiling, quantitative reverse transcription-PCR, and metabolite profiling were used to define genes and metabolic pathways in Vitis vinifera cv. Cabernet Sauvignon with shared and divergent responses to a gradually applied and long-term (16 days) water-deficit stress and equivalent salinity stress. In this first-of-a-kind study, distinct differences between water deficit and salinity were revealed. Water deficit caused more rapid and greater inhibition of shoot growth than did salinity at equivalent stem water potentials. One of the earliest responses to water deficit was an increase in the transcript abundance of RuBisCo activase (day 4), but this increase occurred much later in salt-stressed plants (day 12). As water deficit progressed, a greater number of affected transcripts were involved in metabolism, transport, and the biogenesis of cellular components than did salinity. Salinity affected a higher percentage of transcripts involved in transcription, protein synthesis, and protein fate than did water deficit. Metabolite profiling revealed that there were higher concentrations of glucose, malate, and proline in water-deficit-treated plants as compared to salinized plants. The metabolite differences were linked to differences in transcript abundance of many genes involved in energy metabolism and nitrogen assimilation, particularly photosynthesis, gluconeogenesis, and photorespiration. Water-deficit-treated plants appear to have a higher demand than salinized plants to adjust osmotically, detoxify free radicals (reactive oxygen species), and cope with photoinhibition.

  15. The transcription factor VvWRKY33 is involved in the regulation of grapevine (Vitis vinifera) defense against the oomycete pathogen Plasmopara viticola.

    PubMed

    Merz, Patrick R; Moser, Tina; Höll, Janine; Kortekamp, Andreas; Buchholz, Günther; Zyprian, Eva; Bogs, Jochen

    2015-03-01

    Grapevine (Vitis vinifera ssp. vinifera) is one of the most important fruit species; however, it is highly susceptible to various pathogens, which can cause severe crop losses in viticulture. It has been shown that several WRKY class transcription factors (TFs) are part of the signal transduction cascade, which leads to the activation of plant defense reactions against various pathogens. In the present investigation, a full-length cDNA was isolated from V. vinifera leaf tissue encoding a predicted protein, designated VvWRKY33, which shows the characteristics of group I WRKY protein family. VvWRKY33 induction correlates with the expression of VvPR10.1 (pathogenesis-related 10.1) gene in the leaves of the resistant cultivar 'Regent' after infection with Plasmopara viticola, whereas in the susceptible cultivar 'Lemberger' VvWRKY33 and VvPR10.1 are not induced. Corresponding expression of the TF and VvPR10.1 was even obtained in uninfected ripening berries. In planta, analysis of VvWRKY33 has been performed by ectopic expression of VvWRKY33 in grapevine leaves of greenhouse plants mediated via Agrobacterium tumefaciens transformation. In consequence, VvWRKY33 strongly increases resistance to P. viticola in the susceptible cultivar 'Shiraz' and reduces pathogen sporulation of about 50-70%, indicating a functional role for resistance in grapevine. Complementation of the resistance-deficient Arabidopsis thaliana Columbia-0 (Col-0) mutant line wrky33-1 by constitutive expression of VvWRKY33 restores resistance against Botrytis cinerea to wild-type level and in some complemented mutant lines even exceeds the resistance level of the parental line Col-0. Our results support the involvement of VvWRKY33 in the defense reaction of grapevine against different pathogens.

  16. Three ERF transcription factors from Chinese wild grapevine Vitis pseudoreticulata participate in different biotic and abiotic stress-responsive pathways.

    PubMed

    Zhu, Ziguo; Shi, Jiangli; Xu, Weirong; Li, Huie; He, Mingyang; Xu, Yan; Xu, Tengfei; Yang, Yazhou; Cao, Jiangling; Wang, Yuejin

    2013-07-01

    Ethylene response factor (ERF) functions as an important plant-specific transcription factor in regulating biotic and abiotic stress response through interaction with various stress pathways. We previously obtained three ERF members, VpERF1, VpERF2, and VpERF3 from a highly powdery mildew (PM)-resistant Chinese wild Vitis pseudoreticulata cDNA full-length library. To explore their functions associated with plant disease resistance or biotic stress, we report here to characterize three ERF members from this library. PM-inoculation analysis on three different resistant grapevine genotypes revealed that three VpERFs displayed significant responses, but a different expression pattern. Over-expression of VpERF1, VpERF2, and VpERF3 in transgenic tobacco plants demonstrated that VpERF2 and VpERF3 enhanced resistance to both bacterial pathogen Ralstonia solanacearum and fungal pathogen Phytophtora parasitica var. nicotianae Tucker. Importantly, VpERF1-overexpressing transgenic Arabidopsis plants increased susceptibility toward these pathogens. Investigation on drought, cold, and heat treatments suggested, VpERF2 was distinctly induced, whereas VpERF3 displayed a very weak response and VpERF1 was distinctly induced by drought and heat. Concurrently, VpERF3 was significantly induced by salicylic acid (SA), methyl jasmonate (MeJA), and ET. Our results showed that the three VpERFs from Chinese wild V. pseudoreticulata play different roles in either preventing disease progression via regulating the expression of relevant defense genes, or directly involving abiotic stress responsive pathways.

  17. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors.

    PubMed

    Zhou, Hui; Lin-Wang, Kui; Wang, Huiliang; Gu, Chao; Dare, Andrew P; Espley, Richard V; He, Huaping; Allan, Andrew C; Han, Yuepeng

    2015-04-01

    Anthocyanin pigmentation is an important consumer trait in peach (Prunus persica). In this study, the genetic basis of the blood-flesh trait was investigated using the cultivar Dahongpao, which shows high levels of cyanidin-3-glucoside in the mesocarp. Elevation of anthocyanin levels in the flesh was correlated with the expression of an R2R3 MYB transcription factor, PpMYB10.1. However, PpMYB10.1 did not co-segregate with the blood-flesh trait. The blood-flesh trait was mapped to a 200-kb interval on peach linkage group (LG) 5. Within this interval, a gene encoding a NAC domain transcription factor (TF) was found to be highly up-regulated in blood-fleshed peaches when compared with non-red-fleshed peaches. This NAC TF, designated blood (BL), acts as a heterodimer with PpNAC1 which shows high levels of expression in fruit at late developmental stages. We show that the heterodimer of BL and PpNAC1 can activate the transcription of PpMYB10.1, resulting in anthocyanin pigmentation in tobacco. Furthermore, silencing the BL gene reduces anthocyanin pigmentation in blood-fleshed peaches. The transactivation activity of the BL-PpNAC1 heterodimer is repressed by a SQUAMOSA promoter-binding protein-like TF, PpSPL1. Low levels of PpMYB10.1 expression in fruit at early developmental stages is probably attributable to lower levels of expression of PpNAC1 plus the presence of high levels of repressors such as PpSPL1. We present a mechanism whereby BL is the key gene for the blood-flesh trait in peach via its activation of PpMYB10.1 in maturing fruit. Partner TFs such as basic helix-loop-helix proteins and NAC1 are required, as is the removal of transcriptional repressors.

  18. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism.

    PubMed

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A; Zaharia, L Irina; Schernthaner, Johann P; Gesell, Andreas; Abrams, Suzanne R; Kennedy, James A; Constabel, C Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3'-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3'5'-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of

  19. Gene Expression and Metabolite Profiling of Developing Highbush Blueberry Fruit Indicates Transcriptional Regulation of Flavonoid Metabolism and Activation of Abscisic Acid Metabolism1[W][OA

    PubMed Central

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A.; Zaharia, L. Irina; Schernthaner, Johann P.; Gesell, Andreas; Abrams, Suzanne R.; Kennedy, James A.; Constabel, C. Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3′-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3′5′-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation

  20. IT3F: a web-based tool for functional analysis of transcription factors in plants.

    PubMed

    Bailey, Paul C; Dicks, Jo; Wang, Trevor L; Martin, Cathie

    2008-10-01

    A web-based tool, the Interspecies Transcription Factor Function Finder (IT3F), has been developed to display both evolutionary gene relationships and expression data for plant transcription factors, focussing primarily on the R2R3MYB gene subfamily for proof of concept. The graphical display of information allows users to make direct comparisons between structurally related genes and to identify those genes that are potentially orthologous, thereby assisting with their understanding of gene function. A key feature of the website is the provision of an interrogative phylogenetic tree that allows submission of new sequences corresponding to a transcription factor family or subfamily and maps their relative positions to the products of other genes on an 'existing' tree containing proteins encoded by Arabidopsis and rice genes, along with key proteins encoded by genes from other species that have been characterised functionally. In addition, a feature to select clusters of related sequences has been developed so that more detailed phylogenetic analysis can be performed to highlight potential orthologous and paralogous genes within related clusters. Arabidopsis genes that reside on duplicated regions of the genome are indicated on the tree, providing further information for interpreting gene function. An additional feature of the website allows a selected number of key Arabidopsis and rice microarray experiments to be visualised alongside the tree as a tabulated heat map of expression intensity values. Through this display, it is possible to observe relative expression levels across a whole gene family and the extent to which the expression of closely related genes within subgroups has altered since their ancestral divergence. The website is available at http://jicbio.nbi.ac.uk/IT3F/.

  1. [Cloning and functional analysis of Phyllostachys edulis MYB transcription factor PeMYB2].

    PubMed

    Xiao, Dong-Chang; Zhang, Zhi-Jun; Xu, Ying-Wu; Yang, Li; Zhang, Feng-Xue; Wang, Chao-Li

    2013-10-01

    MYB-type transcription factor is one of the largest families in plants, which plays important roles in accepting stress signals from environment and regulating the expression of stress-tolerant genes. In this paper, using homologous cloning and RACE technology, a MYB-type transcription factor, designated PeMYB2, was cloned from Phyllostachys edulis. The results of bioinformatics showed that PeMYB2 is a typical R2R3-MYB. It contained two tandem repeats in its N-terminus, and a membrane protein DUF3651 in its C-terminus. In addition, phylogenetic analysis indicated that PeMYB2 shared the highest homology with 85.98% to OsMYB18 protein from Oryza sativa spp. Japonica. In addition, a yeast one-hybrid assay showed that PeMYB2 could activate the expression of downstream genes. After PeMYB2 was transformed into Arabidopsis thaliana, seven PeMYB2 transgenic Arabidopsis lines were obtained. Phenotypic analysis of the transgenic and wild-type Arabidopsis showed that over-expression of PeMYB2 caused delayed flower or dwarfism in transgenic Arabidopsis. Under the abiotic stress conditions, such as salt and cold stresses, the over-expression of PeMYB2 in Arabidopsis had higher survival rate than the wild-type Arabidopsis. Expression analysis of saline stress response marker genes in the transgenic and wild-type plants under the salt stress condition showed that PeMYB2 regulated the expression of NXH1, SOS1, RD29A, and COR15A. As the result, PeMYB2 might play an important role in various responses to abiotic stresses in P. edulis.

  2. Graft union formation in grapevine induces transcriptional changes related to cell wall modification, wounding, hormone signalling, and secondary metabolism

    PubMed Central

    Cookson, Sarah Jane; Clemente Moreno, Maria José; Hevin, Cyril; Nyamba Mendome, Larissa Zita; Delrot, Serge; Trossat-Magnin, Claudine; Ollat, Nathalie

    2013-01-01

    Grafting is particularly important to the cultivation of perennial crops such as grapevine (Vitis vinifera) because rootstocks can provide resistance to soil-borne pests and diseases as well as improve tolerance to some abiotic stresses. Successful grafting is a complex biochemical and structural process beginning with the adhesion of the two grafted partners, followed by callus formation and the establishment of a functional vascular system. At the molecular level, the sequence of events underlying graft union formation remains largely uncharacterized. The present study investigates the transcriptome of grapevine rootstock and graft interface tissues sampled 3 d and 28 d after grafting of over-wintering stems in the spring. Many genes were differentially expressed over time, from 3 d to 28 d after grafting, which could be related to the activation of stem growth and metabolic activity in the spring. This hypothesis is supported by the up-regulation of many genes associated with cell wall synthesis, and phloem and xylem development. Generally, there was an up-regulation of gene expression in the graft interface tissue compared with the rootstock, particularly genes involved in cell wall synthesis, secondary metabolism, and signalling. Although there was overlap between the genes differentially expressed over time (from 3 d to 28 d after grafting) with the gene differentially expressed between the rootstock and the graft interface, numerous graft interface-specific genes were identified. PMID:23698628

  3. EjODO1, a MYB Transcription Factor, Regulating Lignin Biosynthesis in Developing Loquat (Eriobotrya japonica) Fruit

    PubMed Central

    Zhang, Jing; Ge, Hang; Zang, Chen; Li, Xian; Grierson, Donald; Chen, Kun-song; Yin, Xue-ren

    2016-01-01

    Lignin is important for plant secondary cell wall formation and participates in resistance to various biotic and abiotic stresses. Loquat undergoes lignification not only in vegetative tissues but also in flesh of postharvest fruit, which adversely affects consumer acceptance. Thus, researches on lignin biosynthesis and regulation are important to understand loquat fruit lignification. In loquat, a gene encoding an enzyme in the lignin biosynthesis pathway, Ej4CL1, was reported to be regulated by transcription factors, including EjMYB1, EjMYB2, EjMYB8, and EjAP2-1, knowledge of this process is still limited. With the aim of identifying novel transcriptional factors controlling lignin biosynthesis in loquat, the promoter of Ej4CL1 was utilized to screen a cDNA library by yeast one hybrid assay. A novel R2R3 MYB, named EjODO1, was identified. Real-time PCR analyses indicated that EjODO1 is highly expressed in lignified stems and roots. During fruit development, expression of EjODO1 decreased along with the reduction of lignin content and became undetectable in mature ripe fruit. Thus, EjODO1 is likely to be involved in lignification of vegetative organs and early fruit development but not in mature fruit or postharvest lignification. Dual-luciferase assay indicated that EjODO1 could trans-activate promoters of lignin biosynthesis genes, such as EjPAL1, Ej4CL1, and Ej4CL5 and transient overexpression of EjODO1 triggered lignin biosynthesis. These results indicate a role for EjODO1 in regulating lignin biosynthesis in loquat which is different from the previously characterized transcription factors. PMID:27695460

  4. Opposing Control by Transcription Factors MYB61 and MYB3 Increases Freezing Tolerance by Relieving C-Repeat Binding Factor Suppression1[OPEN

    PubMed Central

    Zhang, Yunqin; Miao, Zhenyan; Xie, Can; Meng, Xiangzhao; Deng, Jie; Mysore, Kirankumar S.; Frugier, Florian; Wang, Tao

    2016-01-01

    Cold acclimation is an important process by which plants respond to low temperature and enhance their winter hardiness. C-REPEAT BINDING FACTOR1 (CBF1), CBF2, and CBF3 genes were shown previously to participate in cold acclimation in Medicago truncatula. In addition, MtCBF4 is transcriptionally induced by salt, drought, and cold stresses. We show here that MtCBF4, shown previously to enhance drought and salt tolerance, also positively regulates cold acclimation and freezing tolerance. To identify molecular factors acting upstream and downstream of the MtCBF4 transcription factor (TF) in cold responses, we first identified genes that are differentially regulated upon MtCBF4 overexpression using RNAseq Digital Gene Expression Profiling. Among these, we showed that MtCBF4 directly activates the transcription of the COLD ACCLIMATION SPECIFIC15 (MtCAS15) gene. To gain insights into how MtCBF4 is transcriptionally regulated in response to cold, an R2R3-MYB TF, MtMYB3, was identified based on a yeast one-hybrid screen as binding directly to MYB cis-elements in the MtCBF4 promoter, leading to the inhibition of MtCBF4 expression. In addition, another MYB TF, MtMYB61, identified as an interactor of MtMYB3, can relieve the inhibitory effect of MtMYB3 on MtCBF4 transcription. This study, therefore, supports a model describing how MtCBF4 is regulated by antagonistic MtMYB3/MtMYB61 TFs, leading to the up-regulation of downstream targets such as MtCAS15 acting in cold acclimation in M. truncatula. PMID:27578551

  5. Functional characterization of a basic helix-loop-helix (bHLH) transcription factor GhDEL65 from cotton (Gossypium hirsutum).

    PubMed

    Shangguan, Xiao-Xia; Yang, Chang-Qing; Zhang, Xiu-Fang; Wang, Ling-Jian

    2016-10-01

    Cotton fiber is proposed to share some similarity with the Arabidopsis thaliana leaf trichome, which is regulated by the MYB-bHLH-WD40 transcription complex. Although several MYB transcription factors and WD40 family proteins in cotton have been characterized, little is known about the role of bHLH family proteins in cotton. Here, we report that GhDEL65, a bHLH protein from cotton (Gossypium hirsutum), is a functional homologue of Arabidopsis GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) in regulating trichome development. Transcripts of GhDEL65 were detected in 0 ∼ 1 days post-anthesis (DPA) ovules and abundant in 3-DPA fibers, implying that GhDEL65 may act in early fiber development. Ectopic expression of GhDEL65 in Arabidopsis gl3 egl3 double mutant partly rescued the trichome development, and constitutive expression of GhDEL65 in wild-type plants led to increased trichome density on rosette leaves and stems, mainly by activating the transcription of two key positive regulators of trichome development, GLABRA1 (GL1) and GLABRA2 (GL2), and suppressed the expression of a R3 single-repeat MYB factor TRIPTYCHON (TRY). GhDEL65 could interact with cotton R2R3 MYB transcription factors GhMYB2 and GhMYB3, as well as the WD40 protein GhTTG3, suggesting that the MYB-bHLH-WD40 protein complex also exists in cotton fiber cell, though its function in cotton fiber development awaits further investigation.

  6. Expression of a Grapevine NAC Transcription Factor Gene Is Induced in Response to Powdery Mildew Colonization in Salicylic Acid-Independent Manner

    PubMed Central

    Toth, Zsofia; Winterhagen, Patrick; Kalapos, Balazs; Su, Yingcai; Kovacs, Laszlo; Kiss, Erzsebet

    2016-01-01

    Tissue colonization by grape powdery mildew (PM) pathogen Erysiphe necator (Schw.) Burr triggers a major remodeling of the transcriptome in the susceptible grapevine Vitis vinifera L. While changes in the expression of many genes bear the signature of salicylic acid (SA) mediated regulation, the breadth of PM-induced changes suggests the involvement of additional regulatory networks. To explore PM-associated gene regulation mediated by other SA-independent systems, we designed a microarray experiment to distinguish between transcriptome changes induced by E. necator colonization and those triggered by elevated SA levels. We found that the majority of genes responded to both SA and PM, but certain genes were responsive to PM infection alone. Among them, we identified genes of stilbene synthases, PR-10 proteins, and several transcription factors. The microarray results demonstrated that the regulation of these genes is either independent of SA, or dependent, but SA alone is insufficient to bring about their regulation. We inserted the promoter-reporter fusion of a PM-responsive transcription factor gene into a wild-type and two SA-signaling deficient Arabidopsis lines and challenged the resulting transgenic plants with an Arabidopsis-adapted PM pathogen. Our results provide experimental evidence that this grape gene promoter is activated by the pathogen in a SA-independent manner. PMID:27488171

  7. Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease.

    PubMed

    Liu, Xin; Yang, Lihua; Zhou, Xianyao; Zhou, Miaoping; Lu, Yan; Ma, Lingjian; Ma, Hongxiang; Zhang, Zengyan

    2013-05-01

    The disease take-all, caused by the fungus Gaeumannomyces graminis, is one of the most destructive root diseases of wheat worldwide. Breeding resistant cultivars is an effective way to protect wheat from take-all. However, little progress has been made in improving the disease resistance level in commercial wheat cultivars. MYB transcription factors play important roles in plant responses to environmental stresses. In this study, an R2R3-MYB gene in Thinopyrum intermedium, TiMYB2R-1, was cloned and characterized. The gene sequence includes two exons and an intron. The expression of TiMYB2R-1 was significantly induced following G. graminis infection. An in vitro DNA binding assay proved that TiMYB2R-1 protein could bind to the MYB-binding site cis-element ACI. Subcellular localization assays revealed that TiMYB2R-1 was localized in the nucleus. TiMYB2R-1 transgenic wheat plants were generated, characterized molecularly, and evaluated for take-all resistance. PCR and Southern blot analyses confirmed that TiMYB2R-1 was integrated into the genomes of three independent transgenic wheat lines by distinct patterns and the transgene was heritable. Reverse transcription-PCR and western blot analyses revealed that TiMYB2R-1 was highly expressed in the transgenic wheat lines. Based on disease response assessments for three successive generations, the significantly enhanced resistance to take-all was observed in the three TiMYB2R-1-overexpressing transgenic wheat lines. Furthermore, the transcript levels of at least six wheat defence-related genes were significantly elevated in the TiMYB2R-1 transgenic wheat lines. These results suggest that engineering and overexpression of TiMYB2R-1 may be used for improving take-all resistance of wheat and other cereal crops.

  8. BjMYB1, a transcription factor implicated in plant defence through activating BjCHI1 chitinase expression by binding to a W-box-like element

    PubMed Central

    Gao, Ying; Jia, Shuangwei; Wang, Chunlian; Wang, Fujun; Wang, Fajun; Zhao, Kaijun

    2016-01-01

    We previously identified the W-box-like-4 (Wbl-4) element (GTAGTGACTCAT), one of six Wbl elements in the BjC-P promoter of the unusual chitinase gene BjCHI1 from Brassica juncea, as the core element responsive to fungal infection. Here, we report the isolation and characterization of the cognate transcription factor interacting with the Wbl-4 element. Using Wbl-4 as a target, we performed yeast one-hybrid screening of a B. juncea cDNA library and isolated an R2R3-MYB transcription factor designated as BjMYB1. BjMYB1 was localized in the nucleus of plant cells. EMSA assays confirmed that BjMYB1 binds to the Wbl-4 element. Transiently expressed BjMYB1 up-regulated the activity of the BjC-P promoter through its binding to the Wbl-4 element in tobacco (Nicotiana benthamiana) leaves. In B. juncea, BjMYB1 displayed a similar induced expression pattern as that of BjCHI1 upon infection by the fungus Botrytis cinerea. Moreover, heterogeneous overexpression of BjMYB1 significantly elevated the resistance of transgenic Arabidopsis thaliana to the fungus B. cinerea. These results suggest that BjMYB1 is potentially involved in host defence against fungal attack through activating the expression of BjCHI1 by binding to the Wbl-4 element in the BjC-P promoter. This finding demonstrates a novel DNA target of plant MYB transcription factors. PMID:27353280

  9. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes

    PubMed Central

    Matus, José Tomás; Aquea, Felipe; Arce-Johnson, Patricio

    2008-01-01

    Background The MYB superfamily constitutes the most abundant group of transcription factors described in plants. Members control processes such as epidermal cell differentiation, stomatal aperture, flavonoid synthesis, cold and drought tolerance and pathogen resistance. No genome-wide characterization of this family has been conducted in a woody species such as grapevine. In addition, previous analysis of the recently released grape genome sequence suggested expansion events of several gene families involved in wine quality. Results We describe and classify 108 members of the grape R2R3 MYB gene subfamily in terms of their genomic gene structures and similarity to their putative Arabidopsis thaliana orthologues. Seven gene models were derived and analyzed in terms of gene expression and their DNA binding domain structures. Despite low overall sequence homology in the C-terminus of all proteins, even in those with similar functions across Arabidopsis and Vitis, highly conserved motif sequences and exon lengths were found. The grape epidermal cell fate clade is expanded when compared with the Arabidopsis and rice MYB subfamilies. Two anthocyanin MYBA related clusters were identified in chromosomes 2 and 14, one of which includes the previously described grape colour locus. Tannin related loci were also detected with eight candidate homologues in chromosomes 4, 9 and 11. Conclusion This genome wide transcription factor analysis in Vitis suggests that clade-specific grape R2R3 MYB genes are expanded while other MYB genes could be well conserved compared to Arabidopsis. MYB gene abundance, homology and orientation within particular loci also suggests that expanded MYB clades conferring quality attributes of grapes and wines, such as colour and astringency, could possess redundant, overlapping and cooperative functions. PMID:18647406

  10. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    PubMed Central

    2010-01-01

    Background The transcriptional regulatory network involved in low temperature response leading to acclimation has been established in Arabidopsis. In japonica rice, which can only withstand transient exposure to milder cold stress (10°C), an oxidative-mediated network has been proposed to play a key role in configuring early responses and short-term defenses. The components, hierarchical organization and physiological consequences of this network were further dissected by a systems-level approach. Results Regulatory clusters responding directly to oxidative signals were prominent during the initial 6 to 12 hours at 10°C. Early events mirrored a typical oxidative response based on striking similarities of the transcriptome to disease, elicitor and wounding induced processes. Targets of oxidative-mediated mechanisms are likely regulated by several classes of bZIP factors acting on as1/ocs/TGA-like element enriched clusters, ERF factors acting on GCC-box/JAre-like element enriched clusters and R2R3-MYB factors acting on MYB2-like element enriched clusters. Temporal induction of several H2O2-induced bZIP, ERF and MYB genes coincided with the transient H2O2 spikes within the initial 6 to 12 hours. Oxidative-independent responses involve DREB/CBF, RAP2 and RAV1 factors acting on DRE/CRT/rav1-like enriched clusters and bZIP factors acting on ABRE-like enriched clusters. Oxidative-mediated clusters were activated earlier than ABA-mediated clusters. Conclusion Genome-wide, physiological and whole-plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress and developmental responses leads to modulated growth and vigor maintenance contributing to a delay of plastic injuries. PMID:20100339

  11. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var. acephala f. tricolor).

    PubMed

    Zhang, Bin; Hu, Zongli; Zhang, Yanjie; Li, Yali; Zhou, Shuang; Chen, Guoping

    2012-02-01

    The purple kale (Brassica Oleracea var. acephala f. tricolor) is a mutation in kales, giving the mutant phenotype of brilliant purple color in the interior. Total anthocyanin analysis showed that the amount of anthocyanins in the purple kale was up to 1.73 mg g(-1) while no anthocyanin was detected in the white kale. To elucidate the molecular mechanism of the anthocyanin biosynthesis in the purple kale, we analyzed the expression of structural genes and some transcription factors associated with anthocyanin biosynthesis in the purple cultivar "Red Dove" and the white cultivar "White Dove". The result showed that nearly all the anthocyanin biosynthetic genes showed higher expression levels in the purple cultivar than in the white cultivar, especially for DFR and ANS, they were barely detected in the white cultivar. Interestingly, the fact that a R2R3 MYB transcription factor named BoPAP1 was extremely up-regulated in the purple kale and induced by low temperature attracted our attention. Further sequence analysis showed that BoPAP1 shared high similarity with AtPAP1 and BoMYB1. In addition, the anthocyanin accumulation in the purple kale is strongly induced by the low temperature stress. The total anthocyanin contents in the purple kale under low temperature were about 50-fold higher than the plants grown in the greenhouse. The expression of anthocyanin biosynthetic genes C4H, F3H, DFR, ANS and UFGT were all enhanced under the low temperature. These evidences strongly suggest that BoPAP1 may play an important role in activating the anthocyanin structural genes for the abundant anthocyanin accumulation in the purple kale.

  12. A genome-wide regulatory framework identifies maize Pericarp Color1 (P1) controlled genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    P1 encodes an R2R3-MYB transcription factor responsible for the accumulation of insecticidal flavones in maize silks and red phlobaphene pigments in pericarps and other floral tissues. Using genome-wide expression analyses (RNA-Seq) in pericarps and silks of plants with contrasting P1 alleles combin...

  13. Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine

    PubMed Central

    2011-01-01

    Background Stenospermocarpy is a mechanism through which certain genotypes of Vitis vinifera L. such as Sultanina produce berries with seeds reduced in size. Stenospermocarpy has not yet been characterized at the molecular level. Results Genetic and physical maps were integrated with the public genomic sequence of Vitis vinifera L. to improve QTL analysis for seedlessness and berry size in experimental progeny derived from a cross of two seedless genotypes. Major QTLs co-positioning for both traits on chromosome 18 defined a 92-kb confidence interval. Functional information from model species including Vitis suggested that VvAGL11, included in this confidence interval, might be the main positional candidate gene responsible for seed and berry development. Characterization of VvAGL11 at the sequence level in the experimental progeny identified several SNPs and INDELs in both regulatory and coding regions. In association analyses performed over three seasons, these SNPs and INDELs explained up to 78% and 44% of the phenotypic variation in seed and berry weight, respectively. Moreover, genetic experiments indicated that the regulatory region has a larger effect on the phenotype than the coding region. Transcriptional analysis lent additional support to the putative role of VvAGL11's regulatory region, as its expression is abolished in seedless genotypes at key stages of seed development. These results transform VvAGL11 into a functional candidate gene for further analyses based on genetic transformation. For breeding purposes, intragenic markers were tested individually for marker assisted selection, and the best markers were those closest to the transcription start site. Conclusion We propose that VvAGL11 is the major functional candidate gene for seedlessness, and we provide experimental evidence suggesting that the seedless phenotype might be caused by variations in its promoter region. Current knowledge of the function of its orthologous genes, its expression

  14. Transcriptomic and Metabolomic Networks in the Grape Berry Illustrate That it Takes More Than Flavonoids to Fight Against Ultraviolet Radiation.

    PubMed

    Matus, José Tomás

    2016-01-01

    Plants are constantly challenged by environmental fluctuations. In response, they have developed a wide range of morphological and biochemical adaptations committed to ameliorate the effects of abiotic stress. When exposed to higher solar radiation levels, plants activate the synthesis of a large set of enzymes and secondary metabolites as part of a complex sunscreen and antioxidant defense mechanism. Grapevine (Vitis vinifera L.) has become a widely used system for studying adaptive responses to this type of stress since changes in berry composition, positively influenced by increased ultraviolet (UV) radiation levels, improve the quality of wines subsequently produced. Despite the fact that most of the attention has been directed toward the synthesis of flavonoids, recent transcriptomic and metabolomic studies have shown that stilbenoids and isoprenoids (e.g., terpenes and carotenoids) are also an important part of the grape UV-response machinery. This minireview focuses on the latest findings referring to the metabolic responses of grapes to UV radiation and proposes a model for its transcriptional control. Depending on the berry developmental stage and the type of radiation (i.e., irradiance level, exposure length), increased UV levels activate different metabolic pathways through the activity of master regulators belonging to the basic Leucine Zipper Domain (bZIP) and R2R3-MYB transcription factor families. This transcriptional control is influenced by the interaction of other environmental factors such as light, temperature or soil water availability. In grapevine, phenylpropanoids are part of, but are not the whole story, in the fight against radiation damage.

  15. School Administrator Grapevine Structure.

    ERIC Educational Resources Information Center

    Licata, Joseph W.; Hack, Walter G.

    1980-01-01

    A study reveals that principals' grapevine structure shows both "guild-like" and "clan-like" grouping and reflects the patterns of occupational socialization of school principals and informal boundary spanning processes. (Author/JM)

  16. A valid strategy for precise identifications of transcription factor binding sites in combinatorial regulation using bioinformatic and experimental approaches

    PubMed Central

    2013-01-01

    Background Transcription factor (TF) binding sites (cis element) play a central role in gene regulation, and eukaryotic organisms frequently adapt a combinatorial regulation to render sophisticated local gene expression patterns. Knowing the precise cis element on a distal promoter is a prerequisite for studying a typical transcription process; however, identifications of cis elements have lagged behind those of their associated trans acting TFs due to technical difficulties. Consequently, gene regulations via combinatorial TFs, as widely observed across biological processes, have remained vague in many cases. Results We present here a valid strategy for identifying cis elements in combinatorial TF regulations. It consists of bioinformatic searches of available databases to generate candidate cis elements and tests of the candidates using improved experimental assays. Taking the MYB and the bHLH that collaboratively regulate the anthocyanin pathway genes as examples, we demonstrate how candidate cis motifs for the TFs are found on multi-specific promoters of chalcone synthase (CHS) genes, and how to experimentally test the candidate sites by designing DNA fragments hosting the candidate motifs based on a known promoter (us1 allele of Ipomoea purpurea CHS-D in our case) and applying site-mutagenesis at the motifs. It was shown that TF-DNA interactions could be unambiguously analyzed by assays of electrophoretic mobility shift (EMSA) and dual-luciferase transient expressions, and the resulting evidence precisely delineated a cis element. The cis element for R2R3 MYBs including Ipomoea MYB1 and Magnolia MYB1, for instance, was found to be ANCNACC, and that for bHLHs (exemplified by Ipomoea bHLH2 and petunia AN1) was CACNNG. A re-analysis was conducted on previously reported promoter segments recognized by maize C1 and apple MYB10, which indicated that cis elements similar to ANCNACC were indeed present on these segments, and tested positive for their bindings to

  17. Grapevine (Vitis vinifera L.).

    PubMed

    Bouquet, Alain; Torregrosa, Laurent; Iocco, Pat; Thomas, Mark R

    2006-01-01

    Grapevine (Vitis) is considered to be one of the major fruit crops in the world based on hectares cultivated and economic value. Grapes are used not only for wine but also for fresh fruit, dried fruit, and juice production. Wine is by far the major product of grapes and the focus of this chapter is on wine grape cultivars. Grapevine cultivars of Vitis vinifera L. have a reputation for producing premium quality wines. These premium quality wines are produced from a small number of cultivars that enjoy a high level of consumer acceptance and are firmly entrenched in the market place because of varietal name branding and the association of certain wine styles and regions with specific cultivars. In light of this situation, grapevine improvement by a transgenic approach is attractive when compared to a classical breeding approach. The transfer of individual traits as single genes with a minimum disruption to the original genome would leave the traditional characteristics of the cultivar intact. However, a reliable transformation system is required for a successful transgenic approach to grapevine improvement. There are three criteria for achieving an efficient Agrobacterium-mediated transformation system: (1) the production of highly regenerative transformable tissue, (2) optimal co-cultivation conditions for both grapevine tissue and Agrobacterium, and (3) an efficient selection regime for transgenic plant regeneration. In this chapter, we describe a grapevine transformation system which meets the above mentioned criteria.

  18. MYB and bHLH transcription factor transgenes increase anthocyanin pigmentation in petunia and lisianthus plants, and the petunia phenotypes are strongly enhanced under field conditions.

    PubMed

    Schwinn, Kathy E; Boase, Murray R; Bradley, J Marie; Lewis, David H; Deroles, Simon C; Martin, Cathie R; Davies, Kevin M

    2014-01-01

    Petunia line Mitchell [MP, Petunia axillaris × (P. axillaris × P. hybrida)] and Eustoma grandiflorum (lisianthus) plants were produced containing a transgene for over-expression of the R2R3-MYB transcription factor [TF; ROSEA1 (ROS1)] that up-regulates flavonoid biosynthesis in Antirrhinum majus. The petunia lines were also crossed with previously produced MP lines containing a Zea mays flavonoid-related basic helix-loop-helix TF transgene (LEAF COLOR, LC), which induces strong vegetative pigmentation when these 35S:LC plants are exposed to high-light levels. 35S:ROS1 lisianthus transgenics had limited changes in anthocyanin pigmentation, specifically, precocious pigmentation of flower petals and increased pigmentation of sepals. RNA transcript levels for two anthocyanin biosynthetic genes, chalcone synthase and anthocyanidin synthase, were increased in the 35S:ROS1 lisianthus petals compared to those of control lines. With MP, the 35S:ROS1 calli showed novel red pigmentation in culture, but this was generally not seen in tissue culture plantlets regenerated from the calli or young plants transferred to soil in the greenhouse. Anthocyanin pigmentation was enhanced in the stems of mature 35S:ROS1 MP plants, but the MP white-flower phenotype was not complemented. Progeny from a 35S:ROS1 × 35S:LC cross had novel pigmentation phenotypes that were not present in either parental line or MP. In particular, there was increased pigment in the petal throat region, and the anthers changed from yellow to purple pigmentation. An outdoor field trial was conducted with the 35S:ROS1, 35S:LC, 35S:ROS1 × 35S:LC and control MP lines. Field conditions rapidly induced intense foliage pigmentation in 35S:LC plants, a phenotype not observed in control MP or equivalent 35S:LC plants maintained in a greenhouse. No difference in plant stature, seed germination, or plant survival was observed between transgenic and control plants.

  19. Grapevine (Vitis vinifera L.).

    PubMed

    Torregrosa, Laurent; Vialet, Sandrine; Adivèze, Angélique; Iocco-Corena, Pat; Thomas, Mark R

    2015-01-01

    Grapevine (Vitis) is considered to be one of the major fruit crops in the world based on hectares cultivated and economic value. Grapes are used not only for wine but also for fresh fruit, dried fruit, and juice production. Wine is by far the major product of grapes, and the focus of this chapter is on wine grape cultivars. Grapevine cultivars of Vitis vinifera L. have a reputation for producing premium quality wines. These premium quality wines are produced from a small number of cultivars that enjoy a high level of consumer acceptance and are firmly entrenched in the market place because of varietal name branding and the association of certain wine styles and regions with specific cultivars. In light of this situation, grapevine improvement by a transgenic approach is attractive when compared to a classical breeding approach. The transfer of individual traits as single genes with a minimum disruption to the original genome would leave the traditional characteristics of the cultivar intact. However, a reliable transformation system is required for a successful transgenic approach to grapevine improvement. There are three criteria for achieving an efficient Agrobacterium-mediated transformation system: (1) the production of highly regenerative transformable tissue, (2) optimal cocultivation conditions for both grapevine tissue and Agrobacterium, and (3) an efficient selection regime for transgenic plant regeneration. In this chapter, we describe a grapevine transformation system that meets these criteria. We also describe a protocol for the production of transformed roots suitable for functional gene studies and for the production of semi-transgenic grafted plants.

  20. Respecting the Grapevine.

    ERIC Educational Resources Information Center

    Carroll, David J.

    2001-01-01

    Administrators can create word-of-mouth communication that dispels negative attitudes and build good school reputations by discovering what parents and students are saying, targeting employee satisfaction and retention, providing excellent customer service, actively seeking and handling complaints, nurturing champions, and integrating "grapevine"…

  1. Recent amplification and impact of MITEs on the genome of grapevine (Vitis vinifera L.)

    PubMed Central

    Benjak, Andrej; Boué, Stéphanie; Forneck, Astrid

    2009-01-01

    Miniature inverted-repeat transposable elements (MITEs) are a particular type of defective class II transposons present in genomes as highly homogeneous populations of small elements. Their high copy number and close association to genes make their potential impact on gene evolution particularly relevant. Here, we present a detailed analysis of the MITE families directly related to grapevine “cut-and-paste” transposons. Our results show that grapevine MITEs have transduplicated and amplified genomic sequences, including gene sequences and fragments of other mobile elements. Our results also show that although some of the MITE families were already present in the ancestor of the European and American Vitis wild species, they have been amplified and have been actively transposing accompanying grapevine domestication and breeding. We show that MITEs are abundant in grapevine and some of them are frequently inserted within the untranslated regions of grapevine genes. MITE insertions are highly polymorphic among grapevine cultivars, which frequently generate transcript variability. The data presented here show that MITEs have greatly contributed to the grapevine genetic diversity which has been used for grapevine domestication and breeding. PMID:20333179

  2. Short day transcriptomic programming during induction of dormancy in grapevine

    PubMed Central

    Fennell, Anne Y.; Schlauch, Karen A.; Gouthu, Satyanarayana; Deluc, Laurent G.; Khadka, Vedbar; Sreekantan, Lekha; Grimplet, Jerome; Cramer, Grant R.; Mathiason, Katherine L.

    2015-01-01

    Bud dormancy in grapevine is an adaptive strategy for the survival of drought, high and low temperatures and freeze dehydration stress that limit the range of cultivar adaptation. Therefore, development of a comprehensive understanding of the biological mechanisms involved in bud dormancy is needed to promote advances in selection and breeding, and to develop improved cultural practices for existing grape cultivars. The seasonally indeterminate grapevine, which continuously develops compound axillary buds during the growing season, provides an excellent system for dissecting dormancy, because the grapevine does not transition through terminal bud development prior to dormancy. This study used gene expression patterns and targeted metabolite analysis of two grapevine genotypes that are short photoperiod responsive (Vitis riparia) and non-responsive (V. hybrid, Seyval) for dormancy development to determine differences between bud maturation and dormancy commitment. Grapevine gene expression and metabolites were monitored at seven time points under long (LD, 15 h) and short (SD, 13 h) day treatments. The use of age-matched buds and a small (2 h) photoperiod difference minimized developmental differences and allowed us to separate general photoperiod from dormancy specific gene responses. Gene expression profiles indicated three distinct phases (perception, induction and dormancy) in SD-induced dormancy development in V. riparia. Different genes from the NAC DOMAIN CONTAINING PROTEIN 19 and WRKY families of transcription factors were differentially expressed in each phase of dormancy. Metabolite and transcriptome analyses indicated ABA, trehalose, raffinose and resveratrol compounds have a potential role in dormancy commitment. Finally, a comparison between V. riparia compound axillary bud dormancy and dormancy responses in other species emphasized the relationship between dormancy and the expression of RESVERATROL SYNTHASE and genes associated with C3HC4-TYPE RING

  3. Transcriptomic and Metabolomic Networks in the Grape Berry Illustrate That it Takes More Than Flavonoids to Fight Against Ultraviolet Radiation

    PubMed Central

    Matus, José Tomás

    2016-01-01

    Plants are constantly challenged by environmental fluctuations. In response, they have developed a wide range of morphological and biochemical adaptations committed to ameliorate the effects of abiotic stress. When exposed to higher solar radiation levels, plants activate the synthesis of a large set of enzymes and secondary metabolites as part of a complex sunscreen and antioxidant defense mechanism. Grapevine (Vitis vinifera L.) has become a widely used system for studying adaptive responses to this type of stress since changes in berry composition, positively influenced by increased ultraviolet (UV) radiation levels, improve the quality of wines subsequently produced. Despite the fact that most of the attention has been directed toward the synthesis of flavonoids, recent transcriptomic and metabolomic studies have shown that stilbenoids and isoprenoids (e.g., terpenes and carotenoids) are also an important part of the grape UV-response machinery. This minireview focuses on the latest findings referring to the metabolic responses of grapes to UV radiation and proposes a model for its transcriptional control. Depending on the berry developmental stage and the type of radiation (i.e., irradiance level, exposure length), increased UV levels activate different metabolic pathways through the activity of master regulators belonging to the basic Leucine Zipper Domain (bZIP) and R2R3-MYB transcription factor families. This transcriptional control is influenced by the interaction of other environmental factors such as light, temperature or soil water availability. In grapevine, phenylpropanoids are part of, but are not the whole story, in the fight against radiation damage. PMID:27625679

  4. Foreword: Special issue on fungal grapevine diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An impressively large proportion of fungicides applied in European, North American and Australian agriculture has been used to manage grapevine powdery mildew (Erysiphe necator), grapevine downy mildew (Plasmopara viticola), and botrytis bunch rot (Botrytis cinerea). These fungal and oomycetous plan...

  5. Comparative transcriptome analysis of grapevine in response to copper stress

    PubMed Central

    Leng, Xiangpeng; Jia, Haifeng; Sun, Xin; Shangguan, Lingfei; Mu, Qian; Wang, Baoju; Fang, Jinggui

    2015-01-01

    Grapevine is one of the most economically important and widely cultivated fruit crop worldwide. With the industrialization and the popular application of cupric fungicides in grape industry, copper stress and copper pollution are also the factors affecting grape production and berry and wine quality. Here, 3,843 transcripts were significantly differently expressed genes in response to Cu stress by RNA-seq, which included 1,892 up-regulated and 1,951 down-regulated transcripts. During this study we found many known and novel Cu-induced and -repressed genes. Biological analysis of grape samples were indicated that exogenous Cu can influence chlorophylls metabolism and photosynthetic activities of grapevine. Most ROS detoxification systems, including antioxidant enzyme, stress-related proteins and secondary metabolites were strongly induced. Concomitantly, abscisic acid functioned as a negative regulator in Cu stress, in opposite action to ethylene, auxin, jasmonic acid, and brassinolide. This study also identified a set of Cu stress specifically activated genes coding copper transporter, P1B-type ATPase, multidrug transporters. Overall, this work was carried out to gain insights into the copper-regulated and stress-responsive mechanisms in grapevine at transcriptome level. This research can also provide some genetic information that can help us in better vinery management and breeding Cu-resistant grape cultivars. PMID:26673527

  6. Control of viruses infecting grapevine.

    PubMed

    Maliogka, Varvara I; Martelli, Giovanni P; Fuchs, Marc; Katis, Nikolaos I

    2015-01-01

    Grapevine is a high value vegetatively propagated fruit crop that suffers from numerous viruses, including some that seriously affect the profitability of vineyards. Nowadays, 64 viruses belonging to different genera and families have been reported in grapevines and new virus species will likely be described in the future. Three viral diseases namely leafroll, rugose wood, and infectious degeneration are of major economic importance worldwide. The viruses associated with these diseases are transmitted by mealybugs, scale and soft scale insects, or dagger nematodes. Here, we review control measures of the major grapevine viral diseases. More specifically, emphasis is laid on (i) approaches for the production of clean stocks and propagative material through effective sanitation, robust diagnosis, as well as local and regional certification efforts, (ii) the management of vectors of viruses using cultural, biological, and chemical methods, and (iii) the production of resistant grapevines mainly through the application of genetic engineering. The benefits and limitations of the different control measures are discussed with regard to accomplishments and future research directions.

  7. Procedure for collecting and packaging grapevine samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapevine yellows (GY) is a term that is used to refer to any of several diseases of grapevine (Vitis vinifera) that are caused by phytoplasmas. Around the globe, diverse ‘Candidatus Phytoplasma’ species cause indistinguishable disease symptoms in V. vinifera and are spread by different species of ...

  8. Grape (Vitis spp.)- Grapevine red blotch disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This disease is caused by Grapevine red blotch-associated virus (GRBaV), which was first reported in 2012 from New York and subsequently in California, Washington, Oregon, Idaho, and elsewhere in the United States The discovery occurred when grapevines with red leaf symptoms that tested negative for...

  9. More Than Rumors. Understanding the Organizational Grapevine.

    ERIC Educational Resources Information Center

    Zaremba, Alan

    Because the grapevine can precipitate managerial nightmares (employee resentment, distorted messages, instant diffusion of incendiary rumors), managers are well-advised to study this informal communications network and diffuse its organizational impact. This paper discusses the development, accuracy, resilience, and management of the grapevine.…

  10. Floral Meristem Identity Genes Are Expressed during Tendril Development in Grapevine1

    PubMed Central

    Calonje, Myriam; Cubas, Pilar; Martínez-Zapater, José M.; Carmona, María José

    2004-01-01

    To study the early steps of flower initiation and development in grapevine (Vitis vinifera), we have isolated two MADS-box genes, VFUL-L and VAP1, the putative FUL-like and AP1 grapevine orthologs, and analyzed their expression patterns during vegetative and reproductive development. Both genes are expressed in lateral meristems that, in grapevine, can give rise to either inflorescences or tendrils. They are also coexpressed in inflorescence and flower meristems. During flower development, VFUL-L transcripts are restricted to the central part of young flower meristems and, later, to the prospective carpel-forming region, which is consistent with a role of this gene in floral transition and carpel and fruit development. Expression pattern of VAP1 suggests that it may play a role in flowering transition and flower development. However, its lack of expression in sepal primordia, does not support its role as an A-function gene in grapevine. Neither VFUL-L nor VAP1 expression was detected in vegetative organs such as leaves or roots. In contrast, they are expressed throughout tendril development. Transcription of both genes in tendrils of very young plants that have not undergone flowering transition indicates that this expression is independent of the flowering process. These unique expression patterns of genes typically involved in reproductive development have implications on our understanding of flower induction and initiation in grapevine, on the origin of grapevine tendrils and on the functional roles of AP1-and FUL-like genes in plant development. These results also provide molecular support to the hypothesis that Vitis tendrils are modified reproductive organs adapted to climb. PMID:15247405

  11. Transcriptome analyses of the Dof-like gene family in grapevine reveal its involvement in berry, flower and seed development

    PubMed Central

    da Silva, Danielle Costenaro; da Silveira Falavigna, Vítor; Fasoli, Marianna; Buffon, Vanessa; Porto, Diogo Denardi; Pappas, Georgios Joannis; Pezzotti, Mario; Pasquali, Giancarlo; Revers, Luís Fernando

    2016-01-01

    The Dof (DNA-binding with one finger) protein family spans a group of plant transcription factors involved in the regulation of several functions, such as plant responses to stress, hormones and light, phytochrome signaling and seed germination. Here we describe the Dof-like gene family in grapevine (Vitis vinifera L.), which consists of 25 genes coding for Dof. An extensive in silico characterization of the VviDofL gene family was performed. Additionally, the expression of the entire gene family was assessed in 54 grapevine tissues and organs using an integrated approach with microarray (cv Corvina) and real-time PCR (cv Pinot Noir) analyses. The phylogenetic analysis comparing grapevine sequences with those of Arabidopsis, tomato, poplar and already described Dof genes in other species allowed us to identify several duplicated genes. The diversification of grapevine DofL genes during evolution likely resulted in a broader range of biological roles. Furthermore, distinct expression patterns were identified between samples analyzed, corroborating such hypothesis. Our expression results indicate that several VviDofL genes perform their functional roles mainly during flower, berry and seed development, highlighting their importance for grapevine growth and production. The identification of similar expression profiles between both approaches strongly suggests that these genes have important regulatory roles that are evolutionally conserved between grapevine cvs Corvina and Pinot Noir. PMID:27610237

  12. Transcriptome analyses of the Dof-like gene family in grapevine reveal its involvement in berry, flower and seed development.

    PubMed

    da Silva, Danielle Costenaro; da Silveira Falavigna, Vítor; Fasoli, Marianna; Buffon, Vanessa; Porto, Diogo Denardi; Pappas, Georgios Joannis; Pezzotti, Mario; Pasquali, Giancarlo; Revers, Luís Fernando

    2016-01-01

    The Dof (DNA-binding with one finger) protein family spans a group of plant transcription factors involved in the regulation of several functions, such as plant responses to stress, hormones and light, phytochrome signaling and seed germination. Here we describe the Dof-like gene family in grapevine (Vitis vinifera L.), which consists of 25 genes coding for Dof. An extensive in silico characterization of the VviDofL gene family was performed. Additionally, the expression of the entire gene family was assessed in 54 grapevine tissues and organs using an integrated approach with microarray (cv Corvina) and real-time PCR (cv Pinot Noir) analyses. The phylogenetic analysis comparing grapevine sequences with those of Arabidopsis, tomato, poplar and already described Dof genes in other species allowed us to identify several duplicated genes. The diversification of grapevine DofL genes during evolution likely resulted in a broader range of biological roles. Furthermore, distinct expression patterns were identified between samples analyzed, corroborating such hypothesis. Our expression results indicate that several VviDofL genes perform their functional roles mainly during flower, berry and seed development, highlighting their importance for grapevine growth and production. The identification of similar expression profiles between both approaches strongly suggests that these genes have important regulatory roles that are evolutionally conserved between grapevine cvs Corvina and Pinot Noir.

  13. Metabolic constituents of grapevine and grape-derived products

    PubMed Central

    Ali, Kashif; Maltese, Federica; Verpoorte, Robert

    2009-01-01

    The numerous uses of the grapevine fruit, especially for wine and beverages, have made it one of the most important plants worldwide. The phytochemistry of grapevine is rich in a wide range of compounds. Many of them are renowned for their numerous medicinal uses. The production of grapevine metabolites is highly conditioned by many factors like environment or pathogen attack. Some grapevine phytoalexins have gained a great deal of attention due to their antimicrobial activities, being also involved in the induction of resistance in grapevine against those pathogens. Meanwhile grapevine biotechnology is still evolving, thanks to the technological advance of modern science, and biotechnologists are making huge efforts to produce grapevine cultivars of desired characteristics. In this paper, important metabolites from grapevine and grape derived products like wine will be reviewed with their health promoting effects and their role against certain stress factors in grapevine physiology. PMID:20835385

  14. Grapevine canopy reflectance and yield

    NASA Technical Reports Server (NTRS)

    Minden, K. A.; Philipson, W. R.

    1982-01-01

    Field spectroradiometric and airborne multispectral scanner data were applied in a study of Concord grapevines. Spectroradiometric measurements of 18 experimental vines were collected on three dates during one growing season. Spectral reflectance, determined at 30 intervals from 0.4 to 1.1 microns, was correlated with vine yield, pruning weight, clusters/vine, and nitrogen input. One date of airborne multispectral scanner data (11 channels) was collected over commercial vineyards, and the average radiance values for eight vineyard sections were correlated with the corresponding average yields. Although some correlations were significant, they were inadequate for developing a reliable yield prediction model.

  15. Identification of cold-inducible microRNAs in grapevine.

    PubMed

    Sun, Xiaoming; Fan, Gaotao; Su, Lingye; Wang, Wanjun; Liang, Zhenchang; Li, Shaohua; Xin, Haiping

    2015-01-01

    Low temperature is one of the most important environmental factors that limits the geographical distribution and productivity of grapevine. However, the molecular mechanisms on how grapevine responds to cold stress remains to be elucidated. MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that play an essential role during plant development and stress responses. Although miRNAs and their targets have been identified in several Vitis species, their participation during cold accumulation in grapevine remains unknown. In this study, two small RNA libraries were generated from micropropagated 'Muscat Hamburg' (V. vinifera) plantlets under normal and low temperatures (4°C). A total of 163 known miRNAs and 67 putative novel miRNAs were detected from two small RNA libraries by Solexa sequencing. Forty-four cold-inducible miRNAs were identified through differentially expressed miRNAs (DEMs) analysis; among which, 13 belonged to upregulated DEMs while 31 belonged downregulated DEMs. The expression patterns of the 13 DEMs were verified by real-time RT-PCR analysis. The prediction of the target genes for DEMs indicated that miRNA may regulate transcription factors, including AP2, SBP, MYB, bHLH, GRAS, and bZIP under cold stress. The 5'-RLM RACE were conducted to verify the cleavage site of predicted targets. Seven predicted target genes for four known and three novel vvi-miRNAs showed specific cleavage sites corresponding to their miRNA complementary sequences. The expression pattern of these seven target genes revealed negative correlation with the expression level of the corresponding vvi-miRNAs. Our results indicated that a diverse set of miRNAs in V. vinifera are cold-inducible and may play an important role in cold stress response.

  16. Arthropods vector grapevine trunk disease pathogens.

    PubMed

    Moyo, P; Allsopp, E; Roets, F; Mostert, L; Halleen, F

    2014-10-01

    Arthropod-mediated dispersal of pathogens is known in many cropping systems but has never been demonstrated for grapevine trunk disease pathogens. Arthropods from vineyards were screened for the presence of pathogens associated with Petri disease and esca using cultural and molecular techniques. The ability of the most abundant pathogen-carrying species to inoculate healthy grapevine vascular tissues was also determined. Millipedes and ants were allowed to associate with a DsRed- Express-transformed Phaeomoniella chlamydospora, after which they were exposed to freshly pruned healthy grapevines under controlled conditions and wounds were monitored for subsequent infection. In addition, the possibility of millipede excreta, commonly found on pruning wounds in the field, to act as inoculum source was determined. A diverse arthropod fauna was associated with declining grapevines and many of these carried trunk disease pathogens. However, spiders, the ant Crematogaster peringueyi, and the millipede Ommattoiulus moreleti were the most abundant pathogen carriers. The ant and millipede species fed on pruning wound sap and effectively transmitted trunk disease pathogens. Millipede excreta contained viable spores of Phaeomoniella chlamydospora and may serve as an inoculum source. Numerous arthropods, including beneficial predators, are potential vectors of grapevine trunk disease pathogens. Our results highlight the need for an integrated approach, including targeted management of ants and millipedes at the time of pruning, to limit the spread of grapevine trunk diseases.

  17. Grapevine red blotch-associated virus, an emerging threat to the grapevine industry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapevine red blotch-associated virus (GRBaV) is a newly identified virus of grapevines, and a putative member of a new genus within the family Geminiviridae. This virus is associated with red blotch disease that was first reported in California in 2008. It affects the profitability of vineyards by ...

  18. Grapevine red blotch-associated virus (GRBaV) infection effects on foliar metabolism of grapevines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red blotch disease, caused by Grapevine red blotch-associated virus (GRBaV), is an emerging problem for grapevine production in the United States. However, very little is known about how viruses, such as GRBaV, affect host physiology even though it is crucial to understanding host-pathogen interacti...

