Sample records for grapevine root distribution

  1. Differential responses of grapevine rootstocks to water stress are associated with adjustments in fine root hydraulic physiology and suberization

    USDA-ARS?s Scientific Manuscript database

    Water deficits are known to alter fine root structure and function, but little is known about how these responses contribute to differences in drought resistance across grapevine rootstocks. We studied how water deficit affects root anatomical and physiological characteristics in two grapevine root...

  2. Herbicides in vineyards reduce grapevine root mycorrhization and alter soil microorganisms and the nutrient composition in grapevine roots, leaves, xylem sap and grape juice.

    PubMed

    Zaller, Johann G; Cantelmo, Clemens; Santos, Gabriel Dos; Muther, Sandrina; Gruber, Edith; Pallua, Paul; Mandl, Karin; Friedrich, Barbara; Hofstetter, Ingrid; Schmuckenschlager, Bernhard; Faber, Florian

    2018-06-03

    Herbicides are increasingly applied in vineyards worldwide. However, not much is known on potential side effects on soil organisms or on the nutrition of grapevines (Vitis vinifera). In an experimental vineyard in Austria, we examined the impacts of three within-row herbicide treatments (active ingredients: flazasulfuron, glufosinate, glyphosate) and mechanical weeding on grapevine root mycorrhization; soil microorganisms; earthworms; and nutrient concentration in grapevine roots, leaves, xylem sap and grape juice. The three herbicides reduced grapevine root mycorrhization on average by 53% compared to mechanical weeding. Soil microorganisms (total colony-forming units, CFU) were significantly affected by herbicides with highest CFUs under glufosinate and lowest under glyphosate. Earthworms (surface casting activity, density, biomass, reproduction) or litter decomposition in soil were unaffected by herbicides. Herbicides altered nutrient composition in grapevine roots, leaves, grape juice and xylem sap that was collected 11 months after herbicide application. Xylem sap under herbicide treatments also contained on average 70% more bacteria than under mechanical weeding; however, due to high variability, this was not statistically significant. We conclude that interdisciplinary approaches should receive more attention when assessing ecological effects of herbicides in vineyard ecosystems.

  3. Plant Growth Promotion Potential Is Equally Represented in Diverse Grapevine Root-Associated Bacterial Communities from Different Biopedoclimatic Environments

    PubMed Central

    Fusi, Marco; Cherif, Ameur; Abou-Hadid, Ayman; El-Bahairy, Usama; Sorlini, Claudia; Daffonchio, Daniele

    2013-01-01

    Plant-associated bacteria provide important services to host plants. Environmental factors such as cultivar type and pedoclimatic conditions contribute to shape their diversity. However, whether these environmental factors may influence the plant growth promoting (PGP) potential of the root-associated bacteria is not widely understood. To address this issue, the diversity and PGP potential of the bacterial assemblage associated with the grapevine root system of different cultivars in three Mediterranean environments along a macrotransect identifying an aridity gradient were assessed by culture-dependent and independent approaches. According to 16S rRNA gene PCR-DGGE, the structure of endosphere and rhizosphere bacterial communities was highly diverse (P = 0.03) and was associated with a cultivar/latitudinal/climatic effect. Despite being diverse, the bacterial communities associated with Egyptian grapevines shared a higher similarity with the Tunisian grapevines than those cultivated in North Italy. A similar distribution, according to the cultivar/latitude/aridity gradients, was observed for the cultivable bacteria. Many isolates (23%) presented in vitro multiple stress resistance capabilities and PGP activities, the most frequent being auxin synthesis (82%), insoluble phosphate solubilisation (61%), and ammonia production (70%). The comparable numbers and types of potential PGP traits among the three different environmental settings indicate a strong functional homeostasis of beneficial bacteria associated with grape root. PMID:23878810

  4. The Soil Microbiome Influences Grapevine-Associated Microbiota

    PubMed Central

    Zarraonaindia, Iratxe; Owens, Sarah M.; Weisenhorn, Pamela; West, Kristin; Hampton-Marcell, Jarrad; Lax, Simon; Bokulich, Nicholas A.; Mills, David A.; Martin, Gilles; Taghavi, Safiyh; van der Lelie, Daniel

    2015-01-01

    ABSTRACT Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cultivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterial reservoir. A subset of soil microorganisms, including root colonizers significantly enriched in plant growth-promoting bacteria and related functional genes, were selected by the grapevine. In addition to plant selective pressure, the structure of soil and root microbiota was significantly influenced by soil pH and C:N ratio, and changes in leaf- and grape-associated microbiota were correlated with soil carbon and showed interannual variation even at small spatial scales. Diazotrophic bacteria, e.g., Rhizobiaceae and Bradyrhizobium spp., were significantly more abundant in soil samples and root samples of specific vineyards. Vine-associated microbial assemblages were influenced by myriad factors that shape their composition and structure, but the majority of organ-associated taxa originated in the soil, and their distribution reflected the influence of highly localized biogeographic factors and vineyard management. PMID:25805735

  5. The soil microbiome influences grapevine-associated microbiota

    DOE PAGES

    Zarraonaindia, Iratxe; Owens, Sarah M.; Weisenhorn, Pamela; ...

    2015-03-24

    Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cultivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterialmore » reservoir. A subset of soil microorganisms, including root colonizers significantly enriched in plant growth-promoting bacteria and related functional genes, were selected by the grapevine. In addition to plant selective pressure, the structure of soil and root microbiota was significantly influenced by soil pH and C:N ratio, and changes in leaf- and grape-associated microbiota were correlated with soil carbon and showed interannual variation even at small spatial scales. Diazotrophic bacteria, e.g., Rhizobiaceae and Bradyrhizobium spp., were significantly more abundant in soil samples and root samples of specific vineyards. Vine-associated microbial assemblages were influenced by myriad factors that shape their composition and structure, but the majority of organ-associated taxa originated in the soil, and their distribution reflected the influence of highly localized biogeographic factors and vineyard management.« less

  6. Spatial distribution of the dagger nematode Xiphinema index and its associated Grapevine fanleaf virus in French vineyard.

    PubMed

    Villate, L; Fievet, V; Hanse, B; Delemarre, F; Plantard, O; Esmenjaud, D; van Helden, M

    2008-08-01

    The nematode Xiphinema index is, economically, the major virus vector in viticulture, transmitting specifically the Grapevine fanleaf virus (GFLV), the most severe grapevine virus disease worldwide. Increased knowledge of the spatial distribution of this nematode, both horizontally and vertically, and of correlative GFLV plant infections, is essential to efficiently control the disease. In two infested blocks of the Bordeaux vineyard, vertical distribution data showed that the highest numbers of individuals occurred at 40 to 110 cm depth, corresponding to the two layers where the highest densities of fine roots were observed. Horizontal distribution based on a 10 x 15 m grid sampling procedure revealed a significant aggregative pattern but no significant neighborhood structure of nematode densities. At a finer scale ( approximately 2 x 2 m), nematode sampling performed in a third block confirmed a significant aggregative pattern, with patches of 6 to 8 m diameter, together with a significant neighborhood structure of nematode densities, thus identifying the relevant sampling scale to describe the nematode distribution. Nematode patches correlate significantly with those of GFLV-infected grapevine plants. Finally, nematode and virus spread were shown to extend preferentially parallel to vine rows, probably due to tillage during mechanical weeding.

  7. Armillaria root rot

    USDA-ARS?s Scientific Manuscript database

    First described on grapevines in California in the 1880s, Armillaria root rot occurs in all major grape-growing regions of the state. The causal fungus, Armillaria mellea, infects woody grapevine roots and the base of the trunk (the root collar), resulting in a slow decline and eventual death of the...

  8. Effects of grapevine root density and reinforcement on slopes prone to shallow slope instability

    NASA Astrophysics Data System (ADS)

    Meisina, Claudia; Bordoni, Massimiliano; Bischetti, Gianbattista; Vercesi, Alberto; Chiaradia, Enrico; Cislaghi, Alessio; Valentino, Roberto; Bittelli, Marco; Vergani, Chiara; Chersich, Silvia; Giuseppina Persichillo, Maria; Comolli, Roberto

    2016-04-01

    Slope erosion and shallow slope instabilities are the major factors of soil losses in cultivated steep terrains. These phenomena also cause loss of organic matter and plants nutrients, together with the partial or total destruction of the structures, such as the row tillage pattern of the vineyards, which allow for the plants cultivation. Vegetation has long been used as an effective tool to decrease the susceptibility of a slope to erosion and to shallow landslides. In particular, the scientific research focused on the role played by the plant roots, because the belowground biomass has the major control on the potential development of soil erosion and of shallow failures. Instead, a comprehensive study that analyzes the effects of the roots of agricultural plants on both soil erosion and slope instability has not been carried out yet. This aspect should be fundamental where sloped terrains are cultivated with plants of great economical relevance, as grapevine. To contribute to fill this gap, in this study the features of root density in the soil profile have been analyzed in slopes cultivated with vineyards, located on a sample hilly area of Oltrepò Pavese (northern Italy). In this area, the viticulture is the most important branch of the local economy. Moreover, several events of rainfall-induced slope erosion and shallow landslides have occurred in this area in the last 6 years, causing several economical damages linked to the destruction of the vineyards and the loss of high productivity soils. Grapevine root distribution have been measured in different test-site slopes, representative of the main geological, geomorphological, pedological, landslides distribution, agricultural features, in order to identify particular patterns on root density that can influence the development of slope instabilities. Roots have been sampled in each test-site for characterizing their strength, in terms of the relation between root diameter and root force at rupture. Root density and root strength have been combined in a physical model (Fiber Bundle Model), for the assessment of the trends of the root reinforcement in soil. The results of this study have contributed to identify root distribution behaviours, in different agricultural and environmental conditions, that have not been enough to guarantee slope stability or that can promote an increase of it. This can furnish important indications for a better identification of slopes more susceptible to slope instabilities and for improving land planning.

  9. Shared and host-specific microbiome diversity and functioning of grapevine and accompanying weed plants.

    PubMed

    Samad, Abdul; Trognitz, Friederike; Compant, Stéphane; Antonielli, Livio; Sessitsch, Angela

    2017-04-01

    Weeds and crop plants select their microbiota from the same pool of soil microorganisms, however, the ecology of weed microbiomes is poorly understood. We analysed the microbiomes associated with roots and rhizospheres of grapevine and four weed species (Lamium amplexicaule L., Veronica arvensis L., Lepidium draba L. and Stellaria media L.) growing in proximity in the same vineyard using 16S rRNA gene sequencing. We also isolated and characterized 500 rhizobacteria and root endophytes from L. draba and grapevine. Microbiome data analysis revealed that all plants hosted significantly different microbiomes in the rhizosphere as well as in root compartment, however, differences were more pronounced in the root compartment. The shared microbiome of grapevine and the four weed species contained 145 OTUs (54.2%) in the rhizosphere, but only nine OTUs (13.2%) in the root compartment. Seven OTUs (12.3%) were shared in all plants and compartments. Approximately 56% of the major OTUs (>1%) showed more than 98% identity to bacteria isolated in this study. Moreover, weed-associated bacteria generally showed a higher species richness in the rhizosphere, whereas the root-associated bacteria were more diverse in the perennial plants grapevine and L. draba. Overall, weed isolates showed more plant growth-promoting characteristics compared with grapevine isolates. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. [Effects of different salt and alkali stresses on ion distribution in Red globe/Beta grapevines].

    PubMed

    Du, Yuan-peng; Jin, Xue-juan; Guo, Shu-hua; Fu, Qing-qing; Zhai, Heng

    2015-06-01

    The potted Red globe/Beta grapevines were selected to irrigated with NaCl, Na2SO4, NaHCO3, NH4Cl, (NH4)2SO4. Hence, the ions which induced leaf etiolation were screened and the impacts of different salt and alkali on ion distribution in different organs of grapevines were investigated. It was found that NaHCO3 exerted the greatest effects on grapevines, leaf etiolation at 14 days after treatment. By contrast, NaCl and NH4Cl treatments induced leaf etiolation at 28 days after treatment. The Na+ content in all the detected organs were significantly increased under NaHCO3 and NaCl treatment, and Na+ content in root under NaHCO3 treatment was 6.4 times as that in control root. NaHCO3 and NaCl treatments significantly decreased K+ content in the organs with the exception of leaf. NaHCO3 treatment significantly decreased K/Na in different organs, which declined to 0.1 in root. By contrast, NaCl treatment significantly decreased K/Na in the detected organs with exception of stem. Besides, the transport of Ca2+, Mg2+, Fe2+ to aboveground organs was significantly decreased by NaHCO3 and NaCl treatments. K/Na ratio in the detected organs were decreased under NH4Cl, (NH4) 2SO4 and Na2SO4 treatments, especially under NH4 Cl treatment. Taken together, NaHCO3 was the primary factor resulting in leaf etiolation, followed by NaCl and NH4Cl, while (NH4) 2SO4 and Na2SO4 produced impacts.

  11. Arbuscule frequency in grapevine roots is more responsive to reduction in photosynthetic capacity than to increased levels of shoot phosphorus

    USDA-ARS?s Scientific Manuscript database

    We evaluated whether altering photosynthetic capacity or shoot P plays bigger role in regulating arbuscule abundance in fine roots of grapevine. Pinot noir grapevines were grown in an unsterilized vineyard soil and colonized by indigenous arbuscular mycorrhizal fungi (AMF) in two experiments where p...

  12. Weed control and cover crop management affect mycorrhizal colonization of grapevine roots and arbuscular mycorrhizal fungal spore populations in a California vineyard.

    PubMed

    Baumgartner, Kendra; Smith, Richard F; Bettiga, Larry

    2005-03-01

    Arbuscular mycorrhizal (AM) fungi naturally colonize grapevines in California vineyards. Weed control and cover cropping may affect AM fungi directly, through destruction of extraradical hyphae by soil disruption, or indirectly, through effects on populations of mycorrhizal weeds and cover crops. We examined the effects of weed control (cultivation, post-emergence herbicides, pre-emergence herbicides) and cover crops (Secale cereale cv. Merced rye, x Triticosecale cv.Trios 102) on AM fungi in a Central Coast vineyard. Seasonal changes in grapevine mycorrhizal colonization differed among weed control treatments, but did not correspond with seasonal changes in total weed frequency. Differences in grapevine colonization among weed control treatments may be due to differences in mycorrhizal status and/or AM fungal species composition among dominant weed species. Cover crops had no effect on grapevine mycorrhizal colonization, despite higher spring spore populations in cover cropped middles compared to bare middles. Cover crops were mycorrhizal and shared four AM fungal species (Glomus aggregatum, G. etunicatum, G. mosseae, G. scintillans) in common with grapevines. Lack of contact between grapevine roots and cover crop roots may have prevented grapevines from accessing higher spore populations in the middles.

  13. Vegetative growth and cluster development in Shiraz grapevines subjected to partial root-zone cooling

    PubMed Central

    Rogiers, Suzy Y.; Clarke, Simon J.

    2013-01-01

    Heterogeneity in root-zone temperature both vertically and horizontally may contribute to the uneven vegetative and reproductive growth often observed across vineyards. An experiment was designed to assess whether the warmed half of a grapevine root zone could compensate for the cooled half in terms of vegetative growth and reproductive development. We divided the root system of potted Shiraz grapevines bilaterally and applied either a cool or a warm treatment to each half from budburst to fruit set. Shoot growth and inflorescence development were monitored over the season. Simultaneous cooling and warming of parts of the root system decreased shoot elongation, leaf emergence and leaf expansion below that of plants with a fully warmed root zone, but not to the same extent as those with a fully cooled root zone. Inflorescence rachis length, flower number and berry number after fertilization were smaller only in those vines exposed to fully cooled root zones. After terminating the treatments, berry enlargement and the onset of veraison were slowed in those vines that had been exposed to complete or partial root-zone cooling. Grapevines exposed to partial root-zone cooling were thus delayed in vegetative and reproductive development, but the inhibition was greater in those plants whose entire root system had been cooled. PMID:24244839

  14. Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine.

    PubMed

    Hao, Zhipeng; Fayolle, Léon; van Tuinen, Diederik; Chatagnier, Odile; Li, Xiaolin; Gianinazzi, Silvio; Gianinazzi-Pearson, Vivienne

    2012-06-01

    The ectoparasitic dagger nematode (Xiphinema index), vector of Grapevine fanleaf virus (GFLV), provokes gall formation and can cause severe damage to the root system of grapevines. Mycorrhiza formation by Glomus (syn. Rhizophagus) intraradices BEG141 reduced both gall formation on roots of the grapevine rootstock SO4 (Vitis berlandieri×V. riparia) and nematode number in the surrounding soil. Suppressive effects increased with time and were greater when the nematode was post-inoculated rather than co-inoculated with the arbuscular mycorrhizal (AM) fungus. Using a split-root system, decreased X. index development was shown in mycorrhizal and non-mycorrhizal parts of mycorrhizal root systems, indicating that both local and systemic induced bioprotection mechanisms were active against the ectoparasitic nematode. Expression analyses of ESTs (expressed sequence tags) generated in an SSH (subtractive suppressive hybridization) library, representing plant genes up-regulated during mycorrhiza-induced control of X. index, and of described grapevine defence genes showed activation of chitinase 1b, pathogenesis-related 10, glutathione S-transferase, stilbene synthase 1, 5-enolpyruvyl shikimate-3-phosphate synthase, and a heat shock proein 70-interacting protein in association with the observed local and/or systemic induced bioprotection against the nematode. Overall, the data suggest priming of grapevine defence responses by the AM fungus and transmission of a plant-mediated signal to non-mycorrhizal tissues. Grapevine gene responses during AM-induced local and systemic bioprotection against X. index point to biological processes that are related either to direct effects on the nematode or to protection against nematode-imposed stress to maintain root tissue integrity.

  15. Water Uptake along the Length of Grapevine Fine Roots: Developmental anatomy, tissue specific aquaporin expression, and pathways of water transport

    USDA-ARS?s Scientific Manuscript database

    To better understand water uptake patterns in root systems of woody perennial crops, we detailed the developmental anatomy and hydraulic physiology along the length of grapevine fine roots- from the tip to secondary growth zones. Our characterization included localization of suberized structures an...

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarraonaindia, Iratxe; Owens, Sarah M.; Weisenhorn, Pamela

    Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cultivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterialmore » reservoir. A subset of soil microorganisms, including root colonizers significantly enriched in plant growth-promoting bacteria and related functional genes, were selected by the grapevine. In addition to plant selective pressure, the structure of soil and root microbiota was significantly influenced by soil pH and C:N ratio, and changes in leaf- and grape-associated microbiota were correlated with soil carbon and showed interannual variation even at small spatial scales. Diazotrophic bacteria, e.g., Rhizobiaceae and Bradyrhizobium spp., were significantly more abundant in soil samples and root samples of specific vineyards. Vine-associated microbial assemblages were influenced by myriad factors that shape their composition and structure, but the majority of organ-associated taxa originated in the soil, and their distribution reflected the influence of highly localized biogeographic factors and vineyard management.« less

  17. Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations.

    PubMed

    Yıldırım, Kubilay; Yağcı, Adem; Sucu, Seda; Tunç, Sümeyye

    2018-06-01

    Roots are the major interface between the plant and various stress factors in the soil environment. Alteration of root system architecture (RSA) (root length, spread, number and length of lateral roots) in response to environmental changes is known to be an important strategy for plant adaptation and productivity. In light of ongoing climate changes and global warming predictions, the breeding of drought-tolerant grapevine cultivars is becoming a crucial factor for developing a sustainable viticulture. Root-trait modeling of grapevine rootstock for drought stress scenarios, together with high-throughput phenotyping and genotyping techniques, may provide a valuable background for breeding studies in viticulture. Here, tree grafted grapevine rootstocks (110R, 5BB and 41B) having differential RSA regulations and drought tolerance were investigated to define their drought dependent root characteristics. Root area, root length, ramification and number of root tips reduced less in 110R grafted grapevines compared to 5BB and 41B grafted ones during drought treatment. Root relative water content as well as total carbohydrate and nitrogen content were found to be much higher in the roots of 110R than it was in the roots of other rootstocks under drought. Microarray-based root transcriptome profiling was also conducted on the roots of these rootstocks to identify their gene regulation network behind drought-dependent RSA alterations. Transcriptome analysis revealed totally 2795, 1196 and 1612 differentially expressed transcripts at the severe drought for the roots of 110R, 5BB and 41B, respectively. According to this transcriptomic data, effective root elongation and enlargement performance of 110R were suggested to depend on three transcriptomic regulations. First one is the drought-dependent induction in sugar and protein transporters genes (SWEET and NRT1/PTR) in the roots of 110R to facilitate carbohydrate and nitrogen accumulation. In the roots of the same rootstock, expression increase in osmolyte producer genes revealed another transcriptomic regulation enabling effective root osmotic adjustment under drought stress. The third mechanism was linked to root suberization with upregulation of transcripts functional in wax producing enzymes (Caffeic acid 3-O-methyltransferase, Eceriferum3, 3-ketoacyl-CoAsynthase). These three transcriptomic regulations were suggested to provide essential energy and water preservation to the roots of 110R for its effective RSA regulation under drought. This phenotypic and genotypic knowledge could be used to develop root-dependent drought tolerant grapevines in breeding programs and could facilitate elucidation of genetic regulations behind RSA alteration in other plants. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine

    PubMed Central

    Hao, Zhipeng; Fayolle, Léon; van Tuinen, Diederik; Chatagnier, Odile; Gianinazzi, Silvio; Gianinazzi-Pearson, Vivienne

    2012-01-01

    The ectoparasitic dagger nematode (Xiphinema index), vector of Grapevine fanleaf virus (GFLV), provokes gall formation and can cause severe damage to the root system of grapevines. Mycorrhiza formation by Glomus (syn. Rhizophagus) intraradices BEG141 reduced both gall formation on roots of the grapevine rootstock SO4 (Vitis berlandieri×V. riparia) and nematode number in the surrounding soil. Suppressive effects increased with time and were greater when the nematode was post-inoculated rather than co-inoculated with the arbuscular mycorrhizal (AM) fungus. Using a split-root system, decreased X. index development was shown in mycorrhizal and non-mycorrhizal parts of mycorrhizal root systems, indicating that both local and systemic induced bioprotection mechanisms were active against the ectoparasitic nematode. Expression analyses of ESTs (expressed sequence tags) generated in an SSH (subtractive suppressive hybridization) library, representing plant genes up-regulated during mycorrhiza-induced control of X. index, and of described grapevine defence genes showed activation of chitinase 1b, pathogenesis-related 10, glutathione S-transferase, stilbene synthase 1, 5-enolpyruvyl shikimate-3-phosphate synthase, and a heat shock proein 70-interacting protein in association with the observed local and/or systemic induced bioprotection against the nematode. Overall, the data suggest priming of grapevine defence responses by the AM fungus and transmission of a plant-mediated signal to non-mycorrhizal tissues. Grapevine gene responses during AM-induced local and systemic bioprotection against X. index point to biological processes that are related either to direct effects on the nematode or to protection against nematode-imposed stress to maintain root tissue integrity. PMID:22407649

  19. Grapevine rootstock effects on scion sap phenolic levels, resistance to Xylella fastidiosa infection, and progression of Pierce’s disease

    USDA-ARS?s Scientific Manuscript database

    The xylem-limited bacterium Xylella fastidiosa (Xf) causes Pierce’s disease (PD), an important disease of grapevine, Vitis vinifera L. Grapevine rootstocks were developed to provide increased resistance to root disease, but rootstock effects on cane and vine diseases remain unclear. Grapevines that ...

  20. Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3.

    PubMed

    Li, Hai-Yan; Yang, Guo-Dong; Shu, Huai-Rui; Yang, Yu-Tao; Ye, Bao-Xing; Nishida, Ikuo; Zheng, Cheng-Chao

    2006-01-01

    Inoculation of the grapevine (Vitis amurensis Rupr.) with the arbuscular mycorrhizal (AM) fungus Glomus versiforme significantly increased resistance against the root-knot nematode (RKN) Meloidogyne incognita. Studies using relative quantitative reverse transcription-PCR (RQRT-PCR) analysis of grapevine root inoculation with the AM fungus revealed an up-regulation of VCH3 transcripts. This increase was greater than that observed following infection with RKN. However, inoculation of the mycorrhizal grapevine roots with RKN was able to enhance VCH3 transcript expression further. Moreover, the increase in VCH3 transcripts appeared to result in a higher level of resistance against subsequent RKN infection. Constitutive expression of VCH3 cDNA in transgenic tobacco under the control of the cauliflower mosaic virus 35S promoter also conferred resistance against RKN, but had no significant effect on the growth of the AM fungus. We analyzed beta-glucuronidase (GUS) activity directed by a 1,216 bp VCH3 promoter in transgenic tobacco following inoculation with both the AM fungus and RKN. GUS activity was negligible in the root tissues before inoculation, and was more effectively induced after inoculation with the AM fungus than with RKN. Moreover, GUS staining in the mycorrhizal transgenic tobacco roots was enhanced by subsequent RKN infection, and was found ubiquitously throughout the whole root tissue. Together, these results suggest that AM fungus induced a defense response against RKN in the mycorrhizal grapevine roots, which appeared to involve transcriptional control of VCH3 expression throughout the whole root tissue.

  1. Comparative response of six grapevine rootstocks to inoculation with arbuscular mycorrhizal fungi based on root traits

    NASA Astrophysics Data System (ADS)

    Pogiatzis, Antreas; Bowen, Pat; Hart, Miranda; Holland, Taylor; Klironomos, John

    2017-04-01

    Arbuscular mycorrhizal (AM) symbiosis has been proven to be essential in grapevines, sustaining plant growth especially under abiotic and biotic stressors. The mycorrhizal growth response of young grapevines varies among rootstock cultivars and the underlying mechanisms involved in this variation are unknown. We predicted that this variation in mycorrhizal response may be explained by differences in root traits among rootstocks. We analyzed the entire root system of six greenhouse-grown rootstocks (Salt Creek, 3309 Couderc, Riparia Gloire, 101-14 Millardet et de Grasset, Swarzmann, Teleki 5C), with and without AM fungal inoculation (Rhizophagus irregularis) and characterized their morphological and architectural responses. Twenty weeks after the inoculation, aboveground growth was enhanced by AM colonization. The rootstock varieties were distinctly different in their response to AM fungi, with Salt Creek receiving the highest growth benefit, while Schwarzmann and 5C Teleki receiving the lowest. Plant responsiveness to AM fungi was negatively correlated with branching intensity (fine roots per root length). Furthermore, there was evidence that mycorrhizas can influence the expression of root traits, inducing a higher branching intensity and a lower root to shoot ratio. The results of this study will help to elucidate how interactions between grapevine rootstocks and AM fungi may benefit the establishment of new vineyards.

  2. The Diversity of Arbuscular Mycorrhizal Fungi Amplified from Grapevine Roots (Vitis vinifera L.) in Oregon Vineyards is Seasonally Stable and Influenced by Soil and Vine Age

    USDA-ARS?s Scientific Manuscript database

    The diversity of arbuscular mycorrhizal fungi (AMF) associated with the roots of grapevines in 10 commercial Oregon vineyards was assessed by examining spores in soil and by amplifying mycorrhizal DNA from ‘Pinot noir’ root extracts. Seventeen spore morphotypes were found in the soil beneath the vin...

  3. Contrasting physiological effects of partial root zone drying in field-grown grapevine (Vitis vinifera L. cv. Monastrell) according to total soil water availability

    PubMed Central

    Romero, Pascual; Dodd, Ian C.; Martinez-Cutillas, Adrian

    2012-01-01

    Different spatial distributions of soil moisture were imposed on field-grown grapevines by applying the same irrigation volumes to the entire (DI; deficit irrigation) or part of the (PRD; partial root zone drying) root zone. Five treatments were applied: controls irrigated at 60% ETc (crop evapotranspiration) for the whole season (308 mm year−1); DI-1 and PRD-1 that received the same irrigation as controls before fruit set, 30% ETc from fruit set to harvest and 45% ETc post-harvest (192 mm year−1); and DI-2 and PRD-2 that were the same, except that 15% ETc was applied from fruit set to harvest (142 mm year−1). Compared with DI-1, PRD-1 maintained higher leaf area post-veraison and increased root water uptake, whole-plant hydraulic conductance, leaf transpiration, stomatal conductance, and photosynthesis, but decreased intrinsic gas exchange efficiency without causing differences in leaf xylem abscisic acid (ABA) concentration. Compared with DI-2, PRD-2 increased leaf xylem ABA concentration and decreased root water uptake, whole-plant hydraulic conductance, leaf transpiration, stomatal conductance, and photosynthesis, mainly at the beginning of PRD cycles. Distinctive PRD effects (e.g. greater stomatal closure) depended on the volumetric soil water content of the wet root zone, as predicted from a model of root-to-shoot ABA signalling. PMID:22451721

  4. Effect of white mustard cover crop residue, soil chemical fumigation and Trichoderma spp. root treatment on black-foot disease control in grapevine.

    PubMed

    Berlanas, Carmen; Andrés-Sodupe, Marcos; López-Manzanares, Beatriz; Maldonado-González, María Mercedes; Gramaje, David

    2018-05-20

    Black-foot disease is one of the main soilborne fungal diseases affecting grapevine production worldwide. Two field experiments were established to evaluate the effect of white mustard cover crop residue amendment and chemical fumigation with propamocarb + fosetyl-Al combined with Trichoderma spp. root treatment on the viability of black-foot inoculum in soil and fungal infection in grafted plants and grapevine seedlings used as bait plants. A total of 876 black-foot pathogens isolates were collected from grafted plants and grapevine seedlings used as bait plants in both fields. White mustard biofumigation reduced inoculum of Dactylonectria torresensis and the incidence and severity of black-foot of grapevine, but no added benefit was obtained when biofumigation was used with Trichoderma spp. root treatments. The effect of white mustard residues and chemical fumigation on populations of D. torresensis propagules in soil was inconsistent, possibly due to varying pretreatment inoculum levels. Biofumigation with white mustard plants had potential for improving control of black-foot disease in grapevines. This control strategy can reduce soil inoculum levels and protect young plants from infection, providing grape growers and nursery propagators with more tools for developing integrated and sustainable control systems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Grapevine species from varied native habitats exhibit differences in embolism formation/repair associated with leaf gas exchange and root pressure

    USDA-ARS?s Scientific Manuscript database

    Drought induces xylem embolism formation, but grapevines can refill blocked conduits to restore transport capacity. It is unknown whether vulnerability to embolism formation and ability to repair differ among grapevine species. We analyzed in vivo embolism formation and repair using x-ray microtomog...

  6. A molecular approach to study the arbuscular mycorrhizal fungi community in a typical Piedmont grapevine cultivar

    NASA Astrophysics Data System (ADS)

    Magurno, F.; Bughi Peruglia, G.; Lumini, E.; Bianciotto, V.; Balestrini, R.

    2009-04-01

    Viticulture and wine production represent one of the most relevant agro-food sectors for the Piedmont Region (Italy) in terms of value, with more than 400 millions € a year (12 % of total agricultural production of the Region and the 10 % of the national grape and wine production). The soil where grapevines (Vitis spp.) grow is one of the first parameters influencing the complex grapevine-wine chain. Arbuscular mycorrhizal fungi (AMFs), a main component of soil microbiota in most agrosystems, are considered crucial biomarkers of soil quality because of their biofertilisers role. As mutualistic symbionts, they colonize the roots of the majority of plants. Benefits in symbiosis are well showed as an improvement in shoot/root growth, mineral transport, water-stress tolerance and resistance to certain diseases. Grapevines roots are often heavily colonized by AMFs under field conditions and in some cases AMFs appear to be necessary for their normal growth and survival. Even so, little information are until now available about composition of AMFs communities living in the vineyards soil and in associations with grapevine roots, mainly related to morphological characterization. Vineyard of Nebbiolo, one of the most important Piedmont cultivar, was selected in order to study the AMFs community using a molecular approach. Soil samples and roots from an experimental vineyard located in Lessona (Biella, Piedmont, Italy) were analyzed using AM fungal-specific primers to partially amplify the small subunit (SSU) of the ribosomal DNA genes. Much more than 650 clones were sequenced. Phylogenetic analyses identified 32 OTUs from soil, clustered into Glomus groups Aa, Ab, Ad and B, Diversisporaceae and Gigasporaceae families. Thirteen OTUs from roots were determined, clustered into Glomus groups Ab, Ad and B, and Gigasporaceae family. In particular, Glomus group Ad was the best represented in both compartments, suggesting a correlation between intra and extra radical communities. On the bases of AMFs families that we have found, grapevine culture shows a high rate of species richness, compared with similar studies already published on others plant cultures. These data will be useful to explain the possible relationship between AMFs communities and quality in the grapevine/wine chain. The research is funded by the Regione Piemonte Tech4wine Project and IPP-CNR (Biodiversity project).

  7. Comparative evaluation of oxidative enzyme activities during adventitious rooting in the cuttings of grapevine rootstocks.

    PubMed

    Kose, Cafer; Erdal, Serkan; Kaya, Ozkan; Atici, Okkeş

    2011-03-15

    This study investigated changes in peroxidase (POX) and polyphenol oxidase (PPO) activities through adventitious rooting in hardwood cuttings of grapevine rootstocks. Three grapevine rootstocks with different propensity to produce adventitious roots were selected: recalcitrant (Ramsey), non-recalcitrant (Rupestris du Lot) and intermediate (99R) cultivars. The averages of root number at 65 days were 96 in Lot, 76 in 99R and 30 in Ramsey. Both enzyme activities characteristically increased before adventitious rooting, regardless of rooting ability of the rootstocks, and then decreased. POX activity increased in Ramsey cuttings at 22 days, in Lot and 99R cuttings at 14 days after planting, and then decreased gradually until 51 days. The highest POX activity was determined in Ramsey rootstock with the highest rooting ability and the lowest activity was determined in the rootstocks with the lowest rooting ability. PPO activity gradually increased in Ramsey rootstock cuttings from 10 days to 22 days, in Lot and 99R cuttings at 14 days, and then decreased until 51 days. A significant correlation was identified between high POX activity and adventitious rooting capability in rootstocks, but the same result was not determined with PPO activity. A recalcitrant rooting variety cannot increase POX activity sufficiently before rooting. Therefore applications that could increase POX activity in stem cuttings during rooting may facilitate increased rooting in such rootstocks. Copyright © 2011 Society of Chemical Industry.

  8. Effects of Meloidogyne spp. and Rhizoctonia solani on the Growth of Grapevine Rootings.

    PubMed

    Walker, G E

    1997-06-01

    A disease complex involving Meloidogyne incognita and Rhizoctonia solani was associated with stunting of grapevines in a field nursery. Nematode reproduction was occurring on both susceptible and resistant cultivars, and pot experiments were conducted to determine the virulence of this M. incognita population, and of M. javanica and M. hapla populations, to V. vinifera cv. Colombard (susceptible) and to V. champinii cv. Ramsey (regarded locally as highly resistant). The virulence of R. solani isolates obtained from roots of diseased grapevines also was determined both alone and in combination with M. incognita. Ramsey was susceptible to M. incognita (reproduction ratio 9.8 to 18.4 in a shadehouse and heated glasshouse, respectively) but was resistant to M. javanica and M. hapla. Colombard was susceptible to M. incognita (reproduction ratio 24.3 and 41.3, respectively) and M. javanica. Shoot growth was suppressed (by 35%) by M. incognita and, to a lesser extent, by M. hapla. Colombard roots were more severely galled than Ramsey roots by all three species, and nematode reproduction was higher on Colombard. Isolates of R. solani assigned to putative anastomosis groups 2-1 and 4, and an unidentified isolate, colonized and induced rotting of grapevine roots. Ramsey was more susceptible to root rotting than Colombard. Shoot growth was inhibited by up to 15% by several AG 4 isolates and by 20% by the AG 2-1 isolate. AG 4 isolates varied in their virulence. Root rotting was higher when grapevines were inoculated with both M. incognita and R. solani and was highest when nematode inoculation preceded the fungus. Shoot weights were lower when vines were inoculated with the nematode 13 days before the fungus compared with inoculation with both the nematode and the fungus on the same day. It was concluded that both the M. incognita population and some R. solani isolates were virulent against both Colombard and Ramsey, and that measures to prevent spread in nursery stock were therefore important.

  9. SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation

    PubMed Central

    Morales, Norma B.; Moskwa, Sam; Clingeleffer, Peter R.; Thomas, Mark R.

    2018-01-01

    Plant parasitic nematodes, including root knot nematode Meloidogyne species, cause extensive damage to agriculture and horticultural crops. As Vitis vinifera cultivars are susceptible to root knot nematode parasitism, rootstocks resistant to these soil pests provide a sustainable approach to maintain grapevine production. Currently, most of the commercially available root knot nematode resistant rootstocks are highly vigorous and take up excess potassium, which reduces wine quality. As a result, there is a pressing need to breed new root knot nematode resistant rootstocks, which have no impact on wine quality. To develop molecular markers that predict root knot nematode resistance for marker assisted breeding, a genetic approach was employed to identify a root knot nematode resistance locus in grapevine. To this end, a Meloidogyne javanica resistant Vitis cinerea accession was crossed to a susceptible Vitis vinifera cultivar Riesling and results from screening the F1 individuals support a model that root knot nematode resistance, is conferred by a single dominant allele, referred as MELOIDOGYNE JAVANICA RESISTANCE1 (MJR1). Further, MJR1 resistance appears to be mediated by a hypersensitive response that occurs in the root apical meristem. Single nucleotide polymorphisms (SNPs) were identified using genotyping-by-sequencing and results from association and genetic mapping identified the MJR1 locus, which is located on chromosome 18 in the Vitis cinerea accession. Validation of the SNPs linked to the MJR1 locus using a Sequenom MassARRAY platform found that only 50% could be validated. The validated SNPs that flank and co-segregate with the MJR1 locus can be used for marker-assisted selection for Meloidogyne javanica resistance in grapevine. PMID:29462210

  10. SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation.

    PubMed

    Smith, Harley M; Smith, Brady P; Morales, Norma B; Moskwa, Sam; Clingeleffer, Peter R; Thomas, Mark R

    2018-01-01

    Plant parasitic nematodes, including root knot nematode Meloidogyne species, cause extensive damage to agriculture and horticultural crops. As Vitis vinifera cultivars are susceptible to root knot nematode parasitism, rootstocks resistant to these soil pests provide a sustainable approach to maintain grapevine production. Currently, most of the commercially available root knot nematode resistant rootstocks are highly vigorous and take up excess potassium, which reduces wine quality. As a result, there is a pressing need to breed new root knot nematode resistant rootstocks, which have no impact on wine quality. To develop molecular markers that predict root knot nematode resistance for marker assisted breeding, a genetic approach was employed to identify a root knot nematode resistance locus in grapevine. To this end, a Meloidogyne javanica resistant Vitis cinerea accession was crossed to a susceptible Vitis vinifera cultivar Riesling and results from screening the F1 individuals support a model that root knot nematode resistance, is conferred by a single dominant allele, referred as MELOIDOGYNE JAVANICA RESISTANCE1 (MJR1). Further, MJR1 resistance appears to be mediated by a hypersensitive response that occurs in the root apical meristem. Single nucleotide polymorphisms (SNPs) were identified using genotyping-by-sequencing and results from association and genetic mapping identified the MJR1 locus, which is located on chromosome 18 in the Vitis cinerea accession. Validation of the SNPs linked to the MJR1 locus using a Sequenom MassARRAY platform found that only 50% could be validated. The validated SNPs that flank and co-segregate with the MJR1 locus can be used for marker-assisted selection for Meloidogyne javanica resistance in grapevine.

  11. The accumulation and localization of chalcone synthase in grapevine (Vitis vinifera L.).

    PubMed

    Wang, Huiling; Wang, Wei; Zhan, JiCheng; Yan, Ailing; Sun, Lei; Zhang, Guojun; Wang, Xiaoyue; Ren, Jiancheng; Huang, Weidong; Xu, Haiying

    2016-09-01

    Chalcone synthase (CHS, E.C.2.3.1.74) is the first committed enzyme in the flavonoid pathway. Previous studies have primarily focused on the cloning, expression and regulation of the gene at the transcriptional level. Little is yet known about the enzyme accumulation, regulation at protein level, as well as its localization in grapevine. In present study, the accumulation, tissue and subcellular localization of CHS in different grapevine tissues (Vitis vinifera L. Cabernet Sauvignon) were investigated via the techniques of Western blotting, immunohistochemical localization, immunoelectron microscopy and confocal microscopy. The results showed that CHS were mainly accumulated in the grape berry skin, leaves, stem tips and stem phloem, correlated with flavonoids accumulation. The accumulation of CHS is developmental dependent in grape berry skin and flesh. Immunohistochemical analysis revealed that CHS were primarily localized in the exocarp and vascular bundles of the fruits during berry development; in palisade, spongy tissues and vascular bundles of the leaves; in the primary phloem and pith ray in the stems; in the growth point, leaf primordium, and young leaves of leaf buds; and in the endoderm and primary phloem of grapevine roots. Furthermore, at the subcellular level, the cell wall, cytoplasm and nucleus localized patterns of CHS were observed in the grapevine vegetative tissue cells. Results above indicated that distribution of CHS in grapevine was organ-specific and tissue-specific. This work will provide new insight for the biosynthesis and regulation of diverse flavonoid compounds in grapevine. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Use of Endophytic and Rhizosphere Actinobacteria from Grapevine Plants To Reduce Nursery Fungal Graft Infections That Lead to Young Grapevine Decline

    PubMed Central

    Álvarez-Pérez, José Manuel; González-García, Sandra; Cobos, Rebeca; Olego, Miguel Ángel; Ibañez, Ana; Díez-Galán, Alba; Garzón-Jimeno, Enrique

    2017-01-01

    ABSTRACT Endophytic and rhizosphere actinobacteria isolated from the root system of 1-year-old grafted Vitis vinifera plants were evaluated for their activities against fungi that cause grapevine trunk diseases. A total of 58 endophytic and 94 rhizosphere isolates were tested. Based on an in vitro bioassay, 15.5% of the endophytic isolates and 30.8% of the rhizosphere isolates exhibited antifungal activity against the fungal pathogen Diplodia seriata, whereas 13.8% of the endophytic isolates and 16.0% of the rhizosphere isolates showed antifungal activity against Dactylonectria macrodidyma (formerly Ilyonectria macrodidyma). The strains which showed the greatest in vitro efficacy against both pathogens were further analyzed for their ability to inhibit the growth of Phaeomoniella chlamydospora and Phaeoacremonium minimum (formerly Phaeoacremonium aleophilum). Based on their antifungal activity, three rhizosphere isolates and three endophytic isolates were applied on grafts in an open-root field nursery in a 3-year trial. The field trial led to the identification of one endophytic strain, Streptomyces sp. VV/E1, and two rhizosphere isolates, Streptomyces sp. VV/R1 and Streptomyces sp. VV/R4, which significantly reduced the infection rates produced by the fungal pathogens Dactylonectria sp., Ilyonectria sp., P. chlamydospora, and P. minimum, all of which cause young grapevine decline. The VV/R1 and VV/R4 isolates also significantly reduced the mortality level of grafted plants in the nursery. This study shows that certain actinobacteria could represent a promising new tool for controlling fungal trunk pathogens that infect grapevine plants through the root system in nurseries. IMPORTANCE Grapevine trunk diseases are a major threat to the wine and grape industry worldwide. They cause a significant reduction in yields as well as in grape quality, and they can even cause plant death. Trunk diseases are caused by fungal pathogens that enter through pruning wounds and/or the root system. Although different strategies have recently been developed to protect pruning wounds using antifungal compounds (natural or synthetic) or biocontrol agents, no tools are yet available for controlling soil pathogens that infect plants through their root system. This study shows that different actinobacterial isolates, when applied to grafts in a nursery, can significantly reduce the infection rate caused by fungal pathogens that enter through the root system. This is a new, promising, and green alternative for preventing the decline of young grapevines in nurseries and vineyards. PMID:28986378

  13. Use of Endophytic and Rhizosphere Actinobacteria from Grapevine Plants To Reduce Nursery Fungal Graft Infections That Lead to Young Grapevine Decline.

    PubMed

    Álvarez-Pérez, José Manuel; González-García, Sandra; Cobos, Rebeca; Olego, Miguel Ángel; Ibañez, Ana; Díez-Galán, Alba; Garzón-Jimeno, Enrique; Coque, Juan José R

    2017-12-15

    Endophytic and rhizosphere actinobacteria isolated from the root system of 1-year-old grafted Vitis vinifera plants were evaluated for their activities against fungi that cause grapevine trunk diseases. A total of 58 endophytic and 94 rhizosphere isolates were tested. Based on an in vitro bioassay, 15.5% of the endophytic isolates and 30.8% of the rhizosphere isolates exhibited antifungal activity against the fungal pathogen Diplodia seriata , whereas 13.8% of the endophytic isolates and 16.0% of the rhizosphere isolates showed antifungal activity against Dactylonectria macrodidyma (formerly Ilyonectria macrodidyma ). The strains which showed the greatest in vitro efficacy against both pathogens were further analyzed for their ability to inhibit the growth of Phaeomoniella chlamydospora and Phaeoacremonium minimum (formerly Phaeoacremonium aleophilum ). Based on their antifungal activity, three rhizosphere isolates and three endophytic isolates were applied on grafts in an open-root field nursery in a 3-year trial. The field trial led to the identification of one endophytic strain, Streptomyces sp. VV/E1, and two rhizosphere isolates, Streptomyces sp. VV/R1 and Streptomyces sp. VV/R4, which significantly reduced the infection rates produced by the fungal pathogens Dactylonectria sp., Ilyonectria sp., P. chlamydospora , and P. minimum , all of which cause young grapevine decline. The VV/R1 and VV/R4 isolates also significantly reduced the mortality level of grafted plants in the nursery. This study shows that certain actinobacteria could represent a promising new tool for controlling fungal trunk pathogens that infect grapevine plants through the root system in nurseries. IMPORTANCE Grapevine trunk diseases are a major threat to the wine and grape industry worldwide. They cause a significant reduction in yields as well as in grape quality, and they can even cause plant death. Trunk diseases are caused by fungal pathogens that enter through pruning wounds and/or the root system. Although different strategies have recently been developed to protect pruning wounds using antifungal compounds (natural or synthetic) or biocontrol agents, no tools are yet available for controlling soil pathogens that infect plants through their root system. This study shows that different actinobacterial isolates, when applied to grafts in a nursery, can significantly reduce the infection rate caused by fungal pathogens that enter through the root system. This is a new, promising, and green alternative for preventing the decline of young grapevines in nurseries and vineyards. Copyright © 2017 American Society for Microbiology.

  14. Surface disinfection procedure and in vitro regeneration of grapevine (Vitis vinifera L.) axillary buds.

    PubMed

    Lazo-Javalera, M F; Troncoso-Rojas, R; Tiznado-Hernández, M E; Martínez-Tellez, M A; Vargas-Arispuro, I; Islas-Osuna, M A; Rivera-Domínguez, M

    2016-01-01

    Establishment of an efficient explants surface disinfection protocol is essential for in vitro cell and tissue culture as well as germplasm conservation, such as the case of Grapevine (Vitis spp.) culture. In this research, different procedures for disinfection and regeneration of field-grown grapevine cv. 'Flame seedless' axillary buds were evaluated. The buds were disinfected using either NaOCl or allyl, benzyl, phenyl and 2-phenylethyl isothiocyanates. Two different media for shooting and four media for rooting were tested. Shoot and root development per buds were registered. The best disinfection procedure with 90 % of tissue survival involved shaking for 60 min in a solution containing 20 % Clorox with 50 drops/L Triton(®) X-100. These tissues showed the potential to regenerate a complete plant. Plant regeneration was conducted using full strength Murashigue and Skoog (MS) medium supplemented with 8 µM benzyl aminopurine for shoot induction and multiplication, whereas rooting was obtained on half strength MS supplemented with 2 mg L(-1) of indole-3-butyric acid and 200 mg L(-1) of activated charcoal. In this work, it was designed the protocols for obtaining sterile field-grown grapevine buds and in vitro plant development. This methodology showed potential to produce vigorous and healthy plants in 5 weeks for clonal grapevine propagation. Regenerated plants were successfully established in soil.

  15. Grapevine rootstock effects on scion sap phenolic levels, resistance to Xylella fastidiosa infection, and progression of Pierce's disease

    PubMed Central

    Wallis, Christopher M.; Wallingford, Anna K.; Chen, Jianchi

    2013-01-01

    The xylem-limited bacterium Xylella fastidiosa (Xf) causes Pierce's disease (PD), an important disease of grapevine, Vitis vinifera L. Grapevine rootstocks were developed to provide increased resistance to root disease, but rootstock effects on cane and vine diseases remain unclear. Grapevines that consisted of Cabernet Sauvignon or Chardonnay grafted to 13 different rootstocks were inoculated with Xf and evaluated for PD severity and Xf titer after 6 months. A subset of six rootstock/scion combinations had xylem sap phenolic levels assessed in non-infected and Xf-infected grapevines. Vigor also was analyzed by measuring root lengths and masses. Cabernet Sauvignon grafted to 101-14MG, 1103P, 420A, or Schwarzmann had reduced PD severity compared to Cabernet Sauvignon grafted to 110R, 5BB, or SO4. Chardonnay grafted to Salt Creek or Freedom had reduced PD severity compared to Chardonnay grafted to RS3 or Schwarzmann. Chardonnay grafted to RS3 had greater Xf titer than Chardonnay grafted to 101-14MG, Freedom, or Salt Creek. No other differences in Xf titer among rootstocks were observed. Of the six scion/rootstock combinations which had xylem sap phenolics analyzed, Chardonnay/RS3 had the highest levels of most phenolics whereas Cabernet Sauvignon/101-14MG had the lowest phenolic levels. However, Chardonnay/101-14MG, which had mild PD symptoms, had greater sap levels of caftaric acid than other scion/rootstock combinations. Sap levels of caftaric acid, methyl salicylate, a procyanidin trimer, and quinic acid were greater in Xf-infected vs. non-infected grapevines. Chardonnay on 101-14MG or Salt Creek had greater root mass than Chardonnay on RS3. Cabernet Sauvignon on 101-14MG had greater root mass than Cabernet Sauvignon on 110R. These results identified rootstocks with the capacity for reducing PD symptom progression. Rootstocks also were shown to affect Xf titer, xylem sap phenolic levels, and plant vigor. PMID:24376452

  16. Nocturnal and daytime stomatal conductance respond to root-zone temperature in ‘Shiraz’ grapevines

    PubMed Central

    Rogiers, Suzy Y.; Clarke, Simon J.

    2013-01-01

    Background and Aims Daytime root-zone temperature may be a significant factor regulating water flux through plants. Water flux can also occur during the night but nocturnal stomatal response to environmental drivers such as root-zone temperature remains largely unknown. Methods Here nocturnal and daytime leaf gas exchange was quantified in ‘Shiraz’ grapevines (Vitis vinifera) exposed to three root-zone temperatures from budburst to fruit-set, for a total of 8 weeks in spring. Key Results Despite lower stomatal density, night-time stomatal conductance and transpiration rates were greater for plants grown in warm root-zones. Elevated root-zone temperature resulted in higher daytime stomatal conductance, transpiration and net assimilation rates across a range of leaf-to-air vapour pressure deficits, air temperatures and light levels. Intrinsic water-use efficiency was, however, lowest in those plants with warm root-zones. CO2 response curves of foliar gas exchange indicated that the maximum rate of electron transport and the maximum rate of Rubisco activity did not differ between the root-zone treatments, and therefore it was likely that the lower photosynthesis in cool root-zones was predominantly the result of a stomatal limitation. One week after discontinuation of the temperature treatments, gas exchange was similar between the plants, indicating a reversible physiological response to soil temperature. Conclusions In this anisohydric grapevine variety both night-time and daytime stomatal conductance were responsive to root-zone temperature. Because nocturnal transpiration has implications for overall plant water status, predictive climate change models using stomatal conductance will need to factor in this root-zone variable. PMID:23293018

  17. Nocturnal and daytime stomatal conductance respond to root-zone temperature in 'Shiraz' grapevines.

    PubMed

    Rogiers, Suzy Y; Clarke, Simon J

    2013-03-01

    Daytime root-zone temperature may be a significant factor regulating water flux through plants. Water flux can also occur during the night but nocturnal stomatal response to environmental drivers such as root-zone temperature remains largely unknown. Here nocturnal and daytime leaf gas exchange was quantified in 'Shiraz' grapevines (Vitis vinifera) exposed to three root-zone temperatures from budburst to fruit-set, for a total of 8 weeks in spring. Despite lower stomatal density, night-time stomatal conductance and transpiration rates were greater for plants grown in warm root-zones. Elevated root-zone temperature resulted in higher daytime stomatal conductance, transpiration and net assimilation rates across a range of leaf-to-air vapour pressure deficits, air temperatures and light levels. Intrinsic water-use efficiency was, however, lowest in those plants with warm root-zones. CO(2) response curves of foliar gas exchange indicated that the maximum rate of electron transport and the maximum rate of Rubisco activity did not differ between the root-zone treatments, and therefore it was likely that the lower photosynthesis in cool root-zones was predominantly the result of a stomatal limitation. One week after discontinuation of the temperature treatments, gas exchange was similar between the plants, indicating a reversible physiological response to soil temperature. In this anisohydric grapevine variety both night-time and daytime stomatal conductance were responsive to root-zone temperature. Because nocturnal transpiration has implications for overall plant water status, predictive climate change models using stomatal conductance will need to factor in this root-zone variable.

  18. Grapevine species from varied native habitats exhibit differences in embolism formation/repair associated with leaf gas exchange and root pressure.

    PubMed

    Knipfer, Thorsten; Eustis, Ashley; Brodersen, Craig; Walker, Andrew M; McElrone, Andrew J

    2015-08-01

    Drought induces xylem embolism formation, but grapevines can refill non-functional vessels to restore transport capacity. It is unknown whether vulnerability to embolism formation and ability to repair differ among grapevine species. We analysed in vivo embolism formation and repair using x-ray computed microtomography in three wild grapevine species from varied native habitats (Vitis riparia, V. arizonica, V. champinii) and related responses to measurements of leaf gas exchange and root pressure. Vulnerability to embolism formation was greatest in V. riparia, intermediate in V. arizonica and lowest in V. champinii. After re-watering, embolism repair was rapid and pronounced in V. riparia and V. arizonica, but limited or negligible in V. champinii even after numerous days. Similarly, root pressure measured after re-watering was positively correlated with drought stress severity for V. riparia and V. arizonica (species exhibiting embolism repair) but not for V. champinii. Drought-induced reductions in transpiration were greatest for V. riparia and least in V. champinii. Recovery of transpiration after re-watering was delayed for all species, but was greatest for V. champinii and most rapid in V. arizonica. These species exhibit varied responses to drought stress that involve maintenance/recovery of xylem transport capacity coordinated with root pressure and gas exchange responses. © 2014 John Wiley & Sons Ltd.

  19. Rapid shoot-to-root signalling regulates root hydraulic conductance via aquaporins.

    PubMed

    Vandeleur, Rebecca K; Sullivan, Wendy; Athman, Asmini; Jordans, Charlotte; Gilliham, Matthew; Kaiser, Brent N; Tyerman, Stephen D

    2014-02-01

    We investigated how root hydraulic conductance (normalized to root dry weight, Lo ) is regulated by the shoot. Shoot topping (about 30% reduction in leaf area) reduced Lo of grapevine (Vitis vinifera L.), soybean (Glycine max L.) and maize (Zea mays L.) by 50 to 60%. More detailed investigations with soybean and grapevine showed that the reduction in Lo was not correlated with the reduction in leaf area, and shading or cutting single leaves had a similar effect. Percentage reduction in Lo was largest when initial Lo was high in soybean. Inhibition of Lo by weak acid (low pH) was smaller after shoot damage or leaf shading. The half time of reduction in Lo was approximately 5 min after total shoot decapitation. These characteristics indicate involvement of aquaporins. We excluded phloem-borne signals and auxin-mediated signals. Xylem-mediated hydraulic signals are possible since turgor rapidly decreased within root cortex cells after shoot topping. There was a significant reduction in the expression of several aquaporins in the plasma membrane intrinsic protein (PIP) family of both grapevine and soybean. In soybean, there was a five- to 10-fold reduction in GmPIP1;6 expression over 0.5-1 h which was sustained over the period of reduced Lo . © 2013 John Wiley & Sons Ltd.

  20. High copper content in vineyard soils promotes modifications in photosynthetic parameters and morphological changes in the root system of 'Red Niagara' plantlets.

    PubMed

    Ambrosini, Vítor Gabriel; Rosa, Daniel José; Bastos de Melo, George Wellington; Zalamena, Jovani; Cella, Cesar; Simão, Daniela Guimarães; Souza da Silva, Leandro; Pessoa Dos Santos, Henrique; Toselli, Moreno; Tiecher, Tadeu Luis; Brunetto, Gustavo

    2018-05-08

    High copper (Cu) soil contents, due to the continuous vineyard application of Cu fungicides throughout the years, may impair the growth of the shoot and modify the structure of the root system. The current study aimed to investigate the threshold levels of available Cu in the soil causing toxicity effects in young grapevine plants of 'Red Niagara' cultivated in clay soils. Grapevine plantlets were cultivated in pots containing vineyard devoted soils with increasing contents of available Cu (25, 80, 100 and 165 mg kg -1 ), for 53 days. Photosynthesis and transpiration rates, and the quantum yield of photosystem II (Fv/Fm) were evaluated during the cultivation period. At the end of the experiment, the plant nutrient and leaf chlorophyll were determined, along with the anatomical analysis of the root system structure and plant dry matter determination. Higher levels of available Cu in the soil increased the apoplastic, symplastic and total fraction of the metal in the roots, reducing the other nutrients, especially in the shoots. Photosynthesis, transpiration rates and Fv/Fm were also reduced. Higher levels of Cu led to anatomical changes in the roots, that increased diameter, number of layers in the cortex, vascular cylinder and total root areas. It also resulted in reduced dry matter production by grapevines. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Integrated management of root-knot nematode, Meloidogyne incognita infestation in tomato and grapevine.

    PubMed

    Kumari, N Swarna; Sivakumar, C V

    2005-01-01

    An integrated approach with the obligate bacterial parasite, Pasteuria penetrans and nematicides was assessed for the management of the root-knot nematode, Meloidogyne incognita infestation in tomato and grapevine. Seedlings of tomato cv. Co3 were transplanted into pots filled with sterilized soil and inoculated with nematodes (5000 juveniles/pot). The root powder of P. penetrans at 10 mg/pot was applied alone and in combination with carbofuran at 6 mg/pot. Application of P. penetrans along with carbofuran recorded lowest nematode infestation (107 nematodes/200 g soil) compared to control (325 nematodes/200 g soil). The rate of parasitization was 83.1% in the carbofuran and P. penetrans combination treatment as against 61.0% in the P. penetrans treatment only. The plant growth was also higher in the combination treatment compared to all other treatments. A field trial was carried out to assess the efficacy of P. penetrans and nematicides viz., carbofuran and phorate in the management of root-knot nematode, M. incognita infestation of grapevine cv. Muscat Hamburg. A nematode and P. penetrans infested grapevine field was selected and treatments either with carbofuran or phorate at 1 g a.i/vine was given. The observations were recorded at monthly interval. The results showed that the soil nematode population was reduced in nematicide treated plots. Suppression of nematodes was higher under phorate (117 nematodes/200 g soil) than under carbofuran (126.7 nematodes/200 g soil) treatment. The number of juveniles parasitized was also influenced by nematicides and spore load carried/juvenile with phorate being superior and the increase being 17.0 and 29.0% respectively over the control. The results of these experiment confirmed the compatibility of P. penetrans with nematicides and its biological control potential against the root-knot nematode.

  2. Effects of Pratylenchus vulnus and Xiphinema index singly and combined on vine growth of Vitis vinifera.

    PubMed

    Pinochet, J; Raski, D J; Goheen, A C

    1976-10-01

    Inoculation of 'Thompson Seedless' grapevines with 500 Xiphinerna index or 1,000 Pratylenchus vulnus alone or in combination suppressed vine shoot and root growth under greenhouse conditions. Pratytenchus vulnus caused greater stunting of roots than X. index. Each nematode species inhibited top growth about equally. Concomitant inoculations caused greater stunting of tops and roots than did inoculations of either nematode species alone. Differences in growth between inoculated and control plants increased with exposure time. Pratylenchus vulnus competed with and gradually superseded in numbers an established population of X. index. Both species reproduced on 'Thompson Seedless' roots, but P. vulnus increased to a much higher level than did X. index. The increase of P. vulnus, together with extensive damage, proves its pathogenicity to grapevines.

  3. Genome Diversity and Intra- and Inter-Species Recombination Events in Grapevine fanleaf virus

    USDA-ARS?s Scientific Manuscript database

    Grapevine fanleaf virus (GFLV) was documented in four wine grape (Vitis vinifera) cultivars grown as own-rooted vines. GFLV was found as a mixed virus infection in cvs. Pinot Noir and Chardonnay, but not in cvs. Merlot and Cabernet Franc. Fanleaf disease symptoms were observed only in the first two...

  4. Consequences of Mesocriconema xenoplax parasitism on ‘Pinot noir’ grapevines grafted on rootstocks of varying susceptibility

    USDA-ARS?s Scientific Manuscript database

    Pinot noir grapevines grafted to five rootstocks (Vitis vinifera) and a self-rooted control known to vary in resistance to ring nematode (Mesocriconema xenoplax) were studied over four years in field microplots to 1) evaluate durability of resistance to ring nematode under conditions allowing for hi...

  5. Morphological and Molecular Identification of Longidorus euonymus and Helicotylenchus multicinctus from the Rhizosphere of Grapevine and Banana in Greece

    PubMed Central

    Tzortzakakis, Emmanuel A.; Cantalapiedra-Navarrete, Carolina; Castillo, Pablo; Palomares-Rius, Juan E.; Archidona-Yuste, Antonio

    2017-01-01

    Plant-parasitic nematodes such as Longidorus euonymus and Helicotylenchus multicintctus are species widely distributed in central Europe as well as in Mediterranean area. In Greece, both species have been previously reported but no morphometrics or molecular data were available for these species. Nematode surveys in the rhizosphere of grapevines in Athens carried out in 2016 and 2017, yielded a Longidorus species identified as Longidorus euonymus. Similarly, a population of Helicotylenchus multicinctus was detected infecting banana roots from an outdoor crop in Tertsa, Crete. For both species, morphometrics and molecular data of Greek populations were provided, resulting in the first integrative identification of both nematode species based on morphometric and molecular markers, confirming the occurrence of these two nematodes in Greece as had been stated in earlier reports. PMID:29062145

  6. Delayed response to ring nematode (Mesocriconema xenoplax) feeding on grape roots linked to vine carbohydrate reserves and nematode feeding pressure

    USDA-ARS?s Scientific Manuscript database

    The chronic impact of ring nematode (Mesocriconema xenoplax) feeding on grapevine (Vitis vinifera) was studied under controlled conditions. 'Pinot noir' grapevines were exposed to ring nematode or kept nematode-free for three growing seasons, and vines were either grown in full sunlight, 15% of full...

  7. Phakopsora euvitis Causes Unusual Damage to Leaves and Modifies Carbohydrate Metabolism in Grapevine

    PubMed Central

    Nogueira Júnior, Antonio F.; Ribeiro, Rafael V.; Appezzato-da-Glória, Beatriz; Soares, Marli K. M.; Rasera, Júlia B.; Amorim, Lilian

    2017-01-01

    Asian grapevine rust (Phakopsora euvitis) is a serious disease, which causes severe leaf necrosis and early plant defoliation. These symptoms are unusual for a strict biotrophic pathogen. This work was performed to quantify the effects of P. euvitis on photosynthesis, carbohydrates, and biomass accumulation of grapevine. The reduction in photosynthetic efficiency of the green leaf tissue surrounding the lesions was quantified using the virtual lesion concept (β parameter). Gas exchange and responses of CO2 assimilation to increasing intercellular CO2 concentration were analyzed. Histopathological analyses and quantification of starch were also performed on diseased leaves. Biomass and carbohydrate accumulation were quantified in different organs of diseased and healthy plants. Rust reduced the photosynthetic rate, and β was estimated at 5.78, indicating a large virtual lesion. Mesophyll conductance, maximum rubisco carboxylation rate, and regeneration of ribulose-1,5-bisphosphate dependent on electron transport rate were reduced, causing diffusive and biochemical limitations to photosynthesis. Hypertrophy, chloroplast degeneration of mesophyll cells, and starch accumulation in cells close to lesions were observed. Root carbohydrate concentration was reduced, even at low rust severity. Asian grapevine rust dramatically reduced photosynthesis and altered the dynamics of production and accumulation of carbohydrates, unlike strict biotrophic pathogens. The reduction in carbohydrate reserves in roots would support polyetic damage on grapevine, caused by a polycyclic disease. PMID:29018470

  8. Grapevine tissues and phenology differentially affect soluble carbohydrates determination by capillary electrophoresis.

    PubMed

    Moreno, Daniela; Berli, Federico; Bottini, Rubén; Piccoli, Patricia N; Silva, María F

    2017-09-01

    Soluble carbohydrates distribution depends on plant physiology and, among other important factors, determines fruit yield and quality. In plant biology, the analysis of sugars is useful for many purposes, including metabolic studies. Capillary electrophoresis (CE) proved to be a powerful green separation technique with minimal sample preparation, even in complex plant tissues, that can provide high-resolution efficiency. Matrix effect refers to alterations in the analytical response caused by components of a sample other than the analyte of interest. Thus, the assessment and reduction of the matrix factor is fundamental for metabolic studies in different matrices. The present study evaluated the source and levels of matrix effects in the determination of most abundant sugars in grapevine tissues (mature and young leaves, berries and roots) at two phenological growth stages. Sucrose was the sugar that showed the least matrix effects, while fructose was the most affected analyte. Based on plant tissues, young leaves presented the smaller matrix effects, irrespectively of the phenology. These changes may be attributed to considerable differences at chemical composition of grapevine tissues with plant development. Therefore, matrix effect should be an important concern for plant metabolomics. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality.

    PubMed

    Marasco, Ramona; Rolli, Eleonora; Fusi, Marco; Michoud, Grégoire; Daffonchio, Daniele

    2018-01-03

    The plant compartments of Vitis vinifera, including the rhizosphere, rhizoplane, root endosphere, phyllosphere and carposphere, provide unique niches that drive specific bacterial microbiome associations. The majority of phyllosphere endophytes originate from the soil and migrate up to the aerial compartments through the root endosphere. Thus, the soil and root endosphere partially define the aerial endosphere in the leaves and berries, contributing to the terroir of the fruit. However, V. vinifera cultivars are invariably grafted onto the rootstocks of other Vitis species and hybrids. It has been hypothesized that the plant species determines the microbiome of the root endosphere and, as a consequence, the aerial endosphere. In this work, we test the first part of this hypothesis. We investigate whether different rootstocks influence the bacteria selected from the surrounding soil, affecting the bacterial diversity and potential functionality of the rhizosphere and root endosphere. Bacterial microbiomes from both the root tissues and the rhizosphere of Barbera cultivars, both ungrafted and grafted on four different rootstocks, cultivated in the same soil from the same vineyard, were characterized by 16S rRNA high-throughput sequencing. To assess the influence of the root genotype on the bacterial communities' recruitment in the root system, (i) the phylogenetic diversity coupled with the predicted functional profiles and (ii) the co-occurrence bacterial networks were determined. Cultivation-dependent approaches were used to reveal the plant-growth promoting (PGP) potential associated with the grafted and ungrafted root systems. Richness, diversity and bacterial community networking in the root compartments were significantly influenced by the rootstocks. Complementary to a shared bacterial microbiome, different subsets of soil bacteria, including those endowed with PGP traits, were selected by the root system compartments of different rootstocks. The interaction between the root compartments and the rootstock exerted a unique selective pressure that enhanced niche differentiation, but rootstock-specific bacterial communities were still recruited with conserved PGP traits. While the rootstock significantly influences the taxonomy, structure and network properties of the bacterial community in grapevine roots, a homeostatic effect on the distribution of the predicted and potential functional PGP traits was found.

  10. Clone lineages of grape phylloxera differ in their performance on Vitis vinifera.

    PubMed

    Herbert, K S; Umina, P A; Mitrovski, P J; Powell, K S; Viduka, K; Hoffmann, A A

    2010-12-01

    Grape phylloxera, Daktulosphaira vitifoliae Fitch, is an important pest of grapevines (Vitis vinifera L.) (Vitaceae). The distribution and frequency of phylloxera clone lineages vary within infested regions of Australia, suggesting the introduction of separate lineages of D. vitifoliae with host associations. Virulence levels of particular phylloxera clones may vary on V. vinifera, but much of this evidence is indirect. In this study, we directly tested the performance of phylloxera clones on V. vinifera using an established excised root assay and a new glasshouse vine assessment. In the root assay, grape phylloxera clones differed in egg production and egg to adult survivorship. In the vine assay, clones differed in the number of immature and adult life stages on roots. In addition vine characteristics, including mean stem weight, root weight, leaf chlorophyll and leaf area, were affected by different phylloxera clones. The two most widespread clones displayed high levels of virulence. These results point to only some phylloxera clones being highly virulent on V. vinifera, helping to explain patterns of field damage, phylloxera distributions and continued survival and production of V. vinifera vines in some infested areas.

  11. Impact of soil texture and water availability on the hydraulic control of plant and grape-berry development

    Treesearch

    Sara Tramontini; Cornelis van Leeuwen; Jean-Christophe Domec; Agnès Destrac-Irvine; Cyril Basteau; Marco Vitali; Olaf Mosbach-Schulz; Claudio Lovisolo

    2013-01-01

    All components of the soil-plant-atmosphere (s-p-a) continuum are known to control berry quality in grapevine (Vitis vinifera L.) via ecophysiological interactions between water uptake by roots and water loss by leaves. The scope of the present work was to explore how the main hydraulic components of grapevine influence fruit quality through changes...

  12. Impact of grapevine (Vitis vinifera) varieties on reproduction of the northern root-knot nematode (Meloidogyne hapla)

    USDA-ARS?s Scientific Manuscript database

    Plant-parasitic nematodes are microscopic soil worms that attack the roots of grape plants and cause yield loss. One of the most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards is Meloidogyne hapla, the northern root-knot nematode. The selection of plant...

  13. Association of Neonectria macrodidyma with dry root rot of citrus in California

    USDA-ARS?s Scientific Manuscript database

    The fungal genus Cylindrocarpon (teleomorph: Neonectria Wolenw.) include ubiquitous soilborne pathogens that cause black foot disease on a wide range of hosts, including grapevine, strawberry, apple, and conifers. Hosts typically become infected through natural wounds on roots and other below ground...

  14. Ectopic expression of Arabidopsis broad-spectrum resistance gene RPW8.2 improves the resistance to powdery mildew in grapevine (Vitis vinifera).

    PubMed

    Hu, Yang; Li, Yajuan; Hou, Fengjuan; Wan, Dongyan; Cheng, Yuan; Han, Yongtao; Gao, Yurong; Liu, Jie; Guo, Ye; Xiao, Shunyuan; Wang, Yuejin; Wen, Ying-Qiang

    2018-02-01

    Powdery mildew is the most economically important disease of cultivated grapevines worldwide. Here, we report that the Arabidopsis broad-spectrum disease resistance gene RPW8.2 could improve resistance to powdery mildew in Vitis vinifera cv. Thompson Seedless. The RPW8.2-YFP fusion gene was stably expressed in grapevines from either the constitutive 35S promoter or the native promoter (NP) of RPW8.2. The grapevine shoots and plantlets transgenic for 35S::RPW8.2-YFP showed reduced rooting and reduced growth at later development stages in the absence of any pathogens. Infection tests with an adapted grapevine powdery mildew isolate En NAFU1 showed that hyphal growth and sporulation were significantly restricted in transgenic grapevines expressing either of the two constructs. The resistance appeared to be attributable to the ectopic expression of RPW8.2, and associated with the enhanced encasement of the haustorial complex (EHC) and onsite accumulation of H 2 O 2 . In addition, the RPW8.2-YFP fusion protein showed focal accumulation around the fungal penetration sites. Transcriptome analysis revealed that ectopic expression of RPW8.2 in grapevines not only significantly enhanced salicylic acid-dependent defense signaling, but also altered expression of other phytohormone-associated genes. Taken together, our results indicate that RPW8.2 could be utilized as a transgene for improving resistance against powdery mildew in grapevines. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The Accumulation of miRNAs Differentially Modulated by Drought Stress Is Affected by Grafting in Grapevine1[OPEN

    PubMed Central

    Vitali, Marco; Vitulo, Nicola; Incarbone, Marco

    2017-01-01

    Grapevine (Vitis vinifera) is routinely grafted, and rootstocks inducing drought tolerance represent a source for adapting vineyards to climate change in temperate areas. Our goal was to investigate drought stress effects on microRNA (miRNA) abundance in a drought-resistant grapevine rootstock, M4 (Vitis vinifera × Vitis berlandieri), compared with a commercial cultivar, Cabernet Sauvignon, using their autografts and reciprocal grafts. RNA extracted from roots and leaves of droughted and irrigated plants of different graft combinations was used to prepare cDNA libraries for small RNA sequencing and to analyze miRNAs by quantitative real-time polymerase chain reaction (RT-qPCR). Measurements of leaf water potential, leaf gas exchange, and root hydraulic conductance attested that, under irrigation, M4 reduced water loss in comparison with cultivar Cabernet Sauvignon mostly through nonhydraulic, root-specific mechanisms. Under drought, stomatal conductance decreased at similar levels in the two genotypes. Small RNA sequencing allowed the identification of 70 conserved miRNAs and the prediction of 28 novel miRNAs. Different accumulation trends of miRNAs, observed upon drought and in different genotypes and organs, were confirmed by RT-qPCR. Corresponding target transcripts, predicted in silico and validated by RT-qPCR, often showed opposite expression profiles than the related miRNAs. Drought effects on miRNA abundance differed between the two genotypes. Furthermore, the concentration of drought-responsive miRNAs in each genotype was affected by reciprocal grafting, suggesting either the movement of signals inducing miRNA expression in the graft partner or, possibly, miRNA transport between scion and rootstock. These results open new perspectives in the selection of rootstocks for improving grapevine adaptation to drought. PMID:28235889

  16. Grapevine and Arabidopsis Cation-Chloride Cotransporters Localize to the Golgi and Trans-Golgi Network and Indirectly Influence Long-Distance Ion Transport and Plant Salt Tolerance1[OPEN

    PubMed Central

    Henderson, Sam W.; Wege, Stefanie; Qiu, Jiaen; Blackmore, Deidre H.; Walker, Amanda R.; Tyerman, Stephen D.; Walker, Rob R.; Gilliham, Matthew

    2015-01-01

    Plant cation-chloride cotransporters (CCCs) have been implicated in conferring salt tolerance. They are predicted to improve shoot salt exclusion by directly catalyzing the retrieval of sodium (Na+) and chloride (Cl−) ions from the root xylem. We investigated whether grapevine (Vitis vinifera [Vvi]) CCC has a role in salt tolerance by cloning and functionally characterizing the gene from the cultivar Cabernet Sauvignon. Amino acid sequence analysis revealed that VviCCC shares a high degree of similarity with other plant CCCs. A VviCCC-yellow fluorescent protein translational fusion protein localized to the Golgi and the trans-Golgi network and not the plasma membrane when expressed transiently in tobacco (Nicotiana benthamiana) leaves and Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts. AtCCC-green fluorescent protein from Arabidopsis also localized to the Golgi and the trans-Golgi network. In Xenopus laevis oocytes, VviCCC targeted to the plasma membrane, where it catalyzed bumetanide-sensitive 36Cl–, 22Na+, and 86Rb+ uptake, suggesting that VviCCC (like AtCCC) belongs to the Na+-K+-2Cl– cotransporter class of CCCs. Expression of VviCCC in an Arabidopsis ccc knockout mutant abolished the mutant’s stunted growth phenotypes and reduced shoot Cl– and Na+ content to wild-type levels after growing plants in 50 mm NaCl. In grapevine roots, VviCCC transcript abundance was not regulated by Cl– treatment and was present at similar levels in both the root stele and cortex of three Vitis spp. genotypes that exhibit differential shoot salt exclusion. Our findings indicate that CCC function is conserved between grapevine and Arabidopsis, but neither protein is likely to directly mediate ion transfer with the xylem or have a direct role in salt tolerance. PMID:26378102

  17. Comparing root knot nematode (Meloidogyne spp.) effects on tomato (Solanum lycopersicum) and grapevine (Vitis spp.) metabolic profiles

    USDA-ARS?s Scientific Manuscript database

    Root knot nematodes (Meloidogyne spp., RKN) can negatively impact both herbaceous annual and woody perennial hosts. RKN infestations also may increase plant host susceptibility to other stresses such as those imposed by water deficits or various diseases. However, little is known about direct or ind...

  18. Biochemical Changes in Terminal Root Galls Caused by an Ectoparasitic Nematode, Longidorus africanus: Amino Acids.

    PubMed

    Epstein, E; Cohn, E

    1971-10-01

    The amino acids of terminal root galls caused by Longidorus africanus on bur marigold (Bidens tripartita L.) and grapevine (Vitis vinifera L.) were studied. The galled roots of bur marigold contained 73% more cell-wall protein and 184% more free amino acids. The main changes among the free amino acids of the galled tissue were a large increase (1900%) in proline and a decrease in aspartic acid (56%) compared with the respective check tissue. Hydroxyproline decreased in the wall protein fraction from 5.6% in the healthy tissue to 3.6% in the infected tissue.Percent of hydroxyproline in total amino acids of the wall protein fraction of grapevine roots decreased from 0.7% in the healthy tissue to 0.3% in the galled tissue, and total proteins of this fraction decreased from 9.5 mg to 4.5 rag, respectively. Total protein in the protoplasmic fraction also decreased from 3.0 mg in healthy to 1.0 mg in infected roots. No change was noticed in total proteins in the free amino acids fraction but free proline decreased 40% in the infected roots.The relationship of these differences to the specific reactions of the hosts to nematode feeding is discussed.

  19. Grapevine (Vitis vinifera L.).

    PubMed

    Torregrosa, Laurent; Vialet, Sandrine; Adivèze, Angélique; Iocco-Corena, Pat; Thomas, Mark R

    2015-01-01

    Grapevine (Vitis) is considered to be one of the major fruit crops in the world based on hectares cultivated and economic value. Grapes are used not only for wine but also for fresh fruit, dried fruit, and juice production. Wine is by far the major product of grapes, and the focus of this chapter is on wine grape cultivars. Grapevine cultivars of Vitis vinifera L. have a reputation for producing premium quality wines. These premium quality wines are produced from a small number of cultivars that enjoy a high level of consumer acceptance and are firmly entrenched in the market place because of varietal name branding and the association of certain wine styles and regions with specific cultivars. In light of this situation, grapevine improvement by a transgenic approach is attractive when compared to a classical breeding approach. The transfer of individual traits as single genes with a minimum disruption to the original genome would leave the traditional characteristics of the cultivar intact. However, a reliable transformation system is required for a successful transgenic approach to grapevine improvement. There are three criteria for achieving an efficient Agrobacterium-mediated transformation system: (1) the production of highly regenerative transformable tissue, (2) optimal cocultivation conditions for both grapevine tissue and Agrobacterium, and (3) an efficient selection regime for transgenic plant regeneration. In this chapter, we describe a grapevine transformation system that meets these criteria. We also describe a protocol for the production of transformed roots suitable for functional gene studies and for the production of semi-transgenic grafted plants.

  20. Virus-Derived Gene Expression and RNA Interference Vector for Grapevine

    PubMed Central

    Kurth, Elizabeth G.; Peremyslov, Valera V.; Prokhnevsky, Alexey I.; Kasschau, Kristin D.; Miller, Marilyn; Carrington, James C.

    2012-01-01

    The improvement of the agricultural and wine-making qualities of the grapevine (Vitis vinifera) is hampered by adherence to traditional varieties, the recalcitrance of this plant to genetic modifications, and public resistance to genetically modified organism (GMO) technologies. To address these challenges, we developed an RNA virus-based vector for the introduction of desired traits into grapevine without heritable modifications to the genome. This vector expresses recombinant proteins in the phloem tissue that is involved in sugar transport throughout the plant, from leaves to roots to berries. Furthermore, the vector provides a powerful RNA interference (RNAi) capability of regulating the expression of endogenous genes via virus-induced gene-silencing (VIGS) technology. Additional advantages of this vector include superb genetic capacity and stability, as well as the swiftness of technology implementation. The most significant applications of the viral vector include functional genomics of the grapevine and disease control via RNAi-enabled vaccination against pathogens or invertebrate pests. PMID:22438553

  1. Evaluation of a nematode bio-product Dbx-20% against root-knot nematode Meloidogyne incognita affecting grapevine under field conditions.

    PubMed

    Aboul-Eid, H Z; Noweer, E M A; Ashour, N E; Ameen, Hoda H

    2006-01-01

    A field trial was conducted in El-Shourouk Farm, El-Beheira governorate, western Nile valley, Egypt to determine the effectiveness of the commercial bio-product Dbx 1003 20% containing the nematode-trapping fungus Dactylaria brochopaga against root-knot nematode Meloidogyne incognita infesting grapevine variety Superior. Its effects on plant growth criteria and yield production were also investigated. The fungus was introduced to soil by either of two ways. First: soil was drenched with spore suspension at the rate of 3 l/tree. Second: 1/2 kg of a vermiculite substrate, as a carrier of spores and mycelia was added around each tree both as single and twice application in autumn and spring. All treatments significantly reduced M. incognita J2 in soil and number of root galls compared with the untreated control. Significant yield increases have been observed with all treatments compared with the untreated control. Spores suspension twice applications gave the highest yield production.

  2. Floral Meristem Identity Genes Are Expressed during Tendril Development in Grapevine1

    PubMed Central

    Calonje, Myriam; Cubas, Pilar; Martínez-Zapater, José M.; Carmona, María José

    2004-01-01

    To study the early steps of flower initiation and development in grapevine (Vitis vinifera), we have isolated two MADS-box genes, VFUL-L and VAP1, the putative FUL-like and AP1 grapevine orthologs, and analyzed their expression patterns during vegetative and reproductive development. Both genes are expressed in lateral meristems that, in grapevine, can give rise to either inflorescences or tendrils. They are also coexpressed in inflorescence and flower meristems. During flower development, VFUL-L transcripts are restricted to the central part of young flower meristems and, later, to the prospective carpel-forming region, which is consistent with a role of this gene in floral transition and carpel and fruit development. Expression pattern of VAP1 suggests that it may play a role in flowering transition and flower development. However, its lack of expression in sepal primordia, does not support its role as an A-function gene in grapevine. Neither VFUL-L nor VAP1 expression was detected in vegetative organs such as leaves or roots. In contrast, they are expressed throughout tendril development. Transcription of both genes in tendrils of very young plants that have not undergone flowering transition indicates that this expression is independent of the flowering process. These unique expression patterns of genes typically involved in reproductive development have implications on our understanding of flower induction and initiation in grapevine, on the origin of grapevine tendrils and on the functional roles of AP1-and FUL-like genes in plant development. These results also provide molecular support to the hypothesis that Vitis tendrils are modified reproductive organs adapted to climb. PMID:15247405

  3. Resistance to root-knot nematodes Meloidogyne spp. in woody plants.

    PubMed

    Saucet, Simon Bernard; Van Ghelder, Cyril; Abad, Pierre; Duval, Henri; Esmenjaud, Daniel

    2016-07-01

    I. 42 II. 43 III. 44 IV. 47 V. 49 VI. 50 VII. 50 VIII. 50 IX. 52 52 References 52 SUMMARY: Root-knot nematodes (RKNs) Meloidogyne spp. cause major damage to cultivated woody plants. Among them, Prunus, grapevine and coffee are the crops most infested by worldwide polyphagous species and species with a more limited distribution and/or narrower host range. The identification and characterization of natural sources of resistance are important steps to develop RKN control strategies. In woody crops, resistant rootstocks genetically different from the scion of agronomical interest may be engineered. We describe herein the interactions between RKNs and different woody crops, and highlight the plant species in which resistance and corresponding resistance (R) genes have been discovered. Even though grapevine and, to a lesser extent, coffee have a history of rootstock selection for RKN resistance, few cases of resistance have been documented. By contrast, in Prunus, R genes with different spectra have been mapped in plums, peach and almond and can be pyramided for durable resistance in interspecific rootstocks. We particularly discuss here the Ma Toll/interleukin-1 receptor-like-nucleotide binding-leucine-rich repeat gene from Myrobalan plum, one of the longest plant R genes cloned to date, due to its unique biological and structural properties. RKN R genes in Prunus will enable us to carry out molecular studies aimed at improving our knowledge of plant immunity in woody plants. © 2016 INRA. New Phytologist © 2016 New Phytologist Trust.

  4. Deep sequencing analysis of viral short RNAs from an infected Pinot Noir grapevine.

    PubMed

    Pantaleo, Vitantonio; Saldarelli, Pasquale; Miozzi, Laura; Giampetruzzi, Annalisa; Gisel, Andreas; Moxon, Simon; Dalmay, Tamas; Bisztray, György; Burgyan, Jozsef

    2010-12-05

    Virus-derived short interfering RNAs (vsiRNAs) isolated from grapevine V. vinifera Pinot Noir clone ENTAV 115 were analyzed by high-throughput sequencing using the Illumina Solexa platform. We identified and characterized vsiRNAs derived from grapevine field plants naturally infected with different viruses belonging to the genera Foveavirus, Maculavirus, Marafivirus and Nepovirus. These vsiRNAs were mainly of 21 and 22 nucleotides (nt) in size and were discontinuously distributed throughout Grapevine rupestris stem-pitting associated virus (GRSPaV) and Grapevine fleck virus (GFkV) genomic RNAs. Among the studied viruses, GRSPaV and GFkV vsiRNAs had a 5' terminal nucleotide bias, which differed from that described for experimental viral infections in Arabidopsis thaliana. VsiRNAs were found to originate from both genomic and antigenomic GRSPaV RNA strands, whereas with the grapevine tymoviruses GFkV and Grapevine Red Globe associated virus (GRGV), the large majority derived from the antigenomic viral strand, a feature never observed in other plant-virus interactions. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Structural and Functional Analysis of the GRAS Gene Family in Grapevine Indicates a Role of GRAS Proteins in the Control of Development and Stress Responses

    PubMed Central

    Grimplet, Jérôme; Agudelo-Romero, Patricia; Teixeira, Rita T.; Martinez-Zapater, Jose M.; Fortes, Ana M.

    2016-01-01

    GRAS transcription factors are involved in many processes of plant growth and development (e.g., axillary shoot meristem formation, root radial patterning, nodule morphogenesis, arbuscular development) as well as in plant disease resistance and abiotic stress responses. However, little information is available concerning this gene family in grapevine (Vitis vinifera L.), an economically important woody crop. We performed a model curation of GRAS genes identified in the latest genome annotation leading to the identification of 52 genes. Gene models were improved and three new genes were identified that could be grapevine- or woody-plant specific. Phylogenetic analysis showed that GRAS genes could be classified into 13 groups that mapped on the 19 V. vinifera chromosomes. Five new subfamilies, previously not characterized in other species, were identified. Multiple sequence alignment showed typical GRAS domain in the proteins and new motifs were also described. As observed in other species, both segmental and tandem duplications contributed significantly to the expansion and evolution of the GRAS gene family in grapevine. Expression patterns across a variety of tissues and upon abiotic and biotic conditions revealed possible divergent functions of GRAS genes in grapevine development and stress responses. By comparing the information available for tomato and grapevine GRAS genes, we identified candidate genes that might constitute conserved transcriptional regulators of both climacteric and non-climacteric fruit ripening. Altogether this study provides valuable information and robust candidate genes for future functional analysis aiming at improving the quality of fleshy fruits. PMID:27065316

  6. Enhanced Stilbene Production and Excretion in Vitis vinifera cv Pinot Noir Hairy Root Cultures.

    PubMed

    Tisserant, Leo-Paul; Aziz, Aziz; Jullian, Nathalie; Jeandet, Philippe; Clément, Christophe; Courot, Eric; Boitel-Conti, Michèle

    2016-12-10

    Stilbenes are defense molecules produced by grapevine in response to stresses including various elicitors and signal molecules. Together with their prominent role in planta, stilbenes have been the center of much attention in recent decades due to their pharmaceutical properties. With the aim of setting up a cost-effective and high purity production of resveratrol derivatives, hairy root lines were established from Vitis vinifera cv Pinot Noir 40024 to study the organ-specific production of various stilbenes. Biomass increase and stilbene production by roots were monitored during flask experiments. Although there was a constitutive production of stilbenes in roots, an induction of stilbene synthesis by methyl jasmonate (MeJA) after 18 days of growth led to further accumulation of ε-viniferin, δ-viniferin, resveratrol and piceid. The use of 100 µM MeJA after 18 days of culture in the presence of methyl-β-cyclodextrins (MCDs) improved production levels, which reached 1034µg/g fresh weight (FW) in roots and 165 mg/L in the extracellular medium, corresponding to five-and 570-foldincrease in comparison to control. Whereas a low level of stilbene excretion was measured in controls, addition of MeJA induced excretion of up to 37% of total stilbenes. The use of MCDs increased the excretion phenomenon even more, reaching up to 98%. Our results demonstrate the ability of grapevine hairy roots to produce various stilbenes. This production was significantly improved in response to elicitation by methyl jasmonate and/or MCDs. This supports the interest of using hairy roots as a potentially valuable system for producing resveratrol derivatives.

  7. Genetic structure of the fungal grapevine pathogen Eutypa lata from four continents

    USDA-ARS?s Scientific Manuscript database

    The generalist ascomycete fungus Eutypa lata causes Eutypa dieback of grapevine (Vitis vinifera) worldwide. To decipher the cosmopolitan distribution of this fungus, the population genetic structure of 17 geographic samples was investigated from four continental regions (Australia, California, Europ...

  8. Poly(lactic- co-glycolic) acid nanoparticles uptake by Vitis vinifera and grapevine-pathogenic fungi

    NASA Astrophysics Data System (ADS)

    Valletta, Alessio; Chronopoulou, Laura; Palocci, Cleofe; Baldan, Barbara; Donati, Livia; Pasqua, Gabriella

    2014-12-01

    Poly(lactic- co-glycolic) acid (PLGA)-based NPs are currently considered among the most promising drug carriers, nevertheless their use in plants has never been investigated. In this work, for the first time, we demonstrated the ability of PLGA NPs to cross the plant cell wall and membrane of Vitis vinifera cell cultures and grapevine-pathogenic fungi. By means of fluorescence microscopy, we established that PLGA NPs can enter in grapevine leaf tissues through stomata openings and that they can be absorbed by the roots and transported to the shoot through vascular tissues. TEM analysis on cultured cells showed that NPs ≤ 50 nm could enter cells, while bigger ones remained attached to the cell wall. Viability tests demonstrated that PLGA NPs were not cytotoxic for V. vinifera-cultured cells. The cellular uptake of PLGA NPs by some important grapevine-pathogenic fungi has also been observed, thus suggesting that PLGA NPs could be used to deliver antifungal compounds within fungal cells. Overall the results reported suggest that such NPs may play a key role in future developments of agrobiotechnologies, as it is currently happening in biomedicine.

  9. Insights into the Vitis complex in the Danube floodplain (Austria).

    PubMed

    Arnold, Claire; Bachmann, Olivier; Schnitzler, Annik

    2017-10-01

    European grapevine populations quickly disappeared from most of their range, massively killed by the spread of North American grapevine pests and diseases. Nowadays taxonomic pollution represents a new threat. A large Vitis complex involves escaped cultivars, rootstocks, and wild grapevines. The study aimed to provide insight into the Vitis complex in the Danube region through field and genetic analyses. Among the five other major rivers in Europe which still host wild grapevine populations, the Danube floodplain is the only one benefiting from an extensive protected forest area (93 km²) and an relatively active dynamic flood pulse. The Donau-Auen National Park also regroups the largest wild grapevine population in Europe. Ninety-two percent of the individuals collected in the park were true wild grapevines, and 8% were hybrids and introgressed individuals of rootstocks, wild grapevines, and cultivars. These three groups are interfertile acting either as pollen donor or receiver. Hybrids were established within and outside the dykes, mostly in anthropized forest edges. The best-developed individuals imply rootstock genes. They establish in the most erosive parts of the floodplain. 42% of the true wild grapevines lived at the edges of forest/meadow, 33.3% at the edges forest/channels, and 23.9% in forest gaps. DBH (Diameter Breast Height) varied significantly with the occurrence of flooding. Clones were found in both true wild and hybrids/introgressed grapevines. The process of cloning seemed to be prevented in places where flooding dynamics is reduced. The current global distribution of true wild grapevines shows a strong tendency toward clustering, in sites where forestry practices were the most extensive. However, the reduced flooding activity is a danger for long-term sustainability of the natural wild grapevine population.

  10. The grapevine kinome: annotation, classification and expression patterns in developmental processes and stress responses.

    PubMed

    Zhu, Kaikai; Wang, Xiaolong; Liu, Jinyi; Tang, Jun; Cheng, Qunkang; Chen, Jin-Gui; Cheng, Zong-Ming Max

    2018-01-01

    Protein kinases (PKs) have evolved as the largest family of molecular switches that regulate protein activities associated with almost all essential cellular functions. Only a fraction of plant PKs, however, have been functionally characterized even in model plant species. In the present study, the entire grapevine kinome was identified and annotated using the most recent version of the grapevine genome. A total of 1168 PK-encoding genes were identified and classified into 20 groups and 121 families, with the RLK-Pelle group being the largest, with 872 members. The 1168 kinase genes were unevenly distributed over all 19 chromosomes, and both tandem and segmental duplications contributed to the expansion of the grapevine kinome, especially of the RLK-Pelle group. Ka/Ks values indicated that most of the tandem and segmental duplication events were under purifying selection. The grapevine kinome families exhibited different expression patterns during plant development and in response to various stress treatments, with many being coexpressed. The comprehensive annotation of grapevine kinase genes, their patterns of expression and coexpression, and the related information facilitate a more complete understanding of the roles of various grapevine kinases in growth and development, responses to abiotic stress, and evolutionary history.

  11. Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon).

    PubMed

    Speirs, Jim; Binney, Allan; Collins, Marisa; Edwards, Everard; Loveys, Brian

    2013-04-01

    The influence of different levels of irrigation and of variation in atmospheric vapour pressure deficit (VPD) on the synthesis, metabolism, and transport of abscisic acid (ABA) and the effects on stomatal conductance were examined in field-grown Cabernet Sauvignon grapevines. Xylem sap, leaf tissue, and root tissue were collected at regular intervals during two seasons in conjunction with measurements of leaf water potential (Ψleaf) and stomatal conductance (gs). The different irrigation levels significantly altered the Ψleaf and gs of the vines across both seasons. ABA abundance in the xylem sap was correlated with gs. The expression of genes associated with ABA synthesis, NCED1 and NCED2, was higher in the roots than in the leaves throughout and highest in the roots in mid January, a time when soil moisture declined and VPD was at its highest. Their expression in roots was also inversely related to the levels of irrigation and correlated with ABA abundance in the roots, xylem sap, and leaves. Three genes encoding ABA 8'-hydroxylases were isolated and their identities confirmed by expression in yeast cells. The expression of one of these, Hyd1, was elevated in leaves when VPD was below 2.0-2.5 kPa and minimal at higher VPD levels. The results provide evidence that ABA plays an important role in linking stomatal response to soil moisture status and that changes in ABA catabolism at or near its site of action allows optimization of gas exchange to current environmental conditions.

  12. How will climate change affect vine behaviour in different soils?

    NASA Astrophysics Data System (ADS)

    Leibar, Urtzi; Aizpurua, Ana; Morales, Fermin; Pascual, Inmaculada; Unamunzaga, Olatz

    2014-05-01

    Various agricultural sectors are sensitive to projected climate change. In this sense, the strong link between climate and grapevine phenology and berry quality suggests a relevant impact. Within the concept of terroir, climate is a factor that influences ripening of a specific variety and resulting wine style. Furthermore, the effect of soil on grape potential is complex, because the soil acts on grapevine water and nutrient supply, and influences root zone temperature. The aim of this work was to evaluate the effect of climate change (increased CO2, higher temperature and lower relative humidity), soil texture and irrigation on the physiology, yield and berry quality of grapevine (Vitis vinifera L.) cv. Tempranillo. A greenhouse experiment was carried out with potted, own-rooted fruit-bearing cuttings. Three factors were studied: a) climate change (700 μmol CO2 mol-1 air, 28/18°C and 45/65% day/night relative humidity) vs. current conditions (375 μmol CO2 mol-1 air, 24/14ºC and 33/53% day/night relative humidity), b) soil texture (9, 18 and 36% soil clay content) and c) irrigation; well-irrigated (20-35% of soil water content) vs. water deficit (60% of the water applied to the irrigated plants). Berries were harvested at ripeness (21-23 ºBrix). Climate change shortened the time between veraison and full maturity up to 9 days and reduced the number of berries per bunch. Grapes grown under climate change conditions had higher pH and lower acidity (due to malic and tartaric acids), anthocyanins content and colour intensity. Water-deficit delayed ripening up to 10 days and reduced final leaf area and root weight. Berries from water stressed plants had an increased skin/pulp ratio and pH, and lower acidity (malic acid) and polyphenol content. Regarding soil texture, plants grown in the soil with lower clay content increased root fresh weight and had higher total anthocyanins content. There were no interactions between factors. In conclusion, both climate change and water-deficit had a clear influence on the grape phenological development and composition, whilst soil affected root configuration and anthocyanins concentration. Effects of climate change and water availability on different soil conditions should be considered to take full advantage or mitigate the consequences of the future climate conditions.

  13. The grapevine root-specific aquaporin VvPIP2;4N controls root hydraulic conductance and leaf gas exchange under well-watered conditions but not under water stress.

    PubMed

    Perrone, Irene; Gambino, Giorgio; Chitarra, Walter; Vitali, Marco; Pagliarani, Chiara; Riccomagno, Nadia; Balestrini, Raffaella; Kaldenhoff, Ralf; Uehlein, Norbert; Gribaudo, Ivana; Schubert, Andrea; Lovisolo, Claudio

    2012-10-01

    We functionally characterized the grape (Vitis vinifera) VvPIP2;4N (for Plasma membrane Intrinsic Protein) aquaporin gene. Expression of VvPIP2;4N in Xenopus laevis oocytes increased their swelling rate 54-fold. Northern blot and quantitative reverse transcription-polymerase chain reaction analyses showed that VvPIP2;4N is the most expressed PIP2 gene in root. In situ hybridization confirmed root localization in the cortical parenchyma and close to the endodermis. We then constitutively overexpressed VvPIP2;4N in grape 'Brachetto', and in the resulting transgenic plants we analyzed (1) the expression of endogenous and transgenic VvPIP2;4N and of four other aquaporins, (2) whole-plant, root, and leaf ecophysiological parameters, and (3) leaf abscisic acid content. Expression of transgenic VvPIP2;4N inhibited neither the expression of the endogenous gene nor that of other PIP aquaporins in both root and leaf. Under well-watered conditions, transgenic plants showed higher stomatal conductance, gas exchange, and shoot growth. The expression level of VvPIP2;4N (endogenous + transgene) was inversely correlated to root hydraulic resistance. The leaf component of total plant hydraulic resistance was low and unaffected by overexpression of VvPIP2;4N. Upon water stress, the overexpression of VvPIP2;4N induced a surge in leaf abscisic acid content and a decrease in stomatal conductance and leaf gas exchange. Our results show that aquaporin-mediated modifications of root hydraulics play a substantial role in the regulation of water flow in well-watered grapevine plants, while they have a minor role upon drought, probably because other signals, such as abscisic acid, take over the control of water flow.

  14. The R2R3-MYB Transcription Factors MYB14 and MYB15 Regulate Stilbene Biosynthesis in Vitis vinifera[W

    PubMed Central

    Höll, Janine; Vannozzi, Alessandro; Czemmel, Stefan; D'Onofrio, Claudio; Walker, Amanda R.; Rausch, Thomas; Lucchin, Margherita; Boss, Paul K.; Dry, Ian B.; Bogs, Jochen

    2013-01-01

    Plant stilbenes are phytoalexins that accumulate in a small number of plant species, including grapevine (Vitis vinifera), in response to biotic and abiotic stresses and have been implicated in many beneficial effects on human health. In particular, resveratrol, the basic unit of all other complex stilbenes, has received widespread attention because of its cardio-protective, anticarcinogenic, and antioxidant properties. Although stilbene synthases (STSs), the key enzymes responsible for resveratrol biosynthesis, have been isolated and characterized from several plant species, the transcriptional regulation underlying stilbene biosynthesis is unknown. Here, we report the identification and functional characterization of two R2R3-MYB–type transcription factors (TFs) from grapevine, which regulate the stilbene biosynthetic pathway. These TFs, designated MYB14 and MYB15, strongly coexpress with STS genes, both in leaf tissues under biotic and abiotic stress and in the skin and seed of healthy developing berries during maturation. In transient gene reporter assays, MYB14 and MYB15 were demonstrated to specifically activate the promoters of STS genes, and the ectopic expression of MYB15 in grapevine hairy roots resulted in increased STS expression and in the accumulation of glycosylated stilbenes in planta. These results demonstrate the involvement of MYB14 and MYB15 in the transcriptional regulation of stilbene biosynthesis in grapevine. PMID:24151295

  15. The grapevine VvCAX3 is a cation/H+ exchanger involved in vacuolar Ca2+ homeostasis.

    PubMed

    Martins, Viviana; Carneiro, Filipa; Conde, Carlos; Sottomayor, Mariana; Gerós, Hernâni

    2017-12-01

    The grapevine VvCAX3 mediates calcium transport in the vacuole and is mostly expressed in green grape berries and upregulated by Ca 2+ , Na + and methyl jasmonate. Calcium is an essential plant nutrient with important regulatory and structural roles in the berries of grapevine (Vitis vinifera L.). On the other hand, the proton-cation exchanger CAX proteins have been shown to impact Ca 2+ homeostasis with important consequences for fruit integrity and resistance to biotic/abiotic stress. Here, the CAX gene found in transcriptomic databases as having one of the highest expressions in grapevine tissues, VvCAX3, was cloned and functionally characterized. Heterologous expression in yeast showed that a truncated version of VvCAX3 lacking its NNR autoinhibitory domain (sCAX3) restored the ability of the yeast strain to grow in 100-200 mM Ca 2+ , demonstrating a role in Ca 2+ transport. The truncated VvCAX3 was further shown to be involved in the transport of Na + , Li + , Mn 2+ and Cu 2+ in yeast cells. Subcellular localization studies using fluorescently tagged proteins confirmed VvCAX3 as a tonoplast transporter. VvCAX3 is expressed in grapevine stems, leaves, roots, and berries, especially at pea size, decreasing gradually throughout development, in parallel with the pattern of calcium accumulation in the fruit. The transcript abundance of VvCAX3 was shown to be regulated by methyl jasmonate (MeJA), Ca 2+ , and Na + in grape cell suspensions, and the VvCAX3 promotor contains several predicted cis-acting elements related to developmental and stress response processes. As a whole, the results obtained add new insights on the mechanisms involved in calcium homeostasis and intracellular compartmentation in grapevine, and indicate that VvCAX3 may be an interesting target towards the development of strategies for enhancement of grape berry properties.

  16. Assessment of wild grapevine (Vitis vinifera ssp. sylvestris) chlorotypes and accompanying woody species in the Eastern Adriatic region.

    PubMed

    Butorac, Lukrecija; Hančević, Katarina; Lukšić, Katarina; Škvorc, Željko; Leko, Mario; Maul, Erika; Zdunić, Goran

    2018-01-01

    The Eastern Adriatic region, encompassing Croatia and Bosnia and Herzegovina, is considered an important area of natural populations of wild grapevines (Vitis vinifera ssp. sylvestris). The wild grapevine arises in the Eastern Adriatic region in a contact zone of the EU-Mediterranean and the sub-Mediterranean characterized by typical karst relief. This study focuses on the chloroplast DNA (cpDNA) analysis of wild grapevines and the biodiversity of accompanying woody species to better understand the genetic variation of the sylvestris populations of the Eastern Adriatic region and to investigate how this variation fits within today's wild grapevine distribution in the European continent. The allelic variation at nine cpDNA microsatellite loci of wild individuals was used to characterize haplotype diversity in 53 individuals from four population sites. All individuals were grouped into two chlorotypes: A and D, D being the rare haplotype among wild populations on the European continent. In total, 52 woody plant species were identified. However, the studied vegetation structures have been affected by permanent human pressure on natural resources and the preservation status of the collection sites. Based on our results, we conclude that the investigated areas were probably shelter zones for wild grapevine preservation during the unfavorable glaciation era.

  17. Effect of precocious grapevine fruiting on subsequent year’s growth and yield

    USDA-ARS?s Scientific Manuscript database

    Vineyard managers are often advised to remove reproductive growth components of vines in the first two years of growth to better establish the root system. In general, this is good advice as it will lead to a stronger vine; yet, there is a lack of research information on the effects of producing an ...

  18. Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon)

    PubMed Central

    Speirs, Jim; Binney, Allan; Collins, Marisa; Edwards, Everard; Loveys, Brian

    2013-01-01

    The influence of different levels of irrigation and of variation in atmospheric vapour pressure deficit (VPD) on the synthesis, metabolism, and transport of abscisic acid (ABA) and the effects on stomatal conductance were examined in field-grown Cabernet Sauvignon grapevines. Xylem sap, leaf tissue, and root tissue were collected at regular intervals during two seasons in conjunction with measurements of leaf water potential (Ψleaf) and stomatal conductance (gs). The different irrigation levels significantly altered the Ψleaf and gs of the vines across both seasons. ABA abundance in the xylem sap was correlated with gs. The expression of genes associated with ABA synthesis, NCED1 and NCED2, was higher in the roots than in the leaves throughout and highest in the roots in mid January, a time when soil moisture declined and VPD was at its highest. Their expression in roots was also inversely related to the levels of irrigation and correlated with ABA abundance in the roots, xylem sap, and leaves. Three genes encoding ABA 8’-hydroxylases were isolated and their identities confirmed by expression in yeast cells. The expression of one of these, Hyd1, was elevated in leaves when VPD was below 2.0–2.5 kPa and minimal at higher VPD levels. The results provide evidence that ABA plays an important role in linking stomatal response to soil moisture status and that changes in ABA catabolism at or near its site of action allows optimization of gas exchange to current environmental conditions. PMID:23630325

  19. Copper homeostasis in grapevine: functional characterization of the Vitis vinifera copper transporter 1.

    PubMed

    Martins, Viviana; Bassil, Elias; Hanana, Mohsen; Blumwald, Eduardo; Gerós, Hernâni

    2014-07-01

    The Vitis vinifera copper transporter 1 is capable of self-interaction and mediates intracellular copper transport. An understanding of copper homeostasis in grapevine (Vitis vinifera L.) is particularly relevant to viticulture in which copper-based fungicides are intensively used. In the present study, the Vitis vinifera copper transporter 1 (VvCTr1), belonging to the Ctr family of copper transporters, was cloned and functionally characterized. Amino acid sequence analysis showed that VvCTr1 monomers are small peptides composed of 148 amino acids with 3 transmembrane domains and several amino acid residues typical of Ctr transporters. Bimolecular fluorescence complementation (BiFC) demonstrated that Ctr monomers are self-interacting and subcellular localization studies revealed that VvCTr1 is mobilized via the trans-Golgi network, through the pre-vacuolar compartment and located to the vacuolar membrane. The heterologous expression of VvCTr1 in a yeast strain lacking all Ctr transporters fully rescued the phenotype, while a deficient complementation was observed in a strain lacking only plasma membrane-bound Ctrs. Given the common subcellular localization of VvCTr1 and AtCOPT5 and the highest amino acid sequence similarity in comparison to the remaining AtCOPT proteins, Arabidopsis copt5 plants were stably transformed with VvCTr1. The impairment in root growth observed in copt5 seedlings in copper-deficient conditions was fully rescued by VvCTr1, further supporting its involvement in intracellular copper transport. Expression studies in V. vinifera showed that VvCTr1 is mostly expressed in the root system, but transcripts were also present in leaves and stems. The functional characterization of VvCTr-mediated copper transport provides the first step towards understanding the physiological and molecular responses of grapevines to copper-based fungicides.

  20. Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses.

    PubMed

    Salazar-Parra, Carolina; Aranjuelo, Iker; Pascual, Inmaculada; Erice, Gorka; Sanz-Sáez, Álvaro; Aguirreolea, Jone; Sánchez-Díaz, Manuel; Irigoyen, Juan José; Araus, José Luis; Morales, Fermín

    2015-02-01

    Although plant performance under elevated CO2 has been extensively studied in the past little is known about photosynthetic performance changing simultaneously CO2, water availability and temperature conditions. Moreover, despite of its relevancy in crop responsiveness to elevated CO2 conditions, plant level C balance is a topic that, comparatively, has received little attention. In order to test responsiveness of grapevine photosynthetic apparatus to predicted climate change conditions, grapevine (Vitis vinifera L. cv. Tempranillo) fruit-bearing cuttings were exposed to different CO2 (elevated, 700ppm vs. ambient, ca. 400ppm), temperature (ambient vs. elevated, ambient +4°C) and irrigation levels (partial vs. full irrigation). Carbon balance was followed monitoring net photosynthesis (AN, C gain), respiration (RD) and photorespiration (RL) (C losses). Modification of environment (13)C isotopic composition (δ(13)C) under elevated CO2 (from -10.30 to -24.93‰) enabled the further characterization of C partitioning into roots, cuttings, shoots, petioles, leaves, rachides and berries. Irrespective of irrigation level and temperature, exposure to elevated CO2 induced photosynthetic acclimation of plants. C/N imbalance reflected the inability of plants grown at 700ppm CO2 to develop strong C sinks. Partitioning of labeled C to storage organs (main stem and roots) did not avoid accumulation of labeled photoassimilates in leaves, affecting negatively Rubisco carboxylation activity. The study also revealed that, after 20 days of treatment, no oxidative damage to chlorophylls or carotenoids was observed, suggesting a protective role of CO2 either at current or elevated temperatures against the adverse effect of water stress. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Grapevine Remote Sensing Analysis of Phylloxera Early Stress (GRAPES): Remote Sensing Analysis Summary

    NASA Technical Reports Server (NTRS)

    Lobitz, Brad; Johnson, Lee; Hlavka, Chris; Armstrong, Roy; Bell, Cindy

    1997-01-01

    High spatial resolution airborne imagery was acquired in California's Napa Valley in 1993 and 1994 as part of the Grapevine Remote sensing Analysis of Phylloxera Early Stress (GRAPES) project. Investigators from NASA, the University of California, the California State University, and Robert Mondavi Winery examined the application of airborne digital imaging technology to vineyard management, with emphasis on detecting the phylloxera infestation in California vineyards. Because the root louse causes vine stress that leads to grapevine death in three to five years, the infested areas must be replanted with resistant rootstock. Early detection of infestation and changing cultural practices can compensate for vine damage. Vineyard managers need improved information to decide where and when to replant fields or sections of fields to minimize crop financial losses. Annual relative changes in leaf area due to phylloxera infestation were determined by using information obtained from computing Normalized Difference Vegetation Index (NDVI) images. Two other methods of monitoring vineyards through imagery were also investigated: optical sensing of the Red Edge Inflection Point (REIP), and thermal sensing. These did not convey the stress patterns as well as the NDVI imagery and require specialized sensor configurations. NDVI-derived products are recommended for monitoring phylloxera infestations.

  2. In Situ Visualization of the Dynamics in Xylem Embolism Formation and Removal in the Absence of Root Pressure: A Study on Excised Grapevine Stems.

    PubMed

    Knipfer, Thorsten; Cuneo, Italo F; Brodersen, Craig R; McElrone, Andrew J

    2016-06-01

    Gas embolisms formed during drought can disrupt long-distance water transport through plant xylem vessels, but some species have the ability to remove these blockages. Despite evidence suggesting that embolism removal is linked to the presence of vessel-associated parenchyma, the underlying mechanism remains controversial and is thought to involve positive pressure generated by roots. Here, we used in situ x-ray microtomography on excised grapevine stems to determine if embolism removal is possible without root pressure, and if the embolism formation/removal affects vessel functional status after sample excision. Our data show that embolism removal in excised stems was driven by water droplet growth and was qualitatively identical to refilling in intact plants. When stem segments were rehydrated with H2O after excision, vessel refilling occurred rapidly (<1 h). The refilling process was substantially slower when polyethylene glycol was added to the H2O source, thereby providing new support for an osmotically driven refilling mechanism. In contrast, segments not supplied with H2O showed no refilling and increased embolism formation. Dynamic changes in liquid/wall contact angles indicated that the processes of embolism removal (i.e. vessel refilling) by water influx and embolism formation by water efflux were directly linked to the activity of vessel-associated living tissue. Overall, our results emphasize that root pressure is not required as a driving force for vessel refilling, and care should be taken when performing hydraulics measurements on excised plant organs containing living vessel-associated tissue, because the vessel behavior may not be static. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. In Situ Visualization of the Dynamics in Xylem Embolism Formation and Removal in the Absence of Root Pressure: A Study on Excised Grapevine Stems1[OPEN

    PubMed Central

    Knipfer, Thorsten; Cuneo, Italo F.; Brodersen, Craig R.; McElrone, Andrew J.

    2016-01-01

    Gas embolisms formed during drought can disrupt long-distance water transport through plant xylem vessels, but some species have the ability to remove these blockages. Despite evidence suggesting that embolism removal is linked to the presence of vessel-associated parenchyma, the underlying mechanism remains controversial and is thought to involve positive pressure generated by roots. Here, we used in situ x-ray microtomography on excised grapevine stems to determine if embolism removal is possible without root pressure, and if the embolism formation/removal affects vessel functional status after sample excision. Our data show that embolism removal in excised stems was driven by water droplet growth and was qualitatively identical to refilling in intact plants. When stem segments were rehydrated with H2O after excision, vessel refilling occurred rapidly (<1 h). The refilling process was substantially slower when polyethylene glycol was added to the H2O source, thereby providing new support for an osmotically driven refilling mechanism. In contrast, segments not supplied with H2O showed no refilling and increased embolism formation. Dynamic changes in liquid/wall contact angles indicated that the processes of embolism removal (i.e. vessel refilling) by water influx and embolism formation by water efflux were directly linked to the activity of vessel-associated living tissue. Overall, our results emphasize that root pressure is not required as a driving force for vessel refilling, and care should be taken when performing hydraulics measurements on excised plant organs containing living vessel-associated tissue, because the vessel behavior may not be static. PMID:27208267

  4. Pyrosequencing detects human and animal pathogenic taxa in the grapevine endosphere.

    PubMed

    Yousaf, Sohail; Bulgari, Daniela; Bergna, Alessandro; Pancher, Michael; Quaglino, Fabio; Casati, Paola; Campisano, Andrea

    2014-01-01

    Generally, plants are not considered as hosts for human and animal pathogens (HAP). The recent produce-associated outbreaks of food-borne diseases have drawn attention toward significant deficiencies in our understanding of the ecology of HAP, and their potential for interkingdom transfer. To examine the association of microorganisms classified as HAP with plants, we surveyed the presence and distribution of HAP bacterial taxa (henceforth HAPT, for brevity's sake) in the endosphere of grapevine (Vitis vinifera L.) both in the plant stems and leaves. An enrichment protocol was used on leaves to detect taxa with very low abundance in undisturbed tissues. We used pyrosequencing and phylogenetic analyses of the 16S rDNA gene. We identified several HAPT, and focused on four genera (Propionibacterium, Staphylococcus, Clostridium, and Burkholderia). The majority of the bacterial sequences in the genus Propionibacterium, from grapevine leaf and stem, were identified as P. acnes. Clostridia were detected in leaves and stems, but their number was much higher in leaves after enrichment. HAPT were indentified both in leaves and wood of grapevines. This depicts the ability of these taxa to be internalized within plant tissues and maintain their population levels in a variety of environments. Our analysis highlighted the presence of HAPT in the grapevine endosphere and unexpected occurrence of these bacterial taxa in this atypical environment.

  5. Is Roesleria subterranea a primary pathogen or a minor parasite of grapevines? Risk assessment and a diagnostic decision scheme

    PubMed Central

    2011-01-01

    In the past the root rot pathogen Roesleria subterranea (Ascomycota) was generally considered as a minor parasite, a view with which we were often confronted during field work in German wine-growing regions where this ascomycete recently caused serious problems in established vineyards and at replant sites. To irrevocably demonstrate that R. subterranea is not a minor, but a primary pathogen of grapevines (and fruit trees) a pest risk analysis was carried out according to the guidelines defined by EPPO standard series PM 5, which defines the information needed, and contains standardised, detailed key questions and a decision support scheme for risk analysis. Following the provided decision scheme, it becomes apparent that R. subterranea must be considered as a serious, primary pathogen for grapevines and fruit trees that can cause massive economic losses. Based on the literature, the pathogen seems to be ubiquitous in wine growing regions in cool climates of the northern hemisphere. It is likely that because of its growth below ground, the small fruiting bodies, and ambiguous symptoms above ground, R. subterranea has been overlooked in the past and therefore, has not been considered as primary pathogen for grapevine. Available published information together with experience from field trials was implemented into a diagnostic decision scheme which will, together with the comprehensive literature provided, be the basis (a) to implement quick and efficient diagnosis of this pathogen in the field and (b) to conduct risk analysis and management in areas where R. subterranea has not established yet. PMID:22318129

  6. The Phenylpropanoid Pathway Is Controlled at Different Branches by a Set of R2R3-MYB C2 Repressors in Grapevine1

    PubMed Central

    Cavallini, Erika; Matus, José Tomás; Finezzo, Laura; Zenoni, Sara; Loyola, Rodrigo; Guzzo, Flavia; Schlechter, Rudolf; Ageorges, Agnès; Arce-Johnson, Patricio

    2015-01-01

    Because of the vast range of functions that phenylpropanoids possess, their synthesis requires precise spatiotemporal coordination throughout plant development and in response to the environment. The accumulation of these secondary metabolites is transcriptionally controlled by positive and negative regulators from the MYB and basic helix-loop-helix protein families. We characterized four grapevine (Vitis vinifera) R2R3-MYB proteins from the C2 repressor motif clade, all of which harbor the ethylene response factor-associated amphiphilic repression domain but differ in the presence of an additional TLLLFR repression motif found in the strong flavonoid repressor Arabidopsis (Arabidopsis thaliana) AtMYBL2. Constitutive expression of VvMYB4a and VvMYB4b in petunia (Petunia hybrida) repressed general phenylpropanoid biosynthetic genes and selectively reduced the amount of small-weight phenolic compounds. Conversely, transgenic petunia lines expressing VvMYBC2-L1 and VvMYBC2-L3 showed a severe reduction in petal anthocyanins and seed proanthocyanidins together with a higher pH of crude petal extracts. The distinct function of these regulators was further confirmed by transient expression in tobacco (Nicotiana benthamiana) leaves and grapevine plantlets. Finally, VvMYBC2-L3 was ectopically expressed in grapevine hairy roots, showing a reduction in proanthocyanidin content together with the down-regulation of structural and regulatory genes of the flavonoid pathway as revealed by a transcriptomic analysis. The physiological role of these repressors was inferred by combining the results of the functional analyses and their expression patterns in grapevine during development and in response to ultraviolet B radiation. Our results indicate that VvMYB4a and VvMYB4b may play a key role in negatively regulating the synthesis of small-weight phenolic compounds, whereas VvMYBC2-L1 and VvMYBC2-L3 may additionally fine tune flavonoid levels, balancing the inductive effects of transcriptional activators. PMID:25659381

  7. Impact of reduced atmospheric CO2 and varied potassium supply on carbohydrate and potassium distribution in grapevine and grape berries (Vitis vinifera L.).

    PubMed

    Coetzee, Zelmari A; Walker, Rob R; Deloire, Alain J; Barril, Célia; Clarke, Simon J; Rogiers, Suzy Y

    2017-11-01

    To assess the robustness of the apparent sugar-potassium relationship during ripening of grape berries, a controlled-environment study was conducted on Shiraz vines involving ambient and reduced (by 34%) atmospheric CO 2 concentrations, and standard and increased (by 67%) soil potassium applications from prior to the onset of ripening. The leaf net photoassimilation rate was decreased by 35% in the reduced CO 2 treatment. The reduction in CO 2 delayed the onset of ripening, but at harvest the sugar content of the berry pericarp was similar to that of plants grown in ambient conditions. The potassium content of the berry pericarp in the reduced CO 2 treatment was however higher than for the ambient CO 2 . Berry potassium, sugar and water content were strongly correlated, regardless of treatments, alluding to a ternary link during ripening. Root starch content was lower under reduced CO 2 conditions, and therefore likely acted as a source of carbohydrates during berry ripening. Root carbohydrate reserve replenishment could also have been moderated under reduced CO 2 at the expense of berry ripening. Given that root potassium concentration was less in the vines grown in the low CO 2 atmosphere, these results point toward whole-plant fine-tuning of carbohydrate and potassium partitioning aimed at optimising fruit ripening. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Pyrosequencing detects human and animal pathogenic taxa in the grapevine endosphere

    PubMed Central

    Yousaf, Sohail; Bulgari, Daniela; Bergna, Alessandro; Pancher, Michael; Quaglino, Fabio; Casati, Paola; Campisano, Andrea

    2014-01-01

    Generally, plants are not considered as hosts for human and animal pathogens (HAP). The recent produce-associated outbreaks of food-borne diseases have drawn attention toward significant deficiencies in our understanding of the ecology of HAP, and their potential for interkingdom transfer. To examine the association of microorganisms classified as HAP with plants, we surveyed the presence and distribution of HAP bacterial taxa (henceforth HAPT, for brevity's sake) in the endosphere of grapevine (Vitis vinifera L.) both in the plant stems and leaves. An enrichment protocol was used on leaves to detect taxa with very low abundance in undisturbed tissues. We used pyrosequencing and phylogenetic analyses of the 16S rDNA gene. We identified several HAPT, and focused on four genera (Propionibacterium, Staphylococcus, Clostridium, and Burkholderia). The majority of the bacterial sequences in the genus Propionibacterium, from grapevine leaf and stem, were identified as P. acnes. Clostridia were detected in leaves and stems, but their number was much higher in leaves after enrichment. HAPT were indentified both in leaves and wood of grapevines. This depicts the ability of these taxa to be internalized within plant tissues and maintain their population levels in a variety of environments. Our analysis highlighted the presence of HAPT in the grapevine endosphere and unexpected occurrence of these bacterial taxa in this atypical environment. PMID:25071740

  9. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera)

    PubMed Central

    2014-01-01

    Background Basic leucine zipper (bZIP) transcription factor gene family is one of the largest and most diverse families in plants. Current studies have shown that the bZIP proteins regulate numerous growth and developmental processes and biotic and abiotic stress responses. Nonetheless, knowledge concerning the specific expression patterns and evolutionary history of plant bZIP family members remains very limited. Results We identified 55 bZIP transcription factor-encoding genes in the grapevine (Vitis vinifera) genome, and divided them into 10 groups according to the phylogenetic relationship with those in Arabidopsis. The chromosome distribution and the collinearity analyses suggest that expansion of the grapevine bZIP (VvbZIP) transcription factor family was greatly contributed by the segment/chromosomal duplications, which may be associated with the grapevine genome fusion events. Nine intron/exon structural patterns within the bZIP domain and the additional conserved motifs were identified among all VvbZIP proteins, and showed a high group-specificity. The predicted specificities on DNA-binding domains indicated that some highly conserved amino acid residues exist across each major group in the tree of land plant life. The expression patterns of VvbZIP genes across the grapevine gene expression atlas, based on microarray technology, suggest that VvbZIP genes are involved in grapevine organ development, especially seed development. Expression analysis based on qRT-PCR indicated that VvbZIP genes are extensively involved in drought- and heat-responses, with possibly different mechanisms. Conclusions The genome-wide identification, chromosome organization, gene structures, evolutionary and expression analyses of grapevine bZIP genes provide an overall insight of this gene family and their potential involvement in growth, development and stress responses. This will facilitate further research on the bZIP gene family regarding their evolutionary history and biological functions. PMID:24725365

  10. Rosa hybrida orcinol O-methyl transferase-mediated production of pterostilbene in metabolically engineered grapevine cell cultures.

    PubMed

    Martínez-Márquez, Ascensión; Morante-Carriel, Jaime A; Palazon, Javier; Bru-Martínez, Roque

    2018-05-25

    Stilbenes are naturally scarce high-added-value plant compounds with chemopreventive, pharmacological and cosmetic properties. Bioproduction strategies include engineering the metabolisms of bacterial, fungal and plant cell systems. Strikingly, one of the most effective strategies consists in the elicitation of wild grapevine cell cultures, which leads to vast stilbene resveratrol accumulation in the extracellular medium. The combination of both cell culture elicitation and metabolic engineering strategies to produce resveratrol analogs proved more efficient for the hydroxylated derivative piceatannol than for the dimethylated derivative pterostilbene, for which human hydroxylase HsCYP1B1- and grapevine O-methyltransferase VvROMT-transformed cell cultures were respectively used. Rose orcinol O-methyltransferase (OOMT) displays enzymatic properties, which makes it an appealing candidate to substitute VvROMT in the combined strategy to enhance the pterostilbene production level by engineered grapevine cells upon elicitation. Here we cloned a Rosa hybrida OOMT gene, and created a genetic construction suitable for Agrobacterium-mediated plant transformation. OOMT's ability to catalyze the conversion of resveratrol into pterostilbene was first assessed in vitro using protein extracts of agroinfiltrated N. benthamiana leaves and transformed grapevine callus. The grapevine cell cultures transformed with RhOOMT produced about 16 mg/L culture of pterostilbene and reached an extracellular distribution of up to 34% of total production at the best, which is by far the highest production reported to date in a plant system. A bonus large resveratrol production of ca. 1500-3000 mg/L was simultaneously obtained. Our results demonstrate a viable successful metabolic engineering strategy to produce pterostilbene, a resveratrol analog with enhanced pharmacological properties. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Effect of repeated Ribavirin treatment on grapevine viruses.

    PubMed

    Komínek, P; Komínková, M; Jandová, B

    The effect of Ribavirin treatment for the chemotherapy of several grapevine viruses was evaluated. Four grapevine cultivars were repeatedly treated with Ribavirin in two different concentrations and with three different lengths of treatment. Repeating the Ribavirin treatment always had a significant effect on the number of healthy grapevine plants obtained. Ribavirin concentration and length of exposure showed a significant difference in sanitation of the Grapevine rupestris stem pitting-associated virus. During sanitation of the Grapevine Pinot gris virus and Grapevine fleck virus, those two factors did not show significant differences in the elimination of grapevine viruses.

  12. Xylella fastidiosa infection and ethylene exposure result in xylem and water movement disruption in grapevine shoots.

    PubMed

    Pérez-Donoso, Alonso G; Greve, L Carl; Walton, Jeffrey H; Shackel, Ken A; Labavitch, John M

    2007-02-01

    It is conventionally thought that multiplication of the xylem-limited bacterium Xylella fastidiosa (Xf) within xylem vessels is the sole factor responsible for the blockage of water movement in grapevines (Vitis vinifera) affected by Pierce's disease. However, results from our studies have provided substantial support for the idea that vessel obstructions, and likely other aspects of the Pierce's disease syndrome, result from the grapevine's active responses to the presence of Xf, rather than to the direct action of the bacterium. The use of magnetic resonance imaging (MRI) to observe the distribution of water within the xylem has allowed us to follow nondestructively the development of vascular system obstructions subsequent to inoculation of grapevines with Xf. Because we have hypothesized a role for ethylene produced in vines following infection, the impact of vine ethylene exposure on obstruction development was also followed using MRI. In both infected and ethylene-exposed plants, MRI shows that an important proportion of the xylem vessels become progressively air embolized after the treatments. The loss of xylem water-transporting function, assessed by MRI, has been also correlated with a decrease in stem-specific hydraulic conductivity (K(S)) and the presence of tyloses in the lumens of obstructed water conduits. We have observed that the ethylene production of leaves from infected grapevines is greater than that from healthy vines and, therefore, propose that ethylene may be involved in a series of cellular events that coordinates the vine's response to the pathogen.

  13. A novel specific duplex real-time RT-PCR method for absolute quantitation of Grapevine Pinot gris virus in plant material and single mites.

    PubMed

    Morán, Félix; Olmos, Antonio; Lotos, Leonidas; Predajňa, Lukáš; Katis, Nikolaos; Glasa, Miroslav; Maliogka, Varvara; Ruiz-García, Ana B

    2018-01-01

    Grapevine Pinot gris virus (GPGV) is a widely distributed grapevine pathogen that has been associated to the grapevine leaf mottling and deformation disease. With the aim of better understanding the disease epidemiology and providing efficient control strategies a specific and quantitative duplex TaqMan real-time RT-PCR assay has been developed. This method has allowed reliable quantitation of the GPGV titer ranging from 30 up to 3 x 108 transcript copies, with a detection limit of 70 viral copies in plant material. The assay targets a grapevine internal control that reduces the occurrence of false negative results, thus increasing the diagnostic sensitivity of the technique. Viral isolates both associated and non-associated to symptoms from Greece, Slovakia and Spain have been successfully detected. The method has also been applied to the absolute quantitation of GPGV in its putative transmission vector Colomerus vitis. Moreover, the viral titer present in single mites has been determined. In addition, in the current study a new polymorphism in the GPGV genome responsible for a shorter movement protein has been found. A phylogenetic study based on this genomic region has shown a high variability among Spanish isolates and points to a different evolutionary origin of this new polymorphism. The methodology here developed opens new possibilities for basic and epidemiological studies as well as for the establishment of efficient control strategies.

  14. Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine

    PubMed Central

    Bontpart, Thibaut; Marlin, Thérèse; Vialet, Sandrine; Guiraud, Jean-Luc; Pinasseau, Lucie; Meudec, Emmanuelle; Sommerer, Nicolas; Cheynier, Véronique; Terrier, Nancy

    2016-01-01

    In plants, the shikimate pathway provides aromatic amino acids that are used to generate numerous secondary metabolites, including phenolic compounds. In this pathway, shikimate dehydrogenases (SDH) ‘classically’ catalyse the reversible dehydrogenation of 3-dehydroshikimate to shikimate. The capacity of SDH to produce gallic acid from shikimate pathway metabolites has not been studied in depth. In grapevine berries, gallic acid mainly accumulates as galloylated flavan-3-ols. The four grapevine SDH proteins have been produced in Escherichia coli. In vitro, VvSDH1 exhibited the highest ‘classical’ SDH activity. Two genes, VvSDH3 and VvSDH4, mainly expressed in immature berry tissues in which galloylated flavan-3-ols are accumulated, encoded enzymes with lower ‘classical’ activity but were able to produce gallic acid in vitro. The over-expression of VvSDH3 in hairy-roots increased the content of aromatic amino acids and hydroxycinnamates, but had little or no effect on molecules more distant from the shikimate pathway (stilbenoids and flavan-3-ols). In parallel, the contents of gallic acid, β-glucogallin, and galloylated flavan-3-ols were increased, attesting to the influence of this gene on gallic acid metabolism. Phylogenetic analysis from dicotyledon SDHs opens the way for the examination of genes from other plants which accumulate gallic acid-based metabolites. PMID:27241494

  15. Metabolic constituents of grapevine and grape-derived products

    PubMed Central

    Ali, Kashif; Maltese, Federica; Verpoorte, Robert

    2009-01-01

    The numerous uses of the grapevine fruit, especially for wine and beverages, have made it one of the most important plants worldwide. The phytochemistry of grapevine is rich in a wide range of compounds. Many of them are renowned for their numerous medicinal uses. The production of grapevine metabolites is highly conditioned by many factors like environment or pathogen attack. Some grapevine phytoalexins have gained a great deal of attention due to their antimicrobial activities, being also involved in the induction of resistance in grapevine against those pathogens. Meanwhile grapevine biotechnology is still evolving, thanks to the technological advance of modern science, and biotechnologists are making huge efforts to produce grapevine cultivars of desired characteristics. In this paper, important metabolites from grapevine and grape derived products like wine will be reviewed with their health promoting effects and their role against certain stress factors in grapevine physiology. PMID:20835385

  16. Use of digital Munsell color space to assist interretation of imaging spectrometer data: Geologic examples from the northern Grapevine Mountains, California and Nevada

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Knepper, D. H., Jr.; Clark, R. N.

    1986-01-01

    Techniques using Munsell color transformations were developed for reducing 128 channels (or less) of Airborne Imaging Spectrometer (AIS) data to a single color-composite-image suitable for both visual interpretation and digital analysis. Using AIS data acquired in 1984 and 1985, limestone and dolomite roof pendants and sericite-illite and other clay minerals related to alteration were mapped in a quartz monzonite stock in the northern Grapevine Mountains of California and Nevada. Field studies and laboratory spectral measurements verify the mineralogical distributions mapped from the AIS data.

  17. Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine.

    PubMed

    Salomon, María Victoria; Bottini, Rubén; de Souza Filho, Gonçalo Apolinário; Cohen, Ana Carmen; Moreno, Daniela; Gil, Mariana; Piccoli, Patricia

    2014-08-01

    Eleven bacterial strains were isolated at different soil depths from roots and rhizosphere of grapevines from a commercial vineyard. By 16S rRNA gene sequencing 10 different genera and 8 possible at species level were identified. From them, Bacillus licheniformis Rt4M10 and Pseudomonas fluorescens Rt6M10 were selected according to their characteristics as plant growth promoting rhizobacteria (PGPR). Both produced abscisic acid (ABA), indole-3-acetic acid (IAA) and the gibberellins A1 and A3 in chemically-defined medium. They also colonized roots of in vitro grown Vitis vinifera cv. Malbec plants. As result of bacterization ABA levels in 45 days-old in vitro plants were increased 76-fold by B. licheniformis and 40-fold by P. fluorescens as compared to controls. Both bacteria diminished plant water loss rate in correlation with increments of ABA. Twenty and 30 days post bacterization the plants incremented terpenes. The monoterpenes α-pinene, terpinolene, 4-carene, limonene, eucalyptol and lilac aldehyde A, and the sesquiterpenes α-bergamotene, α-farnesene, nerolidol and farnesol were assessed by gas chromatography-electron impact mass spectrometry analysis. α-Pinene and nerolidol were the most abundant (µg per g of tissue in plants bacterized with P. fluorescens). Only α-pinene, eucalyptol and farnesol were identified at low concentration in non-bacterized plants treated with ABA, while no terpenes were detected in controls. The results obtained along with others from literature suggest that B. licheniformis and P. fluorescens act as stress alleviators by inducing ABA synthesis so diminishing water losses. These bacteria also elicit synthesis of compounds of plant defense via an ABA independent mechanism. © 2013 Scandinavian Plant Physiology Society.

  18. Forest management guidelines for controlling wild grapevines

    Treesearch

    H. Clay Smith

    1984-01-01

    Grapevines (Vitis spp.) are becoming a major problem to forest managers in the Appalachians, especially when clearcutting is done on highly productive hardwood sites. Where present, grapevines can reduce tree quality and growth, and eventually kill the tree. Silvical characteristics of grapevines are discussed as background for grapevine control....

  19. Localization and subcellular association of Grapevine Pinot Gris Virus in grapevine leaf tissues.

    PubMed

    Tarquini, Giulia; Ermacora, Paolo; Bianchi, Gian Luca; De Amicis, Francesca; Pagliari, Laura; Martini, Marta; Loschi, Alberto; Saldarelli, Pasquale; Loi, Nazia; Musetti, Rita

    2018-05-01

    Despite the increasing impact of Grapevine Pinot gris disease (GPG-disease) worldwide, etiology about this disorder is still uncertain. The presence of the putative causal agent, the Grapevine Pinot Gris Virus (GPGV), has been reported in symptomatic grapevines (presenting stunting, chlorotic mottling, and leaf deformation) as well as in symptom-free plants. Moreover, information on virus localization in grapevine tissues and virus-plant interactions at the cytological level is missing at all. Ultrastructural and cytochemical investigations were undertaken to detect virus particles and the associated cytopathic effects in field-grown grapevine showing different symptom severity. Asymptomatic greenhouse-grown grapevines, which tested negative for GPGV by real time RT-PCR, were sampled as controls. Multiplex real-time RT-PCR and ELISA tests excluded the presence of viruses included in the Italian certification program both in field-grown and greenhouse-grown grapevines. Conversely, evidence was found for ubiquitous presence of Grapevine Rupestris Stem Pitting-associated Virus (GRSPaV), Hop Stunt Viroid (HSVd), and Grapevine Yellow Speckle Viroid 1 (GYSVd-1) in both plant groups. Moreover, in every field-grown grapevine, GPGV was detected by real-time RT-PCR. Ultrastructural observations and immunogold labelling assays showed filamentous flexuous viruses in the bundle sheath cells, often located inside membrane-bound organelles. No cytological differences were observed among field-grown grapevine samples showing different symptom severity. GPGV localization and associated ultrastructural modifications are reported and discussed, in the perspective of assisting management and control of the disease.

  20. Towards an open grapevine information system

    PubMed Central

    Adam-Blondon, A-F; Alaux, M; Pommier, C; Cantu, D; Cheng, Z-M; Cramer, GR; Davies, C; Delrot, S; Deluc, L; Di Gaspero, G; Grimplet, J; Fennell, A; Londo, JP; Kersey, P; Mattivi, F; Naithani, S; Neveu, P; Nikolski, M; Pezzotti, M; Reisch, BI; Töpfer, R; Vivier, MA; Ware, D; Quesneville, H

    2016-01-01

    Viticulture, like other fields of agriculture, is currently facing important challenges that will be addressed only through sustained, dedicated and coordinated research. Although the methods used in biology have evolved tremendously in recent years and now involve the routine production of large data sets of varied nature, in many domains of study, including grapevine research, there is a need to improve the findability, accessibility, interoperability and reusability (FAIR-ness) of these data. Considering the heterogeneous nature of the data produced, the transnational nature of the scientific community and the experience gained elsewhere, we have formed an open working group, in the framework of the International Grapevine Genome Program (www.vitaceae.org), to construct a coordinated federation of information systems holding grapevine data distributed around the world, providing an integrated set of interfaces supporting advanced data modeling, rich semantic integration and the next generation of data mining tools. To achieve this goal, it will be critical to develop, implement and adopt appropriate standards for data annotation and formatting. The development of this system, the GrapeIS, linking genotypes to phenotypes, and scientific research to agronomical and oeneological data, should provide new insights into grape biology, and allow the development of new varieties to meet the challenges of biotic and abiotic stress, environmental change, and consumer demand. PMID:27917288

  1. Characterization of the Xylella fastidiosa PD1311 gene mutant and its suppression of Pierce's disease on grapevines.

    PubMed

    Hao, Lingyun; Johnson, Kameka; Cursino, Luciana; Mowery, Patricia; Burr, Thomas J

    2017-06-01

    Xylella fastidiosa causes Pierce's disease (PD) on grapevines, leading to significant economic losses in grape and wine production. To further our understanding of X. fastidiosa virulence on grapevines, we examined the PD1311 gene, which encodes a putative acyl-coenzyme A (acyl-CoA) synthetase, and is highly conserved across Xylella species. It was determined that PD1311 is required for virulence, as the deletion mutant, ΔPD1311, was unable to cause disease on grapevines. The ΔPD1311 strain was impaired in behaviours known to be associated with PD development, including motility, aggregation and biofilm formation. ΔPD1311 also expressed enhanced sensitivity to H 2 O 2 and polymyxin B, and showed reduced survival in grapevine sap, when compared with wild-type X. fastidiosa Temecula 1 (TM1). Following inoculation, ΔPD1311 could not be detected in grape shoots, which may be related to its altered growth and sensitivity phenotypes. Inoculation with ΔPD1311 2 weeks prior to TM1 prevented the development of PD in a significant fraction of vines and eliminated detectable levels of TM1. In contrast, vines inoculated simultaneously with TM1 and ΔPD1311 developed disease at the same level as TM1 alone. In these vines, TM1 populations were distributed similarly to populations in TM1-only inoculated plants. These findings suggest that, through an indirect mechanism, pretreatment of vines with ΔPD1311 suppresses pathogen population and disease. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  2. Field evaluation of an expertise-based formal decision system for fungicide management of grapevine downy and powdery mildews.

    PubMed

    Delière, Laurent; Cartolaro, Philippe; Léger, Bertrand; Naud, Olivier

    2015-09-01

    In France, viticulture accounts for 20% of the phytochemicals sprayed in agriculture, and 80% of grapevine pesticides target powdery and downy mildews. European policies promote pesticide use reduction, and new methods for low-input disease management are needed for viticulture. Here, we present the assessment, in France, of Mildium, a new decision support system for the management of grapevine mildews. A 4 year assessment trial of Mildium has been conducted in a network of 83 plots distributed across the French vineyards. In most vineyards, Mildium has proved to be successful at protecting the crop while reducing by 30-50% the number of treatments required when compared with grower practices. The design of Mildium results from the formalisation of a common management of both powdery and downy mildews and eventually leads to a significant fungicide reduction at the plot scale. It could encourage stakeholders to design customised farm-scale and low-chemical-input decision support methods. © 2014 Society of Chemical Industry.

  3. A 48 SNP set for grapevine cultivar identification

    PubMed Central

    2011-01-01

    Background Rapid and consistent genotyping is an important requirement for cultivar identification in many crop species. Among them grapevine cultivars have been the subject of multiple studies given the large number of synonyms and homonyms generated during many centuries of vegetative multiplication and exchange. Simple sequence repeat (SSR) markers have been preferred until now because of their high level of polymorphism, their codominant nature and their high profile repeatability. However, the rapid application of partial or complete genome sequencing approaches is identifying thousands of single nucleotide polymorphisms (SNP) that can be very useful for such purposes. Although SNP markers are bi-allelic, and therefore not as polymorphic as microsatellites, the high number of loci that can be multiplexed and the possibilities of automation as well as their highly repeatable results under any analytical procedure make them the future markers of choice for any type of genetic identification. Results We analyzed over 300 SNP in the genome of grapevine using a re-sequencing strategy in a selection of 11 genotypes. Among the identified polymorphisms, we selected 48 SNP spread across all grapevine chromosomes with allele frequencies balanced enough as to provide sufficient information content for genetic identification in grapevine allowing for good genotyping success rate. Marker stability was tested in repeated analyses of a selected group of cultivars obtained worldwide to demonstrate their usefulness in genetic identification. Conclusions We have selected a set of 48 stable SNP markers with a high discrimination power and a uniform genome distribution (2-3 markers/chromosome), which is proposed as a standard set for grapevine (Vitis vinifera L.) genotyping. Any previous problems derived from microsatellite allele confusion between labs or the need to run reference cultivars to identify allele sizes disappear using this type of marker. Furthermore, because SNP markers are bi-allelic, allele identification and genotype naming are extremely simple and genotypes obtained with different equipments and by different laboratories are always fully comparable. PMID:22060012

  4. Spot drip application of dimethyl disulfide as a post-plant treatment for the control of plant parasitic nematodes and soilborne pathogens in grape production.

    PubMed

    Cabrera, J Alfonso; Wang, Dong; Gerik, James S; Gan, Jay

    2014-07-01

    Plant parasitic nematodes and soilborne pathogens can reduce the overall productivity in grape production. Not all grape growers apply soil fumigants before planting, and there is no single rootstock resistant to all nematode species. The aim of this investigation was to evaluate the effect of dimethyl disulfide (DMDS) applied at 112, 224, 448 and 897 kg ha(-1) as a post-plant treatment against soilborne plant parasitic nematodes and pathogens on the grape yield in established grapevines. In microplot and field trials, post-plant fumigation with DMDS controlled citrus (Tylenchulus semipenetrans), root-knot (Meloidogyne spp.), pin (Paratylenchus spp.) and ring (Mesocriconema xenoplax) nematodes in established Thomson Seedless grapevines. However, DMDS did not control the soilborne pathogens Pythium ultimum and Fusarium oxysporum. No indications of phytotoxicity were detected after post-plant fumigation with DMDS. In the field trial, grape yield was significantly higher with the lowest DMDS rate, but no difference among other rates was observed in comparison with the untreated control. Post-plant fumigation with DMDS controlled plant parasitic nematodes in established grapevines but was less efficacious against soilborne pathogens. Low rates of DMDS were sufficient for nematode control and increased the grape yield, probably without affecting beneficial soil organisms. Further research on evaluating the potential effect of DMDS against beneficial soil organisms is needed. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  5. Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine.