  19. Expression and tissue and subcellular localization of anthocyanidin synthase (ANS) in grapevine.

    PubMed

    Wang, Huiling; Wang, Wei; Li, Hui; Zhang, Ping; Zhan, Jicheng; Huang, Weidong

    2011-04-01

    Anthocyanidin synthase (ANS) is one of the key enzymes in the biosynthesis of both anthocyanins and proanthocyanidins in grapevine. Although substantial researches have investigated ANS gene expression and regulation at the transcriptional level, little is yet known about protein expression and distribution in grapevine. Here, the expression and tissue and subcellular localization of ANS in different Cabernet sauvignon grapevine tissues were investigated by using the techniques of Western blotting, immunohistochemical localization, immuno-electron microscopy, and confocal microscopy. The results showed that the ANS was expressed in the grape berries, leaves, stems, petioles, and leaf buds. In grape berry skin and flesh, ANS expression is developmental dependent. Immunohistochemical analysis revealed that ANS is primarily distributed in the exocarp, mesocarp, and seed of the fruit; in palisade and spongy tissues of the leaves; in the primary phloem and pith ray in the stems; and in the growth point and leaf primordium of the leaf buds. Furthermore, at the subcellular level, the ANS was mainly localized in the cytoplasm regardless of cell types and some ANS were also found in the nucleus in the mesocarp vascular bundle and leaf bud cells. This research will give further insight for the biosynthesis and regulation of different flavonoid compounds in grapevine.

  20. Organizational Grapevines: A State-of-the-Art Review.

    ERIC Educational Resources Information Center

    Hellweg, Susan A.

    Noting that the informal communication network or grapevine plays an important role in organizational functioning, this paper reviews research focusing on organizational grapevines from the communication, organizational psychology, and management literature. Among the issues discussed in the review are (1) the speed and accuracy of the grapevine,…

  1. Differential responses of three grapevine cultivars to Botryosphaeria dieback.

    PubMed

    Spagnolo, Alessandro; Magnin-Robert, Maryline; Alayi, Tchilabalo Dilezitoko; Cilindre, Clara; Schaeffer-Reiss, Christine; Van Dorsselaer, Alain; Clément, Christophe; Larignon, Philippe; Ramirez-Suero, Montserrat; Chong, Julie; Bertsch, Christophe; Abou-Mansour, Eliane; Fontaine, Florence

    2014-10-01

    Botryosphaeria dieback is a fungal grapevine trunk disease that represents a threat for viticulture worldwide due to the decreased production of affected plants and their premature death. This dieback is characterized by a typical wood discoloration called brown stripe. Herein, a proteome comparison of the brown striped wood from Botryosphaeria dieback-affected standing vines cultivars Chardonnay, Gewurztraminer, and Mourvèdre was performed. The transcript analysis for 15 targeted genes and the quantification of both total phenolics and specific stilbenes were also performed. Several pathogenesis-related proteins and members of the antioxidant system were more abundant in the brown striped wood of the three cultivars, whereas other defense-related proteins were less abundant. Additionally, total phenolics and some specific stilbenes were more accumulated in the brown striped wood. Strongest differences among the cultivars concerned proteins of the primary metabolism, which looked to be particularly impaired in the brown striped wood of 'Chardonnay'. Low abundance of some proteins involved in defense response probably contributes to make global response insufficient to avoid the symptom development. The differential susceptibility of the three grapevine cultivars could be linked to the diverse expression of various proteins involved in defense response, stress tolerance, and metabolism.

  2. Closed-reference metatranscriptomics enables in planta profiling of putative virulence activities in the grapevine trunk-disease complex.

    PubMed

    Morales-Cruz, Abraham; Allenbeck, Gabrielle; Figueroa-Balderas, Rosa; Ashworth, Vanessa E; Lawrence, Daniel P; Travadon, Renaud; Smith, Rhonda J; Baumgartner, Kendra; Rolshausen, Philippe E; Cantu, Dario

    2017-02-20

    Grapevines, like other perennial crops, are affected by so-called 'trunk diseases', which damage the trunk and other woody tissues. Mature grapevines typically contract more than one trunk disease and often multiple grapevine trunk pathogens (GTPs) are recovered from infected tissues. The co-existence of different GTP species in complex and dynamic microbial communities complicates the study of the molecular mechanisms underlying disease development especially under vineyard conditions. The objective of this study was to develop and optimize a community-level transcriptomics (i.e., metatranscriptomics) approach that can monitor simultaneously the virulence activities of multiple GTPs in planta. The availability of annotated genomes for the most relevant co-infecting GTPs in diseased grapevine wood provided the unprecedented opportunity to generate a multi-species reference for mapping and quantifying DNA and RNA sequencing reads. We first evaluated popular sequence read mappers using permutations of multiple simulated datasets. Alignment parameters of the selected mapper were optimized to increase the specificity and sensitivity for its application to metagenomics and metatranscriptomics analyses. Initial testing on grapevine wood experimentally inoculated with individual GTPs confirmed the validity of the method. Using naturally-infected field samples expressing a variety of trunk disease symptoms, we show that our approach provides quantitative assessments of species composition as well as genome-wide transcriptional profiling of potential virulence factors, namely cell wall degradation, secondary metabolism and nutrient uptake for all co-infecting GTPs. This article is protected by copyright. All rights reserved.

  3. PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar

    PubMed Central

    Yang, Li; Zhao, Xin; Ran, Lingyu; Li, Chaofeng; Fan, Di; Luo, Keming

    2017-01-01

    Some R2R3 MYB transcription factors have been shown to be major regulators of phenylpropanoid biosynthetic pathway and impact secondary wall formation in plants. In this study, we describe the functional characterization of PtoMYB156, encoding a R2R3-MYB transcription factor, from Populus tomentosa. Expression pattern analysis showed that PtoMYB156 is widely expressed in all tissues examined, but predominantly in leaves and developing wood cells. PtoMYB156 localized to the nucleus and acted as a transcriptional repressor. Overexpression of PtoMYB156 in poplar repressed phenylpropanoid biosynthetic genes, leading to a reduction in the amounts of total phenolic and flavonoid compounds. Transgenic plants overexpressing PtoMYB156 also displayed a dramatic decrease in secondary wall thicknesses of xylem fibers and the content of cellulose, lignin and xylose compared with wild-type plants. Transcript accumulation of secondary wall biosynthetic genes was down-regulated by PtoMYB156 overexpression. Transcriptional activation assays revealed that PtoMYB156 was able to repress the promoter activities of poplar CESA17, C4H2 and GT43B. By contrast, knockout of PtoMYB156 by CRISPR/Cas9 in poplar resulted in ectopic deposition of lignin, xylan and cellulose during secondary cell wall formation. Taken together, these results show that PtoMYB156 may repress phenylpropanoid biosynthesis and negatively regulate secondary cell wall formation in poplar. PMID:28117379

  4. The MADS-box gene Agamous-like 11 is essential for seed morphogenesis in grapevine.

    PubMed

    Malabarba, Jaiana; Buffon, Vanessa; Mariath, Jorge E A; Gaeta, Marcos L; Dornelas, Marcelo C; Margis-Pinheiro, Márcia; Pasquali, Giancarlo; Revers, Luís F

    2017-03-28

    Despite the wide appreciation of seedless grapes, little is known about the molecular mechanisms that drive the stenospermocarpic seedless-type phenotype in grapevine. In order to address the molecular mechanisms that control seedlessness in grapevine, our study aimed to characterize VviAGL11, a class D MADS-box transcription factor gene that has been proposed as the major candidate gene involved in Vitis vinifera seed morphogenesis. VviAGL11 allelic variations in seeded and seedless grapevine cultivars were determined, and its correlations with allele-specific steady-state mRNA levels were investigated. VviAGL11 relative expression was significantly higher in seeds at 2, 4, and 6 weeks after fruit set, whereas in the seedless grape its transcript levels were extremely low in all stages analyzed. In situ hybridization revealed transcript accumulation specifically in the dual endotesta layer of the seeds, which is responsible for elongation and an increase of cell number, a necessary step to determine the lignification and the final seed size. No hybridization signals were visible in the seedless grapevine tissues, and a morphoanatomical analysis showed an apparent loss of identity of the endotesta layer of the seed traces. Ectopic expression of VviAGL11 in the Arabidopsis SEEDSTICK mutant background restored the wild-type phenotype and confirmed the direct role of VviAGL11 in seed morphogenesis, suggesting that depletion of its expression is responsible for the erroneous development of a highly essential seed layer, therefore culminating in the typical apirenic phenotype.

  5. A SQUAMOSA MADS Box Gene Involved in the Regulation of Anthocyanin Accumulation in Bilberry Fruits1[W][OA

    PubMed Central

    Jaakola, Laura; Poole, Mervin; Jones, Matthew O.; Kämäräinen-Karppinen, Terttu; Koskimäki, Janne J.; Hohtola, Anja; Häggman, Hely; Fraser, Paul D.; Manning, Kenneth; King, Graham J.; Thomson, Helen; Seymour, Graham B.

    2010-01-01

    Anthocyanins are important health-promoting phytochemicals that are abundant in many fleshy fruits. Bilberry (Vaccinium myrtillus) is one of the best sources of these compounds. Here, we report on the expression pattern and functional analysis of a SQUAMOSA-class MADS box transcription factor, VmTDR4, associated with anthocyanin biosynthesis in bilberry. Levels of VmTDR4 expression were spatially and temporally linked with color development and anthocyanin-related gene expression. Virus-induced gene silencing was used to suppress VmTDR4 expression in bilberry, resulting in substantial reduction in anthocyanin levels in fully ripe fruits. Chalcone synthase was used as a positive control in the virus-induced gene silencing experiments. Additionally, in sectors of fruit tissue in which the expression of the VmTDR4 gene was silenced, the expression of R2R3 MYB family transcription factors related to the biosynthesis of flavonoids was also altered. We conclude that VmTDR4 plays an important role in the accumulation of anthocyanins during normal ripening in bilberry, probably through direct or indirect control of transcription factors belonging to the R2R3 MYB family. PMID:20566708

  6. A MYB/ZML Complex Regulates Wound-Induced Lignin Genes in Maize

    PubMed Central

    Vélez-Bermúdez, Isabel-Cristina; Salazar-Henao, Jorge E.; Franco-Zorrilla, José-Manuel; Grotewold, Erich; Solano, Roberto

    2015-01-01

    Lignin is an essential polymer in vascular plants that plays key structural roles in vessels and fibers. Lignification is induced by external inputs such as wounding, but the molecular mechanisms that link this stress to lignification remain largely unknown. In this work, we provide evidence that three maize (Zea mays) lignin repressors, MYB11, MYB31, and MYB42, participate in wound-induced lignification by interacting with ZML2, a protein belonging to the TIFY family. We determined that the three R2R3-MYB factors and ZML2 bind in vivo to AC-rich and GAT(A/C) cis-elements, respectively, present in a set of lignin genes. In particular, we show that MYB11 and ZML2 bind simultaneously to the AC-rich and GAT(A/C) cis-elements present in the promoter of the caffeic acid O-methyl transferase (comt) gene. We show that, like the R2R3-MYB factors, ZML2 also acts as a transcriptional repressor. We found that upon wounding and methyl jasmonate treatments, MYB11 and ZML2 proteins are degraded and comt transcription is induced. Based on these results, we propose a molecular regulatory mechanism involving a MYB/ZML complex in which wound-induced lignification can be achieved by the derepression of a set of lignin genes. PMID:26566917

  7. TRANSPARENT TESTA GLABRA1 and GLABRA1 Compete for Binding to GLABRA3 in Arabidopsis

    PubMed Central

    Pesch, Martina; Schultheiß, Ilka; Klopffleisch, Karsten; Clemen, Christoph S.; Hülskamp, Martin

    2015-01-01

    The MBW (for R2R3MYB, basic helix-loop-helix [bHLH], and WD40) genes comprise an evolutionarily conserved gene cassette that regulates several traits such as (pro)anthocyanin and anthocyanin biosynthesis and epidermal cell differentiation in plants. Trichome differentiation in Arabidopsis (Arabidopsis thaliana) is governed by GLABRA1 (GL1; R2R3MYB), GL3 (bHLH), and TRANSPARENT TESTA GLABRA1 (TTG1; WD40). They are thought to form a trimeric complex that acts as a transcriptional activation complex. We provide evidence that these three MBW proteins form either GL1 GL3 or GL3 TTG1 dimers. The formation of each dimer is counteracted by the respective third protein in yeast three-hybrid assays, pulldown experiments (luminescence-based mammalian interactome), and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer studies. We further show that two target promoters, TRIPTYCHON (TRY) and CAPRICE (CPC), are differentially regulated: GL1 represses the activation of the TRY promoter by GL3 and TTG1, and TTG1 suppresses the activation of the CPC promoter by GL1 and GL3. Our data suggest that the transcriptional activation by the MBW complex involves alternative complex formation and that the two dimers can differentially regulate downstream genes. PMID:25926482

  8. TRANSPARENT TESTA GLABRA1 and GLABRA1 Compete for Binding to GLABRA3 in Arabidopsis.

    PubMed

    Pesch, Martina; Schultheiß, Ilka; Klopffleisch, Karsten; Uhrig, Joachim F; Koegl, Manfred; Clemen, Christoph S; Simon, Rüdiger; Weidtkamp-Peters, Stefanie; Hülskamp, Martin

    2015-06-01

    The MBW (for R2R3MYB, basic helix-loop-helix [bHLH], and WD40) genes comprise an evolutionarily conserved gene cassette that regulates several traits such as (pro)anthocyanin and anthocyanin biosynthesis and epidermal cell differentiation in plants. Trichome differentiation in Arabidopsis (Arabidopsis thaliana) is governed by GLABRA1 (GL1; R2R3MYB), GL3 (bHLH), and transparent TESTA GLABRA1 (TTG1; WD40). They are thought to form a trimeric complex that acts as a transcriptional activation complex. We provide evidence that these three MBW proteins form either GL1 GL3 or GL3 TTG1 dimers. The formation of each dimer is counteracted by the respective third protein in yeast three-hybrid assays, pulldown experiments (luminescence-based mammalian interactome), and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer studies. We further show that two target promoters, Triptychon (TRY) and CAPRICE (CPC), are differentially regulated: GL1 represses the activation of the TRY promoter by GL3 and TTG1, and TTG1 suppresses the activation of the CPC promoter by GL1 and GL3. Our data suggest that the transcriptional activation by the MBW complex involves alternative complex formation and that the two dimers can differentially regulate downstream genes.

  9. Structural and Functional Analysis of the GRAS Gene Family in Grapevine Indicates a Role of GRAS Proteins in the Control of Development and Stress Responses

    PubMed Central

    Grimplet, Jérôme; Agudelo-Romero, Patricia; Teixeira, Rita T.; Martinez-Zapater, Jose M.; Fortes, Ana M.

    2016-01-01

    GRAS transcription factors are involved in many processes of plant growth and development (e.g., axillary shoot meristem formation, root radial patterning, nodule morphogenesis, arbuscular development) as well as in plant disease resistance and abiotic stress responses. However, little information is available concerning this gene family in grapevine (Vitis vinifera L.), an economically important woody crop. We performed a model curation of GRAS genes identified in the latest genome annotation leading to the identification of 52 genes. Gene models were improved and three new genes were identified that could be grapevine- or woody-plant specific. Phylogenetic analysis showed that GRAS genes could be classified into 13 groups that mapped on the 19 V. vinifera chromosomes. Five new subfamilies, previously not characterized in other species, were identified. Multiple sequence alignment showed typical GRAS domain in the proteins and new motifs were also described. As observed in other species, both segmental and tandem duplications contributed significantly to the expansion and evolution of the GRAS gene family in grapevine. Expression patterns across a variety of tissues and upon abiotic and biotic conditions revealed possible divergent functions of GRAS genes in grapevine development and stress responses. By comparing the information available for tomato and grapevine GRAS genes, we identified candidate genes that might constitute conserved transcriptional regulators of both climacteric and non-climacteric fruit ripening. Altogether this study provides valuable information and robust candidate genes for future functional analysis aiming at improving the quality of fleshy fruits. PMID:27065316

  10. Fungal trunk diseases: A problem beyond grapevines?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapevine trunk diseases (GTDs) are caused by a range of taxonomically unrelated fungi, which occur wherever grapes are grown and are the main biotic factor limiting vineyard productivity and longevity. GTDs cause untenable economic losses. For example, they are considered a “national crisis” in Fra...

  11. Unravelling the diversity of grapevine microbiome.

    PubMed

    Pinto, Cátia; Pinho, Diogo; Sousa, Susana; Pinheiro, Miguel; Egas, Conceição; Gomes, Ana C

    2014-01-01

    Vitis vinifera is one of the most widely cultivated fruit crops with a great economic impact on the global industry. As a plant, it is naturally colonised by a wide variety of both prokaryotic and eukaryotic microorganisms that interact with grapevine, having either beneficial or phytopathogenic effects, who play a major role in fruit yield, grape quality and, ultimately, in the evolution of grape fermentation and wine production. Therefore, the objective of this study was to extensively characterize the natural microbiome of grapevine. Considering that the majority of microorganisms are uncultivable, we have deeply studied the microflora of grapevine leaves using massive parallel rDNA sequencing, along its vegetative cycle. Among eukaryotic population the most abundant microorganisms belonged to the early diverging fungi lineages and Ascomycota phylum, whereas the Basidiomycota were the least abundant. Regarding prokaryotes, a high diversity of Proteobacteria, Firmicutes and Actinobacteria was unveiled. Indeed, the microbial communities present in the vineyard during its vegetative cycle were shown to be highly structured and dynamic. In all cases, the major abundant microorganisms were the yeast-like fungus Aureobasidium and the prokaryotic Enterobacteriaceae. Herein, we report the first complete microbiome landscape of the vineyard, through a metagenomic approach, and highlight the analysis of the microbial interactions within the vineyard and its importance for the equilibrium of the microecosystem of grapevines.

  12. Unravelling the Diversity of Grapevine Microbiome

    PubMed Central

    Pinto, Cátia; Pinho, Diogo; Sousa, Susana; Pinheiro, Miguel; Egas, Conceição; C. Gomes, Ana

    2014-01-01

    Vitis vinifera is one of the most widely cultivated fruit crops with a great economic impact on the global industry. As a plant, it is naturally colonised by a wide variety of both prokaryotic and eukaryotic microorganisms that interact with grapevine, having either beneficial or phytopathogenic effects, who play a major role in fruit yield, grape quality and, ultimately, in the evolution of grape fermentation and wine production. Therefore, the objective of this study was to extensively characterize the natural microbiome of grapevine. Considering that the majority of microorganisms are uncultivable, we have deeply studied the microflora of grapevine leaves using massive parallel rDNA sequencing, along its vegetative cycle. Among eukaryotic population the most abundant microorganisms belonged to the early diverging fungi lineages and Ascomycota phylum, whereas the Basidiomycota were the least abundant. Regarding prokaryotes, a high diversity of Proteobacteria, Firmicutes and Actinobacteria was unveiled. Indeed, the microbial communities present in the vineyard during its vegetative cycle were shown to be highly structured and dynamic. In all cases, the major abundant microorganisms were the yeast-like fungus Aureobasidium and the prokaryotic Enterobacteriaceae. Herein, we report the first complete microbiome landscape of the vineyard, through a metagenomic approach, and highlight the analysis of the microbial interactions within the vineyard and its importance for the equilibrium of the microecosystem of grapevines. PMID:24454903

  13. Grapevine leafroll-associated virus 3

    PubMed Central

    Maree, Hans J.; Almeida, Rodrigo P. P.; Bester, Rachelle; Chooi, Kar Mun; Cohen, Daniel; Dolja, Valerian V.; Fuchs, Marc F.; Golino, Deborah A.; Jooste, Anna E. C.; Martelli, Giovanni P.; Naidu, Rayapati A.; Rowhani, Adib; Saldarelli, Pasquale; Burger, Johan T.

    2013-01-01

    Grapevine leafroll disease (GLD) is one of the most important grapevine viral diseases affecting grapevines worldwide. The impact on vine health, crop yield, and quality is difficult to assess due to a high number of variables, but significant economic losses are consistently reported over the lifespan of a vineyard if intervention strategies are not implemented. Several viruses from the family Closteroviridae are associated with GLD. However, Grapevine leafroll-associated virus 3 (GLRaV-3), the type species for the genus Ampelovirus, is regarded as the most important causative agent. Here we provide a general overview on various aspects of GLRaV-3, with an emphasis on the latest advances in the characterization of the genome. The full genome of several isolates have recently been sequenced and annotated, revealing the existence of several genetic variants. The classification of these variants, based on their genome sequence, will be discussed and a guideline is presented to facilitate future comparative studies. The characterization of sgRNAs produced during the infection cycle of GLRaV-3 has given some insight into the replication strategy and the putative functionality of the ORFs. The latest nucleotide sequence based molecular diagnostic techniques were shown to be more sensitive than conventional serological assays and although ELISA is not as sensitive it remains valuable for high-throughput screening and complementary to molecular diagnostics. The application of next-generation sequencing is proving to be a valuable tool to study the complexity of viral infection as well as plant pathogen interaction. Next-generation sequencing data can provide information regarding disease complexes, variants of viral species, and abundance of particular viruses. This information can be used to develop more accurate diagnostic assays. Reliable virus screening in support of robust grapevine certification programs remains the cornerstone of GLD management. PMID:23596440

  14. Diversity of ampeloviruses in mealybug and soft scale vectors and in grapevine hosts from leafroll-affected vineyards.

    PubMed

    Fuchs, M; Marsella-Herrick, P; Loeb, G M; Martinson, T E; Hoch, H C

    2009-10-01

    The occurrence and diversity of Grapevine leafroll-associated virus 1 (GLRaV-1) and Grapevine leafroll-associated virus 3 (GLRaV-3) in the soft scales Parthenolecanium corni and Pulvinaria innumerabilis and in the mealybug Pseudococcus maritimus was determined in leafroll-affected vineyards in the Finger Lakes region of New York. Groups of 1 to 4 specimens were collected under loose grapevine bark and tested by reverse-transcription polymerase chain reaction (RT-PCR) for segments of the second diverged copy of the GLRaV-1 coat protein gene or GLRaV-3 heat-shock protein 70-homologue gene. Virus-specific RT-PCR products were amplified from immature insect vectors and adult mealybugs. Single viral amplicons were obtained mostly from immature vectors (35%, 30 of 85) and dual viral amplicons from immature (16%, 10 of 61) and adult (100%, 14 of 14) mealybugs, including individuals. These observations suggested a simultaneous uptake of GLRaV-1 and GLRaV-3 by individual mealybugs. Furthermore, a comparative nucleotide sequence analysis of viral amplicons from soft scales, mealybugs, and grapevines from which vectors were collected showed identical or highly similar haplotypes, indicating that uptake of GLRaV-1 and GLRaV-3 likely occurred by direct feeding of vectors on their host plants.

  15. Antennal and behavioral responses of grapevine moth Lobesia botrana females to volatiles from grapevine.

    PubMed

    Tasin, Marco; Anfora, Gianfranco; Ioriatti, Claudio; Carlin, Silvia; De Cristofaro, Antonio; Schmidt, Silvia; Bengtsson, Marie; Versini, Giuseppe; Witzgall, Peter

    2005-01-01

    Grapevine moth Lobesia botrana is the economically most important insect of grapevine Vitis vinifera in Europe. Flower buds, flowers, and green berries of Chardonnay grapevine are known to attract L. botrana for oviposition. The volatile compounds collected from these phenological stages were studied by gas chromatography-mass spectrometry, and the antennal response of L. botrana females to these headspace collections was recorded by gas chromatography-electroantennography. The compounds found in all phenological stages, which consistently elicited a strong antennal response, were pentadecane, nonanal, and alpha-farnesene. In a wind tunnel, gravid L. botrana females flew upwind to green grapes, as well as to headspace collections from these berries released by a piezoelectric sprayer release device. However, no females landed at the source of headspace volatiles, possibly due to inappropriate concentrations or biased ratios of compounds in the headspace extracts.

  16. Characterization of wild north american grapevine cold hardiness using differential thermal analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cold hardiness of 33 different grapevine genotypes, representing six wild North American grapevine species, one wild Asian grapevine species, and six hybrid grapevines, was evaluated by measuring lethal temperatures for dormant buds using low temperature exotherms. Studies were conducted in thre...

  17. Transmission of grapevine Pinot gris virus by Colomerus vitis (Acari: Eriophyidae) to grapevine.

    PubMed

    Malagnini, Valeria; de Lillo, Enrico; Saldarelli, Pasquale; Beber, Roberta; Duso, Carlo; Raiola, Alessandro; Zanotelli, Livia; Valenzano, Domenico; Giampetruzzi, Annalisa; Morelli, Massimiliano; Ratti, Claudio; Causin, Roberto; Gualandri, Valeria

    2016-09-01

    Grapevine Pinot gris virus (GPGV) is a new virus reported in Europe and several other grape-growing countries. In an attempt to identify a vector for GPGV, samples of the eriophyid mite Colomerus vitis collected from buds and erinea in GPGV-infected vines were analysed by RT-PCR, using specific primers. Molecular analysis revealed the presence of GPGV in C. vitis. Transmission trials were conducted using C. vitis collected from GPGV-infected vines. Mites were able to transmit GPGV to healthy grapevines, suggesting that C. vitis is a potential vector of this virus.

  18. Towards an open grapevine information system.

    PubMed

    Adam-Blondon, A-F; Alaux, M; Pommier, C; Cantu, D; Cheng, Z-M; Cramer, G R; Davies, C; Delrot, S; Deluc, L; Di Gaspero, G; Grimplet, J; Fennell, A; Londo, J P; Kersey, P; Mattivi, F; Naithani, S; Neveu, P; Nikolski, M; Pezzotti, M; Reisch, B I; Töpfer, R; Vivier, M A; Ware, D; Quesneville, H

    2016-01-01

    Viticulture, like other fields of agriculture, is currently facing important challenges that will be addressed only through sustained, dedicated and coordinated research. Although the methods used in biology have evolved tremendously in recent years and now involve the routine production of large data sets of varied nature, in many domains of study, including grapevine research, there is a need to improve the findability, accessibility, interoperability and reusability (FAIR-ness) of these data. Considering the heterogeneous nature of the data produced, the transnational nature of the scientific community and the experience gained elsewhere, we have formed an open working group, in the framework of the International Grapevine Genome Program (www.vitaceae.org), to construct a coordinated federation of information systems holding grapevine data distributed around the world, providing an integrated set of interfaces supporting advanced data modeling, rich semantic integration and the next generation of data mining tools. To achieve this goal, it will be critical to develop, implement and adopt appropriate standards for data annotation and formatting. The development of this system, the GrapeIS, linking genotypes to phenotypes, and scientific research to agronomical and oeneological data, should provide new insights into grape biology, and allow the development of new varieties to meet the challenges of biotic and abiotic stress, environmental change, and consumer demand.

  19. Towards an open grapevine information system

    PubMed Central

    Adam-Blondon, A-F; Alaux, M; Pommier, C; Cantu, D; Cheng, Z-M; Cramer, GR; Davies, C; Delrot, S; Deluc, L; Di Gaspero, G; Grimplet, J; Fennell, A; Londo, JP; Kersey, P; Mattivi, F; Naithani, S; Neveu, P; Nikolski, M; Pezzotti, M; Reisch, BI; Töpfer, R; Vivier, MA; Ware, D; Quesneville, H

    2016-01-01

    Viticulture, like other fields of agriculture, is currently facing important challenges that will be addressed only through sustained, dedicated and coordinated research. Although the methods used in biology have evolved tremendously in recent years and now involve the routine production of large data sets of varied nature, in many domains of study, including grapevine research, there is a need to improve the findability, accessibility, interoperability and reusability (FAIR-ness) of these data. Considering the heterogeneous nature of the data produced, the transnational nature of the scientific community and the experience gained elsewhere, we have formed an open working group, in the framework of the International Grapevine Genome Program (www.vitaceae.org), to construct a coordinated federation of information systems holding grapevine data distributed around the world, providing an integrated set of interfaces supporting advanced data modeling, rich semantic integration and the next generation of data mining tools. To achieve this goal, it will be critical to develop, implement and adopt appropriate standards for data annotation and formatting. The development of this system, the GrapeIS, linking genotypes to phenotypes, and scientific research to agronomical and oeneological data, should provide new insights into grape biology, and allow the development of new varieties to meet the challenges of biotic and abiotic stress, environmental change, and consumer demand. PMID:27917288

  20. Serial Transmission of Information: A Study of the Grapevine.

    ERIC Educational Resources Information Center

    Davis, William L.; O'Connor, J. Regis

    In order to test the conclusions of previous studies of the informal communication system commonly known as the "grapevine," a study was conducted of the flow of one unit of information over the organizational grapevine. One of the experimenters planted a unit of information with two secretaries in the departmental office of Speech and…

  1. Modeling deployment of Pierce’s disease resistant grapevines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deployment of Pierce’s disease resistant grapevines is a key solution to mitigating economic losses caused by Xylella fastidiosa. While Pierce’s disease resistant grapevines under development display mild symptoms and have lower bacterial populations than susceptible varieties, all appear to remain ...

  2. Expression QTL mapping in grapevine--revisiting the genetic determinism of grape skin colour.

    PubMed

    Huang, Yung-Fen; Bertrand, Yves; Guiraud, Jean-Luc; Vialet, Sandrine; Launay, Amandine; Cheynier, Véronique; Terrier, Nancy; This, Patrice

    2013-06-01

    Expression quantitative locus (eQTL) mapping was proposed as a valuable approach to dissect the genetic basis of transcript variation, one of the prime causes of natural phenotypic variation. Few eQTL studies have been performed on woody species due to the difficulty in sample homogenisation. Based on previous knowledge on berry colour formation, we performed eQTL mapping in field experimentation of grapevine with appropriate sampling criteria. The transcript level of VvUFGT, a key enzyme for anthocyanin synthesis was measured by real-time qRT-PCR in grape berry on a 191-individual pseudo-F1 progeny, derived from a cross between Syrah and Grenache cultivars. Two eQTLs were identified: one, explaining 20%, of genotypic variance and co-locating with VvUFGT itself (cis-eQTL), was principally due to the contrast between Grenache alleles; the other, explaining 35% of genotypic variance, was a trans-eQTL due to Syrah allelic contrast and co-located with VvMYBAs, transcription factors known to activate the expression of VvUFGT. This study assessed and validated the feasibility of eQTL mapping approach in grapevine and offered insights and new hypotheses on grape skin colour formation.

  3. Grapevine Red Blotch-Associated Virus, an Emerging Threat to the Grapevine Industry.

    PubMed

    Sudarshana, Mysore R; Perry, Keith L; Fuchs, Marc F

    2015-07-01

    Grapevine red blotch-associated virus (GRBaV) is a newly identified virus of grapevines and a putative member of a new genus within the family Geminiviridae. This virus is associated with red blotch disease that was first reported in California in 2008. It affects the profitability of vineyards by substantially reducing fruit quality and ripening. In red-berried grapevine cultivars, foliar disease symptoms consist of red blotches early in the season that can expand and coalesce across most of the leaf blade later in the season. In white-berried grapevine cultivars, foliar disease symptoms are less conspicuous and generally involve irregular chlorotic areas that may become necrotic late in the season. Determining the GRBaV genome sequence yielded critical information for the design of primers for polymerase chain reaction-based diagnostics. To date, GRBaV has been reported in the major grape-growing areas in North America and two distinct phylogenetic clades have been described. Spread of GRBaV is suspected in certain vineyards but a vector of epidemiological significance has yet to be identified. Future research will need to focus on virus spread, the production of clean planting stocks, and the development of management options that are effective, economical, and environmentally friendly.

  4. LongSAGE gene-expression profiling of Botrytis cinerea germination suppressed by resveratrol, the major grapevine phytoalexin.

    PubMed

    Zheng, Chuanlin; Choquer, Mathias; Zhang, Bing; Ge, Hui; Hu, Songnian; Ma, Huiqin; Chen, Shangwu

    2011-09-01

    The ascomycetes Botrytis cinerea is one of the most studied necrotrophic phytopathogens and one of the main fungal parasites of grapevine. As a defense mechanism, grapevine produces a phytoalexin compound, resveratrol, which inhibits germination of the fungal conidium before it can penetrate the plant barriers and lead to host cell necrotrophy. To elucidate the effect of resveratrol on transcriptional regulation in B. cinerea germlings, two LongSAGE (long serial analysis of gene expression) libraries were generated in vitro for gene-expression profiling: 41 428 tags and among them, 15 665 unitags were obtained from resveratrol-treated B. cinerea germlings and 41 358 tags, among them, 16 362 unitags were obtained from non-treated B. cinerea germlings. In-silico analysis showed that about half of these unitags match known genes in the complete B. cinerea genome sequence. Comparison of unitag frequencies between libraries highlighted 110 genes that were transcriptionally regulated in the presence of resveratrol: 53 and 57 genes were significantly down- and upregulated, respectively. Manual curation of their putative functional categories showed that primary metabolism of germinating conidia appears to be markedly affected under resveratrol treatment, along with changes in other putative metabolic pathways, such as resveratrol detoxification and virulence-effector secretion, in B. cinerea germlings. We propose a hypothetical model of cross talk between B. cinerea germinating conidia and resveratrol-producing grapevine at the very early steps of infection.

  5. Changes in Plant Metabolism and Accumulation of Fungal Metabolites in Response to Esca Proper and Apoplexy Expression in the Whole Grapevine.

    PubMed

    Magnin-Robert, Maryline; Spagnolo, Alessandro; Boulanger, Anna; Joyeux, Cécile; Clément, Christophe; Abou-Mansour, Eliane; Fontaine, Florence

    2016-06-01

    Trunk diseases have become among the most important grapevine diseases worldwide. They are caused by fungal pathogens that attack the permanent woody structure of the vines and cause various symptoms in woody and annual organs. This study examined modifications of plant responses in green stem, cordon, and trunk of grapevines expressing Esca proper (E) or apoplexy (A) event, which are the most frequent grapevine trunk disease symptoms observed in Europe. Transcript expression of a set of plant defense- and stress-related genes was monitored by quantitative reverse-transcription polymerase chain reaction while plant phytoalexins and fungal metabolites were quantified by high-performance liquid chromatography-mass spectrometry in order to characterize the interaction between the grapevine and trunk disease agents. Expression of genes encoding enzymes of the phenylpropanoid pathway and trans-resveratrol content were altered in the three organs of diseased plants, especially in the young tissues of A plants. Pathogenesis-related proteins and the antioxidant system were severely modulated in A plants, which indicates a drastic stress effect. In the meantime, fungal polyketides 6-MSA, (R)-mellein, and (3R,4R)-4-hydroxymellein, were accumulated in A plants, which suggests their potential effect on plant metabolism during the appearance of foliar symptoms.

  6. VESPUCCI: Exploring Patterns of Gene Expression in Grapevine

    PubMed Central

    Moretto, Marco; Sonego, Paolo; Pilati, Stefania; Malacarne, Giulia; Costantini, Laura; Grzeskowiak, Lukasz; Bagagli, Giorgia; Grando, Maria Stella; Moser, Claudio; Engelen, Kristof

    2016-01-01

    Large-scale transcriptional studies aim to decipher the dynamic cellular responses to a stimulus, like different environmental conditions. In the era of high-throughput omics biology, the most used technologies for these purposes are microarray and RNA-Seq, whose data are usually required to be deposited in public repositories upon publication. Such repositories have the enormous potential to provide a comprehensive view of how different experimental conditions lead to expression changes, by comparing gene expression across all possible measured conditions. Unfortunately, this task is greatly impaired by differences among experimental platforms that make direct comparisons difficult. In this paper, we present the Vitis Expression Studies Platform Using COLOMBOS Compendia Instances (VESPUCCI), a gene expression compendium for grapevine which was built by adapting an approach originally developed for bacteria, and show how it can be used to investigate complex gene expression patterns. We integrated nearly all publicly available microarray and RNA-Seq expression data: 1608 gene expression samples from 10 different technological platforms. Each sample has been manually annotated using a controlled vocabulary developed ad hoc to ensure both human readability and computational tractability. Expression data in the compendium can be visually explored using several tools provided by the web interface or can be programmatically accessed using the REST interface. VESPUCCI is freely accessible at http://vespucci.colombos.fmach.it. PMID:27242836

  7. Australian grapevine viroid--evidence for extensive recombination between viroids.

    PubMed

    Rezaian, M A

    1990-04-11

    Australian grapevine viroid (AGV, 369 residues) is a novel viroid with less than 50% sequence similarity with any known viroid. Nevertheless its entire sequence can be divided into regions, each with a high sequence similarity with segments from one of citrus exocortis, potato spindle tuber, apple scar skin, and grapevine yellow speckle viroids. AGV contains the entire central conserved region of the apple scar skin viroid group and is proposed as a member of this group. AGV appears to have originated from extensive RNA recombination involving other viroids. The vegetatively propagated grapevines which have been exposed to multiple viroid infections during their long history of cultivation may have allowed such recombination.

  8. Monitoring Water Status of Grapevine by Means of THz Waves

    NASA Astrophysics Data System (ADS)

    Torres, Víctor; Palacios, Inés; Iriarte, Juan Carlos; Liberal, Iñigo; Santesteban, Luis G.; Miranda, Carlos; Royo, José B.; Gonzalo, Ramón

    2016-05-01

    Monitoring grapevine water status by means of measuring the reflectivity at the trunk in the terahertz band is presented. A grapevine is located inside a growth chamber to simulate diverse outdoor conditions and correlate them with variations produced in the reflected signal of the trunk. Modifications of light conditions, temperature, and irrigation of the grapevine are recorded either in time domain broadband measurements as well as in the magnitude and phase of narrowband measurements in the frequency domain. The results are compared with traditional techniques using a dendrometer and a humidity probe with excellent agreement.

  9. Molecular characterization of divergent grapevine Pinot gris virus isolates and their detection in Slovak and Czech grapevines.

    PubMed

    Glasa, Miroslav; Predajňa, Lukáš; Komínek, Petr; Nagyová, Alžbeta; Candresse, Thierry; Olmos, Antonio

    2014-08-01

    Analysis of complete genome sequences of three Slovak isolates of grapevine Pinot gris virus (GPGV) showed their low heterogeneity (reaching 1.7 %) and a close relationship to the Italian NC_015782 isolate (4.2-4.5 % divergence). Comparison of Slovak and Italian isolates revealed an unusual accumulation of 21 indel mutations in ORF1, resulting in a localized high divergence in the encoded amino acid sequences. An elevated divergence in the 5' extremity of the GPGV genomes is suggestive of a recombination between Slovak isolates and grapevine berry inner necrosis virus. RT-PCR allowed the frequent detection of closely related GPGV isolates in grapevines from Slovakia and the Czech Republic.

  10. Ecology and management of grapevine leafroll disease

    PubMed Central

    Almeida, Rodrigo P. P.; Daane, Kent M.; Bell, Vaughn A.; Blaisdell, G. Kai; Cooper, Monica L.; Herrbach, Etienne; Pietersen, Gerhard

    2013-01-01

    Grapevine leafroll disease (GLD) is caused by a complex of vector-borne virus species in the family Closteroviridae. GLD is present in all grape-growing regions of the world, primarily affecting wine grape varieties. The disease has emerged in the last two decades as one of the major factors affecting grape fruit quality, leading to research efforts aimed at reducing its economic impact. Most research has focused on the pathogens themselves, such as improved detection protocols, with limited work directed toward disease ecology and the development of management practices. Here we discuss the ecology and management of GLD, focusing primarily on Grapevine leafroll-associated virus 3, the most important virus species within the complex. We contextualize research done on this system within an ecological framework that forms the backbone of the discussion regarding current and potential GLD management strategies. To reach this goal, we introduce various aspects of GLD biology and ecology, followed by disease management case studies from four different countries and continents (South Africa, New Zealand, California-USA, and France). We review ongoing regional efforts that serve as models for improved strategies to control this economically important and worldwide disease, highlighting scientific gaps that must be filled for the development of knowledge-based sustainable GLD management practices. PMID:23630520

  11. Stilbene compounds: from the grapevine to wine.

    PubMed

    Bavaresco, L; Fregoni, C; Cantù, E; Trevisan, M

    1999-01-01

    Stilbenes are natural compounds occurring in a number of plant families, including Vitaceae and (within this family) Vitis vinifera L., which is the most important species grown worldwide for grape and wine production. Stilbenes (resveratrol and viniferins) are present in grapevine as constitutive compounds of the woody organs (roots, canes, stems) and as induced substances (in leaves and fruit) acting as phytoalexins in the mechanisms of grape resistance against certain pathogens. Resveratrol (3, 5, 4'-trihydroxystilbene) was also detected in wine and it was thought to be the active principle of red wines that were shown to reduce heart diseases. This paper reviews data, obtained by the Viticulture Institute of the Catholic University at Piacenza and taken from the literature, on some aspects of stilbene physiology in grapevine and on their relation to resveratrol wine levels. Constitutive stilbene contents of woody organs are reported, as well as the possible role of cluster stems as a source of resveratrol for wine. The accumulation of stilbenes in grape berries infected by grey mould (Botrytis cinerea Pers.) has been investigated and the effects of environmental factors on resveratrol grape and wine levels will be discussed. An unidentified new hydroxystilbene was detected in wine.

  12. Biotechnology of temperate fruit trees and grapevines.

    PubMed

    Laimer, Margit; Mendonça, Duarte; Maghuly, Fatemeh; Marzban, Gorji; Leopold, Stephan; Khan, Mahmood; Balla, Ildiko; Katinger, Hermann

    2005-01-01

    Challenges concerning fruit trees and grapevines as long lived woody perennial crops require adapted biotechnological approaches, if solutions are to be found within a reasonable time frame. These challenges are represented by the need for correct identification of genetic resources, with the foreseen use either in conservation or in breeding programmes. Molecular markers provide most accurate information and will be the major solution for questions about plant breeders rights. Providing healthy planting material and rapid detection of newly introduced pathogens by reliable methods involving serological and molecular biological tools will be a future challenge of increases importance, given the fact that plant material travels freely in the entire European Union. But also new breeding goals and transgenic solutions are part of the biotechnological benefits, e.g. resistance against biotic and abiotic stress factors, modified growth habits, modified nutritional properties and altered processing and storage qualities. The successful characterization of transgenic grapevines and stone fruit trees carrying genes of viral origin in different vectors constructed under ecological consideration, will be presented. Beyond technical feasibility, efficiency of resistance, environmental safety and Intellectual Property Rights, also public acceptance needs consideration and has been addressed in a specific project. The molecular determination of internal quality parameters of food can also be addressed by the use of biotechnological tools. Patient independent detection tools for apple allergens have been developed and should allow to compare fruits from different production systems, sites, and genotypes for their content of health threatening compounds.

  13. Ecology and management of grapevine leafroll disease.

    PubMed

    Almeida, Rodrigo P P; Daane, Kent M; Bell, Vaughn A; Blaisdell, G Kai; Cooper, Monica L; Herrbach, Etienne; Pietersen, Gerhard

    2013-01-01

    Grapevine leafroll disease (GLD) is caused by a complex of vector-borne virus species in the family Closteroviridae. GLD is present in all grape-growing regions of the world, primarily affecting wine grape varieties. The disease has emerged in the last two decades as one of the major factors affecting grape fruit quality, leading to research efforts aimed at reducing its economic impact. Most research has focused on the pathogens themselves, such as improved detection protocols, with limited work directed toward disease ecology and the development of management practices. Here we discuss the ecology and management of GLD, focusing primarily on Grapevine leafroll-associated virus 3, the most important virus species within the complex. We contextualize research done on this system within an ecological framework that forms the backbone of the discussion regarding current and potential GLD management strategies. To reach this goal, we introduce various aspects of GLD biology and ecology, followed by disease management case studies from four different countries and continents (South Africa, New Zealand, California-USA, and France). We review ongoing regional efforts that serve as models for improved strategies to control this economically important and worldwide disease, highlighting scientific gaps that must be filled for the development of knowledge-based sustainable GLD management practices.

  14. Design and evaluation of a grapevine pruner for biofungicide application.

    PubMed

    Ho, M A; Squire, L M; Sabeh, N C; Giles, D K; VanderGheynst, J S

    2005-05-01

    Eutypa lata is a significant grapevine pathogen with limited means of prevention and control. The biological control agent Fusarium lateritium can prevent E. lata infection if applied directly onto a vine pruning wound. F. lateritium was suspended and stored in an invert emulsion formulation. A commercially available pruning shear was modified to dispense the formulated F. lateritium onto the cutting blade for direct application onto the pruning wound simultaneously with grapevine cutting. The modified pruner was tested for its ability to cover grapevine pruning wounds using the emulsion formulation. Efficacy of formulated F. lateritium on pruned grapevine canes was also studied using the pruner for application. Addition of grooves in the pruning blade significantly improved wound coverage. Biological efficacy testing determined that applying formulated F. lateritium with the modified pruner was as effective as pipetting formulation directly onto the pruning wound.

  15. 28. ROAD VIEW OF HIGHWAY 267 SOUTH OF GRAPEVINE ENTRANCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. ROAD VIEW OF HIGHWAY 267 SOUTH OF GRAPEVINE ENTRANCE STATION. NOTE ENTRANCE STATION IN DISTANCE. LOOKING NW. (SAME AS CA-300-7.) - Death Valley National Park Roads, Death Valley Junction, Inyo County, CA

  16. Serial Transmission of Information: A Study of the Grapevine

    ERIC Educational Resources Information Center

    Davis, William L.; O'Connor, J. Regis

    1977-01-01

    Reviews past research on the informal communication system in an organization, known as the 'grapevine', and discusses the author's research results which lend support to prior research conclusions. (MH)

  17. Gibberellin metabolism in Vitis vinifera L. during bloom and fruit-set: functional characterization and evolution of grapevine gibberellin oxidases.

    PubMed

    Giacomelli, Lisa; Rota-Stabelli, Omar; Masuero, Domenico; Acheampong, Atiako Kwame; Moretto, Marco; Caputi, Lorenzo; Vrhovsek, Urska; Moser, Claudio

    2013-11-01

    Gibberellins (GAs) are involved in the regulation of flowering and fruit-set in grapes (Vitis vinifera L.), but the molecular mechanisms behind this process are mostly unknown. In this work, the family of grapevine GA oxidases involved in the biosynthesis and deactivation of GAs was characterized. Six putative GA 20-oxidase (GA20ox), three GA 3-oxidase (GA3ox), and eight GA 2-oxidase (GA2ox) proteins, the latter further divided into five C19-GA 2ox and three C20-GA2ox proteins, were identified. Phylogenetic analyses suggest a common origin of the GA3ox and C19-GA2ox groups and challenge previous evolutionary models. In vitro analysis revealed that all GA3ox and GA20ox enzymes prefer substrates of the non-13-hydroxylation pathway. In addition, ectopic expression of GA2ox genes in Arabidopsis thaliana confirmed the activity of their encoded proteins in vivo. The results show that bioactive GA1 accumulates in opening grapevine flowers, whereas at later developmental stages only GA4 is detected in the setting fruit. By studying the expression pattern of the grapevine GA oxidase genes in different organs, and at different stages of flowering and fruit-set, it is proposed that the pool of bioactive GAs is controlled by a fine regulation of the abundance and localization of GA oxidase transcripts.

  18. Gibberellin metabolism in Vitis vinifera L. during bloom and fruit-set: functional characterization and evolution of grapevine gibberellin oxidases

    PubMed Central

    Giacomelli, Lisa

    2013-01-01

    Gibberellins (GAs) are involved in the regulation of flowering and fruit-set in grapes (Vitis vinifera L.), but the molecular mechanisms behind this process are mostly unknown. In this work, the family of grapevine GA oxidases involved in the biosynthesis and deactivation of GAs was characterized. Six putative GA 20-oxidase (GA20ox), three GA 3-oxidase (GA3ox), and eight GA 2-oxidase (GA2ox) proteins, the latter further divided into five C19-GA 2ox and three C20-GA2ox proteins, were identified. Phylogenetic analyses suggest a common origin of the GA3ox and C19-GA2ox groups and challenge previous evolutionary models. In vitro analysis revealed that all GA3ox and GA20ox enzymes prefer substrates of the non-13-hydroxylation pathway. In addition, ectopic expression of GA2ox genes in Arabidopsis thaliana confirmed the activity of their encoded proteins in vivo. The results show that bioactive GA1 accumulates in opening grapevine flowers, whereas at later developmental stages only GA4 is detected in the setting fruit. By studying the expression pattern of the grapevine GA oxidase genes in different organs, and at different stages of flowering and fruit-set, it is proposed that the pool of bioactive GAs is controlled by a fine regulation of the abundance and localization of GA oxidase transcripts. PMID:24006417

  19. A Sugar-Inducible Protein Kinase, VvSK1, Regulates Hexose Transport and Sugar Accumulation in Grapevine Cells

    PubMed Central

    Lecourieux, Fatma; Lecourieux, David; Vignault, Céline; Delrot, Serge

    2010-01-01

    In grapevine (Vitis vinifera), as in many crops, soluble sugar content is a major component of yield and economical value. This paper identifies and characterizes a Glycogen Synthase Kinase3 protein kinase, cloned from a cDNA library of grape Cabernet Sauvignon berries harvested at the ripening stage. This gene, called VvSK1, was mainly expressed in flowers, berries, and roots. In the berries, it was strongly expressed at postvéraison, when the berries accumulate glucose, fructose, and abscisic acid. In grapevine cell suspensions, VvSK1 transcript abundance is increased by sugars and abscisic acid. In transgenic grapevine cells overexpressing VvSK1, the expression of four monosaccharide transporters (VvHT3, VvHT4, VvHT5, and VvHT6) was up-regulated, the rate of glucose uptake was increased 3- to 5-fold, and the amount of glucose and sucrose accumulation was more than doubled, while the starch amount was not affected. This work provides, to our knowledge, the first example of the control of sugar uptake and accumulation by a sugar-inducible protein kinase. PMID:19923236

  20. Metabolic Consequences of Infection of Grapevine (Vitis vinifera L.) cv. “Modra frankinja” with Flavescence Dorée Phytoplasma

    PubMed Central

    Prezelj, Nina; Covington, Elizabeth; Roitsch, Thomas; Gruden, Kristina; Fragner, Lena; Weckwerth, Wolfram; Chersicola, Marko; Vodopivec, Maja; Dermastia, Marina

    2016-01-01

    Flavescence dorée, caused by the quarantine phytoplasma FDp, represents the most devastating of the grapevine yellows diseases in Europe. In an integrated study we have explored the FDp–grapevine interaction in infected grapevines of cv. “Modra frankinja” under natural conditions in the vineyard. In FDp-infected leaf vein-enriched tissues, the seasonal transcriptional profiles of 14 genes selected from various metabolic pathways showed an FDp-specific plant response compared to other grapevine yellows and uncovered a new association of the SWEET17a vacuolar transporter of fructose with pathogens. Non-targeted metabolome analysis from leaf vein-enriched tissues identified 22 significantly changed compounds with increased levels during infection. Several metabolites corroborated the gene expression study. Detailed investigation of the dynamics of carbohydrate metabolism revealed significant accumulation of sucrose and starch in the mesophyll of FDp-infected leaves, as well as significant up-regulation of genes involved in their biosynthesis. In addition, infected leaves had high activities of ADP-glucose pyrophosphorylase and, more significantly, sucrose synthase. The data support the conclusion that FDp infection inhibits phloem transport, resulting in accumulation of carbohydrates and secondary metabolites that provoke a source-sink transition and defense response status. PMID:27242887

  1. Grapevine red blotch-associated virus is widespread in California and U.S. vineyards.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In fall 2011, Grapevine red blotch-associated virus (GRBaV), a circular ssDNA virus, was detected in grapevines exhibiting leaves with red blotch symptoms in Napa, CA. Extensive sampling of symptomatic grapevines in California vineyards and analysis of the nucleic acid fractions by SYBR®Green qPCR a...

  2. Relative quantification of phosphoproteomic changes in grapevine (Vitis vinifera L.) leaves in response to abscisic acid

    PubMed Central

    Rattanakan, Supakan; George, Iniga; Haynes, Paul A; Cramer, Grant R

    2016-01-01

    In a previous transcriptomic analysis, abscisic acid (ABA) was found to affect the abundance of a number of transcripts in leaves of Cabernet Sauvignon grapevines with roots that had been exposed to 10 μm ABA for 2 h. Other work has indicated that ABA affects protein abundance and protein phosphorylation as well. In this study we investigated changes in protein abundance and phosphorylation of Cabernet Sauvignon grapevine leaves. Protein abundance was assessed by both label-free and isobaric-label quantitive proteomic methods. Each identified common proteins, but also additional proteins not found with the other method. Overall, several thousand proteins were identified and several hundred were quantified. In addition, hundreds of phosphoproteins were identified. Tens of proteins were found to be affected in the leaf after the roots had been exposed to ABA for 2 h, more than half of them were phosphorylated proteins. Many phosphosites were confirmed and several new ones were identified. ABA increased the abundance of some proteins, but the majority of the proteins had their protein abundance decreased. Many of these proteins were involved in growth and plant organ development, including proteins involved in protein synthesis, photosynthesis, sugar and amino-acid metabolism. This study provides new insights into how ABA regulates plant responses and acclimation to water deficits. PMID:27366326

  3. Regulation of plant stem cell quiescence by a brassinosteroid signaling module.

    PubMed

    Vilarrasa-Blasi, Josep; González-García, Mary-Paz; Frigola, David; Fàbregas, Norma; Alexiou, Konstantinos G; López-Bigas, Nuria; Rivas, Susana; Jauneau, Alain; Lohmann, Jan U; Benfey, Philip N; Ibañes, Marta; Caño-Delgado, Ana I

    2014-07-14

    The quiescent center (QC) maintains the activity of the surrounding stem cells within the root stem cell niche, yet specific molecular players sustaining the low rate of QC cell division remain poorly understood. Here, we identified a R2R3-MYB transcription factor, BRAVO (BRASSINOSTEROIDS AT VASCULAR AND ORGANIZING CENTER), acting as a cell-specific repressor of QC divisions in the primary root of Arabidopsis. Ectopic BRAVO expression restricts overall root growth and ceases root regeneration upon damage of the stem cells, demonstrating the role of BRAVO in counteracting Brassinosteroid (BR)-mediated cell division in the QC cells. Interestingly, BR-regulated transcription factor BES1 (BRI1-EMS SUPRESSOR 1) directly represses and physically interacts with BRAVO in vivo, creating a switch that modulates QC divisions at the root stem cell niche. Together, our results define a mechanism for BR-mediated regulation of stem cell quiescence in plants.