    PubMed

    Bontpart, Thibaut; Marlin, Thérèse; Vialet, Sandrine; Guiraud, Jean-Luc; Pinasseau, Lucie; Meudec, Emmanuelle; Sommerer, Nicolas; Cheynier, Véronique; Terrier, Nancy

    2016-05-01

    In plants, the shikimate pathway provides aromatic amino acids that are used to generate numerous secondary metabolites, including phenolic compounds. In this pathway, shikimate dehydrogenases (SDH) 'classically' catalyse the reversible dehydrogenation of 3-dehydroshikimate to shikimate. The capacity of SDH to produce gallic acid from shikimate pathway metabolites has not been studied in depth. In grapevine berries, gallic acid mainly accumulates as galloylated flavan-3-ols. The four grapevine SDH proteins have been produced in Escherichia coli In vitro, VvSDH1 exhibited the highest 'classical' SDH activity. Two genes, VvSDH3 and VvSDH4, mainly expressed in immature berry tissues in which galloylated flavan-3-ols are accumulated, encoded enzymes with lower 'classical' activity but were able to produce gallic acid in vitro The over-expression of VvSDH3 in hairy-roots increased the content of aromatic amino acids and hydroxycinnamates, but had little or no effect on molecules more distant from the shikimate pathway (stilbenoids and flavan-3-ols). In parallel, the contents of gallic acid, β-glucogallin, and galloylated flavan-3-ols were increased, attesting to the influence of this gene on gallic acid metabolism. Phylogenetic analysis from dicotyledon SDHs opens the way for the examination of genes from other plants which accumulate gallic acid-based metabolites. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. The alternative oxidase family of Vitis vinifera reveals an attractive model to study the importance of genomic design.

    PubMed

    Costa, José Hélio; de Melo, Dirce Fernandes; Gouveia, Zélia; Cardoso, Hélia Guerra; Peixe, Augusto; Arnholdt-Schmitt, Birgit

    2009-12-01

    'Genomic design' refers to the structural organization of gene sequences. Recently, the role of intron sequences for gene regulation is being better understood. Further, introns possess high rates of polymorphism that are considered as the major source for speciation. In molecular breeding, the length of gene-specific introns is recognized as a tool to discriminate genotypes with diverse traits of agronomic interest. 'Economy selection' and 'time-economy selection' have been proposed as models for explaining why highly expressed genes typically contain small introns. However, in contrast to these theories, plant-specific selection reveals that highly expressed genes contain introns that are large. In the presented research, 'wet'Aox gene identification from grapevine is advanced by a bioinformatics approach to study the species-specific organization of Aox gene structures in relation to available expressed sequence tag (EST) data. Two Aox1 and one Aox2 gene sequences have been identified in Vitis vinifera using grapevine cultivars from Portugal and Germany. Searching the complete genome sequence data of two grapevine cultivars confirmed that V. vinifera alternative oxidase (Aox) is encoded by a small multigene family composed of Aox1a, Aox1b and Aox2. An analysis of EST distribution revealed high expression of the VvAox2 gene. A relationship between the atypical long primary transcript of VvAox2 (in comparison to other plant Aox genes) and its expression level is suggested. V. vinifera Aox genes contain four exons interrupted by three introns except for Aox1a which contains an additional intron in the 3'-UTR. The lengths of primary Aox transcripts were estimated for each gene in two V. vinifera varieties: PN40024 and Pinot Noir. In both varieties, Aox1a and Aox1b contained small introns that corresponded to primary transcript lengths ranging from 1501 to 1810 bp. The Aox2 of PN40024 (12 329 bp) was longer than that from Pinot Noir (7279 bp) because of selection against a transposable-element insertion that is 5028 bp in size. An EST database basic local alignment search tool (BLAST) search of GenBank revealed the following ESTs percentages for each gene: Aox1a (26.2%), Aox1b (11.9%) and Aox2 (61.9%). Aox1a was expressed in fruits and roots, Aox1b expression was confined to flowers and Aox2 was ubiquitously expressed. These data for V. vinifera show that atypically long Aox intron lengths are related to high levels of gene expression. Furthermore, it is shown for the first time that two grapevine cultivars can be distinguished by Aox intron length polymorphism.

  7. Linkage maps of grapevine displaying the chromosomal locations of 420 microsatellite markers and 82 markers for R-gene candidates.

    PubMed

    Di Gaspero, G; Cipriani, G; Adam-Blondon, A-F; Testolin, R

    2007-05-01

    Genetic maps functionally oriented towards disease resistance have been constructed in grapevine by analysing with a simultaneous maximum-likelihood estimation of linkage 502 markers including microsatellites and resistance gene analogs (RGAs). Mapping material consisted of two pseudo-testcrosses, 'Chardonnay' x 'Bianca' and 'Cabernet Sauvignon' x '20/3' where the seed parents were Vitis vinifera genotypes and the male parents were Vitis hybrids carrying resistance to mildew diseases. Individual maps included 320-364 markers each. The simultaneous use of two mapping crosses made with two pairs of distantly related parents allowed mapping as much as 91% of the markers tested. The integrated map included 420 Simple Sequence Repeat (SSR) markers that identified 536 SSR loci and 82 RGA markers that identified 173 RGA loci. This map consisted of 19 linkage groups (LGs) corresponding to the grape haploid chromosome number, had a total length of 1,676 cM and a mean distance between adjacent loci of 3.6 cM. Single-locus SSR markers were randomly distributed over the map (CD = 1.12). RGA markers were found in 18 of the 19 LGs but most of them (83%) were clustered on seven LGs, namely groups 3, 7, 9, 12, 13, 18 and 19. Several RGA clusters mapped to chromosomal regions where phenotypic traits of resistance to fungal diseases such as downy mildew and powdery mildew, bacterial diseases such as Pierce's disease, and pests such as dagger and root-knot nematode, were previously mapped in different segregating populations. The high number of RGA markers integrated into this new map will help find markers linked to genetic determinants of different pest and disease resistances in grape.

  8. Recent amplification and impact of MITEs on the genome of grapevine (Vitis vinifera L.)

    PubMed Central

    Benjak, Andrej; Boué, Stéphanie; Forneck, Astrid

    2009-01-01

    Miniature inverted-repeat transposable elements (MITEs) are a particular type of defective class II transposons present in genomes as highly homogeneous populations of small elements. Their high copy number and close association to genes make their potential impact on gene evolution particularly relevant. Here, we present a detailed analysis of the MITE families directly related to grapevine “cut-and-paste” transposons. Our results show that grapevine MITEs have transduplicated and amplified genomic sequences, including gene sequences and fragments of other mobile elements. Our results also show that although some of the MITE families were already present in the ancestor of the European and American Vitis wild species, they have been amplified and have been actively transposing accompanying grapevine domestication and breeding. We show that MITEs are abundant in grapevine and some of them are frequently inserted within the untranslated regions of grapevine genes. MITE insertions are highly polymorphic among grapevine cultivars, which frequently generate transcript variability. The data presented here show that MITEs have greatly contributed to the grapevine genetic diversity which has been used for grapevine domestication and breeding. PMID:20333179

  9. Polysaccharide Compositions of Intervessel Pit Membranes Contribute to Pierce’s Disease Resistance of Grapevines1[OA

    PubMed Central

    Sun, Qiang; Greve, L. Carl; Labavitch, John M.

    2011-01-01

    Symptom development of Pierce’s disease (PD) in grapevine (Vitis vinifera) depends largely on the ability of the bacterium Xylella fastidiosa to use cell wall-degrading enzymes (CWDEs) to break up intervessel pit membranes (PMs) and spread through the vessel system. In this study, an immunohistochemical technique was developed to analyze pectic and hemicellulosic polysaccharides of intervessel PMs. Our results indicate that PMs of grapevine genotypes with different PD resistance differed in the composition and structure of homogalacturonans (HGs) and xyloglucans (XyGs), the potential targets of the pathogen’s CWDEs. The PMs of PD-resistant grapevine genotypes lacked fucosylated XyGs and weakly methyl-esterified HGs (ME-HGs), and contained a small amount of heavily ME-HGs. In contrast, PMs of PD-susceptible genotypes all had substantial amounts of fucosylated XyGs and weakly ME-HGs, but lacked heavily ME-HGs. The intervessel PM integrity and the pathogen’s distribution in Xylella-infected grapevines also showed differences among the genotypes. In pathogen-inoculated, PD-resistant genotypes PM integrity was well maintained and Xylella cells were only found close to the inoculation site. However, in inoculated PD-susceptible genotypes, PMs in the vessels associated with bacteria lost their integrity and the systemic presence of the X. fastidiosa pathogen was confirmed. Our analysis also provided a relatively clear understanding of the process by which intervessel PMs are degraded. All of these observations support the conclusion that weakly ME-HGs and fucosylated XyGs are substrates of the pathogen’s CWDEs and their presence in or absence from PMs may contribute to grapevine’s PD susceptibility. PMID:21343427

  10. Distinct transcriptome responses to water limitation in isohydric and anisohydric grapevine cultivars.

    PubMed

    Dal Santo, Silvia; Palliotti, Alberto; Zenoni, Sara; Tornielli, Giovanni Battista; Fasoli, Marianna; Paci, Paola; Tombesi, Sergio; Frioni, Tommaso; Silvestroni, Oriana; Bellincontro, Andrea; d'Onofrio, Claudio; Matarese, Fabiola; Gatti, Matteo; Poni, Stefano; Pezzotti, Mario

    2016-10-20

    Grapevine (Vitis vinifera L.) is an economically important crop with a wide geographical distribution, reflecting its ability to grow successfully in a range of climates. However, many vineyards are located in regions with seasonal drought, and these are often predicted to be global climate change hotspots. Climate change affects the entire physiology of grapevine, with strong effects on yield, wine quality and typicity, making it difficult to produce berries of optimal enological quality and consistent stability over the forthcoming decades. Here we investigated the reactions of two grapevine cultivars to water stress, the isohydric variety Montepulciano and the anisohydric variety Sangiovese, by examining physiological and molecular perturbations in the leaf and berry. A multidisciplinary approach was used to characterize the distinct stomatal behavior of the two cultivars and its impact on leaf and berry gene expression. Positive associations were found among the photosynthetic, physiological and transcriptional modifications, and candidate genes encoding master regulators of the water stress response were identified using an integrated approach based on the analysis of topological co-expression network properties. In particular, the genome-wide transcriptional study indicated that the isohydric behavior relies upon the following responses: i) faster transcriptome response after stress imposition; ii) faster abscisic acid-related gene modulation; iii) more rapid expression of heat shock protein (HSP) genes and iv) reversion of gene-expression profile at rewatering. Conversely, that reactive oxygen species (ROS)-scavenging enzymes, molecular chaperones and abiotic stress-related genes were induced earlier and more strongly in the anisohydric cultivar. Overall, the present work found original evidence of a molecular basis for the proposed classification between isohydric and anisohydric grapevine genotypes.

  11. Nanobody-mediated resistance to Grapevine fanleaf virus in plants.

    PubMed

    Hemmer, Caroline; Djennane, Samia; Ackerer, Léa; Hleibieh, Kamal; Marmonier, Aurélie; Gersch, Sophie; Garcia, Shahinez; Vigne, Emmanuelle; Komar, Véronique; Perrin, Mireille; Gertz, Claude; Belval, Lorène; Berthold, François; Monsion, Baptiste; Schmitt-Keichinger, Corinne; Lemaire, Olivier; Lorber, Bernard; Gutiérrez, Carlos; Muyldermans, Serge; Demangeat, Gérard; Ritzenthaler, Christophe

    2018-02-01

    Since their discovery, single-domain antigen-binding fragments of camelid-derived heavy-chain-only antibodies, also known as nanobodies (Nbs), have proven to be of outstanding interest as therapeutics against human diseases and pathogens including viruses, but their use against phytopathogens remains limited. Many plant viruses including Grapevine fanleaf virus (GFLV), a nematode-transmitted icosahedral virus and causal agent of fanleaf degenerative disease, have worldwide distribution and huge burden on crop yields representing billions of US dollars of losses annually, yet solutions to combat these viruses are often limited or inefficient. Here, we identified a Nb specific to GFLV that confers strong resistance to GFLV upon stable expression in the model plant Nicotiana benthamiana and also in grapevine rootstock, the natural host of the virus. We showed that resistance was effective against a broad range of GFLV isolates independently of the inoculation method including upon nematode transmission but not against its close relative, Arabis mosaic virus. We also demonstrated that virus neutralization occurs at an early step of the virus life cycle, prior to cell-to-cell movement. Our findings will not only be instrumental to confer resistance to GFLV in grapevine, but more generally they pave the way for the generation of novel antiviral strategies in plants based on Nbs. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Molecular characterization of DNA repair protein Ku70 from Vitis vinifera and its purification from transgenic tobacco.

    PubMed

    Tak, Himanshu; Mhatre, Minal

    2013-08-01

    The DNA double strand break repair in plants is preferentially by non homologous end joining (NHEJ) pathway. A key protein of NHEJ pathway is Ku70. We have identified Ku70 homolog (VvKu70) from grapevine genome database. In this report we characterize a Ku70 homologue from Vitis vinifera cv. Mango. The VvKu70 expression was found to increase strongly in response to gamma radiation. The transcript level of VvKu70 was found to increase up to 36 h in gamma irradiated shoots of grapevine. The expression of VvKu70 was found in many organs like stem, leaves and roots. A GFP fused VvKu70 protein was found to be nuclear localized which indicates that the VvKu70 is a nuclear localized protein. The VvKu70 identified by in silico approaches is present as a single copy number in V. vinifera cv. Mango genome. The VvKu70-GFP fused protein possesses ATPase activity and fails to bind dsDNA but binds ssDNA.

  13. A phage display-selected peptide inhibitor of Agrobacterium vitis polygalacturonase.

    PubMed

    Warren, Jeremy G; Kasun, George W; Leonard, Takara; Kirkpatrick, Bruce C

    2016-05-01

    Agrobacterium vitis, the causal agent of crown gall of grapevine, is a threat to viticulture worldwide. A major virulence factor of this pathogen is polygalacturonase, an enzyme that degrades pectin components of the xylem cell wall. A single gene encodes for the polygalacturonase gene. Disruption of the polygalacturonase gene results in a mutant that is less pathogenic and produces significantly fewer root lesions on grapevines. Thus, the identification of peptides or proteins that could inhibit the activity of polygalacturonase could be part of a strategy for the protection of plants against this pathogen. A phage-displayed combinatorial peptide library was used to isolate peptides with a high binding affinity to A. vitis polygalacturonase. These peptides showed sequence similarity to regions of Oryza sativa (EMS66324, Japonica) and Triticum urartu (NP_001054402, wild wheat) polygalacturonase-inhibiting proteins (PGIPs). Furthermore, these panning experiments identified a peptide, SVTIHHLGGGS, which was able to reduce A. vitis polygalacturonase activity by 35% in vitro. Truncation studies showed that the IHHL motif alone is sufficient to inhibit A. vitis polygalacturonase activity. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  14. The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L.

    PubMed Central

    2012-01-01

    Background Carotenoids are a heterogeneous group of plant isoprenoids primarily involved in photosynthesis. In plants the cleavage of carotenoids leads to the formation of the phytohormones abscisic acid and strigolactone, and C13-norisoprenoids involved in the characteristic flavour and aroma compounds in flowers and fruits and are of specific importance in the varietal character of grapes and wine. This work extends the previous reports of carotenoid gene expression and photosynthetic pigment analysis by providing an up-to-date pathway analysis and an important framework for the analysis of carotenoid metabolic pathways in grapevine. Results Comparative genomics was used to identify 42 genes putatively involved in carotenoid biosynthesis/catabolism in grapevine. The genes are distributed on 16 of the 19 chromosomes and have been localised to the physical map of the heterozygous ENTAV115 grapevine sequence. Nine of the genes occur as single copies whereas the rest of the carotenoid metabolic genes have more than one paralogue. The cDNA copies of eleven corresponding genes from Vitis vinifera L. cv. Pinotage were characterised, and four where shown to be functional. Microarrays provided expression profiles of 39 accessions in the metabolic pathway during three berry developmental stages in Sauvignon blanc, whereas an optimised HPLC analysis provided the concentrations of individual carotenoids. This provides evidence of the functioning of the lutein epoxide cycle and the respective genes in grapevine. Similarly, orthologues of genes leading to the formation of strigolactone involved in shoot branching inhibition were identified: CCD7, CCD8 and MAX1. Moreover, the isoforms typically have different expression patterns, confirming the complex regulation of the pathway. Of particular interest is the expression pattern of the three VvNCEDs: Our results support previous findings that VvNCED3 is likely the isoform linked to ABA content in berries. Conclusions The carotenoid metabolic pathway is well characterised, and the genes and enzymes have been studied in a number of plants. The study of the 42 carotenoid pathway genes of grapevine showed that they share a high degree of similarity with other eudicots. Expression and pigment profiling of developing berries provided insights into the most complete grapevine carotenoid pathway representation. This study represents an important reference study for further characterisation of carotenoid biosynthesis and catabolism in grapevine. PMID:22702718

  15. A Three-dimensional Statistical Reconstruction Model of Grapevine (Vitis vinifera) Simulating Canopy Structure Variability within and between Cultivar/Training System Pairs

    PubMed Central

    Louarn, Gaëtan; Lecoeur, Jérémie; Lebon, Eric

    2008-01-01

    Background and Aims In grapevine, canopy-structure-related variations in light interception and distribution affect productivity, yield and the quality of the harvested product. A simple statistical model for reconstructing three-dimensional (3D) canopy structures for various cultivar–training system (C × T) pairs has been implemented with special attention paid to balance the time required for model parameterization and accuracy of the representations from organ to stand scales. Such an approach particularly aims at overcoming the weak integration of interplant variability using the usual direct 3D measurement methods. Model This model is original in combining a turbid-medium-like envelope enclosing the volume occupied by vine shoots with the use of discrete geometric polygons representing leaves randomly located within this volume to represent plant structure. Reconstruction rules were adapted to capture the main determinants of grapevine shoot architecture and their variability. Using a simplified set of parameters, it was possible to describe (1) the 3D path of the main shoot, (2) the volume occupied by the foliage around this path and (3) the orientation of individual leaf surfaces. Model parameterization (estimation of the probability distribution for each parameter) was carried out for eight contrasting C × T pairs. Key Results and Conclusions The parameter values obtained in each situation were consistent with our knowledge of grapevine architecture. Quantitative assessments for the generated virtual scenes were carried out at the canopy and plant scales. Light interception efficiency and local variations of light transmittance within and between experimental plots were correctly simulated for all canopies studied. The approach predicted these key ecophysiological variables significantly more accurately than the classical complete digitization method with a limited number of plants. In addition, this model accurately reproduced the characteristics of a wide range of individual digitized plants. Simulated leaf area density and the distribution of light interception among leaves were consistent with measurements. However, at the level of individual organs, the model tended to underestimate light interception. PMID:18202006

  16. A Leafhopper-Transmissible DNA Virus with Novel Evolutionary Lineage in the Family Geminiviridae Implicated in Grapevine Redleaf Disease by Next-Generation Sequencing

    PubMed Central

    Poojari, Sudarsana; Alabi, Olufemi J.; Fofanov, Viacheslav Y.; Naidu, Rayapati A.

    2013-01-01

    A graft-transmissible disease displaying red veins, red blotches and total reddening of leaves in red-berried wine grape (Vitis vinifera L.) cultivars was observed in commercial vineyards. Next-generation sequencing technology was used to identify etiological agent(s) associated with this emerging disease, designated as grapevine redleaf disease (GRD). High quality RNA extracted from leaves of grape cultivars Merlot and Cabernet Franc with and without GRD symptoms was used to prepare cDNA libraries. Assembly of highly informative sequence reads generated from Illumina sequencing of cDNA libraries, followed by bioinformatic analyses of sequence contigs resulted in specific identification of taxonomically disparate viruses and viroids in samples with and without GRD symptoms. A single-stranded DNA virus, tentatively named Grapevine redleaf-associated virus (GRLaV), and Grapevine fanleaf virus were detected only in grapevines showing GRD symptoms. In contrast, Grapevine rupestris stem pitting-associated virus, Hop stunt viroid, Grapevine yellow speckle viroid 1, Citrus exocortis viroid and Citrus exocortis Yucatan viroid were present in both symptomatic and non-symptomatic grapevines. GRLaV was transmitted by the Virginia creeper leafhopper (Erythroneura ziczac Walsh) from grapevine-to-grapevine under greenhouse conditions. Molecular and phylogenetic analyses indicated that GRLaV, almost identical to recently reported Grapevine Cabernet Franc-associated virus from New York and Grapevine red blotch-associated virus from California, represents an evolutionarily distinct lineage in the family Geminiviridae with genome characteristics distinct from other leafhopper-transmitted geminiviruses. GRD significantly reduced fruit yield and affected berry quality parameters demonstrating negative impacts of the disease. Higher quantities of carbohydrates were present in symptomatic leaves suggesting their possible role in the expression of redleaf symptoms. PMID:23755117

  17. Pathogenicity of Nectriaceous Fungi on Avocado in Australia.

    PubMed

    Parkinson, Louisamarie E; Shivas, Roger G; Dann, Elizabeth K

    2017-12-01

    Black root rot is a severe disease of young avocado trees in Australia causing black necrotic roots, tree stunting, and leaf drop prior to tree death. Nectriaceous fungi (Nectriaceae, Hypocreales), are commonly isolated from symptomatic roots. This research tested the pathogenicity of 19 isolates from Calonectria, Cylindrocladiella, Dactylonectria, Gliocladiopsis, and Ilyonectria, spp. collected from young avocado trees and other hosts. Glasshouse pathogenicity tests with 'Reed' avocado (Persea americana) seedlings confirmed that Calonectria ilicicola is a severe pathogen of avocado, causing stunting, wilting, and seedling death within 5 weeks of inoculation. Isolates of C. ilicicola from peanut, papaya, and custard apple were also shown to be aggressive pathogens of avocado, demonstrating a broad host range. An isolate of a Calonectria sp. from blueberry and avocado isolates of Dactylonectria macrodidyma, D. novozelandica, D. pauciseptata, and D. anthuriicola caused significant root rot but not stunting within 5 to 9 weeks of inoculation. An isolate of an Ilyonectria sp. from grapevine closely related to Ilyonectria liriodendri, and avocado isolates of Cylindrocladiella pseudoinfestans, Gliocladiopsis peggii, and an Ilyonectria sp. were not pathogenic to avocado.

  18. Resistance of Some Vitis Rootstocks to Xiphinema index.

    PubMed

    Harris, A R

    1983-07-01

    Thirty-eight grapevine (Vitis spp.) rootstocks were screened in pots for resistance to the dagger nematode, Xiphinema index, from 1979 to 1981. Resistance ratings were based on visible root symptoms and on changes in the nematode populations over 16 months. Nineteen of the 23 Californian hybrid rootstocks tested were resistant, as were 'Harmony',' 'Freedom,' 'Schwarzmann,' and '3309.' Two hybrids of V. rufotomentosa, '171-52' and '176-9,' were possibly immune to X. index. The rootstocks 'ARG 1,' ' 110 R,' '1202,' and '1616,' which are used commercially for phylloxera resistance were susceptible.

  19. Grape (Vitis spp.) - Grapevine Red Blotch Disease

    USDA-ARS?s Scientific Manuscript database

    Grapevine red blotch disease is caused by Grapevine red blotch-associated virus (GRBaV), which was first reported in 2012 from New York and subsequently in California, Washington, Oregon, Idaho and elsewhere in the U.S. The discovery occurred when grapevines with red leaf symptoms that tested negati...

  20. First report of Grapevine rupestris vein feathering virus infecting grapevines in Korea

    USDA-ARS?s Scientific Manuscript database

    Grapevine rupestris vein feathering virus (GRVFV), a member of the genus Marafivirus in the family Tymoviridae, was first reported from a Greek grapevine causing chlorotic discolorations of leaf veins. The virus has been reported in United States, Canada, Uruguay, Italy, Spain, the Czech Republic an...

  1. Implicated vectors and spread of grapevine red blotch-associated virus in Oregon vineyards

    USDA-ARS?s Scientific Manuscript database

    Grapevine viruses have detrimental consequences for wine grape production, as is known for Grapevine leafroll -associated viruses (GLRaVs) and Grapevine red blotch -associated virus (GRBaV). From 2013-2016, vineyards in three wine grape production regions of Oregon were surveyed for the presence of ...

  2. Divergence in the transcriptional landscape between low temperature and freeze shock in cultivated grapevine (Vitis vinifera)

    USDA-ARS?s Scientific Manuscript database

    Low temperature stresses limit the sustainability and productivity of grapevines when early spring frosts damage young grapevine leaves. Spring conditions often expose grapevines to low, but not damaging, chilling temperatures and these temperatures have been shown to increase freeze resistance in o...

  3. Effect of high soil copper concentration on mycorrhizal grapevines

    NASA Astrophysics Data System (ADS)

    Nogales, Amaia; Santos, Erika S.; Viegas, Wanda; Aran, Diego; Pereira, Sofia H.; Vidigal, Patricia; Lopes, Carlos M.; Abreu, M. Manuela

    2017-04-01

    Repeated application of Copper (Cu) based fungicides in vineyards since the end of the 19th century has led to a significant increase in the concentration of this chemical element in many viticultural soils. Although Cu is an essential micronutrient for most organisms, it can be toxic for the development and survival of plants and soil (micro)organisms at high concentrations and eventually lead to yield loses in viticulture, as it negatively affects key physiological and biogeochemical processes. However, some soil microorganisms, including arbuscular mycorrhizal fungi (AMF), have developed adaptive mechanisms for persistence in environments with supra-optimal levels of essential elements or in the presence of harmful ones, as well as for increasing plant tolerance to such abiotic stress conditions. The objective of this work was to evaluate the effect of a high total soil concentration of Cu on microbial soil activity as well as on the development of mycorrhizal and non-mycorrhizal grapevines. A microcosm assay was set up under greenhouse and controlled conditions. Touriga Nacional grapevine variety plants grafted onto 1103P rootstocks were inoculated either with the AMF Rhizophagus irregularis or Funneliformis mosseae, or were left as non-inoculated controls. After three months, they were transplanted to containers filled with 4 kg of a sandy soil (pH: 7.0; electrical conductivity: 0.08 mS/cm; [organic C]: 5.6 g/kg; [N-NO3]: 1.1 mg/kg; [N-NH4]: 2.5 mg/kg; [extractable K]: 45.1 mg/kg; [extractable P]: 52.3 mg/kg), collected near to a vineyard in Pegões (Portugal). Two treatments were carried out: with and without Cu application. The soil with high Cu concentration was prepared by adding 300 mg Cu/kg (in the form of an aqueous solution of CuSO4·5H2O) followed by an incubation during four weeks in plastic bags at room temperature in dark. Physico-chemical soil characteristics (pH, electrical conductivity and nutrients concentration in available fraction), soil dehydrogenase activity and the number of mycorrhizal infective propagules were evaluated in association with several plant physiological parameters (vegetative growth, NDVI‒Normalized Difference Vegetation Index and PRI‒Photochemical Reflectance Index, leaf nutrient content) and root mycorrhizal colonization percentage. Preliminary results indicate an overall decrease in soil microbial activity due to Cu addition, regardless of the presence or absence of the inoculated mycorrhizal fungus. High Cu concentrations in soil decreased plant shoot length, root fresh weight and NDVI and PRI values. However, differences between mycorrhizal treatments were detected on plant response to Cu stress. The usefulness of grapevine inoculation with AMF to enhance plant performance at high Cu levels in the soil is discussed.

  4. Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia.

    PubMed

    Riaz, Summaira; De Lorenzis, Gabriella; Velasco, Dianne; Koehmstedt, Anne; Maghradze, David; Bobokashvili, Zviad; Musayev, Mirza; Zdunic, Goran; Laucou, Valerie; Andrew Walker, M; Failla, Osvaldo; Preece, John E; Aradhya, Mallikarjuna; Arroyo-Garcia, Rosa

    2018-06-27

    The mountainous region between the Caucasus and China is considered to be the center of domestication for grapevine. Despite the importance of Central Asia in the history of grape growing, information about the extent and distribution of grape genetic variation in this region is limited in comparison to wild and cultivated grapevines from around the Mediterranean basin. The principal goal of this work was to survey the genetic diversity and relationships among wild and cultivated grape germplasm from the Caucasus, Central Asia, and the Mediterranean basin collectively to understand gene flow, possible domestication events and adaptive introgression. A total of 1378 wild and cultivated grapevines collected around the Mediterranean basin and from Central Asia were tested with a set of 20 nuclear SSR markers. Genetic data were analyzed (Cluster analysis, Principal Coordinate Analysis and STRUCTURE) to identify groups, and the results were validated by Nei's genetic distance, pairwise F ST analysis and assignment tests. All of these analyses identified three genetic groups: G1, wild accessions from Croatia, France, Italy and Spain; G2, wild accessions from Armenia, Azerbaijan and Georgia; and G3, cultivars from Spain, France, Italy, Georgia, Iran, Pakistan and Turkmenistan, which included a small group of wild accessions from Georgia and Croatia. Wild accessions from Georgia clustered with cultivated grape from the same area (proles pontica), but also with Western Europe (proles occidentalis), supporting Georgia as the ancient center of grapevine domestication. In addition, cluster analysis indicated that Western European wild grapes grouped with cultivated grapes from the same area, suggesting that the cultivated proles occidentalis contributed more to the early development of wine grapes than the wild vines from Eastern Europe. The analysis of genetic relationships among the tested genotypes provided evidence of genetic relationships between wild and cultivated accessions in the Mediterranean basin and Central Asia. The genetic structure indicated a considerable amount of gene flow, which limited the differentiation between the two subspecies. The results also indicated that grapes with mixed ancestry occur in the regions where wild grapevines were domesticated.

  5. Grapevine red blotch-associated virus is widespread in California and U.S. vineyards.

    USDA-ARS?s Scientific Manuscript database

    In fall 2011, Grapevine red blotch-associated virus (GRBaV), a circular ssDNA virus, was detected in grapevines exhibiting leaves with red blotch symptoms in Napa, CA. Extensive sampling of symptomatic grapevines in California vineyards and analysis of the nucleic acid fractions by SYBR®Green qPCR a...

  6. Genotyping points to divergent evolution of ‘Candidatus Phytoplasma asteris’ strains causing North American grapevine yellows and strains causing aster yellows

    USDA-ARS?s Scientific Manuscript database

    Grapevine yellows diseases occur in cultivated grapevine (Vitis vinifera L.) on several continents, where the diseases are known by different names depending upon the identities of the causal phytoplasmas. In this study, phytoplasma strains associated with grapevine yellows disease (North American ...

  7. Closed reference metatranscriptomics enables in planta profiling of putative virulence activities in the grapevine trunk-disease complex

    USDA-ARS?s Scientific Manuscript database

    Grapevines, like other perennial crops, are affected by so-called ‘trunk diseases’, which damage the trunk and other woody tissues. Mature grapevines typically contract more than one trunk disease and often multiple grapevine trunk pathogens (GTPs) are recovered from infected tissues. The co-existen...

  8. Comprehensive Virus Detection Using Next Generation Sequencing in Grapevine Vascular Tissues of Plants Obtained from the Wine Regions of Bohemia and Moravia (Czech Republic)

    PubMed Central

    2016-01-01

    Comprehensive next generation sequencing virus detection was used to detect the whole spectrum of viruses and viroids in selected grapevines from the Czech Republic. The novel NGS approach was based on sequencing libraries of small RNA isolated from grapevine vascular tissues. Eight previously partially-characterized grapevines of diverse varieties were selected and subjected to analysis: Chardonnay, Laurot, Guzal Kara, and rootstock Kober 125AA from the Moravia wine-producing region; plus Müller-Thurgau and Pinot Noir from the Bohemia wine-producing region, both in the Czech Republic. Using next generation sequencing of small RNA, the presence of 8 viruses and 2 viroids were detected in a set of eight grapevines; therefore, confirming the high effectiveness of the technique in plant virology and producing results supporting previous data on multiple infected grapevines in Czech vineyards. Among the pathogens detected, the Grapevine rupestris vein feathering virus and Grapevine yellow speckle viroid 1 were recorded in the Czech Republic for the first time. PMID:27959951

  9. Comprehensive Virus Detection Using Next Generation Sequencing in Grapevine Vascular Tissues of Plants Obtained from the Wine Regions of Bohemia and Moravia (Czech Republic).

    PubMed

    Eichmeier, Aleš; Komínková, Marcela; Komínek, Petr; Baránek, Miroslav

    2016-01-01

    Comprehensive next generation sequencing virus detection was used to detect the whole spectrum of viruses and viroids in selected grapevines from the Czech Republic. The novel NGS approach was based on sequencing libraries of small RNA isolated from grapevine vascular tissues. Eight previously partially-characterized grapevines of diverse varieties were selected and subjected to analysis: Chardonnay, Laurot, Guzal Kara, and rootstock Kober 125AA from the Moravia wine-producing region; plus Müller-Thurgau and Pinot Noir from the Bohemia wine-producing region, both in the Czech Republic. Using next generation sequencing of small RNA, the presence of 8 viruses and 2 viroids were detected in a set of eight grapevines; therefore, confirming the high effectiveness of the technique in plant virology and producing results supporting previous data on multiple infected grapevines in Czech vineyards. Among the pathogens detected, the Grapevine rupestris vein feathering virus and Grapevine yellow speckle viroid 1 were recorded in the Czech Republic for the first time.

  10. Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross.

    PubMed

    Xu, K; Riaz, S; Roncoroni, N C; Jin, Y; Hu, R; Zhou, R; Walker, M A

    2008-01-01

    Resistance to the dagger nematode Xiphinema index has been an important objective in grape rootstock breeding programs. This nematode not only causes severe feeding damage to the root system, but it also vectors grapevine fanleaf virus (GFLV), the causal agent of fanleaf degeneration and one of the most severe viral diseases of grape. The established screening procedures for dagger nematode resistance are time consuming and can produce inconsistent results. A fast and reliable greenhouse-based system for screening resistance to X. index that is suitable for genetic studies and capable of evaluating breeding populations is needed. In this report, the dynamics of nematode numbers, gall formation, and root weight loss were investigated using a variety of soil mixes and pot sizes over a 52-week period. Results indicated that the number of galls formed was correlated with the size of the nematode population and with the degree of root weight loss. After inoculation with 100 nematodes, gall formation could be reliably evaluated in 4-8 weeks in most plant growth conditions and results were obtained 6 months more rapidly than past evaluation methods. This modified X. index resistance screening method was successfully applied to 185 of the 188 F(1) progeny from a cross of D8909-15 x F8909-17 (the 9621 population), which segregates for a form of X. index resistance originally derived from Vitis arizonica. Quantitative trait loci (QTL) analysis was carried out on both parental genetic maps of 255 markers using MapQTL 4.0. Results revealed that X. index resistance is controlled by a major QTL, designated Xiphinema index Resistance 1 (XiR1), near marker VMC5a10 on chromosome 19. The XiR1 QTL was supported by a LOD score of 36.9 and explained 59.9% of the resistance variance in the mapping population.

  11. ABA and GA3 regulate the synthesis of primary and secondary metabolites related to alleviation from biotic and abiotic stresses in grapevine.

    PubMed

    Murcia, Germán; Fontana, Ariel; Pontin, Mariela; Baraldi, Rita; Bertazza, Gianpaolo; Piccoli, Patricia N

    2017-03-01

    Plants are able to synthesize a large number of organic compounds. Among them, primary metabolites are known to participate in plant growth and development, whereas secondary metabolites are mostly involved in defense and other facultative processes. In grapevine, one of the major fruit crops in the world, secondary metabolites, mainly polyphenols, are of great interest for the wine industry. Even though there is an extensive literature on the content and profile of those compounds in berries, scarce or no information is available regarding polyphenols in other organs. In addition, little is known about the effect of plant growth regulators (PGRs), ABA and GA 3 (extensively used in table grapes) on the synthesis of primary and secondary metabolites in wine grapes. In table grapes, cultural practices include the use of GA 3 sprays shortly before veraison, to increase berry and bunch size, and sugar content in fruits. Meanwhile, ABA applications to the berries on pre-veraison improve the skin coloring and sugar accumulation, anticipating the onset of veraison. Accordingly, the aim of this study was to assess and characterize primary and secondary metabolites in leaves, berries and roots of grapevine plants cv. Malbec at veraison, and changes in compositions after ABA and GA 3 aerial sprayings. Metabolic profiling was conducted using GC-MS, GC-FID and HPLC-MWD. A large set of metabolites was identified: sugars, alditols, organic acids, amino acids, polyphenols (flavonoids and non-flavonoids) and terpenes (mono-, sesqui-, di- and triterpenes). The obtained results showed that ABA applications elicited synthesis of mono- and sesquiterpenes in all assessed tissues, as well as L-proline, acidic amino acids and anthocyanins in leaves. Additionally, applications with GA 3 elicited synthesis of L-proline in berries, and mono- and sesquiterpenes in all the tissues. However, treatment with GA 3 seemed to block polyphenol synthesis, mainly in berries. In conclusion, ABA and GA 3 applications to grapevine plants cv. Malbec influenced the synthesis of primary and secondary metabolites known to be essential for coping with biotic and abiotic stresses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Interaction Between Meloidogyne arenaria and Glomus fascicuqlatus in Grape.

    PubMed

    Atilano, R A; Menge, J A; Gundy, S D

    1981-01-01

    Root zones of grape (Fitis vinifera cv Thompson Seedless) cuttings were infested with chlamydospores of Glomus fasciculatus or eggs of Meloidogyne arenaria or both. Growth of grapevines was greatest in mycorrhizal (G. fasciculatus) plants. Mycorrhizal development and growth of mycorrhizal and nonmycorrhizal plants were reduced in the presence of M. arenaria. At low initial nematode inoculum (PI) levels (approx. 200 eggs/plant), the presence of mycorrhizae enhanced plant growth during 1 yr, but no significant benefit was achieved by mycorrhizae where PI was high (approx. 2,000 eggs/plant). Final nematode populations were highest in mycorrhizal plants.

  13. Elimination of Grapevine leafroll associated virus-3, Grapevine rupestris stem pitting associated virus and Grapevine virus A from a Tunisian Cultivar by Somatic Embryogenesis and Characterization of the Somaclones Using Ampelographic Descriptors

    PubMed Central

    Bouamama-Gzara, Badra; Selmi, Ilhem; Chebil, Samir; Melki, Imene; Mliki, Ahmed; Ghorbel, Abdelwahed; Carra, Angela; Carimi, Francesco; Mahfoudhi, Naima

    2017-01-01

    Prospecting of local grapevine (Vitis vinifera L.) germplasm revealed that Tunisia possesses a rich patrimony which presents diversified organoleptic characteristics. However, viral diseases seriously affect all local grapevine cultivars which risk a complete extinction. Sanitation programs need to be established to preserve and exploit, as a gene pool, the Tunisian vineyards areas. The presence of the Grapevine leafroll associated virus-3 (GLRaV-3), Grapevine stem pitting associated virus (GRSPaV) and Grapevine virus A (GVA), were confirmed in a Tunisian grapevine cultivar using serological and molecular analyses. The association between GRSPaV and GVA viruses induces more rugose wood symptoms and damages. For this reason the cleansing of the infected cultivar is highly advisable. Direct and recurrent somatic embryos of cv. ‘Hencha’ were successfully induced from filament, when cultured on Chée and Pool (1987). based-medium, enriched with 2 mg 1−1 of 2,4-dichlorophenoxyacetic acid and 2.5 mg 1−1 of Thidiazuron, after 36 weeks of culture. After six months of acclimatization, RT-PCR carried on 50 somaplants confirmed the absence of GVA, GRSPa-V as well as GLRaV-3 viruses in all somaplants. Ampelographic analysis, based on eight OIV descriptors, was carried out on two years acclimated somaplants, compared to the mother plant. Results demonstrated that the shape and contours of 46 somaclones leaves are identical to mother plant leaves and four phenotypically off-type plants were observed. The healthy state of 100% ‘Hencha’ somaclones and the high percentage of phenotypically true-to-type plants demonstrate that somatic embryogenesis is a promising technique to adopt for grapevine viruses elimination. PMID:29238279

  14. Elimination of Grapevine leafroll associated virus-3, Grapevine rupestris stem pitting associated virus and Grapevine virus A from a Tunisian Cultivar by Somatic Embryogenesis and Characterization of the Somaclones Using Ampelographic Descriptors.

    PubMed

    Bouamama-Gzara, Badra; Selmi, Ilhem; Chebil, Samir; Melki, Imene; Mliki, Ahmed; Ghorbel, Abdelwahed; Carra, Angela; Carimi, Francesco; Mahfoudhi, Naima

    2017-12-01

    Prospecting of local grapevine ( Vitis vinifera L.) germplasm revealed that Tunisia possesses a rich patrimony which presents diversified organoleptic characteristics. However, viral diseases seriously affect all local grapevine cultivars which risk a complete extinction. Sanitation programs need to be established to preserve and exploit, as a gene pool, the Tunisian vineyards areas. The presence of the Grapevine leafroll associated virus-3 (GLRaV-3), Grapevine stem pitting associated virus (GRSPaV) and Grapevine virus A (GVA), were confirmed in a Tunisian grapevine cultivar using serological and molecular analyses. The association between GRSPaV and GVA viruses induces more rugose wood symptoms and damages. For this reason the cleansing of the infected cultivar is highly advisable. Direct and recurrent somatic embryos of cv. 'Hencha' were successfully induced from filament, when cultured on Chée and Pool (1987). based-medium, enriched with 2 mg 1 -1 of 2,4-dichlorophenoxyacetic acid and 2.5 mg 1 -1 of Thidiazuron, after 36 weeks of culture. After six months of acclimatization, RT-PCR carried on 50 somaplants confirmed the absence of GVA, GRSPa-V as well as GLRaV-3 viruses in all somaplants. Ampelographic analysis, based on eight OIV descriptors, was carried out on two years acclimated somaplants, compared to the mother plant. Results demonstrated that the shape and contours of 46 somaclones leaves are identical to mother plant leaves and four phenotypically off-type plants were observed. The healthy state of 100% 'Hencha' somaclones and the high percentage of phenotypically true-to-type plants demonstrate that somatic embryogenesis is a promising technique to adopt for grapevine viruses elimination.

  15. Global DNA Methylation Patterns Can Play a Role in Defining Terroir in Grapevine (Vitis vinifera cv. Shiraz)

    PubMed Central

    Xie, Huahan; Konate, Moumouni; Sai, Na; Tesfamicael, Kiflu G.; Cavagnaro, Timothy; Gilliham, Matthew; Breen, James; Metcalfe, Andrew; Stephen, John R.; De Bei, Roberta; Collins, Cassandra; Lopez, Carlos M. R.

    2017-01-01

    Understanding how grapevines perceive and adapt to different environments will provide us with an insight into how to better manage crop quality. Mounting evidence suggests that epigenetic mechanisms are a key interface between the environment and the genotype that ultimately affect the plant’s phenotype. Moreover, it is now widely accepted that epigenetic mechanisms are a source of useful variability during crop varietal selection that could affect crop performance. While the contribution of DNA methylation to plant performance has been extensively studied in other major crops, very little work has been done in grapevine. To study the genetic and epigenetic diversity across 22 vineyards planted with the cultivar Shiraz in six wine sub-regions of the Barossa, South Australia. Methylation sensitive amplified polymorphisms (MSAPs) were used to obtain global patterns of DNA methylation. The observed epigenetic profiles showed a high level of differentiation that grouped vineyards by their area of provenance despite the low genetic differentiation between vineyards and sub-regions. Pairwise epigenetic distances between vineyards indicate that the main contributor (23–24%) to the detected variability is associated to the distribution of the vineyards on the N–S axis. Analysis of the methylation profiles of vineyards pruned with the same system increased the positive correlation observed between geographic distance and epigenetic distance suggesting that pruning system affects inter-vineyard epigenetic differentiation. Finally, methylation sensitive genotyping by sequencing identified 3,598 differentially methylated genes in grapevine leaves that were assigned to 1,144 unique gene ontology terms of which 8.6% were associated with response to environmental stimulus. Our results suggest that DNA methylation differences between vineyards and sub-regions within The Barossa are influenced both by the geographic location and, to a lesser extent, by pruning system. Finally, we discuss how epigenetic variability can be used as a tool to understand and potentially modulate terroir in grapevine. PMID:29163587

  16. Control of Linepithema micans (Hymenoptera: Formicidae) and Eurhizococcus brasiliensis (Hemiptera: Margarodidae) in Vineyards Using Toxic Baits.

    PubMed

    Nondillo, Aline; Andzeiewski, Simone; Bello Fialho, Flávio; Bueno, Odair Correa; Botton, Marcos

    2016-08-01

    Linepithema micans (Forel) (Hymenoptera: Formicidae) is the main ant species responsible for dispersal of Eurhizococcus brasiliensis (Wille) (Hemiptera: Margarodidae), a root scale that damages grapevines in southern Brazil. The effects of different formulations of toxic baits based on boric acid and hydramethylnon to control L. micans and E. brasiliensis were evaluated. Toxic baits with boric acid (1.0%) mixed in different concentrations of inverted sugar (20%, 30%, and 40%), and hydramethylnon, mixed with sardines (paste), cassava flour and peanut, brown sugar (sucrose), or sardine oil-based gel, were evaluated in a greenhouse and in the field. In the greenhouse experiment, the number of foraging ants was significantly reduced in the pots where the hydramethylnon in sardine paste (Solid S), sardine oil-brown sugar-based gel (GEL SAM), and peanut oil-brown-sugar gel (GEL AM) formulations were applied. The GEL SAM toxic bait effectively reduced the infestation of L. micans, and could be used for indirect control of E. brasiliensis on young grapevines. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Detection of Nepovirus Vector and Nonvector Xiphinema Species in Grapevine.

    PubMed

    Van Ghelder, C; Reid, A; Kenyon, D; Esmenjaud, D

    2015-01-01

    Fanleaf degeneration is considered the most damaging viral disease of grapevine. The two major nepoviruses involved are Grapevine fanleaf virus (GFLV) and Arabis mosaic virus (ArMV) which are respectively and specifically transmitted by the dagger nematodes Xiphinema index and X. diversicaudatum. The methods described below are aimed at detecting four prevalent grapevine Xiphinema species: the vector species previously mentioned and two nonvector species X. vuittenezi and X. italiae.

  18. Characterization of the Xylella fastidiosa PD1671 Gene Encoding Degenerate c-di-GMP GGDEF/EAL Domains, and Its Role in the Development of Pierce’s Disease

    PubMed Central

    Cursino, Luciana; Athinuwat, Dusit; Patel, Kelly R.; Galvani, Cheryl D.; Zaini, Paulo A.; Li, Yaxin; De La Fuente, Leonardo; Hoch, Harvey C.; Burr, Thomas J.; Mowery, Patricia

    2015-01-01

    Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases including Pierce’s disease of grapevines. X. fastidiosa is thought to induce disease by colonizing and clogging xylem vessels through the formation of cell aggregates and bacterial biofilms. Here we examine the role in X. fastidiosa virulence of an uncharacterized gene, PD1671, annotated as a two-component response regulator with potential GGDEF and EAL domains. GGDEF domains are found in c-di-GMP diguanylate cyclases while EAL domains are found in phosphodiesterases, and these domains are for c-di-GMP production and turnover, respectively. Functional analysis of the PD1671 gene revealed that it affected multiple X. fastidiosa virulence-related phenotypes. A Tn5 PD1671 mutant had a hypervirulent phenotype in grapevines presumably due to enhanced expression of gum genes leading to increased exopolysaccharide levels that resulted in elevated biofilm formation. Interestingly, the PD1671 mutant also had decreased motility in vitro but did not show a reduced distribution in grapevines following inoculation. Given these responses, the putative PD1671 protein may be a negative regulator of X. fastidiosa virulence. PMID:25811864

  19. Characterization of the Xylella fastidiosa PD1671 gene encoding degenerate c-di-GMP GGDEF/EAL domains, and its role in the development of Pierce's disease.

    PubMed

    Cursino, Luciana; Athinuwat, Dusit; Patel, Kelly R; Galvani, Cheryl D; Zaini, Paulo A; Li, Yaxin; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J; Mowery, Patricia

    2015-01-01

    Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases including Pierce's disease of grapevines. X. fastidiosa is thought to induce disease by colonizing and clogging xylem vessels through the formation of cell aggregates and bacterial biofilms. Here we examine the role in X. fastidiosa virulence of an uncharacterized gene, PD1671, annotated as a two-component response regulator with potential GGDEF and EAL domains. GGDEF domains are found in c-di-GMP diguanylate cyclases while EAL domains are found in phosphodiesterases, and these domains are for c-di-GMP production and turnover, respectively. Functional analysis of the PD1671 gene revealed that it affected multiple X. fastidiosa virulence-related phenotypes. A Tn5 PD1671 mutant had a hypervirulent phenotype in grapevines presumably due to enhanced expression of gum genes leading to increased exopolysaccharide levels that resulted in elevated biofilm formation. Interestingly, the PD1671 mutant also had decreased motility in vitro but did not show a reduced distribution in grapevines following inoculation. Given these responses, the putative PD1671 protein may be a negative regulator of X. fastidiosa virulence.

  20. Editing of the grapevine mitochondrial cytochrome b mRNA and molecular modeling of the protein.

    PubMed

    Islas-Osuna, María A; Silva-Moreno, Begonia; Caceres-Carrizosa, Nidia; García-Robles, Jesús M; Sotelo-Mundo, Rogerio R; Yepiz-Plascencia, Gloria M

    2006-05-01

    Cytochrome b (COB), the central catalytic subunit of ubiquinol cytochrome c reductase, is a component of the transmembrane electron transfer chain that generates proton motive force. Some plant COB mRNAs are processed by RNA editing, which changes the gene coding sequence. This report presents the sequences of the grapevine (Vitis vinifera L.) mitochondrial gene for apocytochrome b (cob), the edited mRNA and the deduced protein. Grapevine COB is 393 amino acids long and is 98% identical to homologs in rapeseed, Arabidopsis thaliana and Oenothera sp. Twenty-one C-U editing sites were identified in the grapevine cob mRNA, resulting in 20 amino acid changes. These changes increase the overall hydrophobicity of the protein and result in a more conserved protein. Molecular modeling of grapevine COB shows that residues changed by RNA editing fit the secondary structure characteristic of an integral membrane protein. This is the first complete mitochondrial gene reported for grapevine. Novel RNA editing sites were identified in grapevine cob, which have not been previously reported for other plants.

  1. Control of Pierce's Disease by Phage

    PubMed Central

    Das, Mayukh; Bhowmick, Tushar Suvra; Ahern, Stephen J.; Young, Ry; Gonzalez, Carlos F.

    2015-01-01

    Pierce’s Disease (PD) of grapevines, caused by Xylella fastidiosa subsp. fastidiosa (Xf), is a limiting factor in the cultivation of grapevines in the US. There are presently no effective control methods to prevent or treat PD. The therapeutic and prophylactic efficacy of a phage cocktail composed of four virulent (lytic) phages was evaluated for control of PD. Xf levels in grapevines were significantly reduced in therapeutically or prophylactically treated grapevines. PD symptoms ceased to progress one week post-therapeutic treatment and symptoms were not observed in prophylactically treated grapevines. Cocktail phage levels increased in grapevines in the presence of the host. No in planta phage-resistant Xf isolates were obtained. Moreover, Xf mutants selected for phage resistance in vitro did not cause PD symptoms. Our results indicate that phages have great potential for biocontrol of PD and other economically important diseases caused by Xylella. PMID:26107261

  2. Distribution and Occurrence of Fungi Associated with Grapevine Trunk Diseases in Northeastern American Vineyards.

    USDA-ARS?s Scientific Manuscript database

    Winegrape production in northeastern America is a relatively new, developing industry. Concord (Vitis labruscana) has been the main grape grown for juice production. However, in recent years New York wine production (V. vinifera) has been recognized nationwide for their quality and typicity. Vitis v...

  3. DNA phylogeny, morphology and pathogenicity of Botryosphaeria species on grapevines.

    PubMed

    van Niekerk, Jan M; Crous, Pedro W; Groenewald, J Z Ewald; Fourie, Paul H; Halleen, Francois

    2004-01-01

    Several species of Botr yosphaeria are known to occur on grapevines, causing a wide range of disorders including bud mortality, dieback, brown wood streaking and bunch rot. In this study the 11 Botryosphaeria spp. associated with grapevines growing in various parts of the world, but primarily in South Africa, are distinguished based on morphology, DNA sequences (ITS-1, 5.8S, ITS-2 and EF1-α) and pathological data. Botryosphaeria australis, B. lutea, B. obtusa, B. parva, B. rhodina and a Diplodia sp. are confirmed from grapevines in South Africa, while Diplodia porosum, Fusicoccum viticlavatum and F. vitifusiforme are described as new. Although isolates of B. dothidea and B. stevensii are confirmed from grapevines in Portugal, neither of these species occurred in South Africa, nor were any isolates of B. ribis confirmed from grapevines. All grapevine isolates from Portugal, formerly presumed to be B. ribis, are identified as B. parva based on their EF1-α equence data. From artificial inoculations on grapevine shoots, we conclude that B. australis, B. parva, B. ribis and B. stevensii are more virulent than the other species studied. The Diplodia sp. collected from grapevine canes is morphologically similar but phylogenetically distinct from D. sarmentorum. Diplodia sarmentorum is confirmed as anamorph of Otthia spiraeae, the type species of the genus Otthia (Botryosphaeriaceae). A culture identified as O. spiraeae clustered within Botryosphaeria and thus is regarded as probable synonym. These findings confirm earlier suggestions that the generic concept of Botryosphaeria should be expanded to include genera with septate ascospores and Diplodia anamorphs.

  4. Foreword: Special issue on fungal grapevine diseases

    USDA-ARS?s Scientific Manuscript database

    An impressively large proportion of fungicides applied in European, North American and Australian agriculture has been used to manage grapevine powdery mildew (Erysiphe necator), grapevine downy mildew (Plasmopara viticola), and botrytis bunch rot (Botrytis cinerea). These fungal and oomycetous plan...

  5. Modeling deployment of Pierce’s disease resistant grapevines

    USDA-ARS?s Scientific Manuscript database

    Deployment of Pierce’s disease resistant grapevines is a key solution to mitigating economic losses caused by Xylella fastidiosa. While Pierce’s disease resistant grapevines under development display mild symptoms and have lower bacterial populations than susceptible varieties, all appear to remain ...

  6. More Than Rumors. Understanding the Organizational Grapevine.

    ERIC Educational Resources Information Center

    Zaremba, Alan

    Because the grapevine can precipitate managerial nightmares (employee resentment, distorted messages, instant diffusion of incendiary rumors), managers are well-advised to study this informal communications network and diffuse its organizational impact. This paper discusses the development, accuracy, resilience, and management of the grapevine.…

  7. Advances on Fungal Phytotoxins and Their Role in Grapevine Trunk Diseases.

    PubMed

    Masi, Marco; Cimmino, Alessio; Reveglia, Pierluigi; Mugnai, Laura; Surico, Giuseppe; Evidente, Antonio

    2018-06-20

    Grapevines are produced worldwide with important impact on local economies. Several biotic stresses induce serious diseases of grapevine, which severely affect the quantity and quality of production. One of the most important problems of vineyards worldwide is the high incidence of grapevine trunk diseases (GTD) induced by fungi belonging to several genera. Environmentally friendly methods for GTD control are being studied. This perspective offers an advanced overview on the fungal phytotoxins involved in GTD and their eventual role in the development of disease symptoms.

  8. Global transcriptome analysis of grapevine (Vitis vinifera L.) leaves under salt stress reveals differential response at early and late stages of stress in table grape cv. Thompson Seedless.

    PubMed

    Upadhyay, Anuradha; Gaonkar, Tulsi; Upadhyay, Ajay Kumar; Jogaiah, Satisha; Shinde, Manisha P; Kadoo, Narendra Y; Gupta, Vidya S

    2018-05-31

    Among the different abiotic stresses, salt stress has a significant effect on the growth and yield of grapevine (Vitis vinifera L.). In this study, we employed RNA sequence based transcriptome analysis to study salinity stress response in grape variety Thompson Seedless. Salt stress adversely affected the growth related and physiological parameters and the effect on physiological parameters was significant within 10 days of stress imposition. A total of 343 genes were differentially expressed in response to salt stress. Among the differentially expressed genes (DEGs) only 42 genes were common at early and late stages of stress. The gene enrichment analysis revealed that GO terms related to transcription factors were over-represented. Among the DEGs, 52 were transcription factors belonging to WRKY, EREB, MYB, NAC and bHLH families. Salt stress significantly affected several pathways like metabolic pathways, biosynthesis of secondary metabolites, membrane transport development related pathways etc. 343 DEGs were distributed on all the 19 chromosomes, however clustered regions of DEGs were present on chromosomes 2, 5, 6 and 12 suggesting probable QTLs for imparting tolerance to salt and other abiotic stresses. Real-time PCR of selected genes in control and treated samples of grafted and own root vines demonstrated that rootstock influenced expression of salt stress responsive genes. Microsatellite regions were identified in ten selected salt responsive genes and highly polymorphic markers were identified using fifteen grape genotypes. This information will be useful for the identification of key genes involved in salt stress tolerance in grape. The identified DEGs could also be useful for genome wide analysis for the identification of polymorphic markers for their subsequent use in molecular breeding for developing salt tolerant grape genotypes. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Cost of cutting grapevines before logging

    Treesearch

    H. Clay Smith; Paul M. Smithson

    1975-01-01

    To reduce damage to hardwood stems by grapevines, it is recommended that grapevines be cut near ground level several years before the harvest cutting. Cost of completing this practice on 117 acres supporting 22 vines per acre was found to be about $3.50 per acre.

  10. Evaluation of grapevine as a host for the glassy-winged sharpshooter

    USDA-ARS?s Scientific Manuscript database

    Grapevine was evaluated as a feeding and oviposition host for the glassy-winged sharpshooter. Two sets of experiments were conducted. The first set compared performance and preference of glassy-winged sharpshooter females for grapevine (cv. Chardonnay) versus cowpea (Vigna unguiculata cultivar black...

  11. Spatio-temporal expression of miRNA159 family members and their GAMYB target gene during the modulation of gibberellin-induced grapevine parthenocarpy.

    PubMed

    Wang, Chen; Jogaiah, Sudisha; Zhang, WenYing; Abdelrahman, Mostafa; Fang, Jing Gui

    2018-06-27

    Grapevine, Vitis vinifera, is an important economic fruit crop that is highly sensitive to gibberellin (GA), and the exogenous application of GA can efficiently induce grapevine parthenocarpy. However, the molecular mechanisms underlying this process remain elusive. In this study, morphological changes during flower development in response to GA treatments were examined in the 'Zuijinxiang' cultivar. To obtain insights into the roles of miRNA159s in GA-induced grapevine parthenocarpy, VvmiR159a, VvmiR159b, VvmiR159c, and their target gene VvGAMYB were isolated, sequenced and characterized. Spatial-temporal expression analyses showed that VvmiR159c exhibited the highest expression levels at 4 d before flowering, followed by a gradual decrease, while VvGAMYB displayed an opposite pattern of expression with the lowest expression at the corresponding stage in response to GA treatment. A cleavage interaction between VvmiR159s and VvGAMYB and variations of their cleavage roles were confirmed in grapevine floral development. In addition, the potential roles of VvmiR159s in GA signaling were investigated through DELLA-protein repressors, indicating that GA-DELLA (SLR1)-VvmiR159c-VvGAMYB is the key signaling regulatory module in grapevine. Our findings provide novel insights into the GA-responsive roles of VvmiR159s in modulating grapevine floral development, which have important implications for the molecular breeding of high-quality seedless grapevine berry.

  12. Grape (Vitis spp.)- Grapevine red blotch disease

    USDA-ARS?s Scientific Manuscript database

    This disease is caused by Grapevine red blotch-associated virus (GRBaV), which was first reported in 2012 from New York and subsequently in California, Washington, Oregon, Idaho, and elsewhere in the United States The discovery occurred when grapevines with red leaf symptoms that tested negative for...

  13. Procedure for collecting and packaging grapevine samples

    USDA-ARS?s Scientific Manuscript database

    Grapevine yellows (GY) is a term that is used to refer to any of several diseases of grapevine (Vitis vinifera) that are caused by phytoplasmas. Around the globe, diverse ‘Candidatus Phytoplasma’ species cause indistinguishable disease symptoms in V. vinifera and are spread by different species of ...

  14. Genetics of downy mildew resistance in two interspecific hybrid grapevine families

    USDA-ARS?s Scientific Manuscript database

    Due to lack of co-evolution with Plasmopara viticola, the causal pathogen of grapevine downy mildew, nearly all cultivated grapevines are susceptible to downy mildew, whereas their wild relatives are frequently resistant. In order to find QTL for downy mildew resistance and susceptibility, we perfor...

  15. Grapevines undergo varying shifts in secondary metabolic profiles when infected with Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Pierce’s disease (PD) is a devastating disease of grapevine caused by the bacterial pathogen Xylella fastidiosa (Xf). Key to the development and optimization of PD-tolerant grape cultivars is improved understanding about how grapevines defend themselves against Xf. This study complements histologica...

  16. Effect of detergent on the quantification of grapevine downy mildew Sporangia from leaf discs

    USDA-ARS?s Scientific Manuscript database

    Grapevine downy mildew (DM), caused by the oomycete Plasmopara viticola (Berk. & Curt.) Berlese & de Toni, is a major disease, especially in humid viticultural areas. Development of resistant cultivars is an important objective for grapevine breeding. In order to establish a reliable and inexpensive...

  17. Arthropods vector grapevine trunk disease pathogens.

    PubMed

    Moyo, P; Allsopp, E; Roets, F; Mostert, L; Halleen, F

    2014-10-01

    Arthropod-mediated dispersal of pathogens is known in many cropping systems but has never been demonstrated for grapevine trunk disease pathogens. Arthropods from vineyards were screened for the presence of pathogens associated with Petri disease and esca using cultural and molecular techniques. The ability of the most abundant pathogen-carrying species to inoculate healthy grapevine vascular tissues was also determined. Millipedes and ants were allowed to associate with a DsRed- Express-transformed Phaeomoniella chlamydospora, after which they were exposed to freshly pruned healthy grapevines under controlled conditions and wounds were monitored for subsequent infection. In addition, the possibility of millipede excreta, commonly found on pruning wounds in the field, to act as inoculum source was determined. A diverse arthropod fauna was associated with declining grapevines and many of these carried trunk disease pathogens. However, spiders, the ant Crematogaster peringueyi, and the millipede Ommattoiulus moreleti were the most abundant pathogen carriers. The ant and millipede species fed on pruning wound sap and effectively transmitted trunk disease pathogens. Millipede excreta contained viable spores of Phaeomoniella chlamydospora and may serve as an inoculum source. Numerous arthropods, including beneficial predators, are potential vectors of grapevine trunk disease pathogens. Our results highlight the need for an integrated approach, including targeted management of ants and millipedes at the time of pruning, to limit the spread of grapevine trunk diseases.

  18. The role of rain in dispersal of the primary inoculum of Plasmopara viticola.

    PubMed

    Rossi, Vittorio; Caffi, Tito

    2012-02-01

    Although primary infection of grapevines by Plasmopara viticola requires splash dispersal of inoculum from soil to leaves, little is known about the role of rain in primary inoculum dispersal. Distribution of rain splashes from soil to grapevine canopy was evaluated over 20 rain periods (0.2 to 64.2 mm of rain) with splash samplers placed within the canopy. Samplers at 40, 80, and 140 cm above the soil caught 4.4, 0.03, and 0.003 drops/cm(2) of sampler area, respectively. Drops caught at 40 and 80 cm (1.5 cm in diameter) were larger than drops at 140 cm (1.3 cm). Leaf coverage by splashed drops, total drop number, and drop size increased with an increase in the maximum intensity of rain (mm/h) during any rain period. Any rainfall led to infection in potted grapevines placed outside on leaf litter containing oospores, if the litter contained germinated oospores at the time of rain; infection severity was unrelated to rain amount or intensity. Results from vineyards also indicate that any rain can carry P. viticola inoculum from soil to leaves and should be considered a splash event in disease prediction systems. Sampling for early disease detection should focus on the lower canopy, where the probability of splash impact is greatest.

  19. Mapping of nematode distribution and assessment of its ecological status using GIS techniques in Plovdiv region, Bulgaria.

    PubMed

    Bileva, T; Arnaudova, Zh

    2011-01-01

    The current investigation was carried out in selected vineyards in Plovdiv region, South Bulgaria. The GIS database was created including factors influenced on nematode distribution in the soil. The plant-parasitic nematodes from family Longidoridae associated with grapevine and soil type of the region were described. The impact of longidorids as virus vectors and some ecological aspects of their occurrence in vineyards in South Bulgaria are discussed.

  20. Performance of a New Model for Predicting End of Flowering Date (bbch 69) of Grapevine (Vitis Vinifera L.)

    NASA Astrophysics Data System (ADS)

    Gentilucci, Matteo

    2017-04-01

    The end of flowering date (BBCH 69) is an important phenological stage for grapevine (Vitis Vinifera L.), in fact up to this date the growth is focused on the plant and gradually passes on the berries through fruit set. The aim of this study is to perform a model to predict the date of the end of flowering (BBCH69) for some grapevine varieties. This research carried out using three cultivars of grapevine (Maceratino, Montepulciano, Sangiovese) in three different locations (Macerata, Morrovalle and Potenza Picena), places of an equal number of wine farms for the time interval between 2006 and 2013. In order to have reliable temperatures for each location, the data of 6 weather stations near these farms have been interpolated using cokriging methods with elevation as independent variable. The procedure to predict the end of flowering date starts with an investigation of cardinal temperatures typical of each grapevine cultivar. In fact the analysis is characterized by four temperature thresholds (cardinals): minimum activity temperature (TCmin = below this temperature there is no growth for the plant), lower optimal temperature (TLopt = above this temperature there is maximum growth), upper optimal temperature (TUopt = below this temperature there is maximum growth) and maximum activity temperature (TC max = above this temperature there is no growth). Thus this model take into consideration maximum, mean and minimum daily temperatures of each location, relating them with the four above mentioned cultivar temperature thresholds. In this way it has been obtained some possible cases (32) corresponding to as many equations, depending on the position of temperatures compared with the thresholds, in order to calculate the amount of growing degree units (GDU) for each day. Several iterative tests (about 1000 for each cultivar) have been performed, changing the values of temperature thresholds and GDU in order to find the best possible combination which minimizes error between observed and predicted days from budburst to end of flowering. It has been assessed the minimization of error for the predicted dates compared with real ones, calculating some statistical indexes as root mean square error, mean absolute error and coefficient of variation. The procedure led to the identification of four cardinal temperatures and the amount of GDU for each cultivar between BBCH01 (budburst) and BBCH69 (end of flowering). In conclusion, this research has achieved some goals such as the plant response to temperature (same cardinal temperatures for Maceratino and Sangiovese but higher ones for Montepulciano), the interval ranging of growing degree units (from 35 to 38) and the differences between observed and predicted days (ranged from 2 to 3.5), for each grape varieties.

  1. Grapevine phenolics in xylem sap and tissues are significantly altered during infection by Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Pierce’s disease of grapevine (PD), caused by the bacterial pathogen Xylella fastidiosa (X.f.), remains a serious problem for grape production in California and elsewhere. This research examined induction of phenolic compounds in grapevines (cv. Thompson Seedless) infected with X.f. over a six month...

  2. Xylella fastidiosa infection of grapevines affects host secondary metabolite and defense-related protein levels within xylem

    USDA-ARS?s Scientific Manuscript database

    Pierce’s disease of grapevine is a serious threat to grape production and is caused by the xylem-dwelling bacterial pathogen Xylella fastidiosa. Microscopy studies have documented morphological changes to grapevine xylem due to infection by X. fastidiosa. Comparatively, less is known about the bi...

  3. Detection of Grapevine leafroll-associated virus 7 using real-time PCR and conventional RT-PCR

    USDA-ARS?s Scientific Manuscript database

    Grapevine leafroll-associated virus 7 (GLRaV-7) is an unassigned member in the Closteroviridae family that was first recorded in an asymptomatic white-berried grapevine cultivar from Albania. In California, the virus has been detected in several cultivars including Chardonnay, Merlot, Pinot Noir, Em...

  4. Novel Seimatosporium species from grapevine in northern California and their interactions with fungal pathogens involved in the trunk-disease complex

    USDA-ARS?s Scientific Manuscript database

    Seimatosporium species and closely related ‘pestalotioid fungi’ have been isolated from vineyards around the world, but their ecological status in grapevine wood is not equivocal. To determine their involvement in the grapevine trunk-disease complex, we tested the pathogenicity of California isolate...

  5. Grapevine fleck virus-like viruses in Vitis.

    PubMed

    Sabanadzovic, S; Abou-Ghanem, N; Castellano, M A; Digiaro, M; Martelli, G P

    2000-01-01

    Two sets of degenerate primers for the specific amplification of 572-575 nt and 386 nt segments of the methyltransferase and RNA- dependent RNA polymerase cistrons of members of the genera Tymovirus and Marafivirus and of the unassigned virus Grapevine fleck virus (GFkV) were designed on the basis of available sequences. These primers were used for amplifying and subsequent cloning and sequencing part of the open reading frame 1 of the genome of GFkV, Grapevine asteroid mosaic-associated virus (GAMaV) and of another previously unreported virus, for which the name Grapevine red globe virus (GRGV) is proposed. Computer-assisted analysis of the amplified genome portions showed that the three grapevine viruses are phylogenetically related with one another and with sequenced tymoviruses and marafiviruses. The relationships with tymoviruses was confirmed by the type of ultrastructural modifications induced in the host cells. RdRp-specific degenerate primers were successfully used for the aspecific detection of the three viruses in crude grapevine sap extracts. Specific virus identification was obtained with RT-PCR using antisense virus-specific primers.

  6. A Stress-Inducible Resveratrol O-Methyltransferase Involved in the Biosynthesis of Pterostilbene in Grapevine1

    PubMed Central

    Schmidlin, Laure; Poutaraud, Anne; Claudel, Patricia; Mestre, Pere; Prado, Emilce; Santos-Rosa, Maria; Wiedemann-Merdinoglu, Sabine; Karst, Francis; Merdinoglu, Didier; Hugueney, Philippe

    2008-01-01

    Stilbenes are considered the most important phytoalexin group in grapevine (Vitis vinifera) and they are known to contribute to the protection against various pathogens. The main stilbenes in grapevine are resveratrol and its derivatives and, among these, pterostilbene has recently attracted much attention due both to its antifungal and pharmacological properties. Indeed, pterostilbene is 5 to 10 times more fungitoxic than resveratrol in vitro and recent studies have shown that pterostilbene exhibits anticancer, hypolipidemic, and antidiabetic properties. A candidate gene approach was used to identify a grapevine resveratrol O-methyltransferase (ROMT) cDNA and the activity of the corresponding protein was characterized after expression in Escherichia coli. Transient coexpression of ROMT and grapevine stilbene synthase in tobacco (Nicotiana benthamiana) using the agroinfiltration technique resulted in the accumulation of pterostilbene in tobacco tissues. Taken together, these results showed that ROMT was able to catalyze the biosynthesis of pterostilbene from resveratrol both in vitro and in planta. ROMT gene expression in grapevine leaves was induced by different stresses, including downy mildew (Plasmopara viticola) infection, ultraviolet light, and AlCl3 treatment. PMID:18799660

  7. ABCC1, an ATP Binding Cassette Protein from Grape Berry, Transports Anthocyanidin 3-O-Glucosides[W][OA

    PubMed Central

    Francisco, Rita Maria; Regalado, Ana; Ageorges, Agnès; Burla, Bo J.; Bassin, Barbara; Eisenach, Cornelia; Zarrouk, Olfa; Vialet, Sandrine; Marlin, Thérèse; Chaves, Maria Manuela; Martinoia, Enrico; Nagy, Réka

    2013-01-01

    Accumulation of anthocyanins in the exocarp of red grapevine (Vitis vinifera) cultivars is one of several events that characterize the onset of grape berry ripening (véraison). Despite our thorough understanding of anthocyanin biosynthesis and regulation, little is known about the molecular aspects of their transport. The participation of ATP binding cassette (ABC) proteins in vacuolar anthocyanin transport has long been a matter of debate. Here, we present biochemical evidence that an ABC protein, ABCC1, localizes to the tonoplast and is involved in the transport of glucosylated anthocyanidins. ABCC1 is expressed in the exocarp throughout berry development and ripening, with a significant increase at véraison (i.e., the onset of ripening). Transport experiments using microsomes isolated from ABCC1-expressing yeast cells showed that ABCC1 transports malvidin 3-O-glucoside. The transport strictly depends on the presence of GSH, which is cotransported with the anthocyanins and is sensitive to inhibitors of ABC proteins. By exposing anthocyanin-producing grapevine root cultures to buthionine sulphoximine, which reduced GSH levels, a decrease in anthocyanin concentration is observed. In conclusion, we provide evidence that ABCC1 acts as an anthocyanin transporter that depends on GSH without the formation of an anthocyanin-GSH conjugate. PMID:23723325

  8. Uptake and transport of radioactive cesium and strontium into grapevines after leaf contamination

    NASA Astrophysics Data System (ADS)

    Zehnder, H. J.; Kopp, P.; Eikenberg, J.; Feller, U.; Oertli, J. J.