  4. Transcriptomic Analysis of Grapevine (cv. Summer Black) Leaf, Using the Illumina Platform

    PubMed Central

    Pervaiz, Tariq; Haifeng, Jia; Salman Haider, Muhammad; Cheng, Zhang; Cui, Mengjie; Wang, Mengqi; Cui, Liwen; Wang, Xicheng; Fang, Jinggui

    2016-01-01

    Proceeding to illumina sequencing, determining RNA integrity numbers for poly RNA were separated from each of the four developmental stages of cv. Summer Black leaves by using Illumina HiSeq™ 2000. The sums of 272,941,656 reads were generated from vitis vinifera leaf at four different developmental stages, with more than 27 billion nucleotides of the sequence data. At each growth stage, RNA samples were indexed through unique nucleic acid identifiers and sequenced. KEGG annotation results depicted that the highest number of transcripts in 2,963 (2Avs4A) followed by 1Avs4A (2,920), and 3Avs4A (2,294) out of 15,614 (71%) transcripts were recorded. In comparison, a total of 1,532 transcripts were annotated in GOs, including Cellular component, with the highest number in “Cell part” 251 out of 353 transcripts (71.1%), followed by intracellular organelle 163 out of 353 transcripts (46.2%), while in molecular function and metabolic process 375 out of 525 (71.4%) transcripts, multicellular organism process 40 out of 525 (7.6%) transcripts in biological process were most common in 1Avs2A. While in case of 1Avs3A, cell part 476 out of 662 transcripts (71.9%), and membrane-bounded organelle 263 out of 662 transcripts (39.7%) were recorded in Cellular component. In the grapevine transcriptome, during the initial stages of leaf development 1Avs2A showed single transcript was down-regulated and none of them were up-regulated. While in comparison of 1A to 3A showed one up-regulated (photosystem II reaction center protein C) and one down regulated (conserved gene of unknown function) transcripts, during the hormone regulating pathway namely SAUR-like auxin-responsive protein family having 2 up-regulated and 7 down-regulated transcripts, phytochrome-associated protein showed 1 up-regulated and 9 down-regulated transcripts, whereas genes associated with the Leucine-rich repeat protein kinase family protein showed 7 up-regulated and 1 down-regulated transcript, meanwhile Auxin

  5. Genetic characterization of some Romanian red wine grapevine varieties

    NASA Astrophysics Data System (ADS)

    Ghetea, Ligia Gabriela; Motoc, Rozalia Magda; Niculescu, Ana-Maria; Litescu, Simona Carmen; Duma, Virgil-Florin; Popescu, Carmen Florentina

    2008-04-01

    In our study we have considered three of the most valuable Romanian red wine grapevine cultivars: Feteasca neagra, Feteasca alba and Novac. We have chosen to study grapevine because grapes and wine are an important part of a healthy diet, and because red grapes have the highest content of proanthocyanidins, that act as antioxidants (free radical scavengers) in the human body. Proanthocyanidins possess anti-mutagenic, anti-tumor, anti-viral activities and they present many other confirmed or potential benefits. Genotyping method was applied in order to asses the genetic profile at 14 microsatellite loci, for two cultivars: Feteasca neagra and Feteasca alba. In order to achieve this, the HPLC-DAD method was used. The content of anthocyans in grape skin from two cultivars - Feteasca neagra and Novac - was measured. Microsatellite markers have been certified as powerful tools for assessing genetic identities and genetic relationships between grapevine gene pools. Genetic characterization of grapevine cultivars can certify their authenticity and purity, two features that have a direct effect on the quality and value of the finished product, the wine. In our country, this is the first attempt in order to establish a genetic profile for valuable Romanian origin grapevine varieties. In some of the 14 microsatellitic loci, Feteasca neagra and Feteasca alba cultivars presented allele size variants different from the values cited in the literature, proving that these cultivars belong to a geographical distinct gene pool. The content of anthocyans in Feteasca neagra grape skin was significantly higher than in Novac.

  6. Response of grapevines to fluoride under field conditions

    SciTech Connect

    Murray, F.

    1983-07-01

    Grapevines (Vitis vinifera L. cv. Shiraz) were fumigated in open-top chambers with hydrogen fluoride for 64 days at mean atmospheric fluoride concentrations of 0.17 or 0.28 ..mu..gHFm/sup -3/. Other grapevines grown under ambient conditions in the vineyard or maintained in control chambers were exposed to 0.13 or 0.05 ..mu..gHFm/sup -3/, respectively. Leaves of grapevines exposed to 0.28, 0.17, 0.13, or 0.05 ..mu..gHFm/sup -3/ accumulated up to 85, 55, 20, or 11 ..mu..gFg/sup -1/, respectively. Foliar necrosis was observed on plants exposed to 0.28 ..mu..gHFm/sup -3/, but no injury symptoms were observed at 0.17 ..mu..gHFm/sup -3/ or in control plants. Grapevines growing under ambient conditions had significantly greater mean bunch weight, peduncle weight, number of grapes per bunch, and leaf protein levels than the fumigated treatments. However, these differences may be associated with a chamber effect rather than with an effect of fluoride on grapevines. No significant differences were found between treatments for grape potential alcohol content, fruit acids, number of bunches or grapes per vine, fresh weight of grapes, or leaf chlorophyll content, despite foliar fluoride concentrations in the highest fluoride fumigation level reaching 85 ..mu..gFg/sup -1/. No evidence was found of significant fluoride accumulation in berries or canes. 26 references, 4 tables.

  7. Peace, a MYB-like transcription factor, regulates petal pigmentation in flowering peach 'Genpei' bearing variegated and fully pigmented flowers.

    PubMed

    Uematsu, Chiyomi; Katayama, Hironori; Makino, Izumi; Inagaki, Azusa; Arakawa, Osamu; Martin, Cathie

    2014-03-01

    Flowering peach Prunus persica cv. Genpei bears pink and variegated flowers on a single tree. The structural genes involved in anthocyanin biosynthesis were expressed strongly in pink petals but only very weakly or not at all in variegated petals. A cDNA clone encoding a MYB-like gene, isolated from pink petals was strongly expressed only in pink petals. Introduction of this gene, via biolistics gave magenta spots in the white areas of variegated petals, therefore this gene was named as Peace (peach anthocyanin colour enhancement). Differences in Peace expression determine the pattern of flower colouration in flowering peach. The R2R3 DNA-binding domain of Peace is similar to those of other plant MYBs regulating anthocyanin biosynthesis. Key amino acids for tertiary structure and the motif for interaction with bHLH proteins were conserved in Peace. Phylogenetic analysis indicates that Peace is closely related to AtMYB123 (TT2), which regulates proanthocyanidin biosynthesis in Arabidopsis, and to anthocyanin regulators in monocots rather than to regulators in dicots. This is the first report that a TT2-like R2R3 MYB has been shown to regulate anthocyanin biosynthesis.

  8. The MIXTA-like transcription factor MYB16 is a major regulator of cuticle formation in vegetative organs.

    PubMed

    Oshima, Yoshimi; Mitsuda, Nobutaka

    2013-11-01

    Cuticle secreted on the surface of the epidermis of aerial organs protects plants from the external environment. We recently found that Arabidopsis MIXTA-like R2R3-MYB family members MYB16 and MYB106 regulate cuticle formation in reproductive organs and trichomes. However, the artificial miRNA (amiRNA)-mediated knockdown plants showed no clear phenotypic abnormality in vegetative tissues. In this study, we used RNA interference (RNAi) targeting MYB16 to produce plants with reduced expression of both MYB16 and MYB106. The rosette leaves of RNAi plants showed more severe permeable cuticle phenotypes than the myb106 mutants expressing the MYB16 amiRNA in the previous study. The RNAi plants also showed reduced expression of cuticle biosynthesis genes LACERATA and ECERIFERUM1. By contrast, expression of a gain-of-function MYB16 construct induced over-accumulation of waxy substances on leaves. These results suggest that MYB16 functions as a major regulator of cuticle formation in vegetative organs, in addition to its effect in reproductive organs and trichomes.

  9. Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time.

    PubMed

    Wu, Rongmei; Wang, Tianchi; McGie, Tony; Voogd, Charlotte; Allan, Andrew C; Hellens, Roger P; Varkonyi-Gasic, Erika

    2014-09-01

    SVP-like MADS domain transcription factors have been shown to regulate flowering time and both inflorescence and flower development in annual plants, while having effects on growth cessation and terminal bud formation in perennial species. Previously, four SVP genes were described in woody perennial vine kiwifruit (Actinidia spp.), with possible distinct roles in bud dormancy and flowering. Kiwifruit SVP3 transcript was confined to vegetative tissues and acted as a repressor of flowering as it was able to rescue the Arabidopsis svp41 mutant. To characterize kiwifruit SVP3 further, ectopic expression in kiwifruit species was performed. Ectopic expression of SVP3 in A. deliciosa did not affect general plant growth or the duration of endodormancy. Ectopic expression of SVP3 in A. eriantha also resulted in plants with normal vegetative growth, bud break, and flowering time. However, significantly prolonged and abnormal flower, fruit, and seed development were observed, arising from SVP3 interactions with kiwifruit floral homeotic MADS-domain proteins. Petal pigmentation was reduced as a result of SVP3-mediated interference with transcription of the kiwifruit flower tissue-specific R2R3 MYB regulator, MYB110a, and the gene encoding the key anthocyanin biosynthetic step, F3GT1. Constitutive expression of SVP3 had a similar impact on reproductive development in transgenic tobacco. The flowering time was not affected in day-neutral and photoperiod-responsive Nicotiana tabacum cultivars, but anthesis and seed germination were significantly delayed. The accumulation of anthocyanin in petals was reduced and the same underlying mechanism of R2R3 MYB NtAN2 transcript reduction was demonstrated.

  10. Grapevine bud break prediction for cool winter climates

    NASA Astrophysics Data System (ADS)

    Nendel, Claas

    2010-05-01

    Statistical analysis of bud break data for grapevine ( Vitis vinifera L. cvs. Riesling and Müller-Thurgau) at 13 sites along the northern boundary of commercial grapevine production in Europe revealed that, for all investigated sites, the heat summation method for bud break prediction can be improved if the starting date for the accumulation of heat units is specifically determined. Using the coefficient of variance as a criterion, a global minimum for each site can be identified, marking the optimum starting date. Furthermore, it was shown that the application of a threshold temperature for the heat summation method does not lead to an improved prediction of bud break. Using site-specific parameters, bud break of grapevine can be predicted with an accuracy of ± 2.5 days. Using average parameters, the prediction accuracy is reduced to ± 4.5 days, highlighting the sensitivity of the heat summation method to the quality and the representativeness of the driving temperature data.

  11. Ferrisia gilli (Hemiptera: Pseudococcidae) Transmits Grapevine Leafroll-Associated Viruses.

    PubMed

    Wistrom, C M; Blaisdell, G K; Wunderlich, L R; Almeida, R P P; Daane, K M

    2016-08-01

    Several mealybug species are vectors of grapevine leafroll-associated viruses (GLRaV), which cause the economically important grapevine leafroll disease in grape-producing regions worldwide. The mealybug Ferrisia gilli Gullan is a new pest of grapevines in El Dorado County, located in the Sierra Foothill wine-growing region of California. GLRaV species 1, 2, 3, and 4LV have been detected in vineyards with symptomatic vines in the Sierra Foothills. We conducted controlled virus acquisition and transmission experiments using source vine accessions infected with different combinations of GLRaV. We determined that F. gilli acquired GLRaV 1, 2, 3, and 4LV, and transmitted GLRaV-3 and GLRaV-4LV to uninfected recipient vines. Like numerous other mealybug species, in addition to causing direct damage to vines, F. gilli poses a threat to the grape industry as a vector of economically damaging viruses.

  12. Nucleotide sequence and genetic organization of Hungarian grapevine chrome mosaic nepovirus RNA2.

    PubMed Central

    Brault, V; Hibrand, L; Candresse, T; Le Gall, O; Dunez, J

    1989-01-01

    The complete nucleotide sequence of hungarian grapevine chrome mosaic nepovirus (GCMV) RNA2 has been determined. The RNA sequence is 4441 nucleotides in length, excluding the poly(A) tail. A polyprotein of 1324 amino acids with a calculated molecular weight of 146 kDa is encoded in a single long open reading frame extending from nucleotides 218 to 4190. This polyprotein is homologous with the protein encoded by the S strain of tomato black ring virus (TBRV) RNA2, the only other nepovirus sequenced so far. Direct sequencing of the viral coat protein and in vitro translation of transcripts derived from cDNA sequences demonstrate that, as for comoviruses, the coat protein is located at the carboxy terminus of the polyprotein. A model for the expression of GCMV RNA2 is presented. Images PMID:2798129

  13. Osmotic stress-induced polyamine oxidation mediates defence responses and reduces stress-enhanced grapevine susceptibility to Botrytis cinerea.

    PubMed

    Hatmi, Saloua; Trotel-Aziz, Patricia; Villaume, Sandra; Couderchet, Michel; Clément, Christophe; Aziz, Aziz

    2014-01-01

    Abiotic factors inducing osmotic stress can influence the plant immune response and resistance to pathogen infections. In this study, the effect of polyethylene glycol (PEG)- and sucrose-induced osmotic stress on polyamine (PA) homeostasis and the basal immune response in grapevine plantlets before and after Botrytis cinerea infection was determined. Pharmacological approaches were also addressed to assess the contribution of osmotic stress-induced PA oxidation to the regulation of defence responses and the susceptibility of grapevine to B. cinerea. Following osmotic stress or pathogen infection, PA homeostasis was linked to enhanced activity of diamine oxidases (CuAO) and PA oxidases (PAO) and the production of 1,3-diaminopropane. These responses paralleled the accumulation of the main stilbenic phytoalexins, resveratrol and ε-viniferin and upregulation of gene transcripts including STS (a stilbene synthase), PR-2 (a β-1,3-glucanase), PR3-4c (acidic chitinase IV), and PR-5 (a thaumatin-like protein), as well as NCED2 involved in abscisic acid biosynthesis. It was also demonstrated that leaves pre-exposed to osmotic stress and later inoculated with B. cinerea showed enhanced PA accumulation and attenuation of CuAO and PAO activities. This was consistent with the impaired production of phytoalexins and transcript levels of defence- and stress-related genes following infection, and the enhanced susceptibility to B. cinerea. Pharmacological experiments revealed that, under osmotic stress conditions, CuAO and PAO were involved in PA homeostasis and in the regulation of defence responses. Specific inhibition of CuAO and PAO in osmotically stressed leaves strongly attenuated the induction of defence responses triggered by B. cinerea infection and enhanced susceptibility to the pathogen. Taken together, this study reveals a contribution of PA catabolism to the resistance state through modulation of immune response in grapevine following osmotic stress and/or after B

  14. Effects of acid rain on grapevines

    SciTech Connect

    Forsline, P.L.; Musselman, R.C.; Dee, R.J.; Kender, W.J.

    1983-01-01

    Mature vineyard-growing Concord grapevines were sprayed with simulated acid rain solutions ranging from pH 2.5 to 5.5 both as acute treatments at anthesis and chronically throughout the season in 1980 and 1981. In 1981, 8 additional varieties were also treated with simulated acid rain solutions at pH 2.75 and 3.25. With Concord in 1981, few foliar lesions on leaves were visible at pH 2.75. In contrast, many leaf lesions with decreased fruit soluble solids were observed at pH 2.5 in 1980. The relationship between acid-rain and oxidant stipple, chlorosis, and soluble solids in the absence of acid rain leaf lesions at pH>2.5 remains unclear. Acute sprays (pH2.75) at anthesis reduced pollen germination in four grape cultivars. However, fruit set was reduced in only one of these. Grape yields were not influenced by acid rain treatments. There was no evidence that acid-rain at ambient pH levels had negative effects on grape production or fruit quality.

  15. Effects of acid rain on grapevines

    SciTech Connect

    Forsline, P.L.; Musselman, R.C.; Dee, R.J.; Kender, W.J.

    1983-01-01

    Mature vineyard-growing Concord grapevines (Vitis labrusca, Bailey) were sprayed with simulated acid rain solutions ranging from pH 2.5 to pH 5.5 both as acute treatments at anthesis and chronically throughout the season in 1980 and 1981. In 1981, eight additional varieties were also treated with simulated acid rain solutions at pH 2.75 and pH 3.25. With Concord in 1981, few foliar lesions on leaves were visible at pH 2.75. In contrast, many leaf lesions with decreased fruit soluble solids in the absence of acid rain leaf lesions at pH>2.5 remains unclear. Acute sprays (pH 2.75) at anthesis reduced pollen germination in four grape cultivars. However, fruit set was reduced in only one of these. Only the cultivars de Chaunac and Ives had reduced berry soluble solids with chronic weekly sprays at pH 2.75. Reduction in soluble solids was not associated with increased oxidant stipple (ozone injury) in Concord and de Chaunac cultivars, but this association was observed in Ives. There was no evidence that acid rain in combination with ozone increased oxidant stipple as occurs when ozone and SO/sub 2/ are combined. Grape yields were not influenced by acid rain treatments. There was no evidence that acid rain at ambient pH levels had negative effects on grape production or fruit quality.

  16. MYB75 Phosphorylation by MPK4 Is Required for Light-Induced Anthocyanin Accumulation in Arabidopsis[OPEN

    PubMed Central

    Li, Shengnan; Wang, Wenyi; Gao, Jinlan; Yin, Kangquan; Wang, Rui; Wang, Chengcheng; Mundy, John

    2016-01-01

    Light is a major environmental cue affecting various physiological and metabolic processes in plants. Although plant photoreceptors are well characterized, the mechanisms by which light regulates downstream responses are less clear. In Arabidopsis thaliana, the accumulation of photoprotective anthocyanin pigments is light dependent, and the R2R3 MYB transcription factor MYB75/PAP1 regulates anthocyanin accumulation. Here, we report that MYB75 interacts with and is phosphorylated by MAP KINASE4 (MPK4). Their interaction is dependent on MPK4 kinase activity and is required for full function of MYB75. MPK4 can be activated in response to light and is involved in the light-induced accumulation of anthocyanins. We show that MPK4 phosphorylation of MYB75 increases its stability and is essential for light-induced anthocyanin accumulation. Our findings reveal an important role for a MAPK pathway in light signal transduction. PMID:27811015

  17. Transcriptome changes in grapevine (Vitis vinifera L.) cv. Malbec leaves induced by ultraviolet-B radiation

    PubMed Central

    2010-01-01

    in UV-B acclimation-like processes. Conclusion Our results show the UV-B radiation effects on the leaf transcriptome of grapevine (Vitis vinifera cv. Malbec) plantlets. Functional categories commonly modulated under both UV-B treatments as well as transcripts specifically regulated in an UV-B-intensity dependent way were identified. While high fluence rate UV-B had regulatory effects mainly on defense or general multiple-stress responses pathways, low fluence rate UV-B promoted the expression of genes that could be involved in UV-B protection or the amelioration of the UV-B-induced damage. This study also provides an extensive list of genes regulating multiple metabolic pathways involved in the response of grapevine to UV-B that can be used for future researches. PMID:20959019

  18. Association of a novel DNA virus with the grapevine vein-clearing and vine decline syndrome.

    PubMed

    Zhang, Yu; Singh, Kashmir; Kaur, Ravneet; Qiu, Wenping

    2011-09-01

    A severe vein-clearing and vine decline syndrome has emerged on grapevines (Vitis vinifera) and hybrid grape cultivars in the Midwest region of the United States. The typical symptoms are translucent vein-clearing on young leaves, short internodes and decline of vine vigor. Known viral pathogens of grapevines were not closely associated with the syndrome. To obtain a comprehensive profile of viruses in a diseased grapevine, small RNAs were enriched and two cDNA libraries were constructed from a symptomatic grapevine and a symptomless grapevine, respectively. Deep sequencing of the two cDNA libraries showed that the most abundant viral small RNAs align with the genomes of viruses in the genus Badnavirus, the family Caulimoviridae. Amplification of the viral DNA by polymerase chain reaction allowed the assembly of the whole genome sequence of a grapevine DNA virus, which shared the highest homology with the Badnavirus sequences. This is the first report of a DNA virus in grapevines. The new DNA virus is closely associated with the vein-clearing symptom, and thus has been given a provisional name Grapevine vein clearing virus (GVCV). GVCV was detected in six grapevine cultivars showing vein-clearing and vine decline syndrome in Missouri, Illinois, and Indiana, suggesting its wide distribution in the Midwest region of the United States. Discovery of DNA viruses in grapevines merits further studies on their epidemics and economic impact on grape production worldwide.

  19. Bacterial endophytic communities in the grapevine depend on pest management.

    PubMed

    Campisano, Andrea; Antonielli, Livio; Pancher, Michael; Yousaf, Sohail; Pindo, Massimo; Pertot, Ilaria

    2014-01-01

    Microbial plant endophytes are receiving ever-increasing attention as a result of compelling evidence regarding functional interaction with the host plant. Microbial communities in plants were recently reported to be influenced by numerous environmental and anthropogenic factors, including soil and pest management. In this study we used automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and pyrosequencing of 16S rDNA to assess the effect of organic production and integrated pest management (IPM) on bacterial endophytic communities in two widespread grapevines cultivars (Merlot and Chardonnay). High levels of the dominant Ralstonia, Burkholderia and Pseudomonas genera were detected in all the samples We found differences in the composition of endophytic communities in grapevines cultivated using organic production and IPM. Operational taxonomic units (OTUs) assigned to the Mesorhizobium, Caulobacter and Staphylococcus genera were relatively more abundant in plants from organic vineyards, while Ralstonia, Burkholderia and Stenotrophomonas were more abundant in grapevines from IPM vineyards. Minor differences in bacterial endophytic communities were also found in the grapevines of the two cultivars.

  20. Intercontinental genetic structure of the fungal grapevine pathogen Eutypa lata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ascomycete fungus Eutypa lata, causal agent of Eutypa dieback of grapevine (Vitis vinifera), impacts all vineyard production systems worldwide. Our objectives were to characterize the population structure of E. lata at different geographical scales to identify migration patterns through ascospor...

  1. Global genetic structure of the fungal grapevine pathogen Eutypa lata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ascomycete fungus Eutypa lata is a trunk pathogen of cultivated grapevine (Vitis vinifera) in all major grape-growing regions of the world. Throughout its geographic range, it is considered a generalist pathogen that can complete its life cycle on a broad range of hosts. To decipher the cosmopol...

  2. Genetic mapping in grapevine using a SNP microarray: intensity values

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genotyping microarrays are widely used for genome wide association studies, but in high-diversity organisms, the quality of SNP calls can be diminished by genetic variation near the assayed nucleotide. To address this limitation in grapevine, we developed a simple heuristic that uses hybridization i...

  3. Research promises earlier warning for grapevine canker diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When it comes to detecting and treating vineyards for grapevine canker diseases (also called trunk diseases), like Botryosphaeria dieback (Bot canker), Esca, Eutypa dieback and Phomopsis dieback, the earlier the better, says plant pathologist Kendra Baumgartner, with the USDA’s Agricultural Research...

  4. Messenger RNA exchange between scions and rootstocks in grafted grapevines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We demonstrated the existence of genome-scale mRNA exchange in grafted grapevines, a woody fruit species with significant economic importance. By using diagnostic SNPs derived from high throughput genome sequencing, we identified more than three thousand genes transporting mRNAs across graft junctio...

  5. Grapevine phenology and climate change in Georgia

    NASA Astrophysics Data System (ADS)

    Cola, G.; Failla, O.; Maghradze, D.; Megrelidze, L.; Mariani, L.

    2016-10-01

    While the climate of Western Europe has been deeply affected by the abrupt climate change that took place in the late `1980s of the twentieth century, a similar signal is detected only few years later, in 1994, in Georgia. Grapevine phenology is deeply influenced by climate and this paper aimed to analyze how phenological timing changed before and after the climatic change of 1994. Availability of thermal resources in the two climatic phases for the five altitudinal belts in the 0-1250-m range was analyzed. A phenological dataset gathered in two experimental sites during the period 2012-2014, and a suitable thermal dataset was used to calibrate a phenological model based on the normal approach and able to describe BBCH phenological stages 61 (beginning of flowering), 71 (fruit set), and 81 (veraison). Calibration was performed for four relevant Georgian varieties (Mtsvane Kakhuri, Rkatsiteli, Ojaleshi, and Saperavi). The model validation was performed on an independent 3-year dataset gathered in Gorizia (Italy). Furthermore, in the case of variety Rkatsiteli, the model was applied to the 1974-2013 thermal time series in order to obtain phenological maps of the Georgian territory. Results show that after the climate change of 1994, Rkatsiteli showed an advance, more relevant at higher altitudes where the whole increase of thermal resource was effectively translated in phenological advance. For instance the average advance of veraison was 5.9 days for 250-500 m asl belt and 18.1 days for 750-1000 m asl). On the other hand, at lower altitudes, phenological advance was depleted by superoptimal temperatures. As a final result, some suggestions for the adaptation of viticultural practices to the current climatic phase are provided.

  6. Grapevine phenology and climate change in Georgia.

    PubMed

    Cola, G; Failla, O; Maghradze, D; Megrelidze, L; Mariani, L

    2017-04-01

    While the climate of Western Europe has been deeply affected by the abrupt climate change that took place in the late '1980s of the twentieth century, a similar signal is detected only few years later, in 1994, in Georgia. Grapevine phenology is deeply influenced by climate and this paper aimed to analyze how phenological timing changed before and after the climatic change of 1994. Availability of thermal resources in the two climatic phases for the five altitudinal belts in the 0-1250-m range was analyzed. A phenological dataset gathered in two experimental sites during the period 2012-2014, and a suitable thermal dataset was used to calibrate a phenological model based on the normal approach and able to describe BBCH phenological stages 61 (beginning of flowering), 71 (fruit set), and 81 (veraison). Calibration was performed for four relevant Georgian varieties (Mtsvane Kakhuri, Rkatsiteli, Ojaleshi, and Saperavi). The model validation was performed on an independent 3-year dataset gathered in Gorizia (Italy). Furthermore, in the case of variety Rkatsiteli, the model was applied to the 1974-2013 thermal time series in order to obtain phenological maps of the Georgian territory. Results show that after the climate change of 1994, Rkatsiteli showed an advance, more relevant at higher altitudes where the whole increase of thermal resource was effectively translated in phenological advance. For instance the average advance of veraison was 5.9 days for 250-500 m asl belt and 18.1 days for 750-1000 m asl). On the other hand, at lower altitudes, phenological advance was depleted by superoptimal temperatures. As a final result, some suggestions for the adaptation of viticultural practices to the current climatic phase are provided.

  7. A 48 SNP set for grapevine cultivar identification

    PubMed Central

    2011-01-01

    Background Rapid and consistent genotyping is an important requirement for cultivar identification in many crop species. Among them grapevine cultivars have been the subject of multiple studies given the large number of synonyms and homonyms generated during many centuries of vegetative multiplication and exchange. Simple sequence repeat (SSR) markers have been preferred until now because of their high level of polymorphism, their codominant nature and their high profile repeatability. However, the rapid application of partial or complete genome sequencing approaches is identifying thousands of single nucleotide polymorphisms (SNP) that can be very useful for such purposes. Although SNP markers are bi-allelic, and therefore not as polymorphic as microsatellites, the high number of loci that can be multiplexed and the possibilities of automation as well as their highly repeatable results under any analytical procedure make them the future markers of choice for any type of genetic identification. Results We analyzed over 300 SNP in the genome of grapevine using a re-sequencing strategy in a selection of 11 genotypes. Among the identified polymorphisms, we selected 48 SNP spread across all grapevine chromosomes with allele frequencies balanced enough as to provide sufficient information content for genetic identification in grapevine allowing for good genotyping success rate. Marker stability was tested in repeated analyses of a selected group of cultivars obtained worldwide to demonstrate their usefulness in genetic identification. Conclusions We have selected a set of 48 stable SNP markers with a high discrimination power and a uniform genome distribution (2-3 markers/chromosome), which is proposed as a standard set for grapevine (Vitis vinifera L.) genotyping. Any previous problems derived from microsatellite allele confusion between labs or the need to run reference cultivars to identify allele sizes disappear using this type of marker. Furthermore, because SNP

  8. Peace, a MYB-like transcription factor, regulates petal pigmentation in flowering peach ‘Genpei’ bearing variegated and fully pigmented flowers

    PubMed Central

    Uematsu, Chiyomi; Inagaki, Azusa

    2014-01-01

    Flowering peach Prunus persica cv. Genpei bears pink and variegated flowers on a single tree. The structural genes involved in anthocyanin biosynthesis were expressed strongly in pink petals but only very weakly or not at all in variegated petals. A cDNA clone encoding a MYB-like gene, isolated from pink petals was strongly expressed only in pink petals. Introduction of this gene, via biolistics gave magenta spots in the white areas of variegated petals, therefore this gene was named as Peace (peach anthocyanin colour enhancement). Differences in Peace expression determine the pattern of flower colouration in flowering peach. The R2R3 DNA-binding domain of Peace is similar to those of other plant MYBs regulating anthocyanin biosynthesis. Key amino acids for tertiary structure and the motif for interaction with bHLH proteins were conserved in Peace. Phylogenetic analysis indicates that Peace is closely related to AtMYB123 (TT2), which regulates proanthocyanidin biosynthesis in Arabidopsis, and to anthocyanin regulators in monocots rather than to regulators in dicots. This is the first report that a TT2-like R2R3 MYB has been shown to regulate anthocyanin biosynthesis. PMID:24453228

  9. Functional Characterization of Cotton GaMYB62L, a Novel R2R3 TF in Transgenic Arabidopsis

    PubMed Central

    Butt, Hamama Islam; Yang, Zhaoen; Chen, Eryong; Zhao, Ge; Gong, Qian; Yang, Zuoren; Zhang, Xueyan

    2017-01-01

    Drought stress can trigger the production of ABA in plants, in response to adverse conditions, which induces the transcript of stress-related marker genes. The R2R3 MYB TFs are implicated in regulation of various plants developmental, metabolic and multiple environmental stress responses. Here, a R2R3-MYB cloned gene, GaMYB62L, was transformed in Arabidopsis and was functionally characterized. The GaMYB62L protein contains two SANT domains with a conserved R2R3 imperfect repeats. The GaMYB62L cDNA is 1,017 bp with a CDS of 879, encodes a 292-residue polypeptide with MW of 38.78 kD and a pI value of 8.91. Overexpressed GaMYB62L transgenic Arabidopsis have increased proline and chlorophyll content, superior seed germination rate under salt and osmotic stress, less water loss rate with reduced stomatal apertures, high drought avoidance as compared to WT on water deprivation and also significant plant survival rates at low temperature. In addition, overexpressed GaMYB62L lines were more sensitive to ABA mediated germination and root elongation assay. Moreover, ABA induced GaMYB62L overexpression, enhanced the expression of ABA stress related marker genes like RD22, COR15A, ADH1, and RD29A. Together, overexpression of GaMYB62L suggested having developed better drought, salt and cold tolerance in transgenic Arabidopsis and thus presented it as a prospective candidate gene to achieve better abiotic stress tolerance in cotton crop. PMID:28125637

  10. Study on Expression Modes and Cleavage Role of miR156b/c/d and its Target Gene Vv-SPL9 During the Whole Growth Stage of Grapevine.

    PubMed

    Wang, Baoju; Wang, Jian; Wang, Chen; Shen, Wenbiao; Jia, Haifeng; Zhu, Xudong; Li, Xiaopeng

    2016-01-01

    miR156 regulates the expression of its target SPL (PROMOTER BINDING-LIKE) genes during flower and fruit development, diverse developmental stage transitions, especially from vegetative to reproductive growth phases, by cleaving the target mRNA SPL of one plant-specific transcription factor. However, systematic reports on grapevine have yet to be presented. Here, the precise sequence of miR156 (vvi-miR156b/c/d) in grapevine "Takatsuma" was cloned with a previously cloned grapevine SPL (Vv-SPL9). Expression profiles in 18 grapevine tissues were identified through stem-loop RT-PCR. The interaction mode between vvi-miR156b/c/d and Vv-SPL9 was further validated by detecting the cleavage site and cleavage products of 3'- and 5'-ends via an integrated approach of 5'-RLM-RACE (RNA ligase-mediated 5'-rapid amplification of cDNA ends), 3'-PPM-RACE (poly(A) polymerase-mediated 3'-rapid amplification of cDNA ends), and qRT-PCR (real time reverse transcriptase-polymerase chain reaction). The variation in their cleavage roles in the whole growth stage of grapevine was also systematically investigated. Results showed that vvi-miR156b/c/d exhibited typical temporal-spatial-specific expression levels. The expression levels were higher in vegetative organs, such as leaf, than in reproductive organs, such as tendrils, flowers, and berries. A significant variation was observed during vegetative-to-reproductive transition. The expression patterns of Vv-SPL9 showed the opposite trends with those of vvi-miR156b. We confirmed that the cleavage site was at the 10th site of vvi-miR156b/c/d complementary to Vv-SPL9 in "Takatsuma" grapevine. We also identified the temporal-spatial variation of the cleavage products. This variation can indicate the regulatory function of miR156 on SPL in grapevines. Our findings provide further insights into the functions of vvi-miR156b/c/d and its target Vv-SPL9, and also help enrich our knowledge of small RNA-mediated regulation in grapevine.

  11. VitisNet: “Omics” Integration through Grapevine Molecular Networks

    PubMed Central

    Grimplet, Jérôme; Cramer, Grant R.; Dickerson, Julie A.; Mathiason, Kathy; Van Hemert, John; Fennell, Anne Y.

    2009-01-01

    Background Genomic data release for the grapevine has increased exponentially in the last five years. The Vitis vinifera genome has been sequenced and Vitis EST, transcriptomic, proteomic, and metabolomic tools and data sets continue to be developed. The next critical challenge is to provide biological meaning to this tremendous amount of data by annotating genes and integrating them within their biological context. We have developed and validated a system of Grapevine Molecular Networks (VitisNet). Methodology/Principal Findings The sequences from the Vitis vinifera (cv. Pinot Noir PN40024) genome sequencing project and ESTs from the Vitis genus have been paired and the 39,424 resulting unique sequences have been manually annotated. Among these, 13,145 genes have been assigned to 219 networks. The pathway sets include 88 “Metabolic”, 15 “Genetic Information Processing”, 12 “Environmental Information Processing”, 3 “Cellular Processes”, 21 “Transport”, and 80 “Transcription Factors”. The quantitative data is loaded onto molecular networks, allowing the simultaneous visualization of changes in the transcriptome, proteome, and metabolome for a given experiment. Conclusions/Significance VitisNet uses manually annotated networks in SBML or XML format, enabling the integration of large datasets, streamlining biological functional processing, and improving the understanding of dynamic processes in systems biology experiments. VitisNet is grounded in the Vitis vinifera genome (currently at 8x coverage) and can be readily updated with subsequent updates of the genome or biochemical discoveries. The molecular network files can be dynamically searched by pathway name or individual genes, proteins, or metabolites through the MetNet Pathway database and web-portal at http://metnet3.vrac.iastate.edu/. All VitisNet files including the manual annotation of the grape genome encompassing pathway names, individual genes, their genome identifier, and

  12. Grapevine leafroll-associated virus 1 occurs as genetically diverse populations.

    PubMed

    Alabi, Olufemi J; Al Rwahnih, Maher; Karthikeyan, Gandhi; Poojari, Sudarsana; Fuchs, Marc; Rowhani, Adib; Naidu, Rayapati A

    2011-12-01

    The genetic diversity of 34 isolates of Grapevine leafroll-associated virus 1 (GLRaV-1) from different wine, table, and ornamental grape cultivars in California, New York, and Washington States in the United States was investigated. Segments of the heat-shock protein 70 homolog (HSP70h) gene, coat protein (CP) gene, coat protein duplicate 2 (CPd2) gene, and open reading frame 9 (p24) were amplified by reverse-transcription polymerase chain reaction, cloned, and sequenced. A pairwise comparison of nucleotide sequences revealed intra- and interisolate sequence diversity, with CPd2 and HSP70h being the most and the least divergent, respectively, among the four genomic regions studied. The normalized values for the ratio of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site indicated different purifying selection pressures acting on each of the four genomic regions, with the CP and CPd2 being subjected to the strongest and weakest functional constraints, respectively. A global phylogenetic analysis of sequences from the four genomic regions revealed segregation of GLRaV-1 isolates into three major clades and a lack of clearly defined clustering by geographical origin. In contrast, only two lineages were apparent when the CP and CPd2 gene sequences were used in phylogenetic analyses. Putative recombination events were revealed among the HSP70h, CP, and p24 sequences. The genetic landscape of GLRaV-1 populations presented in this study provides a foundation for better understanding of the epidemiology of grapevine leafroll disease across grape-growing regions in the United States. In addition, this study will benefit grape clean plant programs across the country in improving the sanitary status of planting materials provided to nurseries and grape growers.

  13. Viral small RNAs reveal the genomic variations of three grapevine vein clearing virus quasispecies populations.

    PubMed

    Howard, Susanne; Qiu, Wenping

    2017-02-02

    Viral small RNAs (vsRNAs) include viral small interfering RNAs (vsiRNAs) that are initiators and products of RNA silencing, and small RNAs that are derived from viral RNAs with function still unknown. Sequencing of vsRNAs allows assembling of viral genomes and revelation of viral population variations at genomic levels. Grapevine vein clearing virus (GVCV) is a new member of the family Caulimoviridae whose DNA genome is replicated by reverse transcription of pre-genomic RNA molecules. In this short report, three genomic sequences of GVCV were assembled from vsRNAs that were isolated and sequenced from three individual grapevines in commercial vineyards and compared to the GVCV-CHA reference genome. Profiles of single nucleotide polymorphism among three viral populations indicated a closer relatedness between two populations in different grape cultivars at the same location than those in the same grape cultivar at different locations, suggesting the spread of GVCV populations among vineyards of close proximity. Classic types of vsiRNAs (21-nt, 22-nt, and 24-nt) were found in the three GVCV vsiRNA populations, but these did not produce alignment hotspots on the GVCV-CHA reference genome. The number of 36-nt reads is the highest among vsRNAs, the role of these vsRNAs remains unclear. The analysis of vsRNAs provides a first holistic picture of genomic variations among GVCV viral quasispecies populations that help monitor epidemics and evolution of GVCV populations, an emerging virus that is becoming a threat to grape production in the Midwest region of the USA.

  14. Transmission of grapevine leafroll-associated virus 3 by the vine mealybug (Planococcus ficus).

    PubMed

    Tsai, C-W; Chau, J; Fernandez, L; Bosco, D; Daane, K M; Almeida, R P P

    2008-10-01

    Grapevine leafroll disease is caused by grapevine leafroll-associated viruses (GLRaVs). Within this virus complex, GLRaV-3 is the predominant species in the world. Several GLRaVs have been shown to be transmitted from vine to vine by mealybugs although a detailed characterization of transmission biology is lacking. The introduction of the vine mealybug (Planococcus ficus) in California and other regions of the world may result in increasing disease incidence of established GLRaVs. We studied the characteristics of GLRaV-3 transmission by the vine mealybug. Our results indicate that the vine mealybug transmits GLRaV-3 in a semipersistent manner. First instars were more efficient vectors than adult mealybugs. GLRaV-3 transmission lacked a latent period in the vector. Virus transmission occurred with a 1-h acquisition access period (AAP) and peaked with a 24-h AAP. Mealybugs inoculated GLRaV-3 with a 1-h inoculation access period (IAP), and transmission efficiency increased with longer plant access period up to 24 h, after which transmission rate remained constant. After an AAP of 24 h, mealybugs lost GLRaV-3 and infectivity 4 days after virus acquisition. In addition, GLRaV-3 was not transovarially transmitted from infected females to their progeny as detected by reverse transcription polymerase chain reaction. In summary, we systematically analyzed transmission parameters of GLRaV-3 by the vine mealybug and showed that transmission of this virus occurs in a semipersistent manner. This research fills in important gaps in knowledge of leafroll virus transmission, which is critical for development of leafroll disease management practices.

  15. The Accumulation of miRNAs Differentially Modulated by Drought Stress Is Affected by Grafting in Grapevine1[OPEN

    PubMed Central

    Vitali, Marco; Vitulo, Nicola; Incarbone, Marco

    2017-01-01

    Grapevine (Vitis vinifera) is routinely grafted, and rootstocks inducing drought tolerance represent a source for adapting vineyards to climate change in temperate areas. Our goal was to investigate drought stress effects on microRNA (miRNA) abundance in a drought-resistant grapevine rootstock, M4 (Vitis vinifera × Vitis berlandieri), compared with a commercial cultivar, Cabernet Sauvignon, using their autografts and reciprocal grafts. RNA extracted from roots and leaves of droughted and irrigated plants of different graft combinations was used to prepare cDNA libraries for small RNA sequencing and to analyze miRNAs by quantitative real-time polymerase chain reaction (RT-qPCR). Measurements of leaf water potential, leaf gas exchange, and root hydraulic conductance attested that, under irrigation, M4 reduced water loss in comparison with cultivar Cabernet Sauvignon mostly through nonhydraulic, root-specific mechanisms. Under drought, stomatal conductance decreased at similar levels in the two genotypes. Small RNA sequencing allowed the identification of 70 conserved miRNAs and the prediction of 28 novel miRNAs. Different accumulation trends of miRNAs, observed upon drought and in different genotypes and organs, were confirmed by RT-qPCR. Corresponding target transcripts, predicted in silico and validated by RT-qPCR, often showed opposite expression profiles than the related miRNAs. Drought effects on miRNA abundance differed between the two genotypes. Furthermore, the concentration of drought-responsive miRNAs in each genotype was affected by reciprocal grafting, suggesting either the movement of signals inducing miRNA expression in the graft partner or, possibly, miRNA transport between scion and rootstock. These results open new perspectives in the selection of rootstocks for improving grapevine adaptation to drought. PMID:28235889

  16. The Accumulation of miRNAs Differentially Modulated by Drought Stress Is Affected by Grafting in Grapevine.

    PubMed

    Pagliarani, Chiara; Vitali, Marco; Ferrero, Manuela; Vitulo, Nicola; Incarbone, Marco; Lovisolo, Claudio; Valle, Giorgio; Schubert, Andrea

    2017-04-01

    Grapevine (Vitis vinifera) is routinely grafted, and rootstocks inducing drought tolerance represent a source for adapting vineyards to climate change in temperate areas. Our goal was to investigate drought stress effects on microRNA (miRNA) abundance in a drought-resistant grapevine rootstock, M4 (Vitis vinifera × Vitis berlandieri), compared with a commercial cultivar, Cabernet Sauvignon, using their autografts and reciprocal grafts. RNA extracted from roots and leaves of droughted and irrigated plants of different graft combinations was used to prepare cDNA libraries for small RNA sequencing and to analyze miRNAs by quantitative real-time polymerase chain reaction (RT-qPCR). Measurements of leaf water potential, leaf gas exchange, and root hydraulic conductance attested that, under irrigation, M4 reduced water loss in comparison with cultivar Cabernet Sauvignon mostly through nonhydraulic, root-specific mechanisms. Under drought, stomatal conductance decreased at similar levels in the two genotypes. Small RNA sequencing allowed the identification of 70 conserved miRNAs and the prediction of 28 novel miRNAs. Different accumulation trends of miRNAs, observed upon drought and in different genotypes and organs, were confirmed by RT-qPCR Corresponding target transcripts, predicted in silico and validated by RT-qPCR, often showed opposite expression profiles than the related miRNAs. Drought effects on miRNA abundance differed between the two genotypes. Furthermore, the concentration of drought-responsive miRNAs in each genotype was affected by reciprocal grafting, suggesting either the movement of signals inducing miRNA expression in the graft partner or, possibly, miRNA transport between scion and rootstock. These results open new perspectives in the selection of rootstocks for improving grapevine adaptation to drought.

  17. The bouquet of grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) flowers arises from the biosynthesis of sesquiterpene volatiles in pollen grains.

    PubMed

    Martin, Diane M; Toub, Omid; Chiang, Angela; Lo, Bernard C; Ohse, Sebastian; Lund, Steven T; Bohlmann, Jörg

    2009-04-28

    Terpenoid volatiles are important information molecules that enable pollinators to locate flowers and may protect reproductive tissues against pathogens or herbivores. Inflorescences of grapevine (Vitis vinifera L.) are composed of tiny green flowers that produce an abundance of sesquiterpenoid volatiles. We demonstrate that male flower parts of grapevines are responsible for sesquiterpenoid floral scent formation. We describe temporal and spatial patterns of biosynthesis and release of floral volatiles throughout the blooming of V. vinifera L. cv. Cabernet Sauvignon. The biosynthesis of sesquiterpene volatiles, which are emitted with a light-dependent diurnal pattern early in the morning at prebloom and bloom, is localized to anthers and, more specifically, within the developing pollen grains. Valencene synthase (VvValCS) enzyme activity, which produces the major sesquiterpene volatiles of grapevine flowers, is present in anthers. VvValCS transcripts are most abundant in flowers at prebloom stages. Western blot analysis identified VvValCS protein in anthers, and in situ immunolabeling located VvValCS protein in pollen grains during bloom. Histochemical staining, as well as immunolabeling analysis by fluorescent microscopy and transmission electron microscopy, indicated that VvValCS localizes close to lipid bodies within the maturing microspore.

  18. Grapevine (Vitis vinifera) Crown Galls Host Distinct Microbiota

    PubMed Central

    Faist, Hanna; Keller, Alexander; Hentschel, Ute

    2016-01-01

    ABSTRACT Crown gall disease of grapevine is caused by virulent Agrobacterium strains and establishes a suitable habitat for agrobacteria and, potentially, other bacteria. The microbial community associated with grapevine plants has not been investigated with respect to this disease, which frequently results in monetary losses. This study compares the endophytic microbiota of organs from grapevine plants with or without crown gall disease and the surrounding vineyard soil over the growing seasons of 1 year. Amplicon-based community profiling revealed that the dominating factor causing differences between the grapevine microbiota is the sample site, not the crown gall disease. The soil showed the highest microbial diversity, which decreased with the distance from the soil over the root and the graft union of the trunk to the cane. Only the graft union microbiota was significantly affected by crown gall disease. The bacterial community of graft unions without a crown gall hosted transient microbiota, with the three most abundant bacterial species changing from season to season. In contrast, graft unions with a crown gall had a higher species richness, which in every season was dominated by the same three bacteria (Pseudomonas sp., Enterobacteriaceae sp., and Agrobacterium vitis). For in vitro-cultivated grapevine plantlets, A. vitis infection alone was sufficient to cause crown gall disease. Our data show that microbiota in crown galls is more stable over time than microbiota in healthy graft unions and that the microbial community is not essential for crown gall disease outbreak. IMPORTANCE The characterization of bacterial populations in animal and human diseases using high-throughput deep-sequencing technologies, such as 16S amplicon sequencing, will ideally result in the identification of disease-specific microbiota. We analyzed the microbiota of the crown gall disease of grapevine, which is caused by infection with the bacterial pathogen Agrobacterium vitis. All

  19. Pseudomonas fluorescens PTA-CT2 Triggers Local and Systemic Immune Response Against Botrytis cinerea in Grapevine.

    PubMed

    Gruau, Charlotte; Trotel-Aziz, Patricia; Villaume, Sandra; Rabenoelina, Fanja; Clément, Christophe; Baillieul, Fabienne; Aziz, Aziz

    2015-10-01

    Although induced systemic resistance (ISR) is well-documented in the context of plant-beneficial bacteria interactions, knowledge about the local and systemic molecular and biochemical defense responses before or upon pathogen infection in grapevine is very scarce. In this study, we first investigated the capacity of grapevine plants to express immune responses at both above- and below-ground levels upon interaction with a beneficial bacterium, Pseudomonas fluorescens PTA-CT2. We then explored whether the extent of priming state could contribute to the PTA-CT2-induced ISR in Botrytis cinerea-infected leaves. Our data provide evidence that this bacterium colonized grapevine roots but not the above-ground plant parts and altered the plant phenotype that displayed multiple defense responses both locally and systemically. The grapevine roots and leaves exhibited distinct patterns of defense-related gene expression during root colonization by PTA-CT2. Roots responded faster than leaves and some responses were more strongly upregulated in roots than in leaves and vice versa for other genes. These responses appear to be associated with some induction of cell death in roots and a transient expression of HSR, a hypersensitive response-related gene in both local (roots) and systemic (leaves) tissues. However, stilbenic phytoalexin patterns followed opposite trends in roots compared with leaves but no phytoalexin was exuded during plant-bacterium interaction, suggesting that roots could play an important role in the transfer of metabolites contributing to immune response at the systemic level. Unexpectedly, in B. cinerea-infected leaves PTA-CT2-mediated ISR was accompanied in large part by a downregulation of different defense-related genes, including HSR. Only phytoalexins and glutathion-S-transferase 1 transcripts were upregulated, while the expression of anthocyanin biosynthetic genes was maintained at a higher level than the control. This suggests that decreased

  20. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit

    PubMed Central

    2014-01-01

    Background Global climate change will noticeably affect plant vegetative and reproductive development. The recent increase in temperatures has already impacted yields and composition of berries in many grapevine-growing regions. Physiological processes underlying temperature response and tolerance of the grapevine fruit have not been extensively investigated. To date, all studies investigating the molecular regulation of fleshly fruit response to abiotic stress were only conducted during the day, overlooking possible critical night-specific variations. The present study explores the night and day transcriptomic response of grapevine fruit to heat stress at several developmental stages. Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered according to the developmental stages along their vertical axes. The recently proposed microvine model (DRCF-Dwarf Rapid Cycling and Continuous Flowering) was grown in climatic chambers in order to circumvent common constraints and biases inevitable in field experiments with perennial macrovines. Post-véraison berry heterogeneity within clusters was avoided by constituting homogenous batches following organic acids and sugars measurements of individual berries. A whole genome transcriptomic approach was subsequently conducted using NimbleGen 090818 Vitis 12X (30 K) microarrays. Results Present work reveals significant differences in heat stress responsive pathways according to day or night treatment, in particular regarding genes associated with acidity and phenylpropanoid metabolism. Precise distinction of ripening stages led to stage-specific detection of malic acid and anthocyanin-related transcripts modulated by heat stress. Important changes in cell wall modification related processes as well as indications for heat-induced delay of ripening and sugar accumulation were observed at véraison, an effect that was reversed at later stages. Conclusions This first day - night

  1. Grapevine rootstock effects on scion sap phenolic levels, resistance to Xylella fastidiosa infection, and progression of Pierce’s disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The xylem-limited bacterium Xylella fastidiosa (Xf) causes Pierce’s disease (PD), an important disease of grapevine, Vitis vinifera L. Grapevine rootstocks were developed to provide increased resistance to root disease, but rootstock effects on cane and vine diseases remain unclear. Grapevines that ...

  2. Closed reference metatranscriptomics enables in planta profiling of putative virulence activities in the grapevine trunk-disease complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapevines, like other perennial crops, are affected by so-called ‘trunk diseases’, which damage the trunk and other woody tissues. Mature grapevines typically contract more than one trunk disease and often multiple grapevine trunk pathogens (GTPs) are recovered from infected tissues. The co-existen...

  3. Identification of Plasmopara viticola genes potentially involved in pathogenesis on grapevine suggests new similarities between oomycetes and true fungi.

    PubMed

    Luis, P; Gauthier, A; Trouvelot, S; Poinssot, B; Frettinger, P

    2013-10-01

    Plant diseases caused by fungi and oomycetes result in significant economic losses every year. Although phylogenetically distant, these organisms share many common features during infection. We identified genes in the oomycete Plasmopara viticola that are potentially involved in pathogenesis in grapevine by using fungal databases and degenerate primers. Fragments of P. viticola genes encoding NADH-ubiquinone oxidoreductase (PvNuo), laccase (PvLac), and invertase (PvInv) were obtained. PvNuo was overexpressed at 2 days postinoculation (dpi), during the development of the first hyphal structures and haustoria. PvLac was overexpressed at 5 dpi when genes related to pterostilbene biosynthesis were induced in grapevine. Transcript level for PvInv increased between 1 and 4 dpi before reaching a plateau. These results might suggest a finely tuned strategy of infection depending on nutrition and plant response. Phylogenetic analyses of PvNuo showed that P. viticola clustered with other oomycetes and was associated with brown algae and diatoms, forming a typical Straminipila clade. Based on the comparison of available sequences for laccases and invertases, the group formed by P. viticola and other oomycetes tended to be more closely related to Opisthokonta than to Straminipila. Convergent evolution or horizontal gene transfer could explain the presence of fungus-like genes in P. viticola.

  4. Transport and accumulation of flavonoids in grapevine (Vitis vinifera L.)

    PubMed Central

    Braidot, Enrico; Zancani, Marco; Petrussa, Elisa; Peresson, Carlo; Bertolini, Alberto; Patui, Sonia; Macrì, Francesco

    2008-01-01

    Flavonoids are a group of secondary metabolites widely distributed in plants that represent a huge portion of the soluble phenolics present in grapevine (Vitis vinifera L.). These compounds play different physiological roles and are often involved in protection against biotic and abiotic stress. Even if the flavonoid biosynthetic pathways have been largely characterized, the mechanisms of their transport and accumulation in cell wall and vacuole are still not completely understood. This review analyses the known mechanisms of flavonoid uptake and accumulation in grapevine, with reference to the transport models and membrane carrier proteins described in other plant species. The effect of different environmental factors on flavonoid biosynthesis and transporters is also discussed. PMID:19513253

  5. Atmospheric circulation patterns and phenological anomalies of grapevine in Italy

    NASA Astrophysics Data System (ADS)

    Cola, Gabriele; Alilla, Roberta; Dal Monte, Giovanni; Epifani, Chiara; Mariani, Luigi; Parisi, Simone Gabriele

    2014-05-01

    Grapevine (Vitis vinifera L.) is a fundamental crop for Italian agriculture as testified by the first place of Italy in the world producers ranking. This justify the importance of quantitative analyses referred to this crucial crop and aimed to quantify meteorological resources and limitations to development and production. Phenological rhythms of grapevine are strongly affected by surface fields of air temperature which in their turn are affected by synoptic circulation. This evidence highlights the importance of an approach based on dynamic climatology in order to detect and explain phenological anomalies that can have relevant effects on quantity and quality of grapevine production. In this context, this research is aimed to study the existing relation among the 850 hPa circulation patterns over the Euro-Mediterranean area from NOAA Ncep dataset and grapevine phenological fields for Italy over the period 2006-2013, highlighting the main phenological anomalies and analyzing synoptic determinants. This work is based on phenological fields with a standard pixel of 2 km routinely produced from 2006 by the Iphen project (Italian Phenological network) on the base of phenological observations spatialized by means of a specific algorithm based on cumulated thermal resources expressed as Normal Heat Hours (NHH). Anomalies have been evaluated with reference to phenological normal fields defined for the Italian area on the base of phenological observations and Iphen model. Results show that relevant phenological anomalies observed over the reference period are primarily associated with long lasting blocking systems driving cold air masses (Arctic or Polar-Continental) or hot ones (Sub-Tropical) towards the Italian area. Specific cases are presented for some years like 2007 and 2011.

  6. Identification of Putative Stage-Specific Grapevine Berry Biomarkers and Omics Data Integration into Networks1[C][W][OA

    PubMed Central

    Zamboni, Anita; Di Carli, Mariasole; Guzzo, Flavia; Stocchero, Matteo; Zenoni, Sara; Ferrarini, Alberto; Tononi, Paola; Toffali, Ketti; Desiderio, Angiola; Lilley, Kathryn S.; Pè, M. Enrico; Benvenuto, Eugenio; Delledonne, Massimo; Pezzotti, Mario

    2010-01-01

    The analysis of grapevine (Vitis vinifera) berries at the transcriptomic, proteomic, and metabolomic levels can provide great insight into the molecular events underlying berry development and postharvest drying (withering). However, the large and very different data sets produced by such investigations are difficult to integrate. Here, we report the identification of putative stage-specific biomarkers for berry development and withering and, to our knowledge, the first integrated systems-level study of these processes. Transcriptomic, proteomic, and metabolomic data were integrated using two different strategies, one hypothesis free and the other hypothesis driven. A multistep hypothesis-free approach was applied to data from four developmental stages and three withering intervals, with integration achieved using a hierarchical clustering strategy based on the multivariate bidirectional orthogonal projections to latent structures technique. This identified stage-specific functional networks of linked transcripts, proteins, and metabolites, providing important insights into the key molecular processes that determine the quality characteristics of wine. The hypothesis-driven approach was used to integrate data from three withering intervals, starting with subdata sets of transcripts, proteins, and metabolites. We identified transcripts and proteins that were modulated during withering as well as specific classes of metabolites that accumulated at the same time and used these to select subdata sets of variables. The multivariate bidirectional orthogonal projections to latent structures technique was then used to integrate the subdata sets, identifying variables representing selected molecular processes that take place specifically during berry withering. The impact of this holistic approach on our knowledge of grapevine berry development and withering is discussed. PMID:20826702

  7. The Soil Microbiome Influences Grapevine-Associated Microbiota

    PubMed Central

    Zarraonaindia, Iratxe; Owens, Sarah M.; Weisenhorn, Pamela; West, Kristin; Hampton-Marcell, Jarrad; Lax, Simon; Bokulich, Nicholas A.; Mills, David A.; Martin, Gilles; Taghavi, Safiyh; van der Lelie, Daniel

    2015-01-01

    ABSTRACT Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cultivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterial reservoir. A subset of soil microorganisms, including root colonizers significantly enriched in plant growth-promoting bacteria and related functional genes, were selected by the grapevine. In addition to plant selective pressure, the structure of soil and root microbiota was significantly influenced by soil pH and C:N ratio, and changes in leaf- and grape-associated microbiota were correlated with soil carbon and showed interannual variation even at small spatial scales. Diazotrophic bacteria, e.g., Rhizobiaceae and Bradyrhizobium spp., were significantly more abundant in soil samples and root samples of specific vineyards. Vine-associated microbial assemblages were influenced by myriad factors that shape their composition and structure, but the majority of organ-associated taxa originated in the soil, and their distribution reflected the influence of highly localized biogeographic factors and vineyard management. PMID:25805735

  8. An Automated Field Phenotyping Pipeline for Application in Grapevine Research

    PubMed Central

    Kicherer, Anna; Herzog, Katja; Pflanz, Michael; Wieland, Markus; Rüger, Philipp; Kecke, Steffen; Kuhlmann, Heiner; Töpfer, Reinhard

    2015-01-01

    Due to its perennial nature and size, the acquisition of phenotypic data in grapevine research is almost exclusively restricted to the field and done by visual estimation. This kind of evaluation procedure is limited by time, cost and the subjectivity of records. As a consequence, objectivity, automation and more precision of phenotypic data evaluation are needed to increase the number of samples, manage grapevine repositories, enable genetic research of new phenotypic traits and, therefore, increase the efficiency in plant research. In the present study, an automated field phenotyping pipeline was setup and applied in a plot of genetic resources. The application of the PHENObot allows image acquisition from at least 250 individual grapevines per hour directly in the field without user interaction. Data management is handled by a database (IMAGEdata). The automatic image analysis tool BIVcolor (Berries in Vineyards-color) permitted the collection of precise phenotypic data of two important fruit traits, berry size and color, within a large set of plants. The application of the PHENObot represents an automated tool for high-throughput sampling of image data in the field. The automated analysis of these images facilitates the generation of objective and precise phenotypic data on a larger scale. PMID:25730485

  9. Preliminary attempts to biolistic inoculation of grapevine fanleaf virus.

    PubMed

    Valat, L; Mode, F; Mauro, M C; Burrus, M

    2003-03-01

    Biolistics has been studied to inoculate grapevine fanleaf virus (GFLV), a Nepovirus, to its natural woody host, Vitis sp., and its herbaceous host, Chenopodium quinoa. At first, bombardment conditions for in vitro and greenhouse grown plants were set using the uidA reporter gene. The infectious feature of the cartridges was then evaluated by studying infection of C. quinoa plants. Systemic infection was obtained with either GFLV particles or RNA extracts in experimental conditions which gave also the highest transient uidA gene expression. Concerning grapevine, our results indicate that extrapolation to this plant is difficult. In only 1 out of 8 independent bombardment experiments done with GFLV and 41B, we were able to detect the virus in freshly bombarded leaves. Similarly, later after bombardment, Pol mRNAs were detected once, at days 7 and 14 only. Incubating the plants in darkness, as suggested in the literature, or using Rupestris Saint Georges, an indicator for GFLV presence, did not yield any improvement. Finely, our observations suggest that detection of GFLV in bombarded grapevine tissues by immunological or molecular techniques remains a limiting factor, probably due to an excess of inhibitory compounds released during the biolistic process.