    1995-07-01

    From 1989 to 1993 the foliar uptake of radioactive strontium (Sr-85) and cesium (Cs-134) by selected leaves of grapevine plants and the subsequent redistribution within the plants was examined under controlled conditions in a greenhouse. The radionuclides were applied as chlorides. These plants were grown in large pots containing a mixture of local soil and peat. Plant and soil samples were analyzed throughout the growing season and also during the following vegetation period. Only traces of the applied radiostrontium were taken up by the leaves. This element was essentially not redistributed within the plants. In contrast, radiocesium was easily taken up through the leaf surface, transported to other plant parts and to some extent released from the roots into the soil. Cesium reaching the soil may interact with clay particles causing a very reduced availability for plants. Therefore the soil may act as a long-term sink for radiocesium. On the other hand, grape berries represent transient sinks. The cesium levels in the berries decreased again in a late phase of maturation, but the mechanisms causing this loss are not yet identified. During the second vegetation period, only a very minor proportion of the radiocesium taken up previously by the plants was present in the above ground parts.

  9. Identification and characterization of Pestalotiopsis-like fungi related to grapevine diseases in China.

    PubMed

    Jayawardena, Ruvishika S; Zhang, Wei; Liu, Mei; Maharachchikumbura, Sajeewa S N; Zhou, Ying; Huang, JinBao; Nilthong, Somrudee; Wang, ZhongYue; Li, XingHong; Yan, JiYe; Hyde, Kevin D

    2015-05-01

    Pestalotiopsis-like fungi are an important plant pathogenic genus causing postharvest fruit rot and trunk diseases in grapevine in many countries. Pestalotiopsis-like fungi diseases were studied in vineyards in nine provinces across China. Multi-gene (ITS, β-tubulin and tef1) analysis coupled with morphology showed that a Neopestalotiopsis sp. and Pestalotiopsis trachicarpicola are associated in causing grapevine fruit rot and trunk diseases in China. Pestalotiopsis trachicarpicola is reported as the causative agent of grapevine diseases in the world for the first time. Neopestalotiopsis sp. caused significantly longer lesions than the other taxon present. This study represents the first attempt to identify and characterize the Pestalotiopsis-like fungi causing grapevine diseases in China using both morphological and molecular approaches. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  10. Transcriptome analyses of the Dof-like gene family in grapevine reveal its involvement in berry, flower and seed development.

    PubMed

    da Silva, Danielle Costenaro; da Silveira Falavigna, Vítor; Fasoli, Marianna; Buffon, Vanessa; Porto, Diogo Denardi; Pappas, Georgios Joannis; Pezzotti, Mario; Pasquali, Giancarlo; Revers, Luís Fernando

    2016-01-01

    The Dof (DNA-binding with one finger) protein family spans a group of plant transcription factors involved in the regulation of several functions, such as plant responses to stress, hormones and light, phytochrome signaling and seed germination. Here we describe the Dof-like gene family in grapevine (Vitis vinifera L.), which consists of 25 genes coding for Dof. An extensive in silico characterization of the VviDofL gene family was performed. Additionally, the expression of the entire gene family was assessed in 54 grapevine tissues and organs using an integrated approach with microarray (cv Corvina) and real-time PCR (cv Pinot Noir) analyses. The phylogenetic analysis comparing grapevine sequences with those of Arabidopsis, tomato, poplar and already described Dof genes in other species allowed us to identify several duplicated genes. The diversification of grapevine DofL genes during evolution likely resulted in a broader range of biological roles. Furthermore, distinct expression patterns were identified between samples analyzed, corroborating such hypothesis. Our expression results indicate that several VviDofL genes perform their functional roles mainly during flower, berry and seed development, highlighting their importance for grapevine growth and production. The identification of similar expression profiles between both approaches strongly suggests that these genes have important regulatory roles that are evolutionally conserved between grapevine cvs Corvina and Pinot Noir.

  11. Grapevine (Vitis vinifera L.).

    PubMed

    Bouquet, Alain; Torregrosa, Laurent; Iocco, Pat; Thomas, Mark R

    2006-01-01

    Grapevine (Vitis) is considered to be one of the major fruit crops in the world based on hectares cultivated and economic value. Grapes are used not only for wine but also for fresh fruit, dried fruit, and juice production. Wine is by far the major product of grapes and the focus of this chapter is on wine grape cultivars. Grapevine cultivars of Vitis vinifera L. have a reputation for producing premium quality wines. These premium quality wines are produced from a small number of cultivars that enjoy a high level of consumer acceptance and are firmly entrenched in the market place because of varietal name branding and the association of certain wine styles and regions with specific cultivars. In light of this situation, grapevine improvement by a transgenic approach is attractive when compared to a classical breeding approach. The transfer of individual traits as single genes with a minimum disruption to the original genome would leave the traditional characteristics of the cultivar intact. However, a reliable transformation system is required for a successful transgenic approach to grapevine improvement. There are three criteria for achieving an efficient Agrobacterium-mediated transformation system: (1) the production of highly regenerative transformable tissue, (2) optimal co-cultivation conditions for both grapevine tissue and Agrobacterium, and (3) an efficient selection regime for transgenic plant regeneration. In this chapter, we describe a grapevine transformation system which meets the above mentioned criteria.

  12. Transcriptome analyses of the Dof-like gene family in grapevine reveal its involvement in berry, flower and seed development

    PubMed Central

    da Silva, Danielle Costenaro; da Silveira Falavigna, Vítor; Fasoli, Marianna; Buffon, Vanessa; Porto, Diogo Denardi; Pappas, Georgios Joannis; Pezzotti, Mario; Pasquali, Giancarlo; Revers, Luís Fernando

    2016-01-01

    The Dof (DNA-binding with one finger) protein family spans a group of plant transcription factors involved in the regulation of several functions, such as plant responses to stress, hormones and light, phytochrome signaling and seed germination. Here we describe the Dof-like gene family in grapevine (Vitis vinifera L.), which consists of 25 genes coding for Dof. An extensive in silico characterization of the VviDofL gene family was performed. Additionally, the expression of the entire gene family was assessed in 54 grapevine tissues and organs using an integrated approach with microarray (cv Corvina) and real-time PCR (cv Pinot Noir) analyses. The phylogenetic analysis comparing grapevine sequences with those of Arabidopsis, tomato, poplar and already described Dof genes in other species allowed us to identify several duplicated genes. The diversification of grapevine DofL genes during evolution likely resulted in a broader range of biological roles. Furthermore, distinct expression patterns were identified between samples analyzed, corroborating such hypothesis. Our expression results indicate that several VviDofL genes perform their functional roles mainly during flower, berry and seed development, highlighting their importance for grapevine growth and production. The identification of similar expression profiles between both approaches strongly suggests that these genes have important regulatory roles that are evolutionally conserved between grapevine cvs Corvina and Pinot Noir. PMID:27610237

  13. Wild grapevine management

    Treesearch

    H. Clay Smith

    1989-01-01

    Wild grapevines are a problem for forest managers in many areas of the central hardwood forests. The vines grow on a wide range of soil and site conditions but usually are more concentrated on good sites (northern red oak site index 70 and above), on the faster growing more valuable timber. Presently there is more interest and concern in controlling grapevine for the...

  14. Neofusicoccum parvum colonization of the grapevine woody stem triggers asynchronous host responses at the site of infection and in the leaves

    USDA-ARS?s Scientific Manuscript database

    Grapevine trunk diseases cause important economic losses in vineyards worldwide. Neofusicoccum parvum, one of the most aggressive causal agents of the trunk disease Botryosphaeria dieback, colonizes cells and tissues of the grapevine wood, leading to the formation of an internal canker. Symptoms the...

  15. Identification and utilization of a new Erysiphe necator isolate NAFU1 to quickly evaluate powdery mildew resistance in wild Chinese grapevine species using detached leaves.

    PubMed

    Gao, Yu-Rong; Han, Yong-Tao; Zhao, Feng-Li; Li, Ya-Juan; Cheng, Yuan; Ding, Qin; Wang, Yue-Jin; Wen, Ying-Qiang

    2016-01-01

    The most economically important disease of cultivated grapevines worldwide is powdery mildew caused by the biotrophic fungal pathogen Erysiphe necator. To integrate effective genetic resistance into cultivated grapevines, numerous disease resistance screens of diverse Vitis germplasm, including wild species, have been conducted to identify powdery mildew resistance, but the results have been inconsistent. Here, a new powdery mildew isolate that is infectious on grapevines, designated Erysiphe necator NAFU1 (En. NAFU1), was identified and characterized by phylogeny inferred from the internal transcribed spacer (ITS) of pathogen ribosomal DNA sequences. Three classical methods were compared for the maintenance of En. NAFU1, and the most convenient method was maintenance on detached leaves and propagation by contact with infected leaves. Furthermore, controlled inoculations of En. NAFU1 were performed using detached leaves from 57 wild Chinese grapevine accessions to quickly evaluate powdery mildew resistance based on trypan blue staining of leaf sections. The results were compared with previous natural epidemics in the field. Among the screened accessions inoculated with En. NAFU1, 22.8% were resistant, 33.3% were moderately resistant, and 43.9% were susceptible. None of the accessions assessed herein were immune from infection. These results support previous findings documenting the presence of race-specific resistance to E. necator in wild Chinese grapevine. The resistance of wild Chinese grapevine to En. NAFU1 could be due to programmed cell death. The present results suggest that En. NAFU1 isolate could be used for future large-scale screens of resistance to powdery mildew in diverse Vitis germplasms and investigations of the interaction between grapevines and pathogens. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Xylella fastidiosa requires polygalacturonase for colonization and pathogenicity in Vitis vinifera grapevines.

    PubMed

    Roper, M Caroline; Greve, L Carl; Warren, Jeremy G; Labavitch, John M; Kirkpatrick, Bruce C

    2007-04-01

    Xylella fastidiosa is the causal agent of Pierce's disease of grape, an economically significant disease for the grape industry. X. fastidiosa systemically colonizes the xylem elements of grapevines and is able to breach the pit pore membranes separating xylem vessels by unknown mechanisms. We hypothesized that X. fastidiosa utilizes cell wall degrading enzymes to break down pit membranes, based on the presence of genes involved in plant cell wall degradation in the X. fastidiosa genome. These genes include several beta-1,4 endoglucanases, several xylanases, several xylosidases, and one polygalacturonase (PG). In this study, we demonstrated that the pglA gene encodes a functional PG. A mutant in pglA lost pathogenicity and was compromised in its ability to systemically colonize Vitis vinifera grapevines. The results indicate that PG is required for X. fastidiosa to successfully infect grapevines and is a critical virulence factor for X. fastidiosa pathogenesis in grapevine.

  17. Development of duplex SYBR Green I-based real-time quantitative reverse-transcription PCR for detection and discrimination of grapevine viruses

    USDA-ARS?s Scientific Manuscript database

    A SYBR® Green-based real-time quantitative reverse transcription PCR (qRT-PCR) assay in combination with melt curve analysis (MCA) was developed for the detection of nine grapevine viruses. The detection limits for singleplex qRT-PCR for all nine grapevine viruses were determined to be in the range ...

  18. Effectiveness of Natural Antifungal Compounds in Controlling Infection by Grapevine Trunk Disease Pathogens through Pruning Wounds

    PubMed Central

    Cobos, Rebeca; Mateos, Rosa María; Álvarez-Pérez, José Manuel; Olego, Miguel Angel; Sevillano, Silvia; González-García, Sandra; Garzón-Jimeno, Enrique

    2015-01-01

    Grapevine trunk fungal pathogens, such as Diplodia seriata and Phaeomoniella chlamydospora, can infect plants through pruning wounds. They cause grapevine trunk diseases and are involved in grapevine decline. Accordingly, the protection of pruning wounds is crucial for the management of grapevine trunk diseases. The efficacy of different natural antifungals in inhibiting the growth of several fungi causing grapevine trunk diseases was evaluated in vitro. The fungi showing greater in vitro efficacy were tested on autoclaved grape wood assays against D. seriata and P. chlamydospora. Based on results from these assays, chitosan oligosaccharide, vanillin, and garlic extract were selected for further evaluation on pruning wounds inoculated with D. seriata and P. chlamydospora in field trials. A significant decrease in plant mortality was observed after 2 years of growth in the plants treated with the different natural antifungals compared to the mortality rate observed in infected plants that were not treated with antifungals. Also, the infection rate for the inoculated pathogens was significantly reduced in plants treated with the selected natural antifungals. Therefore, natural antifungals represent a promising alternative for disease control and could provide significant economic benefits for the grape-growing industry. PMID:26162882

  19. Overexpression of a thaumatin-like protein gene from Vitis amurensis improves downy mildew resistance in Vitis vinifera grapevine.

    PubMed

    He, Rongrong; Wu, Jiao; Zhang, Yali; Agüero, Cecilia B; Li, Xinlong; Liu, Shaoli; Wang, Chaoxia; Walker, M Andrew; Lu, Jiang

    2017-07-01

    Downy mildew is a highly destructive disease in grapevine production. A gene encoding pathogenesis-related (PR) thaumatin-like protein was isolated from the downy mildew-resistant grapevine "Zuoshan-1," a clonal selection from wild Vitis amurensis Rupr. The predicted thaumatin-like protein (VaTLP) has 225 amino acids and it is acidic, with a calculated isoelectric point of 4.8. The full length of the VaTLP gene was transformed into somatic embryogenic calli of V. vinifera 'Thompson Seedless' via Agrobacterium tumefaciens. Real-time RT-PCR confirmed that the VaTLP gene was expressed at a high level in the transgenic grapevines. Improved resistance of the transgenic lines against downy mildew was evaluated using leaf disks and whole plants inoculated with Plasmopara viticola, the pathogen causing grapevine downy mildew disease. Bioassay of the pathogen showed that both hyphae growth and asexual reproduction were inhibited significantly among the transgenic plants. Histological analysis also confirmed this disease resistance by demonstrating the inhibition and malformation of hyphae development in leaf tissue of the transgenic plants. These results indicated that the accumulation of VaTLP could enhance resistance to P. viticola in transgenic 'Thompson Seedless' grapevines.

  20. Differential expression of genes of Xylella fastidiosa in xylem fluid of citrus and grapevine.

    PubMed

    Shi, Xiangyang; Bi, Jianlong; Morse, Joseph G; Toscano, Nick C; Cooksey, Donald A

    2010-03-01

    Xylella fastidiosa causes a serious Pierce's disease (PD) in grapevine. Xylella fastidiosa cells from a PD strain were grown in a pure xylem fluid of a susceptible grapevine cultivar vs. xylem fluid from citrus, which is not a host for this strain of X. fastidiosa. When grown in grapevine xylem fluid, cells of the PD strain formed clumps and biofilm formed to a greater extent than in citrus xylem fluid, although the PD strain did grow in xylem fluid of three citrus varieties. The differential expression of selected genes of a PD X. fastidiosa strain cultured in the two xylem fluids was analyzed using a DNA macroarray. Compared with citrus xylem fluid, grapevine xylem fluid stimulated the expression of X. fastidiosa genes involved in virulence regulation, such as gacA, algU, xrvA, and hsq, and also genes involved in the biogenesis of pili and twitching motility, such as fimT, pilI, pilU, and pilY1. Increased gene expression likely contributes to PD expression in grapevine, whereas citrus xylem fluid did not support or possibly suppressed the expression of these virulence genes.

  1. Somatic embryogenesis from seeds in a broad range of Vitis vinifera L. varieties: rescue of true-to-type virus-free plants.

    PubMed

    San Pedro, Tània; Gammoudi, Najet; Peiró, Rosa; Olmos, Antonio; Gisbert, Carmina

    2017-11-29

    Somatic embryogenesis is the preferred method for cell to plant regeneration in Vitis vinifera L. However, low frequencies of plant embryo conversion are commonly found. In a previous work we obtained from cut-seeds of a grapevine infected with the Grapevine leafroll associated viruses 1 and 3 (GLRaV-1 and GLRaV-3), high rates of direct regeneration, embryo plant conversion and sanitation. The aim of this study is to evaluate the usefulness of this procedure for regeneration of other grapevine varieties which include some infected with one to three common grapevine viruses (GLRaV-3, Grapevine fanleaf virus (GFLV) and Grapevine fleck virus (GFkV)). As grapevine is highly heterozygous, it was necessary to select from among the virus-free plants those that regenerated from mother tissues around the embryo, (true-to-type). Somatic embryogenesis and plant regeneration were achieved in a first experiment, using cut-seeds from the 14 grapevine varieties Airén, Cabernet Franc, Cabernet Sauvignon, Mencía, Merlot, Monastrell, Petit Verdot, Pinot Blanc (infected by GFLV and GFkV), Pinot Gris, Pinot Meunier, Pinot Noir, Syrah, Tempranillo (infected by GFLV), and Verdil. All regenerated plants were confirmed to be free of GFkV whereas at least 68% sanitation was obtained for GFLV. The SSR profiles of the virus-free plants showed, in both varieties, around 10% regeneration from mother tissue (the same genetic make-up as the mother plant). In a second experiment, this procedure was used to sanitize the varieties Cabernet Franc, Godello, Merlot and Valencí Blanc infected by GLRaV-3, GFkV and/or GFLV. Cut-seeds can be used as explants for embryogenesis induction and plant conversion in a broad range of grapevine varieties. The high regeneration rates obtained with this procedure facilitate the posterior selection of true-to-type virus-free plants. A sanitation rate of 100% was obtained for GFkV as this virus is not seed-transmitted. However, the presence of GLRaV-3 and GFLV in some of the regenerated plants showed that both viruses are seed-transmitted. The regeneration of true-to-type virus-free plants from all infected varieties indicates that this methodology may represent an alternative procedure for virus cleaning in grapevine.

  2. The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria.

    PubMed

    Trdá, Lucie; Fernandez, Olivier; Boutrot, Freddy; Héloir, Marie-Claire; Kelloniemi, Jani; Daire, Xavier; Adrian, Marielle; Clément, Christophe; Zipfel, Cyril; Dorey, Stéphan; Poinssot, Benoit

    2014-03-01

    • The role of flagellin perception in the context of plant beneficial bacteria still remains unclear. Here, we characterized the flagellin sensing system flg22-FLAGELLIN SENSING 2 (FLS2) in grapevine, and analyzed the flagellin perception in the interaction with the endophytic plant growth-promoting rhizobacterium (PGPR) Burkholderia phytofirmans. • The functionality of the grapevine FLS2 receptor, VvFLS2, was demonstrated by complementation assays in the Arabidopsis thaliana fls2 mutant, which restored flg22-induced H₂O₂ production and growth inhibition. Using synthetic flg22 peptides from different bacterial origins, we compared recognition specificities between VvFLS2 and AtFLS2. • In grapevine, flg22-triggered immune responses are conserved and led to partial resistance against Botrytis cinerea. Unlike flg22 peptides derived from Pseudomonas aeruginosa or Xanthomonas campestris, flg22 peptide derived from B. phytofirmans triggered only a small oxidative burst, weak and transient defense gene induction and no growth inhibition in grapevine. Although, in Arabidopsis, all the flg22 epitopes exhibited similar biological activities, the expression of VvFLS2 into the fls2 background conferred differential flg22 responses characteristic for grapevine. • These results demonstrate that VvFLS2 differentially recognizes flg22 from different bacteria, and suggest that flagellin from the beneficial PGPR B. phytofirmans has evolved to evade this grapevine immune recognition system. No claim to original European Union works. New Phytologist © 2013 New Phytologist Trust.

  3. Reproduction 12 years after seed-tree harvest cutting in Appalachian hardwoods

    Treesearch

    H. Clay Smith; Robert L. Rosier; K. P. Hammack

    1976-01-01

    Woody reproduction 12 years after a seed-tree harvest cutting was evaluated for three central Appalachian hardwood sites in West Virginia, including species composition; size, number, and distribution; stem quality; effects of early cultural treatments; and influence of grapevines. Reproduction ranged from 1,250 to 1,700 stems per acre in the 1.0 to 4.9 inch dbh size...

  4. Impacts of Grapevine Leafroll Disease on Fruit Yield and Grape and Wine Chemistry in a Wine Grape (Vitis vinifera L.) Cultivar

    PubMed Central

    Gutha, Linga R.; Larsen, Richard C.; Henick-Kling, Thomas; Harbertson, James F.; Naidu, Rayapati A.

    2016-01-01

    Grapevine leafroll disease (GLD) is an economically important virus disease affecting wine grapes (Vitis vinifera L.), but little is known about its effect on wine chemistry and sensory composition of wines. In this study, impacts of GLD on fruit yield, berry quality and wine chemistry and sensory features were investigated in a red wine grape cultivar planted in a commercial vineyard. Own-rooted Merlot vines showing GLD symptoms and tested positive for Grapevine leafroll-associated virus 3 and adjacent non-symptomatic vines that tested negative for the virus were compared during three consecutive seasons. Number and total weight of clusters per vine were significantly less in symptomatic relative to non-symptomatic vines. In contrast to previous studies, a time-course analysis of juice from grapes harvested at different stages of berry development from symptomatic and non-symptomatic vines indicated more prominent negative impacts of GLD on total soluble solids (TSS) and berry skin anthocyanins than in juice pH and titratable acidity. Differences in TSS between grapes of symptomatic and non-symptomatic vines were more pronounced after the onset of véraison, with significantly lower concentrations of TSS in grapes from symptomatic vines throughout berry ripening until harvest. Wines made from grapes of GLD-affected vines had significantly lower alcohol, polymeric pigments, and anthocyanins compared to corresponding wines from grapes of non-symptomatic vines. Sensory descriptive analysis of 2010 wines indicated significant differences in color, aroma and astringency between wines made from grapes harvested from GLD-affected and unaffected vines. The impacts of GLD on yield and fruit and wine quality traits were variable between the seasons, with greater impacts observed during a cooler season, suggesting the influence of host plant × environment interactions on overall impacts of the disease. PMID:26919614

  5. Impacts of Grapevine Leafroll Disease on Fruit Yield and Grape and Wine Chemistry in a Wine Grape (Vitis vinifera L.) Cultivar.

    PubMed

    Alabi, Olufemi J; Casassa, L Federico; Gutha, Linga R; Larsen, Richard C; Henick-Kling, Thomas; Harbertson, James F; Naidu, Rayapati A

    2016-01-01

    Grapevine leafroll disease (GLD) is an economically important virus disease affecting wine grapes (Vitis vinifera L.), but little is known about its effect on wine chemistry and sensory composition of wines. In this study, impacts of GLD on fruit yield, berry quality and wine chemistry and sensory features were investigated in a red wine grape cultivar planted in a commercial vineyard. Own-rooted Merlot vines showing GLD symptoms and tested positive for Grapevine leafroll-associated virus 3 and adjacent non-symptomatic vines that tested negative for the virus were compared during three consecutive seasons. Number and total weight of clusters per vine were significantly less in symptomatic relative to non-symptomatic vines. In contrast to previous studies, a time-course analysis of juice from grapes harvested at different stages of berry development from symptomatic and non-symptomatic vines indicated more prominent negative impacts of GLD on total soluble solids (TSS) and berry skin anthocyanins than in juice pH and titratable acidity. Differences in TSS between grapes of symptomatic and non-symptomatic vines were more pronounced after the onset of véraison, with significantly lower concentrations of TSS in grapes from symptomatic vines throughout berry ripening until harvest. Wines made from grapes of GLD-affected vines had significantly lower alcohol, polymeric pigments, and anthocyanins compared to corresponding wines from grapes of non-symptomatic vines. Sensory descriptive analysis of 2010 wines indicated significant differences in color, aroma and astringency between wines made from grapes harvested from GLD-affected and unaffected vines. The impacts of GLD on yield and fruit and wine quality traits were variable between the seasons, with greater impacts observed during a cooler season, suggesting the influence of host plant × environment interactions on overall impacts of the disease.

  6. Grapevine dynamics after manual tending of juvenile stands on the Hoosier National Forest, Indiana

    Treesearch

    Robert C. Morrissey; Martin-Michel Gauthier; John A., Jr. Kershaw; Douglass F. Jacobs; Burnell C. Fischer; John R. Siefert

    2008-01-01

    Large woody vines, most notably grapevines, are a source of great concern for forest and wildlife managers in many parts of the Central Hardwood Forest Region of the United States. We examined grapevine dynamics in stands aged 21 - 35 years. The plots, located in regenerated clearcuts in the Hoosier National Forest (HNF), were evaluated for vine control, site, and tree...

  7. Phylogeny of geminivirus coat protein sequences and digital PCR aid in identifying Spissistilus festinus (Say) as a vector of Grapevine red blotch-associated virus

    USDA-ARS?s Scientific Manuscript database

    Grapevine red blotch-associated virus (GRBaV) is a newly identified virus of grapevines, and a putative member of a new genus within the family Geminiviridae. This virus is associated with red blotch disease that was first reported in California in 2008. It affects the profitability of vineyards by ...

  8. Genetic structure and variability of virus populations in cross-protected grapevines superinfected by Grapevine fanleaf virus.

    PubMed

    Vigne, Emmanuelle; Marmonier, Aurélie; Komar, Véronique; Lemaire, Olivier; Fuchs, Marc

    2009-09-01

    Recombination was assessed in a vineyard site in which grapevines cross-protected with mild strains GHu of Grapevine fanleaf virus (GFLV) or Ta of Arabis mosaic virus (ArMV) were superinfected with GFLV field isolates following transmission by the nematode vector Xiphinema index. The genetic structure and variability within RNA2 of isolates from grapevines co-infected with GFLV field isolates and either GFLV-GHu or ArMV-Ta were characterized to identify intra- and interspecies recombinants. Sequence analysis and phylogenetic relationships inferred intraspecies recombination among GFLV field isolates but not between field isolates and GFLV-GHu. SISCAN analysis confirmed a mosaic structure for two GFLV field isolates for which recombination sites were located in the movement protein and coat protein genes. One of the recombinants was found in eight grapevines that were in close spatial proximity within the vineyard site, suggesting its transmission by X. index. No interspecies recombination was detected between GFLV field isolates and ArMV-Ta. Altogether, our findings suggest that mild protective strains GFLV-GHu and ArMV-Ta did not assist the emergence of viable recombinants to detectable level during a 12-year cross-protection trial. To our knowledge, this is the first extensive characterization of the genetic structure and variability of virus isolates in cross-protected plants.

  9. Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease

    PubMed Central

    Qiu, Wenping; Feechan, Angela; Dry, Ian

    2015-01-01

    The most economically important disease of cultivated grapevines worldwide is powdery mildew (PM) caused by the ascomycete fungus Erysiphe necator. The majority of grapevine cultivars used for wine, table grape, and dried fruit production are derived from the Eurasian grape species Vitis vinifera because of its superior aroma and flavor characteristics. However, this species has little genetic resistance against E. necator meaning that grape production is highly dependent on the frequent use of fungicides. The integration of effective genetic resistance into cultivated grapevines would lead to significant financial and environmental benefits and represents a major challenge for viticultural industries and researchers worldwide. This review will outline the strategies being used to increase our understanding of the molecular basis of V. vinifera susceptibility to this fungal pathogen. It will summarize our current knowledge of different resistance loci/genes that have evolved in wild grapevine species to restrict PM infection and assess the potential application of these defense genes in the generation of PM-resistant grapevine germplasm. Finally, it addresses future research priorities which will be important in the rapid identification, evaluation, and deployment of new PM resistance genes which are capable of conferring effective and durable resistance in the vineyard. PMID:26504571

  10. Developmental control of hypoxia during bud burst in grapevine.

    PubMed

    Meitha, Karlia; Agudelo-Romero, Patricia; Signorelli, Santiago; Gibbs, Daniel J; Considine, John A; Foyer, Christine H; Considine, Michael J

    2018-05-01

    Dormant or quiescent buds of woody perennials are often dense and in the case of grapevine (Vitis vinifera L.) have a low tissue oxygen status. The precise timing of the decision to resume growth is difficult to predict, but once committed, the increase in tissue oxygen status is rapid and developmentally regulated. Here, we show that more than a third of the grapevine homologues of widely conserved hypoxia-responsive genes and nearly a fifth of all grapevine genes possessing a plant hypoxia-responsive promoter element were differentially regulated during bud burst, in apparent harmony with resumption of meristem identity and cell-cycle gene regulation. We then investigated the molecular and biochemical properties of the grapevine ERF-VII homologues, which in other species are oxygen labile and function in transcriptional regulation of hypoxia-responsive genes. Each of the 3 VvERF-VIIs were substrates for oxygen-dependent proteolysis in vitro, as a function of the N-terminal cysteine. Collectively, these data support an important developmental function of oxygen-dependent signalling in determining the timing and effective coordination bud burst in grapevine. In addition, novel regulators, including GASA-, TCP-, MYB3R-, PLT-, and WUS-like transcription factors, were identified as hallmarks of the orderly and functional resumption of growth following quiescence in buds. © 2018 John Wiley & Sons Ltd.

  11. Tracking the dispersion of Scaphoideus titanus Ball (Hemiptera: Cicadellidae) from wild to cultivated grapevine: use of a novel mark-capture technique.

    PubMed

    Lessio, F; Tota, F; Alma, A

    2014-08-01

    The dispersion of Scaphoideus titanus Ball adults from wild to cultivated grapevines was studied using a novel mark-capture technique. The crowns of wild grapevines located at a distance from vineyards ranging from 5 to 330 m were sprayed with a water solution of either cow milk (marker: casein) or chicken egg whites (marker: albumin) and insects captured in yellow sticky traps placed on the canopy of grapes were analyzed via an indirect ELISA for markers' identification. Data were subject to exponential regression as a function of distance from wild grapevine, and to spatial interpolation (Inverse Distance Weighted and Kernel interpolation with barriers) using ArcGIS Desktop 10.1 software. The influence of rainfall and time elapsed after marking on markers' effectiveness, and the different dispersion of males and females were studied with regression analyses. Of a total of 5417 insects analyzed, 43% were positive to egg; whereas 18% of 536 tested resulted marked with milk. No influence of rainfall or time elapsed was observed for egg, whereas milk was affected by time. Males and females showed no difference in dispersal. Marked adults decreased exponentially along with distance from wild grapevine and up to 80% of them were captured within 30 m. However, there was evidence of long-range dispersal up to 330 m. The interpolation maps showed a clear clustering of marked S. titanus close to the treated wild grapevine, and the pathways to the vineyards did not always seem to go along straight lines but mainly along ecological corridors. S. titanus adults are therefore capable of dispersing from wild to cultivated grapevine, and this may affect pest management strategies.

  12. Transmission of Grapevine virus A and Grapevine leafroll-associated virus 1 and 3 by Heliococcus bohemicus (Hemiptera: Pseudococcidae) Nymphs From Plants With Mixed Infections.

    PubMed

    Bertin, S; Cavalieri, V; Gribaudo, I; Sacco, D; Marzachì, C; Bosco, D

    2016-08-01

    Mealybugs (Hemiptera: Pseudococcidae) represent a serious threat for viticulture as vectors of phloem-restricted viruses associated with the grapevine rugose wood and leafroll diseases. Heliococcus bohemicus (Šulc) is known to be involved in the spread of these two viral diseases, being a vector of the Grapevine virus A (GVA) and the Grapevine leafroll-associated virus 1 and 3 (GLRaV-1 and GLRaV-3). This study investigated the acquisition and transmission efficiency of H. bohemicus fed on mixed-infected plants. Nymphs were field-collected onto GVA, GLRaV-1, and GLRaV-3 multiple-infected grapevines in two vineyards in North-Western Italy, and were used in transmission experiments under controlled conditions. Even if most of the collected nymphs were positive to at least one virus, transmission occurred only to a low number of test grapevines. The transmission frequency of GLRaV-3 was the highest, whereas GVA was transmitted to few test plants. The transmission of multiple viruses occurred at low rates, and nymphs that acquired all the three viruses then failed to transmit them together. Statistical analyses showed that the three viruses were independently acquired and transmitted by H. bohemicus and neither synergistic nor antagonistic interactions occurred among them. GVA and GLRaVs transmission efficiencies by H. bohemicus were lower than those reported for other mealybug vectors. This finding is consistent with the slow spread of leafroll and rugose wood diseases observed in Northern Italy, where H. bohemicus is the predominant vector species. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Potential hazards from floodflows in Grapevine Canyon, Death Valley National Monument, California and Nevada

    USGS Publications Warehouse

    Bowers, J.C.

    1990-01-01

    Grapevine Canyon is on the western slope of the Grapevine Mountains in the northern part of Death Valley National Monument , California and Nevada. Grapevine Canyon Road covers the entire width of the canyon floor in places and is a frequently traveled route to Scotty 's Castle in the canyon. The region is arid and subject to flash flooding because of infrequent but intense convective storms. When these storms occur, normally in the summer, the resulting floods may create a hazard to visitor safety and property. Historical data on rainfall and floodflow in Grapevine Canyon are sparse. Data from studies made for similar areas in the desert mountains of southern California provide the basis for estimating discharges and the corresponding frequency of floods in the study area. Results of this study indicate that high-velocity flows of water and debris , even at shallow depths, may scour and damage Grapevine Canyon Road. When discharge exceeds 4,900 cu ft/sec, expected at a recurrence interval of between 25 and 50 years, the Scotty 's Castle access road and bridge may be damaged and the parking lot partly inundated. A flood having a 100-year or greater recurrence interval probably would wash out the bridge and present a hazard to the stable and garage buildings but not to the castle buildings, whose foundations are higher than the predicted maximum flood level. (USGS)

  14. Characterization of miRNAs responsive to exogenous ethylene in grapevine berries at whole genome level.

    PubMed

    Zhao, Fanggui; Wang, Chen; Han, Jian; Zhu, Xudong; Li, Xiaopeng; Wang, Xicheng; Fang, Jinggui

    2017-05-01

    MicroRNAs (miRNAs) are critical regulators of various biological and metabolic processes of plants. Numerous miRNAs and their functions have been identified and analyzed in many plants. However, till now, the involvement of miRNAs in the response of grapevine berries to ethylene has not been reported yet. Here, Solexa technology was employed to deeply sequence small RNA libraries constructed from grapevine berries treated with and without ethylene. A total of 124 known and 78 novel miRNAs were identified. Among these miRNAs, 162 miRNAs were clearly responsive to ethylene, with 55 downregulated, 59 upregulated, and 14 unchanged miRNAs detected only in the control. The other 35 miRNAs responsive to ethylene were induced by ethylene and detected only in the ethylene-treated grapevine materials. Expression analysis of 27 conserved and 26 novel miRNAs revealed that 13 conserved and 18 novel ones were regulated by ethylene during the whole development of grapevine berries. High-throughput sequencing and qRT-PCR assays revealed consistent results on the expression results of ethylene-responsive miRNAs. Moreover, 90 target genes for 34 novel miRNAs were predicted, most of which were involved in responses to various stresses, especially like exogenous ethylene treatment. The identified miRNAs may be mainly involved in grapevine berry development and response to various environmental conditions.

  15. 33 CFR 211.102 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of Land Or Interests Therein Acquired for Grapevine, Garza-Little Elm, Benbrook, Belton, and Whitney... the Grapevine, Garza-Little Elm, Benbrook, Belton, and Whitney Reservoir projects, Texas, or for the...

  16. 33 CFR 211.102 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of Land Or Interests Therein Acquired for Grapevine, Garza-Little Elm, Benbrook, Belton, and Whitney... the Grapevine, Garza-Little Elm, Benbrook, Belton, and Whitney Reservoir projects, Texas, or for the...

  17. Discovery and molecular characterization of a novel enamovirus, Grapevine enamovirus-1.

    PubMed

    Silva, João Marcos Fagundes; Al Rwahnih, Maher; Blawid, Rosana; Nagata, Tatsuya; Fajardo, Thor Vinícius Martins

    2017-08-01

    In this study, we describe a novel putative Enamovirus member, Grapevine enamovirus-1 (GEV-1), discovered by high-throughput sequencing (HTS). A limited survey using HTS of 17 grapevines (Vitis spp.) from the south, southeast, and northeast regions of Brazil led to the detection of GEV-1 exclusively on southern plants, infecting four grapevine cultivars (Cabernet Sauvignon, Semillon, CG 90450, and Cabernet franc) with a remarkable identity of around 99% at the nucleotide level. This novel virus was only detected in multiple-virus infected plants exhibiting viral-like symptoms. GEV-1 was also detected on a cv. Malvasia Longa by RT-PCR. We performed graft-transmissibility assays on GEV-1. The organization, products, and cis-acting regulatory elements of GEV-1 genome are also discussed here. The near complete genome sequence of GEV-1 was obtained during the course of this study, lacking only part of the 3' untranslated terminal region. This is the first report of a virus in the family Luteoviridae infecting grapevines. Based on its genomic properties and phylogenetic analyses, GEV-1 should be classified as a new member of the genus Enamovirus.

  18. 7 CFR 319.37-5 - Special foreign inspection and certification requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... necrosis agent. (xxxiv) Flavescence-doree agent. (xxxv) Black wood agent (bois-noir). (xxxvi) Grapevine infectious necrosis bacterium. (xxxvii) Grapevine yellows disease bacterium. (xxxviii) Xanthomonas ampelina...

  19. 7 CFR 319.37-5 - Special foreign inspection and certification requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... necrosis agent. (xxxiv) Flavescence-doree agent. (xxxv) Black wood agent (bois-noir). (xxxvi) Grapevine infectious necrosis bacterium. (xxxvii) Grapevine yellows disease bacterium. (xxxviii) Xanthomonas ampelina...

  20. 7 CFR 319.37-5 - Special foreign inspection and certification requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... necrosis agent. (xxxiv) Flavescence-doree agent. (xxxv) Black wood agent (bois-noir). (xxxvi) Grapevine infectious necrosis bacterium. (xxxvii) Grapevine yellows disease bacterium. (xxxviii) Xanthomonas ampelina...

  1. School Administrator Grapevine Structure.

    ERIC Educational Resources Information Center

    Licata, Joseph W.; Hack, Walter G.

    1980-01-01

    A study reveals that principals' grapevine structure shows both "guild-like" and "clan-like" grouping and reflects the patterns of occupational socialization of school principals and informal boundary spanning processes. (Author/JM)

  2. Profiling of Disease-Related Metabolites in Grapevine Internode Tissues Infected with Agrobacterium vitis

    PubMed Central

    Jung, Sung-Min; Hur, Youn-Young; Preece, John E.; Fiehn, Oliver; Kim, Young-Ho

    2016-01-01

    Green shoot cuttings of 10 different grapevine species were inoculated with Agrobacterium vitis to find disease-related metabolites in the grapevine. Crown galls formed 60 days after inoculation varied in gall severity (GS) evaluated by gall incidence (GI) and gall diameter (GD), which were classified into three response types as RR (low GI and small GD), SR (high GI and small GD), and SS (high GI and large GD), corresponding to resistant, moderately resistant, and susceptible responses, respectively. In this, 4, 4, and 2 Vitis species were classified into RR, SR, and SS, respectively. Gas chromatography mass spectrometry (GC-MS) analysis of the grapevine stem metabolites with A. vitis infection showed 134 metabolites in various compound classes critically occurred, which were differentially clustered with the response types by the principal component analysis. Multivariate analysis of the metabolite profile revealed that 11 metabolites increased significantly in relation to the response types, mostly at post-inoculation stages, more prevalently (8 metabolites) at two days after inoculation than other stages, and more related to SS (7 metabolites) than RR (3 metabolites) or SR (one metabolite). This suggests most of the disease-related metabolites may be rarely pre-existing but mostly induced by pathogen infection largely for facilitating gall development except stilbene compound resveratrol, a phytoalexin that may be involved in the resistance response. All of these aspects may be used for the selection of resistant grapevine cultivars and their rootstocks for the control of the crown gall disease of the grapevine. PMID:27904455

  3. Closed-reference metatranscriptomics enables in planta profiling of putative virulence activities in the grapevine trunk disease complex.

    PubMed

    Morales-Cruz, Abraham; Allenbeck, Gabrielle; Figueroa-Balderas, Rosa; Ashworth, Vanessa E; Lawrence, Daniel P; Travadon, Renaud; Smith, Rhonda J; Baumgartner, Kendra; Rolshausen, Philippe E; Cantu, Dario

    2018-02-01

    Grapevines, like other perennial crops, are affected by so-called 'trunk diseases', which damage the trunk and other woody tissues. Mature grapevines typically contract more than one trunk disease and often multiple grapevine trunk pathogens (GTPs) are recovered from infected tissues. The co-existence of different GTP species in complex and dynamic microbial communities complicates the study of the molecular mechanisms underlying disease development, especially under vineyard conditions. The objective of this study was to develop and optimize a community-level transcriptomics (i.e. metatranscriptomics) approach that could monitor simultaneously the virulence activities of multiple GTPs in planta. The availability of annotated genomes for the most relevant co-infecting GTPs in diseased grapevine wood provided the unprecedented opportunity to generate a multi-species reference for the mapping and quantification of DNA and RNA sequencing reads. We first evaluated popular sequence read mappers using permutations of multiple simulated datasets. Alignment parameters of the selected mapper were optimized to increase the specificity and sensitivity for its application to metagenomics and metatranscriptomics analyses. Initial testing on grapevine wood experimentally inoculated with individual GTPs confirmed the validity of the method. Using naturally infected field samples expressing a variety of trunk disease symptoms, we show that our approach provides quantitative assessments of species composition, as well as genome-wide transcriptional profiling of potential virulence factors, namely cell wall degradation, secondary metabolism and nutrient uptake for all co-infecting GTPs. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  4. Genetic characterization of some Romanian red wine grapevine varieties

    NASA Astrophysics Data System (ADS)

    Ghetea, Ligia Gabriela; Motoc, Rozalia Magda; Niculescu, Ana-Maria; Litescu, Simona Carmen; Duma, Virgil-Florin; Popescu, Carmen Florentina

    2008-04-01

    In our study we have considered three of the most valuable Romanian red wine grapevine cultivars: Feteasca neagra, Feteasca alba and Novac. We have chosen to study grapevine because grapes and wine are an important part of a healthy diet, and because red grapes have the highest content of proanthocyanidins, that act as antioxidants (free radical scavengers) in the human body. Proanthocyanidins possess anti-mutagenic, anti-tumor, anti-viral activities and they present many other confirmed or potential benefits. Genotyping method was applied in order to asses the genetic profile at 14 microsatellite loci, for two cultivars: Feteasca neagra and Feteasca alba. In order to achieve this, the HPLC-DAD method was used. The content of anthocyans in grape skin from two cultivars - Feteasca neagra and Novac - was measured. Microsatellite markers have been certified as powerful tools for assessing genetic identities and genetic relationships between grapevine gene pools. Genetic characterization of grapevine cultivars can certify their authenticity and purity, two features that have a direct effect on the quality and value of the finished product, the wine. In our country, this is the first attempt in order to establish a genetic profile for valuable Romanian origin grapevine varieties. In some of the 14 microsatellitic loci, Feteasca neagra and Feteasca alba cultivars presented allele size variants different from the values cited in the literature, proving that these cultivars belong to a geographical distinct gene pool. The content of anthocyans in Feteasca neagra grape skin was significantly higher than in Novac.

  5. Bioarchaeological Insights into the Process of Domestication of Grapevine (Vitis vinifera L.) during Roman Times in Southern France

    PubMed Central

    Bouby, Laurent; Figueiral, Isabel; Bouchette, Anne; Rovira, Nuria; Ivorra, Sarah; Lacombe, Thierry; Pastor, Thierry; Picq, Sandrine; Marinval, Philippe; Terral, Jean-Frédéric

    2013-01-01

    Grapevine (Vitis vinifera), one of the most important fruit species in the Classical Mediterranean world, is thought to have been domesticated first in South-Western Asia, during the Neolithic. However, the domestication process remains largely unknown. Crucial unanswered questions concern the duration of the process (rapid or slow?) and the related geographical area (single or multiple-origins?). Seeds from domesticated grapevine and from its wild ancestor are reported to differ according to shape. Our work aims, first, to confirm this difference and secondly to identify the extent of domestication in the grapes cultivated by Romans in Southern France during the period 50 BCE–500 CE. We had the opportunity to analyze uncharred waterlogged grape pips from 17 archaeological sites. Based on an extended reference sample of modern wild grapevines and cultivars our work shows that both subspecies can be discriminated using simple measurements. The elongation gradient of the pip’s body and stalk may be regarded as an indicator of the strength of the selection pressures undergone by domesticated grapes. Grapevines cultivated during the Roman period included a mix of morphotypes comprising wild, intermediate and moderately selected domesticated forms. Our data point to a relative shift towards more selected types during the Roman period. Domestication of the grapevine appears to have been a slow process. This could result from the recurrent incorporation into cultivation of plants originating from sexual reproduction, when grape cultivation essentially relies on vegetative propagation. PMID:23690998

  6. Bioarchaeological insights into the process of domestication of grapevine (Vitis vinifera L.) during Roman times in Southern France.

    PubMed

    Bouby, Laurent; Figueiral, Isabel; Bouchette, Anne; Rovira, Nuria; Ivorra, Sarah; Lacombe, Thierry; Pastor, Thierry; Picq, Sandrine; Marinval, Philippe; Terral, Jean-Frédéric

    2013-01-01

    Grapevine (Vitis vinifera), one of the most important fruit species in the Classical Mediterranean world, is thought to have been domesticated first in South-Western Asia, during the Neolithic. However, the domestication process remains largely unknown. Crucial unanswered questions concern the duration of the process (rapid or slow?) and the related geographical area (single or multiple-origins?). Seeds from domesticated grapevine and from its wild ancestor are reported to differ according to shape. Our work aims, first, to confirm this difference and secondly to identify the extent of domestication in the grapes cultivated by Romans in Southern France during the period 50 BCE-500 CE. We had the opportunity to analyze uncharred waterlogged grape pips from 17 archaeological sites. Based on an extended reference sample of modern wild grapevines and cultivars our work shows that both subspecies can be discriminated using simple measurements. The elongation gradient of the pip's body and stalk may be regarded as an indicator of the strength of the selection pressures undergone by domesticated grapes. Grapevines cultivated during the Roman period included a mix of morphotypes comprising wild, intermediate and moderately selected domesticated forms. Our data point to a relative shift towards more selected types during the Roman period. Domestication of the grapevine appears to have been a slow process. This could result from the recurrent incorporation into cultivation of plants originating from sexual reproduction, when grape cultivation essentially relies on vegetative propagation.

  7. Grapevine cell early activation of specific responses to DIMEB, a resveratrol elicitor

    PubMed Central

    Zamboni, Anita; Gatto, Pamela; Cestaro, Alessandro; Pilati, Stefania; Viola, Roberto; Mattivi, Fulvio; Moser, Claudio; Velasco, Riccardo

    2009-01-01

    Background In response to pathogen attack, grapevine synthesizes phytoalexins belonging to the family of stilbenes. Grapevine cell cultures represent a good model system for studying the basic mechanisms of plant response to biotic and abiotic elicitors. Among these, modified β-cyclodextrins seem to act as true elicitors inducing strong production of the stilbene resveratrol. Results The transcriptome changes of Vitis riparia × Vitis berlandieri grapevine cells in response to the modified β-cyclodextrin, DIMEB, were analyzed 2 and 6 h after treatment using a suppression subtractive hybridization experiment and a microarray analysis respectively. At both time points, we identified a specific set of induced genes belonging to the general phenylpropanoid metabolism, including stilbenes and hydroxycinnamates, and to defence proteins such as PR proteins and chitinases. At 6 h we also observed a down-regulation of the genes involved in cell division and cell-wall loosening. Conclusions We report the first large-scale study of the molecular effects of DIMEB, a resveratrol inducer, on grapevine cell cultures. This molecule seems to mimic a defence elicitor which enhances the physical barriers of the cell, stops cell division and induces phytoalexin synthesis. PMID:19660119

  8. Grapevine virus I, a putative new vitivirus detected in co-infection with grapevine virus G in New Zealand.

    PubMed

    Blouin, Arnaud G; Chooi, Kar Mun; Warren, Ben; Napier, Kathryn R; Barrero, Roberto A; MacDiarmid, Robin M

    2018-05-01

    A novel virus, with characteristics of viruses classified within the genus Vitivirus, was identified from a sample of Vitis vinifera cv. Chardonnay in New Zealand. The virus was detected with high throughput sequencing (small RNA and total RNA) and its sequence was confirmed by Sanger sequencing. Its genome is 7507 nt long (excluding the polyA tail) with an organisation similar to that described for other classifiable members of the genus Vitivirus. The closest relative of the virus is grapevine virus E (GVE) with 65% aa identity in ORF1 (65% nt identity) and 63% aa identity in the coat protein (66% nt identity). The relationship with GVE was confirmed with phylogenetic analysis, showing the new virus branching with GVE, Agave tequilina leaf virus and grapevine virus G (GVG). A limited survey revealed the presence of this virus in multiple plants from the same location where the newly described GVG was discovered, and in most cases both viruses were detected as co-infections. The genetic characteristics of this virus suggest it represents an isolate of a new species within the genus Vitivirus and following the current nomenclature, we propose the name "Grapevine virus I".

  9. Ancestral synteny shared between distantly-related plant species from the asterid (Coffea canephora and Solanum Sp.) and rosid (Vitis vinifera) clades

    PubMed Central

    2012-01-01

    Background Coffee trees (Rubiaceae) and tomato (Solanaceae) belong to the Asterid clade, while grapevine (Vitaceae) belongs to the Rosid clade. Coffee and tomato separated from grapevine 125 million years ago, while coffee and tomato diverged 83-89 million years ago. These long periods of divergent evolution should have permitted the genomes to reorganize significantly. So far, very few comparative mappings have been performed between very distantly related species belonging to different clades. We report the first multiple comparison between species from Asterid and Rosid clades, to examine both macro-and microsynteny relationships. Results Thanks to a set of 867 COSII markers, macrosynteny was detected between coffee, tomato and grapevine. While coffee and tomato genomes share 318 orthologous markers and 27 conserved syntenic segments (CSSs), coffee and grapevine also share a similar number of syntenic markers and CSSs: 299 and 29 respectively. Despite large genome macrostructure reorganization, several large chromosome segments showed outstanding macrosynteny shedding new insights into chromosome evolution between Asterids and Rosids. We also analyzed a sequence of 174 kb containing the ovate gene, conserved in a syntenic block between coffee, tomato and grapevine that showed a high-level of microstructure conservation. A higher level of conservation was observed between coffee and grapevine, both woody and long life-cycle plants, than between coffee and tomato. Out of 16 coffee genes of this syntenic segment, 7 and 14 showed complete synteny between coffee and tomato or grapevine, respectively. Conclusions These results show that significant conservation is found between distantly related species from the Asterid (Coffea canephora and Solanum sp.) and Rosid (Vitis vinifera) clades, at the genome macrostructure and microstructure levels. At the ovate locus, conservation did not decline in relation to increasing phylogenetic distance, suggesting that the time factor alone does not explain divergences. Our results are considerably useful for syntenic studies between supposedly remote species for the isolation of important genes for agronomy. PMID:22433423

  10. RNA-Sequencing Reveals Biological Networks during Table Grapevine (‘Fujiminori’) Fruit Development

    PubMed Central

    Shangguan, Lingfei; Mu, Qian; Fang, Xiang; Zhang, Kekun; Jia, Haifeng; Li, Xiaoying; Bao, Yiqun; Fang, Jinggui

    2017-01-01

    Grapevine berry development is a complex and genetically controlled process, with many morphological, biochemical and physiological changes occurring during the maturation process. Research carried out on grapevine berry development has been mainly concerned with wine grape, while barely focusing on table grape. ‘Fujiminori’ is an important table grapevine cultivar, which is cultivated in most provinces of China. In order to uncover the dynamic networks involved in anthocyanin biosynthesis, cell wall development, lipid metabolism and starch-sugar metabolism in ‘Fujiminori’ fruit, we employed RNA-sequencing (RNA-seq) and analyzed the whole transcriptome of grape berry during development at the expanding period (40 days after full bloom, 40DAF), véraison period (65DAF), and mature period (90DAF). The sequencing depth in each sample was greater than 12×, and the expression level of nearly half of the expressed genes were greater than 1. Moreover, greater than 64% of the clean reads were aligned to the Vitis vinifera reference genome, and 5,620, 3,381, and 5,196 differentially expressed genes (DEGs) were identified between different fruit stages, respectively. Results of the analysis of DEGs showed that the most significant changes in various processes occurred from the expanding stage to the véraison stage. The expression patterns of F3’H and F3’5’H were crucial in determining red or blue color of the fruit skin. The dynamic networks of cell wall development, lipid metabolism and starch-sugar metabolism were also constructed. A total of 4,934 SSR loci were also identified from 4,337 grapevine genes, which may be helpful for the development of phylogenetic analysis in grapevine and other fruit trees. Our work provides the foundation for developmental research of grapevine fruit as well as other non-climacteric fruits. PMID:28118385

  11. VTCdb: a gene co-expression database for the crop species Vitis vinifera (grapevine).

    PubMed

    Wong, Darren C J; Sweetman, Crystal; Drew, Damian P; Ford, Christopher M

    2013-12-16

    Gene expression datasets in model plants such as Arabidopsis have contributed to our understanding of gene function and how a single underlying biological process can be governed by a diverse network of genes. The accumulation of publicly available microarray data encompassing a wide range of biological and environmental conditions has enabled the development of additional capabilities including gene co-expression analysis (GCA). GCA is based on the understanding that genes encoding proteins involved in similar and/or related biological processes may exhibit comparable expression patterns over a range of experimental conditions, developmental stages and tissues. We present an open access database for the investigation of gene co-expression networks within the cultivated grapevine, Vitis vinifera. The new gene co-expression database, VTCdb (http://vtcdb.adelaide.edu.au/Home.aspx), offers an online platform for transcriptional regulatory inference in the cultivated grapevine. Using condition-independent and condition-dependent approaches, grapevine co-expression networks were constructed using the latest publicly available microarray datasets from diverse experimental series, utilising the Affymetrix Vitis vinifera GeneChip (16 K) and the NimbleGen Grape Whole-genome microarray chip (29 K), thus making it possible to profile approximately 29,000 genes (95% of the predicted grapevine transcriptome). Applications available with the online platform include the use of gene names, probesets, modules or biological processes to query the co-expression networks, with the option to choose between Affymetrix or Nimblegen datasets and between multiple co-expression measures. Alternatively, the user can browse existing network modules using interactive network visualisation and analysis via CytoscapeWeb. To demonstrate the utility of the database, we present examples from three fundamental biological processes (berry development, photosynthesis and flavonoid biosynthesis) whereby the recovered sub-networks reconfirm established plant gene functions and also identify novel associations. Together, we present valuable insights into grapevine transcriptional regulation by developing network models applicable to researchers in their prioritisation of gene candidates, for on-going study of biological processes related to grapevine development, metabolism and stress responses.

  12. Interkingdom transfer of the acne-causing agent, Propionibacterium acnes, from human to grapevine.

    PubMed

    Campisano, Andrea; Ometto, Lino; Compant, Stéphane; Pancher, Michael; Antonielli, Livio; Yousaf, Sohail; Varotto, Claudio; Anfora, Gianfranco; Pertot, Ilaria; Sessitsch, Angela; Rota-Stabelli, Omar

    2014-05-01

    Here, we report the surprising and, to our knowledge, unique example of horizontal interkingdom transfer of a human opportunistic pathogen (Propionibacterium acnes) to a crop plant (the domesticated grapevine Vitis vinifera L.). Humans, like most organisms, have established a long-lasting cohabitation with a variety of microbes, including pathogens and gut-associated bacteria. Studies which have investigated the dynamics of such associations revealed numerous cases of bacterial host switches from domestic animals to humans. Much less is, however, known about the exchange of microbial symbionts between humans and plants. Fluorescent in situ hybridization localized P. acnes in the bark, in xylem fibers, and, more interestingly, inside pith tissues. Phylogenetic and population genetic analyses suggest that the establishment of the grapevine-associated P. acnes as obligate endophyte is compatible with a recent transfer event, likely during the Neolithic, when grapevine was domesticated.

  13. Annual ground-water discharge by evapotranspiration from areas of spring-fed riparian vegetation along the eastern margin of Death Valley, 2000-02

    USGS Publications Warehouse

    Laczniak, Randell J.; Smith, J. LaRue; DeMeo, Guy A.

    2006-01-01

    Flow from major springs and seeps along the eastern margin of Death Valley serves as the primary local water supply and sustains much of the unique habitat in Death Valley National Park. Together, these major spring complexes constitute the terminus of the Death Valley Regional Ground-Water Flow System--one of the larger flow systems in the Southwestern United States. The Grapevine Springs complex is the least exploited for water supply and consequently contains the largest area of undisturbed riparian habitat in the park. Because few estimates exist that quantify ground-water discharge from these spring complexes, a study was initiated to better estimate the amount of ground water being discharged annually from these sensitive, spring-fed riparian areas. Results of this study can be used to establish a basis for estimating water rights and as a baseline from which to assess any future changes in ground-water discharge in the park. Evapotranspiration (ET) is estimated volumetrically as the product of ET-unit (general vegetation type) acreage and a representative ET rate. ET-unit acreage is determined from high-resolution multi-spectral imagery; and a representative ET rate is computed from data collected in the Grapevine Springs area using the Bowen-ratio solution to the energy budget, or from rates given in other ET studies in the Death Valley area. The ground-water component of ET is computed by removing the local precipitation component from the ET rate. Two different procedures, a modified soil-adjusted vegetation index using the percent reflectance of the red and near-infrared wavelengths and land-cover classification using multi-spectral imagery were used to delineate the ET units within each major spring-discharge area. On the basis of the more accurate procedure that uses the vegetation index, ET-unit acreage for the Grapevine Springs discharge area totaled about 192 acres--of which 80 acres were moderate-density vegetation and 112 acres were high-density vegetation. ET-unit acreage for two other discharge areas delineated in the Grapevine Springs area (Surprise Springs and Staininger Spring) totaled about 6 and 43 acres, respectively; and for the discharge areas delineated in the Furnace Creek area (Nevares Springs, Cow Creek-Salt Springs, Texas Spring, and Travertine Springs) totaled about 29, 13, 11, and 21 acres, respectively. In discharge areas other than Grapevine Springs, watering and spring diversions have altered the natural distribution of the vegetation. More...

  14. Expression of disease resistance in genetically modified grapevines correlates with the contents of viral sequences in the T-DNA and global genome methylation.

    PubMed

    Dal Bosco, Daniela; Sinski, Iraci; Ritschel, Patrícia S; Camargo, Umberto A; Fajardo, Thor V M; Harakava, Ricardo; Quecini, Vera

    2018-06-06

    Increased tolerance to pathogens is an important goal in conventional and biotechnology-assisted grapevine breeding programs worldwide. Fungal and viral pathogens cause direct losses in berry production, but also affect the quality of the final products. Precision breeding strategies allow the introduction of resistance characters in elite cultivars, although the factors determining the plant's overall performance are not fully characterized. Grapevine plants expressing defense proteins, from fungal or plant origins, or of the coat protein gene of grapevine leafroll-associated virus 3 (GLRaV-3) were generated by Agrobacterium-mediated transformation of somatic embryos and shoot apical meristems. The responses of the transformed lines to pathogen challenges were investigated by biochemical, phytopathological and molecular methods. The expression of a Metarhizium anisopliae chitinase gene delayed pathogenesis and disease progression against the necrotrophic pathogen Botrytis cinerea. Modified lines expressing a Solanum nigrum osmotin-like protein also exhibited slower disease progression, but to a smaller extent. Grapevine lines carrying two hairpin-inducing constructs had lower GLRaV-3 titers when challenged by grafting, although disease symptoms and viral multiplication were detected. The levels of global genome methylation were determined for the genetically engineered lines, and correlation analyses demonstrated the association between higher levels of methylated DNA and larger portions of virus-derived sequences. Resistance expression was also negatively correlated with the contents of introduced viral sequences and genome methylation, indicating that the effectiveness of resistance strategies employing sequences of viral origin is subject to epigenetic regulation in grapevine.

  15. A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions.

    PubMed

    Nesler, Andrea; Perazzolli, Michele; Puopolo, Gerardo; Giovannini, Oscar; Elad, Yigal; Pertot, Ilaria

    2015-01-01

    Powdery mildew caused by Erysiphe necator is one of the most important grapevine diseases in several viticulture areas, and high fungicide input is required to control it. However, numerous synthetic chemical pesticides are under scrutiny due to concerns about their impact on human health and the environment. Biopesticides, such as biogenic elicitors, are a promising alternative to chemical fungicides. Although several studies have reported on effective elicitors against grapevine diseases, their efficacy under field conditions has not been investigated extensively or has occurred at rather limited levels. Our goal was to examine the efficacy of a protein-based composition, namely nutrient broth (NB), against powdery mildew under field conditions and to characterize its mechanism of action. Weekly treatments with NB was highly effective in controlling powdery mildew on grapevine across seasons with different disease pressures. The level of disease control achieved with NB was comparable to standard fungicide treatments both on leaves and bunches across three different years. NB has no direct toxic effect on the germination of E. necator conidia, and it activates plant resistance with both systemic and translaminar effect in experiments with artificial inoculation under controlled conditions. NB induced the expression of defense-related genes in grapevine, demonstrating stimulation of plant defense mechanisms, prior to and in the early stages of pathogen infection. NB is a natural derivative from meat and yeast, substances that tend not to raise concerns about toxicological and ecotoxicological properties. NB represents a valid control tool for integrated plant protection programs against powdery mildew, to reduce the use of synthetic pesticides on grapevine.

  16. A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions

    PubMed Central

    Nesler, Andrea; Perazzolli, Michele; Puopolo, Gerardo; Giovannini, Oscar; Elad, Yigal; Pertot, Ilaria

    2015-01-01

    Powdery mildew caused by Erysiphe necator is one of the most important grapevine diseases in several viticulture areas, and high fungicide input is required to control it. However, numerous synthetic chemical pesticides are under scrutiny due to concerns about their impact on human health and the environment. Biopesticides, such as biogenic elicitors, are a promising alternative to chemical fungicides. Although several studies have reported on effective elicitors against grapevine diseases, their efficacy under field conditions has not been investigated extensively or has occurred at rather limited levels. Our goal was to examine the efficacy of a protein-based composition, namely nutrient broth (NB), against powdery mildew under field conditions and to characterize its mechanism of action. Weekly treatments with NB was highly effective in controlling powdery mildew on grapevine across seasons with different disease pressures. The level of disease control achieved with NB was comparable to standard fungicide treatments both on leaves and bunches across three different years. NB has no direct toxic effect on the germination of E. necator conidia, and it activates plant resistance with both systemic and translaminar effect in experiments with artificial inoculation under controlled conditions. NB induced the expression of defense-related genes in grapevine, demonstrating stimulation of plant defense mechanisms, prior to and in the early stages of pathogen infection. NB is a natural derivative from meat and yeast, substances that tend not to raise concerns about toxicological and ecotoxicological properties. NB represents a valid control tool for integrated plant protection programs against powdery mildew, to reduce the use of synthetic pesticides on grapevine. PMID:26442029

  17. Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine.

    PubMed

    Farace, Giovanni; Fernandez, Olivier; Jacquens, Lucile; Coutte, François; Krier, François; Jacques, Philippe; Clément, Christophe; Barka, Essaid Ait; Jacquard, Cédric; Dorey, Stéphan

    2015-02-01

    Non-self-recognition of microorganisms partly relies on the perception of microbe-associated molecular patterns (MAMPs) and leads to the activation of an innate immune response. Bacillus subtilis produces three main families of cyclic lipopeptides (LPs), namely surfactins, iturins and fengycins. Although LPs are involved in induced systemic resistance (ISR) activation, little is known about defence responses induced by these molecules and their involvement in local resistance to fungi. Here, we showed that purified surfactin, mycosubtilin (iturin family) and plipastatin (fengycin family) are perceived by grapevine plant cells. Although surfactin and mycosubtilin stimulated grapevine innate immune responses, they differentially activated early signalling pathways and defence gene expression. By contrast, plipastatin perception by grapevine cells only resulted in early signalling activation. Gene expression analysis suggested that mycosubtilin activated salicylic acid (SA) and jasmonic acid (JA) signalling pathways, whereas surfactin mainly induced an SA-regulated response. Although mycosubtilin and plipastatin displayed direct antifungal activity, only surfactin and mycosubtilin treatments resulted in a local long-lasting enhanced tolerance to the necrotrophic fungus Botrytis cinerea in grapevine leaves. Moreover, challenge with specific strains overproducing surfactin and mycosubtilin led to a slightly enhanced stimulation of the defence response compared with the LP-non-producing strain of B. subtilis. Altogether, our results provide the first comprehensive view of the involvement of LPs from B. subtilis in grapevine plant defence and local resistance against the necrotrophic pathogen Bo. cinerea. Moreover, this work is the first to highlight the ability of mycosubtilin to trigger an immune response in plants. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  18. Respecting the Grapevine.

    ERIC Educational Resources Information Center

    Carroll, David J.

    2001-01-01

    Administrators can create word-of-mouth communication that dispels negative attitudes and build good school reputations by discovering what parents and students are saying, targeting employee satisfaction and retention, providing excellent customer service, actively seeking and handling complaints, nurturing champions, and integrating "grapevine"…

  19. Bioavailability of potentially toxic elements in soil-grapevine (leaf, skin, pulp and seed) system and environmental and health risk assessment.

    PubMed

    Milićević, Tijana; Urošević, Mira Aničić; Relić, Dubravka; Vuković, Gordana; Škrivanj, Sandra; Popović, Aleksandar

    2018-06-01

    Monitoring of potentially toxic elements in agricultural soil represents the first measure of caution regarding food safety, while research into element bioavailability should be a step forward in understanding the element transportation chain. This study was conducted in the grapevine growing area ("Oplenac Wine Route") for investigating element bioavailability in the soil-grapevine system accompanied by an assessment of the ecological implications and human health risk. Single extraction procedures (CH 3 COOH, Na 2 EDTA, CaCl 2 , NH 4 NO 3 and deionised H 2 O) and digestion were performed to estimate the bioavailability of 22 elements (Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sb, Sr, V and Zn) from the topsoil (0-30 cm) and subsoil (30-60 cm) to the grapevine parts (leaf, skin, pulp and seed) and wine. The extractants were effective comparing to the pseudo-total concentrations in following order Na 2 EDTA ˃ CH 3 COOH ˃ NH 4 NO 3  ˃ CaCl 2 , H 2 O 2 h and 16 h. The most suitable extractants for assessing the bioavailability of the elements from the soil to the grapevine parts were CaCl 2 , NH 4 NO 3 and Na 2 EDTA, but deionised H 2 O could be suitable, as well. The results showed that Ba was the most bioavailable element in the soil-grapevine system. Contamination factor implied a moderate contamination (1 < CF < 3) of the soil. The concentrations of Cr, Ni and Cd in the soil were above the maximum allowed concentrations. According to the biological accumulation coefficient (BAC), the grape seeds and grapevine leaves mostly accumulated Cu and Zn from the soil, respectively. Based on ratio factor (RF > 1), the influence of atmospheric deposition on the aerial grapevine parts (leaves and grape skin) was observed. Nevertheless, low adverse health risk effects (HI < 1 and R ≤ 1 × 10 -6 ) were estimated for farmers and grape and wine consumers. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Influence of environment and climate on occurrence of the cixiid planthopper Hyalesthes obsoletus, the vector of the grapevine disease 'bois noir'.

    PubMed

    Panassiti, Bernd; Breuer, Michael; Marquardt, Stacey; Biedermann, Robert

    2013-12-01

    Species distribution models (SDMs), which are well established in many fields of biological research, are still uncommon in the agricultural risk analysis of pest insects. To exemplify the use of SDMs, we investigated the influence of environmental factors on the occurrence of Hyalesthes obsoletus Signoret (Hemiptera: Cixiidae). The planthopper is the only known vector of the grapevine yellows disease 'bois noir'. The study was conducted in 145 locations in the Baden region of southwest Germany. The planthopper was surveyed on host plant patches, consisting of stinging nettle and/or bindweeds. We used a stratified modelling framework where (1) species presence-absence data were related to an extensive environmental dataset using logistic regressions; and (2) different types of average models were developed based on an information theoretic method. The results show that the incidence of H. obsoletus is associated to above- as well as below-ground environmental factors, particularly to the amount of fine soil and average annual precipitation. This result was consistent across all average models. The relative importance of other environmental variables was dependent upon the average model under consideration and thus may vary according to their intended use, either the explanation of habitat requirements or the prediction and mapping of occurrence risks. The study showed that SDMs offer a quantification of species' habitat requirements and thus, could represent a valuable tool for pest management purposes. By providing examples of current issues of grapevine pests in viticulture, we discuss the use of SDMs in agricultural risk analysis and highlight their advantages and caveats.

  1. Sequence Polymorphisms and Structural Variations among Four Grapevine (Vitis vinifera L.) Cultivars Representing Sardinian Agriculture

    PubMed Central

    Mercenaro, Luca; Nieddu, Giovanni; Porceddu, Andrea; Pezzotti, Mario; Camiolo, Salvatore

    2017-01-01

    The genetic diversity among grapevine (Vitis vinifera L.) cultivars that underlies differences in agronomic performance and wine quality reflects the accumulation of single nucleotide polymorphisms (SNPs) and small indels as well as larger genomic variations. A combination of high throughput sequencing and mapping against the grapevine reference genome allows the creation of comprehensive sequence variation maps. We used next generation sequencing and bioinformatics to generate an inventory of SNPs and small indels in four widely cultivated Sardinian grape cultivars (Bovale sardo, Cannonau, Carignano and Vermentino). More than 3,200,000 SNPs were identified with high statistical confidence. Some of the SNPs caused the appearance of premature stop codons and thus identified putative pseudogenes. The analysis of SNP distribution along chromosomes led to the identification of large genomic regions with uninterrupted series of homozygous SNPs. We used a digital comparative genomic hybridization approach to identify 6526 genomic regions with significant differences in copy number among the four cultivars compared to the reference sequence, including 81 regions shared between all four cultivars and 4953 specific to single cultivars (representing 1.2 and 75.9% of total copy number variation, respectively). Reads mapping at a distance that was not compatible with the insert size were used to identify a dataset of putative large deletions with cultivar Cannonau revealing the highest number. The analysis of genes mapping to these regions provided a list of candidates that may explain some of the phenotypic differences among the Bovale sardo, Cannonau, Carignano and Vermentino cultivars. PMID:28775732

  2. Draft genome sequence of Xylella fastidiosa subsp. fastidiosa strain Stag’s Leap

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa subsp. fastidiosa causes Pierce’s disease of grapevine. Presented here is the draft genome sequence of the Stag’s Leap strain, previously used in pathogenicity/virulence assays to evaluate grapevine germplasm bearing Pierce’s disease....