  10. The soil microbiome influences grapevine-associated microbiota

    DOE PAGES

    Zarraonaindia, Iratxe; Owens, Sarah M.; Weisenhorn, Pamela; ...

    2015-03-24

    Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cultivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterialmore » reservoir. A subset of soil microorganisms, including root colonizers significantly enriched in plant growth-promoting bacteria and related functional genes, were selected by the grapevine. In addition to plant selective pressure, the structure of soil and root microbiota was significantly influenced by soil pH and C:N ratio, and changes in leaf- and grape-associated microbiota were correlated with soil carbon and showed interannual variation even at small spatial scales. Diazotrophic bacteria, e.g., Rhizobiaceae and Bradyrhizobium spp., were significantly more abundant in soil samples and root samples of specific vineyards. Vine-associated microbial assemblages were influenced by myriad factors that shape their composition and structure, but the majority of organ-associated taxa originated in the soil, and their distribution reflected the influence of highly localized biogeographic factors and vineyard management.« less

  11. The soil microbiome influences grapevine-associated microbiota

    SciTech Connect

    Zarraonaindia, Iratxe; Owens, Sarah M.; Weisenhorn, Pamela; West, Kristin; Hampton-Marcell, Jarrad; Lax, Simon; Bokulich, Nicholas A.; Mills, David A.; Martin, Gilles; Taghavi, Safiyh; van der Lelie, Daniel; Gilbert, Jack A.

    2015-03-24

    Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cultivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterial reservoir. A subset of soil microorganisms, including root colonizers significantly enriched in plant growth-promoting bacteria and related functional genes, were selected by the grapevine. In addition to plant selective pressure, the structure of soil and root microbiota was significantly influenced by soil pH and C:N ratio, and changes in leaf- and grape-associated microbiota were correlated with soil carbon and showed interannual variation even at small spatial scales. Diazotrophic bacteria, e.g., Rhizobiaceae and Bradyrhizobium spp., were significantly more abundant in soil samples and root samples of specific vineyards. Vine-associated microbial assemblages were influenced by myriad factors that shape their composition and structure, but the majority of organ-associated taxa originated in the soil, and their distribution reflected the influence of highly localized biogeographic factors and vineyard management.

  12. Genetics of downy mildew resistance in two interspecific hybrid grapevine families

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to lack of co-evolution with Plasmopara viticola, the causal pathogen of grapevine downy mildew, nearly all cultivated grapevines are susceptible to downy mildew, whereas their wild relatives are frequently resistant. In order to find QTL for downy mildew resistance and susceptibility, we perfor...

  13. Grapevines undergo varying shifts in secondary metabolic profiles when infected with Xylella fastidiosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pierce’s disease (PD) is a devastating disease of grapevine caused by the bacterial pathogen Xylella fastidiosa (Xf). Key to the development and optimization of PD-tolerant grape cultivars is improved understanding about how grapevines defend themselves against Xf. This study complements histologica...

  14. Grapevine phenolics in xylem sap and tissues are significantly altered during infection by Xylella fastidiosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pierce’s disease of grapevine (PD), caused by the bacterial pathogen Xylella fastidiosa (X.f.), remains a serious problem for grape production in California and elsewhere. This research examined induction of phenolic compounds in grapevines (cv. Thompson Seedless) infected with X.f. over a six month...

  15. Biological, molecular, and serological studies of a novel strain of grapevine leafroll associated virus 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In California, a novel closterovirus was detected in ‘Redglobe’ grapevine, associated with graft incompatibility and given a trivial name “Grapevine rootstock stem lesion associated virus (GRSLaV)”. The virus was lethal on test plants growing on rootstocks: 1616C, 5BB, 5C, 3309C and 1103 P, whereas ...

  16. Effect of detergent on the quantification of grapevine downy mildew Sporangia from leaf discs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapevine downy mildew (DM), caused by the oomycete Plasmopara viticola (Berk. & Curt.) Berlese & de Toni, is a major disease, especially in humid viticultural areas. Development of resistant cultivars is an important objective for grapevine breeding. In order to establish a reliable and inexpensive...

  17. Epigenetic repressor-like genes are differentially regulated during grapevine (Vitis vinifera L.) development.

    PubMed

    Almada, Rubén; Cabrera, Nuri; Casaretto, José A; Peña-Cortés, Hugo; Ruiz-Lara, Simón; González Villanueva, Enrique

    2011-10-01

    Grapevine sexual reproduction involves a seasonal separation between inflorescence primordia (flowering induction) and flower development. We hypothesized that a repression mechanism implicating epigenetic changes could play a role in the seasonal separation of these two developmental processes in grapevine. Therefore, the expression of five grapevine genes with homology to the Arabidopsis epigenetic repressor genes FERTILIZATION INDEPENDENT ENDOSPERM (FIE), EMBRYONIC FLOWER 2 (EMF2), CURLY LEAF (CLF), MULTICOPY SUPPRESSOR OF IRA 1 (MSI1) and SWINGER (SWN) was analyzed during the development of buds and vegetative and reproductive organs. During bud development, the putative grapevine epigenetic repressor genes VvCLF, VvEMF2, VvMSI1, VvSWN and VvFIE are mainly expressed in latent buds at the flowering induction period, but also detected during bud burst and inflorescence/flower development. The overlapping expression patterns of grapevine PcG-like genes in buds suggest that chromatin remodeling mechanisms could be operating during grapevine bud development for controlling processes such as seasonal flowering, dormancy and bud burst. Furthermore, the expression of grapevine PcG-like genes was also detected in fruits and vegetative organs, suggesting that epigenetic changes could be at the basis of the regulation of various proliferation-differentiation cell transitions that occur during grapevine development.

  18. Evaluation of grapevine as a host for the glassy-winged sharpshooter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapevine was evaluated as a feeding and oviposition host for the glassy-winged sharpshooter. Two sets of experiments were conducted. The first set compared performance and preference of glassy-winged sharpshooter females for grapevine (cv. Chardonnay) versus cowpea (Vigna unguiculata cultivar black...

  19. Genome wide transcriptional profile analysis of Vitis amurensis and Vitis vinifera in response to cold stress.

    PubMed

    Xin, Haiping; Zhu, Wei; Wang, Lina; Xiang, Yue; Fang, Linchuan; Li, Jitao; Sun, Xiaoming; Wang, Nian; Londo, Jason P; Li, Shaohua

    2013-01-01

    Grape is one of the most important fruit crops worldwide. The suitable geographical locations and productivity of grapes are largely limited by temperature. Vitis amurensis is a wild grapevine species with remarkable cold-tolerance, exceeding that of Vitis vinifera, the dominant cultivated species of grapevine. However, the molecular mechanisms that contribute to the enhanced freezing tolerance of V. amurensis remain unknown. Here we used deep sequencing data from restriction endonuclease-generated cDNA fragments to evaluate the whole genome wide modification of transcriptome of V. amurensis under cold treatment. Vitis vinifera cv. Muscat of Hamburg was used as control to help investigate the distinctive features of V. amruensis in responding to cold stress. Approximately 9 million tags were sequenced from non-cold treatment (NCT) and cold treatment (CT) cDNA libraries in each species of grapevine sampled from shoot apices. Alignment of tags into V. vinifera cv. Pinot noir (PN40024) annotated genome identified over 15,000 transcripts in each library in V. amruensis and more than 16,000 in Muscat of Hamburg. Comparative analysis between NCT and CT libraries indicate that V. amurensis has fewer differential expressed genes (DEGs, 1314 transcripts) than Muscat of Hamburg (2307 transcripts) when exposed to cold stress. Common DEGs (408 transcripts) suggest that some genes provide fundamental roles during cold stress in grapes. The most robust DEGs (more than 20-fold change) also demonstrated significant differences between two kinds of grapevine, indicating that cold stress may trigger species specific pathways in V. amurensis. Functional categories of DEGs indicated that the proportion of up-regulated transcripts related to metabolism, transport, signal transduction and transcription were more abundant in V. amurensis. Several highly expressed transcripts that were found uniquely accumulated in V. amurensis are discussed in detail. This subset of unique candidate

  20. Genome Wide Transcriptional Profile Analysis of Vitis amurensis and Vitis vinifera in Response to Cold Stress

    PubMed Central

    Xin, Haiping; Zhu, Wei; Wang, Lina; Xiang, Yue; Fang, Linchuan; Li, Jitao; Sun, Xiaoming; Wang, Nian; Londo, Jason P.; Li, Shaohua

    2013-01-01

    Grape is one of the most important fruit crops worldwide. The suitable geographical locations and productivity of grapes are largely limited by temperature. Vitis amurensis is a wild grapevine species with remarkable cold-tolerance, exceeding that of Vitis vinifera, the dominant cultivated species of grapevine. However, the molecular mechanisms that contribute to the enhanced freezing tolerance of V. amurensis remain unknown. Here we used deep sequencing data from restriction endonuclease-generated cDNA fragments to evaluate the whole genome wide modification of transcriptome of V. amurensis under cold treatment. Vitis vinifera cv. Muscat of Hamburg was used as control to help investigate the distinctive features of V. amruensis in responding to cold stress. Approximately 9 million tags were sequenced from non-cold treatment (NCT) and cold treatment (CT) cDNA libraries in each species of grapevine sampled from shoot apices. Alignment of tags into V. vinifera cv. Pinot noir (PN40024) annotated genome identified over 15,000 transcripts in each library in V. amruensis and more than 16,000 in Muscat of Hamburg. Comparative analysis between NCT and CT libraries indicate that V. amurensis has fewer differential expressed genes (DEGs, 1314 transcripts) than Muscat of Hamburg (2307 transcripts) when exposed to cold stress. Common DEGs (408 transcripts) suggest that some genes provide fundamental roles during cold stress in grapes. The most robust DEGs (more than 20-fold change) also demonstrated significant differences between two kinds of grapevine, indicating that cold stress may trigger species specific pathways in V. amurensis. Functional categories of DEGs indicated that the proportion of up-regulated transcripts related to metabolism, transport, signal transduction and transcription were more abundant in V. amurensis. Several highly expressed transcripts that were found uniquely accumulated in V. amurensis are discussed in detail. This subset of unique candidate

  1. Revisiting Vitis vinifera Subtilase Gene Family: A Possible Role in Grapevine Resistance against Plasmopara viticola

    PubMed Central

    Figueiredo, Joana; Costa, Gonçalo J.; Maia, Marisa; Paulo, Octávio S.; Malhó, Rui; Sousa Silva, Marta; Figueiredo, Andreia

    2016-01-01

    Subtilisin-like proteases, also known as subtilases, are a very diverse family of serine peptidases present in many organisms. In grapevine, there are hints of the involvement of subtilases in defense mechanisms, but their role is not yet understood. The first characterization of the subtilase gene family was performed in 2014. However, simultaneously, the grapevine genome was re-annotated and several sequences were re-annotated or retrieved. We have performed a re-characterization of this family in grapevine and identified 82 genes coding for 97 putative proteins, as result of alternative splicing. All the subtilases identified present the characteristic S8 peptidase domain and the majority of them also have a pro-domain I9 inhibitor, a protease-associated (PA) domain, and a signal peptide for targeting to the secretory pathway. Phylogenetic studies revealed six subtilase groups denominated VvSBT1 to VvSBT6. As several evidences have highlighted the participation of plant subtilases in response to biotic stimulus, we have investigated subtilase participation in grapevine resistance to Plasmopara viticola, the causative agent of downy mildew. Fourteen grapevine subtilases presenting either high homology to P69C from tomato, SBT3.3 from Arabidopsis thaliana or located near the Resistance to P. viticola (RPV) locus were selected. Expression studies were conducted in the grapevine-P. viticola pathosystem with resistant and susceptible cultivars. Our results may indicate that some of grapevine subtilisins are potentially participating in the defense response against this biotrophic oomycete. PMID:27933087

  2. Genetic variability of natural populations of Grapevine leafroll-associated virus 2 in Pacific Northwest vineyards.

    PubMed

    Jarugula, Sridhar; Alabi, Olufemi J; Martin, Robert R; Naidu, Rayapati A

    2010-07-01

    Genetic variability of field populations of Grapevine leafroll-associated virus 2 (GLRaV-2) in Pacific Northwest (PNW) vineyards was characterized by sequencing the entire coat protein (CP) and a portion of the heat-shock protein-70 homolog (HSP70h) genes. Phylogenetic analysis of CP and HSP70h nucleotide sequences obtained in this study and corresponding sequences from GenBank revealed segregation of GLRaV-2 isolates into six lineages with virus isolates from PNW distributed in 'PN', 'H4', and 'RG' lineages. An estimation of the ratio of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site indicated that different selection pressures may be acting on the two genomic regions encoding proteins with distinct functions. Multiple alignments of CP amino acid sequences showed lineage-specific differences. Enzyme-linked immunosorbent assay results indicated that GLRaV-2-specific antibodies from a commercial source are unable to reliably detect GLRaV-2 isolates in the RG lineage, thereby limiting antibody-based diagnosis of all GLRaV-2 isolates currently found in PNW vineyards. A protocol based on reverse-transcription polymerase chain reaction and restriction fragment length polymorphism analysis was developed for differentiating GLRaV-2 isolates belonging to the three lineages present in the region. The taxonomic status of GLRaV-2 is discussed in light of the current knowledge of global genetic diversity of the virus.

  3. Real-time multiplex RT-PCR for the simultaneous detection of the five main grapevine viruses.

    PubMed

    López-Fabuel, Irene; Wetzel, Thierry; Bertolini, Edson; Bassler, Alexandra; Vidal, Eduardo; Torres, Luis B; Yuste, Alberto; Olmos, Antonio

    2013-03-01

    A real-time multiplex RT-PCR has been developed for the simultaneous detection and identification of the major RNA viruses that infect grapevines (Grapevine fanleaf virus, Arabis mosaic virus, Grapevine leafroll-associated virus 1, Grapevine leafroll-associated virus 3 and Grapevine fleck virus). Serial dilutions of infected plant extracts were tested using the new method, and the results were compared with those obtained using a commercially available ELISA and real-time singleplex RT-PCR. The two real-time RT-PCR versions detected up to the same level of dilution and were at least 10,000 times more sensitive than the ELISA. In addition, 158 grapevine plants collected in a survey of the Protected Designation of Origin in Alicante, Spain were compared using the three methods. The results of the molecular methods were very similar, with only four discordant results, and both were able to detect many more infected plants than the ELISA. The high prevalence of Grapevine fleck virus, Grapevine leafroll-associated virus 3 and Grapevine fanleaf virus suggests that the main pathways of viral introduction are infected plant material that has escaped controls and/or uncontrolled traffic of propagating plant material. Real-time multiplex RT-PCR could be used to facilitate a better control of grapevine viruses.

  4. Genome-Wide Identification, Evolution and Functional Divergence of MYB Transcription Factors in Chinese White Pear (Pyrus bretschneideri).

    PubMed

    Li, Xiaolong; Xue, Cheng; Li, Jiaming; Qiao, Xin; Li, Leiting; Yu, Li'ang; Huang, Yuhua; Wu, Jun

    2016-04-01

    The MYB superfamily is large and functionally diverse in plants. To date, MYB family genes have not yet been identified in Chinese white pear (Pyrus bretschneideri), and their functions remain unclear. In this study, we identified 231 genes as candidate MYB genes and divided them into four subfamilies. The R2R3-MYB (PbrMYB) family shared an R2R3 domain with 104 amino acid residues, including five conserved tryptophan residues. The Pbr MYB family was divided into 37 functional subgroups including 33 subgroups which contained both MYB genes of Rosaceae plants and AtMYB genes, and four subgroups which included only Rosaceae MYB genes or AtMYB genes. PbrMYB genes with similar functions clustered into the same subgroup, indicating functional conservation. We also found that whole-genome duplication (WGD) and dispersed duplications played critical roles in the expansion of the MYB family. The 87 Pbr MYB duplicated gene pairs dated back to the two WGD events. Purifying selection was the primary force driving Pbr MYB gene evolution. The 15 gene pairs presented 1-7 codon sites under positive selection. A total of 147 expressed genes were identified from RNA-sequencing data of fruit, and six Pbr MYB members in subgroup C1 were identified as important candidate genes in the regulation of lignin synthesis by quantitative real-time PCR analysis. Further correlation analysis revealed that six PbrMYBs were significantly correlated with five structural gene families (F5H, HCT, CCR, POD and C3'H) in the lignin pathway. The phylogenetic, evolution and expression analyses of the MYB gene family in Chinese white pear establish a solid foundation for future comprehensive functional analysis of Pbr MYB genes.

  5. Characterization of target mRNAs for grapevine microRNAs with an integrated strategy of modified RLM-RACE, newly developed PPM-RACE and qPCRs.

    PubMed

    Wang, Chen; Han, Jian; Korir, Nicholas Kibet; Wang, Xicheng; Liu, Hong; Li, Xiaoying; Leng, Xiangpeng; Fang, Jinggui

    2013-07-01

    MicroRNAs (miRNAs) regulate target gene expression by mediating target gene cleavage or inhibition of translation at transcriptional and post-transcriptional levels in higher plants. Until now, many grapevine microRNAs (Vv-miRNAs) have been identified and quite a number of miRNA target genes were also verified by various analysis. However, global interaction of miRNAs with their target genes still remained to perform more research. We reported experimental validation of a number of miRNA target genes in table grapevine that had been previously identified by bioinformatics in our earlier studies. To verify more predicted target genes of Vv-miRNAs and elucidate the modes by which these Vv-miRNAs work on their target genes, 31 unverified potential target genes for 18 Vv-miRNAs were experimentally verified by a new integrated strategy employing a modified 5'-RLM-RACE (RNA ligase-mediated 5' rapid amplification of cDNA ends), 3'-PPM-RACE (poly(A) polymerase-mediated 3' rapid amplification of cDNA ends) and qRT-PCRs of cleavage products. The results showed that these Vv-miRNAs negatively regulated expression of their target messenger RNAs (mRNAs) through guiding corresponding target mRNA cleavage, of which about 94.4% Vv-miRNAs cleaved their target mRNAs mainly at the tenth nucleotide of 5'-end of miRNAs. Expression levels of both miRNAs and their target mRNAs in eight tissues exhibited inverse relationships, and expressions both of cleaved targets and miRNAs indicated a cleavage mode of Vv-miRNAs on their target genes. Our results confirm the importance of Vv-miRNAs in grapevine growth and development, and suggest more study on Vv-miRNAs and targets can enrich the knowledge of miRNA mediated-regulation in grapevine.

  6. Precision breeding of grapevine (Vitis vinifera L.) for improved traits.

    PubMed

    Gray, Dennis J; Li, Zhijian T; Dhekney, Sadanand A

    2014-11-01

    This review provides an overview of recent technological advancements that enable precision breeding to genetically improve elite cultivars of grapevine (Vitis vinifera L.). Precision breeding, previously termed "cisgenic" or "intragenic" genetic improvement, necessitates a better understanding and use of genomic resources now becoming accessible. Although it is now a relatively simple task to identify genetic elements and genes from numerous "omics" databases, the control of major agronomic and enological traits often involves the currently unknown participation of many genes and regulatory machineries. In addition, genetic evolution has left numerous vestigial genes and sequences without tangible functions. Thus, it is critical to functionally test each of these genetic entities to determine their real-world functionality or contribution to trait attributes. Toward this goal, several diverse techniques now are in place, including cell culture systems to allow efficient plant regeneration, advanced gene insertion techniques, and, very recently, resources for genomic analyses. Currently, these techniques are being used for high-throughput expression analysis of a wide range of grapevine-derived promoters and disease-related genes. It is envisioned that future research efforts will be extended to the study of promoters and genes functioning to enhance other important traits, such as fruit quality and vigor.

  7. Climate change impacts and adaptive strategies: lessons from the grapevine.

    PubMed

    Mosedale, Jonathan R; Abernethy, Kirsten E; Smart, Richard E; Wilson, Robert J; Maclean, Ilya M D

    2016-11-01

    The cultivation of grapevines for winemaking, known as viticulture, is widely cited as a climate-sensitive agricultural system that has been used as an indicator of both historic and contemporary climate change. Numerous studies have questioned the viability of major viticulture regions under future climate projections. We review the methods used to study the impacts of climate change on viticulture in the light of what is known about the effects of climate and weather on the yields and quality of vineyard harvests. Many potential impacts of climate change on viticulture, particularly those associated with a change in climate variability or seasonal weather patterns, are rarely captured. Key biophysical characteristics of viticulture are often unaccounted for, including the variability of grapevine phenology and the exploitation of microclimatic niches that permit successful cultivation under suboptimal macroclimatic conditions. We consider how these same biophysical characteristics permit a variety of strategies by which viticulture can adapt to changing climatic conditions. The ability to realize these strategies, however, is affected by uneven exposure to risks across the winemaking sector, and the evolving capacity for decision-making within and across organizational boundaries. The role grape provenance plays in shaping perceptions of wine value and quality illustrates how conflicts of interest influence decisions about adaptive strategies within the industry. We conclude by considering what lessons can be taken from viticulture for studies of climate change impacts and the capacity for adaptation in other agricultural and natural systems.

  8. Phytotoxins produced by fungi associated with grapevine trunk diseases.

    PubMed

    Andolfi, Anna; Mugnai, Laura; Luque, Jordi; Surico, Giuseppe; Cimmino, Alessio; Evidente, Antonio

    2011-12-01

    Up to 60 species of fungi in the Botryosphaeriaceae family, genera Cadophora, Cryptovalsa, Cylindrocarpon, Diatrype, Diatrypella, Eutypa, Eutypella, Fomitiporella, Fomitiporia, Inocutis, Phaeoacremonium and Phaeomoniella have been isolated from decline-affected grapevines all around the World. The main grapevine trunk diseases of mature vines are Eutypa dieback, the esca complex and cankers caused by the Botryospheriaceae, while in young vines the main diseases are Petri and black foot diseases. To understand the mechanism of these decline-associated diseases and the symptoms associated with them, the toxins produced by the pathogens involved in these diseases were isolated and characterised chemically and biologically. So far the toxins of only a small number of these decline fungi have been studied. This paper presents an overview of the toxins produced by the most serious of these vine wood pathogens: Eutypa lata, Phaeomoniella chlamydospora, Phaeoacremonium aleophilum and some taxa in the Botryosphaeriaceae family, and examines how these toxins produce decline symptoms. The chemical structure of these metabolites and in some cases their vivotoxin nature are also discussed.

  9. Mitochondria change dynamics and morphology during grapevine leaf senescence.

    PubMed

    Ruberti, Cristina; Barizza, Elisabetta; Bodner, Martina; La Rocca, Nicoletta; De Michele, Roberto; Carimi, Francesco; Lo Schiavo, Fiorella; Zottini, Michela

    2014-01-01

    Leaf senescence is the last stage of development of an organ and is aimed to its ordered disassembly and nutrient reallocation. Whereas chlorophyll gradually degrades during senescence in leaves, mitochondria need to maintain active to sustain the energy demands of senescing cells. Here we analysed the motility and morphology of mitochondria in different stages of senescence in leaves of grapevine (Vitis vinifera), by stably expressing a GFP (green fluorescent protein) reporter targeted to these organelles. Results show that mitochondria were less dynamic and markedly changed morphology during senescence, passing from the elongated, branched structures found in mature leaves to enlarged and sparse organelles in senescent leaves. Progression of senescence in leaves was not synchronous, since changes in mitochondria from stomata were delayed. Mitochondrial morphology was also analysed in grapevine cell cultures. Mitochondria from cells at the end of their growth curve resembled those from senescing leaves, suggesting that cell cultures might represent a useful model system for senescence. Additionally, senescence-associated mitochondrial changes were observed in plants treated with high concentrations of cytokinins. Overall, morphology and dynamics of mitochondria might represent a reliable senescence marker for plant cells.

  10. Genetically engineered resistance against grapevine chrome mosaic nepovirus.

    PubMed

    Brault, V; Candresse, T; le Gall, O; Delbos, R P; Lanneau, M; Dunez, J

    1993-01-01

    Nepoviruses are a group of isometric plant viruses with a genome divided between two-single-stranded, positive-sense, RNA molecules. They are usually transmitted by nematodes and a number of them have significant economic impact, especially in perennial crops such as grapevine and fruit trees. Like all other picorna-like viruses, nepoviruses express their coat protein (CP) as part of a larger polyprotein which is further processed by a virus-encoded protease, a feature which poses specific problems when trying to express the viral coat protein in transgenic plants. A hybrid gene, driving the high-level expression of the CP of grapevine chrome mosaic nepovirus (GCMV) has been constructed and transferred to the genome of tobacco plants. Progeny of CP-expressing transformants show resistance against GCMV. When compared to control plants, fewer inoculated plants become infected and those that become infected accumulate reduced levels of viral RNAs. This protection was also shown to be efficient when plants are inoculated with purified viral RNA.

  11. Grapevine Pathogenic Microorganisms: Understanding Infection Strategies and Host Response Scenarios

    PubMed Central

    Armijo, Grace; Schlechter, Rudolf; Agurto, Mario; Muñoz, Daniela; Nuñez, Constanza; Arce-Johnson, Patricio

    2016-01-01

    Grapevine (Vitis vinifera L.) is one of the most important fruit crop worldwide. Commercial cultivars are greatly affected by a large number of pathogenic microorganisms that cause diseases during pre- and/or post-harvest periods, affecting production, processing and export, along with fruit quality. Among the potential threats, we can find bacteria, fungi, oomycete, or viruses with different life cycles, infection mechanisms and evasion strategies. While plant–pathogen interactions are cycles of resistance and susceptibility, resistance traits from natural resources are selected and may be used for breeding purposes and for a sustainable agriculture. In this context, here we summarize some of the most important diseases affecting V. vinifera together with their causal agents. The aim of this work is to bring a comprehensive review of the infection strategies deployed by significant types of pathogens while understanding the host response in both resistance and susceptibility scenarios. New approaches being used to uncover grapevine status during biotic stresses and scientific-based procedures needed to control plant diseases and crop protection are also addressed. PMID:27066032

  12. Mitochondria Change Dynamics and Morphology during Grapevine Leaf Senescence

    PubMed Central

    Bodner, Martina; La Rocca, Nicoletta; De Michele, Roberto; Carimi, Francesco; Schiavo, Fiorella Lo; Zottini, Michela

    2014-01-01

    Leaf senescence is the last stage of development of an organ and is aimed to its ordered disassembly and nutrient reallocation. Whereas chlorophyll gradually degrades during senescence in leaves, mitochondria need to maintain active to sustain the energy demands of senescing cells. Here we analysed the motility and morphology of mitochondria in different stages of senescence in leaves of grapevine (Vitis vinifera), by stably expressing a GFP (green fluorescent protein) reporter targeted to these organelles. Results show that mitochondria were less dynamic and markedly changed morphology during senescence, passing from the elongated, branched structures found in mature leaves to enlarged and sparse organelles in senescent leaves. Progression of senescence in leaves was not synchronous, since changes in mitochondria from stomata were delayed. Mitochondrial morphology was also analysed in grapevine cell cultures. Mitochondria from cells at the end of their growth curve resembled those from senescing leaves, suggesting that cell cultures might represent a useful model system for senescence. Additionally, senescence-associated mitochondrial changes were observed in plants treated with high concentrations of cytokinins. Overall, morphology and dynamics of mitochondria might represent a reliable senescence marker for plant cells. PMID:25009991

  13. Heat stress in grapevine: the pros and cons of acclimation.

    PubMed

    Carvalho, Luísa C; Coito, João L; Colaço, Silvana; Sangiogo, Maurício; Amâncio, Sara

    2015-04-01

    Heat stress is a major limiting factor of grapevine production and quality. Acclimation and recovery are essential to ensure plant survival, and the recovery mechanisms can be independent of the heat response mechanisms. An experimental set up with and without acclimation to heat followed by recovery [stepwise acclimation and recovery (SAR) and stepwise recovery (SR), respectively] was applied to two grapevine varieties, Touriga Nacional (TN), and Trincadeira (TR), with different tolerance to abiotic stress. Major differences were found between leaves of SAR and SR, especially after recovery; in SAR, almost all parameters returned to basal levels while in SR they remained altered. Acclimation led to a swifter and short-term antioxidative response, affecting the plant to a lesser extent than SR. Significant differences were found among varieties: upon stress, TN significantly increased ascorbate and glutathione reduction levels, boosting the cell's redox-buffering capacity, while TR needed to synthesize both metabolites, its response being insufficient to keep the redox state at working levels. TR was affected by stress for a longer period and the up-regulation pattern of antioxidative stress genes was more obvious. In TN, heat shock proteins were significantly induced, but the canonical heat-stress gene signature was not evident probably because no shutdown of the housekeeping metabolism was needed.

  14. Phytotoxins Produced by Fungi Associated with Grapevine Trunk Diseases

    PubMed Central

    Andolfi, Anna; Mugnai, Laura; Luque, Jordi; Surico, Giuseppe; Cimmino, Alessio; Evidente, Antonio

    2011-01-01

    Up to 60 species of fungi in the Botryosphaeriaceae family, genera Cadophora, Cryptovalsa, Cylindrocarpon, Diatrype, Diatrypella, Eutypa, Eutypella, Fomitiporella, Fomitiporia, Inocutis, Phaeoacremonium and Phaeomoniella have been isolated from decline-affected grapevines all around the World. The main grapevine trunk diseases of mature vines are Eutypa dieback, the esca complex and cankers caused by the Botryospheriaceae, while in young vines the main diseases are Petri and black foot diseases. To understand the mechanism of these decline-associated diseases and the symptoms associated with them, the toxins produced by the pathogens involved in these diseases were isolated and characterised chemically and biologically. So far the toxins of only a small number of these decline fungi have been studied. This paper presents an overview of the toxins produced by the most serious of these vine wood pathogens: Eutypa lata, Phaeomoniella chlamydospora, Phaeoacremonium aleophilum and some taxa in the Botryosphaeriaceae family, and examines how these toxins produce decline symptoms. The chemical structure of these metabolites and in some cases their vivotoxin nature are also discussed. PMID:22295177

  15. Genetic structure of the fungal grapevine pathogen Eutypa lata from four continents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The generalist ascomycete fungus Eutypa lata causes Eutypa dieback of grapevine (Vitis vinifera) worldwide. To decipher the cosmopolitan distribution of this fungus, the population genetic structure of 17 geographic samples was investigated from four continental regions (Australia, California, Europ...

  16. Genetic structure of the fungal grapevine pathogen Eutypa lata from four continents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deciphering the geographic origins of pathogens and elucidating the population biology of these microscopic organisms are necessary steps to establish effective disease-control strategies. The generalist ascomycete fungus Eutypa lata causes Eutypa dieback of grapevine (Vitis vinifera) worldwide. To ...

  17. Water stress exacerbates the severity of Botryosphaeria dieback in grapevines infected by Neofusicoccum parvum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botryosphaeria dieback (causal fungus Neofusicoccum parvum) is a detrimental grapevine trunk disease, causing internal wood degradation, killing shoots, and reducing yields. We examined the interactive effects of drought and N. parvum infection, common vineyard stresses, on wood-lesion development. ...

  18. Wood-rotting basidiomycetes associated with grapevine trunk diseases in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapevine trunk diseases Esca, Botryosphaeria dieback, Eutypa dieback, and Phomopsis dieback impact vineyards in all major grape-growing regions of the world. The causal pathogens (Phaeomoniella chlamydospora and Phaeoacremonium minimum, Neofusicoccum parvum, Eutypa lata, and Diaporthe ampelina, res...

  19. Near-Complete Genome Sequence of Grapevine Fabavirus, a Novel Putative Member of the Genus Fabavirus

    PubMed Central

    Al Rwahnih, Maher; Alabi, Olufemi J.; Westrick, Nathaniel M.; Golino, Deborah

    2016-01-01

    A novel virus-like sequence from grapevine was identified by Illumina sequencing. The genomic organization was most similar to that of members of the genus Fabavirus. Polyproteins RNA-1 and RNA-2 of the virus tentatively named grapevine fabavirus (GFabV) shared 34 to 23% sequence identities with Broad bean wilt virus 2 (BBWV2), respectively. GFabV was successfully graft transmitted to Vitis vinifera cv. Cabernet Franc. PMID:27445385

  20. Grapevine red blotch-associated virus is Present in Free-Living Vitis spp. Proximal to Cultivated Grapevines.

    PubMed

    Perry, Keith L; McLane, Heather; Hyder, Muhammad Z; Dangl, Gerald S; Thompson, Jeremy R; Fuchs, Marc F

    2016-06-01

    Red blotch is an emerging disease of grapevine associated with grapevine red blotch-associated virus (GRBaV). The virus spreads with infected planting stocks but no vector of epidemiological significance has been conclusively identified. A vineyard block of red-blotch-affected Vitis vinifera 'Cabernet franc' clone 214 was observed in California, with a clustering of infected, symptomatic vines focused along one edge of the field proximal to a riparian habitat with free-living Vitis spp. No genetic heterogeneity was observed in a 587-nucleotide region of the GRBaV genome in a population of 44 Cabernet franc clone 214 isolates. By contrast, genetic differences were observed in isolates from other cultivars and clones growing in adjacent blocks. GRBaV was confirmed infecting four free-living vines, two of which were shown to be V. californica × V. vinifera hybrids. The genomes of three free-living GRBaV vine isolates and seven from V. vinifera cultivars were compared; free-living vine isolates were shown to be more similar to each other and a 'Merlot' isolate than to the other cultivated vine isolates. The finding that GRBaV is present in free-living Vitis spp. indicates the virus can be spread by natural (nonhuman-mediated) means, and we hypothesize that in-field spread of GRBaV is occurring.

  1. Dynamics and Reversibility of the DNA Methylation Landscape of Grapevine Plants (Vitis vinifera) Stressed by In Vitro Cultivation and Thermotherapy.

    PubMed

    Baránek, Miroslav; Čechová, Jana; Raddová, Jana; Holleinová, Věra; Ondrušíková, Eva; Pidra, Miroslav

    2015-01-01

    There is relatively little information concerning long-term alterations in DNA methylation following exposure of plants to environmental stress. As little is known about the ratio of non-heritable changes in DNA methylation and mitotically-inherited methylation changes, dynamics and reversibility of the DNA methylation states were investigated in grapevine plants (Vitis vinifera) stressed by in vitro cultivation. It was observed that significant part of induced epigenetic changes could be repeatedly established by exposure to particular planting and stress conditions. However, once stress conditions were discontinued, many methylation changes gradually reverted and plants returned to epigenetic states similar to those of maternal plants. In fact, in the period of one to three years after in vitro cultivation it was difficult to distinguish the epigenetic states of somaclones and maternal plants. Forty percent of the observed epigenetic changes disappeared within a year subsequent to termination of stress conditions ending and these probably reflect changes caused by transient and reversible stress-responsive acclimation mechanisms. However, sixty percent of DNA methylation diversity remained after 1 year and probably represents mitotically-inherited epimutations. Sequencing of regions remaining variable between maternal and regenerant plants revealed that 29.3% of sequences corresponded to non-coding regions of grapevine genome. Eight sequences (19.5%) corresponded to previously identified genes and the remaining ones (51.2%) were annotated as "hypothetical proteins" based on their similarity to genes described in other species, including genes likely to undergo methylation changes following exposure to stress (V. vinifera gypsy-type retrotransposon Gret1, auxin-responsive transcription factor 6-like, SAM-dependent carboxyl methyltransferase).

  2. Dynamics and Reversibility of the DNA Methylation Landscape of Grapevine Plants (Vitis vinifera) Stressed by In Vitro Cultivation and Thermotherapy

    PubMed Central

    Baránek, Miroslav; Čechová, Jana; Raddová, Jana; Holleinová, Věra; Ondrušíková, Eva

    2015-01-01

    There is relatively little information concerning long-term alterations in DNA methylation following exposure of plants to environmental stress. As little is known about the ratio of non-heritable changes in DNA methylation and mitotically-inherited methylation changes, dynamics and reversibility of the DNA methylation states were investigated in grapevine plants (Vitis vinifera) stressed by in vitro cultivation. It was observed that significant part of induced epigenetic changes could be repeatedly established by exposure to particular planting and stress conditions. However, once stress conditions were discontinued, many methylation changes gradually reverted and plants returned to epigenetic states similar to those of maternal plants. In fact, in the period of one to three years after in vitro cultivation it was difficult to distinguish the epigenetic states of somaclones and maternal plants. Forty percent of the observed epigenetic changes disappeared within a year subsequent to termination of stress conditions ending and these probably reflect changes caused by transient and reversible stress-responsive acclimation mechanisms. However, sixty percent of DNA methylation diversity remained after 1 year and probably represents mitotically-inherited epimutations. Sequencing of regions remaining variable between maternal and regenerant plants revealed that 29.3% of sequences corresponded to non-coding regions of grapevine genome. Eight sequences (19.5%) corresponded to previously identified genes and the remaining ones (51.2%) were annotated as “hypothetical proteins” based on their similarity to genes described in other species, including genes likely to undergo methylation changes following exposure to stress (V. vinifera gypsy-type retrotransposon Gret1, auxin-responsive transcription factor 6-like, SAM-dependent carboxyl methyltransferase). PMID:25973746

  3. Use of the VvMybA1 gene for non-destructive quantification of promoter activity via color histogram analysis in grapevine (Vitis vinifera) and tobacco.

    PubMed

    Li, Zhijian T; Dhekney, Sadanand A; Gray, Dennis J

    2011-10-01

    We report the development of a convenient plant-based reporter system to analyze promoters and facilitate selection of genetically engineered plants. The VvMybA1 gene of grapevine (Vitis vinifera L.) regulates the last metabolic step of anthocyanin biosynthesis and its ectopic expression leads to anthocyanin production in otherwise non-pigmented cells. To develop an anthocyanin-based quantitative reporter system, the VvMybA1 gene was isolated from V. vinifera 'Merlot' and placed under control of three promoters to test its ability to distinguish different activity levels. Promoters included a double enhanced CaMV35S (d35S) promoter, a double enhanced CsVMV (dCsVMV) promoter or a bi-directional dual promoter (BDDP), resulting in transformation vectors DAT, CAT and DEAT, respectively. These vectors were introduced into grapevine and tobacco via Agrobacterium-mediated transformation for transient and stable expression analysis. A linear relationship between the mean red brightness (MRB) and optical density (OD) values with a 0.99 regression coefficient was identified in a dilution series of anthocyanin, thus allowing the use of histogram data for non-destructive and real-time assessment of transcriptional activity. Results of histogram-based analysis of color images from transformed grapevine somatic embryos (SE) and various tissues of transgenic tobacco showed a consistent six to sevenfold promoter activity increase of DEAT over DAT. This expression increase was verified by spectroscopic measurement of anthocyanin concentrations in sepal tissue of transgenic tobacco plants. These results were congruent with previously findings of promoter activity derived from GUS fluorometric assay, thus demonstrating for the first time that the VvMybA1 gene could offer a simple, versatile and reliable plant-based alternative for quantitative promoter analysis in plants.

  4. Melatonin-Producing Endophytic Bacteria from Grapevine Roots Promote the Abiotic Stress-Induced Production of Endogenous Melatonin in Their Hosts

    PubMed Central

    Jiao, Jian; Ma, Yaner; Chen, Sha; Liu, Chonghuai; Song, Yuyang; Qin, Yi; Yuan, Chunlong; Liu, Yanlin

    2016-01-01

    Endophytes form symbiotic relationships with plants and constitute an important source of phytohormones and bioactive secondary metabolites for their hosts. To date, most studies of endophytes have focused on the influence of these microorganisms on plant growth and physiology and their role in plant defenses against biotic and abiotic stressors; however, to the best of our knowledge, the ability of endophytes to produce melatonin has not been reported. In the present study, we isolated and identified root-dwelling bacteria from three grapevine varieties and found that, when cultured under laboratory conditions, some of the bacteria strains secreted melatonin and tryptophan-ethyl ester. The endophytic bacterium Bacillus amyloliquefaciens SB-9 exhibited the highest level of in vitro melatonin secretion and also produced three intermediates of the melatonin biosynthesis pathway: 5-hydroxytryptophan, serotonin, and N-acetylserotonin. After B. amyloliquefaciens SB-9 colonization, the plantlets exhibited increased plant growth. Additionally, we found that, in grapevine plantlets exposed to salt or drought stress, colonization by B. amyloliquefaciens SB-9 increased the upregulation of melatonin synthesis, as well as that of its intermediates, but reduced the upregulation of grapevine tryptophan decarboxylase genes (VvTDCs) and a serotonin N-acetyltransferase gene (VvSNAT) transcription, when compared to the un-inoculated control. Colonization by B. amyloliquefaciens SB-9 was also able to counteract the adverse effects of salt- and drought-induced stress by reducing the production of malondialdehyde and reactive oxygen species (H2O2 and O2-) in roots. Therefore, our findings demonstrate the occurrence of melatonin biosynthesis in endophytic bacteria and provide evidence for a novel form of communication between beneficial endophytes and host plants via melatonin. PMID:27708652

  5. Whole genome amplification and microsatellite genotyping of herbarium DNA revealed the identity of an ancient grapevine cultivar

    NASA Astrophysics Data System (ADS)

    Malenica, Nenad; Šimon, Silvio; Besendorfer, Višnja; Maletić, Edi; Karoglan Kontić, Jasminka; Pejić, Ivan

    2011-09-01

    Reconstruction of the grapevine cultivation history has advanced tremendously during the last decade. Identification of grapevine cultivars by using microsatellite DNA markers has mostly become a routine. The parentage of several renowned grapevine cultivars, like Cabernet Sauvignon and Chardonnay, has been elucidated. However, the assembly of a complete grapevine genealogy is not yet possible because missing links might no longer be in cultivation or are even extinct. This problem could be overcome by analyzing ancient DNA from grapevine herbarium specimens and other historical remnants of once cultivated varieties. Here, we present the first successful genotyping of a grapevine herbarium specimen and the identification of the corresponding grapevine cultivar. Using a set of nine grapevine microsatellite markers, in combination with a whole genome amplification procedure, we found the 90-year-old Tribidrag herbarium specimen to display the same microsatellite profile as the popular American cultivar Zinfandel. This work, together with information from several historical documents, provides a new clue of Zinfandel cultivation in Croatia as early as the beginning of fifteenth century, under the native name Tribidrag. Moreover, it emphasizes substantial information potential of existing grapevine and other herbarium collections worldwide.

  6. Environmental stress enhances biosynthesis of flavor precursors, S-3-(hexan-1-ol)-glutathione and S-3-(hexan-1-ol)-L-cysteine, in grapevine through glutathione S-transferase activation

    PubMed Central

    Kobayashi, Hironori; Takase, Hideki; Suzuki, Yumiko; Tanzawa, Fumiko; Takata, Ryoji; Fujita, Keiko; Kohno, Minako; Mochizuki, Mai; Suzuki, Shunji; Konno, Tomonori

    2011-01-01

    The biosynthesis of S-(3-hexan-1-ol)-glutathione (3MH-S-glut) and S-(3-hexan-l-ol)-L-cysteine (3MH-S-cys), which act as flavour precursors in wines, in Vitis vinifera grapes exposed to various environmental stress conditions is reported here. Ultraviolet (UV-C) irradiation, water deficit, and biological stimulation up-regulated 3MH-S-glut and 3MH-S-cys biosynthesis in grape leaves. 3MH-S-glut and 3MH-S-cys contents in grape berries were increased by cold shock, heat shock, UV-C irradiation, and biological stimulation. The results suggest that environmental stress enhances the biosynthesis of both flavour precursors in grapevine. The transcription of VvGST1, VvGST3, VvGST4, and GGT in grapevine exposed to the stress conditions was increased markedly compared with that in control grapevine. Also, UV irradiation increased GST (glutathione S-transferase) and GGT (γ-glutamyl transferase) enzyme activities in grape berries. Recombinant VvGST3 and VvGST4, but not VvGST1, mediated the synthesis of 3MH-S-glut from reduced glutathione and trans-2-hexenal in vitro. The enzymatic mediation of flavour precursor production is a novel function of plant GSTs and may result in the detoxification of damaged grape cells under stress conditions. PMID:21115666

  7. New pheromone components of the grapevine moth Lobesia botrana.

    PubMed

    Witzgall, Peter; Tasin, Marco; Buser, Hans-Ruedi; Wegner-Kiss, Gertrud; Mancebón, Vicente S Marco; Ioriatti, Claudio; Bäckman, Anna-Carin; Bengtsson, Marie; Lehmann, Lutz; Francke, Wittko

    2005-12-01

    Analysis of extracts of sex pheromone glands of grapevine moth females Lobesia botrana showed three previously unidentified compounds, (E)-7-dodecenyl acetate and the (E,E)- and (Z,E)-isomers of 7,9,11-dodecatrienyl acetate. This is the first account of a triply unsaturated pheromone component in a tortricid moth. The monoenic acetate (E)-7-dodecenyl acetate and the trienic acetate (7Z,9E,11)-dodecatrienyl acetate significantly enhanced responses of males to the main pheromone compound, (7E,9Z)-7,9-dodecadienyl acetate, in the wind tunnel. The identification of sex pheromone synergists in L. botrana may be of practical importance for the development of integrated pest management systems.

  8. Grapevine under deficit irrigation: hints from physiological and molecular data

    PubMed Central

    Chaves, M. M.; Zarrouk, O.; Francisco, R.; Costa, J. M.; Santos, T.; Regalado, A. P.; Rodrigues, M. L.; Lopes, C. M.

    2010-01-01

    Background A large proportion of vineyards are located in regions with seasonal drought (e.g. Mediterranean-type climates) where soil and atmospheric water deficits, together with high temperatures, exert large constraints on yield and quality. The increasing demand for vineyard irrigation requires an improvement in the efficiency of water use. Deficit irrigation has emerged as a potential strategy to allow crops to withstand mild water stress with little or no decreases of yield, and potentially a positive impact on fruit quality. Understanding the physiological and molecular bases of grapevine responses to mild to moderate water deficits is fundamental to optimize deficit irrigation management and identify the most suitable varieties to those conditions. Scope How the whole plant acclimatizes to water scarcity and how short- and long-distance chemical and hydraulic signals intervene are reviewed. Chemical compounds synthesized in drying roots are shown to act as long-distance signals inducing leaf stomatal closure and/or restricting leaf growth. This explains why some plants endure soil drying without significant changes in shoot water status. The control of plant water potential by stomatal aperture via feed-forward mechanisms is associated with ‘isohydric’ behaviour in contrast to ‘anysohydric’ behaviour in which lower plant water potentials are attained. This review discusses differences in this respect between grapevines varieties and experimental conditions. Mild water deficits also exert direct and/or indirect (via the light environment around grape clusters) effects on berry development and composition; a higher content of skin-based constituents (e.g. tannins and anthocyanins) has generally being reported. Regulation under water deficit of genes and proteins of the various metabolic pathways responsible for berry composition and therefore wine quality are reviewed. PMID:20299345

  9. Pseudococcus maritimus (Hemiptera: Pseudococcidae) and Parthenolecanium corni (Hemiptera: Coccidae) are capable of transmitting grapevine leafroll-associated virus 3 between Vitis x labruscana and Vitis vinifera.

    PubMed

    Bahder, B W; Poojari, S; Alabi, O J; Naidu, R A; Walsh, D B

    2013-12-01

    The grape mealybug, Pseudococcus maritimus (Ehrhorn), and European fruit lecanium scale, Parthenolecanium corni (Bouché), are the predominant species of Coccoidea in Washington State vineyards. The grape mealybug has been established as a vector of Grapevine leafroll-associated virus 3 (GLRaV-3) between wine grape (Vitis vinifera L.) cultivars, elevating its pest status. The objective of this study was to determine if GLRaV-3 could be transmitted between Vitis x labruscana L. and V. vinifera by the grape mealybug and scale insects. Three transmission experiments were conducted with regard to direction; from V. vinifera to V. x labruscana L., from V. x labruscana L. to V. x labruscana L., and from V. x labruscana L. to V. vinifera. Each experiment was replicated 15 times for each vector species. Crawlers (first-instars) of each vector species were allowed 1-wk acquisition and inoculation access periods. The identities of viral and vector species were confirmed by reverse transcription-polymerase chain reaction, cloning, and sequencing of species-specific DNA fragments. GLRaV-3 was successfully transmitted by both species in all experiments, although Ps. maritimus was a more efficient vector under our experimental conditions. To the best of our knowledge, this study represents the first documented evidence of interspecific transmission of GLRaV-3 between two disparate Vitis species. It also highlights the potential role of V. x labruscana L. in the epidemiology of grapevine leafroll disease as a symptomless source of GLRaV-3 inoculum.

  10. The Grapevine Uncharacterized Intrinsic Protein 1 (VvXIP1) Is Regulated by Drought Stress and Transports Glycerol, Hydrogen Peroxide, Heavy Metals but Not Water

    PubMed Central

    Conde, Carlos; Martins, Ana P.; Soveral, Graça; Chaumont, François; Delrot, Serge

    2016-01-01

    A MIP (Major Intrinsic Protein) subfamily called Uncharacterized Intrinsic Proteins (XIP) was recently described in several fungi and eudicot plants. In this work, we cloned a XIP from grapevine, VvXIP1, and agrobacterium-mediated transformation studies in Nicotiana benthamiana revealed that the encoded aquaporin shows a preferential localization at the endoplasmic reticulum membrane. Stopped-flow spectrometry in vesicles from the aqy-null yeast strain YSH1172 overexpressing VvXIP1 showed that VvXIP1 is unable to transport water but is permeable to glycerol. Functional studies with the ROS sensitive probe CM-H2DCFDA in intact transformed yeasts showed that VvXIP1 is also able to permeate hydrogen peroxide (H2O2). Drop test growth assays showed that besides glycerol and H2O2, VvXIP1 also transports boric acid, copper, arsenic and nickel. Furthermore, we found that VvXIP1 transcripts were abundant in grapevine leaves from field grown plants and strongly repressed after the imposition of severe water-deficit conditions in potted vines. The observed downregulation of VvXIP1 expression in cultured grape cells in response to ABA and salt, together with the increased sensitivity to osmotic stress displayed by the aqy-null yeast overexpressing VvXIP1, corroborates the role of VvXIP1 in osmotic regulation besides its involvement in H2O2 transport and metal homeostasis. PMID:27504956

  11. The high polyphenol content of grapevine cultivar tannat berries is conferred primarily by genes that are not shared with the reference genome.

    PubMed

    Da Silva, Cecilia; Zamperin, Gianpiero; Ferrarini, Alberto; Minio, Andrea; Dal Molin, Alessandra; Venturini, Luca; Buson, Genny; Tononi, Paola; Avanzato, Carla; Zago, Elisa; Boido, Eduardo; Dellacassa, Eduardo; Gaggero, Carina; Pezzotti, Mario; Carrau, Francisco; Delledonne, Massimo

    2013-12-01

    The grapevine (Vitis vinifera) cultivar Tannat is cultivated mainly in Uruguay for the production of high-quality red wines. Tannat berries have unusually high levels of polyphenolic compounds, producing wines with an intense purple color and remarkable antioxidant properties. We investigated the genetic basis of these important characteristics by sequencing the genome of the Uruguayan Tannat clone UY11 using Illumina technology, followed by a mixture of de novo assembly and iterative mapping onto the PN40024 reference genome. RNA sequencing data for genome reannotation were processed using a combination of reference-guided annotation and de novo transcript assembly, allowing 5901 previously unannotated or unassembled genes to be defined and resulting in the discovery of 1873 genes that were not shared with PN40024. Expression analysis showed that these cultivar-specific genes contributed substantially (up to 81.24%) to the overall expression of enzymes involved in the synthesis of phenolic and polyphenolic compounds that contribute to the unique characteristics of the Tannat berries. The characterization of the Tannat genome therefore indicated that the grapevine reference genome lacks many genes that appear to be relevant for the varietal phenotype.

  12. VvBOR1, the grapevine ortholog of AtBOR1, encodes an efflux boron transporter that is differentially expressed throughout reproductive development of Vitis vinifera L.

    PubMed

    Pérez-Castro, Ramón; Kasai, Koji; Gainza-Cortés, Felipe; Ruiz-Lara, Simón; Casaretto, José A; Peña-Cortés, Hugo; Tapia, Jaime; Fujiwara, Toru; González, Enrique

    2012-02-01

    Boron (B) is an essential micronutrient for normal development of roots, shoots and reproductive tissues in plants. Due to its role in the structure of rhamnogalacturonan II, a polysaccharide required for pollen tube growth, B deficiency has been associated with the occurrence of parthenocarpic seedless grapes in some varieties of Vitis vinifera L. Despite that, it is unclear how B is mobilized and accumulated in reproductive tissues. Here we describe the characterization of an efflux B transporter, VvBOR1, homolog to AtBOR1, which is involved in B xylem loading in Arabidopsis thaliana roots. VvBOR1-green fluorescent protein (GFP) fusion protein expressed in A. thaliana localizes in the proximal plasma membrane domain in root pericycle cells, and VvBOR1 overexpression restores the wild-type phenotype in A. thaliana bor1-3 mutant plants exposed to B deficiency. Complementation of a mutant yeast strain indicates that VvBOR1 corresponds to a B efflux transporter. Transcriptional analyses during grapevine reproductive development show that the VvBOR1 gene is preferentially expressed in flowers at anthesis and a direct correlation between the expression pattern and B content in grapes was established, suggesting the involvement of this transporter in B accumulation in grapevine berries.

  13. Vascular Occlusions in Grapevines with Pierce’s Disease Make Disease Symptom Development Worse1[OA

    PubMed Central

    Sun, Qiang; Sun, Yuliang; Walker, M. Andrew; Labavitch, John M.

    2013-01-01

    Vascular occlusions are common structural modifications made by many plant species in response to pathogen infection. However, the functional role(s) of occlusions in host plant disease resistance/susceptibility remains controversial. This study focuses on vascular occlusions that form in stem secondary xylem of grapevines (Vitis vinifera) infected with Pierce’s disease (PD) and the impact of occlusions on the hosts’ water transport and the systemic spread of the causal bacterium Xylella fastidiosa in infected vines. Tyloses are the predominant type of occlusion that forms in grapevine genotypes with differing PD resistances. Tyloses form throughout PD-susceptible grapevines with over 60% of the vessels in transverse sections of all examined internodes becoming fully blocked. By contrast, tylose development was mainly limited to a few internodes close to the point of inoculation in PD-resistant grapevines, impacting only 20% or less of the vessels. The extensive vessel blockage in PD-susceptible grapevines was correlated to a greater than 90% decrease in stem hydraulic conductivity, compared with an approximately 30% reduction in the stems of PD-resistant vines. Despite the systemic spread of X. fastidiosa in PD-susceptible grapevines, the pathogen colonized only 15% or less of the vessels in any internode and occurred in relatively small numbers, amounts much too small to directly block the vessels. Therefore, we concluded that the extensive formation of vascular occlusions in PD-susceptible grapevines does not prevent the pathogen’s systemic spread in them, but may significantly suppress the vines’ water conduction, contributing to PD symptom development and the vines’ eventual death. PMID:23292789

  14. Vascular occlusions in grapevines with Pierce's disease make disease symptom development worse.

    PubMed

    Sun, Qiang; Sun, Yuliang; Walker, M Andrew; Labavitch, John M

    2013-03-01

    Vascular occlusions are common structural modifications made by many plant species in response to pathogen infection. However, the functional role(s) of occlusions in host plant disease resistance/susceptibility remains controversial. This study focuses on vascular occlusions that form in stem secondary xylem of grapevines (Vitis vinifera) infected with Pierce's disease (PD) and the impact of occlusions on the hosts' water transport and the systemic spread of the causal bacterium Xylella fastidiosa in infected vines. Tyloses are the predominant type of occlusion that forms in grapevine genotypes with differing PD resistances. Tyloses form throughout PD-susceptible grapevines with over 60% of the vessels in transverse sections of all examined internodes becoming fully blocked. By contrast, tylose development was mainly limited to a few internodes close to the point of inoculation in PD-resistant grapevines, impacting only 20% or less of the vessels. The extensive vessel blockage in PD-susceptible grapevines was correlated to a greater than 90% decrease in stem hydraulic conductivity, compared with an approximately 30% reduction in the stems of PD-resistant vines. Despite the systemic spread of X. fastidiosa in PD-susceptible grapevines, the pathogen colonized only 15% or less of the vessels in any internode and occurred in relatively small numbers, amounts much too small to directly block the vessels. Therefore, we concluded that the extensive formation of vascular occlusions in PD-susceptible grapevines does not prevent the pathogen's systemic spread in them, but may significantly suppress the vines' water conduction, contributing to PD symptom development and the vines' eventual death.

  15. Host plant volatiles induce oriented flight behaviour in male European grapevine moths, Lobesia botrana.

    PubMed

    von Arx, Martin; Schmidt-Büsser, Daniela; Guerin, Patrick M

    2011-10-01

    The European grapevine moth Lobesia botrana relies on a female produced sex pheromone for long-distance mate finding. Grapevine moth males compete heavily during limited time windows for females. The aim of this study was to investigate the perception of host plant volatiles by grapevine moth males and whether such compounds elicit upwind oriented flights. We compared five host plant headspace extracts by means of gas chromatography linked electroantennogram (EAG) recording. We identified 12 common host plant volatiles (aliphatic esters, aldehydes, and alcohols, aromatic compounds and terpenes) that elicit EAG responses from grapevine moth males and that occur in at least three of the host plant volatile headspace extracts tested. Subsequently the behavioural response of grapevine moth males to four these compounds presented singly and in mixtures (1-hexanol, 1-octen-3-ol, (Z)-3-hexenyl acetate and (E)-β-caryophyllene) was recorded in a wind tunnel. Grapevine moth males engaged in upwind flights to all of four compounds when released singly at 10,000 pg/min and to all, except 1-octen-3-ol, when released at 100 pg/min. A blend of the four host plant volatiles released at 10,000 pg/min and mixed at a ratio based on the analysis of Vitis vinifera cv. Solaris volatile emissions attracted significantly more males than any single compound. Grapevine moth males perceive and respond to host plant volatiles at biologically relevant levels indicating that host plant volatiles figure as olfactory cues and that L. botrana males can discern places where the likelihood of encountering females is higher.

  16. Effects of Insect Origin, Gender, and Age on Transmission of Xylella fastidiosa to Grapevines by Homalodisca vitripennis (Hemiptera: Cicadellidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Homalodisca vitripennis (Germar) is an invasive insect vector in California, where it transmits the bacterium Xylella fastidiosa to grapevines and other crops. Transmission efficiency of X. fastidiosa to grapevines by male and female H. vitripennis originating from two geographically separated popul...

  17. Xylella fastidiosa infection of grapevines affects host secondary metabolite and defense-related protein levels within xylem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pierce’s disease of grapevine is a serious threat to grape production and is caused by the xylem-dwelling bacterial pathogen Xylella fastidiosa. Microscopy studies have documented morphological changes to grapevine xylem due to infection by X. fastidiosa. Comparatively, less is known about the bi...

  18. Detection of Grapevine leafroll-associated virus 7 using real-time PCR and conventional RT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapevine leafroll-associated virus 7 (GLRaV-7) is an unassigned member in the Closteroviridae family that was first recorded in an asymptomatic white-berried grapevine cultivar from Albania. In California, the virus has been detected in several cultivars including Chardonnay, Merlot, Pinot Noir, Em...

  19. Differential responses of grapevine rootstocks to water stress are associated with adjustments in fine root hydraulic physiology and suberization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water deficits are known to alter fine root structure and function, but little is known about how these responses contribute to differences in drought resistance across grapevine rootstocks. We studied how water deficit affects root anatomical and physiological characteristics in two grapevine root...

  20. Early-ripening grapevine cultivars for dry-on-vine (DOV) raisins on an open-gable trellis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Diamond Muscat’, ‘DOVine’, ‘Fiesta’, and ‘Selma Pete’ grapevines were evaluated to determine their suitability for making DOV raisins on an open gable trellis. The experiment was a split-plot, with training system, head, bilateral, or quadrilateral training, as the main plot, and grapevine cultiva...

  1. Arbuscule frequency in grapevine roots is more responsive to reduction in photosynthetic capacity than to increased levels of shoot phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated whether altering photosynthetic capacity or shoot P plays bigger role in regulating arbuscule abundance in fine roots of grapevine. Pinot noir grapevines were grown in an unsterilized vineyard soil and colonized by indigenous arbuscular mycorrhizal fungi (AMF) in two experiments where p...

  2. Analysis of interactions between heterologously produced bHLH and MYB proteins that regulate anthocyanin biosynthesis: quantitative interaction kinetics by Microscale Thermophoresis.

    PubMed

    Nemie-Feyissa, Dugassa; Heidari, Behzad; Blaise, Mickael; Lillo, Cathrine

    2015-03-01

    The two Arabidopsis basic-helix-loop-helix transcription factors GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) are positive regulators of anthocyanin biosynthesis, and form protein complexes (MBW complexes) with various R2R3 MYB transcription factors and a WD40 repeat protein TRANSPARENT TESTA GLABROUS1 (TTG1). In earlier studies, GL3, in contrast to EGL3, was shown to be essential for accumulation of anthocyanins in response to nitrogen depletion. This could not be fully explained by the strong induction of GL3 in response to nitrogen depletion because the EGL3 transcripts were constitutively at a relatively high level and transcripts levels of the two genes were similar under nitrogen depletion. Here the GL3 and EGL3 proteins were characterized with respect to their affinities for PRODUCTION OF ANTHOCYANIN PIGMENT2 (PAP2), a R2R3-MYB which is induced by nitrogen depletion and is part of MBW complexes promoting anthocyanin synthesis. GL3 and EGL3 were also tested for their binding to MYBL2, a negative regulator of anthocyanin synthesis and MBW complexes. Using heterologously expressed proteins and Microscale Thermophoresis, GL3 showed binding constants (Kd) of 3.5±1.7 and 22.7±3.7 μM, whereas EGL3 showed binding constants of 7.5±2.3 and 8.9±1.4 μM for PAP2 and MYBL2, respectively. This implies that MYBL2 will not inhibit a MBW complex containing GL3 as easily as for a complex containing EGL3. In transgenic plants where EGL3 reaches high concentrations compared with MYBL2 the equilibrium is shifted and MYBL2 is not likely to be an efficient competitor, hence anthocyanin formation could be restored by either EGL3 or GL3 genes when overexpressed by help of the 35S promoter. The present work underpins that GL3 is essential for anthocyanin accumulation under nitrogen depletion not only due to transcriptional activation, but also because of binding properties to proteins promoting or inhibiting the activity of the MBW complex.

  3. Resilience of the Natural Phyllosphere Microbiota of the Grapevine to Chemical and Biological Pesticides

    PubMed Central

    Antonielli, Livio; Storari, Michelangelo; Puopolo, Gerardo; Pancher, Michael; Giovannini, Oscar; Pindo, Massimo; Pertot, Ilaria

    2014-01-01

    The phyllosphere is colonized by complex microbial communities, which are adapted to the harsh habitat. Although the role and ecology of nonpathogenic microorganisms of the phyllosphere are only partially understood, leaf microbiota could have a beneficial role in plant growth and health. Pesticides and biocontrol agents are frequently applied to grapevines, but the impact on nontarget microorganisms of the phyllosphere has been marginally considered. In this study, we investigated the effect of a chemical fungicide (penconazole) and a biological control agent (Lysobacter capsici AZ78) on the leaf microbiota of the grapevine at three locations. Amplicons of the 16S rRNA gene and of the internal transcribed spacer were sequenced for bacterial and fungal identification, respectively. Pyrosequencing analysis revealed that the richness and diversity of bacterial and fungal populations were only minimally affected by the chemical and biological treatments tested, and they mainly differed according to grapevine locations. Indigenous microbial communities of the phyllosphere are adapted to environmental and biotic factors in the areas where the grapevines are grown, and they are resilient to the treatments tested. The biocontrol properties of phyllosphere communities against downy mildew differed among grapevine locations and were not affected by treatments, suggesting that biocontrol communities could be improved with agronomic practices to enrich beneficial populations in vineyards. PMID:24682305

  4. Ethylene positively regulates cold tolerance in grapevine by modulating the expression of ETHYLENE RESPONSE FACTOR 057

    PubMed Central

    Sun, Xiaoming; Zhao, Tingting; Gan, Shuheng; Ren, Xiaodie; Fang, Linchuan; Karungo, Sospeter Karanja; Wang, Yi; Chen, Liang; Li, Shaohua; Xin, Haiping

    2016-01-01

    Ethylene (ET) is a gaseous plant hormone that plays essential roles in biotic and abiotic stress responses in plants. However, the role of ET in cold tolerance varies in different species. This study revealed that low temperature promotes the release of ET in grapevine. The treatment of exogenous 1-aminocyclopropane-1-carboxylate increased the cold tolerance of grapevine. By contrast, the application of the ET biosynthesis inhibitor aminoethoxyvinylglycine reduced the cold tolerance of grapevine. This finding suggested that ET positively affected cold stress responses in grapevine. The expression of VaERF057, an ET signaling downstream gene, was strongly induced by low temperature. The overexpression of VaERF057 also enhanced the cold tolerance of Arabidopsis. Under cold treatment, malondialdehyde content was lower and superoxide dismutase, peroxidase, and catalase activities were higher in transgenic lines than in wild-type plants. RNA-Seq results showed that 32 stress-related genes, such as CBF1-3, were upregulated in VaERF057-overexpressing transgenic line. Yeast one-hybrid results further demonstrated that VaERF057 specifically binds to GCC-box and DRE motifs. Thus, VaERF057 may directly regulate the expression of its target stress-responsive genes by interacting with a GCC-box or a DRE element. Our work confirmed that ET positively regulates cold tolerance in grapevine by modulating the expression of VaERF057. PMID:27039848

  5. Profiling of Disease-Related Metabolites in Grapevine Internode Tissues Infected with Agrobacterium vitis.

    PubMed

    Jung, Sung-Min; Hur, Youn-Young; Preece, John E; Fiehn, Oliver; Kim, Young-Ho

    2016-12-01

    Green shoot cuttings of 10 different grapevine species were inoculated with Agrobacterium vitis to find disease-related metabolites in the grapevine. Crown galls formed 60 days after inoculation varied in gall severity (GS) evaluated by gall incidence (GI) and gall diameter (GD), which were classified into three response types as RR (low GI and small GD), SR (high GI and small GD), and SS (high GI and large GD), corresponding to resistant, moderately resistant, and susceptible responses, respectively. In this, 4, 4, and 2 Vitis species were classified into RR, SR, and SS, respectively. Gas chromatography mass spectrometry (GC-MS) analysis of the grapevine stem metabolites with A. vitis infection showed 134 metabolites in various compound classes critically occurred, which were differentially clustered with the response types by the principal component analysis. Multivariate analysis of the metabolite profile revealed that 11 metabolites increased significantly in relation to the response types, mostly at post-inoculation stages, more prevalently (8 metabolites) at two days after inoculation than other stages, and more related to SS (7 metabolites) than RR (3 metabolites) or SR (one metabolite). This suggests most of the disease-related metabolites may be rarely pre-existing but mostly induced by pathogen infection largely for facilitating gall development except stilbene compound resveratrol, a phytoalexin that may be involved in the resistance response. All of these aspects may be used for the selection of resistant grapevine cultivars and their rootstocks for the control of the crown gall disease of the grapevine.

  6. Effectiveness of Natural Antifungal Compounds in Controlling Infection by Grapevine Trunk Disease Pathogens through Pruning Wounds

    PubMed Central

    Cobos, Rebeca; Mateos, Rosa María; Álvarez-Pérez, José Manuel; Olego, Miguel Angel; Sevillano, Silvia; González-García, Sandra; Garzón-Jimeno, Enrique

    2015-01-01

    Grapevine trunk fungal pathogens, such as Diplodia seriata and Phaeomoniella chlamydospora, can infect plants through pruning wounds. They cause grapevine trunk diseases and are involved in grapevine decline. Accordingly, the protection of pruning wounds is crucial for the management of grapevine trunk diseases. The efficacy of different natural antifungals in inhibiting the growth of several fungi causing grapevine trunk diseases was evaluated in vitro. The fungi showing greater in vitro efficacy were tested on autoclaved grape wood assays against D. seriata and P. chlamydospora. Based on results from these assays, chitosan oligosaccharide, vanillin, and garlic extract were selected for further evaluation on pruning wounds inoculated with D. seriata and P. chlamydospora in field trials. A significant decrease in plant mortality was observed after 2 years of growth in the plants treated with the different natural antifungals compared to the mortality rate observed in infected plants that were not treated with antifungals. Also, the infection rate for the inoculated pathogens was significantly reduced in plants treated with the selected natural antifungals. Therefore, natural antifungals represent a promising alternative for disease control and could provide significant economic benefits for the grape-growing industry. PMID:26162882

  7. Profiling of Disease-Related Metabolites in Grapevine Internode Tissues Infected with Agrobacterium vitis

    PubMed Central

    Jung, Sung-Min; Hur, Youn-Young; Preece, John E.; Fiehn, Oliver; Kim, Young-Ho

    2016-01-01

    Green shoot cuttings of 10 different grapevine species were inoculated with Agrobacterium vitis to find disease-related metabolites in the grapevine. Crown galls formed 60 days after inoculation varied in gall severity (GS) evaluated by gall incidence (GI) and gall diameter (GD), which were classified into three response types as RR (low GI and small GD), SR (high GI and small GD), and SS (high GI and large GD), corresponding to resistant, moderately resistant, and susceptible responses, respectively. In this, 4, 4, and 2 Vitis species were classified into RR, SR, and SS, respectively. Gas chromatography mass spectrometry (GC-MS) analysis of the grapevine stem metabolites with A. vitis infection showed 134 metabolites in various compound classes critically occurred, which were differentially clustered with the response types by the principal component analysis. Multivariate analysis of the metabolite profile revealed that 11 metabolites increased significantly in relation to the response types, mostly at post-inoculation stages, more prevalently (8 metabolites) at two days after inoculation than other stages, and more related to SS (7 metabolites) than RR (3 metabolites) or SR (one metabolite). This suggests most of the disease-related metabolites may be rarely pre-existing but mostly induced by pathogen infection largely for facilitating gall development except stilbene compound resveratrol, a phytoalexin that may be involved in the resistance response. All of these aspects may be used for the selection of resistant grapevine cultivars and their rootstocks for the control of the crown gall disease of the grapevine. PMID:27904455

  8. Effectiveness of Natural Antifungal Compounds in Controlling Infection by Grapevine Trunk Disease Pathogens through Pruning Wounds.

    PubMed

    Cobos, Rebeca; Mateos, Rosa María; Álvarez-Pérez, José Manuel; Olego, Miguel Angel; Sevillano, Silvia; González-García, Sandra; Garzón-Jimeno, Enrique; Coque, Juan José R

    2015-09-01

    Grapevine trunk fungal pathogens, such as Diplodia seriata and Phaeomoniella chlamydospora, can infect plants through pruning wounds. They cause grapevine trunk diseases and are involved in grapevine decline. Accordingly, the protection of pruning wounds is crucial for the management of grapevine trunk diseases. The efficacy of different natural antifungals in inhibiting the growth of several fungi causing grapevine trunk diseases was evaluated in vitro. The fungi showing greater in vitro efficacy were tested on autoclaved grape wood assays against D. seriata and P. chlamydospora. Based on results from these assays, chitosan oligosaccharide, vanillin, and garlic extract were selected for further evaluation on pruning wounds inoculated with D. seriata and P. chlamydospora in field trials. A significant decrease in plant mortality was observed after 2 years of growth in the plants treated with the different natural antifungals compared to the mortality rate observed in infected plants that were not treated with antifungals. Also, the infection rate for the inoculated pathogens was significantly reduced in plants treated with the selected natural antifungals. Therefore, natural antifungals represent a promising alternative for disease control and could provide significant economic benefits for the grape-growing industry.

  9. Shared and host-specific microbiome diversity and functioning of grapevine and accompanying weed plants.

    PubMed

    Samad, Abdul; Trognitz, Friederike; Compant, Stéphane; Antonielli, Livio; Sessitsch, Angela

    2016-11-21

    Weeds and crop plants select their microbiota from the same pool of soil microorganisms, however, the ecology of weed microbiomes is poorly understood. We analysed the microbiomes associated with roots and rhizospheres of grapevine and four weed species (Lamium amplexicaule L., Veronica arvensis L., Lepidium draba L. and Stellaria media L.) growing in proximity in the same vineyard using 16S rRNA gene sequencing. We also isolated and characterized 500 rhizobacteria and root endophytes from L. draba and grapevine. Microbiome data analysis revealed that all plants hosted significantly different microbiomes in the rhizosphere as well as in root compartment, however, differences were more pronounced in the root compartment. The shared microbiome of grapevine and the four weed species contained 145 OTUs (54.2%) in the rhizosphere, but only nine OTUs (13.2%) in the root compartment. Seven OTUs (12.3%) were shared in all plants and compartments. Approximately 56% of the major OTUs (>1%) showed more than 98% identity to bacteria isolated in this study. Moreover, weed-associated bacteria generally showed a higher species richness in the rhizosphere, whereas the root-associated bacteria were more diverse in the perennial plants grapevine and L. draba. Overall, weed isolates showed more plant growth-promoting characteristics compared with grapevine isolates.

  10. Differential expression of genes of Xylella fastidiosa in xylem fluid of citrus and grapevine.

    PubMed

    Shi, Xiangyang; Bi, Jianlong; Morse, Joseph G; Toscano, Nick C; Cooksey, Donald A

    2010-03-01

    Xylella fastidiosa causes a serious Pierce's disease (PD) in grapevine. Xylella fastidiosa cells from a PD strain were grown in a pure xylem fluid of a susceptible grapevine cultivar vs. xylem fluid from citrus, which is not a host for this strain of X. fastidiosa. When grown in grapevine xylem fluid, cells of the PD strain formed clumps and biofilm formed to a greater extent than in citrus xylem fluid, although the PD strain did grow in xylem fluid of three citrus varieties. The differential expression of selected genes of a PD X. fastidiosa strain cultured in the two xylem fluids was analyzed using a DNA macroarray. Compared with citrus xylem fluid, grapevine xylem fluid stimulated the expression of X. fastidiosa genes involved in virulence regulation, such as gacA, algU, xrvA, and hsq, and also genes involved in the biogenesis of pili and twitching motility, such as fimT, pilI, pilU, and pilY1. Increased gene expression likely contributes to PD expression in grapevine, whereas citrus xylem fluid did not support or possibly suppressed the expression of these virulence genes.

  11. Morphological and molecular characterisation of Diaporthe species associated with grapevine trunk disease in China.

    PubMed

    Dissanayake, Asha J; Liu, Mei; Zhang, Wei; Chen, Zhen; Udayanga, Dhanushka; Chukeatirote, Ekachai; Li, XingHong; Yan, JiYe; Hyde, Kevin D

    2015-05-01

    Trunk diseases in grapevine (Vitis spp.) are major problems in the wine and table-grape industries reducing the productivity, quality and longevity of vineyards. Species of Diaporthe are important fungal pathogens of grapevine trunk disease worldwide. A survey of 14 grape vineyards located in different provinces of China was yielded Diaporthe isolates associated with symptomatic grapevine wood. These isolates were identified based on morphology and a combined data matrix of rDNA ITS, partial sequences of translation elongation factor 1-α (EF 1-α), β-tubulin (TUB) and calmodulin (CAL) gene regions. Four species of Diaporthe were identified, which included Diaporthe eres, Diaporthe hongkongensis, Diaporthe phaseolorum and Diaporthe sojae. All isolates of Diaporthe caused disease on detached grape shoots in pathogenicity experiments but differed in virulence. The incidence in local vineyards and the pathogenicity results indicate that D. eres is an important pathogen of grapevine in Chinese vineyards, where it may significantly limit grape production. This is the first detailed report of Diaporthe species associated with grapevine trunk diseases in China with morphology, pathogenicity and molecular data.

  12. Potential hazards from floodflows in Grapevine Canyon, Death Valley National Monument, California and Nevada

    USGS Publications Warehouse

    Bowers, J.C.

    1990-01-01

    Grapevine Canyon is on the western slope of the Grapevine Mountains in the northern part of Death Valley National Monument , California and Nevada. Grapevine Canyon Road covers the entire width of the canyon floor in places and is a frequently traveled route to Scotty 's Castle in the canyon. The region is arid and subject to flash flooding because of infrequent but intense convective storms. When these storms occur, normally in the summer, the resulting floods may create a hazard to visitor safety and property. Historical data on rainfall and floodflow in Grapevine Canyon are sparse. Data from studies made for similar areas in the desert mountains of southern California provide the basis for estimating discharges and the corresponding frequency of floods in the study area. Results of this study indicate that high-velocity flows of water and debris , even at shallow depths, may scour and damage Grapevine Canyon Road. When discharge exceeds 4,900 cu ft/sec, expected at a recurrence interval of between 25 and 50 years, the Scotty 's Castle access road and bridge may be damaged and the parking lot partly inundated. A flood having a 100-year or greater recurrence interval probably would wash out the bridge and present a hazard to the stable and garage buildings but not to the castle buildings, whose foundations are higher than the predicted maximum flood level. (USGS)

  13. Investigations on the leaf anatomy and ultrastructure of grapevine (Vitis vinifera) under heat stress.

    PubMed

    Ben Salem-Fnayou, Asma; Bouamama, Badra; Ghorbel, Abdelwahed; Mliki, Ahmed

    2011-08-01

    Leaf anatomical and ultrastructural responses of "Razegui" and "Muscat Italia" grapevine cultivars to high temperatures were studied under controlled conditions (T > 36°C), based on photonic and electron microscopy. Histological studies performed on leaves from heat-stressed and control grapevines revealed thicker leaf blades under high temperature conditions. Environmental scanning electron microscopy of leaf surfaces from both cultivars allowed observing sinuate epidermal cells on the leaves of grapevines cultivated under heat stress and irregular giant oblong pores on their adaxial surface. When observed by transmission electron microscopy, leaf cross sections in grapevines cultivated under high temperature conditions exhibited folded cuticle and cell wall on the adaxial epidermis layer. Therefore, significantly greater cell wall thicknesses were measured under heat stress than control conditions in both cultivars. Regarding chloroplasts, they were more globular in shape under heat stress compared with control conditions and had disorganized thylakoids with a reduced thickness of grana stacking. The size of starch granule decreased, while the number of plastoglobules increased with heat stress, indicating a reduced carbon metabolism and a beginning of senescence within the 3-month heat stress period. This study confirms widespread adaptive properties in two grapevine cultivars in response to high temperature stress.

  14. Transmission of Grapevine virus A and Grapevine leafroll-associated virus 1 and 3 by Heliococcus bohemicus (Hemiptera: Pseudococcidae) Nymphs From Plants With Mixed Infections.

    PubMed

    Bertin, S; Cavalieri, V; Gribaudo, I; Sacco, D; Marzachì, C; Bosco, D

    2016-08-01

    Mealybugs (Hemiptera: Pseudococcidae) represent a serious threat for viticulture as vectors of phloem-restricted viruses associated with the grapevine rugose wood and leafroll diseases. Heliococcus bohemicus (Šulc) is known to be involved in the spread of these two viral diseases, being a vector of the Grapevine virus A (GVA) and the Grapevine leafroll-associated virus 1 and 3 (GLRaV-1 and GLRaV-3). This study investigated the acquisition and transmission efficiency of H. bohemicus fed on mixed-infected plants. Nymphs were field-collected onto GVA, GLRaV-1, and GLRaV-3 multiple-infected grapevines in two vineyards in North-Western Italy, and were used in transmission experiments under controlled conditions. Even if most of the collected nymphs were positive to at least one virus, transmission occurred only to a low number of test grapevines. The transmission frequency of GLRaV-3 was the highest, whereas GVA was transmitted to few test plants. The transmission of multiple viruses occurred at low rates, and nymphs that acquired all the three viruses then failed to transmit them together. Statistical analyses showed that the three viruses were independently acquired and transmitted by H. bohemicus and neither synergistic nor antagonistic interactions occurred among them. GVA and GLRaVs transmission efficiencies by H. bohemicus were lower than those reported for other mealybug vectors. This finding is consistent with the slow spread of leafroll and rugose wood diseases observed in Northern Italy, where H. bohemicus is the predominant vector species.

  15. Cultivar-specific gene modulation in Vitis vinifera: analysis of the promoters regulating the expression of WOX transcription factors.

    PubMed

    Boccacci, Paolo; Mela, Anita; Pavez Mina, Catalina; Chitarra, Walter; Perrone, Irene; Gribaudo, Ivana; Gambino, Giorgio

    2017-03-30

    The family of Wuschel-related Homeobox (WOX) genes is a class of transcription factors involved in the early stages of embryogenesis and organ development in plants. Some of these genes have shown different transcription levels in embryogenic tissues and mature organs in two different cultivars of Vitis vinifera: 'Chardonnay' (CH) and 'Cabernet Sauvignon' (CS). Therefore, we investigated the genetic basis responsible for these differences by cloning and sequencing in both the cultivars the promoter regions (~2000 bp) proximal to the transcription start site of five VvWOX genes. We then introduced these promoters into Arabidopsis thaliana for expression pattern characterisation using the GUS reporter gene. In the transgenic Arabidopsis, two promoters isolated from CS (pVvWOX13C_CS and pVvWOX6_CS) induced increased expression compared to the sequence isolated in CH, confirming the data obtained in grapevine tissues. These results were corroborated by transient expression assays using the agroinfiltration approach in grapevine somatic embryos. Truncated versions of pVvWOX13C demonstrated that few nucleotide differences between the sequences isolated from CH and CS are pivotal for the transcriptional regulation of VvWOX13C. Analysis of promoters using heterologous and homologous systems appear to be effective for exploring gene modulation linked with intervarietal sequence variation in grapevine.

  16. Cultivar-specific gene modulation in Vitis vinifera: analysis of the promoters regulating the expression of WOX transcription factors

    PubMed Central

    Boccacci, Paolo; Mela, Anita; Pavez Mina, Catalina; Chitarra, Walter; Perrone, Irene; Gribaudo, Ivana; Gambino, Giorgio

    2017-01-01

    The family of Wuschel-related Homeobox (WOX) genes is a class of transcription factors involved in the early stages of embryogenesis and organ development in plants. Some of these genes have shown different transcription levels in embryogenic tissues and mature organs in two different cultivars of Vitis vinifera: ‘Chardonnay’ (CH) and ‘Cabernet Sauvignon’ (CS). Therefore, we investigated the genetic basis responsible for these differences by cloning and sequencing in both the cultivars the promoter regions (~2000 bp) proximal to the transcription start site of five VvWOX genes. We then introduced these promoters into Arabidopsis thaliana for expression pattern characterisation using the GUS reporter gene. In the transgenic Arabidopsis, two promoters isolated from CS (pVvWOX13C_CS and pVvWOX6_CS) induced increased expression compared to the sequence isolated in CH, confirming the data obtained in grapevine tissues. These results were corroborated by transient expression assays using the agroinfiltration approach in grapevine somatic embryos. Truncated versions of pVvWOX13C demonstrated that few nucleotide differences between the sequences isolated from CH and CS are pivotal for the transcriptional regulation of VvWOX13C. Analysis of promoters using heterologous and homologous systems appear to be effective for exploring gene modulation linked with intervarietal sequence variation in grapevine. PMID:28358354

  17. Phenolics and their antifungal role in grapevine wood decay: focus on the Botryosphaeriaceae family.

    PubMed

    Lambert, Carole; Bisson, Jonathan; Waffo-Téguo, Pierre; Papastamoulis, Yorgos; Richard, Tristan; Corio-Costet, Marie-France; Mérillon, Jean-Michel; Cluzet, Stéphanie

    2012-12-05

    The interaction between Vitis vinifera and trunk disease fungi requires better understanding. We studied the role of phenolics as possible plant defense compounds in this context. The impact of 24 grapevine phenolic compounds was determined on 6 major wood decay fungi by an in vitro agar plate assay. Hydroxystilbenoids, especially oligomers such as miyabenol C, isohopeaphenol, and vitisin A and B, greatly reduced the growth of the fungi, except that of Phaeoacremonium aleophilum . A detailed investigation in 10 Botryosphaeriaceae strains revealed that all of the studied members of this family display a common susceptibility to phenolics that is more or less significant. Then we undertook a quantitative analysis of stilbenoid content in grapevine plantlets inoculated with Botryosphaeriaceae to investigate whether in planta these fungi have to counteract the most active phenolics. On the basis of our results, the possible role of phenolics in grapevine defense against trunk disease agents is discussed.

  18. Selection of grapevine leaf varieties for culinary process based on phytochemical composition and antioxidant properties.

    PubMed

    Lima, Adriano; Bento, Albino; Baraldi, Ilton; Malheiro, Ricardo

    2016-12-01

    Grapevine leaves are an abundant sub-product of vineyards which is devalued in many regions. The objective of this work is to study the antioxidant activity and phytochemical composition of ten grapevine leaf varieties (four red varieties: Tinta Amarela, Tinta Roriz, Touriga Franca, and Touriga Nacional; and six white varieties: Côdega do Larinho, Fernão Pires, Gouveio, Malvasia Fina, Rabigato, and Viosinho) to select varieties to be used as food ingredients. White grapevine leaves revealed higher antioxidant potential. Malvasia Fina reported better antioxidant properties contrasting with Touriga Franca. Phenolic content varied between 112 and 150mgGAEg(-1) of extract (gallic acid equivalents), hydroxycinnamic acid derivatives and flavonols varied between 76 and 108mgCAEg(-1) of extract (caffeic acid equivalents) and 39 and 54mgQEg(-1) of extract (quercetin equivalents). Malvasia Fina is a good candidate for culinary treatment due to its antioxidant properties and composition in bioactive compounds.

  19. RNA-Sequencing Reveals Biological Networks during Table Grapevine (‘Fujiminori’) Fruit Development

    PubMed Central

    Shangguan, Lingfei; Mu, Qian; Fang, Xiang; Zhang, Kekun; Jia, Haifeng; Li, Xiaoying; Bao, Yiqun; Fang, Jinggui

    2017-01-01

    Grapevine berry development is a complex and genetically controlled process, with many morphological, biochemical and physiological changes occurring during the maturation process. Research carried out on grapevine berry development has been mainly concerned with wine grape, while barely focusing on table grape. ‘Fujiminori’ is an important table grapevine cultivar, which is cultivated in most provinces of China. In order to uncover the dynamic networks involved in anthocyanin biosynthesis, cell wall development, lipid metabolism and starch-sugar metabolism in ‘Fujiminori’ fruit, we employed RNA-sequencing (RNA-seq) and analyzed the whole transcriptome of grape berry during development at the expanding period (40 days after full bloom, 40DAF), véraison period (65DAF), and mature period (90DAF). The sequencing depth in each sample was greater than 12×, and the expression level of nearly half of the expressed genes were greater than 1. Moreover, greater than 64% of the clean reads were aligned to the Vitis vinifera reference genome, and 5,620, 3,381, and 5,196 differentially expressed genes (DEGs) were identified between different fruit stages, respectively. Results of the analysis of DEGs showed that the most significant changes in various processes occurred from the expanding stage to the véraison stage. The expression patterns of F3’H and F3’5’H were crucial in determining red or blue color of the fruit skin. The dynamic networks of cell wall development, lipid metabolism and starch-sugar metabolism were also constructed. A total of 4,934 SSR loci were also identified from 4,337 grapevine genes, which may be helpful for the development of phylogenetic analysis in grapevine and other fruit trees. Our work provides the foundation for developmental research of grapevine fruit as well as other non-climacteric fruits. PMID:28118385

  20. A Fundamental Step in IPM on Grapevine: Evaluating the Side Effects of Pesticides on Predatory Mites

    PubMed Central

    Pozzebon, Alberto; Tirello, Paola; Moret, Renzo; Pederiva, Marco; Duso, Carlo

    2015-01-01

    Knowledge on side effects of pesticides on non-target beneficial arthropods is a key point in Integrated Pest Management (IPM). Here we present the results of four experiments conducted in vineyards where the effects of chlorpyrifos, thiamethoxam, indoxacarb, flufenoxuron, and tebufenozide were evaluated on the generalist predatory mites Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant), key biocontrol agents of herbivorous mites on grapevines. Results show that indoxacarb and tebufenozide had a low impact on the predatory mites considered here, while a significant impact was observed for chlorpyrifos, flufenoxuron, and thiamethoxam. The information obtained here should be considered in the design of IPM strategies on grapevine. PMID:26466903

  1. Essential host plant cues in the grapevine moth.

    PubMed

    Tasin, Marco; Bäckman, Anna-Carin; Bengtsson, Marie; Ioriatti, Claudio; Witzgall, Peter

    2006-03-01

    Host plant odours attract gravid insect females for oviposition. The identification of these plant volatile compounds is essential for our understanding of plant-insect relationships and contributes to plant breeding for improved resistance against insects. Chemical analysis of grape headspace and subsequent behavioural studies in the wind tunnel show that host finding in grapevine moth Lobesia botrana is encoded by a ratio-specific blend of three ubiquitous plant volatiles. The odour signal that attracts mated females to grape consists of the terpenoids (E)-beta-caryophyllene, (E)-beta-farnesene and (E)-4,8-dimethyl-1,3,7-nonatriene. These compounds represent only a fraction of the volatiles released by grapes, and they are widespread compounds known throughout the plant kingdom. Specificity may be achieved by the blend ratio, which was 100:78:9 in grape headspace. This blend elicited anemotactic behaviour in moths at remarkably small amounts. Females were attracted at release rates of only a few nanograms per minute, at levels nearly as low as those known for the attraction of male moths to the female sex pheromones.

  2. Essential host plant cues in the grapevine moth

    NASA Astrophysics Data System (ADS)

    Tasin, Marco; Bäckman, Anna-Carin; Bengtsson, Marie; Ioriatti, Claudio; Witzgall, Peter

    2006-03-01

    Host plant odours attract gravid insect females for oviposition. The identification of these plant volatile compounds is essential for our understanding of plant insect relationships and contributes to plant breeding for improved resistance against insects. Chemical analysis of grape headspace and subsequent behavioural studies in the wind tunnel show that host finding in grapevine moth Lobesia botrana is encoded by a ratio-specific blend of three ubiquitous plant volatiles. The odour signal that attracts mated females to grape consists of the terpenoids ( E)-β-caryophyllene, ( E)-β-farnesene and ( E)-4,8-dimethyl-1,3,7-nonatriene. These compounds represent only a fraction of the volatiles released by grapes, and they are widespread compounds known throughout the plant kingdom. Specificity may be achieved by the blend ratio, which was 100:78:9 in grape headspace. This blend elicited anemotactic behaviour in moths at remarkably small amounts. Females were attracted at release rates of only a few nanograms per minute, at levels nearly as low as those known for the attraction of male moths to the female sex pheromones.

  3. Understanding grapevine-microbiome interactions: implications for viticulture industry

    PubMed Central

    Zarraonaindia, Iratxe; Gilbert, Jack A.

    2015-01-01

    Until recently, the analysis of complex communities such as that of the grapevine-microbe holobiont has been limited by the fact that most microbes are not culturable under laboratory conditions (less than 1%). However, metagenomics, the study of the genetic material recovered directly from environmental samples without the need for enrichment or of culturing, has led to open an unprecedented era in the field of microbiology. Importantly, this technological advance has now become so pervasive that it is being regularly applied to explore soils and plants of agricultural interest. Interestingly, many large companies are taking notice, with significant financial investment being used to exploring ways to manipulate the productivity, disease resistance and stress tolerance for crops by influencing the microbiome. To understand which microbes one needs to manipulate to influence this valuable characteristics, we need to sequence the microbiome and capture the genetic and hence functional metabolic information contained therein. For viticulture and other agricultural fields where the crop is also associated to particular flavor properties that may also be manipulated, understanding how the bacteria, fungi and viruses influence the development and hence chemical makeup of the crop is essential. PMID:28357290

  4. The MYB182 Protein Down-Regulates Proanthocyanidin and Anthocyanin Biosynthesis in Poplar by Repressing Both Structural and Regulatory Flavonoid Genes1[OPEN

    PubMed Central

    Yoshida, Kazuko; Ma, Dawei; Constabel, C. Peter

    2015-01-01

    Trees in the genus Populus (poplar) contain phenolic secondary metabolites including the proanthocyanidins (PAs), which help to adapt these widespread trees to diverse environments. The transcriptional activation of PA biosynthesis in response to herbivory and ultraviolet light stress has been documented in poplar leaves, and a regulator of this process, the R2R3-MYB transcription factor MYB134, has been identified. MYB134-overexpressing transgenic plants show a strong high-PA phenotype. Analysis of these transgenic plants suggested the involvement of additional MYB transcription factors, including repressor-like MYB factors. Here, MYB182, a subgroup 4 MYB factor, was found to act as a negative regulator of the flavonoid pathway. Overexpression of MYB182 in hairy root culture and whole poplar plants led to reduced PA and anthocyanin levels as well as a reduction in the expression of key flavonoid genes. Similarly, a reduced accumulation of transcripts of a MYB PA activator and a basic helix-loop-helix cofactor was observed in MYB182-overexpressing hairy roots. Transient promoter activation assays in poplar cell culture demonstrated that MYB182 can disrupt transcriptional activation by MYB134 and that the basic helix-loop-helix-binding motif of MYB182 was essential for repression. Microarray analysis of transgenic plants demonstrated that down-regulated targets of MYB182 also include shikimate pathway genes. This work shows that MYB182 plays an important role in the fine-tuning of MYB134-mediated flavonoid metabolism. PMID:25624398

  5. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex.

    PubMed

    Lin-Wang, Kui; Micheletti, Diego; Palmer, John; Volz, Richard; Lozano, Lidia; Espley, Richard; Hellens, Roger P; Chagnè, David; Rowan, Daryl D; Troggio, Michela; Iglesias, Ignasi; Allan, Andrew C

    2011-07-01

    The biosynthesis of anthocyanin in many plants is affected by environmental conditions. In apple (Malus × domestica Borkh.), concentrations of fruit anthocyanins are lower under hot climatic conditions. We examined the anthocyanin accumulation in the peel of maturing 'Mondial Gala' and 'Royal Gala' apples, grown in both temperate and hot climates, and using artificial heating of on-tree fruit. Heat caused a dramatic reduction of both peel anthocyanin concentration and transcripts of the genes of the anthocyanin biosynthetic pathway. Heating fruit rapidly reduced expression of the R2R3 MYB transcription factor (MYB10) responsible for coordinative regulation for red skin colour, as well as expression of other genes in the transcriptional activation complex. A single night of low temperatures is sufficient to elicit a large increase in transcription of MYB10 and consequently the biosynthetic pathway. Candidate genes that can repress anthocyanin biosynthesis did not appear to be responsible for reductions in anthocyanin content. We propose that temperature-induced regulation of anthocyanin biosynthesis is primarily caused by altered transcript levels of the activating anthocyanin regulatory complex.

  6. CmMYB19 Over-Expression Improves Aphid Tolerance in Chrysanthemum by Promoting Lignin Synthesis

    PubMed Central

    Wang, Yinjie; Sheng, Liping; Zhang, Huanru; Du, Xinping; An, Cong; Xia, Xiaolong; Chen, Fadi; Jiang, Jiafu; Chen, Sumei

    2017-01-01

    The gene encoding the MYB (v-myb avian myeloblastosis vira l oncogene homolog) transcription factor CmMYB19 was isolated from chrysanthemum. It encodes a 200 amino acid protein and belongs to the R2R3-MYB subfamily. CmMYB19 was not transcriptionally activated in yeast, while a transient expression experiment conducted in onion epidermal cells suggested that the CmMYB19 product localized to the nucleus. CmMYB19 transcription was induced by aphid (Macrosiphoniella sanborni) infestation, and the abundance of transcript was higher in the leaf and stem than in the root. The over-expression of CmMYB19 restricted the multiplication of the aphids. A comparison of transcript abundance of the major genes involved in lignin synthesis showed that CmPAL1 (phenylalanine ammonia lyase 1), CmC4H (cinnamate4 hydroxylase), Cm4CL1 (4-hydroxy cinnamoyl CoA ligase 1), CmHCT (hydroxycinnamoyl CoA-shikimate/quinate hydroxycinnamoyl transferase), CmC3H1 (coumarate3 hydroxylase1), CmCCoAOMT1 (caffeoyl CoA O-methyltransferase 1) and CmCCR1 (cinnamyl CoA reductase1) were all upregulated, in agreement with an increase in lignin content in CmMYB19 over-expressing plants. Collectively, the over-expression of CmMYB19 restricted the multiplication of the aphids on the host, mediated by an enhanced accumulation of lignin. PMID:28287502

  7. Genome-Wide Analysis of the Expansin Gene Superfamily Reveals Grapevine-Specific Structural and Functional Characteristics

    PubMed Central

    Tornielli, Giovanni Battista; Fasoli, Marianna; Venturini, Luca; Pezzotti, Mario; Zenoni, Sara

    2013-01-01

    Background Expansins are proteins that loosen plant cell walls in a pH-dependent manner, probably by increasing the relative movement among polymers thus causing irreversible expansion. The expansin superfamily (EXP) comprises four distinct families: expansin A (EXPA), expansin B (EXPB), expansin-like A (EXLA) and expansin-like B (EXLB). There is experimental evidence that EXPA and EXPB proteins are required for cell expansion and developmental processes involving cell wall modification, whereas the exact functions of EXLA and EXLB remain unclear. The complete grapevine (Vitis vinifera) genome sequence has allowed the characterization of many gene families, but an exhaustive genome-wide analysis of expansin gene expression has not been attempted thus far. Methodology/Principal Findings We identified 29 EXP superfamily genes in the grapevine genome, representing all four EXP families. Members of the same EXP family shared the same exon–intron structure, and phylogenetic analysis confirmed a closer relationship between EXP genes from woody species, i.e. grapevine and poplar (Populus trichocarpa), compared to those from Arabidopsis thaliana and rice (Oryza sativa). We also identified grapevine-specific duplication events involving the EXLB family. Global gene expression analysis confirmed a strong correlation among EXP genes expressed in mature and green/vegetative samples, respectively, as reported for other gene families in the recently-published grapevine gene expression atlas. We also observed the specific co-expression of EXLB genes in woody organs, and the involvement of certain grapevine EXP genes in berry development and post-harvest withering. Conclusion Our comprehensive analysis of the grapevine EXP superfamily confirmed and extended current knowledge about the structural and functional characteristics of this gene family, and also identified properties that are currently unique to grapevine expansin genes. Our data provide a model for the functional

  8. The Grapevine VvPMEI1 Gene Encodes a Novel Functional Pectin Methylesterase Inhibitor Associated to Grape Berry Development.

    PubMed

    Lionetti, Vincenzo; Raiola, Alessandro; Mattei, Benedetta; Bellincampi, Daniela

    2015-01-01

    Pectin is secreted in a highly methylesterified form and partially de-methylesterified in the cell wall by pectin methylesterases (PMEs). PME activity is expressed during plant growth, development and stress responses. PME activity is controlled at the post-transcriptional level by proteins named PME inhibitors (PMEIs). We have identified, expressed and characterized VvPMEI1, a functional PME inhibitor of Vitis vinifera. VvPMEI1 typically affects the activity of plant PMEs and is inactive against microbial PMEs. The kinetics of PMEI-PME interaction, studied by surface plasmon resonance, indicates that the inhibitor strongly interacts with PME at apoplastic pH while the stability of the complex is reduced by increasing the pH. The analysis of VvPMEI1 expression in different grapevine tissues and during grape fruit development suggests that this inhibitor controls PME activity mainly during the earlier phase of berry development. A proteomic analysis performed at this stage indicates a PME isoform as possible target of VvPMEI1.

  9. Grapevine Rootstocks Differentially Affect the Rate of Ripening and Modulate Auxin-Related Genes in Cabernet Sauvignon Berries

    PubMed Central

    Corso, Massimiliano; Vannozzi, Alessandro; Ziliotto, Fiorenza; Zouine, Mohamed; Maza, Elie; Nicolato, Tommaso; Vitulo, Nicola; Meggio, Franco; Valle, Giorgio; Bouzayen, Mondher; Müller, Maren; Munné-Bosch, Sergi; Lucchin, Margherita; Bonghi, Claudio

    2016-01-01

    In modern viticulture, grafting commercial grapevine varieties on interspecific rootstocks is a common practice required for conferring resistance to many biotic and abiotic stresses. Nevertheless, the use of rootstocks to gain these essential traits is also known to impact grape berry development and quality, although the underlying mechanisms are still poorly understood. In grape berries, the onset of ripening (véraison) is regulated by a complex network of mobile signals including hormones such as auxins, ethylene, abscisic acid, and brassinosteroids. Recently, a new rootstock, designated M4, was selected based on its enhanced tolerance to water stress and medium vigor. This study investigates the effect of M4 on Cabernet Sauvignon (CS) berry development in comparison to the commercial 1103P rootstock. Physical and biochemical parameters showed that the ripening rate of CS berries is faster when grafted onto M4. A multifactorial analysis performed on mRNA-Seq data obtained from skin and pulp of berries grown in both graft combinations revealed that genes controlling auxin action (ARF and Aux/IAA) represent one of main categories affected by the rootstock genotype. Considering that the level of auxin tightly regulates the transcription of these genes, we investigated the behavior of the main gene families involved in auxin biosynthesis and conjugation. Molecular and biochemical analyses confirmed a link between the rate of berry development and the modulation of auxin metabolism. Moreover, the data indicate that this phenomenon appears to be particularly pronounced in skin tissue in comparison to the flesh. PMID:26904046

  10. The Grapevine VvPMEI1 Gene Encodes a Novel Functional Pectin Methylesterase Inhibitor Associated to Grape Berry Development

    PubMed Central

    Lionetti, Vincenzo; Raiola, Alessandro; Mattei, Benedetta; Bellincampi, Daniela

    2015-01-01

    Pectin is secreted in a highly methylesterified form and partially de-methylesterified in the cell wall by pectin methylesterases (PMEs). PME activity is expressed during plant growth, development and stress responses. PME activity is controlled at the post-transcriptional level by proteins named PME inhibitors (PMEIs). We have identified, expressed and characterized VvPMEI1, a functional PME inhibitor of Vitis vinifera. VvPMEI1 typically affects the activity of plant PMEs and is inactive against microbial PMEs. The kinetics of PMEI-PME interaction, studied by surface plasmon resonance, indicates that the inhibitor strongly interacts with PME at apoplastic pH while the stability of the complex is reduced by increasing the pH. The analysis of VvPMEI1 expression in different grapevine tissues and during grape fruit development suggests that this inhibitor controls PME activity mainly during the earlier phase of berry development. A proteomic analysis performed at this stage indicates a PME isoform as possible target of VvPMEI1. PMID:26204516

  11. Transcriptional regulation of the grape cytochrome P450 monooxygenase gene CYP736B expression in response to Xylella fastidiosa infection

    PubMed Central

    2010-01-01

    Background Plant cytochrome P450 monooxygenases (CYP) mediate synthesis and metabolism of many physiologically important primary and secondary compounds that are related to plant defense against a range of pathogenic microbes and insects. To determine if cytochrome P450 monooxygenases are involved in defense response to Xylella fastidiosa (Xf) infection, we investigated expression and regulatory mechanisms of the cytochrome P450 monooxygenase CYP736B gene in both disease resistant and susceptible grapevines. Results Cloning of genomic DNA and cDNA revealed that the CYP736B gene was composed of two exons and one intron with GT as a donor site and AG as an acceptor site. CYP736B transcript was up-regulated in PD-resistant plants and down-regulated in PD-susceptible plants 6 weeks after Xf inoculation. However, CYP736B expression was very low in stem tissues at all evaluated time points. 5'RACE and 3'RACE sequence analyses revealed that there were three candidate transcription start sites (TSS) in the upstream region and three candidate polyadenylation (PolyA) sites in the downstream region of CYP736B. Usage frequencies of each transcription initiation site and each polyadenylation site varied depending on plant genotype, developmental stage, tissue, and treatment. These results demonstrate that expression of CYP736B is regulated developmentally and in response to Xf infection at both transcriptional and post-transcriptional levels. Multiple transcription start and polyadenylation sites contribute to regulation of CYP736B expression. Conclusions This report provides evidence that the cytochrome P450 monooxygenase CYP736B gene is involved in defense response at a specific stage of Xf infection in grapevines; multiple transcription initiation and polyadenylation sites exist for CYP736B in grapevine; and coordinative and selective use of transcription initiation and polyadenylation sites play an important role in regulation of CYP736B expression during growth

  12. New stable QTLs for berry weight do not colocalize with QTLs for seed traits in cultivated grapevine (Vitis vinifera L.)

    PubMed Central

    2013-01-01

    Background In grapevine, as in other fruit crops, fruit size and seed content are key components of yield and quality; however, very few Quantitative Trait Loci (QTLs) for berry weight and seed content (number, weight, and dry matter percentage) have been discovered so far. To identify new stable QTLs for marker-assisted selection and candidate gene identification, we performed simultaneous QTL detection in four mapping populations (seeded or seedless) with various genetic backgrounds. Results For berry weight, we identified five new QTLs, on linkage groups (LGs) 1, 8, 11, 17 and 18, in addition to the known major QTL on LG 18. The QTL with the largest effect explained up to 31% of total variance and was found in two genetically distant populations on LG 17, where it colocalized with a published putative domestication locus. For seed traits, besides the major QTLs on LG 18 previously reported, we found four new QTLs explaining up to 51% of total variance, on LGs 4, 5, 12 and 14. The previously published QTL for seed number on LG 2 was found related in fact to sex. We found colocalizations between seed and berry weight QTLs only for the major QTL on LG 18 in a seedless background, and on LGs 1 and 13 in a seeded background. Candidate genes belonging to the cell number regulator CNR or cytochrome P450 families were found under the berry weight QTLs on LGs 1, 8, and 17. The involvement of these gene families in fruit weight was first described in tomato using a QTL-cloning approach. Several other interesting candidate genes related to cell wall modifications, water import, auxin and ethylene signalling, transcription control, or organ identity were also found under berry weight QTLs. Conclusion We discovered a total of nine new QTLs for berry weight or seed traits in grapevine, thereby increasing more than twofold the number of reliable QTLs for these traits available for marker assisted selection or candidate gene studies. The lack of colocalization between berry and

  13. Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana.

    PubMed

    Yatusevich, Ruslan; Mugford, Sarah G; Matthewman, Colette; Gigolashvili, Tamara; Frerigmann, Henning; Delaney, Sean; Koprivova, Anna; Flügge, Ulf-Ingo; Kopriva, Stanislav

    2010-04-01

    Glucosinolates are plant secondary metabolites involved in responses to biotic stress. The final step of their synthesis is the transfer of a sulfo group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) onto a desulfo precursor. Thus, glucosinolate synthesis is linked to sulfate assimilation. The sulfate donor for this reaction is synthesized from sulfate in two steps catalyzed by ATP sulfurylase (ATPS) and adenosine 5'-phosphosulfate kinase (APK). Here we demonstrate that R2R3-MYB transcription factors, which are known to regulate both aliphatic and indolic glucosinolate biosynthesis in Arabidopsis thaliana, also control genes of primary sulfate metabolism. Using trans-activation assays we found that two isoforms of APK, APK1, and APK2, are regulated by both classes of glucosinolate MYB transcription factors; whereas two ATPS genes, ATPS1 and ATPS3, are differentially regulated by these two groups of MYB factors. In addition, we show that the adenosine 5'-phosphosulfate reductases APR1, APR2, and APR3, which participate in primary sulfate reduction, are also activated by the MYB factors. These observations were confirmed by analysis of transgenic lines with modulated expression levels of the glucosinolate MYB factors. The changes in transcript levels also affected enzyme activities, the thiol content and the sulfate reduction rate in some of the transgenic plants. Altogether the data revealed that the MYB transcription factors regulate genes of primary sulfate metabolism and that the genes involved in the synthesis of activated sulfate are part of the glucosinolate biosynthesis network.

  14. Increased accumulation of anthocyanins in Fragaria chiloensis fruits by transient suppression of FcMYB1 gene.

    PubMed

    Salvatierra, Ariel; Pimentel, Paula; Moya-León, María Alejandra; Herrera, Raúl

    2013-06-01

    Anthocyanins and proanthocyanidins (PAs), flavonoid-derived metabolites with different physiological roles, are produced by plants in a coordinated manner during fruit development by the action of transcription factors (TFs). These regulatory proteins have either an activating or repressing effect over structural genes from the biosynthetic pathway under their control. FaMYB1, a TF belonging to the R2R3-MYB family and isolated from commercial strawberry fruit (Fragaria×ananassa), was reported as a transcriptional repressor and its heterologous over-expression in tobacco flowers suppressed flavonoid-derived compound accumulation. FcMYB1, an ortholog of FaMYB1 isolated from the white Chilean strawberry (Fragaria chiloensis ssp. chiloensis f. chiloensis), showed higher transcript levels in white (F. chiloensis) than in red (F.×ananassa cv. Camarosa) fruits. In order to assess its contribution to the discolored phenotype in F. chiloensis, FcMYB1 was transiently down-regulated in planta using an RNAi-based approach. Quantitative real-time PCR on FcMYB1 down-regulated fruits resulted an up-regulation of anthocyanidin synthase (ANS) and a strong repression of anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) transcript accumulation. In addition, these fruits showed increased concentrations of anthocyanins and undetectable levels of flavan 3-ols. Altogether, these results indicate a role for FcMYB1 in regulation of the branching-point of the anthocyanin/PA biosynthesis determining the discolored phenotype of the white Chilean strawberry fruit.

  15. Strategies for durable resistance to the grapevine powdery mildew fungus, Erysiphe necator

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nearly all cultivars of Vitis vinifera are highly susceptible to the grapevine powdery mildew fungus, Erysiphe necator. Grape breeders around the world are working to introgress resistance from wild Vitis. Of the widely-used introgressions, most involve dominant, race-specific resistance phenotype...