  3. Metabolic Consequences of Infection of Grapevine (Vitis vinifera L.) cv. “Modra frankinja” with Flavescence Dorée Phytoplasma

    PubMed Central

    Prezelj, Nina; Covington, Elizabeth; Roitsch, Thomas; Gruden, Kristina; Fragner, Lena; Weckwerth, Wolfram; Chersicola, Marko; Vodopivec, Maja; Dermastia, Marina

    2016-01-01

    Flavescence dorée, caused by the quarantine phytoplasma FDp, represents the most devastating of the grapevine yellows diseases in Europe. In an integrated study we have explored the FDp–grapevine interaction in infected grapevines of cv. “Modra frankinja” under natural conditions in the vineyard. In FDp-infected leaf vein-enriched tissues, the seasonal transcriptional profiles of 14 genes selected from various metabolic pathways showed an FDp-specific plant response compared to other grapevine yellows and uncovered a new association of the SWEET17a vacuolar transporter of fructose with pathogens. Non-targeted metabolome analysis from leaf vein-enriched tissues identified 22 significantly changed compounds with increased levels during infection. Several metabolites corroborated the gene expression study. Detailed investigation of the dynamics of carbohydrate metabolism revealed significant accumulation of sucrose and starch in the mesophyll of FDp-infected leaves, as well as significant up-regulation of genes involved in their biosynthesis. In addition, infected leaves had high activities of ADP-glucose pyrophosphorylase and, more significantly, sucrose synthase. The data support the conclusion that FDp infection inhibits phloem transport, resulting in accumulation of carbohydrates and secondary metabolites that provoke a source-sink transition and defense response status. PMID:27242887

  4. Transmission competency of single-female Xiphinema index lines for Grapevine fanleaf virus.

    PubMed

    Demangeat, Gérard; Komar, Véronique; Van-Ghelder, Cyril; Voisin, Roger; Lemaire, Olivier; Esmenjaud, Daniel; Fuchs, Marc

    2010-04-01

    Grapevine fanleaf virus (GFLV) is vectored specifically from grapevine to grapevine by the ectoparasitic nematode Xiphinema index. Limited information is available on the vector competency of X. index populations from diverse geographical origins. We determined the transmissibility of two GFLV strains showing 4.6% amino acid divergence within their coat protein (e.g., strains F13 and GHu) by seven clonal lines of X. index developed from seven distinct populations from the Mediterranean basin (Cyprus, southern France, Israel, Italy, and Spain), northern France, and California. X. index lines derived from single adult females were produced on fig (Ficus carica) plants to obtain genetically homogenous aviruliferous clones. A comparative reproductive rate analysis on Vitis rupestris du Lot and V. vinifera cv. Cabernet Sauvignon showed significant differences among clones, with the single-female Cyprus line showing the highest rate (30-fold the initial population) and the Spain and California lines showing the lowest rate (10-fold increase), regardless of the grapevine genotype. However, there was no differential vector competency among the seven X. index lines for GFLV strains F13 and GHu. The implications of our findings for the dynamic of GFLV transmission in vineyards and screening of Vitis spp. for resistance to GFLV are discussed.

  5. Status and future of disease protection and grape berry quality alteration by micro-organisms in viticulture.

    PubMed

    Otoguro, M; Suzuki, S

    2018-06-16

    Grapevine is one of the most widely grown fruit crops in the world. At present, however, there is much concern regarding chemical pollution in viticulture due to the application of chemical fungicides and fertilizers. One viticultural practice to resolve this issue is the application of micro-organisms to grapevine as a substitute for chemicals. Some micro-organisms act as an enhancer of grape berry quality as well as a suppresser of disease in grapevine through their antagonistic ability and/or systemic resistance inducing ability. Herein, we review current and prospective applications of micro-organisms in viticulture. In this review, we evaluate the applicability of micro-organisms in viticulture. Micro-organisms can improve grape berry quality through grapevine disease protection and grape berry quality alteration. Because the use of micro-organisms to protect grapevine from plant diseases is safer than the use of chemical fungicides, the use of biofungicides in viticulture is expected to be enhanced by the increasing consumer concern towards chemical fungicides. Micro-organisms also modify plant secondary metabolites for use as flavours, pharmaceuticals and food additives. Studies of micro-organisms that promote polyphenol, anthocyanin and aroma compound biosynthesis are in progress with an eye to improving grape berry quality. © 2018 The Society for Applied Microbiology.

  6. Acquisition of Flavescence Dorée Phytoplasma by Scaphoideus titanus Ball from Different Grapevine Varieties.

    PubMed

    Galetto, Luciana; Miliordos, Dimitrios E; Pegoraro, Mattia; Sacco, Dario; Veratti, Flavio; Marzachì, Cristina; Bosco, Domenico

    2016-09-15

    Flavescence dorée (FD) is a threat for wine production in the vineyard landscape of Piemonte, Langhe-Roero and Monferrato, Italy. Spread of the disease is dependent on complex interactions between insect, plant and phytoplasma. In the Piemonte region, wine production is based on local cultivars. The role of six local grapevine varieties as a source of inoculum for the vector Scaphoideus titanus was investigated. FD phytoplasma (FDP) load was compared among red and white varieties with different susceptibility to FD. Laboratory-reared healthy S. titanus nymphs were caged for acquisition on infected plants to measure phytoplasma acquisition efficiency following feeding on different cultivars. FDP load for Arneis was significantly lower than for other varieties. Acquisition efficiency depended on grapevine variety and on FDP load in the source plants, and there was a positive interaction for acquisition between variety and phytoplasma load. S. titanus acquired FDP with high efficiency from the most susceptible varieties, suggesting that disease diffusion correlates more with vector acquisition efficiency than with FDP load in source grapevines. In conclusion, although acquisition efficiency depends on grapevine variety and on FDP load in the plant, even varieties supporting low FDP multiplication can be highly susceptible and good sources for vector infection, while poorly susceptible varieties may host high phytoplasma loads.

  7. Effect of two doses of urea foliar application on leaves and grape nitrogen composition during two vintages.

    PubMed

    Pérez-Álvarez, Eva P; Garde-Cerdán, Teresa; García-Escudero, Enrique; Martínez-Vidaurre, José María

    2017-06-01

    Nitrogen affects grapevine growth and also yeast metabolism, which have a direct influence on fermentation kinetics and the formation of different volatile compounds. Throughout the grapevine cycle, soil nitrogen availability and grape nitrogen composition can vary because of different factors. Nitrogen foliar applications can contribute toward enhancing grapevine nitrogen status and minimize the problem of leaching that traditional nitrogen-soil applications can provoke. The present study aimed to evaluate the influence of urea foliar applications on grapevine nitrogen status and grape amino acid content. Accordingly, two different doses of urea were applied over the leaves of a 'Tempranillo' vineyard. The highest urea doses affected nitrogen content on blade leaf tissues after veraison. Must amino acid profiles were modified by urea application and some of the compounds increased their concentrations. The effect of year on the increase of must total amino acid concentrations was more important than the effect of the doses applied. Urea foliar applications can be an interesting tool for decreasing grapevine nitrogen deficiencies. This method of nitrogen implementation in the vineyard could avoid sluggish fermentation problems during winemaking, enhance must nitrogen composition, and contribute to improving wine quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Detection of the Bacterium, Xylella fastidiosa, in Saliva of Glassy-Winged Sharpshooter, Homalodisca vitripennis

    PubMed Central

    Ramirez, Jose L.; Lacava, Paulo T.; Miller, Thomas A.

    2008-01-01

    Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), the glassy-winged sharpshooter, is one of the most important vectors of the bacterium, Xylella fastidiosa subsp. piercei (Xanthomonadales: Xanthomonadaceae) that causes Pierce's Disease in grapevines in California. In the present study we report a new method for studying pathogen transmission or probing behavior of H. vitripennis. When confined, H. vitripennis attempt to probe the surface of sterile containers 48 hours post-acquisition of X. f. piercei. The saliva deposited during attempted feeding probes was found to contain X. f. piercei. We observed no correlation between X. f. piercei titers in the foregut of H. vitripennis that fed on Xylella-infected grapevines and the presence of this bacterium in the deposited saliva. The infection rate after a 48 h post-acquisition feeding on healthy citrus and grapevines was observed to be 77% for H. vitripennis that fed on grapevines and 81% for H. vitripennis that fed on citrus, with no difference in the number of positive probing sites from H. vitripennis that fed on either grapevine or citrus. This method is amenable for individual assessment of X. f. piercei-infecuvity, with samples less likely to be affected by tissue contamination that is usually present in whole body extracts. PMID:20233080

  9. Collection and characterization of grapevine genetic resources (Vitis vinifera) in the Holy Land, towards the renewal of ancient winemaking practices.

    PubMed

    Drori, Elyashiv; Rahimi, Oshrit; Marrano, Annarita; Henig, Yakov; Brauner, Hodaya; Salmon-Divon, Mali; Netzer, Yishay; Prazzoli, Maria Lucia; Stanevsky, Maria; Failla, Osvaldo; Weiss, Ehud; Grando, Maria Stella

    2017-03-17

    The importance and extent of wine consumption in all life aspects at the Holy Land is well documented. The Muslim influence in this region led to the abandonment of winemaking practices, and possible loss of indigenous wine varieties. Here we present a country wide collection of the local grapevine population including wild and cultivated forms, and its characterization by genetic, ampelographic and enological methods. The ampelographic analysis shows clear differences between Sativa and Sylvestris groups in flower, leaf and cluster parameters, and that most Sativa belong to proles orientalis. Genetic population analysis was conducted by analyzing 22 common SSR markers, determining first the unique genotypes, and internally assessing the population's structure, showing the existence of two distinct Sativa and Sylvestris populations, and a third mixed one. Likewise, the relationship between the Israeli grapevine population and grapevine populations in Europe and parts of Asia was investigated, showing that the Israeli Sativa and Sylvestris populations cluster closely together, suggesting a common genetic source. Lastly, the enological characteristics of selected Sativa and Sylvestris genotypes are presented, demonstrating their potential for quality wine production. This research significantly contributes toward the re-establishment of indigenous and traditional local grapevine varieties into the modern international wine industry.

  10. Geographic trend of bud hardiness response in Vitis riparia

    USDA-ARS?s Scientific Manuscript database

    A major goal of grapevine breeding efforts for production outside of Mediterranean climates is the production of varieties that have cold tolerance phenotypes. Typically, grapevine breeders use midwinter bud hardiness measures as the descriptive phenotype for cold tolerance. Historical practices of...

  11. Research promises earlier warning for grapevine canker diseases

    USDA-ARS?s Scientific Manuscript database

    When it comes to detecting and treating vineyards for grapevine canker diseases (also called trunk diseases), like Botryosphaeria dieback (Bot canker), Esca, Eutypa dieback and Phomopsis dieback, the earlier the better, says plant pathologist Kendra Baumgartner, with the USDA’s Agricultural Research...

  12. Genetic structure of the fungal grapevine pathogen Eutypa lata from four continents

    USDA-ARS?s Scientific Manuscript database

    Deciphering the geographic origins of pathogens and elucidating the population biology of these microscopic organisms are necessary steps to establish effective disease-control strategies. The generalist ascomycete fungus Eutypa lata causes Eutypa dieback of grapevine (Vitis vinifera) worldwide. To ...

  13. RUN1 and REN1 Pyramiding in Grapevine (Vitis vinifera cv. Crimson Seedless) Displays an Improved Defense Response Leading to Enhanced Resistance to Powdery Mildew (Erysiphe necator)

    PubMed Central

    Agurto, Mario; Schlechter, Rudolf O.; Armijo, Grace; Solano, Esteban; Serrano, Carolina; Contreras, Rodrigo A.; Zúñiga, Gustavo E.; Arce-Johnson, Patricio

    2017-01-01

    Fungal pathogens are the cause of the most common diseases in grapevine and among them powdery mildew represents a major focus for disease management. Different strategies for introgression of resistance in grapevine are currently undertaken in breeding programs. For example, introgression of several resistance genes (R) from different sources for making it more durable and also strengthening the plant defense response. Taking this into account, we cross-pollinated P09-105/34, a grapevine plant carrying both RUN1 and REN1 pyramided loci of resistance to Erysiphe necator inherited from a pseudo-backcrossing scheme with Muscadinia rotundifolia and Vitis vinifera ‘Dzhandzhal Kara,’ respectively, with the susceptible commercial table grape cv. ‘Crimson Seedless.’ We developed RUN1REN1 resistant genotypes through conventional breeding and identified them by marker assisted selection. The characterization of defense response showed a highly effective defense mechanism against powdery mildew in these plants. Our results reveal that RUN1REN1 grapevine plants display a robust defense response against E. necator, leading to unsuccessful fungal establishment with low penetration rate and poor hypha development. This resistance mechanism includes reactive oxygen species production, callose accumulation, programmed cell death induction and mainly VvSTS36 and VvPEN1 gene activation. RUN1REN1 plants have a great potential as new table grape cultivars with durable complete resistance to E. necator, and are valuable germplasm to be included in grape breeding programs to continue pyramiding with other sources of resistance to grapevine diseases. PMID:28553300

  14. Identification, characterization, and expression analysis of calmodulin and calmodulin-like genes in grapevine (Vitis vinifera) reveal likely roles in stress responses.

    PubMed

    Vandelle, Elodie; Vannozzi, Alessandro; Wong, Darren; Danzi, Davide; Digby, Anne-Marie; Dal Santo, Silvia; Astegno, Alessandra

    2018-06-04

    Calcium (Ca 2+ ) is an ubiquitous key second messenger in plants, where it modulates many developmental and adaptive processes in response to various stimuli. Several proteins containing Ca 2+ binding domain have been identified in plants, including calmodulin (CaM) and calmodulin-like (CML) proteins, which play critical roles in translating Ca 2+ signals into proper cellular responses. In this work, a genome-wide analysis conducted in Vitis vinifera identified three CaM- and 62 CML-encoding genes. We assigned gene family nomenclature, analyzed gene structure, chromosomal location and gene duplication, as well as protein motif organization. The phylogenetic clustering revealed a total of eight subgroups, including one unique clade of VviCaMs distinct from VviCMLs. VviCaMs were found to contain four EF-hand motifs whereas VviCML proteins have one to five. Most of grapevine CML genes were intronless, while VviCaMs were intron rich. All the genes were well spread among the 19 grapevine chromosomes and displayed a high level of duplication. The expression profiling of VviCaM/VviCML genes revealed a broad expression pattern across all grape organs and tissues at various developmental stages, and a significant modulation in biotic stress-related responses. Our results highlight the complexity of CaM/CML protein family also in grapevine, supporting the versatile role of its different members in modulating cellular responses to various stimuli, in particular to biotic stresses. This work lays the foundation for further functional and structural studies on specific grapevine CaMs/CMLs in order to better understand the role of Ca 2+ -binding proteins in grapevine and to explore their potential for further biotechnological applications. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. A knowledge base for Vitis vinifera functional analysis.

    PubMed

    Pulvirenti, Alfredo; Giugno, Rosalba; Distefano, Rosario; Pigola, Giuseppe; Mongiovi, Misael; Giudice, Girolamo; Vendramin, Vera; Lombardo, Alessandro; Cattonaro, Federica; Ferro, Alfredo

    2015-01-01

    Vitis vinifera (Grapevine) is the most important fruit species in the modern world. Wine and table grapes sales contribute significantly to the economy of major wine producing countries. The most relevant goals in wine production concern quality and safety. In order to significantly improve the achievement of these objectives and to gain biological knowledge about cultivars, a genomic approach is the most reliable strategy. The recent grapevine genome sequencing offers the opportunity to study the potential roles of genes and microRNAs in fruit maturation and other physiological and pathological processes. Although several systems allowing the analysis of plant genomes have been reported, none of them has been designed specifically for the functional analysis of grapevine genomes of cultivars under environmental stress in connection with microRNA data. Here we introduce a novel knowledge base, called BIOWINE, designed for the functional analysis of Vitis vinifera genomes of cultivars present in Sicily. The system allows the analysis of RNA-seq experiments of two different cultivars, namely Nero d'Avola and Nerello Mascalese. Samples were taken under different climatic conditions of phenological phases, diseases, and geographic locations. The BIOWINE web interface is equipped with data analysis modules for grapevine genomes. In particular users may analyze the current genome assembly together with the RNA-seq data through a customized version of GBrowse. The web interface allows users to perform gene set enrichment by exploiting third-party databases. BIOWINE is a knowledge base implementing a set of bioinformatics tools for the analysis of grapevine genomes. The system aims to increase our understanding of the grapevine varieties and species of Sicilian products focusing on adaptability to different climatic conditions, phenological phases, diseases, and geographic locations.

  16. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchange.

    PubMed

    Zhu, Junqi; Dai, Zhanwu; Vivin, Philippe; Gambetta, Gregory A; Henke, Michael; Peccoux, Anthony; Ollat, Nathalie; Delrot, Serge

    2017-12-23

    Predicting both plant water status and leaf gas exchange under various environmental conditions is essential for anticipating the effects of climate change on plant growth and productivity. This study developed a functional-structural grapevine model which combines a mechanistic understanding of stomatal function and photosynthesis at the leaf level (i.e. extended Farqhuhar-von Caemmerer-Berry model) and the dynamics of water transport from soil to individual leaves (i.e. Tardieu-Davies model). The model included novel features that account for the effects of xylem embolism (fPLC) on leaf hydraulic conductance and residual stomatal conductance (g0), variable root and leaf hydraulic conductance, and the microclimate of individual organs. The model was calibrated with detailed datasets of leaf photosynthesis, leaf water potential, xylem sap abscisic acid (ABA) concentration and hourly whole-plant transpiration observed within a soil drying period, and validated with independent datasets of whole-plant transpiration under both well-watered and water-stressed conditions. The model well captured the effects of radiation, temperature, CO2 and vapour pressure deficit on leaf photosynthesis, transpiration, stomatal conductance and leaf water potential, and correctly reproduced the diurnal pattern and decline of water flux within the soil drying period. In silico analyses revealed that decreases in g0 with increasing fPLC were essential to avoid unrealistic drops in leaf water potential under severe water stress. Additionally, by varying the hydraulic conductance along the pathway (e.g. root and leaves) and changing the sensitivity of stomatal conductance to ABA and leaf water potential, the model can produce different water use behaviours (i.e. iso- and anisohydric). The robust performance of this model allows for modelling climate effects from individual plants to fields, and for modelling plants with complex, non-homogenous canopies. In addition, the model provides a basis for future modelling efforts aimed at describing the physiology and growth of individual organs in relation to water status. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Grapevines respond to glassy-winged sharpshooter (Homalodisca vitripennis) oviposition by increasing local and systemic terpenoid levels

    USDA-ARS?s Scientific Manuscript database

    Grapevines (Vitis vinifera) have been observed to respond to oviposition by glassy-winged sharpshooters [Homalodisca vitripennis (Germar)(Hemiptera: Cicadellidae)] by producing volatile compounds that attract egg parasitoids such as Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae). Recent work ...

  18. EFFECTS OF ACID RAIN ON GRAPEVINES

    EPA Science Inventory

    Mature vineyard-growing Concord grapevines were sprayed with simulated acid rain solutions ranging from pH 2.5 to 5.5 both as acute treatments at anthesis and chronically throughout the season in 1980 and 1981. In 1981, 8 additional varieties were also treated with simulated acid...

  19. Fungal trunk diseases: A problem beyond grapevines?

    USDA-ARS?s Scientific Manuscript database

    Grapevine trunk diseases (GTDs) are caused by a range of taxonomically unrelated fungi, which occur wherever grapes are grown and are the main biotic factor limiting vineyard productivity and longevity. GTDs cause untenable economic losses. For example, they are considered a “national crisis” in Fra...

  20. Water stress exacerbates the severity of Botryosphaeria dieback in grapevines infected by Neofusicoccum parvum

    USDA-ARS?s Scientific Manuscript database

    Botryosphaeria dieback (causal fungus Neofusicoccum parvum) is a detrimental grapevine trunk disease, causing internal wood degradation, killing shoots, and reducing yields. We examined the interactive effects of drought and N. parvum infection, common vineyard stresses, on wood-lesion development. ...

  1. Biotin-Avidin ELISA Detection of Grapevine Fanleaf Virus in the Vector Nematode Xiphinema index.

    PubMed

    Esmenjaud, D; Walter, B; Minot, J C; Voisin, R; Cornuet, P

    1993-09-01

    The value of biotin-avidin (B-A) ELISA for the detection of grapevine fanleaf virus (GFLV) in Xiphinema was estimated with field populations and greenhouse subpopulations. Samples consisted of increasing numbers of adults ranging from 1 to 64 in multiples of two. Tests with virus-free X. index populations reared on grapevine and fig plants as negative controls did not reveal a noticeable effect of the host plant. ELISA absorbances of virus-free X. index samples were greater than corresponding absorbances of X. pachtaicum samples. Differences occurred between two X. index field populations from GFLV-infected grapevines in Champagne and Languedoc. In most tests, 1-, 2-, 4-, and 8-nematode samples of virus-free and virus-infected populations, respectively, could not be separated. Consequently, B-A ELISA was not a reliable method for GFLV detection in samples of less than 10 X. index adults, but comparison of the absorbances obtained with increasing numbers may allow differentiation of the viral infectious potential of several populations.

  2. Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR.

    PubMed

    Bulgari, Daniela; Casati, Paola; Brusetti, Lorenzo; Quaglino, Fabio; Brasca, Milena; Daffonchio, Daniele; Bianco, Piero Attilio

    2009-08-01

    Diversity of bacterial endophytes associated with grapevine leaf tissues was analyzed by cultivation and cultivation-independent methods. In order to identify bacterial endophytes directly from metagenome, a protocol for bacteria enrichment and DNA extraction was optimized. Sequence analysis of 16S rRNA gene libraries underscored five diverse Operational Taxonomic Units (OTUs), showing best sequence matches with gamma-Proteobacteria, family Enterobacteriaceae, with a dominance of the genus Pantoea. Bacteria isolation through cultivation revealed the presence of six OTUs, showing best sequence matches with Actinobacteria, genus Curtobacterium, and with Firmicutes genera Bacillus and Enterococcus. Length Heterogeneity-PCR (LH-PCR) electrophoretic peaks from single bacterial clones were used to setup a database representing the bacterial endophytes identified in association with grapevine tissues. Analysis of healthy and phytoplasma-infected grapevine plants showed that LH-PCR could be a useful complementary tool for examining the diversity of bacterial endophytes especially for diversity survey on a large number of samples.

  3. Selection of grapevine leaf varieties for culinary process based on phytochemical composition and antioxidant properties.

    PubMed

    Lima, Adriano; Bento, Albino; Baraldi, Ilton; Malheiro, Ricardo

    2016-12-01

    Grapevine leaves are an abundant sub-product of vineyards which is devalued in many regions. The objective of this work is to study the antioxidant activity and phytochemical composition of ten grapevine leaf varieties (four red varieties: Tinta Amarela, Tinta Roriz, Touriga Franca, and Touriga Nacional; and six white varieties: Côdega do Larinho, Fernão Pires, Gouveio, Malvasia Fina, Rabigato, and Viosinho) to select varieties to be used as food ingredients. White grapevine leaves revealed higher antioxidant potential. Malvasia Fina reported better antioxidant properties contrasting with Touriga Franca. Phenolic content varied between 112 and 150mgGAEg(-1) of extract (gallic acid equivalents), hydroxycinnamic acid derivatives and flavonols varied between 76 and 108mgCAEg(-1) of extract (caffeic acid equivalents) and 39 and 54mgQEg(-1) of extract (quercetin equivalents). Malvasia Fina is a good candidate for culinary treatment due to its antioxidant properties and composition in bioactive compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Hydraulics and gas exchange recover more rapidly from severe drought stress in small pot-grown grapevines than in field-grown plants.

    PubMed

    Romero, Pascual; Botía, Pablo; Keller, Markus

    2017-09-01

    Modifications of plant hydraulics and shoot resistances (R shoot ) induced by water withholding followed by rewatering, and their relationships with plant water status, leaf gas exchange and water use efficiency at the leaf level, were investigated in pot-grown and field-grown, own-rooted Syrah grapevines in an arid climate. Water stress induced anisohydric behavior, gradually reducing stomatal conductance (g s ) and leaf photosynthesis (A) in response to decreasing midday stem water potential (Ψ s ). Water stress also rapidly increased intrinsic water-use efficiency (A/g s ); this effect persisted for many days after rewatering. Whole-plant (K plant ), canopy (K canopy ), shoot (K shoot ) and leaf (K leaf ) hydraulic conductances decreased during water stress, in tune with the gradual decrease in Ψ s , leaf gas exchange and whole plant water use. Water-stressed vines also had a lower Ψ gradient between stem and leaf (ΔΨ l ), which was correlated with lower leaf transpiration rate (E). E and ΔΨ l increased with increasing vapour pressure deficit (VPD) in non-stressed control vines but not in stressed vines. Perfusion of xylem-mobile dye showed that water flow to petioles and leaves was substantially reduced or even stopped under moderate and severe drought stress. Leaf blade hydraulic resistance accounted for most of the total shoot resistance. However, hydraulic conductance of the whole root system (K root ) was not significantly reduced until water stress became very severe in pot-grown vines. Significant correlations between K plant , K canopy and Ψ s , K canopy and leaf gas exchange, K leaf and Ψ s , and K leaf and A support a link between water supply, leaf water status and gas exchange. Upon re-watering, Ψ s recovered faster than gas exchange and leaf-shoot hydraulics. A gradual recovery of hydraulic functionality of plant organs was also observed, the leaves being the last to recover after rewatering. In pot-grown vines, K canopy recovered rather quickly following restoration of Ψ s , although gas exchange recovery did not directly depend on recovery of K canopy . In field-grown vines, recovery of water status, gas exchange and hydraulic functionality was slower than in pot-grown plants, and low g s after rewatering was related to sustained decreased K plant , K canopy and K shoot and lower water transport to leaves. These results suggest that caution should be exercised when scaling up conclusions from experiments with small pot-grown plants to field conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Changes in transcription of cytokinin metabolism and signalling genes in grape (Vitis vinifera L.) berries are associated with the ripening-related increase in isopentenyladenine.

    PubMed

    Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher

    2015-09-16

    Cytokinins are known to play an important role in fruit set and early fruit growth, but their involvement in later stages of fruit development is less well understood. Recent reports of greatly increased cytokinin concentrations in the flesh of ripening kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang & A.R. Ferguson) and grapes (Vitis vinifera L.) have suggested that these hormones are implicated in the control of ripening-related processes. A similar pattern of isopentenyladenine (iP) accumulation was observed in the ripening fruit of several grapevine cultivars, strawberry (Fragaria ananassa Duch.) and tomato (Solanum lycopersicum Mill.), suggesting a common, ripening-related role for this cytokinin. Significant differences in maximal iP concentrations between grapevine cultivars and between fruit species might reflect varying degrees of relevance or functional adaptations of this hormone in the ripening process. Grapevine orthologues of five Arabidopsis (Arabidopsis thaliana L.) gene families involved in cytokinin metabolism and signalling were identified and analysed for their expression in developing grape berries and a range of other grapevine tissues. Members of each gene family were characterised by distinct expression profiles during berry development and in different grapevine organs, suggesting a complex regulation of cellular cytokinin activities throughout the plant. The post-veraison-specific expression of a set of biosynthesis, activation, perception and signalling genes together with a lack of expression of degradation-related genes during the ripening phase were indicative of a local control of berry iP concentrations leading to the observed accumulation of iP in ripening grapes. The transcriptional analysis of grapevine genes involved in cytokinin production, degradation and response has provided a possible explanation for the ripening-associated accumulation of iP in grapes and other fruit. The pre- and post-veraison-specific expression of different members from each of five gene families suggests a highly complex and finely-tuned regulation of cytokinin concentrations and response to different cytokinin species at particular stages of fruit development. The same complexity and specialisation is also reflected in the distinct expression profiles of cytokinin-related genes in other grapevine organs.

  6. A transcriptome analysis of two grapevine populations segregating for tendril phyllotaxy

    USDA-ARS?s Scientific Manuscript database

    The shoot structure of cultivated grapevine Vitis vinifera L. typically exhibits a 3-node modular repetitive pattern, two sequential leaf-opposed tendrils followed by a tendril-free node. In this study, we investigated the molecular basis of this pattern by characterizing differentially expressed ge...

  7. Strategies for durable resistance to the grapevine powdery mildew fungus, Erysiphe necator

    USDA-ARS?s Scientific Manuscript database

    Nearly all cultivars of Vitis vinifera are highly susceptible to the grapevine powdery mildew fungus, Erysiphe necator. Grape breeders around the world are working to introgress resistance from wild Vitis. Of the widely-used introgressions, most involve dominant, race-specific resistance phenotype...

  8. Cadophora species as trunk pathogens and wood-infecting fungi of grapevine in North America

    USDA-ARS?s Scientific Manuscript database

    Cadophora species, in particular Cadophora luteo-olivacea, are reported from grapevine (Vitis vinifera L.) in California, South Africa, Spain, Uruguay, and Canada. Frequent isolation from vines co-infected with the Esca pathogens (Togninia minima, Phaeomoniella chlamydospora), and confirmation of it...

  9. Fatty Acid Methyl Ester (FAME) analyses for characterization and detection of grapevine pathogens

    USDA-ARS?s Scientific Manuscript database

    Grapevines can become infected by a variety of devastating pathogens, including the bacterium Xylella fastidiosa and canker fungi. Multiple strains of Xylella fastidiosa exist, each causing different diseases on various hosts. Although sequence-based genotyping can assist in distinguishing these str...

  10. Comparative transcriptomics of wild North American Vitis species

    USDA-ARS?s Scientific Manuscript database

    The cultivated grapevine (Vitis vinifera) is one of the world’s most important fruit crops. While grapes are now cultivated across the world, biotic and abiotic stresses often limit the production of grapes. Compared with the cultivated grape, wild grapevine species possess adaptive traits for str...

  11. Dynamic thermal-time model of cold hardiness for dormant grapevine buds

    USDA-ARS?s Scientific Manuscript database

    Grapevine (Vitis spp.) cold hardiness varies dynamically throughout the dormant season, primarily in response to changes in temperature. We describe development and possible uses of a discrete-dynamic model of bud cold hardiness for three Vitis genotypes. Iterative methods were used to optimize and ...

  12. Messenger RNA exchange between scions and rootstocks in grafted grapevines

    USDA-ARS?s Scientific Manuscript database

    We demonstrated the existence of genome-scale mRNA exchange in grafted grapevines, a woody fruit species with significant economic importance. By using diagnostic SNPs derived from high throughput genome sequencing, we identified more than three thousand genes transporting mRNAs across graft junctio...

  13. High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology

    PubMed Central

    Lijavetzky, Diego; Cabezas, José Antonio; Ibáñez, Ana; Rodríguez, Virginia; Martínez-Zapater, José M

    2007-01-01

    Background Single-nucleotide polymorphisms (SNPs) are the most abundant type of DNA sequence polymorphisms. Their higher availability and stability when compared to simple sequence repeats (SSRs) provide enhanced possibilities for genetic and breeding applications such as cultivar identification, construction of genetic maps, the assessment of genetic diversity, the detection of genotype/phenotype associations, or marker-assisted breeding. In addition, the efficiency of these activities can be improved thanks to the ease with which SNP genotyping can be automated. Expressed sequence tags (EST) sequencing projects in grapevine are allowing for the in silico detection of multiple putative sequence polymorphisms within and among a reduced number of cultivars. In parallel, the sequence of the grapevine cultivar Pinot Noir is also providing thousands of polymorphisms present in this highly heterozygous genome. Still the general application of those SNPs requires further validation since their use could be restricted to those specific genotypes. Results In order to develop a large SNP set of wide application in grapevine we followed a systematic re-sequencing approach in a group of 11 grape genotypes corresponding to ancient unrelated cultivars as well as wild plants. Using this approach, we have sequenced 230 gene fragments, what represents the analysis of over 1 Mb of grape DNA sequence. This analysis has allowed the discovery of 1573 SNPs with an average of one SNP every 64 bp (one SNP every 47 bp in non-coding regions and every 69 bp in coding regions). Nucleotide diversity in grape (π = 0.0051) was found to be similar to values observed in highly polymorphic plant species such as maize. The average number of haplotypes per gene sequence was estimated as six, with three haplotypes representing over 83% of the analyzed sequences. Short-range linkage disequilibrium (LD) studies within the analyzed sequences indicate the existence of a rapid decay of LD within the selected grapevine genotypes. To validate the use of the detected polymorphisms in genetic mapping, cultivar identification and genetic diversity studies we have used the SNPlex™ genotyping technology in a sample of grapevine genotypes and segregating progenies. Conclusion These results provide accurate values for nucleotide diversity in coding sequences and a first estimate of short-range LD in grapevine. Using SNPlex™ genotyping we have shown the application of a set of discovered SNPs as molecular markers for cultivar identification, linkage mapping and genetic diversity studies. Thus, the combination a highly efficient re-sequencing approach and the SNPlex™ high throughput genotyping technology provide a powerful tool for grapevine genetic analysis. PMID:18021442

  14. VULNERABILITY TO CAVITATION IN GRAPEVINES HAS BEEN OVERESTIMATED BY THE CENTRIFUGE TECHNIQUE

    USDA-ARS?s Scientific Manuscript database

    Grapevines are considered among the most vulnerable woody plant species to water stress-induced cavitation with embolism forming at slight tensions. However, we found that native embolism in stems of field grown Vitis vinifera cv. Chardonnay never exceeded 30% despite xylem water potentials ('x) rea...

  15. Wood-decay abilities of grapevine trunk pathogens Diaporthe ampelina, Diplodia seriata, Eutypa lata, and Neofusicoccum parvum

    USDA-ARS?s Scientific Manuscript database

    Trunk pathogens are fungi that infect grapevine wood through pruning wounds and destroy fruiting positions, thereby impacting grape production. Neofusicoccum parvum (causal fungus of Botryosphaeria dieback) and Eutypa lata (causal fungus of Eutypa dieback) cause chronic infections (cankers) of the t...

  16. Glassy-winged sharpshooter oviposition effects on foliar grapevine and red-tipped photinia terpenoid levels

    USDA-ARS?s Scientific Manuscript database

    The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is an important vector of Xylella fastidiosa, the bacterium that causes Pierce's disease of grapevine and is a threat to grape production throughout the United States. Female GWSS deposit egg masses be...

  17. Effects of rootstock on Xylella fastidiosa infection and grapevine sap phenolics

    USDA-ARS?s Scientific Manuscript database

    Pierce’s disease, caused by the bacterium Xylella fastidiosa, poses a threat to grape production in the United States and warm climates elsewhere. There are numerous grapevine rootstocks available that may impart increased vigor or tolerance to soil-borne pests. However, little is known about the po...

  18. Effects of grapevine sap phenolics on the in vitro growth of Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Pierce’s disease, caused by the bacterium Xylella fastidiosa, poses a serious threat to grape production in the United States. Previous work indicated that grapevines infected with Xylella fastidiosa respond by producing greater levels of phenolic compounds in xylem sap and tissues, presumably to l...

  19. A computer model for predicting grapevine cold hardiness

    USDA-ARS?s Scientific Manuscript database

    We developed a robust computer model of grapevine bud cold hardiness that will aid in the anticipation of and response to potential injury from fluctuations in winter temperature and from extreme cold events. The model uses time steps of 1 day along with the measured daily mean air temperature to ca...

  20. Effects of a selenium-laden soil amendment on grapevine metabolism and progression of Pierce’s disease

    USDA-ARS?s Scientific Manuscript database

    Selenium containing soil amendments might be beneficial to growers as selenium may increase resistance to certain plant pathogens and pests. Therefore, grapevines growing in soil with different amounts of selenium-laden amendment were evaluated for metabolism and susceptibility to Pierce’s disease (...

  1. Above ground drip application practices alter water productivity of Malbec grapevines under sustained deficit

    USDA-ARS?s Scientific Manuscript database

    The influence of irrigation event frequency on water productivity, yield components, and berry maturity under two severities of sustained deficit irrigation was evaluated in field grown Malbec grapevines (Vitis vinifera L.) over three growing seasons. Above ground drip was used to supply vines with ...

  2. Investigating the spread and effect of Grapevine red blotch virus in California-grown Zinfandel

    USDA-ARS?s Scientific Manuscript database

    Grapevine red blotch virus (GRBV) is a major concern for California winegrape growers since its discovery in 2012. Negative impacts on juice have been reported, though inconsistent. A treehopper, Spissistilus festinus, transmitted GRBaV in strict laboratory studies, but field evidence of transmissio...

  3. GCCCD Grapevine, 1996-1998.

    ERIC Educational Resources Information Center

    GCCCD Grapevine, 1996

    1996-01-01

    The Grossmont and Cuyamaca Community College Districts (GCCCD) Grapevine is a triannual newsletter free for retirees of the Colleges. Volume 6 of the bulletin includes the establishment of an on-line newsletter; self-sufficiency aims of a new district plan at Cuyamaca College; and a discussion of a dispute between GCCCD's chancellor and faculty…

  4. 77 FR 55829 - Western Area Power Administration; Grapevine Canyon Wind Project Record of Decision (DOE/EIS-0427)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... megawatts of electricity from wind turbine generators (WTGs). The proposed project includes a wind energy... about the installation of red flashing lights on wind turbine generators per Federal Aviation... DEPARTMENT OF ENERGY Western Area Power Administration; Grapevine Canyon Wind Project Record of...

  5. Temperature dependent RNA metabolism in Xylella fastidiosa during cold stress and grapevine infection

    USDA-ARS?s Scientific Manuscript database

    Re-occurrence of Pierce’s disease of grapes, caused by Xylella fastidiosa, is known to be influenced by environmental factors, particularly cold temperatures during overwintering. Grapevines in colder regions are often cured of X. fastidiosa infection over the winter season, depending on cultivar, t...

  6. Grapevine pruning systems and cultivars influence the diversity of wood-colonizing fungi

    USDA-ARS?s Scientific Manuscript database

    Grapevines host diverse fungal species, including pruning-wound pathogens and wood decomposers, with detrimental effects on crop productivity. This study aims at comparing the effects of two pruning systems, minimal (min-) or spur-pruning, on the sanitary status of vine trunks and the diversity of w...

  7. Variation in the chilling requirement and bud burst rate of wild Vitis species

    USDA-ARS?s Scientific Manuscript database

    Cultivated grapevine (Vitis vinifera) is one of the most important agricultural fruit crops in the world. In the United States, grapevines are often grown in environments very different than the Mediterranean climate from where the cultivated species was domesticated. Predictions of changing clima...

  8. Towards the elucidation of the cytoplasmic diversity of North American Grape Breeding Programs

    USDA-ARS?s Scientific Manuscript database

    Plants have an intriguing tripartite genetic system: Nuclear genome × Mitochondria × Plastids, and their interactions may impact germplasm breeding. In grapevine, the study of cytoplasmic genomes has been limited, and their role with respect to grapevine germplasm diversity has not been elucidated y...

  9. Global genetic structure of the fungal grapevine pathogen Eutypa lata

    USDA-ARS?s Scientific Manuscript database

    The ascomycete fungus Eutypa lata is a trunk pathogen of cultivated grapevine (Vitis vinifera) in all major grape-growing regions of the world. Throughout its geographic range, it is considered a generalist pathogen that can complete its life cycle on a broad range of hosts. To decipher the cosmopol...

  10. Metabolic Profiling of Xylem Sap from Pierce’s Disease Resistant and Susceptible Grapevines

    USDA-ARS?s Scientific Manuscript database

    Pierce’s Disease (PD) of grapevines is caused by a gram-negative, xylem-limited bacterium Xylella fastidiosa (Xf). All Vitis vinifera-based cultivars are highly susceptible to Xf infection. However, some grape species from the southern United States such as V. arizonica, V. Shuttleworthii, and Musca...

  11. Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps

    USDA-ARS?s Scientific Manuscript database

    Quantitative trait locus (QTL) identification in perennial fruit crops is impeded largely by their lengthy generation time, resulting in costly and labor-intensive maintenance of breeding programs. In a grapevine (genus Vitis) breeding program, although experimental populations are typically unrepli...

  12. Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps

    USDA-ARS?s Scientific Manuscript database

    Quantitative trait locus (QTL) identification in perennial fruit crops is impeded largely by their lengthy generation time, resulting in costly and labor-intensive maintenance of breeding programs. In a grapevine (genus Vitis) breeding program, although experimental families are typically unreplicat...

  13. Macro- and microclimate conditions may alter grapevine deacclimation: variation in thermal amplitude in two contrasting wine regions from North and South America

    NASA Astrophysics Data System (ADS)

    Antivilo, Francisco Gonzalez; Paz, Rosalía Cristina; Keller, Markus; Borgo, Roberto; Tognetti, Jorge; Juñent, Fidel Roig

    2017-12-01

    Low temperature is a limiting factor that affects vineyard distribution globally. The level of cold hardiness acquired during the dormant season by Vitis sp. is crucial for winter survival. Most research published on this topic has been generated beyond 40° N latitude, where daily mean temperatures may attain injurious levels during the dormant season resulting in significant damage to vines and buds. Symptoms of cold injury have been identified in Mendoza (32-35° S latitude), a Southern Hemisphere wine region characterized by a high thermal amplitude, and warm winds during the dormant season. These symptoms have usually been attributed to drought and/or pathogens, but not to rapid deacclimation followed by injurious low temperatures. Because local information on meteorological events as probable causes is scarce, this research was designed to test and study this assumption by comparing macro-, meso-, and microclimatic data from Mendoza, Argentina, and eastern Washington, USA. The goal was to unveil why freezing damage has occurred in both regions, despite the existence of large climatic differences. Because environmental parameters under field conditions may not correspond to data recorded by conventional weather stations, sensors were installed in vineyards for comparison. Microclimatic conditions on grapevines were also evaluated to assess the most vulnerable portions of field-grown grapevines. In order to better understand if it may be possible to modify cold hardiness status in a short period with high thermal amplitude conditions, deacclimation was induced using a thermal treatment. Hence, despite the fact that Mendoza is warmer, and temperatures are not as extreme as in Washington, high daily thermal amplitude might be partially involved in plant deacclimation, leading to a differential cold hardiness response.

  14. Macro- and microclimate conditions may alter grapevine deacclimation: variation in thermal amplitude in two contrasting wine regions from North and South America.

    PubMed

    Antivilo, Francisco Gonzalez; Paz, Rosalía Cristina; Keller, Markus; Borgo, Roberto; Tognetti, Jorge; Juñent, Fidel Roig

    2017-12-01

    Low temperature is a limiting factor that affects vineyard distribution globally. The level of cold hardiness acquired during the dormant season by Vitis sp. is crucial for winter survival. Most research published on this topic has been generated beyond 40° N latitude, where daily mean temperatures may attain injurious levels during the dormant season resulting in significant damage to vines and buds. Symptoms of cold injury have been identified in Mendoza (32-35° S latitude), a Southern Hemisphere wine region characterized by a high thermal amplitude, and warm winds during the dormant season. These symptoms have usually been attributed to drought and/or pathogens, but not to rapid deacclimation followed by injurious low temperatures. Because local information on meteorological events as probable causes is scarce, this research was designed to test and study this assumption by comparing macro-, meso-, and microclimatic data from Mendoza, Argentina, and eastern Washington, USA. The goal was to unveil why freezing damage has occurred in both regions, despite the existence of large climatic differences. Because environmental parameters under field conditions may not correspond to data recorded by conventional weather stations, sensors were installed in vineyards for comparison. Microclimatic conditions on grapevines were also evaluated to assess the most vulnerable portions of field-grown grapevines. In order to better understand if it may be possible to modify cold hardiness status in a short period with high thermal amplitude conditions, deacclimation was induced using a thermal treatment. Hence, despite the fact that Mendoza is warmer, and temperatures are not as extreme as in Washington, high daily thermal amplitude might be partially involved in plant deacclimation, leading to a differential cold hardiness response.

  15. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling

    PubMed Central

    2010-01-01

    Background In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis. Results In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters), has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3), one polyol (VvPMT5) and one sucrose (VvSUC27) transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2) and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2) genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5), in roots (VvHT2) or in mature leaves (VvHT5). Conclusions This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and revealed that sugar transporter gene families in this woody plant are strongly comparable to those of herbaceous species. Dedicated macroarrays have provided a Vitis sugar transporter genes expression profiling, which will likely contribute to understand their physiological functions in plant and berry development. The present results might also have a significant impact on our knowledge on plant sugar transporters. PMID:21073695

  16. Selenium speciation profiles in biofortified sangiovese wine.

    PubMed

    Fontanella, Maria Chiara; D'Amato, Roberto; Regni, Luca; Proietti, Primo; Beone, Gian Maria; Businelli, Daniela

    2017-09-01

    Biofortification is an agronomic-based strategy, utilized by farmers, to produce selenium (Se)-enriched food products that may help reduce dietary deficiencies of Se occurring throughout susceptible regions of the world. The foliar exposure route application ensures a high efficiency of Se assimilation by the plant since it does not depend on root-to-shoot translocation. In this study we treated grapevines of Sangiovese variety in the pre-flowering period with sodium selenate (100mg Se L -1 ). Se content was measured in leaves, fruit at harvest time and in wine respectively in treated and not treated samples with ICP-MS. At harvest, a higher amount of Se in the treated leaves compared to untreated ones was found, 16.0±3.1mgkg -1 dry weight (dw) against 0.17±0.006mgkg -1 dw in the untreated ones. The treated grapes had a content of Se of 0.800±0.08mgkg -1 dw, while that untreated one 0.065±0.025mgkg -1 dw. Immediately after the malolactic fermentation, the wine obtained from treated and untreated vines had a Se content of 0.620±0.09mg Se L -1 and 0.024±0.010mg Se L -1 respectively. In our case the percentage of inorganic Se is 26% of the total Se in the untreated wine, while in Se enriched wine this percentage increase to 47.5% of the total Se. The Se(VI) was the inorganic chemical form more present in enriched wine, probably due to foliar application with selenate. Distributions of Se species suggested being careful to the choice of the enrichment solutions to promote a balanced distribution of different chemical forms, perhaps favouring the accumulation of organic forms. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. RNASeq-based genome annotation and identification of long-noncoding RNAs in the grapevine cultivar 'Riesling'

    USDA-ARS?s Scientific Manuscript database

    The technological advances of RNA-seq and de novo transcriptome assembly have enabled genome annotation and transcriptome profiling in heterozygous species. This is a promising approach to improving the annotation of the reference genome sequence of grapevine (Vitis vinifera L.), a species of high-l...

  18. Abscisic acid form, concentration, and application timing influence phenology and bud cold hardiness in Merlot grapevines

    USDA-ARS?s Scientific Manuscript database

    The effects of abscisic acid (ABA) form, concentration and application timing on bud cold hardiness, phenology and fruiting performance on ‘Merlot’ grapevines (Vitis vinifera) were evaluated in a three year field trial with site locations in British Columbia Canada, Ontario Canada, Washington U.S. ...

  19. Identification of Cylindrocarpon species associated with Black-Foot of grapevine in Northeastern United States and Southeastern Canada

    USDA-ARS?s Scientific Manuscript database

    Black-foot disease of grapevine is caused by a complex of soilborne fungi. The most common and virulent species, which are found across all major grape-growing regions of the world, are Cylindrocarpon liriodendri (Cl. liriodendri) and Cl. macrodidymum (teleomorph = Neonectria). Other species with a ...

  20. Assessment of freeze injury of grapevine green tissues in response to cultivars and a cryoprotectant product

    USDA-ARS?s Scientific Manuscript database

    Spring frosts and subsequent crop losses threaten the economic sustainability of fruit crop producers all over the world. This study used a controlled-freezing technique to impose a post-budbreak freezing stress to grapevine shoots forced from one-node cuttings ['Albariño', 'Cabernet Franc', 'Cabern...

  1. Two dominant loci determine resistance to Phomopsis cane lesions in F1 families of hybrid grapevines

    USDA-ARS?s Scientific Manuscript database

    Phomopsis cane and leaf spot, caused by the hemibiotrophic fungus Diaporthe ampelina (syn = Phomopsis viticola), produces lesions on grapevine stems and berries, reducing productivity. Host resistance was studied on three F1 families derived from crosses involving ‘Horizon’, Illinois 547-1, Vitis ci...

  2. Draft Genome Sequence of Xylella fastidiosa subsp. fastidiosa Strain Stag's Leap.

    PubMed

    Chen, J; Wu, F; Zheng, Z; Deng, X; Burbank, L P; Stenger, D C

    2016-04-21

    ITALIC! Xylella fastidiosasubsp. ITALIC! fastidiosacauses Pierce's disease of grapevine. Presented here is the draft genome sequence of the Stag's Leap strain, previously used in pathogenicity/virulence assays to evaluate grapevine germplasm bearing Pierce's disease resistance and a phenotypic assessment of knockout mutants to determine gene function. Copyright © 2016 Chen et al.

  3. Impact of Quillaja saponaria saponins on grapevine ecosystem organisms.

    PubMed

    Fischer, Marc J C; Pensec, Flora; Demangeat, Gérard; Farine, Sibylle; Chong, Julie; Ramírez-Suero, Montserrat; Mazet, Flore; Bertsch, Christophe

    2011-08-01

    The control of grapevine pathogens is a rising concern in Vitis vinifera culture. The current international trend is toward banning chemicals that are highly toxic to the environment and human workers, and adopting tighter regulations. We evaluated the impact of saponins on three kinds of organisms found in grapevine culture. The ectoparasitic nematode Xiphinema index, the parasitic fungus Botrytis cinerea and various yeast strains representative of the must fermentation population were incubated on synthetic media supplemented with variable concentrations of Quillaja saponaria saponins. Saponins induced reduction in the growth of B. cinerea and showed nematicide effects on X. index. The control of X. index and Botrytis cinerea is discussed in the context of the potential use of these chemicals as environmentally-friendly grapevine treatments. With Saccharomyces cerevisiae and other yeasts, saponins showed higher toxicity against S. cerevisiae strains isolated from wine or palm wine whereas laboratory strains or strains isolated from oak exhibited better resistance. This indicates that Q. saponaria saponins effects against yeast microflora should be assessed in the field before they can be considered an environmentally-safe new molecule against B. cinerea and X. index.

  4. Elicitor and nitrogen applications to Garnacha, Graciano and Tempranillo vines: effect on grape amino acid composition.

    PubMed

    Gutiérrez-Gamboa, Gastón; Portu, Javier; López, Rosa; Santamaría, Pilar; Garde-Cerdán, Teresa

    2018-04-01

    Elicitors and nitrogen foliar applications to vineyards could regulate grape nitrogen composition, which has an important effect on grape and wine quality. Thus the aim of this research was to study the effect of foliar elicitor treatments, methyl jasmonate (MeJ) and yeast extract (YE), and foliar nitrogen applications, urea (Ur) and phenylalanine (Phe), to Garnacha, Graciano and Tempranillo vines on grape amino acid composition. The results showed that elicitor and nitrogen foliar applications to Garnacha and Tempranillo grapevines decreased the must amino acid concentration. However, Phe application to these two grapevines increased the must Phe content. The treatments applied to Graciano grapevines barely effected the grape amino acid content. According to the percentage of variance attributable, the variety had a higher impact on the must amino acid composition than the treatments and their interaction, except in certain amino acids such as Phe. The influence of elicitor and nitrogen foliar applications to grapevines on grape amino acid concentration was strongly conditioned by the variety. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Reduction in pathogen populations at grapevine wound sites is associated with the mechanism underlying the biological control of crown gall by rhizobium vitis strain ARK-1.

    PubMed

    Kawaguchi, Akira

    2014-09-17

    A nonpathogenic strain of Rhizobium (=Agrobacterium) vitis, ARK-1, limited the development of grapevine crown gall. A co-inoculation with ARK-1 and the tumorigenic strain VAT07-1 at a 1:1 cell ratio resulted in a higher population of ARK-1 than VAT07-1 in shoots without tumors, but a significantly lower population of ARK-1 than VAT07-1 in grapevine shoots with tumors. ARK-1 began to significantly suppress the VAT07-1 population 2 d after the inoculation. This result indicated that ARK-1 reduced the pathogen population at the wound site through biological control. Although ARK-1 produced a zone of inhibition against other tumorigenic Rhizobium spp. in in vitro assays, antibiosis depended on the culture medium. ARK-1 did not inhibit the growth of tumorigenic R. radiobacter strain AtC1 in the antibiosis assay, but suppressed the AtC1-induced formation of tumors on grapevine shoots, suggesting that antibiosis by ARK-1 may not be the main mechanism responsible for biological control.

  6. Minimal Pruning and Reduced Plant Protection Promote Predatory Mites in Grapevine

    PubMed Central

    Pennington, Theresa; Kraus, Christian; Alakina, Ekatarina; Entling, Martin H.; Hoffmann, Christoph

    2017-01-01

    Improving natural pest control by promoting high densities of predatory mites (Acari: Phytoseiidae) is an effective way to prevent damage by pest mites (e.g., Eriophyidae, Tetranychidae) and other arthropod taxa that can cause serious damage to vineyards. Here, we investigate the influence of innovative management on predatory mite densities. We compare (i) full versus reduced fungicide applications and (ii) minimal pruning versus a traditional trellis pruning system in four fungus-resistant grapevine varieties. As predatory mites also feed on fungus mycelium, we assessed fungal infection of grapevine leaves in the experimental vineyard. Predatory mites were significantly more abundant in both minimal pruning and under reduced plant protection. Increases in predatory mites appeared to be independent of fungal infection, suggesting mostly direct effects of reduced fungicides and minimal pruning. In contrast to predatory mites, pest mites did not increase under innovative management. Thus, conditions for natural pest control are improved in fungus-resistant grapevines and under minimal pruning, which adds to other advantages such as environmental safety and reduced production cost. PMID:28820436

  7. Post-veraison irreversible stem shrinkage in grapevine (Vitis vinifera) is caused by periderm formation.

    PubMed

    Van de Wal, Bart A E; Leroux, Olivier; Steppe, Kathy

    2018-05-01

    Grapevines are characterized by a period of irreversible stem shrinkage around the onset of ripening of the grape berries. Since this shrinkage is unrelated to meteorological conditions or drought, it is often suggested that it is caused by the increased sink strength of the grape berries during this period. However, no studies so far have experimentally investigated the mechanisms underlying this irreversible stem shrinkage. We therefore combined continuous measurements of stem diameter variations and histology of potted 2-year-old grapevines (Vitis vinifera L. 'Boskoop Glory'). Sink strength was altered by pruning all grape clusters (treatment P), while non-pruned grapevines served as control (treatment C). Unexpectedly, our results showed irreversible post-veraison stem shrinkage in both treatments, suggesting that the shrinkage is not linked to grape berry sink strength. Anatomical analysis indicated that the shrinkage is the result of the formation of successive concentric periderm layers, and the subsequent dehydration and compression of the older bark tissues, an anatomical feature that is characteristic of Vitis stems. Stem shrinkage is hence unrelated to grape berry development, in contrast to what has been previously suggested.

  8. Manipulation of VviAGL11 expression changes the seed content in grapevine (Vitis vinifera L.).

    PubMed

    Malabarba, Jaiana; Buffon, Vanessa; Mariath, Jorge E A; Maraschin, Felipe S; Margis-Pinheiro, Márcia; Pasquali, Giancarlo; Revers, Luís F

    2018-04-01

    Seedlessness in grapes is a desirable trait, especially for in natura consumption. Previously, we showed that VviAGL11 is the main responsible gene for seed morphogenesis in grapevine. Here we tested the function of this gene in grapevine with the use of plant plasmids. VviAGL11 was cloned into silencing and overexpression versions of p28iIR plasmid. Reproductive grapevine bunches from different seeded and seedless cultivars were separately treated with VviAGL11-harboring plasmids, along with controls. Plasmids were detected in leaves after a month of treatment, and berries, leaves, stems and seeds were analyzed for ectopic gene expression by RT-qPCR after 90 days of plasmid injection. Fruits from the seedless 'Linda' treated with the VviAGL11-overexpression plasmid showed high expression levels of VviAGL11 and exhibited small seeds that were not found in the untreated control samples. Mature grapes from seeded 'Italia' and 'Ruby' bunches treated with the VviAGL11-silencing plasmid showed decreased VviAGL11 expression, reduced number of seeds and increased number of seed traces. The present study confirms that VviAGL11 is a key master regulator of seed morphogenesis in grapevine and corroborates with the applicability of plant plasmids as promising biotechnological tools to functionally test genes in perennial plants in a rapid and confident way. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Proteomic analysis of grapevine resistance induced by Trichoderma harzianum T39 reveals specific defence pathways activated against downy mildew

    PubMed Central

    Perazzolli, Michele

    2012-01-01

    Downy mildew is caused by the oomycete Plasmopara viticola and is one of the most serious diseases of grapevine. The beneficial microorganism Trichoderma harzianum T39 (T39) has previously been shown to induce plant-mediated resistance and to reduce the severity of downy mildew in susceptible grapevines. In order to better understand the cellular processes associated with T39-induced resistance, the proteomic and histochemical changes activated by T39 in grapevine were investigated before and 1 day after P. viticola inoculation. A comprehensive proteomic analysis of T39-induced resistance in grapevine was performed using an eight-plex iTRAQ protocol, resulting in the identification and quantification of a total of 800 proteins. Most of the proteins directly affected by T39 were found to be involved in signal transduction, indicating activation of a complete microbial recognition machinery. Moreover, T39-induced resistance was associated with rapid accumulation of reactive oxygen species and callose at infection sites, as well as changes in abundance of proteins involved in response to stress and redox balance, indicating an active defence response to downy mildew. On the other hand, proteins affected by P. viticola in control plants mainly decreased in abundance, possibly reflecting the establishment of a compatible interaction. Finally, the high-throughput iTRAQ protocol allowed de novo peptide sequencing, which will be used to improve annotation of the Vitis vinifera cv. Pinot Noir proteome. PMID:23105132

  10. Deconstruction of the (Paleo)Polyploid Grapevine Genome Based on the Analysis of Transposition Events Involving NBS Resistance Genes

    PubMed Central

    Cestaro, Alessandro; Sterck, Lieven; Fontana, Paolo; Van de Peer, Yves; Viola, Roberto; Velasco, Riccardo; Salamini, Francesco

    2012-01-01

    Plants have followed a reticulate type of evolution and taxa have frequently merged via allopolyploidization. A polyploid structure of sequenced genomes has often been proposed, but the chromosomes belonging to putative component genomes are difficult to identify. The 19 grapevine chromosomes are evolutionary stable structures: their homologous triplets have strongly conserved gene order, interrupted by rare translocations. The aim of this study is to examine how the grapevine nucleotide-binding site (NBS)-encoding resistance (NBS-R) genes have evolved in the genomic context and to understand mechanisms for the genome evolution. We show that, in grapevine, i) helitrons have significantly contributed to transposition of NBS-R genes, and ii) NBS-R gene cluster similarity indicates the existence of two groups of chromosomes (named as Va and Vc) that may have evolved independently. Chromosome triplets consist of two Va and one Vc chromosomes, as expected from the tetraploid and diploid conditions of the two component genomes. The hexaploid state could have been derived from either allopolyploidy or the separation of the Va and Vc component genomes in the same nucleus before fusion, as known for Rosaceae species. Time estimation indicates that grapevine component genomes may have fused about 60 mya, having had at least 40–60 mya to evolve independently. Chromosome number variation in the Vitaceae and related families, and the gap between the time of eudicot radiation and the age of Vitaceae fossils, are accounted for by our hypothesis. PMID:22253773

  11. Genome-wide analysis of autophagy-related genes (ARGs) in grapevine and plant tolerance to copper stress.

    PubMed

    Shangguan, Lingfei; Fang, Xiang; Chen, Lide; Cui, Liwen; Fang, Jinggui

    2018-06-01

    Grapevine autophagy-related genes (ARGs) include 35 members that have unique evolutionary backgrounds and expression patterns, with some of them responding to abiotic stresses, including copper stress. Autophagy is one of the most crucial self-regulating phenomena in livings organisms, including animals, plants, yeasts, etc. In the genomes of plants, like Arabidopsis, rice, tobacco, and barley, more than 30 autophagy-related genes (ARGs) have been found. These ARGs are involved in plant development, programed cell death, and the stress response process. In plants, and particularly in grapevine, high copper stress results from the application of the Bordeaux mixture, a widely used fungicide. However, the function of autophagy in plant tolerance to copper stress is unknown. Accordingly, in this study, a genome-wide analysis was performed to identify Vitis vinifera ARGs (VvARGs), and 35 VvARGs were detected. A gene family analysis revealed that the tandem and segmental duplication events played significant roles in the VvARG gene family expansion. Moreover, there was more intense signature of purifying selection for the comparison between grape and rice than between grape and Arabidopsis. In response to copper treatment, both the autophagosome number and malondialdehyde concentration increased during the initial 4 h post-treatment, and reached maximal values at 24 h. An expression analysis indicated that most VvARGs responded to copper stress at 4 h post-treatment, and some VvARGs (e.g., VvATG6, VvATG8i, and VvATG18h) exhibited responses to most abiotic stresses. These results provide a detailed overview of the ARGs in grapevine and indicate multiple functions of autophagy in fruit development and abiotic stresses in grapevine. The key ARG (e.g., ATG8i) should be investigated in more detail in grapevine and other plant species.

  12. Rare earth elements distribution in grapevine varieties grown on volcanic soils: an example from Mount Etna (Sicily, Italy).

    PubMed

    D'Antone, Carmelisa; Punturo, Rosalda; Vaccaro, Carmela

    2017-04-01

    A geochemical and statistical approach has allowed identifying in rare earth elements (REEs) absorption a good fingerprinting mark for determining the territoriality and the provenance of Vitis vinifera L. in the district of Mount Etna (southern Italy). Our aim is to define the REEs distribution in different parts of the plants which grow in the same volcanic soil and under the same climate conditions, and therefore to assess whether REEs distribution may reflect the composition of the provenance soil or if plants can selectively absorb REEs in order to recognize the fingerprint in the Etna Volcano soils as well as the REEs pattern characteristic of each cultivar of V. vinifera L. The characteristic pattern of REEs has been determined by ICP-MS analyses in the soils and in the selected grapevine varieties for all the following parts: leaves, seeds, juice, skin, and berries. These geochemical criteria, together with the multivariate statistical analysis of the principal component analysis (PCA) and of the linear discriminant analysis (LDA) that can be summarized with the box plot, suggest that leaves mostly absorb REEs than the other parts of the plant. This work investigates the various parts of the plant in order to verify if each grape variety presents a characteristic geochemical pattern in the absorption of REEs in relationship with the geochemical features of the soil so to highlight the individual compositional fingerprint. Based on REE patterns, our study is a useful tool that allows characterizing the differences among the grape varieties and lays the foundation for the use of REEs in the geographic origin of the Mount Etna wine district.

  13. Species identification of the causal agent of Eutypa dieback of grapevine in northeastern American and southeastern Canadian vineyards

    USDA-ARS?s Scientific Manuscript database

    Eutypa dieback of Vitis (grape) is caused by the Ascomycete fungus Eutypa lata. The pathogen infects grapevine through wounds, and cause wood canker and dieback symptoms. E. lata has been identified in all major grape production areas in the world. The first report of Eutypa dieback from northeaster...

  14. Detection of Grapevine Leafroll-associated virus 7 using real-time qRT-PCR and conventional RT-PCR

    USDA-ARS?s Scientific Manuscript database

    Nine isolates of Grapevine Leafroll-associated Virus 7 (GLRaV-7) from California have been sequenced to design more sensitive molecular diagnostic tools. These sequences were from the coat protein (CP) and the homologous heat shock protein (hHSP70) genes. Sequence identity among these isolates rang...

  15. Moderate water stress from regulated deficit irrigation decreases transpiration similarly to net carbon exchange in grapevine canopies

    USDA-ARS?s Scientific Manuscript database

    To determine the effects of timing and extent of regulated deficit irrigation (RDI) on grapevine (Vitis vinifera) canopies, whole-canopy transpiration (TrV) and canopy conductance to water vapor (gc) were calculated from whole-vine gas exchange near key stages of fruit development. The vines were ma...

  16. The chemotaxis regulator pilG of Xylella fastidiosa is required for virulence in Vitis vinifera grapevines

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a Gram-negative, xylem-limited pathogenic bacterium that causes Pierce’s disease of grapevines. Type IV pili of X. fastidiosa are regulated by pilG, a chemotaxis regulator in Pil-Chp operon involving signal transduction pathways. To elucidate the role of pilG in twitching motil...

  17. Strategies for RUN1 deployment using RUN2 and REN2 to manage grapevine powdery mildew informed by studies of race-specificity

    USDA-ARS?s Scientific Manuscript database

    The TIR-NB-LRR gene, Resistance to Uncinula necator 1 (RUN1), from Vitis rotundifolia was recently identified and confirmed to confer resistance to the grapevine powdery mildew fungus Erysiphe necator (syn. U. necator) in transgenic Vitis vinifera cultivars. However, powdery mildew cleistothecia ha...

  18. Diversity of Diaporthe species associated with wood cankers of fruit and nut crops in northern California

    USDA-ARS?s Scientific Manuscript database

    Diaporthe ampelina, causal agent of Phomopsis cane and leaf spot of grapevine (Vitis vinifera L.), is also frequently isolated from grapevine wood, causing Phomopsis dieback. In California, Diaporthe species cause a wide range of symptoms not only on grape, but also other fruit and nut crops. To bet...

  19. Magnetic resonance imaging of water ascent in embolized xylem vessels of grapevine stem segments

    Treesearch

    Mingtao Wang; Melvin T. Tyree; Roderick E. Wasylishen

    2013-01-01

    Temporal and spatial information about water refilling of embolized xylem vessels and the rate of water ascent in these vessels is critical for understanding embolism repair in intact living vascular plants. High-resolution 1H magnetic resonance imaging (MRI) experiments have been performed on embolized grapevine stem segments while they were...

  20. First report of tomato ringspot virus in an Ohio vineyard

    USDA-ARS?s Scientific Manuscript database

    Tomato ringspot virus (TomRSV) has been reported to be associated with raspberry and grapevine decline in Canada, Chile, and several states in the USA, but has never been found in Ohio grapevines (1-5). This report documents the first discovery of TomRSV in an Ohio vineyard. TomRSV is a member of th...

  1. 33 CFR 211.103 - Determination of whether land is required for public purposes, including public recreational use.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Therein Acquired for Grapevine, Garza-Little Elm, Benbrook, Belton, and Whitney Reservoir Projects in... efficient operation of the project. This delegation of authority shall not apply to lands below the level of 529 feet in the Garza-Little Elm Reservoir project and below 560 feet in the Grapevine Reservoir...

  2. 33 CFR 211.103 - Determination of whether land is required for public purposes, including public recreational use.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Therein Acquired for Grapevine, Garza-Little Elm, Benbrook, Belton, and Whitney Reservoir Projects in... efficient operation of the project. This delegation of authority shall not apply to lands below the level of 529 feet in the Garza-Little Elm Reservoir project and below 560 feet in the Grapevine Reservoir...

  3. Mechanisms of resistance to an azole fungicide in the grapevine powdery mildew fungus, Erysiphe necator

    USDA-ARS?s Scientific Manuscript database

    We studied the mechanisms of azole resistance in the grapevine powdery mildew fungus, Erysiphe necator, by quantifying the sensitivity to myclobutanil (EC50) in 65 isolates from the eastern U.S. and 12 from Chile. From each isolate, we sequenced the gene for sterol 14a-demethylase (CYP51), and measu...

  4. Distinctive expansion of gene families associated with plant cell wall degradation, secondary metabolism, and nutrient uptake in the genomes of grapevine trunk pathogens

    USDA-ARS?s Scientific Manuscript database

    Trunk diseases threaten the longevity and productivity of grapevines in all viticulture production systems. They are caused by distantly-related fungi that form chronic wood infections, but variation in wood-decay abilities and production of phytotoxic compounds are thought to contribute to their un...

  5. Optimizing EPG settings to record blue-green sharpshooter X waves for future studies of grape host plant resistance to Xf inoculation

    USDA-ARS?s Scientific Manuscript database

    The long-term goal of the research reported in this review is to develop methodology for assessment of grapevine resistant to sharpshooter inoculation of Xylella fastidiosa(Xf)into healthy grapevines, thereby preventing Xf infection. Such a trait would be quite different from the more common mechani...

  6. Induction of defence mechanisms in grapevine leaves by emodin- and anthraquinone-rich plant extracts and their conferred resistance to downy mildew.

    PubMed

    Godard, Sophie; Slacanin, Ivan; Viret, Olivier; Gindro, Katia

    2009-09-01

    The ability of two plant extracts, Rheum palmatum root extract (RPRE) and Frangula alnus bark extract (FABE), to protect Vitis vinifera leaves from Plasmopara viticola infection was evaluated. These natural products are toxic to the pathogen and induce defence reactions in a susceptible cultivar of V. vinifera (V. vinifera cv. Chasselas), including stilbenic phytoalexin accumulation, enhanced peroxidase (EC 1.11.1.7) activity, and a hypersensitive reaction. Inhibition of the first stage of biotrophic hyphal development of P. Viticola by the two plant extracts was observed. HPLC-DAD-MS analysis showed that these two natural extracts contain many phenolic compounds belonging to the anthraquinone family, such as rhein, frangulin A, emodin, aloe-emodin, chrysophanol, and physcion. Emodin alone is able to impair P. viticola development and to stimulate viniferins and the accumulation of pterostilbene.

  7. Partitioning the grapevine growing season in the Douro Valley of Portugal: accumulated heat better than calendar dates

    NASA Astrophysics Data System (ADS)

    Real, António C.; Borges, José; Cabral, J. Sarsfield; Jones, Gregory V.

    2015-08-01

    Temperature and water status profiles during the growing season are the most important factors influencing the ripening of wine grapes. To model weather influences on the quality and productivity of the vintages, it is necessary to partition the growing season into smaller growth intervals in which weather variables are evaluated. A significant part of past and ongoing research on the relationships between weather and wine quality uses calendar-defined intervals to partition the growing season. The phenology of grapevines is not determined by calendar dates but by several factors such as accumulated heat. To examine the accuracy of different approaches, this work analyzed the difference in average temperature and accumulated precipitation using growth intervals with boundaries defined by means of estimated historical phenological dates and intervals defined by means of accumulated heat or average calendar dates of the Douro Valley of Portugal. The results show that in situations where there is an absence of historical phenological dates and/or no available data that makes the estimation of those dates possible, it is more accurate to use grapevine heat requirements than calendar dates to define growth interval boundaries. Additionally, we analyzed the ability of the length of growth intervals with boundaries based on grapevine heat requirements to differentiate the best from the worst vintage years with the results showing that vintage quality is strongly related to the phenological events. Finally, we analyzed the variability of growth interval lengths in the Douro Valley during 1980-2009 with the results showing a tendency for earlier grapevine physiology.

  8. Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fanleaf virus.

    PubMed

    Vigne, Emmanuelle; Komar, Véronique; Fuchs, Marc

    2004-04-01

    One of the major environmental safety issues over transgenic crops containing virus-derived genes relates to the outcome of recombination events between viral transgene transcripts and RNAs from indigenous virus populations. We addressed this issue by assessing the emergence of viable Grapevine fanleaf virus (GFLV) recombinants in transgenic grapevines expressing the GFLV coat protein (CP) gene. Test plants consisted of nontransgenic scions grafted onto transgenic and nontransgenic rootstocks that were exposed over 3 years to nematode-mediated GFLV infection in two distinct vineyard sites. The CP gene of challenging GFLV isolates was amplified from scions by IC-RT-PCR, and characterized by RFLP and nucleotide sequencing using strain F13 as reference since it provided the CP transgene. Analysis of EcoRI and StyI RFLP banding patterns from 347 challenging GFLV isolates and sequence data from 85 variants revealed no characteristics similar to strain F13 and no difference in the molecular variability among isolates from 190 transgenic and 157 nontransgenic plants, or from plants within (253 individuals) or outside (94 individuals) of the two sites. Interestingly, five GFLV recombinants were identified in three nontransgenic plants located outside of the two field settings. This survey indicates that transgenic grapevines did not assist the emergence of viable GFLV recombinants to detectable levels nor did they affect the molecular diversity of indigenous GFLV populations during the trial period. This is the first report on safety assessment of recombination with a transgenic crop expressing a CP gene under field conditions of heavy disease pressure but low, if any, selection pressure against recombinant viruses.