  16. Abscisic acid form, concentration, and application timing influence phenology and bud cold hardiness in Merlot grapevines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of abscisic acid (ABA) form, concentration and application timing on bud cold hardiness, phenology and fruiting performance on ‘Merlot’ grapevines (Vitis vinifera) were evaluated in a three year field trial with site locations in British Columbia Canada, Ontario Canada, Washington U.S. ...

  17. Cadophora species as trunk pathogens and wood-infecting fungi of grapevine in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cadophora species, in particular Cadophora luteo-olivacea, are reported from grapevine (Vitis vinifera L.) in California, South Africa, Spain, Uruguay, and Canada. Frequent isolation from vines co-infected with the Esca pathogens (Togninia minima, Phaeomoniella chlamydospora), and confirmation of it...

  18. Changes in the proteome of grapevine leaves (Vitis vinifera L.) during long-term drought stress.

    PubMed

    Król, Angelika; Weidner, Stanisław

    2017-04-01

    The essence of exploring and understanding mechanisms of plant adaptation to environmental stresses lies in the determination of patterns of the expression of proteins, identification of stress proteins and their association with the specific functions in metabolic pathways. To date, little information has been provided about the proteomic response of grapevine to the persistent influence of adverse environmental conditions. This article describes changes in the profile of protein accumulation in leaves of common grapevine (Vitis vinifera L.) seedlings in response to prolonged drought. Isolated proteins were separated by two-dimensional electrophoresis (2 DE), and the proteins whose level of accumulation changed significantly due to the applied stress factors were identified with tandem mass spectrometry MALDI TOF/TOF type. Analysis of the proteome of grapevine leaves led to the detection of many proteins whose synthesis changed in response to the applied stressor. Drought caused the most numerous changes in the accumulation of proteins associated with carbohydrate and energy metabolism, mostly connected with the pathways of glycolysis and photosystem II protein components. The biological function of the identified proteins is discussed with reference to the stress of drought. Some of the identified proteins, especially the ones whose accumulation increased during drought stress, may be responsible for the adaptation of grapevine to drought.

  19. Performance of several models for predicting budburst date of grapevine ( Vitis vinifera L.)

    NASA Astrophysics Data System (ADS)

    García de Cortázar-Atauri, Iñaki; Brisson, Nadine; Gaudillere, Jean Pierre

    2009-07-01

    The budburst stage is a key phenological stage for grapevine ( Vitis vinifera L.), with large site and cultivar variability. The objective of the present work was to provide a reliable agro-meteorological model for simulating grapevine budburst occurrence all over France. The study was conducted using data from ten cultivars of grapevine (Cabernet Sauvignon, Chasselas, Chardonnay, Grenache, Merlot, Pinot Noir, Riesling, Sauvignon, Syrah, Ugni Blanc) and five locations (Bordeaux, Colmar, Angers, Montpellier, Epernay). First, we tested two commonly used models that do not take into account dormancy: growing degree days with a base temperature of 10°C (GDD10), and Riou’s model (RIOU). The errors of predictions of these models ranged between 9 and 21 days. Second, a new model (BRIN) was studied relying on well-known formalisms for orchard trees and taking into account the dormancy period. The BRIN model showed better performance in predicting budburst date than previous grapevine models. Analysis of the components of BRIN formalisms (calculation of dormancy, use of hourly temperatures, base temperature) explained the better performances obtained with the BRIN model. Base temperature was the main driver, while dormancy period was not significant in simulating budburst date. For each cultivar, we provide the parameter estimates that showed the best performance for both the BRIN model and the GDD model with a base temperature of 5°C.

  20. Assessment of freeze injury of grapevine green tissues in response to cultivars and a cryoprotectant product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spring frosts and subsequent crop losses threaten the economic sustainability of fruit crop producers all over the world. This study used a controlled-freezing technique to impose a post-budbreak freezing stress to grapevine shoots forced from one-node cuttings ['Albariño', 'Cabernet Franc', 'Cabern...

  1. Root knot nematode effects on metabolic profiles of susceptible and resistant grapevine rootstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root knot nematodes (Meloidogyne spp.) can negatively impact newly planted and stressed vineyards. Nematode infestations also may increase grapevine susceptibility to other stresses such as water deficit or various diseases. However, little is known about direct or indirect effects of nematode feedi...

  2. Glassy-winged sharpshooter oviposition effects on foliar grapevine and red-tipped photinia terpenoid levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is an important vector of Xylella fastidiosa, the bacterium that causes Pierce's disease of grapevine and is a threat to grape production throughout the United States. Female GWSS deposit egg masses be...

  3. A forensic perspective on the genetic identification of grapevine (Vitis vinifera L.) varieties using STR markers.

    PubMed

    Santos, Sara; Oliveira, Manuela; Amorim, António; van Asch, Barbara

    2014-11-01

    The grapevine (Vitis vinifera subsp. vinifera) is one of the most important agricultural crops worldwide. A long interest in the historical origins of ancient and cultivated current grapevines, as well as the need to establish phylogenetic relationships and parentage, solve homonymies and synonymies, fingerprint cultivars and clones, and assess the authenticity of plants and wines has encouraged the development of genetic identification methods. STR analysis is currently the most commonly used method for these purposes. A large dataset of grapevines genotypes for many cultivars worldwide has been produced in the last decade using a common set of recommended dinucleotide nuclear STRs. This type of marker has been replaced by long core-repeat loci in standardized state-of-the-art human forensic genotyping. The first steps toward harmonized grapevine genotyping have already been taken to bring the genetic identification methods closer to human forensic STR standards by previous authors. In this context, we bring forward a set of basic suggestions that reinforce the need to (i) guarantee trueness-to-type of the sample; (ii) use the long core-repeat markers; (iii) verify the specificity and amplification consistency of PCR primers; (iv) sequence frequent alleles and use these standardized allele ladders; (v) consider mutation rates when evaluating results of STR-based parentage and pedigree analysis; (vi) genotype large and representative samples in order to obtain allele frequency databases; (vii) standardize genotype data by establishing allele nomenclature based on repeat number to facilitate information exchange and data compilation.

  4. Induction of phenolic compounds in response to Xylella fastidiosa infection in five different grapevine cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, Thompson seedless grapevines infected with Xylella fastidiosa (Xf), the causal agent of Pierce’s disease (PD), were observed to possess greater phenolic levels in xylem sap and tissues than non-infected plants shortly after inoculation. Plants often produce greater levels of phenolic com...

  5. Acquisition of Flavescence Dorée Phytoplasma by Scaphoideus titanus Ball from Different Grapevine Varieties

    PubMed Central

    Galetto, Luciana; Miliordos, Dimitrios E.; Pegoraro, Mattia; Sacco, Dario; Veratti, Flavio; Marzachì, Cristina; Bosco, Domenico

    2016-01-01

    Flavescence dorée (FD) is a threat for wine production in the vineyard landscape of Piemonte, Langhe-Roero and Monferrato, Italy. Spread of the disease is dependent on complex interactions between insect, plant and phytoplasma. In the Piemonte region, wine production is based on local cultivars. The role of six local grapevine varieties as a source of inoculum for the vector Scaphoideus titanus was investigated. FD phytoplasma (FDP) load was compared among red and white varieties with different susceptibility to FD. Laboratory-reared healthy S. titanus nymphs were caged for acquisition on infected plants to measure phytoplasma acquisition efficiency following feeding on different cultivars. FDP load for Arneis was significantly lower than for other varieties. Acquisition efficiency depended on grapevine variety and on FDP load in the source plants, and there was a positive interaction for acquisition between variety and phytoplasma load. S. titanus acquired FDP with high efficiency from the most susceptible varieties, suggesting that disease diffusion correlates more with vector acquisition efficiency than with FDP load in source grapevines. In conclusion, although acquisition efficiency depends on grapevine variety and on FDP load in the plant, even varieties supporting low FDP multiplication can be highly susceptible and good sources for vector infection, while poorly susceptible varieties may host high phytoplasma loads. PMID:27649162

  6. New 16Sr subgroups and distinct SNP lineages among grapevine Bois noir phytoplasma populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bois noir (BN) is an insect-transmitted grapevine yellows disease caused by phytoplasmas belonging to the stolbur subgroup 16SrXII-A. In Italy, increasing prevalence of stolbur phytoplasma strains in vineyards suggests progressive spread of the disease and potential for heavy impacts on the wine in...

  7. Association of a DNA virus with grapevines affected by red blotch disease in northern California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Napa, CA, Cabernet Franc, Cabernet Sauvignon and Zinfandel grapevines in three separate vineyards exhibited foliar symptoms comprised of red blotches, marginal reddening and red veins, and reduced total soluble solids in harvested fruits. Foliar symptoms were initially diagnosed as leaf roll dise...

  8. Gene from a novel plant virus satellite from grapevine identifies a viral satellite lineage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have identified the genome of a novel viral satellite in deep sequence analysis of double-stranded RNA from grapevine. The genome was 1,060 bases in length, and encoded two open reading frames. Neither frame was related to any known plant virus gene. But translation of the longer frame showed ...

  9. Identification of Eutypa spp. causing Eutypa dieback of grapevine in Eastern North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eutypa dieback of grapevine is caused by Eutypa lata in production areas with Mediterranean climates in California, Australasia, Europe, and South Africa. Eutypa dieback has also been described in the colder, eastern North American vineyards where cultivars adapted from native Vitis spp. (e.g., Viti...

  10. Influence of Pruning Systems on Trunk Pathogens and Other Fungi Colonizing Grapevine Wood

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The main infection courts for fungal grapevine trunk pathogens are pruning wounds. Disease control typically involves modifications to pruning. Pruning practices requiring fewer/smaller wounds may thus be associated with fewer trunk pathogens and less wood necroses. We examined wood-colonizing fungi...

  11. Genome Diversity and Intra- and Inter-Species Recombination Events in Grapevine fanleaf virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapevine fanleaf virus (GFLV) was documented in four wine grape (Vitis vinifera) cultivars grown as own-rooted vines. GFLV was found as a mixed virus infection in cvs. Pinot Noir and Chardonnay, but not in cvs. Merlot and Cabernet Franc. Fanleaf disease symptoms were observed only in the first two...

  12. Nutrient uptake and distribution in young Pinot noir grapevines over two seasons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The seasonal timing of biomass and nutrient uptake and distribution among different vine organs was determined over two growing seasons in 4-year-old Pinot noir grapevines carrying their first full crop and grown in field microplots. Vines were fertilized in spring and the biomass and nutrient conte...

  13. Grapevine pruning systems and cultivars influence the diversity of wood-colonizing fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapevines host diverse fungal species, including pruning-wound pathogens and wood decomposers, with detrimental effects on crop productivity. This study aims at comparing the effects of two pruning systems, minimal (min-) or spur-pruning, on the sanitary status of vine trunks and the diversity of w...

  14. Structural, functional, and evolutionary analysis of the unusually large stilbene synthase gene family in grapevine.

    PubMed

    Parage, Claire; Tavares, Raquel; Réty, Stéphane; Baltenweck-Guyot, Raymonde; Poutaraud, Anne; Renault, Lauriane; Heintz, Dimitri; Lugan, Raphaël; Marais, Gabriel A B; Aubourg, Sébastien; Hugueney, Philippe

    2012-11-01

    Stilbenes are a small family of phenylpropanoids produced in a number of unrelated plant species, including grapevine (Vitis vinifera). In addition to their participation in defense mechanisms in plants, stilbenes, such as resveratrol, display important pharmacological properties and are postulated to be involved in the health benefits associated with a moderate consumption of red wine. Stilbene synthases (STSs), which catalyze the biosynthesis of the stilbene backbone, seem to have evolved from chalcone synthases (CHSs) several times independently in stilbene-producing plants. STS genes usually form small families of two to five closely related paralogs. By contrast, the sequence of grapevine reference genome (cv PN40024) has revealed an unusually large STS gene family. Here, we combine molecular evolution and structural and functional analyses to investigate further the high number of STS genes in grapevine. Our reannotation of the STS and CHS gene families yielded 48 STS genes, including at least 32 potentially functional ones. Functional characterization of nine genes representing most of the STS gene family diversity clearly indicated that these genes do encode for proteins with STS activity. Evolutionary analysis of the STS gene family revealed that both STS and CHS evolution are dominated by purifying selection, with no evidence for strong selection for new functions among STS genes. However, we found a few sites under different selection pressures in CHS and STS sequences, whose potential functional consequences are discussed using a structural model of a typical STS from grapevine that we developed.

  15. Inflorescence of grapevine (Vitis vinifera L.): a high ability to distribute its own assimilates.

    PubMed

    Vaillant-Gaveau, Nathalie; Maillard, Pascale; Wojnarowiez, Geneviève; Gross, Patrick; Clément, Christophe; Fontaine, Florence

    2011-08-01

    The distribution of carbon (C) into whole grapevine fruiting cuttings was investigated during flower development to determine the relative contribution of inflorescence and leaf photoassimilates in the total C balance and to investigate their partitioning towards other plant organs. A (13)C labelling procedure was used to label C photoassimilates by leaves and inflorescences in grapevine. Investigations were carried out at various stages of flower/berry development, from separated cluster to fruit set, using grapevine fruiting cuttings with four leaves (Vitis vinifera L. cv. Chardonnay). This is the first study reporting that, during its development, (i) the carbon needs of the inflorescence were met by both leaf and inflorescence photosynthesis, and (ii) the inflorescence amazingly participated significantly to the total C balance of grapevine cuttings by redistributing an important part of its own assimilates to other plant organs. With regard to flowering, 29% of C assimilated by the inflorescence remained in the inflorescence, while partitioning towards the stem reached 42% and, as a lower proportion, 15% in leaves, and 14% in roots.

  16. Selection for Run1-Ren1 dihybrid grapevines using microsatellite markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inheritance of Ren1 and Run1 powdery mildew resistance genes were tracked in a grapevine hybrid family using linked microsatellite markers. Segregation of the powdery mildew resistance phenotype was evaluated under in vitro and greenhouse conditions independently of the genotype data. Combined a...

  17. VULNERABILITY TO CAVITATION IN GRAPEVINES HAS BEEN OVERESTIMATED BY THE CENTRIFUGE TECHNIQUE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapevines are considered among the most vulnerable woody plant species to water stress-induced cavitation with embolism forming at slight tensions. However, we found that native embolism in stems of field grown Vitis vinifera cv. Chardonnay never exceeded 30% despite xylem water potentials ('x) rea...

  18. Grapevine phenolic compounds in xylem sap and tissues are significantly altered during infection by Xylella fastidiosa.

    PubMed

    Wallis, Christopher M; Chen, Jianchi

    2012-09-01

    Pierce's disease of grapevine (PD), caused by the bacterial pathogen Xylella fastidiosa, remains a serious problem for grape production in California and elsewhere. This research examined induction of phenolic compounds in grapevines ('Thompson Seedless') infected with X. fastidiosa over a 6-month period. Two months postinoculation with X. fastidiosa, catechin, digalloylquinic acid, and astringin were found at greater levels in xylem sap; multiple catechins, procyanidins, and stilbenoids were found at greater levels in xylem tissues; and precursors to lignin and condensed tannins were found at greater levels in xylem cell walls. However, such large-scale inductions of phenolic compounds were not observed 4 months after inoculation. Six months after inoculation, infected plants had significantly reduced phenolic levels in xylem sap and tissues when compared with control plants, including lowered levels of lignin and condensed tannins. At 6 months, PD symptoms were severe in infected plants and most photosynthetic tissue was abscised. These results suggest that, even though grapevine hosts may initially respond to X. fastidiosa infections with increased production of phenolic compounds, ultimately, PD causes grapevines to enter a state of decline whereby diseased hosts no longer have the resources to support secondary metabolite production, including defense-associated phenolic compounds.

  19. Mechanisms of resistance to an azole fungicide in the grapevine powdery mildew fungus, Erysiphe necator

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the mechanisms of azole resistance in the grapevine powdery mildew fungus, Erysiphe necator, by quantifying the sensitivity to myclobutanil (EC50) in 65 isolates from the eastern U.S. and 12 from Chile. From each isolate, we sequenced the gene for sterol 14a-demethylase (CYP51), and measu...

  20. First Report of the Occurrence of Grapevine fanleaf virus in the Pacific Northwest Region Vineyards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapevine fanleaf virus (GFLV, genus: Nepovirus, family: Comoviridae), responsible for fanleaf degeneration disease is one of the most important viral diseases of wine grapes (Vitis vinifera) worldwide. During our reconnaissance studies, cambial scrapings from dormant wood cuttings of the wine grape...

  1. Molecular analyses of Pythium irregulare isolates from grapevines in South Africa suggest a single variable species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pythium irregulare species complex is the most common and widespread Pythium spp. associated with grapevines in South Africa. This species complex can be subdivided into several morphological and phylogenetic species that are all highly similar at the sequence level. The complex includes P. re...

  2. Xylem vessel relays contribute to radial connectivity in grapevine stems (Vitis vinifera and V. arizonica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Connectivity within xylem networks plays an important role in the movement of water and nutrients through plants, but also facilitates the spread of pathogens and embolisms that increase hydraulic resistance. This study describes a unique anatomical feature found in grapevine xylem that forms radial...

  3. Characterisation and detection of Pythium and Phytophthora species associated with grapevines in South Africa.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Replant and decline diseases of grapevines not only cause quantitative and qualitative yield losses, but also results in extra costs when vineyards have to be replanted. This study investigated the role of Pythium and Phytophthora in the decline syndrome in South Africa by determining the (i) speci...

  4. Grapevine cell early activation of specific responses to DIMEB, a resveratrol elicitor

    PubMed Central

    Zamboni, Anita; Gatto, Pamela; Cestaro, Alessandro; Pilati, Stefania; Viola, Roberto; Mattivi, Fulvio; Moser, Claudio; Velasco, Riccardo

    2009-01-01

    Background In response to pathogen attack, grapevine synthesizes phytoalexins belonging to the family of stilbenes. Grapevine cell cultures represent a good model system for studying the basic mechanisms of plant response to biotic and abiotic elicitors. Among these, modified β-cyclodextrins seem to act as true elicitors inducing strong production of the stilbene resveratrol. Results The transcriptome changes of Vitis riparia × Vitis berlandieri grapevine cells in response to the modified β-cyclodextrin, DIMEB, were analyzed 2 and 6 h after treatment using a suppression subtractive hybridization experiment and a microarray analysis respectively. At both time points, we identified a specific set of induced genes belonging to the general phenylpropanoid metabolism, including stilbenes and hydroxycinnamates, and to defence proteins such as PR proteins and chitinases. At 6 h we also observed a down-regulation of the genes involved in cell division and cell-wall loosening. Conclusions We report the first large-scale study of the molecular effects of DIMEB, a resveratrol inducer, on grapevine cell cultures. This molecule seems to mimic a defence elicitor which enhances the physical barriers of the cell, stops cell division and induces phytoalexin synthesis. PMID:19660119

  5. Botryticides affect grapevine leaf photosynthesis without inducing defense mechanisms.

    PubMed

    Petit, Anne-Noëlle; Wojnarowiez, Geneviève; Panon, Marie-Laure; Baillieul, Fabienne; Clément, Christophe; Fontaine, Florence; Vaillant-Gaveau, Nathalie

    2009-02-01

    The effects of the two botryticides, fludioxonil (fdx) and fenhexamid (fhd), were investigated on grapevine leaves (Vitis vinifera L. cv. Pinot noir) following photosynthesis and defense mechanisms. Treatments were carried out in vineyard at the end of flowering. Phytotoxicity of both fungicides was evaluated by measuring variations of leaf photosynthetic parameters and correlated expression of photosynthesis-related genes. Results demonstrated that similar decrease in photosynthesis was caused by fdx and fhd applications. Moreover, the mechanism leading to photosynthesis alteration seems to be the same for both fungicides. Stomatal limitation to photosynthetic gas exchange did not change following treatments indicating that inhibition of photosynthesis was mostly attributed to non-stomatal factors. Nevertheless, fungicides-induced depression of photosynthesis was related neither to a decrease in Rubisco carboxylation efficiency and in the capacity for regeneration of ribulose 1,5-bisphosphate nor to loss in PSII activity. However, fdx and fhd treatments generated repression of genes encoding proteins involved in the photosynthetic process. Indeed, decreased photosynthesis was coupled with repression of PsbP subunit of photosystem II (psbP1), chlorophyll a/b binding protein of photosystem I (cab) and Rubisco small subunit (rbcS) genes. A repression of these genes may participate in the photosynthesis alteration. To our knowledge, this is the first study of photosynthesis-related gene expression following fungicide stress. In the meantime, defense responses were followed by measuring chitinase activity and expression of varied defense-related genes encoding proteins involved in phenylpropanoid synthesis (PAL) or octadecanoid synthesis (LOX), as well as pathogenesis-related protein (Chi4C). No induction of defense was observed in botryticides-treated leaves. To conclude, the photosynthesis is affected without any triggering of plant defense responses.

  6. Genes Expressed in Grapevine Leaves Reveal Latent Wood Infection by the Fungal Pathogen Neofusicoccum parvum

    PubMed Central

    Czemmel, Stefan; Galarneau, Erin R.; Travadon, Renaud; McElrone, Andrew J.; Cramer, Grant R.; Baumgartner, Kendra

    2015-01-01

    Some pathogenic species of the Botryosphaeriaceae have a latent phase, colonizing woody tissues while perennial hosts show no apparent symptoms until conditions for disease development become favorable. Detection of these pathogens is often limited to the later pathogenic phase. The latent phase is poorly characterized, despite the need for non-destructive detection tools and effective quarantine strategies, which would benefit from identification of host-based markers in leaves. Neofusicoccum parvum infects the wood of grapevines and other horticultural crops, killing the fruit-bearing shoots. We used light microscopy and high-resolution computed tomography (HRCT) to examine the spatio-temporal relationship between pathogen colonization and anatomical changes in stem sections. To identify differentially-expressed grape genes, leaves from inoculated and non-inoculated plants were examined using RNA-Seq. The latent phase occurred between 0 and 1.5 months post-inoculation (MPI), during which time the pathogen did not spread significantly beyond the inoculation site nor were there differences in lesion lengths between inoculated and non-inoculated plants. The pathogenic phase occurred between 1.5 and 2 MPI, when recovery beyond the inoculation site increased and lesion lengths of inoculated plants tripled. By 2 MPI, inoculated plants also had decreased starch content in xylem fibers and rays, and increased levels of gel-occluded xylem vessels, the latter of which HRCT revealed at a higher frequency than microscopy. RNA-Seq and screening of 21 grape expression datasets identified 20 candidate genes that were transcriptionally-activated by infection during the latent phase, and confirmed that the four best candidates (galactinol synthase, abscisic acid-induced wheat plasma membrane polypeptide-19 ortholog, embryonic cell protein 63, BURP domain-containing protein) were not affected by a range of common foliar and wood pathogens or abiotic stresses. Assuming such host

  7. Genes expressed in grapevine leaves reveal latent wood infection by the fungal pathogen Neofusicoccum parvum.

    PubMed

    Czemmel, Stefan; Galarneau, Erin R; Travadon, Renaud; McElrone, Andrew J; Cramer, Grant R; Baumgartner, Kendra

    2015-01-01

    Some pathogenic species of the Botryosphaeriaceae have a latent phase, colonizing woody tissues while perennial hosts show no apparent symptoms until conditions for disease development become favorable. Detection of these pathogens is often limited to the later pathogenic phase. The latent phase is poorly characterized, despite the need for non-destructive detection tools and effective quarantine strategies, which would benefit from identification of host-based markers in leaves. Neofusicoccum parvum infects the wood of grapevines and other horticultural crops, killing the fruit-bearing shoots. We used light microscopy and high-resolution computed tomography (HRCT) to examine the spatio-temporal relationship between pathogen colonization and anatomical changes in stem sections. To identify differentially-expressed grape genes, leaves from inoculated and non-inoculated plants were examined using RNA-Seq. The latent phase occurred between 0 and 1.5 months post-inoculation (MPI), during which time the pathogen did not spread significantly beyond the inoculation site nor were there differences in lesion lengths between inoculated and non-inoculated plants. The pathogenic phase occurred between 1.5 and 2 MPI, when recovery beyond the inoculation site increased and lesion lengths of inoculated plants tripled. By 2 MPI, inoculated plants also had decreased starch content in xylem fibers and rays, and increased levels of gel-occluded xylem vessels, the latter of which HRCT revealed at a higher frequency than microscopy. RNA-Seq and screening of 21 grape expression datasets identified 20 candidate genes that were transcriptionally-activated by infection during the latent phase, and confirmed that the four best candidates (galactinol synthase, abscisic acid-induced wheat plasma membrane polypeptide-19 ortholog, embryonic cell protein 63, BURP domain-containing protein) were not affected by a range of common foliar and wood pathogens or abiotic stresses. Assuming such host

  8. The nine C-terminal residues of the grapevine fanleaf nepovirus movement protein are critical for systemic virus spread.

    PubMed

    Belin, C; Schmitt, C; Gaire, F; Walter, B; Demangeat, G; Pinck, L

    1999-06-01

    The grapevine fanleaf virus (GFLV) RNA2-encoded polyprotein P2 is proteolytically cleaved by the RNA1-encoded proteinase to yield protein 2A, 2B(MP) movement protein and 2C(CP) coat protein. To further investigate the role of the 2B(MP) and 2C(CP) proteins in virus movement, RNA2 was engineered by alternatively replacing the GFLV 2B(MP) and 2C(CP) genes with their counterparts from the closely related Arabis mosaic virus (ArMV). Transcripts of all chimeric RNA2s were able to replicate in Chenopodium quinoa protoplasts and form tubules in tobacco BY-2 protoplasts in the presence of the infectious transcript of GFLV RNA1. Virus particles were produced when the GFLV 2C(CP) gene was replaced with its ArMV counterpart, but systemic virus spread did not occur in C. quinoa plants. In addition, chimeric RNA2 containing the complete ArMV 2B(MP) gene was neither encapsidated nor infectious on plants, probably because polyprotein P2 was incompletely processed. However, chimeric RNA2 encoding ArMV 2B(MP), in which the nine C-terminal residues were those of GFLV 2B(MP), formed virus particles and were infectious in the presence of GFLV but not ArMV 2C(CP). These results suggest that the nine C-terminal residues of 2B(MP) must be of the same virus origin as the proteinase for efficient proteolytic processing of polyprotein P2 and from the same virus origin as the 2C(CP) for systemic virus spread.

  9. Ultraviolet-B radiation and water deficit interact to alter flavonol and anthocyanin profiles in grapevine berries through transcriptomic regulation.

    PubMed

    Martínez-Lüscher, Johann; Sánchez-Díaz, Manuel; Delrot, Serge; Aguirreolea, Jone; Pascual, Inmaculada; Gomès, Eric

    2014-11-01

    UV-B radiation and water deficit may trigger flavonol and anthocyanin biosynthesis in plant tissues. In addition, previous research has showed strong qualitative effects on grape berry skin flavonol and anthocyanin profiles in response to UV-B and water deficit. The aim of this study is to identify the mechanisms leading to quantitative and qualitative changes in flavonol and anthocyanin profiles, in response to separate and combined UV-B and water deficit. Grapevines (Vitis vinifera L. cv. Tempranillo) were exposed to three levels of UV-B radiation (0, 5.98 and 9.66 kJ m(-2) day(-1)) and subjected to two water regimes. A strong effect of UV-B on flavonol and anthocyanin biosynthesis was found, resulting in an increased anthocyanin concentration and a change in their profile. Concomitantly, two key biosynthetic genes (FLS1 and UFGT) were up-regulated by UV-B, leading to increased flavonol and anthocyanin skin concentration. Changes in flavonol and anthocyanin composition were explained to a large extend by transcript levels of F3'H, F3'5'H and OMT2. A significant interaction between UV-B and water deficit was found in the relative abundance of 3'4' and 3'4'5' substituted flavonols, but not in their anthocyanin homologues. The ratio between 3'4'5' and 3'4' substituted flavonols was linearly related to the ratios of F3'5'H and FLS1 transcription, two steps up-regulated independently by water deficit and UV-B radiation, respectively. Our results indicate that changes in flavonol profiles in response to environmental conditions are not only a consequence of changes in the expression of flavonoid hydroxylases; but also the result of the competition of FLS, F3'5'H and F3'H enzymes for the same flavonol substrates.

  10. Analysis of SAR and optical temporal signatures of grapevine over a heterogeneous vineyard landscape

    NASA Astrophysics Data System (ADS)

    Loussert, P.; Baup, F.; Corgne, S.; Quénol, H.; Ortega, A.

    2016-10-01

    The aim of this work is to analyse grapevine temporal signatures over a viticultural landscape with remote sensing data in order to evaluate the impact of the perennial practices on optical and SAR signals. For this, the effects of different combinations of vineyard organisations on multi-temporal high and very high spatial resolution SAR and optical data have been analysed. The study area is located in Mendoza (Argentina). All the ground data were acquired during an experimental campaign performed in 2014-2015 over 153 vineyards (around 400ha). The data of the perennial practices were recorded over each of the 153 vineyards. The schedule of the annual practices were also provided over the all site. The grapevine phenological cycle was finally monitored on 14 fields through GLAI (Green Leaf Area index) estimation using hemispherical images and grapevine canopy height measurements. The satellite images dataset is composed of 6 Dual-Pol TerraSAR-X images, 5 Pleiades images, and 6 Landsat-8 images. After calibrating the images, backscattering coefficients and polarimetric parameters were extracted from Terrasar-X images (entropy and alpha angle) and the NDVI from optical images. The analysis of the temporal signatures regarding perennial practices revealed a strong impact of the inter-row spacing management. Ranges of values of backscattering coefficients differ with the type of management but their temporal variation seems to be linked to soil moisture changes. Depending on the roughness of the inter-row spacing the alpha angle evolution is linked to grapevine growth in the case of a chemically weeded inter-row spacing. But it remains at high values when the inter-row spacing is ploughed or grassed. In those cases, the entropy increases along the growth cycle. The vegetation indexes series are increasing with the grapevine growth depending on canopy width and soil management. Thus this work highlighted the variability of the SAR and optical signals due to

  11. Spatio-temporal effects of soil and bedrock variability on grapevine water status in hillslope vineyards.

    NASA Astrophysics Data System (ADS)

    Brillante, Luca; Bois, Benjamin; Mathieu, Olivier; Leveque, Jean

    2014-05-01

    Hillslope vineyards show various and complex water dynamics between soil and plants, and in order to gain further insight into this phenomenon, 8 grapevine plots were monitored during three vintages, from 2010 to 2013, on Corton Hill, Burgundy, France. Plots were distributed along a topolithosequence from 330 to 270 metres a.s.l. Grapevine water status was monitored weekly by surveying water potential, and, at the end of the season, by the use of the δ13C analysis of grape juice. Soil profile of each plot was described and analysed (soil texture, gravel content, organic carbon, total nitrogen, pH, CEC). Soil volumetric humidity was measured weekly, using TDR probes. A pedotransfer function was developed to transform Electrical Resistivity Imaging (ERI) into soil volume wetness and therefore to spatialise and observe variation in the Fraction of Transpirable Soil Water (FTSW). During the three years of monitoring, grapevines experienced great variation in water status, which ranged from low to considerable water deficit (as expressed by pre-dawn leaf water potential and δ13C analysis of grape juice). With ERI imaging, it was possible to observe differences in water absorption pattern by roots, in different soils, and at different depth. In addition, significant differences were observed in grapevine water status in relation to variations in the physical characteristics of the terroir along the hillslope (i.e. the geo-pedological context, the elevation etc.). Grapevine water behaviour and plant-soil water relationships on the hillslope of Corton Hill have been extensively characterised in this study by ultimate technologies, allowing to present this terroir as a very interesting example for future generalisation and modelling of the hillslope vineyard water dynamics.

  12. Genetic and Phenotypic Characterization of Grapevine vein clearing virus from Wild Vitis rupestris.

    PubMed

    Beach, Steven; Kovens, Michael; Hubbert, LeAnn; Honesty, Shae; Guo, Qiang; Pap, Daniel; Dai, Ru; Kovacs, Laszlo; Qiu, Wenping

    2017-01-01

    Grapevine vein clearing virus (GVCV), a new member of the genus Badnavirus in the family Caulimoviridae, is associated with a vein clearing and vine decline disease that severely affects grape production and berry quality in commercial vineyards in the Midwest region of the United States. In this paper, the genetic and phenotypic characteristics of GVCV-VRU1 and GVCV-VRU2, two isolates from wild Vitis rupestris grapevines in their native habitat, are described. The GVCV-VRU1 genome is 7,755 bp long while the GVCV-VRU2 genome consists of 7,725 bp, both of which are different from the genome of the GVCV-CHA isolate (7,753 bp), which was originally discovered in the grape cultivar 'Chardonel'. The nucleotide sequence identity among GVCV-VRU1, GVCV-VRU2, and GVCV-CHA ranges from 91.6 to 93.4%, and open reading frame (ORF) II is the most divergent ORF with only 83.3 to 88.5% identity. Sequence analysis of the ORF II indicated that GVCV isolates genetically similar to GVCV-VRU1 and GVCV-VRU2 also are present in commercial vineyards. Symptoms of GVCV-VRU1- or GVCV-VRU2-infected wild V. rupestris grapevine appeared initially as translucent vein clearing on young leaves and progressed to vein necrosis on mature leaves. Inoculation of GVCV-VRU1 or GVCV-VRU2 by grafting onto grape cultivar Chardonel resulted in mild mottle and leaf distortion. The natural range of wild V. rupestris grapevines overlaps with commercial vineyards in the Midwestern United States. Therefore, the discovery of GVCV isolates in wild V. rupestris grapevines has important implications for epidemics and management of the GVCV-associated disease.

  13. Grapevines respond to glassy-winged sharpshooter (Homalodisca vitripennis) oviposition by increasing local and systemic terpenoid levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapevines (Vitis vinifera) have been observed to respond to oviposition by glassy-winged sharpshooters [Homalodisca vitripennis (Germar)(Hemiptera: Cicadellidae)] by producing volatile compounds that attract egg parasitoids such as Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae). Recent work ...

  14. MYB98 positively regulates a battery of synergid-expressed genes encoding filiform apparatus localized proteins.

    PubMed

    Punwani, Jayson A; Rabiger, David S; Drews, Gary N

    2007-08-01

    The synergid cells within the female gametophyte are essential for reproduction in angiosperms. MYB98 encodes an R2R3-MYB protein required for pollen tube guidance and filiform apparatus formation by the synergid cells. To test the predicted function of MYB98 as a transcriptional regulator, we determined its subcellular localization and examined its DNA binding properties. We show that MYB98 binds to a specific DNA sequence (TAAC) and that a MYB98-green fluorescent protein fusion protein localizes to the nucleus, consistent with a role in transcriptional regulation. To identify genes regulated by MYB98, we tested previously identified synergid-expressed genes for reduced expression in myb98 female gametophytes and identified 16 such genes. We dissected the promoter of one of the downstream genes, DD11, and show that it contains a MYB98 binding site required for synergid expression, suggesting that DD11 is regulated directly by MYB98. To gain insight into the functions of the downstream genes, we chose five genes and determined the subcellular localization of the encoded proteins. We show that these five proteins are secreted into the filiform apparatus, suggesting that they play a role in either the formation or the function of this unique structure. Together, these data suggest that MYB98 functions as a transcriptional regulator in the synergid cells and activates the expression of genes required for pollen tube guidance and filiform apparatus formation.

  15. MYB98 Positively Regulates a Battery of Synergid-Expressed Genes Encoding Filiform Apparatus–Localized Proteins[W

    PubMed Central

    Punwani, Jayson A.; Rabiger, David S.; Drews, Gary N.

    2007-01-01

    The synergid cells within the female gametophyte are essential for reproduction in angiosperms. MYB98 encodes an R2R3-MYB protein required for pollen tube guidance and filiform apparatus formation by the synergid cells. To test the predicted function of MYB98 as a transcriptional regulator, we determined its subcellular localization and examined its DNA binding properties. We show that MYB98 binds to a specific DNA sequence (TAAC) and that a MYB98–green fluorescent protein fusion protein localizes to the nucleus, consistent with a role in transcriptional regulation. To identify genes regulated by MYB98, we tested previously identified synergid-expressed genes for reduced expression in myb98 female gametophytes and identified 16 such genes. We dissected the promoter of one of the downstream genes, DD11, and show that it contains a MYB98 binding site required for synergid expression, suggesting that DD11 is regulated directly by MYB98. To gain insight into the functions of the downstream genes, we chose five genes and determined the subcellular localization of the encoded proteins. We show that these five proteins are secreted into the filiform apparatus, suggesting that they play a role in either the formation or the function of this unique structure. Together, these data suggest that MYB98 functions as a transcriptional regulator in the synergid cells and activates the expression of genes required for pollen tube guidance and filiform apparatus formation. PMID:17693534

  16. Molecular Characterization and In Silico Analysis of the Pheromone-Binding Protein of the European Grapevine Moth Lobesia botrana (Denis & Schiffermüller) (Lepidoptera, Tortricidae).

    PubMed

    Mutis, A; Palma, R; Venthur, H; Iturriaga-Vásquez, P; Faundez-Parraguez, M; Mella-Herrera, R; Kontodimas, D; Lobos, C; Quiroz, A

    2014-06-01

    The European grapevine moth Lobesia botrana (Denis & Schiffermüller) is an economically important insect in Europe. The species invaded vineyards in Chile, Argentina, and California during 2008-2010 causing severe problems. A major component of the sex pheromone, (E,Z)-7,9-dodecadienyl acetate (E7,Z9-12:Ac), is used in a mating disruption technique when grapevine moth populations are low or to monitor pest numbers. It is thought that these sexual pheromones are blends of volatiles that typically are specific to a species and are transported in the insect antenna by pheromone-binding proteins (PBPs) across the sensillar lymph to the olfactory receptors. Currently, an increasing number of Lepidopteran PBPs are being identified and cloned. However, there are no studies of the olfactory system and of proteins involved in the olfactory perception of L. botrana at the molecular level. In the present study, we report, for the first time, the sequence of a PBP from L. botrana (LbotPBP), which was determined using reverse transcription technology. Homology modeling was used to generate the three-dimensional protein structure. The model suggests that PBP consists of six α-helices as follows: Lys2-Met23 (α1), Thr28-Phe36 (α2), Arg46-Leu59 (α3), His70-Asn80 (α4), Glu84-Asn100 (α5), and Cys108-Lys125 (α6), held together by three disulfide bridges, Cys19-Cys54, Cys50-Cys108, and Cys97-Cys117. Docking simulations based on this model suggested that Trp114 is a key residue in the recognition of acetate pheromones, such as E7,Z9-12:Ac. In silico results in this study are consistent with previous findings in which E7,Z9-12:Ac acts as the most active compound in behavioral and electroantennographic assays.

  17. Evolution of the VvMybA gene family, the major determinant of berry colour in cultivated grapevine (Vitis vinifera L.).

    PubMed

    Fournier-Level, A; Lacombe, T; Le Cunff, L; Boursiquot, J-M; This, P

    2010-04-01

    Polymorphisms in the grape transcription factor family VvMybA are responsible for variation in anthocyanin content in the berries of cultivated grapevine (Vitis vinifera L. subsp. sativa). Previous study has shown that white grapes arose through the mutation of two adjacent genes: a retroelement insertion in VvMybA1 and a single-nucleotide polymorphism mutation in VvMybA2. The purpose of this study was to understand how these mutations emerged and affected genetic diversity at neighbouring sites and how they structured the genetic diversity of cultivated grapevines. We sequenced a total of 3225 bp of these genes in a core collection of genetic resources, and carried out empirical selection tests, phylogenetic- and coalescence-based demographic analyses. The insertion in the VvMybA1 promoter was shown to have occurred recently, after the mutation of VvMybA2, both mutations followed by a selective sweep. The mutational pattern for these colour genes is consistent with progressively relaxed selection from constrained ancestral coloured haplotypes to light coloured and finally white haplotypes. Dynamics of population size in the VvMybA genes showed an initial exponential growth, followed by population size stabilization. Most ancestral haplotypes are found in cultivars from western region, whereas recent haplotypes are essentially present in table cultivars from eastern regions where intense breeding practices may have replaced the original diversity. Finally, the emergence of the white allele was followed by a recent strong exponential growth, showing a very fast diffusion of the initial white allele.

  18. Grapevine and Arabidopsis Cation-Chloride Cotransporters Localize to the Golgi and Trans-Golgi Network and Indirectly Influence Long-Distance Ion Transport and Plant Salt Tolerance1[OPEN

    PubMed Central

    Henderson, Sam W.; Wege, Stefanie; Qiu, Jiaen; Blackmore, Deidre H.; Walker, Amanda R.; Tyerman, Stephen D.; Walker, Rob R.; Gilliham, Matthew

    2015-01-01

    Plant cation-chloride cotransporters (CCCs) have been implicated in conferring salt tolerance. They are predicted to improve shoot salt exclusion by directly catalyzing the retrieval of sodium (Na+) and chloride (Cl−) ions from the root xylem. We investigated whether grapevine (Vitis vinifera [Vvi]) CCC has a role in salt tolerance by cloning and functionally characterizing the gene from the cultivar Cabernet Sauvignon. Amino acid sequence analysis revealed that VviCCC shares a high degree of similarity with other plant CCCs. A VviCCC-yellow fluorescent protein translational fusion protein localized to the Golgi and the trans-Golgi network and not the plasma membrane when expressed transiently in tobacco (Nicotiana benthamiana) leaves and Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts. AtCCC-green fluorescent protein from Arabidopsis also localized to the Golgi and the trans-Golgi network. In Xenopus laevis oocytes, VviCCC targeted to the plasma membrane, where it catalyzed bumetanide-sensitive 36Cl–, 22Na+, and 86Rb+ uptake, suggesting that VviCCC (like AtCCC) belongs to the Na+-K+-2Cl– cotransporter class of CCCs. Expression of VviCCC in an Arabidopsis ccc knockout mutant abolished the mutant’s stunted growth phenotypes and reduced shoot Cl– and Na+ content to wild-type levels after growing plants in 50 mm NaCl. In grapevine roots, VviCCC transcript abundance was not regulated by Cl– treatment and was present at similar levels in both the root stele and cortex of three Vitis spp. genotypes that exhibit differential shoot salt exclusion. Our findings indicate that CCC function is conserved between grapevine and Arabidopsis, but neither protein is likely to directly mediate ion transfer with the xylem or have a direct role in salt tolerance. PMID:26378102

  19. A molecular approach to study the arbuscular mycorrhizal fungi community in a typical Piedmont grapevine cultivar

    NASA Astrophysics Data System (ADS)

    Magurno, F.; Bughi Peruglia, G.; Lumini, E.; Bianciotto, V.; Balestrini, R.

    2009-04-01

    Viticulture and wine production represent one of the most relevant agro-food sectors for the Piedmont Region (Italy) in terms of value, with more than 400 millions € a year (12 % of total agricultural production of the Region and the 10 % of the national grape and wine production). The soil where grapevines (Vitis spp.) grow is one of the first parameters influencing the complex grapevine-wine chain. Arbuscular mycorrhizal fungi (AMFs), a main component of soil microbiota in most agrosystems, are considered crucial biomarkers of soil quality because of their biofertilisers role. As mutualistic symbionts, they colonize the roots of the majority of plants. Benefits in symbiosis are well showed as an improvement in shoot/root growth, mineral transport, water-stress tolerance and resistance to certain diseases. Grapevines roots are often heavily colonized by AMFs under field conditions and in some cases AMFs appear to be necessary for their normal growth and survival. Even so, little information are until now available about composition of AMFs communities living in the vineyards soil and in associations with grapevine roots, mainly related to morphological characterization. Vineyard of Nebbiolo, one of the most important Piedmont cultivar, was selected in order to study the AMFs community using a molecular approach. Soil samples and roots from an experimental vineyard located in Lessona (Biella, Piedmont, Italy) were analyzed using AM fungal-specific primers to partially amplify the small subunit (SSU) of the ribosomal DNA genes. Much more than 650 clones were sequenced. Phylogenetic analyses identified 32 OTUs from soil, clustered into Glomus groups Aa, Ab, Ad and B, Diversisporaceae and Gigasporaceae families. Thirteen OTUs from roots were determined, clustered into Glomus groups Ab, Ad and B, and Gigasporaceae family. In particular, Glomus group Ad was the best represented in both compartments, suggesting a correlation between intra and extra radical communities

  20. Inhibition of AtMYB2 DNA-binding by nitric oxide involves cysteine S-nitrosylation.

    PubMed

    Serpa, Viviane; Vernal, Javier; Lamattina, Lorenzo; Grotewold, Erich; Cassia, Raul; Terenzi, Hernán

    2007-10-05

    Nitric oxide (NO) can influence the transcriptional activity of a wide set of Arabidopsis genes. The aim of the present work was to investigate if NO modifies DNA-binding activity of AtMYB2 (a typical R2R3-MYB from Arabidopsis thaliana), by a posttranslational modification of its conserved Cys53 residue. We cloned a fully active minimal DNA-binding domain of AtMYB2 spanning residues 19-125, hereafter called M2D. In EMSA assays, M2D binds the core binding site 5'-[A]AACC[A]-3'. The NO donors SNP and GSNO inhibit M2D DNA-binding. As expected for a Cys S-nitrosylation, the NO-mediated inhibitory effect was reversed by DTT, and S-nitrosylation of Cys53 in M2D was detected by biotin switch assays. These results demonstrate that the DNA-binding of M2D is inhibited by S-nitrosylation of Cys53 as a consequence of NO action, thus establishing for the first time a relationship between the redox state and DNA-binding in a plant MYB transcription factor.

  1. MicroRNA858 Is a Potential Regulator of Phenylpropanoid Pathway and Plant Development.

    PubMed

    Sharma, Deepika; Tiwari, Manish; Pandey, Ashutosh; Bhatia, Chitra; Sharma, Ashish; Trivedi, Prabodh Kumar

    2016-06-01

    MicroRNAs (miRNAs) are endogenous, noncoding small RNAs that function as critical regulators of gene expression. In plants, miRNAs have shown their potential as regulators of growth, development, signal transduction, and stress tolerance. Although the miRNA-mediated regulation of several processes is known, the involvement of miRNAs in regulating secondary plant product biosynthesis is poorly understood. In this study, we functionally characterized Arabidopsis (Arabidopsis thaliana) miR858a, which putatively targets R2R3-MYB transcription factors involved in flavonoid biosynthesis. Overexpression of miR858a in Arabidopsis led to the down-regulation of several MYB transcription factors regulating flavonoid biosynthesis. In contrast to the robust growth and early flowering of miR858OX plants, reduction of plant growth and delayed flowering were observed in Arabidopsis transgenic lines expressing an artificial miRNA target mimic (MIM858). Genome-wide expression analysis using transgenic lines suggested that miR858a targets a number of regulatory factors that modulate the expression of downstream genes involved in plant development and hormonal and stress responses. Furthermore, higher expression of MYBs in MIM858 lines leads to redirection of the metabolic flux towards the synthesis of flavonoids at the cost of lignin synthesis. Altogether, our study has established the potential role of light-regulated miR858a in flavonoid biosynthesis and plant growth and development.

  2. Spatially and temporally restricted expression of PtrMYB021 regulates secondary cell wall formation in Arabidopsis

    SciTech Connect

    Wang, Wei; Li, Eryang; Porth, Ilga; Chen, Jin-Gui; Mansfield, Shawn D.; Douglas, Carl J.; Wang, Shucai

    2016-02-02

    Among the R2R3 MYB transcription factors that involve in the regulation of secondary cell wall formation in Arabidopsis, MYB46 alone is sufficient to induce the entire secondary cell wall biosynthesis program. PtrMYB021, the poplar homolog of MYB46, has been reported to regulate secondary cell wall formation when expressed in Arabidopsis. We report here that spatially and temporally restricted expression of PtrMYB021 is critical for its function in regulating secondary cell wall formation. By using quantitative RT-PCR, we found that PtrMYB021 was expressed primarily in xylem tissues. When expressed in Arabidopsis under the control of PtrCesA8, but not the 35S promoter, PtrMYB021 increased secondary cell wall thickness, which is likely caused by increased lignification as well as changes in cell wall carbohydrate composition. Consistent with this, elevated expression of lignin and cellulose biosynthetic genes were observed in the transgenic plants. Finally, when expressed in Arabidopsis protoplasts as fusion proteins to the Gal4 DNA binding domain, PtrMYB021 activated the reporter gene Gal4-GUS. In summary, our results suggest that PtrMYB021 is a transcriptional activator, and spatially and temporally restricted expression of PtrMYB021 in Arabidopsis regulates secondary cell wall formation by activating a subset of secondary cell wall biosynthesis genes.

  3. Spatially and temporally restricted expression of PtrMYB021 regulates secondary cell wall formation in Arabidopsis

    DOE PAGES

    Wang, Wei; Li, Eryang; Porth, Ilga; ...

    2016-02-02

    Among the R2R3 MYB transcription factors that involve in the regulation of secondary cell wall formation in Arabidopsis, MYB46 alone is sufficient to induce the entire secondary cell wall biosynthesis program. PtrMYB021, the poplar homolog of MYB46, has been reported to regulate secondary cell wall formation when expressed in Arabidopsis. We report here that spatially and temporally restricted expression of PtrMYB021 is critical for its function in regulating secondary cell wall formation. By using quantitative RT-PCR, we found that PtrMYB021 was expressed primarily in xylem tissues. When expressed in Arabidopsis under the control of PtrCesA8, but not the 35S promoter,more » PtrMYB021 increased secondary cell wall thickness, which is likely caused by increased lignification as well as changes in cell wall carbohydrate composition. Consistent with this, elevated expression of lignin and cellulose biosynthetic genes were observed in the transgenic plants. Finally, when expressed in Arabidopsis protoplasts as fusion proteins to the Gal4 DNA binding domain, PtrMYB021 activated the reporter gene Gal4-GUS. In summary, our results suggest that PtrMYB021 is a transcriptional activator, and spatially and temporally restricted expression of PtrMYB021 in Arabidopsis regulates secondary cell wall formation by activating a subset of secondary cell wall biosynthesis genes.« less

  4. A Leafhopper-Transmissible DNA Virus with Novel Evolutionary Lineage in the Family Geminiviridae Implicated in Grapevine Redleaf Disease by Next-Generation Sequencing

    PubMed Central

    Poojari, Sudarsana; Alabi, Olufemi J.; Fofanov, Viacheslav Y.; Naidu, Rayapati A.

    2013-01-01

    A graft-transmissible disease displaying red veins, red blotches and total reddening of leaves in red-berried wine grape (Vitis vinifera L.) cultivars was observed in commercial vineyards. Next-generation sequencing technology was used to identify etiological agent(s) associated with this emerging disease, designated as grapevine redleaf disease (GRD). High quality RNA extracted from leaves of grape cultivars Merlot and Cabernet Franc with and without GRD symptoms was used to prepare cDNA libraries. Assembly of highly informative sequence reads generated from Illumina sequencing of cDNA libraries, followed by bioinformatic analyses of sequence contigs resulted in specific identification of taxonomically disparate viruses and viroids in samples with and without GRD symptoms. A single-stranded DNA virus, tentatively named Grapevine redleaf-associated virus (GRLaV), and Grapevine fanleaf virus were detected only in grapevines showing GRD symptoms. In contrast, Grapevine rupestris stem pitting-associated virus, Hop stunt viroid, Grapevine yellow speckle viroid 1, Citrus exocortis viroid and Citrus exocortis Yucatan viroid were present in both symptomatic and non-symptomatic grapevines. GRLaV was transmitted by the Virginia creeper leafhopper (Erythroneura ziczac Walsh) from grapevine-to-grapevine under greenhouse conditions. Molecular and phylogenetic analyses indicated that GRLaV, almost identical to recently reported Grapevine Cabernet Franc-associated virus from New York and Grapevine red blotch-associated virus from California, represents an evolutionarily distinct lineage in the family Geminiviridae with genome characteristics distinct from other leafhopper-transmitted geminiviruses. GRD significantly reduced fruit yield and affected berry quality parameters demonstrating negative impacts of the disease. Higher quantities of carbohydrates were present in symptomatic leaves suggesting their possible role in the expression of redleaf symptoms. PMID:23755117

  5. A leafhopper-transmissible DNA virus with novel evolutionary lineage in the family geminiviridae implicated in grapevine redleaf disease by next-generation sequencing.

    PubMed

    Poojari, Sudarsana; Alabi, Olufemi J; Fofanov, Viacheslav Y; Naidu, Rayapati A

    2013-01-01

    A graft-transmissible disease displaying red veins, red blotches and total reddening of leaves in red-berried wine grape (Vitis vinifera L.) cultivars was observed in commercial vineyards. Next-generation sequencing technology was used to identify etiological agent(s) associated with this emerging disease, designated as grapevine redleaf disease (GRD). High quality RNA extracted from leaves of grape cultivars Merlot and Cabernet Franc with and without GRD symptoms was used to prepare cDNA libraries. Assembly of highly informative sequence reads generated from Illumina sequencing of cDNA libraries, followed by bioinformatic analyses of sequence contigs resulted in specific identification of taxonomically disparate viruses and viroids in samples with and without GRD symptoms. A single-stranded DNA virus, tentatively named Grapevine redleaf-associated virus (GRLaV), and Grapevine fanleaf virus were detected only in grapevines showing GRD symptoms. In contrast, Grapevine rupestris stem pitting-associated virus, Hop stunt viroid, Grapevine yellow speckle viroid 1, Citrus exocortis viroid and Citrus exocortis Yucatan viroid were present in both symptomatic and non-symptomatic grapevines. GRLaV was transmitted by the Virginia creeper leafhopper (Erythroneura ziczac Walsh) from grapevine-to-grapevine under greenhouse conditions. Molecular and phylogenetic analyses indicated that GRLaV, almost identical to recently reported Grapevine Cabernet Franc-associated virus from New York and Grapevine red blotch-associated virus from California, represents an evolutionarily distinct lineage in the family Geminiviridae with genome characteristics distinct from other leafhopper-transmitted geminiviruses. GRD significantly reduced fruit yield and affected berry quality parameters demonstrating negative impacts of the disease. Higher quantities of carbohydrates were present in symptomatic leaves suggesting their possible role in the expression of redleaf symptoms.

  6. Integrated Network Analysis Identifies Fight-Club Nodes as a Class of Hubs Encompassing Key Putative Switch Genes That Induce Major Transcriptome Reprogramming during Grapevine Development[W][OPEN

    PubMed Central

    Palumbo, Maria Concetta; Zenoni, Sara; Fasoli, Marianna; Massonnet, Mélanie; Farina, Lorenzo; Castiglione, Filippo; Pezzotti, Mario; Paci, Paola

    2014-01-01

    We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named “fight-club hubs” characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named “switch genes” was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops. PMID:25490918

  7. Vitis vinifera VvNPR1.1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew.

    PubMed

    Le Henanff, Gaëlle; Farine, Sibylle; Kieffer-Mazet, Flore; Miclot, Anne-Sophie; Heitz, Thierry; Mestre, Pere; Bertsch, Christophe; Chong, Julie

    2011-08-01

    Studying grapevine (Vitis vinifera) innate defense mechanisms is a prerequisite to the development of new protection strategies, based on the stimulation of plant signaling pathways to trigger pathogen resistance. Two transcriptional coactivators (VvNPR1.1 and VvNPR1.2) with similarity to Arabidopsis thaliana NPR1 (Non-Expressor of PR genes 1), a well-characterized and key signaling element of the salicylic acid (SA) pathway, were recently isolated in Vitis vinifera. In this study, functional characterization of VvNPR1.1 and VvNPR1.2, including complementation of the Arabidopsis npr1 mutant, revealed that VvNPR1.1 is a functional ortholog of AtNPR1, whereas VvNPR1.2 likely has a different function. Ectopic overexpression of VvNPR1.1 in the Arabidopsis npr1-2 mutant restored plant growth at a high SA concentration, Pathogenesis Related 1 (PR1) gene expression after treatment with SA or bacterial inoculation, and resistance to virulent Pseudomonas syringae pv. maculicola bacteria. Moreover, stable overexpression of VvNPR1.1-GFP in V. vinifera resulted in constitutive nuclear localization of the fusion protein and enhanced PR gene expression in uninfected plants. Furthermore, grapevine plants overexpressing VvNPR1.1-GFP exhibited an enhanced resistance to powdery mildew infection. This work highlights the importance of the conserved SA/NPR1 signaling pathway for resistance to biotrophic pathogens in V. vinifera.