  9. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera

    PubMed Central

    2010-01-01

    Background The AP2/ERF protein family contains transcription factors that play a crucial role in plant growth and development and in response to biotic and abiotic stress conditions in plants. Grapevine (Vitis vinifera) is the only woody crop whose genome has been fully sequenced. So far, no detailed expression profile of AP2/ERF-like genes is available for grapevine. Results An exhaustive search for AP2/ERF genes was carried out on the Vitis vinifera genome and their expression profile was analyzed by Real-Time quantitative PCR (qRT-PCR) in different vegetative and reproductive tissues and under two different ripening stages. One hundred and forty nine sequences, containing at least one ERF domain, were identified. Specific clusters within the AP2 and ERF families showed conserved expression patterns reminiscent of other species and grapevine specific trends related to berry ripening. Moreover, putative targets of group IX ERFs were identified by co-expression and protein similarity comparisons. Conclusions The grapevine genome contains an amount of AP2/ERF genes comparable to that of other dicot species analyzed so far. We observed an increase in the size of specific groups within the ERF family, probably due to recent duplication events. Expression analyses in different aerial tissues display common features previously described in other plant systems and introduce possible new roles for members of some ERF groups during fruit ripening. The presented analysis of AP2/ERF genes in grapevine provides the bases for studying the molecular regulation of berry development and the ripening process. PMID:21171999

  10. Evolution and history of grapevine (Vitis vinifera) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars

    PubMed Central

    Terral, Jean-Frédéric; Tabard, Elidie; Bouby, Laurent; Ivorra, Sarah; Pastor, Thierry; Figueiral, Isabel; Picq, Sandrine; Chevance, Jean-Baptiste; Jung, Cécile; Fabre, Laurent; Tardy, Christophe; Compan, Michel; Bacilieri, Roberto; Lacombe, Thierry; This, Patrice

    2010-01-01

    Background and Aims In spite of the abundance of archaeological, bio-archaeological, historical and genetic data, the origins, historical biogeography, identity of ancient grapevine cultivars and mechanisms of domestication are still largely unknown. Here, analysis of variation in seed morphology aims to provide accurate criteria for the discrimination between wild grapes and modern cultivars and to understand changes in functional traits in relation to the domestication process. This approach is also used to quantify the phenotypic diversity in the wild and cultivated compartments and to provide a starting point for comparing well-preserved archaeological material, in order to elucidate the history of grapevine varieties. Methods Geometrical analysis (elliptic Fourier transform method) was applied to grapevine seed outlines from modern wild individuals, cultivars and well-preserved archaeological material from southern France, dating back to the first to second centuries. Key Results and Conclusions Significant relationships between seed shape and taxonomic status, geographical origin (country or region) of accessions and parentage of varieties are highlighted, as previously noted based on genetic approaches. The combination of the analysis of modern reference material and well-preserved archaeological seeds provides original data about the history of ancient cultivated forms, some of them morphologically close to the current ‘Clairette’ and ‘Mondeuse blanche’ cultivars. Archaeobiological records seem to confirm the complexity of human contact, exchanges and migrations which spread grapevine cultivation in Europe and in Mediterranean areas, and argue in favour of the existence of local domestication in the Languedoc (southern France) region during Antiquity. PMID:20034966

  11. A forensic perspective on the genetic identification of grapevine (Vitis vinifera L.) varieties using STR markers.

    PubMed

    Santos, Sara; Oliveira, Manuela; Amorim, António; van Asch, Barbara

    2014-11-01

    The grapevine (Vitis vinifera subsp. vinifera) is one of the most important agricultural crops worldwide. A long interest in the historical origins of ancient and cultivated current grapevines, as well as the need to establish phylogenetic relationships and parentage, solve homonymies and synonymies, fingerprint cultivars and clones, and assess the authenticity of plants and wines has encouraged the development of genetic identification methods. STR analysis is currently the most commonly used method for these purposes. A large dataset of grapevines genotypes for many cultivars worldwide has been produced in the last decade using a common set of recommended dinucleotide nuclear STRs. This type of marker has been replaced by long core-repeat loci in standardized state-of-the-art human forensic genotyping. The first steps toward harmonized grapevine genotyping have already been taken to bring the genetic identification methods closer to human forensic STR standards by previous authors. In this context, we bring forward a set of basic suggestions that reinforce the need to (i) guarantee trueness-to-type of the sample; (ii) use the long core-repeat markers; (iii) verify the specificity and amplification consistency of PCR primers; (iv) sequence frequent alleles and use these standardized allele ladders; (v) consider mutation rates when evaluating results of STR-based parentage and pedigree analysis; (vi) genotype large and representative samples in order to obtain allele frequency databases; (vii) standardize genotype data by establishing allele nomenclature based on repeat number to facilitate information exchange and data compilation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Grapevine Botryosphaeria dieback fungi have specific aggressiveness factor repertory involved in wood decay and stilbene metabolization.

    PubMed

    Stempien, Elodie; Goddard, Mary-Lorène; Wilhelm, Kim; Tarnus, Céline; Bertsch, Christophe; Chong, Julie

    2017-01-01

    Grapevine trunk diseases: Eutypa dieback, esca and Botryosphaeria dieback, which incidence has increased recently, are associated with several symptoms finally leading to the plant death. In the absence of efficient treatments, these diseases are a major problem for the viticulture; however, the factors involved in disease progression are not still fully identified. In order to get a better understanding of Botryosphaeria dieback development in grapevine, we have investigated different factors involved in Botryosphaeriaceae fungi aggressiveness. We first evaluated the activity of the wood-degrading enzymes of different isolates of Neofusicoccum parvum and Diplodia seriata, two major fungi associated with Botryosphaeria dieback. We further examinated the ability of these fungi to metabolize major grapevine phytoalexins: resveratrol and δ-viniferin. Our results demonstrate that Botryosphaeriaceae were characterized by differential wood decay enzymatic activities and have the capacity to rapidly degrade stilbenes. N. parvum is able to degrade parietal polysaccharides, whereas D. seriata has a better capacity to degrade lignin. Growth of both fungi exhibited a low sensitivity to resveratrol, whereas δ-viniferin has a fungistatic effect, especially on N. parvum Bourgogne S-116. We further show that Botryosphaeriaceae are able to metabolize rapidly resveratrol and δ-viniferin. The best stilbene metabolizing activity was measured for D. seriata. In conclusion, the different Botryosphaeriaceae isolates are characterized by a specific aggressiveness repertory. Wood and phenolic compound decay enzymatic activities could enable Botryosphaeriaceae to bypass chemical and physical barriers of the grapevine plant. The specific signature of Botryosphaeriaceae aggressiveness factors could explain the importance of fungi complexes in synergistic activity in order to fully colonize the host.

  13. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis.

    PubMed

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation.

  14. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis

    PubMed Central

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation. PMID:29868074

  15. Analysis of the genetic diversity and structure of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia regions.

    USDA-ARS?s Scientific Manuscript database

    Background: The mountainous region between the Caucasus and China is considered to be the center of diversity for many temperate fruit crops including grapevine (Vitis vinifera subsp. sativa L). The wild forms of the subsp. Vitis vinifera spp. sylvestris, cultivated and ancient local varieties, were...

  16. Whole genome sequencing and analyses of Xylella fastidiosa subsp. fastidiosa strain GV156 causing Pierce’s disease of grapevine in Taiwan

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a nutritionally fastidious Gram-negative bacterium causing Pierce’s disease (PD) of grapevines. PD was first reported in Anaheim, California in 1892 and is currently endemic in California and the southeastern U.S. PD also was found outside the U.S. but is limited to the America...

  17. Restructuring of Endophytic Bacterial Communities in Grapevine Yellows-Diseased and Recovered Vitis vinifera L. Plants ▿

    PubMed Central

    Bulgari, Daniela; Casati, Paola; Crepaldi, Paola; Daffonchio, Daniele; Quaglino, Fabio; Brusetti, Lorenzo; Bianco, Piero Attilio

    2011-01-01

    Length heterogeneity-PCR assays, combined with statistical analyses, highlighted that the endophytic bacterial community associated with healthy grapevines was characterized by a greater diversity than that present in diseased and recovered plants. The findings suggest that phytoplasmas can restructure the bacterial community by selecting endophytic strains that could elicit a plant defense response. PMID:21622794

  18. Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants.

    PubMed

    Bulgari, Daniela; Casati, Paola; Crepaldi, Paola; Daffonchio, Daniele; Quaglino, Fabio; Brusetti, Lorenzo; Bianco, Piero Attilio

    2011-07-01

    Length heterogeneity-PCR assays, combined with statistical analyses, highlighted that the endophytic bacterial community associated with healthy grapevines was characterized by a greater diversity than that present in diseased and recovered plants. The findings suggest that phytoplasmas can restructure the bacterial community by selecting endophytic strains that could elicit a plant defense response.

  19. Grapevine necrotic union, A newly recognized disease of unknown etiology in grapevines grafted on 110 Richter rootstock in California

    USDA-ARS?s Scientific Manuscript database

    In Northern California, surveys of several vineyards planted to Vitis vinifera cv. Pinot noir (PN) clones 02A, 667, 777, and UCD 04 grafted onto the rootstock V. berlandieri x V. rupestris 110 Richter (110R) revealed 2 to 45% of vines showing solid red leaf canopies and two distinct disease stages, ...

  20. Systems Engineering Publications | Wind | NREL

    Science.gov Websites

    Different Turbine Heights. AIAA SciTech Forum: 35th Wind Energy Symposium, Grapevine, Texas, doi:10.2514 Tool for Variable-Speed Wind Turbine Generators. NREL/TP-5000-66462, doi:10.2514/6.2017-1619. Seturaman Turbine using GeneratorSE. AIAA SciTech Forum: 35th Wind Energy Symposium, Grapevine, Texas, doi:10.2172

  1. EPG waveform library for Graphocephala atropunctata (Hemiptera: Cicadellidae): Effect of input resistor and voltage levels on waveform appearance and probing behaviors

    USDA-ARS?s Scientific Manuscript database

    Graphocephala atropunctata is a vector of Xylella fastidiosa (Xf), the causal agent of Pierce’s disease of grapevines. A 3rd-generation, AC-DC electropenetrograph (EPG) was used to record stylet probing and ingestion behaviors of adult G. atropunctata on healthy grapevines. This study presents a com...

  2. First report of a new grapevine yellows disease in Peru and its association with infection by a ‘Candidatus Phytoplasma brasiliense’-related phytoplasma strain

    USDA-ARS?s Scientific Manuscript database

    Grapevine (Vitis vinifera L.), key source for wine production, is one of the most valuable horticultural crops in the world. Native to the Mediterranean region, V. vinifera is now cultivated on every continent and covers nearly eight million hectares of land. However, the health of this cultivate...

  3. An automated field phenotyping pipeline for application in grapevine research.

    PubMed

    Kicherer, Anna; Herzog, Katja; Pflanz, Michael; Wieland, Markus; Rüger, Philipp; Kecke, Steffen; Kuhlmann, Heiner; Töpfer, Reinhard

    2015-02-26

    Due to its perennial nature and size, the acquisition of phenotypic data in grapevine research is almost exclusively restricted to the field and done by visual estimation. This kind of evaluation procedure is limited by time, cost and the subjectivity of records. As a consequence, objectivity, automation and more precision of phenotypic data evaluation are needed to increase the number of samples, manage grapevine repositories, enable genetic research of new phenotypic traits and, therefore, increase the efficiency in plant research. In the present study, an automated field phenotyping pipeline was setup and applied in a plot of genetic resources. The application of the PHENObot allows image acquisition from at least 250 individual grapevines per hour directly in the field without user interaction. Data management is handled by a database (IMAGEdata). The automatic image analysis tool BIVcolor (Berries in Vineyards-color) permitted the collection of precise phenotypic data of two important fruit traits, berry size and color, within a large set of plants. The application of the PHENObot represents an automated tool for high-throughput sampling of image data in the field. The automated analysis of these images facilitates the generation of objective and precise phenotypic data on a larger scale.

  4. A Focused Multiple Reaction Monitoring (MRM) Quantitative Method for Bioactive Grapevine Stilbenes by Ultra-High-Performance Liquid Chromatography Coupled to Triple-Quadrupole Mass Spectrometry (UHPLC-QqQ).

    PubMed

    Hurtado-Gaitán, Elías; Sellés-Marchart, Susana; Martínez-Márquez, Ascensión; Samper-Herrero, Antonio; Bru-Martínez, Roque

    2017-03-07

    Grapevine stilbenes are a family of polyphenols which derive from trans -resveratrol having antifungal and antimicrobial properties, thus being considered as phytoalexins. In addition to their diverse bioactive properties in animal models, they highlight a strong potential in human health maintenance and promotion. Due to this relevance, highly-specific qualitative and quantitative methods of analysis are necessary to accurately analyze stilbenes in different matrices derived from grapevine. Here, we developed a rapid, sensitive, and specific analysis method using ultra-high-performance liquid chromatography coupled to triple-quadrupole mass spectrometry (UHPLC-QqQ) in MRM mode to detect and quantify five grapevine stilbenes, trans -resveratrol, trans -piceid, trans -piceatannol, trans -pterostilbene, and trans -ε-viniferin, whose interest in relation to human health is continuously growing. The method was optimized to minimize in-source fragmentation of piceid and to avoid co-elution of cis -piceid and trans -resveratrol, as both are detected with resveratrol transitions. The applicability of the developed method of stilbene analysis was tested successfully in different complex matrices including cellular extracts of Vitis vinifera cell cultures, reaction media of biotransformation assays, and red wine.

  5. The Rhizosphere Bacterial Microbiota of Vitis vinifera cv. Pinot Noir in an Integrated Pest Management Vineyard.

    PubMed

    Novello, Giorgia; Gamalero, Elisa; Bona, Elisa; Boatti, Lara; Mignone, Flavio; Massa, Nadia; Cesaro, Patrizia; Lingua, Guido; Berta, Graziella

    2017-01-01

    Microorganisms associated with Vitis vinifera (grapevine) can affect its growth, health and grape quality. The aim of this study was to unravel the biodiversity of the bacterial rhizosphere microbiota of grapevine in an integrated pest management vineyard located in Piedmont, Italy. Comparison between the microbial community structure in the bulk and rhizosphere soil (variable: space) were performed. Moreover, the possible shifts of the bulk and rhizosphere soil microbiota according to two phenological stages such as flowering and early fruit development (variable: time) were characterized. The grapevine microbiota was identified using metagenomics and next-generation sequencing. Biodiversity was higher in the rhizosphere than in the bulk soil, independent of the phenological stage. Actinobacteria were the dominant class with frequencies ≥ 50% in all the soil samples, followed by Proteobacteria, Gemmatimonadetes, and Bacteroidetes. While Actinobacteria and Proteobacteria are well-known as being dominant in soil, this is the first time the presence of Gemmatimonadetes has been observed in vineyard soils. Gaiella was the dominant genus of Actinobacteria in all the samples. Finally, the microbiota associated with grapevine differed from the bulk soil microbiota and these variations were independent of the phenological stage of the plant.

  6. The Evolutionary History and Diverse Physiological Roles of the Grapevine Calcium-Dependent Protein Kinase Gene Family

    PubMed Central

    Chen, Fei; Fasoli, Marianna; Tornielli, Giovanni Battista; Dal Santo, Silvia; Pezzotti, Mario; Zhang, Liangsheng; Cai, Bin; Cheng, Zong-Ming

    2013-01-01

    Calcium-dependent protein kinases (CDPKs) are molecular switches that bind Ca2+, ATP, and protein substrates, acting as sensor relays and responders that convert Ca2+ signals, created by developmental processes and environmental stresses, into phosphorylation events. The precise functions of the CDPKs in grapevine (Vitis vinifera) are largely unknown. We therefore investigated the phylogenetic relationships and expression profiles of the 17 CDPK genes identified in the 12x grapevine genome sequence, resolving them into four subfamilies based on phylogenetic tree topology and gene structures. The origins of the CDPKs during grapevine evolution were characterized, involving 13 expansion events. Transcriptomic analysis using 54 tissues and developmental stages revealed three types of CDPK gene expression profiles: constitutive (housekeeping CDPKs), partitioned functions, and prevalent in pollen/stamen. We identified two duplicated CDPK genes that had evolved from housekeeping to pollen-prevalent functions and whose origin correlated with that of seed plants, suggesting neofunctionalization with an important role in pollen development and also potential value in the breeding of seedless varieties. We also found that CDPKs were involved in three abiotic stress signaling pathways and could therefore be used to investigate the crosstalk between stress responses. PMID:24324631

  7. vitisFlower®: Development and Testing of a Novel Android-Smartphone Application for Assessing the Number of Grapevine Flowers per Inflorescence Using Artificial Vision Techniques.

    PubMed

    Aquino, Arturo; Millan, Borja; Gaston, Daniel; Diago, María-Paz; Tardaguila, Javier

    2015-08-28

    Grapevine flowering and fruit set greatly determine crop yield. This paper presents a new smartphone application for automatically counting, non-invasively and directly in the vineyard, the flower number in grapevine inflorescence photos by implementing artificial vision techniques. The application, called vitisFlower(®), firstly guides the user to appropriately take an inflorescence photo using the smartphone's camera. Then, by means of image analysis, the flowers in the image are detected and counted. vitisFlower(®) has been developed for Android devices and uses the OpenCV libraries to maximize computational efficiency. The application was tested on 140 inflorescence images of 11 grapevine varieties taken with two different devices. On average, more than 84% of flowers in the captures were found, with a precision exceeding 94%. Additionally, the application's efficiency on four different devices covering a wide range of the market's spectrum was also studied. The results of this benchmarking study showed significant differences among devices, although indicating that the application is efficiently usable even with low-range devices. vitisFlower is one of the first applications for viticulture that is currently freely available on Google Play.

  8. The Secreted Protease PrtA Controls Cell Growth, Biofilm Formation and Pathogenicity in Xylella fastidiosa.

    PubMed

    Gouran, Hossein; Gillespie, Hyrum; Nascimento, Rafael; Chakraborty, Sandeep; Zaini, Paulo A; Jacobson, Aaron; Phinney, Brett S; Dolan, David; Durbin-Johnson, Blythe P; Antonova, Elena S; Lindow, Steven E; Mellema, Matthew S; Goulart, Luiz R; Dandekar, Abhaya M

    2016-08-05

    Pierce's disease (PD) is a deadly disease of grapevines caused by the Gram-negative bacterium Xylella fastidiosa. Though disease symptoms were formerly attributed to bacteria blocking the plant xylem, this hypothesis is at best overly simplistic. Recently, we used a proteomic approach to characterize the secretome of X. fastidiosa, both in vitro and in planta, and identified LesA as one of the pathogenicity factors of X. fastidiosa in grapevines that leads to leaf scorching and chlorosis. Herein, we characterize another such factor encoded by PD0956, designated as an antivirulence secreted protease "PrtA" that displays a central role in controlling in vitro cell proliferation, length, motility, biofilm formation, and in planta virulence. The mutant in X. fastidiosa exhibited reduced cell length, hypermotility (and subsequent lack of biofilm formation) and hypervirulence in grapevines. These findings are supported by transcriptomic and proteomic analyses with corresponding plant infection data. Of particular interest, is the hypervirulent response in grapevines observed when X. fastidiosa is disrupted for production of PrtA, and that PD-model tobacco plants transformed to express PrtA exhibited decreased symptoms after infection by X. fastidiosa.

  9. The Secreted Protease PrtA Controls Cell Growth, Biofilm Formation and Pathogenicity in Xylella fastidiosa

    PubMed Central

    Gouran, Hossein; Gillespie, Hyrum; Nascimento, Rafael; Chakraborty, Sandeep; Zaini, Paulo A.; Jacobson, Aaron; Phinney, Brett S.; Dolan, David; Durbin-Johnson, Blythe P.; Antonova, Elena S.; Lindow, Steven E.; Mellema, Matthew S.; Goulart, Luiz R.; Dandekar, Abhaya M.

    2016-01-01

    Pierce’s disease (PD) is a deadly disease of grapevines caused by the Gram-negative bacterium Xylella fastidiosa. Though disease symptoms were formerly attributed to bacteria blocking the plant xylem, this hypothesis is at best overly simplistic. Recently, we used a proteomic approach to characterize the secretome of X. fastidiosa, both in vitro and in planta, and identified LesA as one of the pathogenicity factors of X. fastidiosa in grapevines that leads to leaf scorching and chlorosis. Herein, we characterize another such factor encoded by PD0956, designated as an antivirulence secreted protease “PrtA” that displays a central role in controlling in vitro cell proliferation, length, motility, biofilm formation, and in planta virulence. The mutant in X. fastidiosa exhibited reduced cell length, hypermotility (and subsequent lack of biofilm formation) and hypervirulence in grapevines. These findings are supported by transcriptomic and proteomic analyses with corresponding plant infection data. Of particular interest, is the hypervirulent response in grapevines observed when X. fastidiosa is disrupted for production of PrtA, and that PD-model tobacco plants transformed to express PrtA exhibited decreased symptoms after infection by X. fastidiosa. PMID:27492542

  10. Using SCC8, SCF27 and VMC7f2 markers in grapevine breeding for seedlessness via marker assisted selection.

    PubMed

    Akkurt, M; Çakır, A; Shidfar, M; Çelikkol, B P; Söylemezoğlu, G

    2012-08-13

    We used molecular markers associated with seedlessness in grapes, namely SCC8, SCF27 and VMC7f2, to improve the efficiency of seedless grapevine breeding via marker assisted selection (MAS). DNA from 372 F₁ hybrid progeny from the cross between seeded "Alphonse Lavallée" and seedless "Sultani" was amplified by PCR using three markers. After digestion of SCC8 marker amplification products by restriction enzyme BgIII, 40 individuals showed homozygous SCC8+/SCC8+ alleles at the seed development inhibitor (SdI) locus. DNA from 80 of the progeny amplified with the SCF27 marker produced bands; 174 individuals had 198-bp alleles of the VMC7f2 marker associated with seedlessness. In the second year, based on MAS, 183 F₁ hybrids were designated as seedless grapevine candidates because they were positive for a minimum of one marker. Twenty individuals were selected as genetic resources for future studies on seedless grapevine breeding because they carried alleles for the three markers associated with seedlessness. The VMC7f2 SSR marker was identified as the marker most associated with seedlessness.

  11. An Automated Field Phenotyping Pipeline for Application in Grapevine Research

    PubMed Central

    Kicherer, Anna; Herzog, Katja; Pflanz, Michael; Wieland, Markus; Rüger, Philipp; Kecke, Steffen; Kuhlmann, Heiner; Töpfer, Reinhard

    2015-01-01

    Due to its perennial nature and size, the acquisition of phenotypic data in grapevine research is almost exclusively restricted to the field and done by visual estimation. This kind of evaluation procedure is limited by time, cost and the subjectivity of records. As a consequence, objectivity, automation and more precision of phenotypic data evaluation are needed to increase the number of samples, manage grapevine repositories, enable genetic research of new phenotypic traits and, therefore, increase the efficiency in plant research. In the present study, an automated field phenotyping pipeline was setup and applied in a plot of genetic resources. The application of the PHENObot allows image acquisition from at least 250 individual grapevines per hour directly in the field without user interaction. Data management is handled by a database (IMAGEdata). The automatic image analysis tool BIVcolor (Berries in Vineyards-color) permitted the collection of precise phenotypic data of two important fruit traits, berry size and color, within a large set of plants. The application of the PHENObot represents an automated tool for high-throughput sampling of image data in the field. The automated analysis of these images facilitates the generation of objective and precise phenotypic data on a larger scale. PMID:25730485

  12. Endophytic Bacterium Pseudomonas fluorescens RG11 May Transform Tryptophan to Melatonin and Promote Endogenous Melatonin Levels in the Roots of Four Grape Cultivars

    PubMed Central

    Ma, Yaner; Jiao, Jian; Fan, Xiucai; Sun, Haisheng; Zhang, Ying; Jiang, Jianfu; Liu, Chonghuai

    2017-01-01

    Endophytes have been verified to synthesize melatonin in vitro and promote abiotic stress-induced production of endogenous melatonin in grape (Vitis vinifera L.) roots. This study aimed to further characterize the biotransformation of tryptophan to melatonin in the endophytic bacterium Pseudomonas fluorescens RG11 and to investigate its capacity for enhancing endogenous melatonin levels in the roots of different grape cultivars. Using ultra performance liquid chromatography-tandem mass spectrometry combined with 15N double-labeled L-tryptophan as the precursor for melatonin, we detected isotope-labeled 5-hydroxytryptophan, serotonin, N-acetylserotonin, and melatonin, but tryptamine was not detected during the in vitro incubation of P. fluorescens RG11. Furthermore, the production capacity of these four compounds peaked during the exponential growth phase. RG11 colonization increased the endogenous levels of 5-hydroxytryptophan, N-acetylserotonin, and melatonin, but reduced those of tryptamine and serotonin, in the roots of the Red Globe grape cultivar under salt stress conditions. Quantitative real-time PCR revealed that RG11 reduced the transcription of grapevine tryptophan decarboxylase and serotonin N-acetyltransferase genes when compared to the un-inoculated control. These results correlated with decreased reactive oxygen species bursts and cell damage, which were alleviated by RG11 colonization under salt stress conditions. Additionally, RG11 promoted plant growth and enhanced the levels of endogenous melatonin in different grape cultivars. Intraspecific variation in the levels of melatonin precursors was found among four grape cultivars, and the associated root crude extracts appeared to significantly induce RG11 melatonin biosynthesis in vitro. Overall, this study provides useful information that enhances the existing knowledge of a potential melatonin synthesis pathway in rhizobacteria, and it reveals plant–rhizobacterium interactions that affect melatonin biosynthesis in plants subjected to abiotic stress conditions. PMID:28119731

  13. Endophytic Bacterium Pseudomonas fluorescens RG11 May Transform Tryptophan to Melatonin and Promote Endogenous Melatonin Levels in the Roots of Four Grape Cultivars.

    PubMed

    Ma, Yaner; Jiao, Jian; Fan, Xiucai; Sun, Haisheng; Zhang, Ying; Jiang, Jianfu; Liu, Chonghuai

    2016-01-01

    Endophytes have been verified to synthesize melatonin in vitro and promote abiotic stress-induced production of endogenous melatonin in grape ( Vitis vinifera L.) roots. This study aimed to further characterize the biotransformation of tryptophan to melatonin in the endophytic bacterium Pseudomonas fluorescens RG11 and to investigate its capacity for enhancing endogenous melatonin levels in the roots of different grape cultivars. Using ultra performance liquid chromatography-tandem mass spectrometry combined with 15N double-labeled L -tryptophan as the precursor for melatonin, we detected isotope-labeled 5-hydroxytryptophan, serotonin, N -acetylserotonin, and melatonin, but tryptamine was not detected during the in vitro incubation of P. fluorescens RG11. Furthermore, the production capacity of these four compounds peaked during the exponential growth phase. RG11 colonization increased the endogenous levels of 5-hydroxytryptophan, N -acetylserotonin, and melatonin, but reduced those of tryptamine and serotonin, in the roots of the Red Globe grape cultivar under salt stress conditions. Quantitative real-time PCR revealed that RG11 reduced the transcription of grapevine tryptophan decarboxylase and serotonin N -acetyltransferase genes when compared to the un-inoculated control. These results correlated with decreased reactive oxygen species bursts and cell damage, which were alleviated by RG11 colonization under salt stress conditions. Additionally, RG11 promoted plant growth and enhanced the levels of endogenous melatonin in different grape cultivars. Intraspecific variation in the levels of melatonin precursors was found among four grape cultivars, and the associated root crude extracts appeared to significantly induce RG11 melatonin biosynthesis in vitro . Overall, this study provides useful information that enhances the existing knowledge of a potential melatonin synthesis pathway in rhizobacteria, and it reveals plant-rhizobacterium interactions that affect melatonin biosynthesis in plants subjected to abiotic stress conditions.

  14. High-resolution stable isotope monitoring reveals differential vegetation-soil water feedbacks among plant functional types

    NASA Astrophysics Data System (ADS)

    Volkmann, T. H. M.; Haberer, K.; Troch, P. A. A.; Gessler, A.; Weiler, M.

    2016-12-01

    Understanding the linked dynamics of rain water recharge to soils and its utilization by plants is critical for predicting the impact of climate and land use changes on the productivity of ecosystems and the hydrologic cycle. While plants require vast quantities of water from the soil to sustain growth and function, they exert important direct and indirect controls on the movement of water through the rooted soil horizons, thereby potentially affecting their own resource availability. However, the specific ecohydrological belowground processes associated with different plant types and their rooting systems have been difficult to quantify with traditional methods. Here, we report on the use of techniques for monitoring stable isotopes in soil and plant water pools that allow us to track water infiltration and root uptake dynamics non-destructively and in high resolution. The techniques were applied in controlled rain pulse experiments with distinct plant types (grass, deciduous trees, grapevine) that we let develop on an initially uniform soil for two years. Our results show that plant species and types differed widely in their plasticity and pattern of root uptake under variable water availability. Thereby, and through notably co-acting indirect effects related to differential root system traits and co-evolution of soil properties, the different plants induced contrasting hydrological dynamics in the soil they had inhabited for only a short period of time. Taken together, our data suggest that the studied soil-vegetation systems evolved a positive infiltration-uptake feedback in which hydrological flow pathways underlying different species diverged in a way that complemented their specific water utilization strategy. Such a feedback could present an indirect competitive mechanism by which plants improve their own water supply and modulate hydrological cycling at the land surface. The ability to directly measure this feedback using in situ isotope methodology highlights the great potential for stable isotope research to improve our understanding of the soil-vegetation-atmosphere system.

  15. Modelling Growth and Partitioning of Annual Above-Ground Vegetative and Reproductive Biomass of Grapevine

    NASA Astrophysics Data System (ADS)

    Meggio, Franco; Vendrame, Nadia; Maniero, Giovanni; Pitacco, Andrea

    2014-05-01

    In the current climate change scenarios, both agriculture and forestry inherently may act as carbon sinks and consequently can play a key role in limiting global warming. An urgent need exists to understand which land uses and land resource types have the greatest potential to mitigate greenhouse gas (GHG) emissions contributing to global change. A common believe is that agricultural fields cannot be net carbon sinks due to many technical inputs and repeated disturbances of upper soil layers that all contribute to a substantial loss both of the old and newly-synthesized organic matter. Perennial tree crops (vineyards and orchards), however, can behave differently: they grow a permanent woody structure, stand undisturbed in the same field for decades, originate a woody pruning debris, and are often grass-covered. In this context, reliable methods for quantifying and modelling emissions and carbon sequestration are required. Carbon stock changes are calculated by multiplying the difference in oven dry weight of biomass increments and losses with the appropriate carbon fraction. These data are relatively scant, and more information is needed on vineyard management practices and how they impact vineyard C sequestration and GHG emissions in order to generate an accurate vineyard GHG footprint. During the last decades, research efforts have been made for estimating the vineyard carbon budget and its allocation pattern since it is crucial to better understand how grapevines control the distribution of acquired resources in response to variation in environmental growth conditions and agronomic practices. The objective of the present study was to model and compare the dynamics of current year's above-ground biomass among four grapevine varieties. Trials were carried out over three growing seasons in field conditions. The non-linear extra-sums-of-squares method demonstrated to be a feasible way of growth models comparison to statistically assess significant differences among grapevine cultivars and years. The results of this study enabled the development of carbon allocation functions of year's above-ground biomass in grapevine. Statistical analyses highlighted key patterns and main drivers involved in the genotypic (genetic factors, cultivar) and phenotypic variability (environmental factors or differences in cultural practices among years) of shoot growth. These results suggest that some caution should be taken when incorporating shoot development and carbon partitioning coefficients in a growth model. Use of common coefficients estimates for all cultivars for dynamic modelling approaches, in fact, may result in a poor representation of the data early or late during the course of the season. The present study may be considered also as a potential database for both the validation of measurements made in vineyards by micrometeorological methods, such as eddy covariance or provide the lack of information coming from life cycle assessment methods recently adapted also to the wine supply chain for carbon footprint assessment.

  16. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera

    PubMed Central

    2014-01-01

    Background WRKY transcription factors are one of the largest families of transcriptional regulators in plants. WRKY genes are not only found to play significant roles in biotic and abiotic stress response, but also regulate growth and development. Grapevine (Vitis vinifera) production is largely limited by stressful climate conditions such as cold stress and the role of WRKY genes in the survival of grapevine under these conditions remains unknown. Results We identified a total of 59 VvWRKYs from the V. vinifera genome, belonging to four subgroups according to conserved WRKY domains and zinc-finger structure. The majority of VvWRKYs were expressed in more than one tissue among the 7 tissues examined which included young leaves, mature leaves, tendril, stem apex, root, young fruits and ripe fruits. Publicly available microarray data suggested that a subset of VvWRKYs was activated in response to diverse stresses. Quantitative real-time PCR (qRT-PCR) results demonstrated that the expression levels of 36 VvWRKYs are changed following cold exposure. Comparative analysis was performed on data from publicly available microarray experiments, previous global transcriptome analysis studies, and qRT-PCR. We identified 15 VvWRKYs in at least two of these databases which may relate to cold stress. Among them, the transcription of three genes can be induced by exogenous ABA application, suggesting that they can be involved in an ABA-dependent signaling pathway in response to cold stress. Conclusions We identified 59 VvWRKYs from the V. vinifera genome and 15 of them showed cold stress-induced expression patterns. These genes represented candidate genes for future functional analysis of VvWRKYs involved in the low temperature-related signal pathways in grape. PMID:24755338

  17. Controlled water deficit during ripening affects proanthocyanidin synthesis, concentration and composition in Cabernet Sauvignon grape skins.

    PubMed

    Cáceres-Mella, Alejandro; Talaverano, M Inmaculada; Villalobos-González, Luis; Ribalta-Pizarro, Camila; Pastenes, Claudio

    2017-08-01

    The influence of controlled water deficit on the phenolic composition and gene expression of VvLAR2, VvMYBPA1, VvMYBPA2 and VvMYB4a in Cabernet Sauvignon grape skins throughout ripening was investigated. The assay was carried out on own-rooted Vitis vinifera plants cv. Cabernet Sauvignon in a commercial vineyard from veraison until commercial harvest. Three irrigation regimes were used from veraison until harvest with the following treatments: T1: 3.6 mm day -1 ; T2: 1.8 mm day -1 and T3: 0.3 mm day -1 . The content of total phenols and total anthocyanins in grape skins increased during ripening, but water deficit did not produce differences among treatments in the total anthocyanin concentration. Proanthocyanidins (PAs) decreased throughout ripening, although approximately 25 days after veraison (DAV), their content slightly increased. This effect was more pronounced in the most restrictive treatment (T3). A similar pattern was observed in the transcript abundance of VvLAR2, VvMYBPA1 and VvMYB4a. PAs separation revealed differences in concentration but not in the proportion among fractions among the irrigation treatments. Additionally, controlled water deficit increased the mean degree of polymerization and the flavan-3-ol polymeric concentration in grape skins throughout ripening but with no effects on the extent of PAs galloylation. Our results suggest that the water status of Cabernet Sauvignon grapevines affects the gene expression for proteins involved in the synthesis of PAs, increasing their concentration and also their composition, with further evidence for the efficacy of a convenient, controlled water deficit strategy for grapevine cultivation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Impact of Grapevine (Vitis vinifera) Varieties on Reproduction of the Northern Root-Knot Nematode (Meloidogyne hapla).

    PubMed

    Howland, Amanda D; Skinkis, Patricia A; Wilson, John H; Riga, Ekaterini; Pinkerton, John N; Schreiner, R Paul; Zasada, Inga A

    2015-06-01

    One of the most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards is Meloidogyne hapla; however, limited research exists on the impact of this nematode on V. vinifera. The objectives of this research were to determine the impact of M. hapla on Chardonnay and Cabernet Sauvignon vine establishment and to determine the host status of V. vinifera varieties/clones predominantly grown in Washington to M. hapla. In a microplot experiment, Chardonnay and Cabernet Sauvignon vines were planted into soil inoculated with different densities of M. hapla; population dynamics of M. hapla and vine performance were monitored over 3 yr. In greenhouse experiments, several clones representing five V. vinifera varieties, Chardonnay, Riesling, Cabernet Sauvignon, Merlot, and Syrah, were evaluated as hosts for M. hapla. In both microplot and greenhouse experiments, white varieties were significantly better hosts than red varieties. In the greenhouse experiments, Chardonnay and Riesling had 40% higher reproduction factor values than Syrah and Merlot, however, all varieties/clones screened were good hosts for M. hapla (reproduction factors > 3). In the microplot experiment, M. hapla eggs/g root were 4.5 times greater in Chardonnay compared to Cabernet Sauvignon 3 yr after planting but there was no evident impact of M. hapla on vine establishment.

  19. Impact of Grapevine (Vitis vinifera) Varieties on Reproduction of the Northern Root-Knot Nematode (Meloidogyne hapla)

    PubMed Central

    Howland, Amanda D.; Skinkis, Patricia A.; Wilson, John H.; Riga, Ekaterini; Pinkerton, John N.; Schreiner, R. Paul; Zasada, Inga A.

    2015-01-01

    One of the most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards is Meloidogyne hapla; however, limited research exists on the impact of this nematode on V. vinifera. The objectives of this research were to determine the impact of M. hapla on Chardonnay and Cabernet Sauvignon vine establishment and to determine the host status of V. vinifera varieties/clones predominantly grown in Washington to M. hapla. In a microplot experiment, Chardonnay and Cabernet Sauvignon vines were planted into soil inoculated with different densities of M. hapla; population dynamics of M. hapla and vine performance were monitored over 3 yr. In greenhouse experiments, several clones representing five V. vinifera varieties, Chardonnay, Riesling, Cabernet Sauvignon, Merlot, and Syrah, were evaluated as hosts for M. hapla. In both microplot and greenhouse experiments, white varieties were significantly better hosts than red varieties. In the greenhouse experiments, Chardonnay and Riesling had 40% higher reproduction factor values than Syrah and Merlot, however, all varieties/clones screened were good hosts for M. hapla (reproduction factors > 3). In the microplot experiment, M. hapla eggs/g root were 4.5 times greater in Chardonnay compared to Cabernet Sauvignon 3 yr after planting but there was no evident impact of M. hapla on vine establishment. PMID:26170476

  20. Unraveling the etiology of North American grapevine yellows (NAGY): multilocus genotyping and structural analysis of secY proteins distinguish NAGYIII phytoplasma strains from strains causing X-disease

    USDA-ARS?s Scientific Manuscript database

    North American grapevine yellows (NAGY) disease has sometimes been ascribed to infection of Vitis vinifera L. by X-disease phytoplasma, but the accuracy of this attribution has remained open to question. In the present study of NAGY etiology, the disease was discovered in Maryland, Pennsylvania, Oh...

  1. An evaluation of the flora adjacent to wine grape vineyards for the presence of alternative host plants of grapevine red blotch-associated virus

    USDA-ARS?s Scientific Manuscript database

    Grapevine red blotch-associated virus (GRBaV) is a recently discovered virus of concern to wine grape production in North America. While the vector of this virus is unknown, other elements of virus epidemiology are essential to develop guidelines for the management of the virus as well as to assist ...

  2. Evaluating the potential of a novel dual heat-pulse sensor to measure volumetric water use in grapevines under a range of flow conditions

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to validate dual sap flow sensors that combine two heat pulse techniques to measure volumetric water use over the full range of sap flows found in grapevines. The heat ratio method (HRM), which works well at measuring low and reverse flows, was combined with the compensati...

  3. VvMJE1 of the grapevine (Vitis vinifera) VvMES methylesterase family encodes for methyl jasmonate esterase and has a role in stress response

    USDA-ARS?s Scientific Manuscript database

    The known members of the plant methyl esterase (MES) family catalyze hydrolysis of a C-O ester linkage of methyl esters of several phytohormones including indole-3-acetic acid, salicylic acid, and jasmonic acid. The genome of grapevine (Vitis vinifera) was found to contain 15 MES genes, designated V...

  4. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera) Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    PubMed Central

    2010-01-01

    Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS) were predicted by in silico analysis of the grapevine (Vitis vinifera) genome assembly [1]. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information about gene structure and phylogeny for the entire currently known VvTPS gene family. PMID:20964856

  5. An analytical fiber bundle model for pullout mechanics of root bundles

    NASA Astrophysics Data System (ADS)

    Cohen, D.; Schwarz, M.; Or, D.

    2011-09-01

    Roots in soil contribute to the mechanical stability of slopes. Estimation of root reinforcement is challenging because roots form complex biological networks whose geometrical and mechanical characteristics are difficult to characterize. Here we describe an analytical model that builds on simple root descriptors to estimate root reinforcement. Root bundles are modeled as bundles of heterogeneous fibers pulled along their long axes neglecting root-soil friction. Analytical expressions for the pullout force as a function of displacement are derived. The maximum pullout force and corresponding critical displacement are either derived analytically or computed numerically. Key model inputs are a root diameter distribution (uniform, Weibull, or lognormal) and three empirical power law relations describing tensile strength, elastic modulus, and length of roots as functions of root diameter. When a root bundle with root tips anchored in the soil matrix is pulled by a rigid plate, a unique parameter, ?, that depends only on the exponents of the power law relations, dictates the order in which roots of different diameters break. If ? < 1, small roots break first; if ? > 1, large roots break first. When ? = 1, all fibers break simultaneously, and the maximum tensile force is simply the roots' mean force times the number of roots in the bundle. Based on measurements of root geometry and mechanical properties, the value of ? is less than 1, usually ranging between 0 and 0.7. Thus, small roots always fail first. The model shows how geometrical and mechanical characteristics of roots and root diameter distribution affect the pullout force, its maximum and corresponding displacement. Comparing bundles of roots that have similar mean diameters, a bundle with a narrow variance in root diameter will result in a larger maximum force and a smaller displacement at maximum force than a bundle with a wide diameter distribution. Increasing the mean root diameter of a bundle without changing the distribution's shape increases both the maximum force and corresponding displacement. Estimates of the maximum pullout forces for bundles of 100 roots with identical diameter distribution for different species range from less than 1 kN for barley (Hordeum vulgare) to almost 16 kN for pistachio (Pistacia lentiscus). The model explains why a commonly used assumption that all roots break simultaneously overpredicts the maximum pullout force by a factor of about 1.6-2. This ratio may exceed 3 for diameter distributions that have a large number of small roots like the exponential distribution.

  6. The MADS-box gene Agamous-like 11 is essential for seed morphogenesis in grapevine.

    PubMed

    Malabarba, Jaiana; Buffon, Vanessa; Mariath, Jorge E A; Gaeta, Marcos L; Dornelas, Marcelo C; Margis-Pinheiro, Márcia; Pasquali, Giancarlo; Revers, Luís F

    2017-03-01

    Despite the wide appreciation of seedless grapes, little is known about the molecular mechanisms that drive the stenospermocarpic seedless-type phenotype in grapevine. In order to address the molecular mechanisms that control seedlessness in grapevine, our study aimed to characterize VviAGL11, a class D MADS-box transcription factor gene that has been proposed as the major candidate gene involved in Vitis vinifera seed morphogenesis. VviAGL11 allelic variations in seeded and seedless grapevine cultivars were determined, and its correlations with allele-specific steady-state mRNA levels were investigated. VviAGL11 relative expression was significantly higher in seeds at 2, 4, and 6 weeks after fruit set, whereas in the seedless grape its transcript levels were extremely low in all stages analyzed. In situ hybridization revealed transcript accumulation specifically in the dual endotesta layer of the seeds, which is responsible for elongation and an increase of cell number, a necessary step to determine the lignification and the final seed size. No hybridization signals were visible in the seedless grapevine tissues, and a morphoanatomical analysis showed an apparent loss of identity of the endotesta layer of the seed traces. Ectopic expression of VviAGL11 in the Arabidopsis SEEDSTICK mutant background restored the wild-type phenotype and confirmed the direct role of VviAGL11 in seed morphogenesis, suggesting that depletion of its expression is responsible for the erroneous development of a highly essential seed layer, therefore culminating in the typical apirenic phenotype. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Endophytic bacterial community of grapevine leaves influenced by sampling date and phytoplasma infection process

    PubMed Central

    2014-01-01

    Background Endophytic bacteria benefit host plant directly or indirectly, e.g. by biocontrol of the pathogens. Up to now, their interactions with the host and with other microorganisms are poorly understood. Consequently, a crucial step for improving the knowledge of those relationships is to determine if pathogens or plant growing season influence endophytic bacterial diversity and dynamic. Results Four healthy, four phytoplasma diseased and four recovered (symptomatic plants that spontaneously regain a healthy condition) grapevine plants were sampled monthly from June to October 2010 in a vineyard in north-western Italy. Metagenomic DNA was extracted from sterilized leaves and the endophytic bacterial community dynamic and diversity were analyzed by taxon specific real-time PCR, Length-Heterogeneity PCR and genus-specific PCR. These analyses revealed that both sampling date and phytoplasma infection influenced the endophytic bacterial composition. Interestingly, in June, when the plants are symptomless and the pathogen is undetectable (i) the endophytic bacterial community associated with diseased grapevines was different from those in the other sampling dates, when the phytoplasmas are detectable inside samples; (ii) the microbial community associated with recovered plants differs from that living inside healthy and diseased plants. Interestingly, LH-PCR database identified bacteria previously reported as biocontrol agents in the examined grapevines. Of these, Burkholderia, Methylobacterium and Pantoea dynamic was influenced by the phytoplasma infection process and seasonality. Conclusion Results indicated that endophytic bacterial community composition in grapevine is correlated to both phytoplasma infection and sampling date. For the first time, data underlined that, in diseased plants, the pathogen infection process can decrease the impact of seasonality on community dynamic. Moreover, based on experimental evidences, it was reasonable to hypothesize that after recovery the restructured microbial community could maintain the main structure between seasons. PMID:25048741

  8. Endophytic bacterial community of grapevine leaves influenced by sampling date and phytoplasma infection process.

    PubMed

    Bulgari, Daniela; Casati, Paola; Quaglino, Fabio; Bianco, Piero A

    2014-07-21

    Endophytic bacteria benefit host plant directly or indirectly, e.g. by biocontrol of the pathogens. Up to now, their interactions with the host and with other microorganisms are poorly understood. Consequently, a crucial step for improving the knowledge of those relationships is to determine if pathogens or plant growing season influence endophytic bacterial diversity and dynamic. Four healthy, four phytoplasma diseased and four recovered (symptomatic plants that spontaneously regain a healthy condition) grapevine plants were sampled monthly from June to October 2010 in a vineyard in north-western Italy. Metagenomic DNA was extracted from sterilized leaves and the endophytic bacterial community dynamic and diversity were analyzed by taxon specific real-time PCR, Length-Heterogeneity PCR and genus-specific PCR. These analyses revealed that both sampling date and phytoplasma infection influenced the endophytic bacterial composition. Interestingly, in June, when the plants are symptomless and the pathogen is undetectable (i) the endophytic bacterial community associated with diseased grapevines was different from those in the other sampling dates, when the phytoplasmas are detectable inside samples; (ii) the microbial community associated with recovered plants differs from that living inside healthy and diseased plants. Interestingly, LH-PCR database identified bacteria previously reported as biocontrol agents in the examined grapevines. Of these, Burkholderia, Methylobacterium and Pantoea dynamic was influenced by the phytoplasma infection process and seasonality. Results indicated that endophytic bacterial community composition in grapevine is correlated to both phytoplasma infection and sampling date. For the first time, data underlined that, in diseased plants, the pathogen infection process can decrease the impact of seasonality on community dynamic. Moreover, based on experimental evidences, it was reasonable to hypothesize that after recovery the restructured microbial community could maintain the main structure between seasons.

  9. Atmospheric circulation patterns and phenological anomalies of grapevine in Italy

    NASA Astrophysics Data System (ADS)

    Cola, Gabriele; Alilla, Roberta; Dal Monte, Giovanni; Epifani, Chiara; Mariani, Luigi; Parisi, Simone Gabriele

    2014-05-01

    Grapevine (Vitis vinifera L.) is a fundamental crop for Italian agriculture as testified by the first place of Italy in the world producers ranking. This justify the importance of quantitative analyses referred to this crucial crop and aimed to quantify meteorological resources and limitations to development and production. Phenological rhythms of grapevine are strongly affected by surface fields of air temperature which in their turn are affected by synoptic circulation. This evidence highlights the importance of an approach based on dynamic climatology in order to detect and explain phenological anomalies that can have relevant effects on quantity and quality of grapevine production. In this context, this research is aimed to study the existing relation among the 850 hPa circulation patterns over the Euro-Mediterranean area from NOAA Ncep dataset and grapevine phenological fields for Italy over the period 2006-2013, highlighting the main phenological anomalies and analyzing synoptic determinants. This work is based on phenological fields with a standard pixel of 2 km routinely produced from 2006 by the Iphen project (Italian Phenological network) on the base of phenological observations spatialized by means of a specific algorithm based on cumulated thermal resources expressed as Normal Heat Hours (NHH). Anomalies have been evaluated with reference to phenological normal fields defined for the Italian area on the base of phenological observations and Iphen model. Results show that relevant phenological anomalies observed over the reference period are primarily associated with long lasting blocking systems driving cold air masses (Arctic or Polar-Continental) or hot ones (Sub-Tropical) towards the Italian area. Specific cases are presented for some years like 2007 and 2011.

  10. Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences

    PubMed Central

    2012-01-01

    Background The first draft assembly and gene prediction of the grapevine genome (8X base coverage) was made available to the scientific community in 2007, and functional annotation was developed on this gene prediction. Since then additional Sanger sequences were added to the 8X sequences pool and a new version of the genomic sequence with superior base coverage (12X) was produced. Results In order to more efficiently annotate the function of the genes predicted in the new assembly, it is important to build on as much of the previous work as possible, by transferring 8X annotation of the genome to the 12X version. The 8X and 12X assemblies and gene predictions of the grapevine genome were compared to answer the question, “Can we uniquely map 8X predicted genes to 12X predicted genes?” The results show that while the assemblies and gene structure predictions are too different to make a complete mapping between them, most genes (18,725) showed a one-to-one relationship between 8X predicted genes and the last version of 12X predicted genes. In addition, reshuffled genomic sequence structures appeared. These highlight regions of the genome where the gene predictions need to be taken with caution. Based on the new grapevine gene functional annotation and in-depth functional categorization, twenty eight new molecular networks have been created for VitisNet while the existing networks were updated. Conclusions The outcomes of this study provide a functional annotation of the 12X genes, an update of VitisNet, the system of the grapevine molecular networks, and a new functional categorization of genes. Data are available at the VitisNet website (http://www.sdstate.edu/ps/research/vitis/pathways.cfm). PMID:22554261

  11. Grapevine Botryosphaeria dieback fungi have specific aggressiveness factor repertory involved in wood decay and stilbene metabolization

    PubMed Central

    Wilhelm, Kim; Tarnus, Céline; Bertsch, Christophe

    2017-01-01

    Grapevine trunk diseases: Eutypa dieback, esca and Botryosphaeria dieback, which incidence has increased recently, are associated with several symptoms finally leading to the plant death. In the absence of efficient treatments, these diseases are a major problem for the viticulture; however, the factors involved in disease progression are not still fully identified. In order to get a better understanding of Botryosphaeria dieback development in grapevine, we have investigated different factors involved in Botryosphaeriaceae fungi aggressiveness. We first evaluated the activity of the wood-degrading enzymes of different isolates of Neofusicoccum parvum and Diplodia seriata, two major fungi associated with Botryosphaeria dieback. We further examinated the ability of these fungi to metabolize major grapevine phytoalexins: resveratrol and δ-viniferin. Our results demonstrate that Botryosphaeriaceae were characterized by differential wood decay enzymatic activities and have the capacity to rapidly degrade stilbenes. N. parvum is able to degrade parietal polysaccharides, whereas D. seriata has a better capacity to degrade lignin. Growth of both fungi exhibited a low sensitivity to resveratrol, whereas δ-viniferin has a fungistatic effect, especially on N. parvum Bourgogne S-116. We further show that Botryosphaeriaceae are able to metabolize rapidly resveratrol and δ-viniferin. The best stilbene metabolizing activity was measured for D. seriata. In conclusion, the different Botryosphaeriaceae isolates are characterized by a specific aggressiveness repertory. Wood and phenolic compound decay enzymatic activities could enable Botryosphaeriaceae to bypass chemical and physical barriers of the grapevine plant. The specific signature of Botryosphaeriaceae aggressiveness factors could explain the importance of fungi complexes in synergistic activity in order to fully colonize the host. PMID:29261692

  12. Roots Revealed - Neutron imaging insight of spatial distribution, morphology, growth and function

    NASA Astrophysics Data System (ADS)

    Warren, J.; Bilheux, H.; Kang, M.; Voisin, S.; Cheng, C.; Horita, J.; Perfect, E.

    2013-05-01

    Root production, distribution and turnover are not easily measured, yet their dynamics are an essential part of understanding and modeling ecosystem response to changing environmental conditions. Root age, order, morphology and mycorrhizal associations all regulate root uptake of water and nutrients, which along with along with root distribution determines plant response to, and impact on its local environment. Our objectives were to demonstrate the ability to non-invasively monitor fine root distribution, root growth and root functionality in Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings using neutron imaging. Plants were propagated in aluminum chambers containing sand then placed into a high flux cold neutron beam line. Dynamics of root distribution and growth were assessed by collecting consecutive CCD radiographs through time. Root functionality was assessed by tracking individual root uptake of water (H2O) or deuterium oxide (D2O) through time. Since neutrons strongly scatter H atoms, but not D atoms, biological materials such as plants are prime candidates for neutron imaging. 2D and 3D neutron radiography readily illuminated root structure, root growth, and relative plant and soil water content. Fungal hyphae associated with the roots were also visible and appeared as dark masses since their diameter was likely several orders of magnitude less than ~100 μm resolution of the detector. The 2D pulse-chase irrigation experiments with H2O and D2O successfully allowed observation of uptake and mass flow of water within the root system. Water flux within individual roots responded differentially to foliar illumination based on internal water potential gradients, illustrating the ability to track root functionality based on root size, order and distribution within the soil. (L) neutron image of switchgrass growing in sandy soil with 100 μm diameter roots (R) 3D reconstruction of maize seedling following neutron tomography

  13. Association of RGA-SSCP markers with resistance to downy mildew and anthracnose in grapevines.

    PubMed

    Tantasawat, P A; Poolsawat, O; Prajongjai, T; Chaowiset, W; Tharapreuksapong, A

    2012-07-02

    Downy mildew (Plasmopara viticola) and anthracnose (Sphaceloma ampelinum) are two major diseases that severely affect most grapevine (Vitis vinifera) cultivars grown commercially in Thailand. Progress of conventional breeding programs of grapevine for improved resistance to these diseases can be speeded up by selection of molecular markers associated with resistance traits. We evaluated the association between 13 resistance gene analog (RGA)-single-strand conformation polymorphism (SSCP) markers with resistance to downy mildew and anthracnose in 71 segregating progenies of seven cross combinations between susceptible cultivars and resistant lines. F(1) hybrids from each cross were assessed for resistance to downy mildew and anthracnose (isolates Nk4-1 and Rc2-1) under laboratory conditions. Association of resistance traits with RGA-SSCP markers was evaluated using simple linear regression analysis. Three RGA-SSCP markers were found to be significantly correlated with anthracnose resistance, whereas significant correlation with downy mildew resistance was observed for only one RGA-SSCP marker. These results demonstrate the usefulness of RGA-SSCP markers. Four candidate markers with significant associations to resistance to these two major diseases of grapevine were identified. However, these putative associations between markers and resistance need to be verified with larger segregating populations before they can be used for marker-assisted selection.

  14. Radicinin from Cochliobolus sp. inhibits Xylella fastidiosa, the causal agent of Pierce's Disease of grapevine.

    PubMed

    Aldrich, Thomas J; Rolshausen, Philippe E; Roper, M Caroline; Reader, Jordan M; Steinhaus, Matthew J; Rapicavoli, Jeannette; Vosburg, David A; Maloney, Katherine N

    2015-08-01

    The fastidious phytopathogenic bacterium, Xylella fastidiosa, poses a substantial threat to many economically important crops, causing devastating diseases including Pierce's Disease of grapevine. Grapevines (Vitis vinifera L.) planted in an area under Pierce's Disease pressure often display differences in disease severity and symptom expression, with apparently healthy vines growing alongside the dying ones, despite the fact that all the vines are genetic clones of one another. Under the hypothesis that endophytic microbes might be responsible for this non-genetic resistance to X. fastidiosa, endophytic fungi were isolated from vineyard cvs. 'Chardonnay' and 'Cabernet Sauvignon' grown under high Pierce's Disease pressure. A Cochliobolus sp. isolated from a Cabernet Sauvignon grapevine inhibited the growth of X. fastidiosa in vitro. Bioassay-guided isolation of an organic extract of Cochliobolus sp. yielded the natural product radicinin as the major active compound. Radicinin also inhibited proteases isolated from the culture supernatant of X. fastidiosa. In order to assess structure-activity relationships, three semi-synthetic derivatives of radicinin were prepared and tested for activity against X. fastidiosa in vitro. Assay results of these derivatives are consistent with enzyme inactivation by conjugate addition to carbon-10 of radicinin, as proposed previously. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. vitisFlower®: Development and Testing of a Novel Android-Smartphone Application for Assessing the Number of Grapevine Flowers per Inflorescence Using Artificial Vision Techniques

    PubMed Central

    Aquino, Arturo; Millan, Borja; Gaston, Daniel; Diago, María-Paz; Tardaguila, Javier

    2015-01-01

    Grapevine flowering and fruit set greatly determine crop yield. This paper presents a new smartphone application for automatically counting, non-invasively and directly in the vineyard, the flower number in grapevine inflorescence photos by implementing artificial vision techniques. The application, called vitisFlower®, firstly guides the user to appropriately take an inflorescence photo using the smartphone’s camera. Then, by means of image analysis, the flowers in the image are detected and counted. vitisFlower® has been developed for Android devices and uses the OpenCV libraries to maximize computational efficiency. The application was tested on 140 inflorescence images of 11 grapevine varieties taken with two different devices. On average, more than 84% of flowers in the captures were found, with a precision exceeding 94%. Additionally, the application’s efficiency on four different devices covering a wide range of the market’s spectrum was also studied. The results of this benchmarking study showed significant differences among devices, although indicating that the application is efficiently usable even with low-range devices. vitisFlower is one of the first applications for viticulture that is currently freely available on Google Play. PMID:26343664

  16. The Type II Secreted Lipase/Esterase LesA is a Key Virulence Factor Required for Xylella fastidiosa Pathogenesis in Grapevines

    PubMed Central

    Nascimento, Rafael; Gouran, Hossein; Chakraborty, Sandeep; Gillespie, Hyrum W.; Almeida-Souza, Hebréia O.; Tu, Aye; Rao, Basuthkar J.; Feldstein, Paul A.; Bruening, George; Goulart, Luiz R.; Dandekar, Abhaya M.

    2016-01-01

    Pierce’s disease (PD) of grapevines is caused by Xylella fastidiosa (Xf), a xylem-limited gamma-proteobacterium that is responsible for several economically important crop diseases. The occlusion of xylem elements and interference with water transport by Xf and its associated biofilm have been posited as the main cause of PD symptom development; however, Xf virulence mechanisms have not been described. Analysis of the Xf secretome revealed a putative lipase/esterase (LesA) that was abundantly secreted in bacterial culture supernatant and was characterized as a protein ortholog of the cell wall-degrading enzyme LipA of Xanthomonas strains. LesA was secreted by Xf and associated with a biofilm filamentous network. Additional proteomic analysis revealed its abundant presence in outer membrane vesicles (OMVs). Accumulation of LesA in leaf regions associated positively with PD symptoms and inversely with bacterial titer. The lipase/esterase also elicited a hypersensitive response in grapevine. Xf lesA mutants were significantly deficient for virulence when mechanically inoculated into grapevines. We propose that Xf pathogenesis is caused by LesA secretion mediated by OMV cargos and that its release and accumulation in leaf margins leads to early stages of observed PD symptoms. PMID:26753904

  17. The Type II Secreted Lipase/Esterase LesA is a Key Virulence Factor Required for Xylella fastidiosa Pathogenesis in Grapevines.

    PubMed

    Nascimento, Rafael; Gouran, Hossein; Chakraborty, Sandeep; Gillespie, Hyrum W; Almeida-Souza, Hebréia O; Tu, Aye; Rao, Basuthkar J; Feldstein, Paul A; Bruening, George; Goulart, Luiz R; Dandekar, Abhaya M

    2016-01-12

    Pierce's disease (PD) of grapevines is caused by Xylella fastidiosa (Xf), a xylem-limited gamma-proteobacterium that is responsible for several economically important crop diseases. The occlusion of xylem elements and interference with water transport by Xf and its associated biofilm have been posited as the main cause of PD symptom development; however, Xf virulence mechanisms have not been described. Analysis of the Xf secretome revealed a putative lipase/esterase (LesA) that was abundantly secreted in bacterial culture supernatant and was characterized as a protein ortholog of the cell wall-degrading enzyme LipA of Xanthomonas strains. LesA was secreted by Xf and associated with a biofilm filamentous network. Additional proteomic analysis revealed its abundant presence in outer membrane vesicles (OMVs). Accumulation of LesA in leaf regions associated positively with PD symptoms and inversely with bacterial titer. The lipase/esterase also elicited a hypersensitive response in grapevine. Xf lesA mutants were significantly deficient for virulence when mechanically inoculated into grapevines. We propose that Xf pathogenesis is caused by LesA secretion mediated by OMV cargos and that its release and accumulation in leaf margins leads to early stages of observed PD symptoms.

  18. Up-regulated transcripts in a compatible powdery mildew-grapevine interaction.

    PubMed

    Fekete, Csaba; Fung, Raymond W M; Szabó, Zoltán; Qiu, Wenping; Chang, Le; Schachtman, Daniel P; Kovács, László G

    2009-08-01

    Powdery mildews (Erysiphales) are obligate biotrophic pathogens that invade susceptible plant cells without triggering cell death. This suggests a highly adept mechanism of parasitism which enables powdery mildews to avoid detection or evade defenses by their host. To better understand this plant-pathogen interaction, we employed suppression subtractive hybridization (SSH), differential hybridization and quantitative real-time (qRT) PCR for the identification of grapevine (Vitis vinifera L.) genes that were specifically up-regulated in response to the grape powdery mildew Erysiphe necator Schwein. We identified 25 grapevine transcripts that increased in abundance upon infection in leaves of the susceptible host V. vinifera Cabernet Sauvignon. Despite the compatible interaction between the pathogen and plant, several of the E. necator-induced transcripts represented typical defense response genes. Among the transcripts identified were those that encoded a leucine-rich repeat serine/threonine kinase-like receptor, an MYB transcription factor, and two ubiquitination-associated proteins, indicating the stimulation of intracellular signal transduction and regulatory functions. A number of genes characteristic of senescence processes, including metallothioneins, a deoxyribonuclease, an aspartyl protease and a subtilase-like serine protease, also were identified. These transcripts expanded the list of previously identified E. necator-responsive grapevine genes and facilitated a more comprehensive view of the molecular events that underlie this economically important plant-pathogen interaction.

  19. The bouquet of grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) flowers arises from the biosynthesis of sesquiterpene volatiles in pollen grains

    PubMed Central

    Martin, Diane M.; Toub, Omid; Chiang, Angela; Lo, Bernard C.; Ohse, Sebastian; Lund, Steven T.; Bohlmann, Jörg

    2009-01-01

    Terpenoid volatiles are important information molecules that enable pollinators to locate flowers and may protect reproductive tissues against pathogens or herbivores. Inflorescences of grapevine (Vitis vinifera L.) are composed of tiny green flowers that produce an abundance of sesquiterpenoid volatiles. We demonstrate that male flower parts of grapevines are responsible for sesquiterpenoid floral scent formation. We describe temporal and spatial patterns of biosynthesis and release of floral volatiles throughout the blooming of V. vinifera L. cv. Cabernet Sauvignon. The biosynthesis of sesquiterpene volatiles, which are emitted with a light-dependent diurnal pattern early in the morning at prebloom and bloom, is localized to anthers and, more specifically, within the developing pollen grains. Valencene synthase (VvValCS) enzyme activity, which produces the major sesquiterpene volatiles of grapevine flowers, is present in anthers. VvValCS transcripts are most abundant in flowers at prebloom stages. Western blot analysis identified VvValCS protein in anthers, and in situ immunolabeling located VvValCS protein in pollen grains during bloom. Histochemical staining, as well as immunolabeling analysis by fluorescent microscopy and transmission electron microscopy, indicated that VvValCS localizes close to lipid bodies within the maturing microspore. PMID:19359488

  20. Climate Change and Projected Impacts in Agriculture: an Example on Mediterranean Crops

    NASA Astrophysics Data System (ADS)

    Ferrise, R.; Moriondo, M.; Bindi, M.

    2009-04-01

    Recently, the availability of multi-model ensemble prediction methods has permitted the assignment of likelihoods to future climate projections. This allowed moving from the scenario-based approach to the risk-based approach in assessing the effects of climate change, thus providing more useful information for decision-makers that, as reported by Schneider (2001), need probability estimates to assess the seriousness of the projected impacts. The probabilistic approach to evaluate crop response to climate change mainly consists in applying an impact model (such as crop growth model) to a very large number of climate projections so to provide a probabilistic distribution of the variable selected to evaluate the impact. By comparing the outputs of the multi-simulation with a critical threshold (such as minimum yield below which it is not admissible to fall), it is possible to evaluate the risk related to future climate conditions. Unfortunately, such an approach is a time-consuming process due to the large number of model runs needed for such a procedure. An alternative method relies on the set up of impact response surfaces (RS) with respect to key climatic variables on which a probabilistic representation of projected changes in the same climatic variables may be overlaid (Fronzek et al. 2008). This approach was exploited within the ENSEMBLES EU Project aiming at assessing climate change impact on typical Mediterranean crops. This work presents the results of the project with a particular concerning about the assessment of risk, of durum wheat (T. turgidum L. subsp. durum (Desf.) Husn) and grapevine (Vitis vinifera L.) yield falling below fixed thresholds, using probabilistic information about future climate. Methodology The simple mechanistic crop growth models, SIRIUS Quality (Jamieson et al., 1998) and VITE-model (Bindi et al., 1997a,b), were selected to respectively simulate durum wheat and grapevine yields in present and future scenarios. SIRIUS Quality is a wheat simulation model that calculates biomass production from photosynthetically active radiation and grain growth from simple partition rules. VITE-model is a model that uses a simplified mechanistic approach based on the accumulated degree days, the radiation use efficiency and the fruit biomass index to simulate the main processes regulating grapevine development, growth and yield. The selected crop growth models were adopted to create yield RSs of both crops over the suitable cultivated area in the Mediterranean Basin. Yield RSs were calculated performing a scenario sensitivity analysis by altering the baseline climate with respect to temperature and precipitation changes. The baseline climate consisted of 30 years (1975-2005) of daily minimum and maximum temperatures, rainfall and global radiation. Meteorological data were extracted from the MARS JRC Archive and are referred to a grid with a spatial resolution of 50 Km x 50 Km covering the whole European area. The sensitivity analysis was performed for precipitation changes (from -40% to 20%) and temperature changes (from 0°C to +8°C), uniformly applied across all the year. To take in account for the effect of rising CO2, the yield RSs for future periods, were produced considering CO2 air concentration level according to the A1B SRES emission scenario. For each rainfall and temperature combination the average yield over the 30-years period was calculated. The probabilistic distribution of future yields was estimated by applying a bilinear interpolative method to overlap, onto the RSs, the data from perturbed physics experiment of Hadley Centre for future scenarios (joint distribution of annual temperature and rainfall changes). Critical thresholds of impact were determined by calculating, for each grid cell, the distribution of the 30-years average yield according to the joint distribution data for present period (1990-2010) and selecting the values that correspond to the 20th percentile of the cumulative distribution. Finally, future yields were compared with yield threshold to assess the risk of yield shortfall that, in each time period, was defined as the percentage of projected yields that not overcome the selected threshold. Results Maps of durum wheat and grapevine low productivity risk were generated for the next century over the Mediterranean Basin. For durum wheat, with the exception of Portugal and Southern Spain, in the next 30 years risk of low crop productivity shows an overall reduction, due to the fertilizing effect of CO2 increase that counterbalances for the negative impact of rising temperature and reducing rainfall. Thereafter, these latter negative effects become greater and the risk progressively increases starting from lower latitudes. Maximum risk was estimated in 2060 when strong reductions in yield were accounted all over the study area. The smaller reductions in risk, estimated for the end of the next century, may be explained by the greater uncertainty in climate projections. South Portugal, South Spain and Peloponnesus resulted the most vulnerable areas showing increase in risk probability up to 50%, while risk in Galicia, Slovenia, Croatia and central-southern France always resulted lower then present time. As regard grapevine, in the great part of the case study area, the yield seems to have beneficial effect from future climate change. In Central-Western Europe and at lower latitudes the projected yields never fall below the risk threshold, indicating a prevailing effect of CO2 fertilisation. By the other hand, Central-Northern Italy and North of Greece result the most vulnerable areas. In these regions the likelihood of reduced yields quickly rises and remains very high (>50%) until the end of the century, denoting a greater negative effect of temperature and rainfall. Conclusions From these results it may be argued that the impact of future climate change on crop yields is the resultant of the contrasting effects of changes in temperature and precipitation, CO2 increase and uncertainty in climate projections. The intensity of these effects is very site and crop dependent and may vary with time, differently affecting the assessment of risk. As a consequence, the patterns of risk of low crop productivity will change depending on which of these effects will prevail. References Bindi M. et al., 1997a "A simple model for simulation of growth and development in grapevine (Vitis vinifera L.). I. Model description". Vitis 36:67-71 Bindi M. et al., 1997b "A simple model for simulation of growth and development in grapevine (Vitis vinifera L.). II. Model validation". Vitis 36:73-76 Carter T. et al., 2006 "". Fronzek S. et al 2008 "Applying probabilistic projections of climate change with impact models: a case study for sub-arctic palsa mires in Fennoscandia". Climatic Change (submitted) Jamieson et al., 1998 "Sirius: a mechanistic model of wheat response to environmental variation". Eur. J. Agron. 8:161-179. Schneider S. 2001 "What is ‘dangerous' climate change?". Nature 411:17-19

  1. Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L

    PubMed Central

    2012-01-01

    Background Zinc (Zn) deficiency is one of the most widespread mineral nutritional problems that affect normal development in plants. Because Zn cannot passively diffuse across cell membranes, it must be transported into intracellular compartments for all biological processes where Zn is required. Several members of the Zinc-regulated transporters, Iron-regulated transporter-like Protein (ZIP) gene family have been characterized in plants, and have shown to be involved in metal uptake and transport. This study describes the first putative Zn transporter in grapevine. Unravelling its function may explain an important symptom of Zn deficiency in grapevines, which is the production of clusters with fewer and usually smaller berries than normal. Results We identified and characterized a putative Zn transporter from berries of Vitis vinifera L., named VvZIP3. Compared to other members of the ZIP family identified in the Vitis vinifera L. genome, VvZIP3 is mainly expressed in reproductive tissue - specifically in developing flowers - which correlates with the high Zn accumulation in these organs. Contrary to this, the low expression of VvZIP3 in parthenocarpic berries shows a relationship with the lower Zn accumulation in this tissue than in normal seeded berries where its expression is induced by Zn. The predicted protein sequence indicates strong similarity with several members of the ZIP family from Arabidopsis thaliana and other species. Moreover, VvZIP3 complemented the growth defect of a yeast Zn-uptake mutant, ZHY3, and is localized in the plasma membrane of plant cells, suggesting that VvZIP3 has the function of a Zn uptake transporter. Conclusions Our results suggest that VvZIP3 encodes a putative plasma membrane Zn transporter protein member of the ZIP gene family that might play a role in Zn uptake and distribution during the early reproductive development in Vitis vinifera L., indicating that the availability of this micronutrient may be relevant for reproductive development. PMID:22824090

  2. Xylem structure of four grape varieties and 12 alternative hosts to the xylem-limited bacterium Xylella fastidious

    PubMed Central

    Chatelet, David S.; Wistrom, Christina M.; Purcell, Alexander H.; Rost, Thomas L.; Matthews, Mark A.

    2011-01-01

    Background and Aims The bacterium Xylella fastidiosa (Xf), responsible for Pierce's disease (PD) of grapevine, colonizes the xylem conduits of vines, ultimately killing the plant. However, Vitis vinifera grapevine varieties differ in their susceptibility to Xf and numerous other plant species tolerate Xf populations without showing symptoms. The aim of this study was to examine the xylem structure of grapevines with different susceptibilities to Xf infection, as well as the xylem structure of non-grape plant species that support or limit movement of Xf to determine if anatomical differences might explain some of the differences in susceptibility to Xf. Methods Air and paint were introduced into leaves and stems to examine the connectivity between stem and leaves and the length distribution of their vessels. Leaf petiole and stem anatomies were studied to determine the basis for the free or restricted movement of Xf into the plant. Key Results There were no obvious differences in stem or petiole vascular anatomy among the grape varieties examined, nor among the other plant species that would explain differences in resistance to Xf. Among grape varieties, the more tolerant ‘Sylvaner’ had smaller stem vessel diameters and 20 % more parenchyma rays than the other three varieties. Alternative hosts supporting Xf movement had slightly longer open xylem conduits within leaves, and more connection between stem and leaves, when compared with alternative hosts that limit Xf movement. Conclusions Stem–leaf connectivity via open xylem conduits and vessel length is not responsible for differences in PD tolerance among grape varieties, or for limiting bacterial movement in the tolerant plant species. However, it was found that tolerant host plants had narrower vessels and more parenchyma rays, possibly restricting bacterial movement at the level of the vessels. The implications of xylem structure and connectivity for the means and regulation of bacterial movement are discussed. PMID:21546428

  3. Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L.

    PubMed

    Gainza-Cortés, Felipe; Pérez-Dïaz, Ricardo; Pérez-Castro, Ramón; Tapia, Jaime; Casaretto, José A; González, Sebastián; Peña-Cortés, Hugo; Ruiz-Lara, Simón; González, Enrique

    2012-07-23

    Zinc (Zn) deficiency is one of the most widespread mineral nutritional problems that affect normal development in plants. Because Zn cannot passively diffuse across cell membranes, it must be transported into intracellular compartments for all biological processes where Zn is required. Several members of the Zinc-regulated transporters, Iron-regulated transporter-like Protein (ZIP) gene family have been characterized in plants, and have shown to be involved in metal uptake and transport. This study describes the first putative Zn transporter in grapevine. Unravelling its function may explain an important symptom of Zn deficiency in grapevines, which is the production of clusters with fewer and usually smaller berries than normal. We identified and characterized a putative Zn transporter from berries of Vitis vinifera L., named VvZIP3. Compared to other members of the ZIP family identified in the Vitis vinifera L. genome, VvZIP3 is mainly expressed in reproductive tissue - specifically in developing flowers - which correlates with the high Zn accumulation in these organs. Contrary to this, the low expression of VvZIP3 in parthenocarpic berries shows a relationship with the lower Zn accumulation in this tissue than in normal seeded berries where its expression is induced by Zn. The predicted protein sequence indicates strong similarity with several members of the ZIP family from Arabidopsis thaliana and other species. Moreover, VvZIP3 complemented the growth defect of a yeast Zn-uptake mutant, ZHY3, and is localized in the plasma membrane of plant cells, suggesting that VvZIP3 has the function of a Zn uptake transporter. Our results suggest that VvZIP3 encodes a putative plasma membrane Zn transporter protein member of the ZIP gene family that might play a role in Zn uptake and distribution during the early reproductive development in Vitis vinifera L., indicating that the availability of this micronutrient may be relevant for reproductive development.

  4. The role of root distribution in eco-hydrological modeling in semi-arid regions

    NASA Astrophysics Data System (ADS)

    Sivandran, G.; Bras, R. L.

    2010-12-01

    In semi arid regions, the rooting strategies employed by vegetation can be critical to its survival. Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. Niche separation, through rooting strategies, is one manner in which different species coexist. At present, land surface models prescribe rooting profiles as a function of only the plant functional type of interest with no consideration for the soil texture or rainfall regime of the region being modeled. These models do not incorporate the ability of vegetation to dynamically alter their rooting strategies in response to transient changes in environmental forcings and therefore tend to underestimate the resilience of many of these ecosystems. A coupled, dynamic vegetation and hydrologic model, tRIBS+VEGGIE, was used to explore the role of vertical root distribution on hydrologic fluxes. Point scale simulations were carried out using two vertical root distribution schemes: (i) Static - a temporally invariant root distribution; and (ii) Dynamic - a temporally variable allocation of assimilated carbon at any depth within the root zone in order to minimize the soil moisture-induced stress on the vegetation. The simulations were forced with a stochastic climate generator calibrated to weather stations and rain gauges in the semi-arid Walnut Gulch Experimental Watershed in Arizona. For the static root distribution scheme, a series of simulations were carried out varying the shape of the rooting profile. The optimal distribution for the simulation was defined as the root distribution with the maximum mean transpiration over a 200 year period. This optimal distribution was determined for 5 soil textures and using 2 plant functional types, and the results varied from case to case. The dynamic rooting simulations allow vegetation the freedom to adjust the allocation of assimilated carbon to different rooting depths in response to changes in stress caused by the redistribution and uptake of soil moisture. The results obtained from these experiments elucidate the strong link between plant functional type, soil texture and climate and highlight the potential errors in the modeling of hydrologic fluxes from imposing a static root profile.

  5. [Effects of ridge-cultivation and plastic film mulching on root distribution and yield of spring maize in hilly area of central Sichuan basin, China.

    PubMed

    Zha, Li; Xie, Meng Lin; Zhu, Min; Dou, Pan; Cheng, Qiu Bo; Wang, Xing Long; Yuan, Ji Chao; Kong, Fan Lei

    2016-03-01

    A field experiment was conducted to study the effects of planting pattern (ridge culture, flatten culture, furrow culture) and film mulching on the distribution of spring maize root system and their influence on the yield of spring maize in the hilly area of central Sichuan basin. The results showed that ridge and film mulching had great influence on root morphology and root distribution of maize. The root length, root surface area and root volume of film mulching was 42.3%, 50.0%, 57.4% higher than those of no film mulching at jointing stage. The film mulching significantly increased the dry mass of root in vertical and horizontal distribution, and increased the root allocation ratio in deeper soil layer (20-40 cm) and the allocation ratio of wide row (0-20 cm) in horizontal direction. The effects of planting pattern on root growth and root distribution differed by film mulching. With film mulching, the ridge culture significantly increased the root dry mass in each soil layer and enlarged the distribution percentage of wide row (20-40 cm) in horizontal direction, as well as the dry mass of root in horizontal distribution and the root allocation ratio of wide row. The root mass under film mulching was in the order of ridge culture>flatten culture>furrow culture. Without film mulching, the furrow culture significantly increased root dry mass of narrow row (0-40 cm), and the root mass under no film mulching was in the order of furrow culture > ridge culture >flatten culture. As for the spike characteristics and maize yield, the filming mulching mea-sures reduced the corn bald length while increased the spike length, grain number, 1000-grain mass and yield. The yield under film mulching was in the order of ridge culture>flatten culture> furrow culture, while it was furrow culture > flatten culture > ridge culture under no film mulching. The reason for yield increase under ridge culture with film mulching was that it increased root weight especially in deep soil, and promoted the root allocation ratio in deeper soil and wide row (20-40 cm) in horizontal direction. The ridge-furrow culture without film mulching was helpful to root growth and increased the maize yield.

  6. Eco-geomorphic controls on slope stability

    NASA Astrophysics Data System (ADS)

    Hales, T.; Ford, C.; Hwang, T.; Vose, J.; Band, L.

    2009-04-01

    Vegetation controls soil-mantled landscape evolution primarily through growth of roots into soil and rock. Root-soil interactions affect the spatial distribution and rate of shallow landsliding and other hillslope processes. Yet the distribution and tensile strength of roots depends on a number of geomorphically-influenced parameters, including soil moisture. Our field-based study investigated the effects of topography on root distributions, tensile strengths, and cohesion. Systematic differences in plant species distribution and soil properties are found in the hollow-nose topography of soil-mantled landscapes; with hollows containing thick colluvial soils and mesic tree species and noses containing thinner, more differentiated soils and more xeric species. We investigated whether these topographic variations in geomorphic and ecologic properties affected the spatial distribution of root cohesion by measuring the distribution and tensile strength of roots from soil pits dug downslope of fifteen individual trees in the Coweeta Hydrologic Laboratory, North Carolina. Our soil pits were located to capture variance in plant species (10 species total), topographic positions (nose, hollow), and sizes (a range of DBH between 5 cm and 60 cm). Root tensile strengths showed little variance with different species, but showed strong differences as a function of topography, with nose roots stronger than hollow roots. Similarly, within species, root cellulose content was systematically greater in trees on nose positions compared to those in hollows. For all species, roots were concentrated close to the soil surface (at least 70% of biomass occurred within 50 cm of the surface) and variations in this pattern were primarily a function of topographic position. Hollow roots were more evenly distributed in the soil column than those on noses, yet trees located on noses had higher mean root cohesion than those in hollows because of a higher root tensile force. These data provide an empirical basis for the development of simple geomorphic transport laws that explicitly include vegetation.

  7. [Effects of tillage practices on root spatial distribution and yield of spring wheat and pea in the dry land farming areas of central Gansu, China].

    PubMed

    Zhang, Ming Jun; Li, Ling Ling; Xie, Jun Hong; Peng, Zheng Kai; Ren, Jin Hu

    2017-12-01

    A field experiment was conducted to explore the mechanism of cultivation measures in affecting crop yield by investigating root distribution in spring wheat-pea rotation based on a long-term conservation tillage practices in a farming region of Gansu. The results showed that with the develo-pment of growth period, the total root length, root surface area of spring wheat and pea showed a consistent trend of increase after initial decrease and reached the maximum at flowering stage. Higher root distribution was found in the 0-10 cm soil layer at seedling and 10-30 cm soil layer at flowering and maturity stages in spring wheat, while in the field pea, higher root distribution was found in the 0-10 cm soil layer at seedling and maturity, and in the 10-30 cm soil layer at flowering stages. No tillage with straw mulching and plastic mulching increased the root length and root surface area. Compared with conventional tillage in spring wheat and field pea, root length increased by 35.9% to 92.6%, and root surface area increased by 43.2% to 162.4%, respectively. No tillage with straw mulching and plastic mulching optimized spring wheat and pea root system distribution, compared with conventional tillage, increased spring wheat and field pea root length and root surface area ratio at 0-10 cm depths at the seedling stage, the root distribution at deeper depths increased significantly at flowering and maturity stages, and no tillage with straw mulching increased root length and root surface area ratio by 3.3% and 9.7% respectively, in 30-80 cm soil layer at the flowering stage. The total root length, root surface area and yield had significantly positive correlation for spring wheat in each growth period, and the total root length and pea yield also had significant positive correlation. No tillage with straw mulching and plastic mulching boosted yield of spring wheat and pea by 23.4%-38.7% compared with the conventional tillage, and the water use efficiency was increased by 13.7%-28.5%. It was concluded that no-till farming and straw mulching (plastic) could increase crop root length and root surface area, optimize the spatial distribution of roots in the soil, enhance crop root layer absorption ability, so as to improve crop yield and water utilization.

  8. Canopy management in rainfed vineyards (cv. Tempranillo) for optimising water use and enhancing wine quality.

    PubMed

    Pascual, Miquel; Romero, María-Paz; Rufat, Josep; Villar, Josep M

    2015-12-01

    Rainfed viticulture, mainly in semi-arid environments, is limited by environmental variability, particularly precipitation and its seasonal distribution, and soil water availability, thus ultimately determining the final quality of grape and wine. Studies on the feasibility of practices such as canopy management to adapt plant growth and yield to soil water availability open up possibilities to preserve wine quality and reinforce the characteristics of the terroir. Principal components analysis was used to identify the relationships between a large set of variables, including soil, plant, canopy management, and wine characteristics. Canopy management was found to have a predominant influence on plant response to soil water by modifying plant water status, changing the amino acid profile in berries and, concomitantly, altering the sensorial attributes of the wine obtained. Grapevine canopy management strategies, such as reiterate shoot trimming to restrict growth during early phases, are effective in adapting plant response to soil water availability. Such strategies affect berry and wine quality, mainly the amino acid profile and sensorial attributes of the wine, without changing yield or grape harvest quality control parameters. Also, in such conditions, nitrogen does not make a significant contribution to grapevine growth or yield or to grape quality. © 2015 Society of Chemical Industry.

  9. Proper PIN1 Distribution Is Needed for Root Negative Phototropism in Arabidopsis

    PubMed Central

    Zhang, Kun-Xiao; Xu, Heng-Hao; Gong, Wen; Jin, Yan; Shi, Ya-Ya; Yuan, Ting-Ting; Li, Juan; Lu, Ying-Tang

    2014-01-01

    Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism. PMID:24465665

  10. Proper PIN1 distribution is needed for root negative phototropism in Arabidopsis.

    PubMed

    Zhang, Kun-Xiao; Xu, Heng-Hao; Gong, Wen; Jin, Yan; Shi, Ya-Ya; Yuan, Ting-Ting; Li, Juan; Lu, Ying-Tang

    2014-01-01

    Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism.

  11. Drought will not leave your glass empty: Low risk of hydraulic failure revealed by long-term drought observations in world's top wine regions.

    PubMed

    Charrier, Guillaume; Delzon, Sylvain; Domec, Jean-Christophe; Zhang, Li; Delmas, Chloe E L; Merlin, Isabelle; Corso, Deborah; King, Andrew; Ojeda, Hernan; Ollat, Nathalie; Prieto, Jorge A; Scholach, Thibaut; Skinner, Paul; van Leeuwen, Cornelis; Gambetta, Gregory A

    2018-01-01

    Grapevines are crops of global economic importance that will face increasing drought stress because many varieties are described as highly sensitive to hydraulic failure as frequency and intensity of summer drought increase. We developed and used novel approaches to define water stress thresholds for preventing hydraulic failure, which were compared to the drought stress experienced over a decade in two of the world's top wine regions, Napa and Bordeaux. We identified the physiological thresholds for drought-induced mortality in stems and leaves and found small intervarietal differences. Long-term observations in Napa and Bordeaux revealed that grapevines never reach their lethal water-potential thresholds under seasonal droughts, owing to a vulnerability segmentation promoting petiole embolism and leaf mortality. Our findings will aid farmers in reducing water use without risking grapevine hydraulic integrity.

  12. Drought will not leave your glass empty: Low risk of hydraulic failure revealed by long-term drought observations in world’s top wine regions

    PubMed Central

    Charrier, Guillaume; Delzon, Sylvain; Domec, Jean-Christophe; Zhang, Li; Delmas, Chloe E. L.; Merlin, Isabelle; Corso, Deborah; King, Andrew; Ojeda, Hernan; Ollat, Nathalie; Prieto, Jorge A.; Scholach, Thibaut; Skinner, Paul; van Leeuwen, Cornelis; Gambetta, Gregory A.

    2018-01-01

    Grapevines are crops of global economic importance that will face increasing drought stress because many varieties are described as highly sensitive to hydraulic failure as frequency and intensity of summer drought increase. We developed and used novel approaches to define water stress thresholds for preventing hydraulic failure, which were compared to the drought stress experienced over a decade in two of the world’s top wine regions, Napa and Bordeaux. We identified the physiological thresholds for drought-induced mortality in stems and leaves and found small intervarietal differences. Long-term observations in Napa and Bordeaux revealed that grapevines never reach their lethal water-potential thresholds under seasonal droughts, owing to a vulnerability segmentation promoting petiole embolism and leaf mortality. Our findings will aid farmers in reducing water use without risking grapevine hydraulic integrity. PMID:29404405

  13. [Distribution of fine root biomass of main planting tree species in Loess Plateau, China].

    PubMed

    Jian, Sheng-Qi; Zhao, Chuan-Yan; Fang, Shu-Min; Yu, Kai

    2014-07-01

    The distribution of fine roots of Pinus tabuliformis, Populus tomentosa, Prunus armeniaca, Robinia pseudoacacia, Hippophae rhamnoides, and Caragana korshinskii was investigated by using soil core method and the fine root was defined as root with diameter less than 2 mm. The soil moisture and soil properties were measured. The results showed that in the horizontal direction, the distribution of fine root biomass of P. tabuliformis presented a conic curve, and the fine root biomass of the other species expressed logarithm correlation. Radial roots developed, the fine root biomass were concentrated within the scope of the 2-3 times crown, indicating that trees extended their roots laterally to seek water farther from the tree. In the vertical direction, the fine root biomass decreased with the increasing soil depth. Fine root biomass had significant negative correlation with soil water content and bulk density, while significant positive correlation with organic matter and total N contents.

  14. The development of the rhizosphere: simulation of root exudation for two contrasting exudates: citrate and mucilage

    NASA Astrophysics Data System (ADS)

    Sheng, Cheng; Bol, Roland; Vetterlein, Doris; Vanderborght, Jan; Schnepf, Andrea

    2017-04-01

    Different types of root exudates and their effect on soil/rhizosphere properties have received a lot of attention. Since their influence of rhizosphere properties and processes depends on their concentration in the soil, the assessment of the spatial-temporal exudate concentration distribution around roots is of key importance for understanding the functioning of the rhizosphere. Different root systems have different root architectures. Different types of root exudates diffuse in the rhizosphere with different diffusion coefficient. Both of them are responsible for the dynamics of exudate concentration distribution in the rhizosphere. Hence, simulations of root exudation involving four kinds of plant root systems (Vicia faba, Lupinus albus, Triticum aestivum and Zea mays) and two kinds of root exudates (citrate and mucilage) were conducted. We consider a simplified root architecture where each root is represented by a straight line. Assuming that root tips move at a constant velocity and that mucilage transport is linear, concentration distributions can be obtained from a convolution of the analytical solution of the transport equation in a stationary flow field for an instantaneous point source injection with the spatial-temporal distribution of the source strength. By coupling the analytical equation with a root growth model that delivers the spatial-temporal source term, we simulated exudate concentration distributions for citrate and mucilage with MATLAB. From the simulation results, we inferred the following information about the rhizosphere: (a) the dynamics of the root architecture development is the main effect of exudate distribution in the root zone; (b) a steady rhizosphere with constant width is more likely to develop for individual roots when the diffusion coefficient is small. The simulations suggest that rhizosphere development depends in the following way on the root and exudate properties: the dynamics of the root architecture result in various development patterns of the rhizosphere. Meanwhile, Results improve our understanding of the impact of the spatial and temporal heterogeneity of exudate input on rhizosphere development for different root system types and substances. In future work, we will use the simulation tool to infer critical parameters that determine the spatial-temporal extent of the rhizosphere from experimental data.

  15. 'Bois noir' phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine

    PubMed Central

    Hren, Matjaž; Nikolić, Petra; Rotter, Ana; Blejec, Andrej; Terrier, Nancy; Ravnikar, Maja; Dermastia, Marina; Gruden, Kristina

    2009-01-01

    Background Phytoplasmas are bacteria without cell walls from the class Mollicutes. They are obligate intracellular plant pathogens which cause diseases in hundreds of economically important plants including the grapevine (Vitis vinifera). Knowledge of their biology and the mechanisms of their interactions with hosts is largely unknown because they are uncultivable and experimentally inaccessible in their hosts. We detail here the global transcriptional profiling in grapevine responses to phytoplasmas. The gene expression patterns were followed in leaf midribs of grapevine cv. 'Chardonnay' naturally infected with a phytoplasma from the stolbur group 16SrXII-A, which is associated with the grapevine yellows disease 'Bois noir'. Results We established an on field experimental system in a productive vineyard that allowed application of molecular tools in a plant natural environment. Global transcription profiles of infected samples were compared with the healthy ones using microarray datasets and metabolic pathway analysis software (MapMan). The two-year-long experiment revealed that plant genes involved in primary and secondary metabolic pathways were changed in response to infection and that these changes might support phytoplasma nutrition. A hypothesis that phytoplasmas interact with the plant carbohydrate metabolism was proven and some possibilities how the products of this pathway might be utilized by phytoplasmas are discussed. In addition, several photosynthetic genes were largely down-regulated in infected plants, whereas defense genes from the metabolic pathway leading to formation of flavonoids and some PR proteins were significantly induced. Few other genes involved in defense-signaling were differentially expressed in healthy and infected plants. A set of 17 selected genes from several differentially expressed pathways was additionally analyzed with quantitative real-time PCR and confirmed to be suitable for a reliable classification of infected plants and for the characterization of susceptibility features in the field conditions. Conclusion This study revealed some fundamental aspects of grapevine interactions with the stolbur 'Bois noir' phytoplasma in particular and some plant interactions with phytoplasmas in general. In addition, the results of the study will likely have an impact on grape improvement by yielding marker genes that can be used in new diagnostic assays for phytoplasmas or by identifying candidate genes that contribute to the improved properties of grape. PMID:19799775

  16. Ecophysiological Modeling of Grapevine Water Stress in Burgundy Terroirs by a Machine-Learning Approach.

    PubMed

    Brillante, Luca; Mathieu, Olivier; Lévêque, Jean; Bois, Benjamin

    2016-01-01

    In a climate change scenario, successful modeling of the relationships between plant-soil-meteorology is crucial for a sustainable agricultural production, especially for perennial crops. Grapevines (Vitis vinifera L. cv Chardonnay) located in eight experimental plots (Burgundy, France) along a hillslope were monitored weekly for 3 years for leaf water potentials, both at predawn (Ψpd) and at midday (Ψstem). The water stress experienced by grapevine was modeled as a function of meteorological data (minimum and maximum temperature, rainfall) and soil characteristics (soil texture, gravel content, slope) by a gradient boosting machine. Model performance was assessed by comparison with carbon isotope discrimination (δ(13)C) of grape sugars at harvest and by the use of a test-set. The developed models reached outstanding prediction performance (RMSE < 0.08 MPa for Ψstem and < 0.06 MPa for Ψpd), comparable to measurement accuracy. Model predictions at a daily time step improved correlation with δ(13)C data, respect to the observed trend at a weekly time scale. The role of each predictor in these models was described in order to understand how temperature, rainfall, soil texture, gravel content and slope affect the grapevine water status in the studied context. This work proposes a straight-forward strategy to simulate plant water stress in field condition, at a local scale; to investigate ecological relationships in the vineyard and adapt cultural practices to future conditions.

  17. Identification of genes differentially expressed in grapevine associated with resistance to Elsinoe ampelina through suppressive subtraction hybridization.

    PubMed

    Gao, Min; Wang, Qian; Wan, Ran; Fei, Zhangjun; Wang, Xiping

    2012-09-01

    Anthracnose, caused by the biotrophic fungus Elsinoe ampelina, is an economically devastating disease of grapevine (Vitis vinifera L.) prevalent in warm and humid regions of the world. In order to investigate the molecular resistance mechanisms and identify genes related to anthracnose resistance in grapevine, a Suppression Subtractive Hybridization (SSH) library was constructed using mixed cDNAs prepared from leaves of Chinese wild Vitis quinquangularis clone 'Shang-24', cDNA prepared from leaves infected with the pathogen E. ampelina served as tester and cDNA from mock-inoculated leaves as driver. A total of 670 high-quality ESTs were clustered and assembled into a collection of 461 unique genes comprising 85 contigs and 376 singletons. By Gene ontology (GO) analysis 310 unigenes were assigned to 22 GO slims within the molecular function category, while 317 unigenes could be sorted into 43 GO slims within the biological process category. The expression profiles of 20 selected genes, monitored by quantitative RT-PCR, indicated that expression of these genes in the E. ampelina-resistant 'Shang-24' was quicker and more intense, than in the susceptible 'Red Globe' where the reaction was delayed and limited. The results imply that these up-regulated genes could be involved in grapevine responses against E. ampelina infection. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. Grapevine petioles are more sensitive to drought induced embolism than stems: evidence from in vivo MRI and microcomputed tomography observations of hydraulic vulnerability segmentation.

    PubMed

    Hochberg, Uri; Albuquerque, Caetano; Rachmilevitch, Shimon; Cochard, Herve; David-Schwartz, Rakefet; Brodersen, Craig R; McElrone, Andrew; Windt, Carel W

    2016-09-01

    The 'hydraulic vulnerability segmentation' hypothesis predicts that expendable distal organs are more susceptible to water stress-induced embolism than the main stem of the plant. In the current work, we present the first in vivo visualization of this phenomenon. In two separate experiments, using magnetic resonance imaging or synchrotron-based microcomputed tomography, grapevines (Vitis vinifera) were dehydrated while simultaneously scanning the main stems and petioles for the occurrence of emboli at different xylem pressures (Ψx ). Magnetic resonance imaging revealed that 50% of the conductive xylem area of the petioles was embolized at a Ψx of -1.54 MPa, whereas the stems did not reach similar losses until -1.9 MPa. Microcomputed tomography confirmed these findings, showing that approximately half the vessels in the petioles were embolized at a Ψx of -1.6 MPa, whereas only few were embolized in the stems. Petioles were shown to be more resistant to water stress-induced embolism than previously measured with invasive hydraulic methods. The results provide the first direct evidence for the hydraulic vulnerability segmentation hypothesis and highlight its importance in grapevine responses to severe water stress. Additionally, these data suggest that air entry through the petiole into the stem is unlikely in grapevines during drought. © 2015 John Wiley & Sons Ltd.

  19. Characterization of the adaptive response of grapevine (cv. Tempranillo) to UV-B radiation under water deficit conditions.

    PubMed

    Martínez-Lüscher, J; Morales, F; Delrot, S; Sánchez-Díaz, M; Gomès, E; Aguirreolea, J; Pascual, I

    2015-03-01

    This work aims to characterize the physiological response of grapevine (Vitis vinifera L.) cv. Tempranillo to UV-B radiation under water deficit conditions. Grapevine fruit-bearing cuttings were exposed to three levels of supplemental biologically effective UV-B radiation (0, 5.98 and 9.66kJm(-2)day(-1)) and two water regimes (well watered and water deficit), in a factorial design, from fruit-set to maturity under glasshouse-controlled conditions. UV-B induced a transient decrease in net photosynthesis (Anet), actual and maximum potential efficiency of photosystem II, particularly on well watered plants. Methanol extractable UV-B absorbing compounds (MEUVAC) concentration and superoxide dismutase activity increased with UV-B. Water deficit effected decrease in Anet and stomatal conductance, and did not change non-photochemical quenching and the de-epoxidation state of xanthophylls, dark respiration and photorespiration being alternative ways to dissipate the excess of energy. Little interactive effects between UV-B and drought were detected on photosynthesis performance, where the impact of UV-B was overshadowed by the effects of water deficit. Grape berry ripening was strongly delayed when UV-B and water deficit were applied in combination. In summary, deficit irrigation did not modify the adaptive response of grapevine to UV-B, through the accumulation of MEUVAC. However, combined treatments caused additive effects on berry ripening. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Image analysis-based modelling for flower number estimation in grapevine.

    PubMed

    Millan, Borja; Aquino, Arturo; Diago, Maria P; Tardaguila, Javier

    2017-02-01

    Grapevine flower number per inflorescence provides valuable information that can be used for assessing yield. Considerable research has been conducted at developing a technological tool, based on image analysis and predictive modelling. However, the behaviour of variety-independent predictive models and yield prediction capabilities on a wide set of varieties has never been evaluated. Inflorescence images from 11 grapevine Vitis vinifera L. varieties were acquired under field conditions. The flower number per inflorescence and the flower number visible in the images were calculated manually, and automatically using an image analysis algorithm. These datasets were used to calibrate and evaluate the behaviour of two linear (single-variable and multivariable) and a nonlinear variety-independent model. As a result, the integrated tool composed of the image analysis algorithm and the nonlinear approach showed the highest performance and robustness (RPD = 8.32, RMSE = 37.1). The yield estimation capabilities of the flower number in conjunction with fruit set rate (R 2  = 0.79) and average berry weight (R 2  = 0.91) were also tested. This study proves the accuracy of flower number per inflorescence estimation using an image analysis algorithm and a nonlinear model that is generally applicable to different grapevine varieties. This provides a fast, non-invasive and reliable tool for estimation of yield at harvest. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Molecular markers for establishing distinctness in vegetatively propagated crops: a case study in grapevine.

    PubMed

    Ibáñez, Javier; Vélez, M Dolores; de Andrés, M Teresa; Borrego, Joaquín

    2009-11-01

    Distinctness, uniformity and stability (DUS) testing of varieties is usually required to apply for Plant Breeders' Rights. This exam is currently carried out using morphological traits, where the establishment of distinctness through a minimum distance is the key issue. In this study, the possibility of using microsatellite markers for establishing the minimum distance in a vegetatively propagated crop (grapevine) has been evaluated. A collection of 991 accessions have been studied with nine microsatellite markers and pair-wise compared, and the highest intra-variety distance and the lowest inter-variety distance determined. The collection included 489 different genotypes, and synonyms and sports. Average values for number of alleles per locus (19), Polymorphic Information Content (0.764) and heterozygosities observed (0.773) and expected (0.785) indicated the high level of polymorphism existing in grapevine. The maximum intra-variety variability found was one allele between two accessions of the same variety, of a total of 3,171 pair-wise comparisons. The minimum inter-variety variability found was two alleles between two pairs of varieties, of a total of 119,316 pair-wise comparisons. In base to these results, the minimum distance required to set distinctness in grapevine with the nine microsatellite markers used could be established in two alleles. General rules for the use of the system as a support for establishing distinctness in vegetatively propagated crops are discussed.

  2. Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera.

    PubMed

    Vega, Andrea; Gutiérrez, Rodrigo A; Peña-Neira, Alvaro; Cramer, Grant R; Arce-Johnson, Patricio

    2011-10-01

    Virus infections in grapevine cause important economic losses and affect fruit quality worldwide. Although the phenotypic symptoms associated to viral infections have been described, the molecular plant response triggered by virus infection is still poorly understood in Vitis vinifera. As a first step to understand the fruit changes and mechanisms involved in the compatible grapevine-virus interaction, we analyzed the berry transcriptome in two stages of development in the red wine cultivar Cabernet Sauvignon infected with Grapevine leaf-roll-associated virus-3 (GLRaV-3). Analysis of global gene expression patterns indicate incomplete berry maturation in infected berries as compared to uninfected fruit suggesting viral infection interrupts the normal berry maturation process. Genes with altered expression in berries harvested from GLRaV-3-infected vines as compared to uninfected tissue include anthocyanin biosynthesis and sugar metabolism genes. The reduction in transcript accumulation for sugar and anthocyanin metabolism during fruit development is consistent with a dramatic reduction in anthocyanin biosynthesis as well as reduced sugar levels in berries, a hallmark phenotypic change observed in virus infected grapevines. Analysis of key regulatory factors provides a mechanism for the observed gene expression changes. Our results provide insight into commonly observed phenotypic alterations in virus infected vines and the molecular mechanisms associated with the plant response to the virus during berry ripening.

  3. Evaluation of pollen dispersal and cross pollination using transgenic grapevine plants.

    PubMed

    Harst, Margit; Cobanov, Beatrix-Axinja; Hausmann, Ludger; Eibach, Rudolf; Töpfer, Reinhard

    2009-01-01

    Public debate about the possible risk of genetically modified plants often concerns putative effects of pollen dispersal and out-crossing into conventional fields in the neighborhood of transgenic plants. Though Vitis vinifera (grapevine) is generally considered to be self-pollinating, it cannot be excluded that vertical gene transfer might occur. For monitoring pollen flow and out-crossing events, transgenic plants of Vitis vinifera cv. 'Dornfelder' harboring the gus-int gene were planted in the center of a field experiment in Southwest Germany in 1999. The rate of pollen dispersal was determined by pollen traps placed at radial distances of 5-150 m from the pollen-donor plants, at 1.00 and 1.80 m above ground. Transgenic pollen was evaluated by GUS staining, and could clearly be distinguished from pollen originating from non-transgenic grapevine plants. Transgenic pollen was observed up to 150 m from the pollen donors. The rate of out-crossing was determined by sampling seeds of selected grapevines at a distance of 10 m to the pollen source, and of a sector at 20 m distance, respectively, followed by GUS analysis of seedlings. The average cross-pollination rate during the experiment (2002-2004) was 2.7% at a distance of 20 m. The results of this first pilot study present a good base for further assessment under the conditions of normal viticulture practice.

  4. Transduction of the Root Gravitropic Stimulus: Can Apical Calcium Regulate Auxin Distribution?

    NASA Technical Reports Server (NTRS)

    Edwards, K. L.

    1985-01-01

    The hypothesis was tested that calcium, asymmetrically distributes in the root cap upon reorientation to gravity, affects auxin transport and thereby auxin distribution at the elongation zone. It is assumed that calcium exists in the root cap and is asymmetrically transported in root caps altered from a vertical to a horizontal position and that the meristem, the tissue immediately adjacent to the root cap and lying between the site of gravity perception and the site of gravity response, is essential for mediation of gravitropism. Tip calcium in root gravicurvature was implicated. The capstone evidence is that the root cap has the capacity to polarly translocate exogenous calcium downward when tissue is oriented horizontally, and that exogenous calcium, when supplied asymmetrically at the root tip, induces curvature and dictates the direction of curvature in both vertical and horizontal corn roots.

  5. Root growth dynamics linked to above-ground growth in walnut (Juglans regia).

    PubMed

    Contador, Maria Loreto; Comas, Louise H; Metcalf, Samuel G; Stewart, William L; Porris Gomez, Ignacio; Negron, Claudia; Lampinen, Bruce D

    2015-07-01

    Examination of plant growth below ground is relatively scant compared with that above ground, and is needed to understand whole-plant responses to the environment. This study examines whether the seasonal timing of fine root growth and the spatial distribution of this growth through the soil profile varies in response to canopy manipulation and soil temperature. Plasticity in the seasonal timing and vertical distribution of root production in response to canopy and soil water manipulation was analysed in field-grown walnut (Juglans regia 'Chandler') using minirhizotron techniques. Root production in walnuts followed a unimodal curve, with one marked flush of root growth starting in mid-May, with a peak in mid-June. Root production declined later in the season, corresponding to increased soil temperature, as well as to the period of major carbohydrate allocation to reproduction. Canopy and soil moisture manipulation did not influence the timing of root production, but did influence the vertical distribution of roots through the soil profile. Water deficit appeared to promote root production in deeper soil layers for mining soil water. Canopy removal appeared to promote shallow root production. The findings of this study add to growing evidence that root growth in many ecosystems follows a unimodal curve with one marked flush of root growth in coordination with the initial leaf flush of the season. Root vertical distribution appeared to have greater plasticity than timing of root production in this system, with temperature and/or carbohydrate competition constraining the timing of root growth. Effects on root distribution can have serious impacts on trees, with shallow rooting having negative impacts in years with limited soil water or positive impacts in years with wet springs, and deep rooting having positive impacts on soil water mining from deeper soil layers but negative impacts in years with wet springs. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Genetic relatedness and recombination analysis of Allorhizobium vitis strains associated with grapevine crown gall outbreaks in Europe.

    PubMed

    Kuzmanović, N; Biondi, E; Bertaccini, A; Obradović, A

    2015-09-01

    To analyse genetic diversity and epidemiological relationships among 54 strains of Allorhizobium vitis isolated in Europe during an 8-year period and to assess the relative contribution of mutation and recombination in shaping their diversity. By using random amplified polymorphic DNA (RAPD) PCR, strains studied were distributed into 12 genetic groups. Sequence analysis of dnaK, gyrB and recA housekeeping genes was employed to characterize a representative subcollection of 28 strains. A total of 15 different haplotypes were found. Nucleotide sequence analysis suggested the presence of recombination events in A. vitis, particularly affecting dnaK locus. Although prevalence of mutation over recombination was found, impact of recombination was about two times greater than mutation in the evolution of the housekeeping genes analysed. The RAPD analysis indicated high degree of genetic diversity among the strains. However, the most abundant RAPD group was composed of 35 strains, which could lead to the conclusion that they share a common origin and were distributed by the movement of infected grapevine planting material as a most common way of crossing long distances. Furthermore, it seems that recombination is acting as an important driving force in the evolution of A. vitis. As no substantial evidence of recombination was detected within recA gene fragment, this phylogenetic marker could be reliable to characterize phylogenetic relationships among A. vitis strains. We demonstrated clear epidemiological relationship between majority of strains studied, suggesting a need for more stringent phytosanitary measures in international trade. Moreover, this is the first study to report recombination in A. vitis. © 2015 The Society for Applied Microbiology.

  7. Minimalistic models of the vertical distribution of roots under stochastic hydrological forcing

    NASA Astrophysics Data System (ADS)

    Laio, Francesco

    2014-05-01

    The assessment of the vertical root profile can be useful for multiple purposes: the partition of water fluxes between evaporation and transpiration, the evaluation of root soil reinforcement for bioengineering applications, the influence of roots on biogeochemical and microbial processes in the soil, etc. In water-controlled ecosystems the shape of the root profile is mainly determined by the soil moisture availability at different depths. The long term soil water balance in the root zone can be assessed by modeling the stochastic incoming and outgoing water fluxes, influenced by the stochastic rainfall pulses and/or by the water table fluctuations. Through an ecohydrological analysis one obtains that in water-controlled ecosystems the vertical root distribution is a decreasing function with depth, whose parameters depend on pedologic and climatic factors. The model can be extended to suitably account for the influence of the water table fluctuations, when the water table is shallow enough to exert an influence on root development, in which case the vertical root distribution tends to assume a non-monotonic form. In order to evaluate the validity of the ecohydrological estimation of the root profile we have tested it on a case study in the north of Tuscany (Italy). We have analyzed data from 17 landslide-prone sites: in each of these sites we have assessed the pedologic and climatic descriptors necessary to apply the model, and we have measured the mean rooting depth. The results show a quite good matching between observed and modeled mean root depths. The merit of this minimalistic approach to the modeling of the vertical root distribution relies on the fact that it allows a quantitative estimation of the main features of the vertical root distribution without resorting to time- and money-demanding measuring surveys.

  8. Comparison of investigation methods of heat injury in grapevine (Vitis) and assessment to heat tolerance in different cultivars and species.

    PubMed

    Xu, Hongguo; Liu, Guojie; Liu, Guotian; Yan, Bofang; Duan, Wei; Wang, Lijun; Li, Shaohua

    2014-06-05

    In the context of global climate change, heat stress is becoming an increasingly important constraint on grapevine growth and berry quality. There is a need to breed new grape cultivars with heat tolerance and to design effective physiological defenses against heat stress. The investigation of heat injury to plants or tissues under high temperature is an important step in achieving these goals. At present, evaluation methods for heat injury include the gas exchange parameters of photosynthesis, membrane thermostability, chlorophyll content etc.; however, these methods have obvious disadvantages, such as insensitivity, inconvenience and delayed information. An effective and convenient method for investigating the heat injury of grapevine must be developed. In this study, an investigation protocol for a critical temperature (47°C) and heat treatment time (40 min) was developed in detached grape leaves. Based on the results, we found that the OJIP test was superior to measuring electrolyte leakage or photosynthetic O₂ evolution for investigating the heat injury of three cultivars of grapevine. Heat tolerance of 47 grape species and cultivars was evaluated through investigating heat injury using the OJIP test. Moreover, the electron transport chain (donor side, acceptor side and reaction center) of PSII in photosynthesis was further investigated. The OJIP test was a rapid, sensitive and convenient method for investigating heat injury in grapevine. An analysis of PSII function using this method indicated that the acceptor side was less sensitive to heat than was the donor side or the reaction center in grape leaves. Among the 47 taxa evaluated (cultivars, hybrids, and wild species), heat tolerance varied largely in each genotype group: most wild species and hybrids between V. labrusca and V. vinifera had relatively strong heat tolerance, but most cultivars from V. vinifera had relatively weak heat tolerance.

  9. Comparison of investigation methods of heat injury in grapevine (Vitis) and assessment to heat tolerance in different cultivars and species

    PubMed Central

    2014-01-01

    Background In the context of global climate change, heat stress is becoming an increasingly important constraint on grapevine growth and berry quality. There is a need to breed new grape cultivars with heat tolerance and to design effective physiological defenses against heat stress. The investigation of heat injury to plants or tissues under high temperature is an important step in achieving these goals. At present, evaluation methods for heat injury include the gas exchange parameters of photosynthesis, membrane thermostability, chlorophyll content etc.; however, these methods have obvious disadvantages, such as insensitivity, inconvenience and delayed information. An effective and convenient method for investigating the heat injury of grapevine must be developed. Results In this study, an investigation protocol for a critical temperature (47°C) and heat treatment time (40 min) was developed in detached grape leaves. Based on the results, we found that the OJIP test was superior to measuring electrolyte leakage or photosynthetic O2 evolution for investigating the heat injury of three cultivars of grapevine. Heat tolerance of 47 grape species and cultivars was evaluated through investigating heat injury using the OJIP test. Moreover, the electron transport chain (donor side, acceptor side and reaction center) of PSII in photosynthesis was further investigated. Conclusions The OJIP test was a rapid, sensitive and convenient method for investigating heat injury in grapevine. An analysis of PSII function using this method indicated that the acceptor side was less sensitive to heat than was the donor side or the reaction center in grape leaves. Among the 47 taxa evaluated (cultivars, hybrids, and wild species), heat tolerance varied largely in each genotype group: most wild species and hybrids between V. labrusca and V. vinifera had relatively strong heat tolerance, but most cultivars from V. vinifera had relatively weak heat tolerance. PMID:24898786

  10. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit.

    PubMed

    Rienth, Markus; Torregrosa, Laurent; Luchaire, Nathalie; Chatbanyong, Ratthaphon; Lecourieux, David; Kelly, Mary T; Romieu, Charles

    2014-04-28

    Global climate change will noticeably affect plant vegetative and reproductive development. The recent increase in temperatures has already impacted yields and composition of berries in many grapevine-growing regions. Physiological processes underlying temperature response and tolerance of the grapevine fruit have not been extensively investigated. To date, all studies investigating the molecular regulation of fleshly fruit response to abiotic stress were only conducted during the day, overlooking possible critical night-specific variations. The present study explores the night and day transcriptomic response of grapevine fruit to heat stress at several developmental stages. Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered according to the developmental stages along their vertical axes. The recently proposed microvine model (DRCF-Dwarf Rapid Cycling and Continuous Flowering) was grown in climatic chambers in order to circumvent common constraints and biases inevitable in field experiments with perennial macrovines. Post-véraison berry heterogeneity within clusters was avoided by constituting homogenous batches following organic acids and sugars measurements of individual berries. A whole genome transcriptomic approach was subsequently conducted using NimbleGen 090818 Vitis 12X (30 K) microarrays. Present work reveals significant differences in heat stress responsive pathways according to day or night treatment, in particular regarding genes associated with acidity and phenylpropanoid metabolism. Precise distinction of ripening stages led to stage-specific detection of malic acid and anthocyanin-related transcripts modulated by heat stress. Important changes in cell wall modification related processes as well as indications for heat-induced delay of ripening and sugar accumulation were observed at véraison, an effect that was reversed at later stages. This first day - night study on heat stress adaption of the grapevine berry shows that the transcriptome of fleshy fruits is differentially affected by abiotic stress at night. The present results emphasize the necessity of including different developmental stages and especially several daytime points in transcriptomic studies.

  11. Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes

    PubMed Central

    2012-01-01

    Background Downy mildew, caused by Plasmopara viticola, is one of the most severe diseases of grapevine and is commonly controlled by fungicide treatments. The beneficial microorganism Trichoderma harzianum T39 (T39) can induce resistance to downy mildew, although the molecular events associated with this process have not yet been elucidated in grapevine. A next generation RNA sequencing (RNA-Seq) approach was used to study global transcriptional changes associated with resistance induced by T39 in Vitis vinifera Pinot Noir leaves. The long-term aim was to develop strategies to optimize the use of this agent for downy mildew control. Results More than 14.8 million paired-end reads were obtained for each biological replicate of T39-treated and control leaf samples collected before and 24 h after P. viticola inoculation. RNA-Seq analysis resulted in the identification of 7,024 differentially expressed genes, highlighting the complex transcriptional reprogramming of grapevine leaves during resistance induction and in response to pathogen inoculation. Our data show that T39 has a dual effect: it directly modulates genes related to the microbial recognition machinery, and it enhances the expression of defence-related processes after pathogen inoculation. Whereas several genes were commonly affected by P. viticola in control and T39-treated plants, opposing modulation of genes related to responses to stress and protein metabolism was found. T39-induced resistance partially inhibited some disease-related processes and specifically activated defence responses after P. viticola inoculation, causing a significant reduction of downy mildew symptoms. Conclusions The global transcriptional analysis revealed that defence processes known to be implicated in the reaction of resistant genotypes to downy mildew were partially activated by T39-induced resistance in susceptible grapevines. Genes identified in this work are an important source of markers for selecting novel resistance inducers and for the analysis of environmental conditions that might affect induced resistance mechanisms. PMID:23173562

  12. A Tau Class Glutathione-S-Transferase is Involved in Trans-Resveratrol Transport Out of Grapevine Cells

    PubMed Central

    Martínez-Márquez, Ascensión; Martínez-Esteso, María J.; Vilella-Antón, María T.; Sellés-Marchart, Susana; Morante-Carriel, Jaime A.; Hurtado, Elias; Palazon, Javier; Bru-Martínez, Roque

    2017-01-01

    Vitis vinifera cell cultures respond to pathogens and elicitors by synthesizing and extracellularly accumulating stilbenoid phytoalexins. Large amounts of trans-resveratrol (t-R) are produced when a cell culture is elicited with methylated cyclodextrins (MBCD), either alone or combined with methyl jasmonate (MeJA). t-R transport to the extracellular medium, which represents the apoplastic space, would place this antifungal defense right in the battlefield to efficiently fight against pathogen attack. Yet despite their physiological relevance, these transport pathways are mostly unknown. A broad hypothesis-free DIGE-based proteomic experiment of a temporal series of elicited grapevine cell cultures was performed to explore the expression profiles of t-R biosynthetic proteins and other co-expressing proteins potentially involved in such a cell response. A correlation between two tau class glutathione-S-transferases (GSTs) with several stilbene synthase and phenylalanine ammonia-lyase isoforms, and with the t-R metabolite itself, was found and further assessed by a qRT-PCR gene expression analysis. The best candidate, GSTU-2, was cloned from the cDNA of the MBCD + MeJA-elicited grapevine cells and used for Agrobacterium-mediated grapevine cell transformation. The non-elicited lines that overexpressed GSTU-2 displayed an extracellular t-R accumulating phenotype, but stabilization of t-R required the addition to culture medium of adsorbent compounds, e.g., PVP or β-cyclodextrin. The wild-type cell cultures accumulated no t-R, not even in the presence of adsorbents. The transient expression of the GSTU-2-GFP fusion proteins in grapevine cells showed localisation in the plasma membrane, and the immunoprecipitation of HA-tagged GSTU-2 revealed its interaction with HIR, a plasma membrane-bound protein. These findings are consistent with a functional role in transport. This is the first report providing several pieces of experimental evidence for the involvement of a specific tau class GST in t-R transport to the extracellular medium. PMID:28878794

  13. Arsenic and trace elements in soil, water, grapevine and onion in Jáchal, Argentina.

    PubMed

    Funes Pinter, Iván; Salomon, M Victoria; Gil, Raúl; Mastrantonio, Leandro; Bottini, Rubén; Piccoli, Patricia

    2018-02-15

    Contamination by trace elements (TE) is an increasing concern worldwide. In some areas, crop production could be limited by the presence of metals and metalloids, so it is important to determine their concentrations and mobility. The region of Jáchal, province of San Juan, Argentina, has good growing conditions for onion and grapevine production, but their quality and yield are affected by high TE concentration in soils and water. Soils, water, grapevine and onion were sampled and TE content determined. In soils elevated As, B, Cr, Hg, and Tl concentrations were detected (506±46, 149±3, 2714±217, 16±7, and 12±3μgg -1 , respectively, for maximum values measured), and physicochemical properties of the soil promotes these elements mobility. Water samples had high As, B, Cr, and Fe concentrations (1438±400, 10,871±471, 11,516±2363, and 3071±257μgL -1 , respectively, for maximum values measured) while in onion bulbs and grapevine berries, As, Cr, Cu, and Fe (92±7 and 171±20, 1412±18 and 2965±32, 17±3 and 126±88, and 418±204 and 377±213μgg -1 , respectively, for maximum values measured) exceeded the limits for food consumption established by Argentinian law. Correlation analyses indicated that: i) there is a common source of TE in this area, ii) each elements concentration in plants is associated with different soil variables and different soils depths, and iii) the lack of correlation between soil and water indicates that concentration in water is not constant over the time and/or there exists a differential accumulation of elements in soils depending on their own properties. Data obtained demonstrate very high concentration of TE in soil, grapevines, and onion plants in Jáchal region, and different remediation techniques are necessary to stabilize and minimize the bioavailability of these elements. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. High taxonomic diversity of cultivation-recalcitrant endophytic bacteria in grapevine field shoots, their in vitro introduction, and unsuspected persistence.

    PubMed

    Thomas, Pious; Sekhar, Aparna C; Shaik, Sadiq Pasha

    2017-11-01

    Molecular and microscopic analyses reveal enormous non-cultivable endophytic bacteria in grapevine field shoots with functional significance. Diverse bacteria enter tissue cultures through surface-sterilized tissues and survive surreptitiously with varying taxonomic realignments. The study was envisaged to assess the extent of endophytic bacterial association with field shoot tissues of grapevine and the likelihood of introduction of such internally colonizing bacteria in vitro adopting molecular techniques targeting the non-cultivable bacterial community. PowerFood ® -kit derived DNA from surface-sterilized field shoot tips of grapevine Flame Seedless was employed in a preliminary bacterial class-specific PCR screening proving positive for major prokaryotic taxa including Archaea. Taxonomic and functional diversity were analyzed through whole metagenome profiling (WMG) which revealed predominantly phylum Actinobacteria, Proteobacteria, and minor shares of Firmicutes, Bacteroidetes, and Deinococcus-Thermus with varying functional roles ascribable to the whole bacterial community. Field shoot tip tissues and callus derived from stem segments were further employed in 16S rRNA V3-V4 amplicon taxonomic profiling. This revealed elevated taxonomic diversity in field shoots over WMG, predominantly Proteobacteria succeeded by Actinobacteria, Firmicutes, Bacteroidetes, and 15 other phyla including several candidate phyla (135 families, 179 genera). Callus stocks also displayed broad bacterial diversity (16 phyla; 96 families; 141 genera) bearing resemblance to field tissues with Proteobacterial dominance but a reduction in its share, enrichment of Actinobacteria and Firmicutes, disappearance of some field-associated phyla and detection of a few additional taxonomic groups over field community. Similar results were documented during 16S V3-V4 amplicon taxonomic profiling on Thompson Seedless field shoot tip and callus tissues. Video microscopy on tissue homogenates corroborated enormous endophytic bacteria. This study elucidates a vast diversity of cultivation-recalcitrant endophytic bacteria prevailing in grapevine field shoots, their in vitro introduction, and unsuspecting sustenance with possible silent participation in tissue culture processes.

  15. A Grapevine Anthocyanin Acyltransferase, Transcriptionally Regulated by VvMYBA, Can Produce Most Acylated Anthocyanins Present in Grape Skins1

    PubMed Central

    Rinaldo, Amy R.; Cavallini, Erika; Jia, Yong; Moss, Sarah M.A.; McDavid, Debra A.J.; Hooper, Lauren C.; Robinson, Simon P.; Tornielli, Giovanni B.; Zenoni, Sara; Ford, Christopher M.; Boss, Paul K.; Walker, Amanda R.

    2015-01-01

    Anthocyanins are flavonoid compounds responsible for red/purple colors in the leaves, fruit, and flowers of many plant species. They are produced through a multistep pathway that is controlled by MYB transcription factors. VvMYBA1 and VvMYBA2 activate anthocyanin biosynthesis in grapevine (Vitis vinifera) and are nonfunctional in white grapevine cultivars. In this study, transgenic grapevines with altered VvMYBA gene expression were developed, and transcript analysis was carried out on berries using a microarray technique. The results showed that VvMYBA is a positive regulator of the later stages of anthocyanin synthesis, modification, and transport in cv Shiraz. One up-regulated gene, ANTHOCYANIN 3-O-GLUCOSIDE-6″-O-ACYLTRANSFERASE (Vv3AT), encodes a BAHD acyltransferase protein (named after the first letter of the first four characterized proteins: BEAT [for acetyl CoA:benzylalcohol acetyltransferase], AHCT [for anthocyanin O-hydroxycinnamoyltransferase], HCBT [for anthranilate N-hydroxycinnamoyl/benzoyltransferase], and DAT [for deacetylvindoline 4-O-acetyltransferase]), belonging to a clade separate from most anthocyanin acyltransferases. Functional studies (in planta and in vitro) show that Vv3AT has a broad anthocyanin substrate specificity and can also utilize both aliphatic and aromatic acyl donors, a novel activity for this enzyme family found in nature. In cv Pinot Noir, a red-berried grapevine mutant lacking acylated anthocyanins, Vv3AT contains a nonsense mutation encoding a truncated protein that lacks two motifs required for BAHD protein activity. Promoter activation assays confirm that Vv3AT transcription is activated by VvMYBA1, which adds to the current understanding of the regulation of the BAHD gene family. The flexibility of Vv3AT to use both classes of acyl donors will be useful in the engineering of anthocyanins in planta or in vitro. PMID:26395841

  16. The species diversity and roots distribution of forest in course of succession in the lower sub-tropical Dinghushan, Guangdong, China

    NASA Astrophysics Data System (ADS)

    Hao, Y.

    2017-12-01

    The study of root biomass distribution provides a good insight into the role of the root system, their structure and function at the ecosystem level. Therefore, many studies of root distribution and root dynamics e have been carried out. In the sub-tropical area of South China, monsoon evergreen broad-leaved forest is one of the most characteristic and most valuable zonal vegetation with stand age of 400 years in Dinghushan, where we choose the 4 typical communities (Com.1 Pinus massoniana community; Com.2 Pinus massoniana + Castanopsis chinensis + Schima superba community; Com.3 Castanopsis fissa community; Com.4 Cryptocarya concinna + Castanopsis chinensis + Cryptocarya chinensis + Schima superba community) to study the species diversity and roots distribution. Root systems of representative communities were examined systemically with regard to their structure, underground stratification and biomass distribution, by the method of root biological measure and ecological technique, Excavation of skeleton roots and observation of fine roots were carried out. The conclusions mainly including: The root biomass was increased with the species diversity and evenness of the communities improved in lower sub-tropical evergreen broad-leaved forest in course of succession. The main reason is that the diversity increase resulted in the great increase of total individuals. The individual number is 93 in Com.1 and increase to 7024 in Com.4, and the number of species and total population of individual were fast increased 32 and 2680 after 25 years when man-made needle forest was founded. In a set of successional stages, the amount of tree roots linearly increased in communities series. In monsoon evergreen broad-leaved forest, the total tree root biomass amounted to 115.70 ton/ha, Needle and broad-leaved mixed forest dominated by coniferous 50.61ton/ ha, Broad-and needle-leaved mixed forest dominated by broad-leaved heliophytes 64.20 ton/ha. Root biomass of community in later successional stage tended to distribute in the upper soil layers with the succession process, and this trend became slower in the later successional stage of the forest. 35% of total root biomass distributed in 0-10 cm layer in Com.2 but it increase to 61% in Com.4. Furthermore, more diversity of the vegetation has more clearly layers roots.

  17. Measuring and Modeling Root Distribution and Root Reinforcement in Forested Slopes for Slope Stability Calculations

    NASA Astrophysics Data System (ADS)

    Cohen, D.; Giadrossich, F.; Schwarz, M.; Vergani, C.

    2016-12-01

    Roots provide mechanical anchorage and reinforcement of soils on slopes. Roots also modify soil hydrological properties (soil moisture content, pore-water pressure, preferential flow paths) via subsurface flow path associated with root architecture, root density, and root-size distribution. Interactions of root-soil mechanical and hydrological processes are an important control of shallow landslide initiation during rainfall events and slope stability. Knowledge of root-distribution and root strength are key components to estimate slope stability in vegetated slopes and for the management of protection forest in steep mountainous area. We present data that show the importance of measuring root strength directly in the field and present methods for these measurements. These data indicate that the tensile force mobilized in roots depends on root elongation (a function of soil displacement), root size, and on whether roots break in tension of slip out of the soil. Measurements indicate that large lateral roots that cross tension cracks at the scarp are important for slope stability calculations owing to their large tensional resistance. These roots are often overlooked and when included, their strength is overestimated because extrapolated from measurements on small roots. We present planned field experiments that will measure directly the force held by roots of different sizes during the triggering of a shallow landslide by rainfall. These field data are then used in a model of root reinforcement based on fiber-bundle concepts that span different spacial scales, from a single root to the stand scale, and different time scales, from timber harvest to root decay. This model computes the strength of root bundles in tension and in compression and their effect on soil strength. Up-scaled to the stand the model yields the distribution of root reinforcement as a function of tree density, distance from tree, tree species and age with the objective of providing quantitative estimates of tree root reinforcement for best management practice of protection forests.

  18. RNA isolation from loquat and other recalcitrant woody plants with high quality and yield.

    PubMed

    Morante-Carriel, Jaime; Sellés-Marchart, Susana; Martínez-Márquez, Ascensión; Martínez-Esteso, María José; Luque, Ignacio; Bru-Martínez, Roque

    2014-05-01

    RNA isolation is difficult in plants that contain large amounts of polysaccharides and polyphenol compounds. To date, no commercial kit has been developed for the isolation of high-quality RNA from tissues with these characteristics, especially for fruit. The common protocols for RNA isolation are tedious and usually result in poor yields when applied to recalcitrant plant tissues. Here an efficient RNA isolation protocol based on cetyltrimethylammonium bromide (CTAB) and two successive precipitations with 10 M lithium chloride (LiCl) was developed specifically for loquat fruits, but it was proved to work efficiently in other tissues of loquat and woody plants. The RNA isolated by this improved protocol was not only of high purity and integrity (A260/A280 ratios ranged from 1.90 to 2.04 and A260/A230 ratios were>2.0) but also of high yield (up to 720 μg on average [coefficient of variation=21%] total RNA per gram fresh tissue). The protocol was tested on loquat fruit (different stages of development, postharvest, ripening, and bruising), leaf, root, flower, stem, and bud; quince fruit and root; grapevine cells in liquid culture; and rose petals. The RNA obtained with this method is amenable to enzymatic treatments and can be efficiently applied for research on gene characterization, expression, and function. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Modifications of 'Gold Finger' Grape Berry Quality as Affected by the Different Rootstocks.

    PubMed

    Jin, Zhongxin; Sun, Hong; Sun, Tianyu; Wang, Qingjie; Yao, Yuxin

    2016-06-01

    Berry qualities of the grafted 'Gold Finger' grapevines were determined to evaluate the impacts of the resistant rootstocks on fruit quality. Compared to the own-rooted vines, berry and cluster weights and skin color were altered by the rootstocks to varying extents. The rootstock of 101-14M maintained TSS/TA and the contents of fructose, glucose, and sucrose, and SO4 decreased these parameters. 101-14M and 3309C increased and reduced the resveratrol content, respectively. SO4, 5BB, and 3309C decreased the total free amino acid content, along with the changes in amino acid composition. The amounts of aroma components were widely altered by the rootstocks. Additionally, a digital gene expression tag profiling revealed that the biological processes were largely altered by 3309C and 101-14M, including sugar, amino acid, and aroma metabolisms. In summary, the rootstock of 101-14M generally maintained berry quality, and SO4, 5BB, and 3309C imparted varying influences on different quality parameters.

  20. Monitoring plant water status and rooting depth for precision irrigation in the vineyards of Classic Karst

    NASA Astrophysics Data System (ADS)

    Savi, Tadeja; Moretti, Elisa; Dal Borgo, Anna; Petruzzellis, Francesco; Stenni, Barbara; Bertoncin, Paolo; Dreossi, Giuliano; Zini, Luca; Martellos, Stefano; Nardini, Andrea

    2017-04-01

    The extreme summer drought and heat waves that occurred in South-Europe in 2003 and 2012 have led to the loss of more than 50% of winery production in the Classic Karst (NE Italy). The irrigation of vineyards in this area is not appropriately developed and, when used, it does not consider the actual water status and needs of plants, posing risks of inappropriate or useless usage of large water volumes. The predicted future increase in frequency and severity of extreme climate events poses at serious risk the local agriculture based on wine business. We monitored seasonal trends of pre-dawn (Ψpd) and minimum (Ψmin) leaf water potential, and stomatal conductance (gL) of 'Malvasia' grapevine in one mature (MV, both in 2015 and 2016) and one young vineyard (YV, in 2016). Moreover, we extracted xylem sap form plant stems and soil water from samples collected in nearby caves, by cryo-vacuum distillation. We also collected precipitation and irrigation water in different months. Oxygen isotope composition (δ18O) of atmospheric, plant, soil and irrigation water was analyzed to get information about rooting depth. In 2015, at the peak of summer aridity, two irrigation treatments were applied according to traditional management practices. The treatments were performed in a sub-area of the MV, followed by physiological analysis and yield measurements at grape harvest. In 2016, the soil water potential (Ψsoil) at 50 cm depth was also monitored throughout the season. Under harsh environmental conditions the apparently deep root system ensured relatively favorable plant water status in both MV and YV and during both growing seasons. The Ψsoil at 50 cm depth gradually decreased as drought progressed, reaching a minimum value of about -1.7 MPa, far more negative than Ψpd recorded in plants (about -0.5 MPa). In July, significant stomatal closure was observed, but Ψmin never surpassed the critical threshold of -1.3 MPa, indicating that irrigation was not needed. The xylem sap δ18O was about -6‰ and a significantly lower value was recorded after the irrigation treatments (-7.2‰)), highlighting absorption of irrigation water (-8‰)) by plants. However, Ψmin and yield of irrigated and non-irrigated grapevines were not significantly different. Interestingly, Ψmin and in particular Ψpd, were find to be slightly more negative in the MV compared to YV. On the other hand, gL measured in July, if compared to that of the spring period, decreased by about 92% in MV, but only about 70% in YV, suggesting a relatively more anisohydric and isohydric behavior in the two groups of plants, respectively. Our data demonstrate the feasibility of the development of precision irrigation methods in karstic areas, as based on physiological parameters reflecting actual water needs of plants (Ψmin), which would assure a more sustainable management and significative savings of the, already limited, water resource.

  1. Malus hupehensis NPR1 induces pathogenesis-related protein gene expression in transgenic tobacco.

    PubMed

    Zhang, J-Y; Qiao, Y-S; Lv, D; Gao, Z-H; Qu, S-C; Zhang, Z

    2012-03-01

    Most commercially grown apple cultivars are susceptible to fungal diseases. Malus hupehensis has high resistance to many diseases affecting apple cultivars. Understanding innate defence mechanisms would help to develop disease-resistant apple crops. Non-expressor of pathogenesis-related genes 1 (NPR1) plays a key role in regulating salicylic acid (SA)-mediated systemic acquired resistance (SAR). MhNPR1 cDNA, corresponding to genomic DNA and its 5' flanking sequences, was isolated from M. hupehensis. Sequence analysis showed that the regulatory mechanism for oligomer-monomer transition of the MhNPR1 protein in apple might be similar to that of GmNPR1 in soybean, but different from that of AtNPR1 in Arabidopsis. No significant differences in MhNPR1 expression were found in M. hupehensis after infection with Botryosphaeria berengeriana, showing that MhNPR1 might be regulated by pathogens at the protein level, as described for Arabidopsis and grapevine. SA treatment significantly induced MhNPR1 expression in leaves, stems and roots, while methyl jasmonate (MeJA) treatment induced MhNPR1 expression in roots, but not in leaves or stems. The expression of MhNPR1 was highly increased in roots, moderately in leaves, and did not change in stems after treatment with 1-aminocyclopropane-1-carboxylic acid (ACC). SAR marker genes (MhPR1 and MhPR5) were induced by SA, MeJA and ACC in leaves, stems and roots. Overexpression of MhNPR1 significantly induced the expression of pathogenesis-related genes (NtPR1, NtPR3 and NtPR5) in transgenic tobacco plants and resistance to the fungus Botrytis cinerea, suggesting that MhNPR1 orthologues are a component of the SA defence signalling pathway and SAR is induced in M. hupehensis. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Spatial distribution of Eucalyptus roots in a deep sandy soil in the Congo: relationships with the ability of the stand to take up water and nutrients.

    PubMed

    Laclau, J P; Arnaud, M; Bouillet, J P; Ranger, J

    2001-02-01

    Spatial statistical analyses were performed to describe root distribution and changes in soil strength in a mature clonal plantation of Eucalyptus spp. in the Congo. The objective was to analyze spatial variability in root distribution. Relationships between root distribution, soil strength and the water and nutrient uptake by the stand were also investigated. We studied three, 2.35-m-wide, vertical soil profiles perpendicular to the planting row and at various distances from a representative tree. The soil profiles were divided into 25-cm2 grid cells and the number of roots in each of three diameter classes counted in each grid cell. Two profiles were 2-m deep and the third profile was 5-m deep. There was both vertical and horizontal anisotropy in the distribution of fine roots in the three profiles, with root density decreasing sharply with depth and increasing with distance from the stump. Roots were present in areas with high soil strength values (> 6,000 kPa). There was a close relationship between soil water content and soil strength in this sandy soil. Soil strength increased during the dry season mainly because of water uptake by fine roots. There were large areas with low root density, even in the topsoil. Below a depth of 3 m, fine roots were spatially concentrated and most of the soil volume was not explored by roots. This suggests the presence of drainage channels, resulting from the severe hydrophobicity of the upper soil.

  3. PATTERNS OF ROOT GROWTH, TURNOVER, AND DISTRIBUTION IN DIFFERENT AGED PONDEROSA PINE STANDS

    EPA Science Inventory

    The objectives of this study are to examine the spatial distribution of roots in relation to canopy size and tree distribution, and to determine if rates of fine root production and turnover are similar in the different aged stands. During the fall of 1998, 54 clear plexiglass t...

  4. Effect of water table fluctuations on phreatophytic root distribution.

    PubMed

    Tron, Stefania; Laio, Francesco; Ridolfi, Luca

    2014-11-07

    The vertical root distribution of riparian vegetation plays a relevant role in soil water balance, in the partition of water fluxes into evaporation and transpiration, in the biogeochemistry of hyporheic corridors, in river morphodynamics evolution, and in bioengineering applications. The aim of this work is to assess the effect of the stochastic variability of the river level on the root distribution of phreatophytic plants. A function describing the vertical root profile has been analytically obtained by coupling a white shot noise representation of the river level variability to a description of the dynamics of root growth and decay. The root profile depends on easily determined parameters, linked to stream dynamics, vegetation and soil characteristics. The riparian vegetation of a river characterized by a high variability turns out to have a rooting system spread over larger depths, but with shallower mean root depths. In contrast, a lower river variability determines root profiles with higher mean root depths. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Identification of a novel vitivirus from grapevines in New Zealand.

    PubMed

    Blouin, Arnaud G; Keenan, Sandi; Napier, Kathryn R; Barrero, Roberto A; MacDiarmid, Robin M

    2018-01-01

    We report a sequence of a novel vitivirus from Vitis vinifera obtained using two high-throughput sequencing (HTS) strategies on RNA. The initial discovery from small-RNA sequencing was confirmed by HTS of the total RNA and Sanger sequencing. The new virus has a genome structure similar to the one reported for other vitiviruses, with five open reading frames (ORFs) coding for the conserved domains described for members of that genus. Phylogenetic analysis of the complete genome sequence confirmed its affiliation to the genus Vitivirus, with the closest described viruses being grapevine virus E (GVE) and Agave tequilana leaf virus (ATLV). However, the virus we report is distinct and shares only 51% amino acid sequence identity with GVE in the replicase polyprotein and 66.8% amino acid sequence identity with ATLV in the coat protein. This is well below the threshold determined by the ICTV for species demarcation, and we propose that this virus represents a new species. It is provisionally named "grapevine virus G".

  6. Effect of irrigation and timing and type of nitrogen application on the biochemical composition of Vitis vinifera L. cv. Chardonnay and Syrah grapeberries.

    PubMed

    Canoura, Carolina; Kelly, Mary T; Ojeda, Hernan

    2018-02-15

    This study reports the effect of different doses of nitrogen applied to soil and/or leaves of Syrah and Chardonnay grapevines in the Languedoc-Roussillon (France) over two years. In 2011, nitrogen treatment involved both foliar urea sprayings and soil application at two different levels, with two controls - irrigated without nitrogen and no irrigation nor nitrogen. In 2012, the same grapevines received either soil or foliar nitrogen using the same controls. Results showed that foliar application increased the amino acid content to a greater extent than soil application, but that a combination of both was the most effective. For the first time, significantly elevated proline levels in response to drought were demonstrated for the grapevine. Increased contents of aromatic compounds and glycosylated precursors closely mirrored the applied nitrogen dose. Wines produced from N-fertilized Syrah grapes in 2011 showed a statistically significant effect of irrigation and fertilization on positive sensorial perception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects

    PubMed Central

    Gonella, Elena; Pajoro, Massimo; Marzorati, Massimo; Crotti, Elena; Mandrioli, Mauro; Pontini, Marianna; Bulgari, Daniela; Negri, Ilaria; Sacchi, Luciano; Chouaia, Bessem; Daffonchio, Daniele; Alma, Alberto

    2015-01-01

    Intracellular reproductive manipulators, such as Candidatus Cardinium and Wolbachia are vertically transmitted to progeny but rarely show co-speciation with the host. In sap-feeding insects, plant tissues have been proposed as alternative horizontal routes of interspecific transmission, but experimental evidence is limited. Here we report results from experiments that show that Cardinium is horizontally transmitted between different phloem sap-feeding insect species through plants. Quantitative PCR and in situ hybridization experiments indicated that the leafhopper Scaphoideus titanus releases Cardinium from its salivary glands during feeding on both artificial media and grapevine leaves. Successional time-course feeding experiments with S. titanus initially fed sugar solutions or small areas of grapevine leaves followed by feeding by the phytoplasma vector Macrosteles quadripunctulatus or the grapevine feeder Empoasca vitis revealed that the symbionts were transmitted to both species. Explaining interspecific horizontal transmission through plants improves our understanding of how symbionts spread, their lifestyle and the symbiont-host intermixed evolutionary pattern. PMID:26563507

  8. Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects.

    PubMed

    Gonella, Elena; Pajoro, Massimo; Marzorati, Massimo; Crotti, Elena; Mandrioli, Mauro; Pontini, Marianna; Bulgari, Daniela; Negri, Ilaria; Sacchi, Luciano; Chouaia, Bessem; Daffonchio, Daniele; Alma, Alberto

    2015-11-13

    Intracellular reproductive manipulators, such as Candidatus Cardinium and Wolbachia are vertically transmitted to progeny but rarely show co-speciation with the host. In sap-feeding insects, plant tissues have been proposed as alternative horizontal routes of interspecific transmission, but experimental evidence is limited. Here we report results from experiments that show that Cardinium is horizontally transmitted between different phloem sap-feeding insect species through plants. Quantitative PCR and in situ hybridization experiments indicated that the leafhopper Scaphoideus titanus releases Cardinium from its salivary glands during feeding on both artificial media and grapevine leaves. Successional time-course feeding experiments with S. titanus initially fed sugar solutions or small areas of grapevine leaves followed by feeding by the phytoplasma vector Macrosteles quadripunctulatus or the grapevine feeder Empoasca vitis revealed that the symbionts were transmitted to both species. Explaining interspecific horizontal transmission through plants improves our understanding of how symbionts spread, their lifestyle and the symbiont-host intermixed evolutionary pattern.

  9. Relationship between Agronomic Parameters, Phenolic Composition of Grape Skin, and Texture Properties of Vitis vinifera L. cv. Tempranillo.