  8. MALDI mass spectrometry imaging for the simultaneous location of resveratrol, pterostilbene and viniferins on grapevine leaves.

    PubMed

    Becker, Loïc; Carré, Vincent; Poutaraud, Anne; Merdinoglu, Didier; Chaimbault, Patrick

    2014-07-21

    To investigate the in-situ response to a stress, grapevine leaves have been subjected to mass spectrometry imaging (MSI) experiments. The Matrix Assisted Laser Desorption/Ionisation (MALDI) approach using different matrices has been evaluated. Among all the tested matrices, the 2,5-dihydroxybenzoic acid (DHB) was found to be the most efficient matrix allowing a broader range of detected stilbene phytoalexins. Resveratrol, but also more toxic compounds against fungi such as pterostilbene and viniferins, were identified and mapped. Their spatial distributions on grapevine leaves irradiated by UV show their specific colocation around the veins. Moreover, MALDI MSI reveals that resveratrol (and piceids) and viniferins are not specifically located on the same area when leaves are infected by Plasmopara viticola. Results obtained by MALDI mass spectrometry imaging demonstrate that this technique would be essential to improve the level of knowledge concerning the role of the stilbene phytoalexins involved in a stress event.

  9. Phytotoxic Lipophilic Metabolites Produced by Grapevine Strains of Lasiodiplodia Species in Brazil.

    PubMed

    Cimmino, Alessio; Cinelli, Tamara; Masi, Marco; Reveglia, Pierluigi; da Silva, Marcondes Araujo; Mugnai, Laura; Michereff, Sami J; Surico, Giuseppe; Evidente, Antonio

    2017-02-15

    Phytotoxic metabolites produced in liquid culture by six species of Lasiodiplodia isolated in Brazil and causing Botryosphaeria dieback of grapevine were chemically identified. As ascertained by LC/MS, L. brasiliense, L. crassispora, L. jatrophicola, and L. pseudotheobromae produced jasmonic acid, and L. brasiliense synthesized, besides jasmonic acid, also (3R,4S)-4-hydroxymellein. L. euphorbicola and L. hormozganensis produced some low molecular weight lipophilic toxins. Specifically, L. euphorbicola produced (-)-mellein, (3R,4R)-(-)- and (3R,4S)-(-)-4-hydroxymellein, and tyrosol, and L. hormozganensis synthesized tyrosol and p-hydroxybenzoic acid. This is the first report on the production of the above cited metabolites from L. euphorbicola and L. hormozganensis. The phytotoxic activity of the metabolites produced is also discussed and related to the symptoms these pathogens cause in the grapevine host plants.

  10. Profiling of sugar transporter genes in grapevine coping with water deficit.

    PubMed

    Medici, Anna; Laloi, Maryse; Atanassova, Rossitza

    2014-11-03

    The profiling of grapevine (Vitis vinifera L.) genes under water deficit was specifically targeted to sugar transporters. Leaf water status was characterized by physiological parameters and soluble sugars content. The expression analysis provided evidence that VvHT1 hexose transporter gene was strongly down-regulated by the increased sugar content under mild water-deficit. The genes of monosaccharide transporter VvHT5, sucrose carrier VvSUC11, vacuolar invertase VvGIN2 and grape ASR (ABA, stress, ripening) were up-regulated under severe water stress. Their regulation in a drought-ABA signalling network and possible roles in complex interdependence between sugar subcellular partitioning and cell influx/efflux under Grapevine acclimation to dehydration are discussed.

  11. Gene from a novel plant virus satellite from grapevine identifies a viral satellite lineage.

    PubMed

    Al Rwahnih, Maher; Daubert, Steve; Sudarshana, Mysore R; Rowhani, Adib

    2013-08-01

    We have identified the genome of a novel viral satellite in deep sequence analysis of double-stranded RNA from grapevine. The genome was 1,060 bases in length, and encoded two open reading frames. Neither frame was related to any known plant virus gene. But translation of the longer frame showed a protein sequence similar to those of other plant virus satellites. Other than in commonalities they shared in this gene sequence, members of that group were extensively divergent. The reading frame in this gene from the novel satellite could be translationally coupled to an adjacent reading frame in the -1 register, through overlapping start/stop codons. These overlapping AUGA start/stop codons were adjacent to a sequence that could be folded into a pseudoknot structure. Field surveys with PCR probes specific for the novel satellite revealed its presence in 3% of the grapevines (n = 346) sampled.

  12. SNP-Discovery by RAD-Sequencing in a Germplasm Collection of Wild and Cultivated Grapevines (V. vinifera L.).

    PubMed

    Marrano, Annarita; Birolo, Giovanni; Prazzoli, Maria Lucia; Lorenzi, Silvia; Valle, Giorgio; Grando, Maria Stella

    2017-01-01

    Whole-genome comparisons of Vitis vinifera subsp. sativa and V. vinifera subsp. sylvestris are expected to provide a better estimate of the valuable genetic diversity still present in grapevine, and help to reconstruct the evolutionary history of a major crop worldwide. To this aim, the increase of molecular marker density across the grapevine genome is fundamental. Here we describe the SNP discovery in a grapevine germplasm collection of 51 cultivars and 44 wild accessions through a novel protocol of restriction-site associated DNA (RAD) sequencing. By resequencing 1.1% of the grapevine genome at a high coverage, we recovered 34K BamHI unique restriction sites, of which 6.8% were absent in the 'PN40024' reference genome. Moreover, we identified 37,748 single nucleotide polymorphisms (SNPs), 93% of which belonged to the 19 assembled chromosomes with an average of 1.8K SNPs per chromosome. Nearly half of the SNPs fell in genic regions mostly assigned to the functional categories of metabolism and regulation, whereas some nonsynonymous variants were identified in genes related with the detection and response to environmental stimuli. SNP validation was carried-out, showing the ability of RAD-seq to accurately determine genotypes in a highly heterozygous species. To test the usefulness of our SNP panel, the main diversity statistics were evaluated, highlighting how the wild grapevine retained less genetic variability than the cultivated form. Furthermore, the analysis of Linkage Disequilibrium (LD) in the two subspecies separately revealed how the LD decays faster within the domesticated grapevine compared to its wild relative. Being the first application of RAD-seq in a diverse grapevine germplasm collection, our approach holds great promise for exploiting the genetic resources available in one of the most economically important fruit crops.

  13. SNP-Discovery by RAD-Sequencing in a Germplasm Collection of Wild and Cultivated Grapevines (V. vinifera L.)

    PubMed Central

    Birolo, Giovanni; Prazzoli, Maria Lucia; Lorenzi, Silvia; Valle, Giorgio; Grando, Maria Stella

    2017-01-01

    Whole-genome comparisons of Vitis vinifera subsp. sativa and V. vinifera subsp. sylvestris are expected to provide a better estimate of the valuable genetic diversity still present in grapevine, and help to reconstruct the evolutionary history of a major crop worldwide. To this aim, the increase of molecular marker density across the grapevine genome is fundamental. Here we describe the SNP discovery in a grapevine germplasm collection of 51 cultivars and 44 wild accessions through a novel protocol of restriction-site associated DNA (RAD) sequencing. By resequencing 1.1% of the grapevine genome at a high coverage, we recovered 34K BamHI unique restriction sites, of which 6.8% were absent in the ‘PN40024’ reference genome. Moreover, we identified 37,748 single nucleotide polymorphisms (SNPs), 93% of which belonged to the 19 assembled chromosomes with an average of 1.8K SNPs per chromosome. Nearly half of the SNPs fell in genic regions mostly assigned to the functional categories of metabolism and regulation, whereas some nonsynonymous variants were identified in genes related with the detection and response to environmental stimuli. SNP validation was carried-out, showing the ability of RAD-seq to accurately determine genotypes in a highly heterozygous species. To test the usefulness of our SNP panel, the main diversity statistics were evaluated, highlighting how the wild grapevine retained less genetic variability than the cultivated form. Furthermore, the analysis of Linkage Disequilibrium (LD) in the two subspecies separately revealed how the LD decays faster within the domesticated grapevine compared to its wild relative. Being the first application of RAD-seq in a diverse grapevine germplasm collection, our approach holds great promise for exploiting the genetic resources available in one of the most economically important fruit crops. PMID:28125640

  14. Homologous and heterologous expression of grapevine E-(β)-caryophyllene synthase (VvGwECar2).

    PubMed

    Salvagnin, Umberto; Carlin, Silvia; Angeli, Sergio; Vrhovsek, Urska; Anfora, Gianfranco; Malnoy, Mickael; Martens, Stefan

    2016-11-01

    E-(β)-caryophyllene is a sesquiterpene volatile emitted by plants and involved in many ecological interactions within and among trophic levels and it has a kairomonal activity for many insect species. In grapevine it is a key compound for host-plant recognition by the European grapevine moth, Lobesia botrana, together with other two sesquiterpenes. In grapevine E-(β)-caryophyllene synthase is coded by the VvGwECar2 gene, although complete characterization of the corresponding protein has not yet been achieved. Here we performed the characterization of the enzyme after heterologous expression in E. coli, which resulted to produce in vitro also minor amounts of the isomer α-humulene and of germacrene D. The pH optimum was estimated to be 7.8, and the Km and Kcat values for farnesyl pyrophosphate were 31.4 μM and 0.19 s(-1) respectively. Then, we overexpressed the gene in the cytoplasm of two plant species, Arabidopsis thaliana and the native host Vitis vinifera. In Arabidopsis the enzyme changed the plant head space release, showing a higher selectivity for E-(β)-caryophyllene, but also the production of thujopsene instead of germacrene D. Overall plants increased the E-(β)-caryophyllene emission in the headspace collection by 8-fold compared to Col-0 control plants. In grapevine VvGwECar2 overexpression resulted in higher E-(β)-caryophyllene emissions, although there was no clear correlation between gene activity and sesquiterpene quantity, suggesting a key role by the plant regulation machinery.

  15. Endophytic bacterial community of grapevine leaves influenced by sampling date and phytoplasma infection process

    PubMed Central

    2014-01-01

    Background Endophytic bacteria benefit host plant directly or indirectly, e.g. by biocontrol of the pathogens. Up to now, their interactions with the host and with other microorganisms are poorly understood. Consequently, a crucial step for improving the knowledge of those relationships is to determine if pathogens or plant growing season influence endophytic bacterial diversity and dynamic. Results Four healthy, four phytoplasma diseased and four recovered (symptomatic plants that spontaneously regain a healthy condition) grapevine plants were sampled monthly from June to October 2010 in a vineyard in north-western Italy. Metagenomic DNA was extracted from sterilized leaves and the endophytic bacterial community dynamic and diversity were analyzed by taxon specific real-time PCR, Length-Heterogeneity PCR and genus-specific PCR. These analyses revealed that both sampling date and phytoplasma infection influenced the endophytic bacterial composition. Interestingly, in June, when the plants are symptomless and the pathogen is undetectable (i) the endophytic bacterial community associated with diseased grapevines was different from those in the other sampling dates, when the phytoplasmas are detectable inside samples; (ii) the microbial community associated with recovered plants differs from that living inside healthy and diseased plants. Interestingly, LH-PCR database identified bacteria previously reported as biocontrol agents in the examined grapevines. Of these, Burkholderia, Methylobacterium and Pantoea dynamic was influenced by the phytoplasma infection process and seasonality. Conclusion Results indicated that endophytic bacterial community composition in grapevine is correlated to both phytoplasma infection and sampling date. For the first time, data underlined that, in diseased plants, the pathogen infection process can decrease the impact of seasonality on community dynamic. Moreover, based on experimental evidences, it was reasonable to hypothesize that

  16. Identification and characterization of Eutypa leptoplaca, a new pathogen of grapevine in Northern California.

    PubMed

    Trouillas, Florent P; Gubler, Walter D

    2004-10-01

    Although Eutypa lata is the main agent of Eutypa dieback of grapevine, another species of Eutypa has been isolated from diseased grapevines in Northern California. Stromata of this recently discovered Eutypa were also collected from Acer macrophyllum, A. negundo, and Fraxinus latifolia in the vicinity of vineyards, and appeared commonly on Umbellularia californica in some mixed-evergreen forests of Napa and Sonoma counties. This second species of Eutypa was distinguished from E. lata because of the sulcate ostiole of the perithecium and smaller ascospores. A morphological comparison with type specimens revealed identical features between the Californian isolates and E. leptoplaca sensu Rappaz (1987). This identification was confirmed through phylogenetic analyses of Eutypa spp. based on the complete sequence of the internal transcribed spacer (ITS) of the rDNA and partial sequence of the beta-tubulin gene. These analyses also separated collections of E. maura, E. sparsa, E. lejoplaca, E. tetragona, E. leptoplaca and E. lata, confirming the previously proposed species concepts. The pathogenicity of E. leptoplaca on grapevine was established using isolates collected from Vitis vinifera, U. californica, and A. macrophyllum. The importance of E. leptoplaca in relation to Eutypa dieback and its role as a necrotrophic pathogen are discussed.

  17. The impact of the recent climatic change on grapevine phenophases and the prediction for the future

    NASA Astrophysics Data System (ADS)

    Zahradnicek, P.

    2009-09-01

    Grapevine (Vitis vinifera L.) cultivation is influenced by the weather. The study try to explain connection between selected phenophases and meteorological characteristics with the focus on their temporal dynamics. Phenological observations in the Czech Lands have a long tradition, but choice of a suitable station is not simple. Finally were selected station Velké Pavlovice, this station have meteorological elements observation. The guideline for observers was set up in 1956 and has included the subsequent observed variables for the vine Vitis vinifera L.. This was replaced by the new CHMI methodology instruction number 3 in 1984. This case study researched available period 1984-2007. The quality control of meteorological characteristics were executed and then data were checked for relative homogenity by Standard Normal Homogeneity Test and then adjusted with respect to the inhomogeneity year. Grapevine phenophases best respond with high correlation coefficient with average and maximum temperature. In the last time the temperature significantly increase and it is hyphothesis this phenomen will be continued. Grapevine react on this climatic change yet in the present time. Beginning of the phenophases is earlier about 8 to 20 days before 20 years and in the future could be starting of the phenophases faster. The study work with time scale 2021-2050 and 2071-2100.

  18. [Physiological and biochemical responses of different scion/rootstock combinations grapevine to partial rootzone drought].

    PubMed

    Qi, Wei; Li, En-Mao; Zhai, Heng; Wang, Xiao-Fang; Du, Yuan-Peng

    2008-02-01

    By using self-made wooden boxes with two separated zones, the grapevine Vitis vinifera cv. Malvasia (M) grafted on rootstocks 3309C, 420A and 110R, respectively, was planted, and the physiological and biochemical responses of these scion/rootstock combinations to bilateral alternative irrigation (AI) and unilateral irrigation (UI) were studied. The results showed that in treatments AI and UI, the average leaf ABA content of test scion/rootstock combinations increased by 267.5% and 394.7%, respectively, while stomatal conduction and transpiration decreased markedly. In treatment UI, the leaf SOD and CAT activities and Pro content were notably enhanced, with the greatest increment in M/110R and followed by in M/420A and M/3309C; while in treatment AI, the leaf SOD and CAT activities of test scion/rootstock combinations enhanced slightly and Pro content increased markedly. UI induced a remarkable increase of leaf relative electronic conductivity and MDA and H2O2 contents, with the highest increment in M/3309C and the lowest in M/110R. In summary, the drought resistance of different scion/rootstock combinations grapevine mainly depended on the variety of rootstock. 110R had a higher drought-resistance than 420A and 3309C. Comparing with unilateral irrigation, bilateral alternative irrigation had lesser damage to grapevine, being a profitable water-saving irrigation technique.

  19. The volatile metabolome of grapevine roots: first insights into the metabolic response upon phylloxera attack.

    PubMed

    Lawo, Nora C; Weingart, Georg J F; Schuhmacher, Rainer; Forneck, Astrid

    2011-09-01

    Many plant species respond to herbivore attack by an increased formation of volatile organic compounds. In this preliminary study we analysed the volatile metabolome of grapevine roots [Teleki 5C (Vitis berlandieri Planch. × Vitis riparia Michx.)] with the aim to gain insight into the interaction between phylloxera (Daktulosphaira vitifoliae Fitch; Hemiptera: Phylloxeridae) and grapevine roots. In the first part of the study, headspace solid phase microextraction (HS-SPME) coupled to gas chromatography - mass spectrometry (GC-MS) was used to detect and identify volatile metabolites in uninfested and phylloxera-infested root tips of the grapevine rootstock Teleki 5C. Based on the comparison of deconvoluted mass spectra with spectra databases as well as experimentally derived retention indices with literature values, 38 metabolites were identified, which belong to the major classes of plant volatiles including C6-compounds, terpenes (including modified terpenes), aromatic compounds, alcohols and n-alkanes. Based on these identified metabolites, changes in root volatiles were investigated and resulted in metabolite profiles caused by phylloxera infestation. Our preliminary data indicate that defence related pathways such as the mevalonate and/or alternative isopentenyl pyrophosphate-, the lipoxygenase- (LOX) as well as the phenylpropanoid pathway are affected in root galls as a response to phylloxera attack.

  20. The complete nucleotide sequence and genomic characterization of grapevine asteroid mosaic associated virus.

    PubMed

    Vargas-Asencio, José; Wojciechowska, Klaudia; Baskerville, Maia; Gomez, Annika L; Perry, Keith L; Thompson, Jeremy R

    2017-01-02

    In analyzing grapevine clones infected with grapevine red blotch associated virus, we identified a small number of isometric particles of approximately 30nm in diameter from an enriched fraction of leaf extract. A dominant protein of 25kDa was isolated from this fraction using SDS-PAGE and was identified by mass spectrometry as belonging to grapevine asteroid mosaic associated virus (GAMaV). Using a combination of three methods RNA-Seq, sRNA-Seq, and Sanger sequencing of RT- and RACE-PCR products, we obtained a full-length genome sequence consisting of 6719 nucleotides without the poly(A) tail. The virus possesses all of the typical conserved functional domains concordant with the genus Marafivirus and lies evolutionarily between citrus sudden death associated virus and oat blue dwarf virus. A large shift in RNA-Seq coverage coincided with the predicted location of the subgenomic RNA involved in coat protein (CP) expression. Genus wide sequence alignments confirmed the cleavage motif LxG(G/A) to be dominant between the helicase and RNA dependent RNA polymerase (RdRp), and the RdRp and CP domains. A putative overlapping protein (OP) ORF lacking a canonical translational start codon was identified with a reading frame context more consistent with the putative OPs of tymoviruses and fig fleck associated virus than with those of marafiviruses. BLAST analysis of the predicted GAMaV OP showed a unique relatedness to the OPs of members of the genus Tymovirus.

  1. Description of a Novel Monopartite Geminivirus and Its Defective Subviral Genome in Grapevine.

    PubMed

    Al Rwahnih, Maher; Alabi, Olufemi J; Westrick, Nathaniel M; Golino, Deborah; Rowhani, Adib

    2017-02-01

    A novel virus was detected in grapevines by Illumina sequencing during the screening of two table grape (Vitis vinifera) accessions, cultivars Black Beet and Nagano Purple, from South Korea. The monopartite circular ssDNA genome sequence was subsequently confirmed by rolling cycle amplification, cloning and Sanger sequencing. The complete viral genomic sequence from both accessions ranged from 2,903 to 2,907 nucleotides in length and contained the conserved nonanucleotide sequence TAATATT↓AC and other sequence features typical of the family Geminiviridae, including two predicted sense and four complementary-sense open reading frames. Phylogenetic analysis placed the novel virus in a unique taxon within the family Geminiviridae. A naturally occurring defective subviral DNA was also discovered. This defective DNA molecule carried a deletion of approximately 46% of the full-length genome. Both the genomic and defective DNA molecules were graft-transmissible although no disease is yet correlated with their occurrence in Vitis spp. The tentative names Grapevine geminivirus A (GGVA) and GGVA defective DNA (GGVA D-DNA) are proposed. PCR assays developed using primers designed in the coat protein gene led to the detection of GGVA in 1.74% of 1,262 vines derived from 15 grapevine cultivars from six countries across three continents.

  2. Leaf Treatments with a Protein-Based Resistance Inducer Partially Modify Phyllosphere Microbial Communities of Grapevine

    PubMed Central

    Cappelletti, Martina; Perazzolli, Michele; Antonielli, Livio; Nesler, Andrea; Torboli, Esmeralda; Bianchedi, Pier L.; Pindo, Massimo; Puopolo, Gerardo; Pertot, Ilaria

    2016-01-01

    Protein derivatives and carbohydrates can stimulate plant growth, increase stress tolerance, and activate plant defense mechanisms. However, these molecules can also act as a nutritional substrate for microbial communities living on the plant phyllosphere and possibly affect their biocontrol activity against pathogens. We investigated the mechanisms of action of a protein derivative (nutrient broth, NB) against grapevine downy mildew, specifically focusing on the effects of foliar treatments on plant defense stimulation and on the composition and biocontrol features of the phyllosphere microbial populations. NB reduced downy mildew symptoms and induced the expression of defense-related genes in greenhouse- and in vitro-grown plants, indicating the activation of grapevine resistance mechanisms. Furthermore, NB increased the number of culturable phyllosphere bacteria and altered the composition of bacterial and fungal populations on leaves of greenhouse-grown plants. Although, NB-induced changes on microbial populations were affected by the structure of indigenous communities originally residing on grapevine leaves, degrees of disease reduction and defense gene modulation were consistent among the experiments. Thus, modifications in the structure of phyllosphere populations caused by NB application could partially contribute to downy mildew control by competition for space or other biocontrol strategies. Particularly, changes in the abundance of phyllosphere microorganisms may provide a contribution to resistance induction, partially affecting the hormone-mediated signaling pathways involved. Modifying phyllosphere populations by increasing natural biocontrol agents with the application of selected nutritional factors can open new opportunities in terms of sustainable plant protection strategies. PMID:27486468

  3. Ecophysiological Modeling of Grapevine Water Stress in Burgundy Terroirs by a Machine-Learning Approach.

    PubMed

    Brillante, Luca; Mathieu, Olivier; Lévêque, Jean; Bois, Benjamin

    2016-01-01

    In a climate change scenario, successful modeling of the relationships between plant-soil-meteorology is crucial for a sustainable agricultural production, especially for perennial crops. Grapevines (Vitis vinifera L. cv Chardonnay) located in eight experimental plots (Burgundy, France) along a hillslope were monitored weekly for 3 years for leaf water potentials, both at predawn (Ψpd) and at midday (Ψstem). The water stress experienced by grapevine was modeled as a function of meteorological data (minimum and maximum temperature, rainfall) and soil characteristics (soil texture, gravel content, slope) by a gradient boosting machine. Model performance was assessed by comparison with carbon isotope discrimination (δ(13)C) of grape sugars at harvest and by the use of a test-set. The developed models reached outstanding prediction performance (RMSE < 0.08 MPa for Ψstem and < 0.06 MPa for Ψpd), comparable to measurement accuracy. Model predictions at a daily time step improved correlation with δ(13)C data, respect to the observed trend at a weekly time scale. The role of each predictor in these models was described in order to understand how temperature, rainfall, soil texture, gravel content and slope affect the grapevine water status in the studied context. This work proposes a straight-forward strategy to simulate plant water stress in field condition, at a local scale; to investigate ecological relationships in the vineyard and adapt cultural practices to future conditions.

  4. Development of Virus-Induced Gene Expression and Silencing Vector Derived from Grapevine Algerian Latent Virus

    PubMed Central

    Park, Sang-Ho; Choi, Hoseong; Kim, Semin; Cho, Won Kyong; Kim, Kook-Hyung

    2016-01-01

    Grapevine Algerian latent virus (GALV) is a member of the genus Tombusvirus in the Tombusviridae and infects not only woody perennial grapevine plant but also herbaceous Nicotiana benthamiana plant. In this study, we developed GALV-based gene expression and virus-induced gene silencing (VIGS) vectors in N. benthamiana. The GALV coat protein deletion vector, pGMG, was applied to express the reporter gene, green fluorescence protein (GFP), but the expression of GFP was not detected due to the necrotic cell death on the infiltrated leaves. The p19 silencing suppressor of GALV was engineered to inactivate its expression and GFP was successfully expressed with unrelated silencing suppressor, HC-Pro, from soybean mosaic virus. The pGMG vector was used to knock down magnesium chelatase (ChlH) gene in N. benthamaina and the silencing phenotype was clearly observed on systemic leaves. Altogether, the GALV-derived vector is expected to be an attractive tool for useful gene expression and VIGS vectors in grapevine as well as N. benthamiana. PMID:27493613

  5. Host suitability and gas exchange response of grapevines to potato leafhopper (Hemiptera: Cicadellidae).

    PubMed

    Lamp, William O; Miranda, Daniel; Culler, Lauren E; Alexander, Laurie C

    2011-08-01

    Although potato leafhopper, Empoasca fabae (Harris) (Hemiptera: Cicadellidae), is highly polyphagous, classic host studies do not recognize grapevines (Vitis spp.), as suitable hosts. Recently, injury has been reported and reproduction documented within grape vineyards, suggesting a host expansion for the leafhopper. To document this apparent expansion in host use, we determined whether grape plants were suitable hosts for potato leafhopper reproduction, measured the consequence of feeding injury on gas exchange rates of grape leaves, and compared the susceptibility to feeding injury among cultivars. We found that potato leafhopper adults survived equally well on grape (Vitis vinifera L.), alfalfa (Medicago sativa L.), and fava bean (Vicia faba L.). The total number of offspring was greater on fava bean but did not differ between alfalfa and grape. Injury to grapevines was assessed by measuring gas exchange responses of leaves in field cages and in greenhouse tests. We found marginally significant declines in photosynthesis and transpiration rates in the field (9.6 and 13.2%, respectively), and much stronger effects in greenhouse tests (ranging between 22 and 52%). Our results verify that Vitis is a suitable host, and that potato leafhopper is capable of injuring its gas exchange physiology. We discuss possible explanations for the host expansion, and its potential to damage commercial grapevines.

  6. Importance of soil and vineyard management in the determination of grapevine mineral composition.

    PubMed

    Likar, M; Vogel-Mikuš, K; Potisek, M; Hančević, K; Radić, T; Nečemer, M; Regvar, M

    2015-02-01

    The spatial variability of the mineral composition of grapevines in production vineyards along the east Adriatic coast was determined and compared between conventional and sustainable vineyard management. Cluster analysis shows a high level of spatial variability even within the individual locations. Factor analysis reveals three factors with strong loading for the macronutrients K and P and the micronutrient Mn, which explain 67% of the total variance in the mineral composition. Here, 26% to 34% of the variance of these three elements can be explained by abiotic and biotic soil parameters, with soil concentrations of K, Fe and Cu, organic matter content, and vesicular colonisation showing the strongest effects on the mineral composition of the grapevines. In addition, analysis of the mineral composition data shows significant differences between differently managed vineyards, with increased bioaccumulation of P and K in sustainable vineyards, while Zn bioaccumulation was increased in conventional vineyards. Our data confirm the importance of soil and vineyard management in the concept of terroir, and demonstrate the effects of sustainable management practices on the mineral nutrition of grapevines that result from modified nutrient availability related to changes in the abiotic and biotic characteristics of the soil.

  7. Biotin-Avidin ELISA Detection of Grapevine Fanleaf Virus in the Vector Nematode Xiphinema index

    PubMed Central

    Esmenjaud, D.; Walter, B.; Minot, J. C.; Voisin, R.; Cornuet, P.

    1993-01-01

    The value of biotin-avidin (B-A) ELISA for the detection of grapevine fanleaf virus (GFLV) in Xiphinema was estimated with field populations and greenhouse subpopulations. Samples consisted of increasing numbers of adults ranging from 1 to 64 in multiples of two. Tests with virus-free X. index populations reared on grapevine and fig plants as negative controls did not reveal a noticeable effect of the host plant. ELISA absorbances of virus-free X. index samples were greater than corresponding absorbances of X. pachtaicum samples. Differences occurred between two X. index field populations from GFLV-infected grapevines in Champagne and Languedoc. In most tests, 1-, 2-, 4-, and 8-nematode samples of virus-free and virus-infected populations, respectively, could not be separated. Consequently, B-A ELISA was not a reliable method for GFLV detection in samples of less than 10 X. index adults, but comparison of the absorbances obtained with increasing numbers may allow differentiation of the viral infectious potential of several populations. PMID:19279786

  8. Vegetative growth and cluster development in Shiraz grapevines subjected to partial root-zone cooling.

    PubMed

    Rogiers, Suzy Y; Clarke, Simon J

    2013-01-01

    Heterogeneity in root-zone temperature both vertically and horizontally may contribute to the uneven vegetative and reproductive growth often observed across vineyards. An experiment was designed to assess whether the warmed half of a grapevine root zone could compensate for the cooled half in terms of vegetative growth and reproductive development. We divided the root system of potted Shiraz grapevines bilaterally and applied either a cool or a warm treatment to each half from budburst to fruit set. Shoot growth and inflorescence development were monitored over the season. Simultaneous cooling and warming of parts of the root system decreased shoot elongation, leaf emergence and leaf expansion below that of plants with a fully warmed root zone, but not to the same extent as those with a fully cooled root zone. Inflorescence rachis length, flower number and berry number after fertilization were smaller only in those vines exposed to fully cooled root zones. After terminating the treatments, berry enlargement and the onset of veraison were slowed in those vines that had been exposed to complete or partial root-zone cooling. Grapevines exposed to partial root-zone cooling were thus delayed in vegetative and reproductive development, but the inhibition was greater in those plants whose entire root system had been cooled.

  9. Radicinin from Cochliobolus sp. inhibits Xylella fastidiosa, the causal agent of Pierce's Disease of grapevine.

    PubMed

    Aldrich, Thomas J; Rolshausen, Philippe E; Roper, M Caroline; Reader, Jordan M; Steinhaus, Matthew J; Rapicavoli, Jeannette; Vosburg, David A; Maloney, Katherine N

    2015-08-01

    The fastidious phytopathogenic bacterium, Xylella fastidiosa, poses a substantial threat to many economically important crops, causing devastating diseases including Pierce's Disease of grapevine. Grapevines (Vitis vinifera L.) planted in an area under Pierce's Disease pressure often display differences in disease severity and symptom expression, with apparently healthy vines growing alongside the dying ones, despite the fact that all the vines are genetic clones of one another. Under the hypothesis that endophytic microbes might be responsible for this non-genetic resistance to X. fastidiosa, endophytic fungi were isolated from vineyard cvs. 'Chardonnay' and 'Cabernet Sauvignon' grown under high Pierce's Disease pressure. A Cochliobolus sp. isolated from a Cabernet Sauvignon grapevine inhibited the growth of X. fastidiosa in vitro. Bioassay-guided isolation of an organic extract of Cochliobolus sp. yielded the natural product radicinin as the major active compound. Radicinin also inhibited proteases isolated from the culture supernatant of X. fastidiosa. In order to assess structure-activity relationships, three semi-synthetic derivatives of radicinin were prepared and tested for activity against X. fastidiosa in vitro. Assay results of these derivatives are consistent with enzyme inactivation by conjugate addition to carbon-10 of radicinin, as proposed previously.

  10. Toxicity of extracellular proteins from Diplodia seriata and Neofusicoccum parvum involved in grapevine Botryosphaeria dieback.

    PubMed

    Bénard-Gellon, M; Farine, S; Goddard, M L; Schmitt, M; Stempien, E; Pensec, F; Laloue, H; Mazet-Kieffer, F; Fontaine, F; Larignon, P; Chong, J; Tarnus, C; Bertsch, C

    2015-03-01

    Botryosphaeria dieback, esca and Eutypa dieback are three economic major grapevine trunk diseases that cause severe yield reduction in vineyards worldwide. The frequency of disease symptoms has increased considerably over the past decade, and no efficient treatment is currently available to control these diseases. The different fungi associated with grapevine trunk diseases mainly induce necrotic wood and characteristic foliar symptoms. In this context, fungi virulence factors and host invasion are not well understood. We hypothesise that extracellular proteins produced by Diplodia seriata and Neofusicoccum parvum, two causal agents associated with Botryosphaeria dieback, are virulence factors responsible for the pathogenicity. In our previous work, we demonstrated that the total extracellular compounds produced by N. parvum induced more necrosis on Chardonnay calli and triggered a different defence gene expression pattern than those produced by D. seriata. Furthermore, this aggressiveness was not clearly correlated with the production of mellein, a characteristic phytotoxin of Botryosphaeriaceae, in our in vitro calli model. To characterise other potential virulence factors and to understand the mechanisms of host invasion by the fungus, we evaluated the profile, quantity and the impact of extracellular proteins produced by these fungi on Vitis vinifera calli necrosis and defence gene expression. Our results reveal that, under the same conditions, N. parvum produces more extracellular proteins and in higher concentrations than D. seriata. With Vitis vinifera cv. Chardonnay cells, we showed that equivalent concentrations of proteins secreted by N. parvum were more aggressive than those of D. seriata in producing necrosis and that they clearly induced more grapevine defence genes.

  11. Ecophysiological Modeling of Grapevine Water Stress in Burgundy Terroirs by a Machine-Learning Approach

    PubMed Central

    Brillante, Luca; Mathieu, Olivier; Lévêque, Jean; Bois, Benjamin

    2016-01-01

    In a climate change scenario, successful modeling of the relationships between plant-soil-meteorology is crucial for a sustainable agricultural production, especially for perennial crops. Grapevines (Vitis vinifera L. cv Chardonnay) located in eight experimental plots (Burgundy, France) along a hillslope were monitored weekly for 3 years for leaf water potentials, both at predawn (Ψpd) and at midday (Ψstem). The water stress experienced by grapevine was modeled as a function of meteorological data (minimum and maximum temperature, rainfall) and soil characteristics (soil texture, gravel content, slope) by a gradient boosting machine. Model performance was assessed by comparison with carbon isotope discrimination (δ13C) of grape sugars at harvest and by the use of a test-set. The developed models reached outstanding prediction performance (RMSE < 0.08 MPa for Ψstem and < 0.06 MPa for Ψpd), comparable to measurement accuracy. Model predictions at a daily time step improved correlation with δ13C data, respect to the observed trend at a weekly time scale. The role of each predictor in these models was described in order to understand how temperature, rainfall, soil texture, gravel content and slope affect the grapevine water status in the studied context. This work proposes a straight-forward strategy to simulate plant water stress in field condition, at a local scale; to investigate ecological relationships in the vineyard and adapt cultural practices to future conditions. PMID:27375651

  12. Detection and genetic diversity of Grapevine red blotch-associated virus isolates in table grape accessions in the National Clonal Germplasm Repository in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Germplasm Repository of grapevines and Mediterranean tree fruits, and nut crops maintained by the U.S. Department of Agriculture at the Wolfskill ranch in Winters, California, holds the most genetically diverse collection of grapevines (Vitis spp., Family Vitaceae) in the World. Many o...

  13. Grapevine species from varied native habitats exhibit differences in embolism formation/repair associated with leaf gas exchange and root pressure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought induces xylem embolism formation, but grapevines can refill blocked conduits to restore transport capacity. It is unknown whether vulnerability to embolism formation and ability to repair differ among grapevine species. We analyzed in vivo embolism formation and repair using x-ray microtomog...

  14. Phylogeny of geminivirus coat protein sequences and digital PCR aid in identifying Spissistilus festinus (Say) as a vector of Grapevine red blotch-associated virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapevine red blotch-associated virus (GRBaV) is a newly identified virus of grapevines, and a putative member of a new genus within the family Geminiviridae. This virus is associated with red blotch disease that was first reported in California in 2008. It affects the profitability of vineyards by ...

  15. Light-controlled flavonoid biosynthesis in fruits.

    PubMed

    Zoratti, Laura; Karppinen, Katja; Luengo Escobar, Ana; Häggman, Hely; Jaakola, Laura

    2014-01-01

    Light is one of the most important environmental factors affecting flavonoid biosynthesis in plants. The absolute dependency of light to the plant development has driven evolvement of sophisticated mechanisms to sense and transduce multiple aspects of the light signal. Light effects can be categorized in photoperiod (duration), intensity (quantity), direction and quality (wavelength) including UV-light. Recently, new information has been achieved on the regulation of light-controlled flavonoid biosynthesis in fruits, in which flavonoids have a major contribution on quality. This review focuses on the effects of the different light conditions on the control of flavonoid biosynthesis in fruit producing plants. An overview of the currently known mechanisms of the light-controlled flavonoid accumulation is provided. R2R3 MYB transcription factors are known to regulate by differential expression the biosynthesis of distinct flavonoids in response to specific light wavelengths. Despite recent advances, many gaps remain to be understood in the mechanisms of the transduction pathway of light-controlled flavonoid biosynthesis. A better knowledge on these regulatory mechanisms is likely to be useful for breeding programs aiming to modify fruit flavonoid pattern.

  16. Light-controlled flavonoid biosynthesis in fruits

    PubMed Central

    Zoratti, Laura; Karppinen, Katja; Luengo Escobar, Ana; Häggman, Hely; Jaakola, Laura

    2014-01-01

    Light is one of the most important environmental factors affecting flavonoid biosynthesis in plants. The absolute dependency of light to the plant development has driven evolvement of sophisticated mechanisms to sense and transduce multiple aspects of the light signal. Light effects can be categorized in photoperiod (duration), intensity (quantity), direction and quality (wavelength) including UV-light. Recently, new information has been achieved on the regulation of light-controlled flavonoid biosynthesis in fruits, in which flavonoids have a major contribution on quality. This review focuses on the effects of the different light conditions on the control of flavonoid biosynthesis in fruit producing plants. An overview of the currently known mechanisms of the light-controlled flavonoid accumulation is provided. R2R3 MYB transcription factors are known to regulate by differential expression the biosynthesis of distinct flavonoids in response to specific light wavelengths. Despite recent advances, many gaps remain to be understood in the mechanisms of the transduction pathway of light-controlled flavonoid biosynthesis. A better knowledge on these regulatory mechanisms is likely to be useful for breeding programs aiming to modify fruit flavonoid pattern. PMID:25346743

  17. Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production.

    PubMed

    Zhang, Hui; Xu, Chenxi; He, Yi; Zong, Jie; Yang, Xijia; Si, Huamin; Sun, Zongxiu; Hu, Jianping; Liang, Wanqi; Zhang, Dabing

    2013-01-02

    Rice is a major staple food worldwide. Making hybrid rice has proved to be an effective strategy to significantly increase grain yield. Current hybrid rice technologies rely on male sterile lines and have been used predominantly in indica cultivars. However, intrinsic problems exist in the implementation of these technologies, such as limited germplasms and unpredictable conversions from sterility to fertility in the field. Here, we describe a photoperiod-controlled male sterile line, carbon starved anther (csa), which contains a mutation in an R2R3 MYB transcription regulator of pollen development. This mutation was introduced into indica and japonica rice, and it rendered male sterility under short-day conditions and male fertility under long-day conditions in both lines. Furthermore, F(1) plants of csa and a restorer line JP69 exhibited heterosis (hybrid vigor), suggesting the feasibility of using this mutation to create hybrid rice. The csa-based photoperiod-sensitive male sterile line allows the establishment of a stable two-line hybrid system, which promises to have a significant impact on agriculture.

  18. How petals change their spots: cis-regulatory re-wiring in Clarkia (Onagraceae).

    PubMed

    Martins, Talline R; Jiang, Peng; Rausher, Mark D

    2016-09-06

    A long-standing question in evolutionary developmental biology is how new traits evolve. Although most floral pigmentation studies have focused on how pigment intensity and composition diversify, few, if any, have explored how a pattern element can shift position. In the present study, we examine the genetic changes underlying shifts in the position of petal spots in Clarkia. Comparative transcriptome analyses were used to identify potential candidate genes responsible for spot formation. Co-segregation analyses in F2 individuals segregating for different spot positions, quantitative PCR, and pyrosequencing, were used to confirm the role of the candidate gene in determining spot position. Transient expression assays were used to identify the expression domain of different alleles. An R2R3Myb transcription factor (CgMyb1) activated spot formation, and different alleles of CgMyb1 were expressed in different domains, leading to spot formation in different petal locations. Reporter assays revealed that promoters from different alleles determine different locations of expression. The evolutionary shift in spot position is due to one or more cis-regulatory changes in the promoter of CgMyb1, indicating that shifts in pattern element position can be caused by changes in a single gene, and that cis-regulatory rewiring can be used to alter the relative position of an existing character.

  19. Competition between anthocyanin and flavonol biosynthesis produces spatial pattern variation of floral pigments between Mimulus species.

    PubMed

    Yuan, Yao-Wu; Rebocho, Alexandra B; Sagawa, Janelle M; Stanley, Lauren E; Bradshaw, Harvey D

    2016-03-01

    Flower color patterns have long served as a model for developmental genetics because pigment phenotypes are visually striking, yet generally not required for plant viability, facilitating the genetic analysis of color and pattern mutants. The evolution of novel flower colors and patterns has played a key role in the adaptive radiation of flowering plants via their specialized interactions with different pollinator guilds (e.g., bees, butterflies, birds), motivating the search for allelic differences affecting flower color pattern in closely related plant species with different pollinators. We have identified LIGHT AREAS1 (LAR1), encoding an R2R3-MYB transcription factor, as the causal gene underlying the spatial pattern variation of floral anthocyanin pigmentation between two sister species of monkeyflower: the bumblebee-pollinated Mimulus lewisii and the hummingbird-pollinated Mimulus cardinalis. We demonstrated that LAR1 positively regulates FLAVONOL SYNTHASE (FLS), essentially eliminating anthocyanin biosynthesis in the white region (i.e., light areas) around the corolla throat of M. lewisii flowers by diverting dihydroflavonol into flavonol biosynthesis from the anthocyanin pigment pathway. FLS is preferentially expressed in the light areas of the M. lewisii flower, thus prepatterning the corolla. LAR1 expression in M. cardinalis flowers is much lower than in M. lewisii, explaining the unpatterned phenotype and recessive inheritance of the M. cardinalis allele. Furthermore, our gene-expression analysis and genetic mapping results suggest that cis-regulatory change at the LAR1 gene played a critical role in the evolution of different pigmentation patterns between the two species.

  20. MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana).

    PubMed

    Wang, Nan; Xu, Haifeng; Jiang, Shenghui; Zhang, Zongying; Lu, Ninglin; Qiu, Huarong; Qu, Changzhi; Wang, Yicheng; Wu, Shujing; Chen, Xuesen

    2017-04-01

    Flavonoids are major polyphenol compounds in plant secondary metabolism. Wild red-fleshed apples (Malus sieversii f. niedzwetzkyana) are an excellent resource because of their much high flavonoid content than cultivated apples. In this work, R6R6, R6R1 and R1R1 genotypes were identified in an F1 segregating population of M. sieversii f. niedzwetzkyana. Significant differences in flavonoid composition and content were detected among the three genotypes by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry analysis. Furthermore, two putative flavonoid-related genes encoding R2R3-MYB transcription factors, designated MYB12 and MYB22, were cloned and characterized. The expression patterns of MYB12 and MYB22 directly correlated with those of leucoanthocyanidin reductase and flavonol synthase, respectively. Their roles in flavonoid biosynthesis were identified by overexpression in apple callus and ectopic expression in Arabidopsis. MYB12 expression in the Arabidopsis TT2 mutant complemented its proanthocyanidin-deficient phenotype. Likewise, MYB22 expression in an Arabidopsis triple mutant complemented its flavonol-deficient phenotype. MYB12 could interact with bHLH3 and bHLH33 and played an essential role in proanthocyanidin synthesis. MYB22 was found to activate flavonol pathways by combining directly with the flavonol synthase promoter. Our findings provide a valuable perspective on flavonoid synthesis and provide a basis for breeding elite functional apples with a high flavonoid content.

  1. MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria x ananassa fruits.

    PubMed

    Medina-Puche, Laura; Cumplido-Laso, Guadalupe; Amil-Ruiz, Francisco; Hoffmann, Thomas; Ring, Ludwig; Rodríguez-Franco, Antonio; Caballero, José Luis; Schwab, Wilfried; Muñoz-Blanco, Juan; Blanco-Portales, Rosario

    2014-02-01

    This work characterized the role of the R2R3-MYB10 transcription factor (TF) in strawberry fruit ripening. The expression of this TF takes place mainly in the fruit receptacle and is repressed by auxins and activated by abscisic acid (ABA), in parallel to the ripening process. Anthocyanin was not produced when FaMYB10 expression was transiently silenced in fruit receptacles. An increase in FaMYB10 expression was observed in water-stressed fruits, which was accompanied by an increase in both ABA and anthocyanin content. High-throughput transcriptomic analyses performed in fruits with downregulated FaMYB10 expression indicated that this TF regulates the expression of most of the Early-regulated Biosynthesis Genes (EBGs) and the Late-regulated Biosynthesis Genes (LBGs) genes involved in anthocyanin production in ripened fruit receptacles. Besides, the expression of FaMYB10 was not regulated by FaMYB1 and vice versa. Taken together, all these data clearly indicate that the Fragaria × ananassa MYB10 TF plays a general regulatory role in the flavonoid/phenylpropanoid pathway during the ripening of strawberry.

  2. A Genome-Wide Regulatory Framework Identifies Maize Pericarp Color1 Controlled Genes[C][W

    PubMed Central

    Morohashi, Kengo; Casas, María Isabel; Ferreyra, Lorena Falcone; Mejía-Guerra, María Katherine; Pourcel, Lucille; Yilmaz, Alper; Feller, Antje; Carvalho, Bruna; Emiliani, Julia; Rodriguez, Eduardo; Pellegrinet, Silvina; McMullen, Michael; Casati, Paula; Grotewold, Erich

    2012-01-01

    Pericarp Color1 (P1) encodes an R2R3-MYB transcription factor responsible for the accumulation of insecticidal flavones in maize (Zea mays) silks and red phlobaphene pigments in pericarps and other floral tissues, which makes P1 an important visual marker. Using genome-wide expression analyses (RNA sequencing) in pericarps and silks of plants with contrasting P1 alleles combined with chromatin immunoprecipitation coupled with high-throughput sequencing, we show here that the regulatory functions of P1 are much broader than the activation of genes corresponding to enzymes in a branch of flavonoid biosynthesis. P1 modulates the expression of several thousand genes, and ∼1500 of them were identified as putative direct targets of P1. Among them, we identified F2H1, corresponding to a P450 enzyme that converts naringenin into 2-hydroxynaringenin, a key branch point in the P1-controlled pathway and the first step in the formation of insecticidal C-glycosyl flavones. Unexpectedly, the binding of P1 to gene regulatory regions can result in both gene activation and repression. Our results indicate that P1 is the major regulator for a set of genes involved in flavonoid biosynthesis and a minor modulator of the expression of a much larger gene set that includes genes involved in primary metabolism and production of other specialized compounds. PMID:22822204

  3. MYB98 Is Required for Pollen Tube Guidance and Synergid Cell Differentiation in ArabidopsisW⃞

    PubMed Central

    Kasahara, Ryushiro D.; Portereiko, Michael F.; Sandaklie-Nikolova, Linda; Rabiger, David S.; Drews, Gary N.

    2005-01-01

    The synergid cells of the female gametophyte play a role in many steps of the angiosperm fertilization process, including guidance of pollen tube growth to the female gametophyte. However, the mechanisms by which the synergid cells become specified and develop their unique features during female gametophyte development are not understood. We identified MYB98 in a screen for Arabidopsis thaliana genes expressed in the female gametophyte. MYB98 is a member of the R2R3-MYB gene family, the members of which likely encode transcription factors. In the context of the ovule, MYB98 is expressed exclusively in the synergid cells, and mutations in this gene affect the female gametophyte specifically. myb98 female gametophytes are affected in two unique features of the synergid cell, pollen tube guidance and the filiform apparatus, but are otherwise normal. MYB98 also is expressed in trichomes and endosperm. Homozygous myb98 mutants exhibit no sporophytic defects, including trichome and endosperm defects. Together, these data suggest that MYB98 controls the development of specific features within the synergid cell during female gametophyte development. PMID:16214903

  4. MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis.

    PubMed

    Kasahara, Ryushiro D; Portereiko, Michael F; Sandaklie-Nikolova, Linda; Rabiger, David S; Drews, Gary N

    2005-11-01

    The synergid cells of the female gametophyte play a role in many steps of the angiosperm fertilization process, including guidance of pollen tube growth to the female gametophyte. However, the mechanisms by which the synergid cells become specified and develop their unique features during female gametophyte development are not understood. We identified MYB98 in a screen for Arabidopsis thaliana genes expressed in the female gametophyte. MYB98 is a member of the R2R3-MYB gene family, the members of which likely encode transcription factors. In the context of the ovule, MYB98 is expressed exclusively in the synergid cells, and mutations in this gene affect the female gametophyte specifically. myb98 female gametophytes are affected in two unique features of the synergid cell, pollen tube guidance and the filiform apparatus, but are otherwise normal. MYB98 also is expressed in trichomes and endosperm. Homozygous myb98 mutants exhibit no sporophytic defects, including trichome and endosperm defects. Together, these data suggest that MYB98 controls the development of specific features within the synergid cell during female gametophyte development.

  5. Identification and Characterization of Maize salmon silks Genes Involved in Insecticidal Maysin Biosynthesis[OPEN

    PubMed Central

    Falcone-Ferreyra, María Lorena; Rodríguez, Eduardo; Engelmeier, Jacob; Grotewold, Erich

    2016-01-01

    The century-old maize (Zea mays) salmon silks mutation has been linked to the absence of maysin. Maysin is a C-glycosyl flavone that, when present in silks, confers natural resistance to the maize earworm (Helicoverpa zea), which is one of the most damaging pests of maize in America. Previous genetic analyses predicted Pericarp Color1 (P1; R2R3-MYB transcription factor) to be epistatic to the sm mutation. Subsequent studies identified two loci as being capable of conferring salmon silks phenotypes, salmon silks1 (sm1) and sm2. Benefitting from available sm1 and sm2 mapping information and from knowledge of the genes regulated by P1, we describe here the molecular identification of the Sm1 and Sm2 gene products. Sm2 encodes a rhamnosyl transferase (UGT91L1) that uses isoorientin and UDP-rhamnose as substrates and converts them to rhamnosylisoorientin. Sm1 encodes a multidomain UDP-rhamnose synthase (RHS1) that converts UDP-glucose into UDP-l-rhamnose. Here, we demonstrate that RHS1 shows unexpected substrate plasticity in converting the glucose moiety in rhamnosylisoorientin to 4-keto-6-deoxy glucose, resulting in maysin. Both Sm1 and Sm2 are direct targets of P1, as demonstrated by chromatin immunoprecipitation experiments. The molecular characterization of Sm1 and Sm2 described here completes the maysin biosynthetic pathway, providing powerful tools for engineering tolerance to maize earworm in maize and other plants. PMID:27221383

  6. The red sport of 'Zaosu' pear and its red-striped pigmentation pattern are associated with demethylation of the PyMYB10 promoter.

    PubMed

    Qian, Minjie; Sun, Yongwang; Allan, Andrew C; Teng, Yuanwen; Zhang, Dong

    2014-11-01

    'Zaosu' pear, a hybrid of Pyrus pyrifolia and Pyrus communis, is a popular cultivar developed in China. 'Zaosu Red' is a bud sport of 'Zaosu' with red shoots, young leaves, and fruit. After grafting of 'Zaosu Red', reverse mutations in some branches lead to a loss of colour in leaves and stems. Also, the mature fruit of 'Zaosu Red' exhibits two phenotypes; fully red and striped. The aim of this study was to establish the mechanism of the red colour mutation in 'Zaosu' and the striped pigmentation pattern in fruit of 'Zaosu Red'. The accumulation of anthocyanins and transcript levels of the genes PpUFGT2 and PyMYB10 were highly correlated. The open reading frames (ORF) and promoter regions of these two key genes were cloned and compared between 'Zaosu' and its bud sports, but no sequence differences were found. The R2R3 MYB, PyMYB10, can activate expression of genes encoding enzymes of the anthocyanin biosynthetic pathway. A yeast one-hybrid assay showed that PyMYB10 was associated with the -658 to -172bp fragment of the PpUFGT2 promoter, probably via a MYB binding site (MBS) located at -466bp. The PyMYB10 promoter had lower methylation levels in anthocyanin-rich tissues, indicating that the red bud sport of 'Zaosu' pear and the striped pigmentation pattern of 'Zaosu Red' pear are associated with demethylation of the PyMYB10 promoter.

  7. Berry Flesh and Skin Ripening Features in Vitis vinifera as Assessed by Transcriptional Profiling

    PubMed Central

    Grimplet, Jérôme; Bravo, Gema; Flores, Pilar; Fenoll, José; Hellín, Pilar; Oliveros, Juan Carlos; Martínez-Zapater, José M.

    2012-01-01

    Background Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar ‘Muscat Hamburg’ to determine tissue-specific as well as common developmental programs. Methodology/Principal Findings Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. Conclusions/Significance A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are present from early

  8. Near isohydric grapevine cultivar displays higher photosynthetic efficiency and photorespiration rates under drought stress as compared with near anisohydric grapevine cultivar.

    PubMed

    Hochberg, Uri; Degu, Asfaw; Fait, Aaron; Rachmilevitch, Shimon

    2013-04-01

    Drought stress is known to limit photosynthesis rates and to inflict photo-oxidative damage in grapevines. Grapevines, which are considered drought-tolerant plants, are characterized by diverse hydraulic and photosynthetic behaviors, depending on the cultivar. This research compared the photosynthesis and the photorespiration of Cabernet Sauvignon (Cs) (isohydric) and Shiraz (anisohydric) in an attempt to acquire a wider perspective on the iso/anisohydric phenomenon and its implications. Shiraz and Cs were subjected to terminal drought in the greenhouse. Soil water content (θ), leaf water potential (Ψl ) and stomata conductance (gs ) were measured to determine the cultivars' hydraulic behavior. Gas exchange and fluorometry measurements were taken at 21 and 2% O2 to acquire photosynthesis and photorespiration characteristics. Cs was found to behave in a near isohydric manner whereas Shiraz behaved in a near anisohydric manner. Compared to Shiraz, the reduced stomata conductance values of Cs were accompanied by higher water use efficiency and photorespiration rates, as well as photosystem II photochemical potential (Fv /Fm ). As compared with Shiraz, Cs compensated for lower stomata conductance by higher photosynthesis and photorespiration. These two processes contributed to higher electron flow rates that might have a role in photoinhibition avoidance, which was observed in the stability of Fv /Fm under drought stress.

  9. Cloning, expression, and characterization of miR058 and its target PPO during the development of grapevine berry stone.

    PubMed

    Ren, Guohui; Wang, Baoju; Zhu, Xudong; Mu, Qian; Wang, Chen; Tao, Ran; Fang, Jinggui

    2014-09-15

    Polyphenol oxidases catalyzing the oxygen-dependent oxidation of phenols to quinones are ubiquitous among angiosperms. They are key enzymes playing a significant role during the synthesis of lignin. The inhibition of the synthesis of lignin in grapevine can cause seedless grapevine berry development. In this study, grapevine PPO (Vv-PPO) was predicted as the target gene of Vv-miR058 by bioinformatics analysis, and it was further cloned and its homologous conservation in various plants was analyzed. The expression profiles of miR058 and its target Vv-PPO were detected by qRT-PCR in peel, pulp and seeds of three grapevine cultivars and Vv-PPO was expressed in an opposite variation way with Vv-miR058 where both of them could be detected, suggesting that Vv-miR058 can play an important role by regulating the expression of Vv-PPO. In addition, the potential target gene Vv-PPO for Vv-miR058 was verified by RLM-RACE. This result would be helpful in theoretical basis for further research and seedless grapevine berry production.

  10. Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease

    PubMed Central

    Qiu, Wenping; Feechan, Angela; Dry, Ian

    2015-01-01

    The most economically important disease of cultivated grapevines worldwide is powdery mildew (PM) caused by the ascomycete fungus Erysiphe necator. The majority of grapevine cultivars used for wine, table grape, and dried fruit production are derived from the Eurasian grape species Vitis vinifera because of its superior aroma and flavor characteristics. However, this species has little genetic resistance against E. necator meaning that grape production is highly dependent on the frequent use of fungicides. The integration of effective genetic resistance into cultivated grapevines would lead to significant financial and environmental benefits and represents a major challenge for viticultural industries and researchers worldwide. This review will outline the strategies being used to increase our understanding of the molecular basis of V. vinifera susceptibility to this fungal pathogen. It will summarize our current knowledge of different resistance loci/genes that have evolved in wild grapevine species to restrict PM infection and assess the potential application of these defense genes in the generation of PM-resistant grapevine germplasm. Finally, it addresses future research priorities which will be important in the rapid identification, evaluation, and deployment of new PM resistance genes which are capable of conferring effective and durable resistance in the vineyard. PMID:26504571

  11. Bioarchaeological Insights into the Process of Domestication of Grapevine (Vitis vinifera L.) during Roman Times in Southern France

    PubMed Central

    Bouby, Laurent; Figueiral, Isabel; Bouchette, Anne; Rovira, Nuria; Ivorra, Sarah; Lacombe, Thierry; Pastor, Thierry; Picq, Sandrine; Marinval, Philippe; Terral, Jean-Frédéric

    2013-01-01

    Grapevine (Vitis vinifera), one of the most important fruit species in the Classical Mediterranean world, is thought to have been domesticated first in South-Western Asia, during the Neolithic. However, the domestication process remains largely unknown. Crucial unanswered questions concern the duration of the process (rapid or slow?) and the related geographical area (single or multiple-origins?). Seeds from domesticated grapevine and from its wild ancestor are reported to differ according to shape. Our work aims, first, to confirm this difference and secondly to identify the extent of domestication in the grapes cultivated by Romans in Southern France during the period 50 BCE–500 CE. We had the opportunity to analyze uncharred waterlogged grape pips from 17 archaeological sites. Based on an extended reference sample of modern wild grapevines and cultivars our work shows that both subspecies can be discriminated using simple measurements. The elongation gradient of the pip’s body and stalk may be regarded as an indicator of the strength of the selection pressures undergone by domesticated grapes. Grapevines cultivated during the Roman period included a mix of morphotypes comprising wild, intermediate and moderately selected domesticated forms. Our data point to a relative shift towards more selected types during the Roman period. Domestication of the grapevine appears to have been a slow process. This could result from the recurrent incorporation into cultivation of plants originating from sexual reproduction, when grape cultivation essentially relies on vegetative propagation. PMID:23690998

  12. A Stress-Inducible Resveratrol O-Methyltransferase Involved in the Biosynthesis of Pterostilbene in Grapevine1

    PubMed Central

    Schmidlin, Laure; Poutaraud, Anne; Claudel, Patricia; Mestre, Pere; Prado, Emilce; Santos-Rosa, Maria; Wiedemann-Merdinoglu, Sabine; Karst, Francis; Merdinoglu, Didier; Hugueney, Philippe

    2008-01-01

    Stilbenes are considered the most important phytoalexin group in grapevine (Vitis vinifera) and they are known to contribute to the protection against various pathogens. The main stilbenes in grapevine are resveratrol and its derivatives and, among these, pterostilbene has recently attracted much attention due both to its antifungal and pharmacological properties. Indeed, pterostilbene is 5 to 10 times more fungitoxic than resveratrol in vitro and recent studies have shown that pterostilbene exhibits anticancer, hypolipidemic, and antidiabetic properties. A candidate gene approach was used to identify a grapevine resveratrol O-methyltransferase (ROMT) cDNA and the activity of the corresponding protein was characterized after expression in Escherichia coli. Transient coexpression of ROMT and grapevine stilbene synthase in tobacco (Nicotiana benthamiana) using the agroinfiltration technique resulted in the accumulation of pterostilbene in tobacco tissues. Taken together, these results showed that ROMT was able to catalyze the biosynthesis of pterostilbene from resveratrol both in vitro and in planta. ROMT gene expression in grapevine leaves was induced by different stresses, including downy mildew (Plasmopara viticola) infection, ultraviolet light, and AlCl3 treatment. PMID:18799660

  13. Optimisation of an HPLC method for the simultaneous quantification of the major sugars and organic acids in grapevine berries.

    PubMed

    Eyéghé-Bickong, Hans A; Alexandersson, Erik O; Gouws, Liezel M; Young, Philip R; Vivier, Melané A

    2012-02-15

    A high performance liquid chromatographic method was developed to profile major sugars and organic acids in grapevine berries. Sugars and organic acids in grapevine berries were extracted by chloroform/polyvinylpolypyrrolidone purification. The extracts were chromatographed on an Aminex HPX-87H ion-exchange HPLC column with 5mM sulphuric acid as mobile phase. Chromatography was visualised via a diode array detector combined with a refractive index detector. The analysis was calibrated using external standard calibration and a novel equation was used to calculate the concentrations of malic acid and fructose from unresolved separation. For the method to be utilised for analysing a large numbers of berry samples, each sample was directly injected after sample extraction and the extraction step was downscaled to allow the use of small amounts of sample material. The concentrations of sugars and organic acids in grapevine berry samples were normalised to the internal standard concentrations obtained after extraction of an internal standard mixture. The analysis method exhibits a good precision and a high analyte recovery from samples spiked with the standard mixture and is suitable for the profiling of major sugars and organic acids in grapevine berry samples at different stages of berry development. This is the first report on the combined profiling of the major sugars and organic acids in grapevine berries using milligram amounts of plant material with direct injection after sample extraction.

  14. Comprehensive Virus Detection Using Next Generation Sequencing in Grapevine Vascular Tissues of Plants Obtained from the Wine Regions of Bohemia and Moravia (Czech Republic)

    PubMed Central

    2016-01-01

    Comprehensive next generation sequencing virus detection was used to detect the whole spectrum of viruses and viroids in selected grapevines from the Czech Republic. The novel NGS approach was based on sequencing libraries of small RNA isolated from grapevine vascular tissues. Eight previously partially-characterized grapevines of diverse varieties were selected and subjected to analysis: Chardonnay, Laurot, Guzal Kara, and rootstock Kober 125AA from the Moravia wine-producing region; plus Müller-Thurgau and Pinot Noir from the Bohemia wine-producing region, both in the Czech Republic. Using next generation sequencing of small RNA, the presence of 8 viruses and 2 viroids were detected in a set of eight grapevines; therefore, confirming the high effectiveness of the technique in plant virology and producing results supporting previous data on multiple infected grapevines in Czech vineyards. Among the pathogens detected, the Grapevine rupestris vein feathering virus and Grapevine yellow speckle viroid 1 were recorded in the Czech Republic for the first time. PMID:27959951

  15. Spatiotemporal spread of grapevine red blotch-associated virus in a California vineyard.

    PubMed

    Cieniewicz, Elizabeth J; Pethybridge, Sarah J; Gorny, Adrienne; Madden, Laurence V; McLane, Heather; Perry, Keith L; Fuchs, Marc

    2017-04-06

    Grapevine red blotch-associated virus (GRBaV), the causative agent of red blotch disease, is a member of the genus Grablovirus, in the family Geminiviridae and the first known geminivirus of Vitis spp. Limited information is available on the epidemiology of red blotch disease. A 2-hectare Vitis vinifera cv. 'Cabernet franc' vineyard in Napa County, California, USA was selected for monitoring GRBaV spread over a three-year period (2014-2016) based on an initially low disease incidence and an aggregation of symptomatic vines at the edge of the vineyard proximal to a wooded riparian area. The incidence of diseased plants increased by 1-2% annually. Spatial analysis of diseased plants in each year using ordinary runs analysis within rows and Spatial Analysis by Distance IndicEs (SADIE) demonstrated aggregation. Spatiotemporal analysis between consecutive years within the association function of SADIE revealed a strong overall association among all three years (X=0.874-0.945). Analysis of epidemic spread fitting a stochastic spatiotemporal model using the Monte Carlo Markov Chain method identified strong evidence for localized (within vineyard) spread. A spatial pattern consisting of a combination of strongly aggregated and randomly isolated symptomatic vines within 8-years post-planting suggested unique epidemic attributes compared to those of other grapevine viruses vectored by mealybugs and soft scales or by dagger nematodes for which typical within-row spread and small-scale autocorrelation are well documented. These findings are consistent with the existence of a new type of vector for a grapevine virus.

  16. Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine

    PubMed Central

    Pessina, Stefano; Lenzi, Luisa; Perazzolli, Michele; Campa, Manuela; Dalla Costa, Lorenza; Urso, Simona; Valè, Giampiero; Salamini, Francesco; Velasco, Riccardo; Malnoy, Mickael

    2016-01-01

    Erysiphe necator is the causal agent of powdery mildew (PM), one of the most destructive diseases of grapevine. PM is controlled by sulfur-based and synthetic fungicides, which every year are dispersed into the environment. This is why PM-resistant varieties should become a priority for sustainable grapevine and wine production. PM resistance can be achieved in other crops by knocking out susceptibility S-genes, such as those residing at genetic loci known as MLO (Mildew Locus O). All MLO S-genes of dicots belong to the phylogenetic clade V, including grapevine genes VvMLO7, 11 and 13, which are upregulated during PM infection, and VvMLO6, which is not upregulated. Before adopting a gene-editing approach to knockout candidate S-genes, the evidence that loss of function of MLO genes can reduce PM susceptibility is necessary. This paper reports the knockdown through RNA interference of VvMLO6, 7, 11 and 13. The knockdown of VvMLO6, 11 and 13 did not decrease PM severity, whereas the knockdown of VvMLO7 in combination with VvMLO6 and VvMLO11 reduced PM severity up to 77%. The knockdown of VvMLO7 and VvMLO6 seemed to be important for PM resistance, whereas a role for VvMLO11 does not seem likely. Cell wall appositions (papillae) were present in both resistant and susceptible lines in response to PM attack. Thirteen genes involved in defense were less upregulated in infected mlo plants, highlighting the early mlo-dependent disruption of PM invasion. PMID:27390621

  17. Growth, Yield and Fruit Quality of Grapevines under Organic and Biodynamic Management

    PubMed Central

    Döring, Johanna; Frisch, Matthias; Tittmann, Susanne; Stoll, Manfred; Kauer, Randolf

    2015-01-01

    The main objective of this study was to determine growth, yield and fruit quality of grapevines under organic and biodynamic management in relation to integrated viticultural practices. Furthermore, the mechanisms for the observed changes in growth, yield and fruit quality were investigated by determining nutrient status, physiological performance of the plants and disease incidence on bunches in three consecutive growing seasons. A field trial (Vitis vinifera L. cv. Riesling) was set up at Hochschule Geisenheim University, Germany. The integrated treatment was managed according to the code of good practice. Organic and biodynamic plots were managed according to Regulation (EC) No 834/2007 and Regulation (EC) No 889/2008 and according to ECOVIN- and Demeter-Standards, respectively. The growth and yield of the grapevines differed strongly among the different management systems, whereas fruit quality was not affected by the management system. The organic and the biodynamic treatments showed significantly lower growth and yield in comparison to the integrated treatment. The physiological performance was significantly lower in the organic and the biodynamic systems, which may account for differences in growth and cluster weight and might therefore induce lower yields of the respective treatments. Soil management and fertilization strategy could be responsible factors for these changes. Yields of the organic and the biodynamic treatments partially decreased due to higher disease incidence of downy mildew. The organic and the biodynamic plant protection strategies that exclude the use of synthetic fungicides are likely to induce higher disease incidence and might partially account for differences in the nutrient status of vines under organic and biodynamic management. Use of the biodynamic preparations had little influence on vine growth and yield. Due to the investigation of important parameters that induce changes especially in growth and yield of grapevines under

  18. Transmission of Xylella fastidiosa to grapevines by Homalodisca coagulata (Hemiptera: Cicadellidae).

    PubMed

    Almeida, Rodrigo P P; Purcell, Alexander H

    2003-04-01

    Pierce's disease (PD) of grapevines is caused by a xylem-limited bacterium Xylella fastidiosa (Wells, Raju, Hung, Weisburg, Mandelco-Paul, and Brenner) that is transmitted to plants by xylem sap-feeding insects. The introduction of the sharpshooter leafhopper Homalodisca coagulata (Say) into California has initiated new PD epidemics in southern California. In laboratory experiments, the major characteristics of H. coagulata's transmission of X. fastidiosa to grapevines were the same as reported for other vectors: short or absent latent period; nymphs transmitted but lost infectivity after molting and regained infectivity after feeding on infected plants; and infectivity persisted in adults. Adult H. coagulata acquired and inoculated X. fastidiosa in <1 h of access time on a plant. Inoculation rates increased with access time, but acquisition efficiency (20% per individual) did not increase significantly beyond 6-h access. Estimated inoculation efficiency per individual per day was 19.6, 17.9, and 10.3% for experiments where plant access was 1, 2, and 4 d, respectively. Freshly molted adults and nymphs acquired and transmitted X. fastidiosa more efficiently than did older, field-collected insects. H. coagulata transmitted X. fastidiosa to 2-yr-old woody tissues of grapevines as efficiently as to green shoots. H. coagulata transmitted X. fastidiosa 3.5 mo after acquisition, demonstrating persistence of infectivity in adults. About half (14/29) of the H. coagulata from which we failed to culture X. fostidiosa from homogenized heads (with a detection threshold of 265 CFU/head) transmitted the pathogen to grape, and 17 of 24 from which we cultured X. fastidiosa transmitted.

  19. Growth, Yield and Fruit Quality of Grapevines under Organic and Biodynamic Management.

    PubMed

    Döring, Johanna; Frisch, Matthias; Tittmann, Susanne; Stoll, Manfred; Kauer, Randolf

    2015-01-01

    The main objective of this study was to determine growth, yield and fruit quality of grapevines under organic and biodynamic management in relation to integrated viticultural practices. Furthermore, the mechanisms for the observed changes in growth, yield and fruit quality were investigated by determining nutrient status, physiological performance of the plants and disease incidence on bunches in three consecutive growing seasons. A field trial (Vitis vinifera L. cv. Riesling) was set up at Hochschule Geisenheim University, Germany. The integrated treatment was managed according to the code of good practice. Organic and biodynamic plots were managed according to Regulation (EC) No 834/2007 and Regulation (EC) No 889/2008 and according to ECOVIN- and Demeter-Standards, respectively. The growth and yield of the grapevines differed strongly among the different management systems, whereas fruit quality was not affected by the management system. The organic and the biodynamic treatments showed significantly lower growth and yield in comparison to the integrated treatment. The physiological performance was significantly lower in the organic and the biodynamic systems, which may account for differences in growth and cluster weight and might therefore induce lower yields of the respective treatments. Soil management and fertilization strategy could be responsible factors for these changes. Yields of the organic and the biodynamic treatments partially decreased due to higher disease incidence of downy mildew. The organic and the biodynamic plant protection strategies that exclude the use of synthetic fungicides are likely to induce higher disease incidence and might partially account for differences in the nutrient status of vines under organic and biodynamic management. Use of the biodynamic preparations had little influence on vine growth and yield. Due to the investigation of important parameters that induce changes especially in growth and yield of grapevines under

  20. Genotypic variability within Tunisian grapevine varieties (Vitis vinifera L.) facing bicarbonate-induced iron deficiency.

    PubMed

    Ksouri, Riadh; Debez, Ahmed; Mahmoudi, Henda; Ouerghi, Zeineb; Gharsalli, Mohamed; Lachaâl, Mokhtar

    2007-05-01

    Morpho-physiological responses to bicarbonate-induced Fe deficiency were investigated in five Vitis vinifera L. Tunisian varieties (Khamri, Blanc3, Arich Dressé, Beldi, and Balta4). One-month-old woody cuttings were cultivated for 85days on a free calcareous soil irrigated with tap water containing increasing bicarbonate levels (0, 4, 8, 12, and 16mM NaHCO(3)). After this screening, a second experiment compared root biochemical responses of two contrasting genotypes (tolerant-sensitive) dealing with bicarbonate-induced iron deprivation (20microM Fe+/-10mM HCO(3)(-)) for 75days. Using morpho-physiological criteria, grapevine tolerance to HCO(3)(-)-induced Fe shortage appeared to be genotype-dependent: Balta4 and Beldi varieties showed the highest leaf-chlorosis score (especially at the extreme HCO(3)(-) levels), in contrast to Khamri variety. Growth parameters (shoot height, total leaf area, leaf number, and biomass production) as well as juvenile leaf chlorophyll content were also differently affected depending on both genotype and bicarbonate dose. At 16mM HCO(3)(-), Khamri was the less sensitive variety, contrasting with Balta4. On the other hand, chlorophyll content correlated positively with HCl-extractible Fe content of the juvenile leaves, suggesting that the grapevine response to iron deficiency may partly depend on to the plant ability to adequately supply young leaves with this element. Root biochemical responses revealed a relatively higher root acidification capacity in Khamri (tolerant) under Fe-deficiency while no significant changes occurred in Balta4 (sensitive). In addition, Fe(III)-reductase and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) activities were strongly stimulated by Fe-deficiency in Khamri, while remaining constant in Balta4. These findings suggest that biochemical parameters may constitute reliable criteria for the selection of tolerant grapevine genotypes to iron chlorosis.

  1. Integrated management of root-knot nematode, Meloidogyne incognita infestation in tomato and grapevine.

    PubMed

    Kumari, N Swarna; Sivakumar, C V

    2005-01-01

    An integrated approach with the obligate bacterial parasite, Pasteuria penetrans and nematicides was assessed for the management of the root-knot nematode, Meloidogyne incognita infestation in tomato and grapevine. Seedlings of tomato cv. Co3 were transplanted into pots filled with sterilized soil and inoculated with nematodes (5000 juveniles/pot). The root powder of P. penetrans at 10 mg/pot was applied alone and in combination with carbofuran at 6 mg/pot. Application of P. penetrans along with carbofuran recorded lowest nematode infestation (107 nematodes/200 g soil) compared to control (325 nematodes/200 g soil). The rate of parasitization was 83.1% in the carbofuran and P. penetrans combination treatment as against 61.0% in the P. penetrans treatment only. The plant growth was also higher in the combination treatment compared to all other treatments. A field trial was carried out to assess the efficacy of P. penetrans and nematicides viz., carbofuran and phorate in the management of root-knot nematode, M. incognita infestation of grapevine cv. Muscat Hamburg. A nematode and P. penetrans infested grapevine field was selected and treatments either with carbofuran or phorate at 1 g a.i/vine was given. The observations were recorded at monthly interval. The results showed that the soil nematode population was reduced in nematicide treated plots. Suppression of nematodes was higher under phorate (117 nematodes/200 g soil) than under carbofuran (126.7 nematodes/200 g soil) treatment. The number of juveniles parasitized was also influenced by nematicides and spore load carried/juvenile with phorate being superior and the increase being 17.0 and 29.0% respectively over the control. The results of these experiment confirmed the compatibility of P. penetrans with nematicides and its biological control potential against the root-knot nematode.

  2. How will climate change influence grapevine cv. Tempranillo photosynthesis under different soil textures?

    PubMed

    Leibar, Urtzi; Aizpurua, Ana; Unamunzaga, Olatz; Pascual, Inmaculada; Morales, Fermín

    2015-05-01

    While photosynthetic responses to elevated CO2, elevated temperature, or water availability have previously been reported for grapevine as responses to single stress factors, reports on the combined effect of multiple stress factors are scarce. In the present work, we evaluated effects of simulated climate change [CC; 700 ppm CO2, 28/18 °C, and 33/53% relative humidity (RH), day/night] versus current conditions (375 ppm CO2, 24/14 °C, and 45/65% RH), water availability (well-irrigated vs. water deficit), and different types of soil textures (41, 19, and 8% of soil clay contents) on grapevine (Vitis vinifera L. cv. Tempranillo) photosynthesis. Plants were grown using the fruit-bearing cutting model. CC increased the photosynthetic activity of grapevine plants grown under well-watered conditions, but such beneficial effects of elevated CO2, elevated temperature, and low RH were abolished by water deficit. Under water-deficit conditions, plants subjected to CC conditions had similar photosynthetic rates as those grown under current conditions, despite their higher sub-stomatal CO2 concentrations. As expected, water deficit reduced photosynthetic activity in association with inducing stomatal closure that prevents water loss. Evidence for photosynthetic downregulation under elevated CO2 was observed, with decreases in photosynthetic capacity and leaf N content and increases in the C/N ratio in plants subjected to CC conditions. Soil texture had no marked effects on photosynthesis and did not modify the photosynthetic response to CC and water-deficit conditions. However, in mature well-irrigated plants grown in the soils with the highest sand content, an important decrease in stomatal conductance was observed as well as a slight decrease in the utilization of absorbed light in photosynthetic electron transport (measured as photochemical quenching), possibly related to a low water-retention capacity of these soils even under well-watered conditions.

  3. Lasiojasmonates A-C, three jasmonic acid esters produced by Lasiodiplodia sp., a grapevine pathogen.

    PubMed

    Andolfi, Anna; Maddau, Lucia; Cimmino, Alessio; Linaldeddu, Benedetto T; Basso, Sara; Deidda, Antonio; Serra, Salvatorica; Evidente, Antonio

    2014-07-01

    In this study, a strain (BL 101) of a species of Lasiodiplodia, not yet formally described, which was isolated from declining grapevine plants showing wedge-shaped cankers, was investigated for its ability to produce in vitro bioactive secondary metabolites. From culture filtrates of this strain three jasmonic acid esters, named lasiojasmonates A-C and 16-O-acetylbotryosphaerilactones A and C were isolated together with (1R,2R)-jasmonic acid, its methyl ester, botryosphaerilactone A, (3S,4R,5R)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone and (3R,4S)-botryodiplodin. The structures of lasiojasmonates A-C were established by spectroscopic methods as (1R*,2R*,3'S*,4'R*,5'R*)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone, (1R*,2R*,3'S*,4'R*,5'R*,10'R*,12'R*,13'R*,14'S*) and (1R*,2R*,3'S*,4'R*,5'R*,10'S*,12'R*,13'R*,14'S*)-4-(4-hydroxymethyl-3,5-dimethyltetrahydro-furan-2-yloxymethyl)-3,5-dimethyldihydro-2-furanones jasmonates (1, 4 and 5). The structures of 16-O-acetylbotryosphaerilactones A and C were determined by comparison of their spectral data with those of the corresponding acetyl derivatives obtained by acetylation of botryosphaerilactone A. The metabolites isolated, except 4 and 5, were tested at 1mg/mL on leaves of grapevine cv. Cannonau and cork oak using the leaf puncture assay. They were also tested on detached grapevine leaves at 0.5mg/mL and tomato cuttings at 0.1mg/mL. In all phytotoxic assays only jasmonic acid was found to be active. All metabolites were inactive in the zootoxic assay at 50 μg/mL.

  4. Short- and long-term physiological responses of grapevine leaves to UV-B radiation.

    PubMed

    Martínez-Lüscher, J; Morales, F; Delrot, S; Sánchez-Díaz, M; Gomés, E; Aguirreolea, J; Pascual, I

    2013-12-01

    The present study aimed at evaluating the short- and long-term effects of UV-B radiation on leaves of grapevine Vitis vinifera (cv. Tempranillo). Grapevine fruit-bearing cuttings were exposed to two doses of supplemental biologically effective UV-B radiation (UV-BBE) under glasshouse-controlled conditions: 5.98 and 9.66kJm(-2)d(-1). The treatments were applied either for 20d (from mid-veraison to ripeness) or 75d (from fruit set to ripeness). A 0kJm(-2)d(-1) UV-B treatment was included as control. The main effects of UV-B were observed after the short-term exposure (20d) to 9.66kJm(-2)d(-1). Significant decreases in net photosynthesis, stomatal conductance, sub-stomatal CO2 concentration, the actual photosystem II (PSII) efficiency, total soluble proteins and de-epoxidation state of the VAZ cycle were observed, whereas the activities of several antioxidant enzymes increased significantly. UV-B did not markedly affect dark respiration, photorespiration, the maximum potential PSII efficiency (Fv/Fm), non-photochemical quenching (NPQ), as well as the intrinsic PSII efficiency. However, after 75d of exposure to 5.98and 9.66kJm(-2)d(-1) UV-B most photosynthetic and biochemical variables were unaffected and there were no sign of oxidative damage in leaves. The results suggest a high long-term acclimation capacity of grapevine to high UV-B levels, associated with a high accumulation of UV-B absorbing compounds in leaves, whereas plants seemed to be tolerant to moderate doses of UV-B.

  5. Defense Responses in Grapevine (cv. Mourvèdre) after Inoculation with the Botryosphaeria Dieback Pathogens Neofusicoccum parvum and Diplodia seriata and Their Relationship with Flowering

    PubMed Central

    Spagnolo, Alessandro; Mondello, Vincenzo; Larignon, Philippe; Villaume, Sandra; Rabenoelina, Fanja; Clément, Christophe; Fontaine, Florence

    2017-01-01

    As a result of the increasing economic impact of grapevine trunk diseases on viticulture worldwide, efficient and viable control strategies are urgently needed. However, understanding both plant-pathogen interactions and plant physiological changes related to these diseases is fundamental to such an achievement. In this study, we analyzed the effect of inoculation with the Botryosphaeria dieback fungal agents, Neofusicoccum parvum and Diplodia seriata, with and without inflorescence removal at the onset of G stage (separated clusters), I stage (flowering) and M stage (veraison). A measure of lesion size and real-time reverse-transcription polymerase chain reaction-based analysis were carried out. The results clearly show the importance of inflorescences in the development of lesions associated with Botryosphaeria dieback pathogens inoculated on green stems of adult vines, especially at the onset of flowering. At flowering, the biggest necroses were observed with the inflorescences present, as well as an activation of the studied defense responses. Thus, an ineffective response to the pathogen could be consistent with a possible metabolic reprogramming linked to the host phenophase. PMID:28208805

  6. Isolation of Native Proanthocyanidins from Grapevine (Vitis vinifera) and Other Fruits in Aqueous Buffer.

    PubMed

    Brillouet, Jean-Marc; Fulcrand, Hélène; Carrillo, Stéphanie; Rouméas, Laurent; Romieu, Charles

    2017-04-05

    Condensed tannins (also called proanthocyanidins) present in strategic tissues of fruits (outer pericarp and vascular bundles) were known as short polymers of flavan-3-ols. A pretreatment of the plant material (fruits from the grapevine, persimmon) with buffered ascorbic acid and Triton X-100 followed by acetone extraction provided native white fully depolymerizable tannins. Tannins are usually extracted with aqueous solvents and further purified, although artifactual oxidations occur, altering their physicochemical characteristics. Compared to artifactually oxidized tannins prepared according to standard protocols, white tannins (also called leukotannins) exhibit a higher degree of polymerization and a far lower polydispersity.

  7. Variation in DNA methylation patterns of grapevine somaclones (Vitis vinifera L.)

    PubMed Central

    Schellenbaum, Paul; Mohler, Volker; Wenzel, Gerhard; Walter, Bernard

    2008-01-01

    Background In traditional vine areas, the production should present a typicity that partly depends on the grapevine variety. Therefore, vine improvement is considered difficult because of the limited choice in the natural variability of the cultivars within the limits of their characteristics. A possibility to circumvent this problem is the use of somatic variability. In vitro somatic embryogenesis and organogenesis can lead to genotypic and phenotypic variations, described as somaclonal variation, that could be useful for the selection of improved grapevine genotypes. Results In order to study tissue culture-induced variation of grapevine, we have analysed 78 somaclones obtained from somatic embryos of two distinct cultivars using molecular marker techniques. SSRs were only useful to verify the conservation of the microsatellite genotype between the somaclones and the respective mother clones. AFLP polymorphism between mother clones and somaclones was 1.3–2.8 times higher to that found between clones. However, a majority of the somaclones (45/78) exhibited only few changes. Seven and five somaclones of 'Chardonnay 96' and 'Syrah 174', respectively, which covered at least all polymorphic loci found in AFLP analysis were used for MSAP study. All of the 120 polymorphic fragments were found only in the somaclones. The percentage of full methylation at CCGG recognition sites was slightly higher in somaclones due to more polymorphic bands generated after cleavage by EcoRI/HpaII. Different digestion patterns revealed different methylation status, especially different levels of de-methylation, that are the consequence of the in vitro culture. Conclusion MSAP highlights DNA methylation variation in somaclones compared to mother clones and, therefore, is a powerful tool for genotypic characterisation of somatic embryo-derived grapevines. The detection of the same polymorphic bands in numerous somaclones of different cultivars suggests the possibility of hot spots of DNA

  8. Moderate water stress from regulated deficit irrigation decreases transpiration similarly to net carbon exchange in grapevine canopies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the effects of timing and extent of regulated deficit irrigation (RDI) on grapevine (Vitis vinifera) canopies, whole-canopy transpiration (TrV) and canopy conductance to water vapor (gc) were calculated from whole-vine gas exchange near key stages of fruit development. The vines were ma...

  9. The chemotaxis regulator pilG of Xylella fastidiosa is required for virulence in Vitis vinifera grapevines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xylella fastidiosa is a Gram-negative, xylem-limited pathogenic bacterium that causes Pierce’s disease of grapevines. Type IV pili of X. fastidiosa are regulated by pilG, a chemotaxis regulator in Pil-Chp operon involving signal transduction pathways. To elucidate the role of pilG in twitching motil...

  10. Collection and characterization of grapevine genetic resources (Vitis vinifera) in the Holy Land, towards the renewal of ancient winemaking practices.

    PubMed

    Drori, Elyashiv; Rahimi, Oshrit; Marrano, Annarita; Henig, Yakov; Brauner, Hodaya; Salmon-Divon, Mali; Netzer, Yishay; Prazzoli, Maria Lucia; Stanevsky, Maria; Failla, Osvaldo; Weiss, Ehud; Grando, Maria Stella

    2017-03-17

    The importance and extent of wine consumption in all life aspects at the Holy Land is well documented. The Muslim influence in this region led to the abandonment of winemaking practices, and possible loss of indigenous wine varieties. Here we present a country wide collection of the local grapevine population including wild and cultivated forms, and its characterization by genetic, ampelographic and enological methods. The ampelographic analysis shows clear differences between Sativa and Sylvestris groups in flower, leaf and cluster parameters, and that most Sativa belong to proles orientalis. Genetic population analysis was conducted by analyzing 22 common SSR markers, determining first the unique genotypes, and internally assessing the population's structure, showing the existence of two distinct Sativa and Sylvestris populations, and a third mixed one. Likewise, the relationship between the Israeli grapevine population and grapevine populations in Europe and parts of Asia was investigated, showing that the Israeli Sativa and Sylvestris populations cluster closely together, suggesting a common genetic source. Lastly, the enological characteristics of selected Sativa and Sylvestris genotypes are presented, demonstrating their potential for quality wine production. This research significantly contributes toward the re-establishment of indigenous and traditional local grapevine varieties into the modern international wine industry.

  11. Draft Genome Sequence of Diplodia seriata F98.1, a Fungal Species Involved in Grapevine Trunk Diseases.

    PubMed

    Robert-Siegwald, Guillaume; Vallet, Julie; Abou-Mansour, Eliane; Xu, Jiabao; Rey, Patrice; Bertsch, Christophe; Rego, Cecilia; Larignon, Philippe; Fontaine, Florence; Lebrun, Marc-Henri

    2017-04-06

    The ascomycete Diplodia seriata is a causal agent of grapevine trunk diseases. Here, we present the draft genome sequence of D. seriata isolate F98.1 (37.27 Mb, 512 contigs, 112 scaffolds, and 8,087 predicted protein-coding genes).

  12. Xylella fastidiosa Infection and Ethylene Exposure Result in Xylem and Water Movement Disruption in Grapevine Shoots1[OA

    PubMed Central

    Pérez-Donoso, Alonso G.; Greve, L. Carl; Walton, Jeffrey H.; Shackel, Ken A.; Labavitch, John M.

    2007-01-01

    It is conventionally thought that multiplication of the xylem-limited bacterium Xylella fastidiosa (Xf) within xylem vessels is the sole factor responsible for the blockage of water movement in grapevines (Vitis vinifera) affected by Pierce's disease. However, results from our studies have provided substantial support for the idea that vessel obstructions, and likely other aspects of the Pierce's disease syndrome, result from the grapevine's active responses to the presence of Xf, rather than to the direct action of the bacterium. The use of magnetic resonance imaging (MRI) to observe the distribution of water within the xylem has allowed us to follow nondestructively the development of vascular system obstructions subsequent to inoculation of grapevines with Xf. Because we have hypothesized a role for ethylene produced in vines following infection, the impact of vine ethylene exposure on obstruction development was also followed using MRI. In both infected and ethylene-exposed plants, MRI shows that an important proportion of the xylem vessels become progressively air embolized after the treatments. The loss of xylem water-transporting function, assessed by MRI, has been also correlated with a decrease in stem-specific hydraulic conductivity (KS) and the presence of tyloses in the lumens of obstructed water conduits. We have observed that the ethylene production of leaves from infected grapevines is greater than that from healthy vines and, therefore, propose that ethylene may be involved in a series of cellular events that coordinates the vine's response to the pathogen. PMID:17189331

  13. Efficient procedure for grapevine embryogenic suspension establishment and plant regeneration: role of conditioned medium for cell proliferation.

    PubMed

    Ben Amar, A; Cobanov, P; Boonrod, K; Krczal, G; Bouzid, S; Ghorbel, A; Reustle, G M

    2007-09-01

    An efficient system for the establishment and multiplication of highly prolific embryogenic cell cultures of grapevine (Vitis sp.) was developed. Using anther-derived pro-embryogenic masses as starting material, cell suspensions of different grapevine cultivars (Tempranillo, Cabernet-Sauvignon) and rootstocks (Kober 125 AA, Kober 5 BB, 110 Richter) were initiated in liquid medium containing NOA (1.0 mg l(-1)) and BAP (0.25 mg l(-1)) as growth regulators. Conditioned medium was recovered and utilised for establishing new, highly totipotent cell cultures. The suspensions obtained, showed embryogenic competence resulting in somatic embryo induction and subsequent plant regeneration. In this study, a simplified establishment procedure for grapevine embryogenic cell suspension allowing the fast multiplication of embryogenic material is described. Evidence for the promoting effect of the protein fraction derived from conditioned medium, on cell proliferation was found. In bioassays, addition of ss-D: -GlcY affect cell proliferation suggesting that arabinogalactan proteins are required for growth processes in grapevine cell cultures.

  14. Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative trait locus (QTL) identification in perennial fruit crops is impeded largely by their lengthy generation time, resulting in costly and labor-intensive maintenance of breeding programs. In a grapevine (genus Vitis) breeding program, although experimental families are typically unreplicat...

  15. Species identification of the causal agent of Eutypa dieback of grapevine in northeastern American and southeastern Canadian vineyards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eutypa dieback of Vitis (grape) is caused by the Ascomycete fungus Eutypa lata. The pathogen infects grapevine through wounds, and cause wood canker and dieback symptoms. E. lata has been identified in all major grape production areas in the world. The first report of Eutypa dieback from northeaster...

  16. Identification of Cylindrocarpon species associated with Black-Foot of grapevine in Northeastern United States and Southeastern Canada

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black-foot disease of grapevine is caused by a complex of soilborne fungi. The most common and virulent species, which are found across all major grape-growing regions of the world, are Cylindrocarpon liriodendri (Cl. liriodendri) and Cl. macrodidymum (teleomorph = Neonectria). Other species with a ...

  17. Wood-decay abilities of grapevine trunk pathogens Diaporthe ampelina, Diplodia seriata, Eutypa lata, and Neofusicoccum parvum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trunk pathogens are fungi that infect grapevine wood through pruning wounds and destroy fruiting positions, thereby impacting grape production. Neofusicoccum parvum (causal fungus of Botryosphaeria dieback) and Eutypa lata (causal fungus of Eutypa dieback) cause chronic infections (cankers) of the t...

  18. Collection and characterization of grapevine genetic resources (Vitis vinifera) in the Holy Land, towards the renewal of ancient winemaking practices

    PubMed Central

    Drori, Elyashiv; Rahimi, Oshrit; Marrano, Annarita; Henig, Yakov; Brauner, Hodaya; Salmon-Divon, Mali; Netzer, Yishay; Prazzoli, Maria Lucia; Stanevsky, Maria; Failla, Osvaldo; Weiss, Ehud; Grando, Maria Stella

    2017-01-01

    The importance and extent of wine consumption in all life aspects at the Holy Land is well documented. The Muslim influence in this region led to the abandonment of winemaking practices, and possible loss of indigenous wine varieties. Here we present a country wide collection of the local grapevine population including wild and cultivated forms, and its characterization by genetic, ampelographic and enological methods. The ampelographic analysis shows clear differences between Sativa and Sylvestris groups in flower, leaf and cluster parameters, and that most Sativa belong to proles orientalis. Genetic population analysis was conducted by analyzing 22 common SSR markers, determining first the unique genotypes, and internally assessing the population’s structure, showing the existence of two distinct Sativa and Sylvestris populations, and a third mixed one. Likewise, the relationship between the Israeli grapevine population and grapevine populations in Europe and parts of Asia was investigated, showing that the Israeli Sativa and Sylvestris populations cluster closely together, suggesting a common genetic source. Lastly, the enological characteristics of selected Sativa and Sylvestris genotypes are presented, demonstrating their potential for quality wine production. This research significantly contributes toward the re-establishment of indigenous and traditional local grapevine varieties into the modern international wine industry. PMID:28303928

  19. Water Uptake along the Length of Grapevine Fine Roots: Developmental anatomy, tissue specific aquaporin expression, and pathways of water transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To better understand water uptake patterns in root systems of woody perennial crops, we detailed the developmental anatomy and hydraulic physiology along the length of grapevine fine roots- from the tip to secondary growth zones. Our characterization included localization of suberized structures an...

  20. Host colonization and substrate utilization by wood-colonizing Ascomycete fungi in the grapevine trunk disease complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapevine trunk diseases cause chronic wood infections (cankers) in mixed infections within the same vine. To determine the synergistic interactions of trunk-pathogen communities and their impact on the host we are characterizing, on a pathogen-by-pathogen basis, fungal damage to woody cells and tis...

  1. Draft Genome Sequence of Diplodia seriata F98.1, a Fungal Species Involved in Grapevine Trunk Diseases

    PubMed Central

    Robert-Siegwald, Guillaume; Vallet, Julie; Abou-Mansour, Eliane; Xu, Jiabao; Rey, Patrice; Bertsch, Christophe; Rego, Cecilia; Larignon, Philippe; Fontaine, Florence

    2017-01-01

    ABSTRACT The ascomycete Diplodia seriata is a causal agent of grapevine trunk diseases. Here, we present the draft genome sequence of D. seriata isolate F98.1 (37.27 Mb, 512 contigs, 112 scaffolds, and 8,087 predicted protein-coding genes). PMID:28385831

  2. Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines.

    PubMed

    Cabral, Ana; Rego, Cecília; Nascimento, Teresa; Oliveira, Helena; Groenewald, Johannes Z; Crous, Pedro W

    2012-01-01

    Black foot is an important disease of grapevines, which has in recent years been recorded with increased incidence and severity throughout the world, affecting grapevines both in nurseries and young vineyards. In the past the disease has been associated with infections by Ilyonectria macrodidyma, Ilyonectria liriodendri, Campylocarpon fasciculare, and Campylocarpon pseudofasciculare. Based on published data, a high level of genetic diversity was detected among isolates of I. macrodidyma. To resolve this issue, we employed a multigene analysis strategy (based on the β-tubulin, histone H3, translation elongation factor 1-α, and the internal transcribed spacers on both sides of the 5.8S nuclear ribosomal RNA gene) along with morphological characterisation to study a collection of 81 I. macrodidyma-like isolates from grapevine and other hosts. Morphological characters (particularly conidial size) and molecular data (highest resolution achieved with histone H3 nucleotide sequence) enabled the distinction of six monophyletic species within the I. macrodidyma complex, four of which (Ilyonectria alcacerensis, Ilyonectria estremocensis, Ilyonectria novozelandica, and Ilyonectria torresensis) are described here. This work forms part of an effort by the International Council on Grapevine Trunk Diseases to resolve the species associated with black foot disease, which we believe will clarify their taxonomy, and therefore help researchers to devise control strategies to reduce the devastating impact of this disease.

  3. Effects of a selenium-laden soil amendment on grapevine metabolism and progression of Pierce’s disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenium containing soil amendments might be beneficial to growers as selenium may increase resistance to certain plant pathogens and pests. Therefore, grapevines growing in soil with different amounts of selenium-laden amendment were evaluated for metabolism and susceptibility to Pierce’s disease (...

  4. Structural, Functional, and Evolutionary Analysis of the Unusually Large Stilbene Synthase Gene Family in Grapevine1[W

    PubMed Central

    Parage, Claire; Tavares, Raquel; Réty, Stéphane; Baltenweck-Guyot, Raymonde; Poutaraud, Anne; Renault, Lauriane; Heintz, Dimitri; Lugan, Raphaël; Marais, Gabriel A.B.; Aubourg, Sébastien; Hugueney, Philippe

    2012-01-01

    Stilbenes are a small family of phenylpropanoids produced in a number of unrelated plant species, including grapevine (Vitis vinifera). In addition to their participation in defense mechanisms in plants, stilbenes, such as resveratrol, display important pharmacological properties and are postulated to be involved in the health benefits associated with a moderate consumption of red wine. Stilbene synthases (STSs), which catalyze the biosynthesis of the stilbene backbone, seem to have evolved from chalcone synthases (CHSs) several times independently in stilbene-producing plants. STS genes usually form small families of two to five closely related paralogs. By contrast, the sequence of grapevine reference genome (cv PN40024) has revealed an unusually large STS gene family. Here, we combine molecular evolution and structural and functional analyses to investigate further the high number of STS genes in grapevine. Our reannotation of the STS and CHS gene families yielded 48 STS genes, including at least 32 potentially functional ones. Functional characterization of nine genes representing most of the STS gene family diversity clearly indicated that these genes do encode for proteins with STS activity. Evolutionary analysis of the STS gene family revealed that both STS and CHS evolution are dominated by purifying selection, with no evidence for strong selection for new functions among STS genes. However, we found a few sites under different selection pressures in CHS and STS sequences, whose potential functional consequences are discussed using a structural model of a typical STS from grapevine that we developed. PMID:22961129

  5. QTL identification in an interspecific grapevine cross segregating for resistance to Powdery Mildew, Downy Mildew, Black Rot, and Phylloxera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapevine is a highly heterozygous plant with a complex genetic background. Here, we report the use of an F1 family (N = 125) from a cross of MN1264 × MN1246 made in 2010. The cross contains at least six Vitis species in its ancestry and segregates for resistance to powdery mildew (Erysiphe necator)...

  6. Subfunctionalization of cation/proton antiporter 1 genes in grapevine in response to salt stress in different organs

    PubMed Central

    Ma, Yuanchun; Wang, Jiaoyang; Zhong, Yan; Geng, Fang; Cramer, Grant R; Cheng, Zong-Ming (Max)

    2015-01-01

    Cation/proton antiporter 1 (CPA1) proteins function as regulators of monovalent ions, pH homeostasis, and other developmental processes in plants. Better understanding of the expression and regulation of CPA1 in plant responses to salinity would help the development of scientific practices in crops worldwide. In this report, we characterized all seven CPA1 family genes in grapevine (Vitis vinifera) in response to short-term osmotic and NaCl stresses. We found that two of the seven genes have subfunctionalized to be differentially expressed in response to NaCl stress in the early stage in different organs, whereas the other five members seem to play little or no role in this response. Specifically, VIT_19s0090g01480 may control Na+ compartmentalization in grapevine roots; and VIT_05s0020g01960 may influence Na+ transfer in stems. Based on the dynamics of ion concentrations, electrolyte leakage rates, and CPA1 gene expression in root, stem, and leaf tissues under osmotic and NaCl stresses, we suggest how grapevine responds physiologically and molecularly to the osmotic and ion toxicity of NaCl stress in the short term. This work lays a foundation for future research on the CPA1 gene family regarding its evolutionary history and biological functions for modulating salt responses in grapevine. PMID:26504576

  7. Metabolomic Study of Chardonnay Grapevines Double Stressed with Esca-Associated Fungi and Drought.

    PubMed

    Lima, Marta R M; Machado, Antoinette F; Gubler, Walter D

    2017-04-12

    Esca is a complex grapevine trunk disease associated with fungal infection of the xylem. However, the inconstancy of external symptoms and the ability of esca-associated fungi to inhabit grapevines without causing apparent disease suggests that abiotic factors might be involved in the disease. Water stress has been proposed to be one of the factors influencing esca symptom manifestation but the specific role played by water stress on esca development is unknown. We conducted a proton nuclear magnetic resonance spectroscopy-based metabolomic study aiming at unveiling drought-induced modifications in xylem sap composition that could contribute to esca-related infection progression. Vitis vinifera 'Chardonnay' plants were inoculated with Phaeomoniella chlamydospora or Phaeoacremonium minimum and exposed to water stress. Using this approach, 28 metabolites were identified in xylem sap. The results show that water stress induces a concentration increase of most metabolites in xylem sap. An average increase >100% was found for asparagine, isoleucine, leucine, methionine, phenylalanine, proline, tyrosine, valine, sarcosine, and trigonelline. The increase of these compounds seems to be also modulated by fungal infection. This study offers further support to the putative role of drought in esca expression, and opens new avenues of research by extending the current knowledge about metabolites possibly involved in esca disease.

  8. Ethylene and not embolism is required for wound-induced tylose development in stems of grapevines.

    PubMed

    Sun, Qiang; Rost, Thomas L; Reid, Michael S; Matthews, Mark A

    2007-12-01

    The pruning of actively growing grapevines (Vitis vinifera) resulted in xylem vessel embolisms and a stimulation of tylose formation in the vessels below the pruning wound. Pruning was also followed by a 10-fold increase in the concentration of ethylene at the cut surface. When the pruning cut was made under water and maintained in water, embolisms were prevented, but there was no reduction in the formation of tyloses or the accumulation of ethylene. Treatment of the stems with inhibitors of ethylene biosynthesis (aminoethoxyvinylglycine) and/or action (silver thiosulfate) delayed and greatly reduced the formation of tyloses in xylem tissue and the size and number of those that formed in individual vessels. Our data are consistent with the hypotheses that wound ethylene production is the cause of tylose formation and that embolisms in vessels are not directly required for wound-induced tylosis in pruned grapevines. The possible role of ethylene in the formation of tyloses in response to other stresses and during development, maturation, and senescence is discussed.

  9. Relative performance of European grapevine moth (Lobesia botrana) on grapes and other hosts.

    PubMed

    Thiéry, Denis; Moreau, Jérôme

    2005-05-01

    The European grapevine moth, Lobesia botrana is a major grapevine pest, but despite the abundance of vineyards it is a generalist and uses either grapes or alternative species. Given the abundance and predictability of grape, L. botrana could be expected to have evolved towards monophagy. In order to understand why this species remains polyphagous, we hypothesized that larvae reared on rare wild host plants should have higher fitness than those reared on the more abundant grape host. For this, we compared larval performance and several life history traits on three alternative host plants (Daphne gnidium, Olea europaea, Tanacetum vulgare) and three Vitaceae (Vitis vinifera), two cultivars and one wild species (Ampelopsis brevipedunculata), and two control groups raised on either a low or a high nutritive value medium. Alternative hosts are more suitable than Vitaceae for the reproductive performance of L. botrana: larval mortality and development time was reduced, while pupal weight, growth rate, female longevity, female fecundity, duration of laying and mating success were increased. High quality food ingested by larvae promotes higher adult body weight and enhances female reproductive output. This suggests that alternative hosts provide greater nutritional value for L. botrana than Vitaceae. The use of alternative host plants could thus be maintained in the host range because they offer L. botrana a better fitness than on the Vitaceae. This could typically represent an advantage for moths behaving in plant diversity grape landscapes.

  10. Synergism and redundancy in a plant volatile blend attracting grapevine moth females.

    PubMed

    Tasin, Marco; Bäckman, Anna-Carin; Coracini, Miryan; Casado, Daniel; Ioriatti, Claudio; Witzgall, Peter

    2007-01-01

    A flight tunnel study was done to decipher the behavioral effect of grape odor in grapevine moth Lobesia botrana. A blend of 10 volatile compounds, which all elicit a strong antennal response, attracts mated grapevine moth females from a distance, by upwind orientation flight. These 10 grape volatiles are in part behaviorally redundant, since attraction to a 3-component blend of beta-caryophyllene, (E)-beta-farnesene and (E)-4,8-dimethyl-1,3,7-nonatriene was not significantly different from the 10-component blend. Blending these three compounds had a strong synergistic effect on female attraction, and omission of any one compound from this 3-component blend almost abolished attraction. It was nonetheless possible to substitute the three compounds with the other grape volatiles which are perceived by the female antenna, to partly restore attraction. Several blends, of varying composition, elicited significant attraction. The observed behavioral plasticity in response to grape volatile blends probably reflects the variation of the natural plant signal, since females oviposit on different grape varieties, in different phenological stages.

  11. Volatiles that encode host-plant quality in the grapevine moth.

    PubMed

    Tasin, Marco; Betta, Emanuela; Carlin, Silvia; Gasperi, Flavia; Mattivi, Fulvio; Pertot, Ilaria

    2011-11-01

    Plant volatiles are signals used by herbivorous insects to locate host plants and select oviposition sites. Whether such volatiles are used as indicators of plant quality by adult insects in search of host plants has been rarely tested. We tested whether volatiles indicate plant quality by studying the oviposition of the grapevine moth Lobesia botrana on the grapevine plant Vitis vinifera. Host plants were infected with a variety of microorganisms, and larval fitness was correlated to the infected state of the substrate. Our results show an oviposition preference for volatiles that is significantly correlated with the fitness of the substrate. The chemical profiles of the bouquets from each V. vinifera-microorganism system are clearly differentiated in a PCA analysis. Both the volatile signal and the quality of the plant as larval food were affected by the introduction of microorganisms. Our study represents a broad approach to the study of plant-insect interactions by considering not only the direct effect of the plant but also the effect of plant-microorganism interactions on insect population dynamics.

  12. The grapevine tonoplast aquaporin TIP2;1 is a pressure gated water channel.

    PubMed

    Leitão, Luís; Prista, Catarina; Loureiro-Dias, Maria C; Moura, Teresa F; Soveral, Graça

    2014-07-18

    In plants, the vacuole is a multifunctional organelle with an important role in the maintenance of the intracellular space. Tonoplast membranes are highly permeable to water due to their content in aquaporins TIPs (Tonoplast Intrinsic Proteins) that allow the rapid water influx creating an internal turgor pressure responsible for cell expansion, elongation and shape. The aim of the present study was to evaluate if the grapevine Vitis vinifera TIP2;1 would operate as a possible volume regulator gated by membrane surface tension. For that, the wild type VvTIP2;1 and a non-functional mutated form were heterologous expressed in yeast. Using an experimental strategy in which cells are incubated in external media that induce an increase in internal hydrostatic pressure and consequently membrane surface tension, we were able to compare the osmotic permeability (Pf) and the activation energy for water transport (Ea) of yeast strains expressing the functional and a non-functional TIP2;1. We found Pf and Ea dependence on internal turgor pressure only for the strain harboring the functional aquaporin indicating that TIP2;1 activity is regulated by membrane tension changing from an open to a closed state in an internal pressure dependent manner. This turgor dependent gating of TIP2;1 might be a mechanism to regulate vacuolar size and shape in plants withstanding hostile drought conditions such as grapevine.

  13. The Influence of Genotype and Environment on Small RNA Profiles in Grapevine Berry

    PubMed Central

    Paim Pinto, Daniela Lopes; Brancadoro, Lucio; Dal Santo, Silvia; De Lorenzis, Gabriella; Pezzotti, Mario; Meyers, Blake C.; Pè, Mario E.; Mica, Erica

    2016-01-01

    Understanding the molecular mechanisms involved in the interaction between the genetic composition and the environment is crucial for modern viticulture. We approached this issue by focusing on the small RNA transcriptome in grapevine berries of the two varieties Cabernet Sauvignon and Sangiovese, growing in adjacent vineyards in three different environments. Four different developmental stages were studied and a total of 48 libraries of small RNAs were produced and sequenced. Using a proximity-based pipeline, we determined the general landscape of small RNAs accumulation in grapevine berries. We also investigated the presence of known and novel miRNAs and analyzed their accumulation profile. The results showed that the distribution of small RNA-producing loci is variable between the two cultivars, and that the level of variation depends on the vineyard. Differently, the profile of miRNA accumulation mainly depends on the developmental stage. The vineyard in Riccione maximizes the differences between the varieties, promoting the production of more than 1000 specific small RNA loci and modulating their expression depending on the cultivar and the maturation stage. In total, 89 known vvi-miRNAs and 33 novel vvi-miRNA candidates were identified in our samples, many of them showing the accumulation profile modulated by at least one of the factors studied. The in silico prediction of miRNA targets suggests their involvement in berry development and in secondary metabolites accumulation such as anthocyanins and polyphenols. PMID:27761135

  14. Grapevine genotype susceptibility to Xylella fastidiosa does not predict vector transmission success.

    PubMed

    Rashed, Arash; Daugherty, Matthew P; Almeida, Rodrigo P P

    2011-10-01

    For vector-borne diseases, interactions between vector, host, and pathogen can influence patterns of disease spread. In particular, previous studies suggest that host genotype may influence disease dynamics because of differences in susceptibility to the pathogen and, therefore, subsequent vector transmission efficiency from these plants. We tested this hypothesis by using the pathogenic bacterium Xylella fastidiosa, the etiological agent of Pierce's disease in grapevines, and its leafhopper vector Homalodisca vitripennis (Germar). Pathogen infection level and transmission efficiency among several widely cultivated red and white wine, table, and raisin grape cultivars, were compared with the expectation that vector transmission rate would differ among cultivars, because of underlying differences in susceptibility to infection. The 14 grapevine genotypes evaluated showed significant differences among cultivars in the populations of X. fastidiosa that developed in petioles. 'Flame seedless' hosted the highest bacterial populations, between 1.81 and 2.05 times higher than the least susceptible 'Merlot', 'Crimson seedless', 'Grenache Noir', and 'Rubired'. Although the transmission rate of X. fastidiosa by H. vitripennis varied substantially (zero to 33%), it was not significantly different among cultivars. These results suggest that either the relationship between vine infection level and transmission is weaker than previously reported, or innate differences in vector preference among cultivars confounded any effects of vine susceptibility to infection.

  15. Relative Infestation Level and Sensitivity of Grapevine Cultivars to the Leafhopper Empoasca vitis (Hemiptera: Cicadellidae).

    PubMed

    Fornasiero, D; Pavan, F; Pozzebon, A; Picotti, P; Duso, C

    2016-02-01

    The leafhopper Empoasca vitis (Göthe) (Hemiptera: Cicadellidae) feeds on veins of grapevine leaves, mainly on the phloem, causing physiological injury, color change and drying of leaf margins, yield and sugar content reduction. The relative infestation level (i.e., the probability that a plant is attacked by herbivores) of E. vitis on different grapevine cultivars and their sensitivity (i.e., the incidence of symptoms expression in response to herbivore feeding or other stimuli) to this pest were studied over four years in two vineyards located in northeastern Italy. Some cultivars (e.g., Carménère and Sauvignon Blanc) were usually more infested than others (e.g., Cabernet Sauvignon and Pinot Gris), although some differences were observed among years and sites. The sensitivity varied among cultivars, i.e., some of them showed more symptoms than expected on the basis of infestation levels (e.g., Carménère and Merlot), in contrast with others (e.g., Rhine Riesling and Chardonnay). Information obtained can be used within the framework of integrated pest management in vineyards. Action thresholds should differ on the basis of sensitivity. Sampling must first be carried out on the most susceptible cultivar and, if the action threshold is exceeded, it should be extended to the remaining cultivars based on their decreasing relative infestation level.

  16. A divergent variant of Grapevine leafroll-associated virus 3 is present in California

    PubMed Central

    2012-01-01

    Background Grapevine leafroll-associated viruses are a problem for grape production globally. Symptoms are caused by a number of distinct viral species. During a survey of Napa Valley vineyards (California, USA), we found evidence of a new variant of Grapevine leafroll-associated virus 3 (GLRaV-3). We isolated its genome from a symptomatic greenhouse-raised plant and fully sequenced it. Findings In a maximum likelihood analysis of representative GLRaV-3 gene sequences, the isolate grouped most closely with a recently sequenced variant from South Africa and a partial sequence from New Zealand. These highly divergent GLRaV-3 variants have predicted proteins that are more than 10% divergent from other GLRaV-3 variants, and appear to be missing an open reading frame for the p6 protein. Conclusions This divergent GLRaV-3 phylogroup is already present in grape-growing regions worldwide and is capable of causing symptoms of leafroll disease without the p6 protein. PMID:23062082