    PubMed

    García-Estévez, Ignacio; Andrés-García, Paula; Alcalde-Eon, Cristina; Giacosa, Simone; Rolle, Luca; Rivas-Gonzalo, Julián C; Quijada-Morín, Natalia; Escribano-Bailón, M Teresa

    2015-09-09

    The relationship between the agronomic parameters of grapevine and the phenolic composition of skin of Vitis vinifera L. cv. Tempranillo grapes was assessed. The physical and mechanical properties of berries and their skins were also determined and correlated to the chemical composition. Results showed a significant negative correlation between grapevine vigor-related parameters (such as leaf area and bunch weight) and anthocyanin composition, whereas the percentage (w/w) of seeds was negatively correlated with the amount of flavanols of grape skins. Texture properties of grape skins also showed an important relationship with chemical composition. Berry hardness showed a negative correlation with the coumaroyl-anthocyanin derivatives, but it was positively correlated to skin flavanic composition. Moreover, significant regressions with high coefficients of determination were found between phenolic composition and grapevine vigor-related and texture variables, thus pointing out that these parameters might be useful for estimating the phenolic composition of grape skins.

  10. Phytotoxins Produced by Fungi Associated with Grapevine Trunk Diseases

    PubMed Central

    Andolfi, Anna; Mugnai, Laura; Luque, Jordi; Surico, Giuseppe; Cimmino, Alessio; Evidente, Antonio

    2011-01-01

    Up to 60 species of fungi in the Botryosphaeriaceae family, genera Cadophora, Cryptovalsa, Cylindrocarpon, Diatrype, Diatrypella, Eutypa, Eutypella, Fomitiporella, Fomitiporia, Inocutis, Phaeoacremonium and Phaeomoniella have been isolated from decline-affected grapevines all around the World. The main grapevine trunk diseases of mature vines are Eutypa dieback, the esca complex and cankers caused by the Botryospheriaceae, while in young vines the main diseases are Petri and black foot diseases. To understand the mechanism of these decline-associated diseases and the symptoms associated with them, the toxins produced by the pathogens involved in these diseases were isolated and characterised chemically and biologically. So far the toxins of only a small number of these decline fungi have been studied. This paper presents an overview of the toxins produced by the most serious of these vine wood pathogens: Eutypa lata, Phaeomoniella chlamydospora, Phaeoacremonium aleophilum and some taxa in the Botryosphaeriaceae family, and examines how these toxins produce decline symptoms. The chemical structure of these metabolites and in some cases their vivotoxin nature are also discussed. PMID:22295177

  11. Fine root responses to temporal nutrient heterogeneity and competition in seedlings of two tree species with different rooting strategies.

    PubMed

    Wang, Peng; Shu, Meng; Mou, Pu; Weiner, Jacob

    2018-03-01

    There is little direct evidence for effects of soil heterogeneity and root plasticity on the competitive interactions among plants. In this study, we experimentally examined the impacts of temporal nutrient heterogeneity on root growth and interactions between two plant species with very different rooting strategies: Liquidambar styraciflua (sweet gum), which shows high root plasticity in response to soil nutrient heterogeneity, and Pinus taeda (loblolly pine), a species with less plastic roots. Seedlings of the two species were grown in sandboxes in inter- and intraspecific combinations. Nutrients were applied in a patch either in a stable (slow-release) or in a variable (pulse) manner. Plant aboveground biomass, fine root mass, root allocation between nutrient patch and outside the patch, and root vertical distribution were measured. L. styraciflua grew more aboveground (40% and 27% in stable and variable nutrient treatment, respectively) and fine roots (41% and 8% in stable and variable nutrient treatment, respectively) when competing with P. taeda than when competing with a conspecific individual, but the growth of P. taeda was not changed by competition from L. styraciflua . Temporal variation in patch nutrient level had little effect on the species' competitive interactions. The more flexible L. styraciflua changed its vertical distribution of fine roots in response to competition from P. taeda , growing more roots in deeper soil layers compared to its roots in conspecific competition, leading to niche differentiation between the species, while the fine root distribution of P. taeda remained unchanged across all treatments. Synthesis . L. styraciflua showed greater flexibility in root growth by changing its root vertical distribution and occupying space of not occupied by P. taeda . This flexibility gave L. styraciflua an advantage in interspecific competition.

  12. Soil moisture causes dynamic adjustments to root reinforcement that reduce slope stability

    Treesearch

    Tristram C. Hales; Chelcy F. Miniat

    2017-01-01

    In steep soil-mantled landscapes, the initiation of shallow landslides is strongly controlled by the distribution of vegetation, whose roots reinforce the soil. The magnitude of root reinforcement depends on the number, diameter distribution, orientation and the mechanical properties of roots that cross potential failure planes. Understanding how these...

  13. Leaf Treatments with a Protein-Based Resistance Inducer Partially Modify Phyllosphere Microbial Communities of Grapevine

    PubMed Central

    Cappelletti, Martina; Perazzolli, Michele; Antonielli, Livio; Nesler, Andrea; Torboli, Esmeralda; Bianchedi, Pier L.; Pindo, Massimo; Puopolo, Gerardo; Pertot, Ilaria

    2016-01-01

    Protein derivatives and carbohydrates can stimulate plant growth, increase stress tolerance, and activate plant defense mechanisms. However, these molecules can also act as a nutritional substrate for microbial communities living on the plant phyllosphere and possibly affect their biocontrol activity against pathogens. We investigated the mechanisms of action of a protein derivative (nutrient broth, NB) against grapevine downy mildew, specifically focusing on the effects of foliar treatments on plant defense stimulation and on the composition and biocontrol features of the phyllosphere microbial populations. NB reduced downy mildew symptoms and induced the expression of defense-related genes in greenhouse- and in vitro-grown plants, indicating the activation of grapevine resistance mechanisms. Furthermore, NB increased the number of culturable phyllosphere bacteria and altered the composition of bacterial and fungal populations on leaves of greenhouse-grown plants. Although, NB-induced changes on microbial populations were affected by the structure of indigenous communities originally residing on grapevine leaves, degrees of disease reduction and defense gene modulation were consistent among the experiments. Thus, modifications in the structure of phyllosphere populations caused by NB application could partially contribute to downy mildew control by competition for space or other biocontrol strategies. Particularly, changes in the abundance of phyllosphere microorganisms may provide a contribution to resistance induction, partially affecting the hormone-mediated signaling pathways involved. Modifying phyllosphere populations by increasing natural biocontrol agents with the application of selected nutritional factors can open new opportunities in terms of sustainable plant protection strategies. PMID:27486468

  14. Can vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? Lessons from Dutch elm disease and esca disease in grapevine

    PubMed Central

    Pouzoulet, Jérôme; Pivovaroff, Alexandria L.; Santiago, Louis S.; Rolshausen, Philippe E.

    2014-01-01

    This review illuminates key findings in our understanding of grapevine xylem resistance to fungal vascular wilt diseases. Grapevine (Vitis spp.) vascular diseases such as esca, botryosphaeria dieback, and eutypa dieback, are caused by a set of taxonomically unrelated ascomycete fungi. Fungal colonization of the vascular system leads to a decline of the plant host because of a loss of the xylem function and subsequent decrease in hydraulic conductivity. Fungal vascular pathogens use different colonization strategies to invade and kill their host. Vitis vinifera cultivars display different levels of tolerance toward vascular diseases caused by fungi, but the plant defense mechanisms underlying those observations have not been completely elucidated. In this review, we establish a parallel between two vascular diseases, grapevine esca disease and Dutch elm disease, and argue that the former should be viewed as a vascular wilt disease. Plant genotypes exhibit differences in xylem morphology and resistance to fungal pathogens causing vascular wilt diseases. We provide evidence that the susceptibility of three commercial V. vinifera cultivars to esca disease is correlated to large vessel diameter. Additionally, we explore how xylem morphological traits related to water transport are influenced by abiotic factors, and how these might impact host tolerance of vascular wilt fungi. Finally, we explore the utility of this concept for predicting which V. vinifera cultivars are most vulnerable of fungal vascular wilt diseases and propose new strategies for disease management. PMID:24971084

  15. The Microvine, a plant model to study the effect of vine-shoot extract on the accumulation of glycosylated aroma precursors in grapes.

    PubMed

    Sánchez-Gómez, Rosario; Torregrosa, Laurent; Zalacain, Amaya; Ojeda, Hernán; Bouckenooghe, Virginie; Schneider, Rémi; Alonso, Gonzalo L; Salinas, María Rosario

    2018-06-01

    The Microvine plant model displays unique reproductive organ behavior and is suitable for grapevine fruit physiological studies, allowing one to undertake studies up to five times more rapidly than the current situation with grapevines. Recently, vine-shoot aqueous extracts, which have an interesting phenolic and aroma composition, have been proposed as viticultural biostimulants, since their post-veraison foliar application to grapevines impacts the wine aroma profile. Using Microvines, the aim of this study was to determine the effect of vine-shoot extract foliar application on 21 stages of grape development. The application was carried out from BBCH 53 (inflorescences clearly visible) to BBCH 85 (softening of berries) to reveal stage-specific responses of the accumulation of glycosylated aroma precursors at BBCH 89 (berries ripe for harvest), the phenological stage selected to study the treatment effect. Microvine use made it possible to carry out 15 sampling time points during 86 days of the experiment, which were established by the cumulative degree days (CDD) parameter. The results confirmed that vine-shoot extract treatment had a positive impact on total glycosylated compounds, especially aglycones such as alcohols, terpenes and C 13 -norisoprenoids, with a higher effect when the treatment was applied during ripening. Extrapolation of the results to grapevines suggests that vine-shoot extract treatment could modulate the synthesis of grape glycosylated aroma precursors. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Causative Role of Grapevine Red Blotch Virus in Red Blotch Disease.

    PubMed

    Yepes, Luz Marcela; Cieniewicz, Elizabeth; Krenz, Björn; McLane, Heather; Thompson, Jeremy R; Perry, Keith Lloyd; Fuchs, Marc

    2018-05-17

    Grapevine red blotch virus (GRBV) has a monopartite single-stranded DNA genome and is the type species of the genus Grablovirus in the family Geminiviridae. To address the etiological role of GRBV in the recently recognized red blotch disease of grapevine, infectious GRBV clones were engineered from the genome of each of the two previously identified phylogenetic clades for Agrobacterium tumefaciens-mediated inoculations of tissue culture-grown Vitis spp. plants. Following agroinoculation and one or two dormancy cycles, systemic GRBV infection was detected by multiplex polymerase chain reaction (PCR) in Vitis vinifera exhibiting foliar disease symptoms but not in asymptomatic vines. Infected rootstock genotype SO4 (V. berlandieri × V. riparia) exhibited leaf chlorosis and cupping, while infection was asymptomatic in agroinoculated 110R (V. berlandieri × V. rupestris), 3309C (V. riparia × V. rupestris), and V. rupestris. Spliced GRBV transcripts of the replicase-associated protein coding region accumulated in leaves of agroinfected vines, as shown by reverse-transcription PCR; this was consistent with systemic infection resulting from virus replication. Additionally, a virus progeny identical in nucleotide sequence to the infectious GRBV clones was recovered from agroinfected vines by rolling circle amplification, cloning, and sequencing. Concomitantly, subjecting naturally infected grapevines to microshoot tip culture resulted in an asymptomatic plant progeny that tested negative for GRBV in multiplex PCR. Altogether, our agroinoculation and therapeutic experiments fulfilled Koch's postulates and revealed the causative role of GRBV in red blotch disease.

  17. Gibberellin metabolism in Vitis vinifera L. during bloom and fruit-set: functional characterization and evolution of grapevine gibberellin oxidases

    PubMed Central

    Giacomelli, Lisa

    2013-01-01

    Gibberellins (GAs) are involved in the regulation of flowering and fruit-set in grapes (Vitis vinifera L.), but the molecular mechanisms behind this process are mostly unknown. In this work, the family of grapevine GA oxidases involved in the biosynthesis and deactivation of GAs was characterized. Six putative GA 20-oxidase (GA20ox), three GA 3-oxidase (GA3ox), and eight GA 2-oxidase (GA2ox) proteins, the latter further divided into five C19-GA 2ox and three C20-GA2ox proteins, were identified. Phylogenetic analyses suggest a common origin of the GA3ox and C19-GA2ox groups and challenge previous evolutionary models. In vitro analysis revealed that all GA3ox and GA20ox enzymes prefer substrates of the non-13-hydroxylation pathway. In addition, ectopic expression of GA2ox genes in Arabidopsis thaliana confirmed the activity of their encoded proteins in vivo. The results show that bioactive GA1 accumulates in opening grapevine flowers, whereas at later developmental stages only GA4 is detected in the setting fruit. By studying the expression pattern of the grapevine GA oxidase genes in different organs, and at different stages of flowering and fruit-set, it is proposed that the pool of bioactive GAs is controlled by a fine regulation of the abundance and localization of GA oxidase transcripts. PMID:24006417

  18. Pollen Morphology and Boron Concentration in Floral Tissues as Factors Triggering Natural and GA-Induced Parthenocarpic Fruit Development in Grapevine

    PubMed Central

    Pérez-Díaz, Ricardo; Yáñez, Mónica; Tapia, Jaime; Moreno, Yerko

    2015-01-01

    Parthenocarpic fruit development (PFD) reduces fruit yield and quality in grapevine. Parthenocarpic seedless berries arise from fruit set without effective fertilization due to defective pollen germination. PFD has been associated to micronutrient deficiency but the relation of this phenomenon with pollen polymorphism has not been reported before. In this work, six grapevine cultivars with different tendency for PFD and grown under micronutrient-sufficient conditions were analyzed to determine pollen structure and germination capability as well as PFD rates. Wide variation in non-germinative abnormal pollen was detected either among cultivars as well as for the same cultivar in different growing seasons. A straight correlation with PFD rates was found (R2 = 0.9896), suggesting that natural parthenocarpy is related to defective pollen development. Such relation was not observed when PFD was analyzed in grapevine plants exposed to exogenous gibberellin (GA) or abscissic acid (ABA) applications at pre-anthesis. Increase (GA treatment) or reduction (ABA treatment) in PFD rates without significative changes in abnormal pollen was determined. Although these plants were maintained at sufficient boron (B) condition, a down-regulation of the floral genes VvBOR3 and VvBOR4 together with a reduction of floral B content in GA-treated plants was established. These results suggest that impairment in B mobility to reproductive tissues and restriction of pollen tube growth could be involved in the GA-induced parthenocarpy. PMID:26440413

  19. Pollen Morphology and Boron Concentration in Floral Tissues as Factors Triggering Natural and GA-Induced Parthenocarpic Fruit Development in Grapevine.

    PubMed

    Alva, Orlando; Roa-Roco, Rosa Nair; Pérez-Díaz, Ricardo; Yáñez, Mónica; Tapia, Jaime; Moreno, Yerko; Ruiz-Lara, Simón; González, Enrique

    2015-01-01

    Parthenocarpic fruit development (PFD) reduces fruit yield and quality in grapevine. Parthenocarpic seedless berries arise from fruit set without effective fertilization due to defective pollen germination. PFD has been associated to micronutrient deficiency but the relation of this phenomenon with pollen polymorphism has not been reported before. In this work, six grapevine cultivars with different tendency for PFD and grown under micronutrient-sufficient conditions were analyzed to determine pollen structure and germination capability as well as PFD rates. Wide variation in non-germinative abnormal pollen was detected either among cultivars as well as for the same cultivar in different growing seasons. A straight correlation with PFD rates was found (R2 = 0.9896), suggesting that natural parthenocarpy is related to defective pollen development. Such relation was not observed when PFD was analyzed in grapevine plants exposed to exogenous gibberellin (GA) or abscissic acid (ABA) applications at pre-anthesis. Increase (GA treatment) or reduction (ABA treatment) in PFD rates without significative changes in abnormal pollen was determined. Although these plants were maintained at sufficient boron (B) condition, a down-regulation of the floral genes VvBOR3 and VvBOR4 together with a reduction of floral B content in GA-treated plants was established. These results suggest that impairment in B mobility to reproductive tissues and restriction of pollen tube growth could be involved in the GA-induced parthenocarpy.

  20. Maize varieties released in different eras have similar root length density distributions in the soil, which are negatively correlated with local concentrations of soil mineral nitrogen.

    PubMed

    Ning, Peng; Li, Sa; White, Philip J; Li, Chunjian

    2015-01-01

    Larger, and deeper, root systems of new maize varieties, compared to older varieties, are thought to have enabled improved acquisition of soil resources and, consequently, greater grain yields. To compare the spatial distributions of the root systems of new and old maize varieties and their relationships with spatial variations in soil concentrations of available nitrogen (N), phosphorus (P) and potassium (K), two years of field experiments were performed using six Chinese maize varieties released in different eras. Vertical distributions of roots, and available N, P and K in the 0-60 cm soil profile were determined in excavated soil monoliths at silking and maturity. The results demonstrated that new maize varieties had larger root dry weight, higher grain yield and greater nutrient accumulation than older varieties. All varieties had similar total root length and vertical root distribution at silking, but newer varieties maintained greater total root length and had more roots in the 30-60 cm soil layers at maturity. The spatial variation of soil mineral N (Nmin) in each soil horizon was larger than that of Olsen-P and ammonium-acetate-extractable K, and was inversely correlated with root length density (RLD), especially in the 0-20 cm soil layer. It was concluded that greater acquisition of mineral nutrients and higher yields of newer varieties were associated with greater total root length at maturity. The negative relationship between RLD and soil Nmin at harvest for all varieties suggests the importance of the spatial distribution of the root system for N uptake by maize.

  1. Maize Varieties Released in Different Eras Have Similar Root Length Density Distributions in the Soil, Which Are Negatively Correlated with Local Concentrations of Soil Mineral Nitrogen

    PubMed Central

    Ning, Peng; Li, Sa; White, Philip J.; Li, Chunjian

    2015-01-01

    Larger, and deeper, root systems of new maize varieties, compared to older varieties, are thought to have enabled improved acquisition of soil resources and, consequently, greater grain yields. To compare the spatial distributions of the root systems of new and old maize varieties and their relationships with spatial variations in soil concentrations of available nitrogen (N), phosphorus (P) and potassium (K), two years of field experiments were performed using six Chinese maize varieties released in different eras. Vertical distributions of roots, and available N, P and K in the 0–60 cm soil profile were determined in excavated soil monoliths at silking and maturity. The results demonstrated that new maize varieties had larger root dry weight, higher grain yield and greater nutrient accumulation than older varieties. All varieties had similar total root length and vertical root distribution at silking, but newer varieties maintained greater total root length and had more roots in the 30–60 cm soil layers at maturity. The spatial variation of soil mineral N (Nmin) in each soil horizon was larger than that of Olsen-P and ammonium-acetate-extractable K, and was inversely correlated with root length density (RLD), especially in the 0–20 cm soil layer. It was concluded that greater acquisition of mineral nutrients and higher yields of newer varieties were associated with greater total root length at maturity. The negative relationship between RLD and soil Nmin at harvest for all varieties suggests the importance of the spatial distribution of the root system for N uptake by maize. PMID:25799291

  2. Mathematical modeling and experimental validation of the spatial distribution of boron in the root of Arabidopsis thaliana identify high boron accumulation in the tip and predict a distinct root tip uptake function.

    PubMed

    Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F M; Grieneisen, Verônica A; Fujiwara, Toru

    2015-04-01

    Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  3. Mathematical Modeling and Experimental Validation of the Spatial Distribution of Boron in the Root of Arabidopsis thaliana Identify High Boron Accumulation in the Tip and Predict a Distinct Root Tip Uptake Function

    PubMed Central

    Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F.M.; Grieneisen, Verônica A.; Fujiwara, Toru

    2015-01-01

    Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots. PMID:25670713

  4. Agroforestry management and phytoseiid communities in vineyards in the South of France.

    PubMed

    Liguori, Marialivia; Tixier, Marie-Stéphane; Hernandes, Akashi Fabio; Douin, Martial; Kreiter, Serge

    2011-10-01

    This study deals with the long-term effect of agroforestry management (trees within vine crops) on communities of phytoseiid mites. Several plots were considered: vineyards co-planted with Sorbus domestica or Pinus pinea, monocultures of vines and monocultures of S. domestica or P. pinea. All vine plots included two vine cultivars, Syrah and Grenache. Phytoseiid mites have been surveyed in these plots during several years within the previous 10 years. In 2010, samplings were again carried out in these same plots, from May to September, twice a month. Significantly higher densities of Phytoseiidae were observed on the cultivar Syrah (0.85 phytoseiids per leaf) than on Grenache (0.26 phytoseiids per leaf). Furthermore, significantly higher phytoseiid mite densities were observed in the monocultural grapevine plot than in the two co-planted ones. The main species found was Typhlodromus (Typhlodromus) exhilaratus in all vine plots considered. However, Kampimodromus aberrans was observed in the grapevine plots co-planted with the two trees, but never in the monocultural vine plot. Surprisingly, this phytoseiid species was not found on the co-planted trees, nor in the neighbouring uncultivated vegetation. Several hypotheses are discussed to explain such an unexpected distribution. Furthermore, contrary to what has been observed previously, agroforestry management did not seem to favour phytoseiid mite development, especially on the Grenache cultivar. Again, some hypotheses are developed to explain such observations and density modifications.

  5. Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids.

    PubMed

    Nichols, S N; Hofmann, R W; Williams, W M; van Koten, C

    2016-05-20

    Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC 1 ) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Two white clover cultivars, two T. uniflorum accessions and two BC 1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100-200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC 1 than 'Crusader'. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50-100 mm deep than the other entries, and more of its fine root mass at 400-500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400-500 mm than most entries, and a smaller decrease in root length density with depth. These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids

    PubMed Central

    Nichols, S. N.; Hofmann, R. W.; Williams, W. M.; van Koten, C.

    2016-01-01

    Background and aims Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC1) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Methods Two white clover cultivars, two T. uniflorum accessions and two BC1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Key Results Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100–200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC1 than ‘Crusader’. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50–100 mm deep than the other entries, and more of its fine root mass at 400–500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400–500 mm than most entries, and a smaller decrease in root length density with depth. Conclusions These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. PMID:27208735

  7. Asymmetric Auxin Distribution is Not Required to Establish Root Phototropism in Arabidopsis.

    PubMed

    Kimura, Taro; Haga, Ken; Shimizu-Mitao, Yasushi; Takebayashi, Yumiko; Kasahara, Hiroyuki; Hayashi, Ken-Ichiro; Kakimoto, Tatsuo; Sakai, Tatsuya

    2018-04-01

    An asymmetric auxin distribution pattern is assumed to underlie the tropic responses of seed plants. It is unclear, however, whether this pattern is required for root negative phototropism. We here demonstrate that asymmetric auxin distribution is not required to establish root phototropism in Arabidopsis. Our detailed analyses of auxin reporter genes indicate that auxin accumulates on the irradiated side of roots in response to an incidental gravitropic stimulus caused by phototropic bending. Further, an agravitropic mutant showed a suppression of this accumulation with an enhancement of the phototropic response. In this context, our pharmacological and genetic analyses revealed that both polar auxin transport and auxin biosynthesis are critical for the establishment of root gravitropism, but not for root phototropism, and that defects in these processes actually enhance phototropic responses in roots. The auxin response factor double mutant arf7 arf19 and the auxin receptor mutant tir1 showed a slight reduction in phototropic curvatures in roots, suggesting that the transcriptional regulation by some specific ARF proteins and their regulators is at least partly involved in root phototropism. However, the auxin antagonist PEO-IAA [α-(phenylethyl-2-one)-indole-3-acetic acid] suppressed root gravitropism and enhanced root phototropism, suggesting that the TIR1/AFB auxin receptors and ARF transcriptional factors play minor roles in root phototropism. Taken together, we conclude from our current data that the phototropic response in Arabidopsis roots is induced by an unknown mechanism that does not require asymmetric auxin distribution and that the Cholodny-Went hypothesis probably does not apply to root phototropism.

  8. Modelling Root Systems Using Oriented Density Distributions

    NASA Astrophysics Data System (ADS)

    Dupuy, Lionel X.

    2011-09-01

    Root architectural models are essential tools to understand how plants access and utilize soil resources during their development. However, root architectural models use complex geometrical descriptions of the root system and this has limitations to model interactions with the soil. This paper presents the development of continuous models based on the concept of oriented density distribution function. The growth of the root system is built as a hierarchical system of partial differential equations (PDEs) that incorporate single root growth parameters such as elongation rate, gravitropism and branching rate which appear explicitly as coefficients of the PDE. Acquisition and transport of nutrients are then modelled by extending Darcy's law to oriented density distribution functions. This framework was applied to build a model of the growth and water uptake of barley root system. This study shows that simplified and computer effective continuous models of the root system development can be constructed. Such models will allow application of root growth models at field scale.

  9. Community- Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance

    PubMed Central

    Jeltsch, Florian; Wurst, Susanne

    2015-01-01

    Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root herbivores with large, fast growing plants may counteract dominance of those species, thus promoting plant diversity. PMID:26517119

  10. Estimation of tree root distribution using electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Schmaltz, Elmar; Uhlemann, Sebastian

    2016-04-01

    Trees influence soil-mantled slopes mechanically by anchoring in the soil with coarse roots. Forest-stands play an important role in mechanical reinforcement to reduce the susceptibility to slope failures. However, the effect of stabilisation of roots is connected with the distribution of roots in the ground. The architecture and distribution of tree roots is diverse and strongly dependent on species, plant age, stand density, relief, nutrient supply as well as climatic and pedologic conditions. Particularly trees growing on inclined slopes show shape-shifting root systems. Geophysical techniques are commonly used to non-invasively study hydrological and geomorphological subsurface properties, by imaging contrasting physical properties of the ground. This also poses the challenge for geophysical imaging of root systems, as properties, such as electrical resistivity, of dry and wet roots fall within the range of soils. The objective of this study is whether electrical resistivity tomography (ERT) allows a reliable reproduction of root systems of alone-standing trees on diverse inclined slopes. In this regard, we set the focus on the branching of secondary roots of two common walnut trees (Juglans regia L.) that were not disturbed in the adjacencies and thus expected to develop their root systems unhindered. Walnuts show a taproot-cordate root system with a strong tap-root in juvenile age and a rising cordate rooting with increasing age. Hence, mature walnuts can exhibit a root system that appears to be deformed or shifted respectively when growing at hillslope locations. We employed 3D ERT centred on the tree stem, comprising dipole-dipole measurements on a 12-by-41 electrode grid with 0.5 m and 1.0m electrode spacing in x- and y-direction respectively. Data were inverted using a 3D smoothness constrained non-linear least-squares algorithm. First results show that the general root distribution can be estimated from the resistivity models and that shape-shifting effects of secondary roots of the two Juglans regia in differently inclined ambiences can be imaged using 3D ERT. The results of this study can yield a grasp about the dimension of root architecture of single trees by using non-invasive geophysical techniques and give evidence about how roots influence the soil mantle mechanically and hydrologically according to the spatial distribution of their coarse roots.

  11. Detection of a divergent variant of grapevine virus F by next-generation sequencing.

    PubMed

    Molenaar, Nicholas; Burger, Johan T; Maree, Hans J

    2015-08-01

    The complete genome sequence of a South African isolate of grapevine virus F (GVF) is presented. It was first detected by metagenomic next-generation sequencing of field samples and validated through direct Sanger sequencing. The genome sequence of GVF isolate V5 consists of 7539 nucleotides and contains a poly(A) tail. It has a typical vitivirus genome arrangement that comprises five open reading frames (ORFs), which share only 88.96 % nucleotide sequence identity with the existing complete GVF genome sequence (JX105428).

  12. Comparison of three approaches to model grapevine organogenesis in conditions of fluctuating temperature, solar radiation and soil water content.

    PubMed

    Pallas, B; Loi, C; Christophe, A; Cournède, P H; Lecoeur, J

    2011-04-01

    There is increasing interest in the development of plant growth models representing the complex system of interactions between the different determinants of plant development. These approaches are particularly relevant for grapevine organogenesis, which is a highly plastic process dependent on temperature, solar radiation, soil water deficit and trophic competition. The extent to which three plant growth models were able to deal with the observed plasticity of axis organogenesis was assessed. In the first model, axis organogenesis was dependent solely on temperature, through thermal time. In the second model, axis organogenesis was modelled through functional relationships linking meristem activity and trophic competition. In the last model, the rate of phytomer appearence on each axis was modelled as a function of both the trophic status of the plant and the direct effect of soil water content on potential meristem activity. The model including relationships between trophic competition and meristem behaviour involved a decrease in the root mean squared error (RMSE) for the simulations of organogenesis by a factor nine compared with the thermal time-based model. Compared with the model in which axis organogenesis was driven only by trophic competition, the implementation of relationships between water deficit and meristem behaviour improved organogenesis simulation results, resulting in a three times divided RMSE. The resulting model can be seen as a first attempt to build a comprehensive complete plant growth model simulating the development of the whole plant in fluctuating conditions of temperature, solar radiation and soil water content. We propose a new hypothesis concerning the effects of the different determinants of axis organogenesis. The rate of phytomer appearance according to thermal time was strongly affected by the plant trophic status and soil water deficit. Furthermore, the decrease in meristem activity when soil water is depleted does not result from source/sink imbalances.

  13. Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs)

    PubMed Central

    Gong, Peijie; Li, Shuxiu; Wang, Yuejin; Zhang, Chaohong

    2016-01-01

    Vacuolar processing enzymes (VPEs) have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD), which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvβVPE, VvγVPE, and VvδVPE) from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs) from the ‘Vitis vinifera cv. Pinot Noir’ and ‘Vitis vinifera cv. Thompson Seedless’ varietals. Each of the VPEs contained a typical catalytic dyad [His (177), Cys (219)] and substrate binding pocket [Arg (112), Arg (389), Ser (395)], except that Ser (395) in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvβVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR) suggested that VvβVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF), close to the timing of endosperm abortion at 32 DAF. These results suggested that VvβVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs. PMID:27551866

  14. Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs).

    PubMed

    Tang, Yujin; Wang, Ruipu; Gong, Peijie; Li, Shuxiu; Wang, Yuejin; Zhang, Chaohong

    2016-01-01

    Vacuolar processing enzymes (VPEs) have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD), which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvβVPE, VvγVPE, and VvδVPE) from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs) from the 'Vitis vinifera cv. Pinot Noir' and 'Vitis vinifera cv. Thompson Seedless' varietals. Each of the VPEs contained a typical catalytic dyad [His (177), Cys (219)] and substrate binding pocket [Arg (112), Arg (389), Ser (395)], except that Ser (395) in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvβVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR) suggested that VvβVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF), close to the timing of endosperm abortion at 32 DAF. These results suggested that VvβVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs.

  15. Distribution and Impacts of Annosus Root Disease in Forests of the Northern Rocky Mountains

    Treesearch

    Ralph E. Williams

    1989-01-01

    Annosus root disease is widely distributed in the northern Rocky Mountains. Stump infection often results in tree mortality occurring in progressively expanding root disease centers, in groups of various sizes, and as scattered individuals.

  16. Can increased nitrogen uptake at elevated CO2 be explained by an hypothesis of optimal root function?

    NASA Astrophysics Data System (ADS)

    McMurtrie, R. E.; Norby, R. J.; Näsholm, T.; Iversen, C.; Dewar, R. C.; Medlyn, B. E.

    2011-12-01

    Forest free-air CO2 enrichment (FACE) experiments have shown that annual nitrogen (N) uptake increases when trees are grown at elevated CO2 (eCO2) and that increased N uptake is critical for a sustained growth response to eCO2. Processes contributing to increased N uptake at eCO2 may include: accelerated decomposition of soil organic matter due to enhanced root carbon (C) exudation (so-called rhizosphere priming); increased C allocation to fine roots and increased root production at depth, both of which enhance N acquisition; differences in soil N availability with depth; changes in the abundance of N in chemical forms with differing mobility in soil; and reduced N concentrations, reduced maintenance respiration rates, and increased longevities of deeper roots. These processes have been synthesised in a model of annual N uptake in relation to the spatial distribution of roots. We hypothesise that fine roots are distributed spatially in order to maximise annual N uptake. The optimisation hypothesis leads to equations for the optimal vertical distribution of root biomass in relation to the distribution of available soil N and for maximum annual N uptake. We show how maximum N uptake and rooting depth are related to total root mass, and compare the optimal solution with an empirical function that has been fitted to root-distribution data from all terrestrial biomes. Finally, the model is used to explore the consequences of rhizosphere priming at eCO2 as observed at the Duke forest FACE experiment (Drake et al. 2011, Ecology Letters 14: 349-357) and of increasing N limitation over time as observed at the Oak Ridge FACE experiment (Norby et al. 2010, Proc. Nat. Acad. Sci. USA 107: 19368-19373).

  17. Synchrotron micro-scale study of trace metal transport and distribution in Spartina alterniflora root system in Yangtze River intertidal zone

    DOE PAGES

    Feng, Huan; Tappero, Ryan; Zhang, Weiguo; ...

    2015-07-26

    This study is focused on micro-scale measurement of metal (Ca, Cl, Fe, K, Mn, Cu, Pb, and Zn) distributions in Spartina alterniflora root system. The root samples were collected in the Yangtze River intertidal zone in July 2013. Synchrotron X-ray fluorescence (XRF), computed microtomography (CMT), and X-ray absorption near-edge structure (XANES) techniques, which provide micro-meter scale analytical resolution, were applied to this study. Although it was found that the metals of interest were distributed in both epidermis and vascular tissue with the varying concentrations, the results showed that Fe plaque was mainly distributed in the root epidermis. Other metals (e.g.,more » Cu, Mn, Pb, and Zn) were correlated with Fe in the epidermis possibly due to scavenge by Fe plaque. Relatively high metal concentrations were observed in the root hair tip. As a result, this micro-scale investigation provides insights of understanding the metal uptake and spatial distribution as well as the function of Fe plaque governing metal transport in the root system.« less

  18. Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants

    PubMed Central

    Tavares, Sílvia; Wirtz, Markus; Beier, Marcel P.; Bogs, Jochen; Hell, Rüdiger; Amâncio, Sara

    2015-01-01

    In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC). In this study we identify and characterize the SERAT gene family of the crop plant Vitis vinifera. The identified four members of the VvSERAT protein family are assigned to three distinct groups upon their sequence similarities to Arabidopsis SERATs. Expression of fluorescently labeled VvSERAT proteins uncover that the sub-cellular localization of VvSERAT1;1 and VvSERAT3;1 is the cytosol and that VvSERAT2;1 and VvSERAT2;2 localize in addition in plastids and mitochondria, respectively. The purified VvSERATs of group 1 and 2 have higher enzymatic activity than VvSERAT3;1, which display a characteristic C-terminal extension also present in AtSERAT3;1. VvSERAT1;1 and VvSERAT2;2 are evidenced to form the CSC. CSC formation activates VvSERAT2;2, by releasing CSC-associated VvSERAT2;2 from cysteine inhibition. Thus, subcellular distribution of SERAT isoforms and CSC formation in cytosol and mitochondria is conserved between Arabidopsis and grapevine. Surprisingly, VvSERAT2;1 lack the canonical C-terminal tail of plant SERATs, does not form the CSC and is almost insensitive to cysteine inhibition (IC50 = 1.9 mM cysteine). Upon sulfate depletion VvSERAT2;1 is strongly induced at the transcriptional level, while transcription of other VvSERATs is almost unaffected in sulfate deprived grapevine cell suspension cultures. Application of abiotic stresses to soil grown grapevine plants revealed isoform-specific induction of VvSERAT2;1 in leaves upon drought, whereas high light- or temperature- stress hardly trigger VvSERAT2;1 transcription. PMID:25741355

  19. A conceptual approach to approximate tree root architecture in infinite slope models

    NASA Astrophysics Data System (ADS)

    Schmaltz, Elmar; Glade, Thomas

    2016-04-01

    Vegetation-related properties - particularly tree root distribution and coherent hydrologic and mechanical effects on the underlying soil mantle - are commonly not considered in infinite slope models. Indeed, from a geotechnical point of view, these effects appear to be difficult to be reproduced reliably in a physically-based modelling approach. The growth of a tree and the expansion of its root architecture are directly connected with both intrinsic properties such as species and age, and extrinsic factors like topography, availability of nutrients, climate and soil type. These parameters control four main issues of the tree root architecture: 1) Type of rooting; 2) maximum growing distance to the tree stem (radius r); 3) maximum growing depth (height h); and 4) potential deformation of the root system. Geometric solids are able to approximate the distribution of a tree root system. The objective of this paper is to investigate whether it is possible to implement root systems and the connected hydrological and mechanical attributes sufficiently in a 3-dimensional slope stability model. Hereby, a spatio-dynamic vegetation module should cope with the demands of performance, computation time and significance. However, in this presentation, we focus only on the distribution of roots. The assumption is that the horizontal root distribution around a tree stem on a 2-dimensional plane can be described by a circle with the stem located at the centroid and a distinct radius r that is dependent on age and species. We classified three main types of tree root systems and reproduced the species-age-related root distribution with three respective mathematical solids in a synthetic 3-dimensional hillslope ambience. Thus, two solids in an Euclidian space were distinguished to represent the three root systems: i) cylinders with radius r and height h, whilst the dimension of latter defines the shape of a taproot-system or a shallow-root-system respectively; ii) elliptic paraboloids represent a cordate-root-system with radius r, height h and a constant, species-independent curvature. This procedure simplifies the classification of tree species into the three defined geometric solids. In this study we introduce a conceptual approach to estimate the 2- and 3-dimensional distribution of different tree root systems, and to implement it in a raster environment, as it is used in infinite slope models. Hereto we used the PCRaster extension in a python framework. The results show that root distribution and root growth are spatially reproducible in a simple raster framework. The outputs exhibit significant effects for a synthetically generated slope on local scale for equal time-steps. The preliminary results depict an initial step to develop a vegetation module that can be coupled with hydro-mechanical slope stability models. This approach is expected to yield a valuable contribution to the implementation of vegetation-related properties, in particular effects of root-reinforcement, into physically-based approaches using infinite slope models.

  20. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit

    PubMed Central

    2014-01-01

    Background Global climate change will noticeably affect plant vegetative and reproductive development. The recent increase in temperatures has already impacted yields and composition of berries in many grapevine-growing regions. Physiological processes underlying temperature response and tolerance of the grapevine fruit have not been extensively investigated. To date, all studies investigating the molecular regulation of fleshly fruit response to abiotic stress were only conducted during the day, overlooking possible critical night-specific variations. The present study explores the night and day transcriptomic response of grapevine fruit to heat stress at several developmental stages. Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered according to the developmental stages along their vertical axes. The recently proposed microvine model (DRCF-Dwarf Rapid Cycling and Continuous Flowering) was grown in climatic chambers in order to circumvent common constraints and biases inevitable in field experiments with perennial macrovines. Post-véraison berry heterogeneity within clusters was avoided by constituting homogenous batches following organic acids and sugars measurements of individual berries. A whole genome transcriptomic approach was subsequently conducted using NimbleGen 090818 Vitis 12X (30 K) microarrays. Results Present work reveals significant differences in heat stress responsive pathways according to day or night treatment, in particular regarding genes associated with acidity and phenylpropanoid metabolism. Precise distinction of ripening stages led to stage-specific detection of malic acid and anthocyanin-related transcripts modulated by heat stress. Important changes in cell wall modification related processes as well as indications for heat-induced delay of ripening and sugar accumulation were observed at véraison, an effect that was reversed at later stages. Conclusions This first day - night study on heat stress adaption of the grapevine berry shows that the transcriptome of fleshy fruits is differentially affected by abiotic stress at night. The present results emphasize the necessity of including different developmental stages and especially several daytime points in transcriptomic studies. PMID:24774299

  1. Structure and transcriptional regulation of the major intrinsic protein gene family in grapevine.

    PubMed

    Wong, Darren Chern Jan; Zhang, Li; Merlin, Isabelle; Castellarin, Simone D; Gambetta, Gregory A

    2018-04-11

    The major intrinsic protein (MIP) family is a family of proteins, including aquaporins, which facilitate water and small molecule transport across plasma membranes. In plants, MIPs function in a huge variety of processes including water transport, growth, stress response, and fruit development. In this study, we characterize the structure and transcriptional regulation of the MIP family in grapevine, describing the putative genome duplication events leading to the family structure and characterizing the family's tissue and developmental specific expression patterns across numerous preexisting microarray and RNAseq datasets. Gene co-expression network (GCN) analyses were carried out across these datasets and the promoters of each family member were analyzed for cis-regulatory element structure in order to provide insight into their transcriptional regulation. A total of 29 Vitis vinifera MIP family members (excluding putative pseudogenes) were identified of which all but two were mapped onto Vitis vinifera chromosomes. In this study, segmental duplication events were identified for five plasma membrane intrinsic protein (PIP) and four tonoplast intrinsic protein (TIP) genes, contributing to the expansion of PIPs and TIPs in grapevine. Grapevine MIP family members have distinct tissue and developmental expression patterns and hierarchical clustering revealed two primary groups regardless of the datasets analyzed. Composite microarray and RNA-seq gene co-expression networks (GCNs) highlighted the relationships between MIP genes and functional categories involved in cell wall modification and transport, as well as with other MIPs revealing a strong co-regulation within the family itself. Some duplicated MIP family members have undergone sub-functionalization and exhibit distinct expression patterns and GCNs. Cis-regulatory element (CRE) analyses of the MIP promoters and their associated GCN members revealed enrichment for numerous CREs including AP2/ERFs and NACs. Combining phylogenetic analyses, gene expression profiling, gene co-expression network analyses, and cis-regulatory element enrichment, this study provides a comprehensive overview of the structure and transcriptional regulation of the grapevine MIP family. The study highlights the duplication and sub-functionalization of the family, its strong coordinated expression with genes involved in growth and transport, and the putative classes of TFs responsible for its regulation.

  2. Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer.

    PubMed

    Gutiérrez, Salvador; Tardaguila, Javier; Fernández-Novales, Juan; Diago, María P

    2015-01-01

    The identification of different grapevine varieties, currently attended using visual ampelometry, DNA analysis and very recently, by hyperspectral analysis under laboratory conditions, is an issue of great importance in the wine industry. This work presents support vector machine and artificial neural network's modelling for grapevine varietal classification from in-field leaf spectroscopy. Modelling was attempted at two scales: site-specific and a global scale. Spectral measurements were obtained on the near-infrared (NIR) spectral range between 1600 to 2400 nm under field conditions in a non-destructive way using a portable spectrophotometer. For the site specific approach, spectra were collected from the adaxial side of 400 individual leaves of 20 grapevine (Vitis vinifera L.) varieties one week after veraison. For the global model, two additional sets of spectra were collected one week before harvest from two different vineyards in another vintage, each one consisting on 48 measurement from individual leaves of six varieties. Several combinations of spectra scatter correction and smoothing filtering were studied. For the training of the models, support vector machines and artificial neural networks were employed using the pre-processed spectra as input and the varieties as the classes of the models. The results from the pre-processing study showed that there was no influence whether using scatter correction or not. Also, a second-degree derivative with a window size of 5 Savitzky-Golay filtering yielded the highest outcomes. For the site-specific model, with 20 classes, the best results from the classifiers thrown an overall score of 87.25% of correctly classified samples. These results were compared under the same conditions with a model trained using partial least squares discriminant analysis, which showed a worse performance in every case. For the global model, a 6-class dataset involving samples from three different vineyards, two years and leaves monitored at post-veraison and harvest was also built up, reaching a 77.08% of correctly classified samples. The outcomes obtained demonstrate the capability of using a reliable method for fast, in-field, non-destructive grapevine varietal classification that could be very useful in viticulture and wine industry, either global or site-specific.

  3. A transient expression assay for the in planta efficacy screening of an antimicrobial peptide against grapevine bacterial pathogens.

    PubMed

    Visser, M; Stephan, D; Jaynes, J M; Burger, J T

    2012-06-01

    Natural and synthetic antimicrobial peptides (AMPs) are of increasing interest as potential resistance conferring elements in plants against pathogen infection. The efficacy of AMPs against pathogens is prescreened by in vitro assays, and promising AMP candidates are introduced as transgenes into plants. As in vitro and in planta environments differ, a prescreening procedure of the AMP efficacy in the plant environment is desired. Here, we report the efficacy of the purified synthetic peptide D4E1 against the grapevine-infecting bacterial pathogens Agrobacterium vitis and Xylophilus ampelinus in vitro and describe for the first time an in planta prescreening procedure based on transiently expressed D4E1. The antimicrobial effect of D4E1 against Ag. vitis and X. ampelinus was shown by a reduction in colony-forming units in vitro in a traditional plate-based assay and by a reduction in bacterial titres in planta as measured by quantitative real-time PCR (qPCR) in grapevine leaves transiently expressing D4E1. A statistically significant reduction in titre was shown for X. ampelinus, but for Ag. vitis, a significant reduction in titre was only observed in a subset of plants. The titres of both grapevine-infecting bacterial pathogens were reduced in an in vitro assay and for X. ampelinus in an in planta assay by D4E1 application. This widens the applicability of D4E1 as a potential resistance-enhancing element to additional pathogens and in a novel plant species. D4E1 is a promising candidate to confer enhanced resistance against the two tested grapevine bacterial pathogens, and the applied transient expression system proved to be a valuable tool for prescreening of D4E1 efficacy in an in planta environment. The described prescreening procedure can be used for other AMPs and might be adapted to other plant species and pathogens before the expensive and tedious development of stably transgenic lines is started. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  4. Potential effect of atmospheric warming on grapevine phenology and post-harvest heat accumulation across a range of climates

    NASA Astrophysics Data System (ADS)

    Hall, Andrew; Mathews, Adam J.; Holzapfel, Bruno P.

    2016-09-01

    Carbohydrates are accumulated within the perennial structure of grapevines when their production exceeds the requirements of reproduction and growth. The period between harvest and leaf-fall (the post-harvest period) is a key period for carbohydrate accumulation in relatively warmer grape-growing regions. The level of carbohydrate reserves available for utilisation in the following season has an important effect on canopy growth and yield potential and is therefore an important consideration in vineyard management. In a warming climate, the post-harvest period is lengthening and becoming warmer, evidenced through studies in wine regions worldwide that have correlated recent air temperature increases with changing grapevine phenology. Budbreak, flowering, veraison, and harvest have all been observed to be occurring earlier than in previous decades. Additionally, the final stage of the grapevine phenological cycle, leaf-fall, occurs later. This study explored the potential for increased post-harvest carbohydrate accumulation by modelling heat accumulation following harvest dates for the recent climate (1975-2004) and two warmer climate projections with mean temperature anomalies of +1.26 and +2.61 °C. Summaries of post-harvest heat accumulation between harvest and leaf-fall were produced for each of Australia's Geographical Indications (wine regions) to provide comparisons from the base temperatures to projected warmer conditions across a range of climates. The results indicate that for warmer conditions, all regions observe earlier occurring budbreak and harvest as well as increasing post-harvest growing degree days accumulation before leaf-fall. The level of increase varies depending upon starting climatic condition, with cooler regions experiencing the greatest change.

  5. VpWRKY3, a biotic and abiotic stress-related transcription factor from the Chinese wild Vitis pseudoreticulata.

    PubMed

    Zhu, Ziguo; Shi, Jiangli; Cao, Jiangling; He, Mingyang; Wang, Yuejin

    2012-11-01

    Chinese wild grapevine Vitis pseudoreticulata accession 'Baihe-35-1' is identified as the precious resource with multiple resistances to pathogens. A directional cDNA library was constructed from the young leaves inoculated with Erysiphe necator. A total of 3,500 clones were sequenced, yielding 1,727 unigenes. Among them, 762 unigenes were annotated and classified into three classes, respectively, using Gene Ontology, including 22 ESTs related to transcription regulator activity. A novel WRKY transcription factor was isolated from the library, and designated as VpWRKY3 (GenBank Accession No. JF500755). The full-length cDNA is 1,280 bp, encoding a WRKY protein of 320 amino acids. VpWRKY3 is localized to nucleus and functions as a transcriptional activator. QRT-PCR analysis showed that the VpWRKY3 specifically accumulated in response to pathogen, salicylic acid, ethylene and drought stress. Overexpression of VpWRKY3 in tobacco increased the resistance to Ralstonia solanacearum, indicating that VpWRKY3 participates in defense response. Furthermore, VpWRKY3 is also involved in abscisic acid signal pathway and salt stress. This experiment provided an important basis for understanding the defense mechanisms mediated by WRKY genes in China wild grapevine. Generation of the EST collection from the cDNA library provided valuable information for the grapevine breeding. Key message We constructed a cDNA library from Chinese wild grapevine leaves inoculated with powdery mildew. VpWRKY3 was isolated and demonstrated that it was involved in biotic and abiotic stress responses.

  6. Differences in respiration between dormant and non-dormant buds suggest the involvement of ABA in the development of endodormancy in grapevines.

    PubMed

    Parada, Francisca; Noriega, Ximena; Dantas, Débora; Bressan-Smith, Ricardo; Pérez, Francisco J

    2016-08-20

    Grapevine buds (Vitis vinifera L) enter endodormancy (ED) after perceiving the short-day (SD) photoperiod signal and undergo metabolic changes that allow them to survive the winter temperatures. In the present study, we observed an inverse relationship between the depth of ED and the respiration rate of grapevine buds. Moreover, the respiration of dormant and non-dormant buds differed in response to temperature and glucose, two stimuli that normally increase respiration in plant tissues. While respiration in non-dormant buds rose sharply in response to both stimuli, respiration in dormant buds was only slightly affected. This suggests that a metabolic inhibitor is present. Here, we propose that the plant hormone abscisic acid (ABA) could be this inhibitor. ABA inhibits respiration in non-dormant buds and represses the expression of respiratory genes, such as ALTERNATIVE NADH DEHYDROGENASE (VaND1, VvaND2), CYTOCHROME OXIDASE (VvCOX6) and CYTOCHROME C (VvCYTC), and induces the expression of VvSnRK1, a gene encoding a member of a highly conserved family of protein kinases that act as energy sensors and regulate gene expression in response to energy depletion. In addition to inducing ED the SD-photoperiod up-regulated the expression of VvNCED, a gene that encodes a key enzyme in ABA synthesis. Taken together, these results suggest that ABA through the mediation of VvSnRK1, could play a key role in the regulation of the metabolic changes accompanying the entry into ED of grapevine buds. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Short- and long-term physiological responses of grapevine leaves to UV-B radiation.

    PubMed

    Martínez-Lüscher, J; Morales, F; Delrot, S; Sánchez-Díaz, M; Gomés, E; Aguirreolea, J; Pascual, I

    2013-12-01

    The present study aimed at evaluating the short- and long-term effects of UV-B radiation on leaves of grapevine Vitis vinifera (cv. Tempranillo). Grapevine fruit-bearing cuttings were exposed to two doses of supplemental biologically effective UV-B radiation (UV-BBE) under glasshouse-controlled conditions: 5.98 and 9.66kJm(-2)d(-1). The treatments were applied either for 20d (from mid-veraison to ripeness) or 75d (from fruit set to ripeness). A 0kJm(-2)d(-1) UV-B treatment was included as control. The main effects of UV-B were observed after the short-term exposure (20d) to 9.66kJm(-2)d(-1). Significant decreases in net photosynthesis, stomatal conductance, sub-stomatal CO2 concentration, the actual photosystem II (PSII) efficiency, total soluble proteins and de-epoxidation state of the VAZ cycle were observed, whereas the activities of several antioxidant enzymes increased significantly. UV-B did not markedly affect dark respiration, photorespiration, the maximum potential PSII efficiency (Fv/Fm), non-photochemical quenching (NPQ), as well as the intrinsic PSII efficiency. However, after 75d of exposure to 5.98and 9.66kJm(-2)d(-1) UV-B most photosynthetic and biochemical variables were unaffected and there were no sign of oxidative damage in leaves. The results suggest a high long-term acclimation capacity of grapevine to high UV-B levels, associated with a high accumulation of UV-B absorbing compounds in leaves, whereas plants seemed to be tolerant to moderate doses of UV-B. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence.

    PubMed

    Jiao, Yuntong; Xu, Weirong; Duan, Dong; Wang, Yuejin; Nick, Peter

    2016-10-01

    Stilbenes are central phytoalexins in Vitis, and induction of the key enzyme stilbene synthase (STS) is pivotal for disease resistance. Here, we address the potential for breeding resistance using an STS allele isolated from Chinese wild grapevine Vitis pseudoreticulata (VpSTS) by comparison with its homologue from Vitis vinifera cv. 'Carigane' (VvSTS). Although the coding regions of both alleles are very similar (>99% identity on the amino acid level), the promoter regions are significantly different. By expression in Arabidopsis as a heterologous system, we show that the allele from the wild Chinese grapevine can confer accumulation of stilbenes and resistance against the powdery mildew Golovinomyces cichoracearum, whereas the allele from the vinifera cultivar cannot. To dissect the upstream signalling driving the activation of this promoter, we used a dual-luciferase reporter system in a grapevine cell culture. We show elevated responsiveness of the promoter from the wild grape to salicylic acid (SA) and to the pathogen-associated molecular pattern (PAMP) flg22, equal induction of both alleles by jasmonic acid (JA), and a lack of response to the cell death-inducing elicitor Harpin. This elevated SA response of the VpSTS promoter depends on calcium influx, oxidative burst by RboH, mitogen-activated protein kinase (MAPK) signalling, and JA synthesis. We integrate the data in the context of a model where the resistance of V. pseudoreticulata is linked to a more efficient recruitment of SA signalling for phytoalexin synthesis. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization

    Treesearch

    Mark Coleman

    2007-01-01

    In forest trees, roots mediate such significant carbon fluxes as primary production and soil C02 efflux. Despite the central role of roots in these critical processes, information on root distribution during stand establishment is limited, yet must be described to accurately predict how various forest types, which are growing with a range of...

  10. Spatial distribution of enzyme activities along the root and in the rhizosphere of different plants

    NASA Astrophysics Data System (ADS)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many biological macromolecules abundant in soil such as cellulose, hemicelluloses and proteins. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. So far acquisition of in situ data about local activity of different enzymes in soil has been challenged. That is why there is an urgent need in spatially explicit methods such as 2-D zymography to determine the variation of enzymes along the roots in different plants. Here, we developed further the zymography technique in order to quantitatively visualize the enzyme activities (Spohn and Kuzyakov, 2013), with a better spatial resolution We grew Maize (Zea mays L.) and Lentil (Lens culinaris) in rhizoboxes under optimum conditions for 21 days to study spatial distribution of enzyme activity in soil and along roots. We visualized the 2D distribution of the activity of three enzymes:β-glucosidase, leucine amino peptidase and phosphatase, using fluorogenically labelled substrates. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography shows different pattern of spatial distribution of enzyme activity along roots and soil of different plants. We observed a uniform distribution of enzyme activities along the root system of Lentil. However, root system of Maize demonstrated inhomogeneity of enzyme activities. The apical part of an individual root (root tip) in maize showed the highest activity. The activity of all enzymes was the highest at vicinity of the roots and it decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere hotspots. References Spohn, M., Kuzyakov, Y., 2013. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology & Biochemistry 61: 69-75

  11. An index for plant water deficit based on root-weighted soil water content

    NASA Astrophysics Data System (ADS)

    Shi, Jianchu; Li, Sen; Zuo, Qiang; Ben-Gal, Alon

    2015-03-01

    Governed by atmospheric demand, soil water conditions and plant characteristics, plant water status is dynamic, complex, and fundamental to efficient agricultural water management. To explore a centralized signal for the evaluation of plant water status based on soil water status, two greenhouse experiments investigating the effect of the relative distribution between soil water and roots on wheat and rice were conducted. Due to the significant offset between the distributions of soil water and roots, wheat receiving subsurface irrigation suffered more from drought than wheat under surface irrigation, even when the arithmetic averaged soil water content (SWC) in the root zone was higher. A significant relationship was found between the plant water deficit index (PWDI) and the root-weighted (rather than the arithmetic) average SWC over root zone. The traditional soil-based approach for the estimation of PWDI was improved by replacing the arithmetic averaged SWC with the root-weighted SWC to take the effect of the relative distribution between soil water and roots into consideration. These results should be beneficial for scheduling irrigation, as well as for evaluating plant water consumption and root density profile.

  12. Perception of host plant volatiles in Hyalesthes obsoletus: behavior, morphology, and electrophysiology.

    PubMed

    Riolo, Paola; Minuz, Roxana L; Anfora, Gianfranco; Stacconi, Marco V Rossi; Carlin, Silvia; Isidoro, Nunzio; Romani, Roberto

    2012-08-01

    The Palearctic planthopper Hyalesthes obsoletus is the natural vector of the grapevine yellow disease Bois noir. Grapevine is an occasional host plant of this polyphagous planthopper. To deepen our knowledge of the role of plant volatile organic compounds for H. obsoletus host plant searching, we carried out behavioral, morphological, and electrophysiological studies. We tested the attraction of H. obsoletus to nettle, field bindweed, hedge bindweed, chaste tree, and grapevine by using a Y-shaped olfactometer. The results showed a significant attraction of male H. obsoletus to chaste tree, and of the females to nettle. Male H. obsoletus were repelled by odor from hedge bindweed. Ultrastructural studies of the antennae showed at least two types of olfactory sensilla at the antennal pedicel: plaque organs and trichoid sensilla. Volatile organic compounds from nettle and chaste tree were collected, and the extracts were analyzed by coupling gas-chromatography to both mass-spectrometry and electroantennography. The volatile organic compounds that elicited electrophysiological responses in male and female antennae were identified. These findings are discussed with respect to behavior of H. obsoletus males and females in the field.

  13. Construction and biological activities of the first infectious cDNA clones of the genus Foveavirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Baozhong, E-mail: bmeng@uoguelph.ca; Venkataraman, Srividhya; Li, Caihong

    Grapevine rupestris stem pitting-associated virus (GRSPaV, genus Foveavirus, family Betaflexiviridae) is one of the most prevalent viruses in grapevines and is associated with three distinct diseases: rupestris stem pitting, vein necrosis and Syrah decline. Little is known about the biology and pathological properties of GRSPaV. In this work, we engineered a full-length infectious cDNA clone for GRSPaV and a GFP-tagged variant, both under the transcriptional control of Cauliflower mosaic virus 35 S promoter. We demonstrated that these cDNA clones were infectious in grapevines and Nicotiana benthamiana through fluorescence microscopy, RT-PCR, Western blotting and immuno electron microscopy. Interestingly, GRSPaV does notmore » cause systemic infection in four of the most commonly used herbaceous plants, even in the presence of the movement proteins of two other viruses which are known to complement numerous movement-defective viruses. These infectious clones are the first of members of Foveavirus which would allow further investigations into mechanisms governing different aspects of replication for GRSPaV and perhaps related viruses.« less

  14. Grape and wine amino acid composition from Carignan noir grapevines growing under rainfed conditions in the Maule Valley, Chile: Effects of location and rootstock.

    PubMed

    Gutiérrez-Gamboa, G; Carrasco-Quiroz, M; Martínez-Gil, A M; Pérez-Álvarez, E P; Garde-Cerdán, T; Moreno-Simunovic, Y

    2018-03-01

    Nitrogen compounds play a key role on grape and wine quality. Their composition in grapes depends mainly on variety, viticultural management, and terroir, and affects fermentation kinetics and the volatile compound formation. The aim of this work was to study grape and wine amino acid composition of ungrafted or grafted onto cv. País Carignan grapevines growing under rainfed conditions in ten sites of the Maule Valley (Chile). The results showed that proline was the most abundant amino acid in grapes and wines. In general, Carignan noir grapevines grafted over País showed lower grape amino acid content respect to ungrafted vines. Cool night index (CI) was inversely correlated to several amino acids, showing that their plant synthesis or accumulation increased with lower minimum temperatures during the last month before harvest. Truquilemu (Tru) and Ciénaga de Name (Cdn) sites showed the highest concentration for several amino acids and total amino acid content in grapes, which led to a faster alcoholic fermentation. Copyright © 2017. Published by Elsevier Ltd.

  15. Cooking impact in color, pigments and volatile composition of grapevine leaves (Vitis vinifera L. var. Malvasia Fina and Touriga Franca).

    PubMed

    Lima, Adriano; Pereira, José Alberto; Baraldi, Ilton; Malheiro, Ricardo

    2017-04-15

    Grapevine leaves (Vitis vinifera L. var. Malvasia Fina and Touriga Franca) under culinary treatment (blanching and boiling at 60, 75 and 90min) were studied for their color, pigments and volatile fraction changes. Blanching and boiling caused a decrease in luminosity and a loss of green coloration in both varieties, while a yellow-brownish color arose. Significant correlations were established between the loss of green color (monochromatic variable a ∗ ) and the total chlorophylls content. The main volatiles in fresh leaves [(Z)-3-hexenal, (Z)-3-hexen-1-ol, and (Z)-3-hexenyl acetate] were drastically reduced by blanching and suppressed by boiling. Other compounds like pentanal and 6-methyl-5-hepten-2 one arose from blanching and boiling. A boiling time of 60min is adequate for the culinary process of grapevine leaves, since the product is considered edible and the pigments and volatile changes are not as drastic as observed at 75 and 90min of boiling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Grapevine Pathogenic Microorganisms: Understanding Infection Strategies and Host Response Scenarios

    PubMed Central

    Armijo, Grace; Schlechter, Rudolf; Agurto, Mario; Muñoz, Daniela; Nuñez, Constanza; Arce-Johnson, Patricio

    2016-01-01

    Grapevine (Vitis vinifera L.) is one of the most important fruit crop worldwide. Commercial cultivars are greatly affected by a large number of pathogenic microorganisms that cause diseases during pre- and/or post-harvest periods, affecting production, processing and export, along with fruit quality. Among the potential threats, we can find bacteria, fungi, oomycete, or viruses with different life cycles, infection mechanisms and evasion strategies. While plant–pathogen interactions are cycles of resistance and susceptibility, resistance traits from natural resources are selected and may be used for breeding purposes and for a sustainable agriculture. In this context, here we summarize some of the most important diseases affecting V. vinifera together with their causal agents. The aim of this work is to bring a comprehensive review of the infection strategies deployed by significant types of pathogens while understanding the host response in both resistance and susceptibility scenarios. New approaches being used to uncover grapevine status during biotic stresses and scientific-based procedures needed to control plant diseases and crop protection are also addressed. PMID:27066032

  17. Glucosylation of Smoke-Derived Volatiles in Grapevine (Vitis vinifera) is Catalyzed by a Promiscuous Resveratrol/Guaiacol Glucosyltransferase.

    PubMed

    Härtl, Katja; Huang, Fong-Chin; Giri, Ashok P; Franz-Oberdorf, Katrin; Frotscher, Johanna; Shao, Yang; Hoffmann, Thomas; Schwab, Wilfried

    2017-07-19

    Vinification of grapes (Vitis vinifera) exposed to forest fire smoke can yield unpalatable wine due to the presence of taint compounds from smoke and the release of smoke derived volatiles from their respective glycosides during the fermentation process or in-mouth during consumption. To identify glycosyltransferases (GTs) involved in the formation of glycosidically bound smoke-derived volatiles we performed gene expression analysis of candidate GTs in different grapevine tissues. Second, substrates derived from bushfire smoke or naturally occurring in grapes were screened with the candidate recombinant GTs. A resveratrol GT (UGT72B27) gene, highly expressed in grapevine leaves and berries was identified to be responsible for the production of the phenolic glucosides. UGT72B27 converted the stilbene trans-resveratrol mainly to the 3-O-glucoside. Kinetic analyses yielded specificity constants (k cat /K M ) of 114, 17, 9, 8, and 2 mM -1 s -1 for guaiacol, trans-resveratrol, syringol, methylsyringol, and methylguaiacol, respectively. This knowledge will help to design strategies for managing the risk of producing smoke-affected wines.

  18. Development of a 3D seed morphological tool for grapevine variety identification, and its comparison with SSR analysis.

    PubMed

    Karasik, Avshalom; Rahimi, Oshrit; David, Michal; Weiss, Ehud; Drori, Elyashiv

    2018-04-25

    Grapevine (Vitis vinifera L.) is one of the classical fruits of the Old World. Among the thousands of domesticated grapevine varieties and variable wild sylvestris populations, the range of variation in pip morphology is very wide. In this study we scanned representative samples of grape pip populations, in an attempt to probe the possibility of using the 3D tool for grape variety identification. The scanning was followed by mathematical and statistical analysis using innovative algorithms from the field of computer sciences. Using selected Fourier coefficients, a very clear separation was obtained between most of the varieties, with only very few overlaps. These results show that this method enables the separation between different Vitis vinifera varieties. Interestingly, when using the 3D approach to analyze couples of varieties, considered synonyms by the standard 22 SSR analysis approach, we found that the varieties in two of the considered synonym couples were clearly separated by the morphological analysis. This work, therefore, suggests a new systematic tool for high resolution variety discrimination.

  19. Phenoliner: A New Field Phenotyping Platform for Grapevine Research

    PubMed Central

    Kicherer, Anna; Herzog, Katja; Bendel, Nele; Klück, Hans-Christian; Backhaus, Andreas; Wieland, Markus; Klingbeil, Lasse; Läbe, Thomas; Hohl, Christian; Petry, Willi; Kuhlmann, Heiner; Seiffert, Udo; Töpfer, Reinhard

    2017-01-01

    In grapevine research the acquisition of phenotypic data is largely restricted to the field due to its perennial nature and size. The methodologies used to assess morphological traits and phenology are mainly limited to visual scoring. Some measurements for biotic and abiotic stress, as well as for quality assessments, are done by invasive measures. The new evolving sensor technologies provide the opportunity to perform non-destructive evaluations of phenotypic traits using different field phenotyping platforms. One of the biggest technical challenges for field phenotyping of grapevines are the varying light conditions and the background. In the present study the Phenoliner is presented, which represents a novel type of a robust field phenotyping platform. The vehicle is based on a grape harvester following the concept of a moveable tunnel. The tunnel it is equipped with different sensor systems (RGB and NIR camera system, hyperspectral camera, RTK-GPS, orientation sensor) and an artificial broadband light source. It is independent from external light conditions and in combination with artificial background, the Phenoliner enables standardised acquisition of high-quality, geo-referenced sensor data. PMID:28708080

  20. Phenoliner: A New Field Phenotyping Platform for Grapevine Research.

    PubMed

    Kicherer, Anna; Herzog, Katja; Bendel, Nele; Klück, Hans-Christian; Backhaus, Andreas; Wieland, Markus; Rose, Johann Christian; Klingbeil, Lasse; Läbe, Thomas; Hohl, Christian; Petry, Willi; Kuhlmann, Heiner; Seiffert, Udo; Töpfer, Reinhard

    2017-07-14

    In grapevine research the acquisition of phenotypic data is largely restricted to the field due to its perennial nature and size. The methodologies used to assess morphological traits and phenology are mainly limited to visual scoring. Some measurements for biotic and abiotic stress, as well as for quality assessments, are done by invasive measures. The new evolving sensor technologies provide the opportunity to perform non-destructive evaluations of phenotypic traits using different field phenotyping platforms. One of the biggest technical challenges for field phenotyping of grapevines are the varying light conditions and the background. In the present study the Phenoliner is presented, which represents a novel type of a robust field phenotyping platform. The vehicle is based on a grape harvester following the concept of a moveable tunnel. The tunnel it is equipped with different sensor systems (RGB and NIR camera system, hyperspectral camera, RTK-GPS, orientation sensor) and an artificial broadband light source. It is independent from external light conditions and in combination with artificial background, the Phenoliner enables standardised acquisition of high-quality, geo-referenced sensor data.

  1. LAMP assay and rapid sample preparation method for on-site detection of flavescence dorée phytoplasma in grapevine

    PubMed Central

    Kogovšek, P; Hodgetts, J; Hall, J; Prezelj, N; Nikolić, P; Mehle, N; Lenarčič, R; Rotter, A; Dickinson, M; Boonham, N; Dermastia, M; Ravnikar, M

    2015-01-01

    In Europe the most devastating phytoplasma associated with grapevine yellows (GY) diseases is a quarantine pest, flavescence dorée (FDp), from the 16SrV taxonomic group. The on-site detection of FDp with an affordable device would contribute to faster and more efficient decisions on the control measures for FDp. Therefore, a real-time isothermal LAMP assay for detection of FDp was validated according to the EPPO standards and MIQE guidelines. The LAMP assay was shown to be specific and extremely sensitive, because it detected FDp in all leaf samples that were determined to be FDp infected using quantitative real-time PCR. The whole procedure of sample preparation and testing was designed and optimized for on-site detection and can be completed in one hour. The homogenization procedure of the grapevine samples (leaf vein, flower or berry) was optimized to allow direct testing of crude homogenates with the LAMP assay, without the need for DNA extraction, and was shown to be extremely sensitive. PMID:26146413

  2. Pollination: a key event controlling the expression of genes related to phytohormone biosynthesis during grapevine berry formation.

    PubMed

    Kühn, Nathalie; Arce-Johnson, Patricio

    2012-01-01

    Berry formation is the process of ovary conversion into a functional fruit, and is characterized by abrupt changes in the content of several phytohormones, associated with pollination and fertilization. Much effort has been made in order to improve our understanding of berry development, particularly from veraison to post-harvest time. However, the period of berry formation has been poorly investigated, despite its importance. Phytohormones are involved in the control of fruit formation; hence it is important to understand the regulation of their content at this stage. Grapevine is an excellent fleshy-fruit plant model since its fruits have particularities that differentiate them from those of commonly studied organisms. For instance, berries are prepared to cope with stress by producing several antioxidants and they are non-climacteric fruits. Also its genome is fully sequenced, which allows to identify genes involved in developmental processes. In grapevine, no link has been established between pollination and phytohormone biosynthesis, until recently. Here we highlight relevant findings regarding pollination effect on gene expression related to phytohormone biosynthesis, and present unpublished results showing how quickly this effect is achieved.

  3. Effects of contrasting rooting distribution patterns on plant transpiration along a precipitation gradient

    USDA-ARS?s Scientific Manuscript database

    Understanding and predicting ecosystem functioning in water limited ecosystems requires a thorough assessment of the role plant root systems. Widespread ecological phenomena such as shrub encroachment may drastically change root distribution in the soil profile affecting the uptake of water and nutr...

  4. Effect of soil water content on spatial distribution of root exudates and mucilage in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Holz, Maire; Zarebanadkouki, Mohsen; Kuzyakov, Yakov; Carminati, Andrea

    2016-04-01

    Water and nutrients are expected to become the major factors limiting food production. Plant roots employ various mechanisms to increase the access to these limited soil resources. Low molecular root exudates released into the rhizosphere increase nutrient availability, while mucilage improves water availability under low moisture conditions. However, studies on the spatial distribution and quantification of exudates in soil are scarce. Our aim was therefore to quantify and visualize root exudates and mucilage distribution around growing roots using neutron radiography and 14C imaging at different levels of water stress. Maize plants were grown in rhizotrons filled with a silty soil and were exposed to varying soil conditions, from optimal to dry. Mucilage distribution around the roots was estimated from the profiles of water content in the rhizosphere - note that mucilage increases the soil water content. The profiles of water content around different root types and root ages were measured with neutron radiography. Rhizosphere extension was approx. 0.7 mm and did not differ between wet and dry treatments. However, water content (i.e. mucilage concentration) in the rhizosphere of plants grown in dry soils was higher than for plants grown under optimal conditions. This effect was particularly pronounced near the tips of lateral roots. The higher water contents near the root are explained as the water retained by mucilage. 14C imaging of root after 14CO2 labeling of shoots (Pausch and Kuzyakov 2011) was used to estimate the distribution of all rhizodeposits. Two days after labelling, 14C distribution was measured using phosphor-imaging. To quantify 14C in the rhizosphere a calibration was carried out by adding given amounts of 14C-glucose to soil. Plants grown in wet soil transported a higher percentage of 14C to the roots (14Croot/14Cshoot), compared to plants grown under dry conditions (46 vs. 36 %). However, the percentage of 14C allocated from roots to rhizosphere (14Crhizosphere/14Croot) was double in plants grown under dry conditions (0.43 vs. 0.75 %). Plants grown in wet soils showed a faster root growth (1.4 cm d-1) compared to plants in dry soil (1 cm d-1). Compared to the results with neutron radiography, rhizosphere extension of 14C was generally higher and strongly depended on root type: it was 2 mm for main roots and 1 mm for lateral roots. This indicates that low molecular exudates diffuse further into the soil than mucilage. As for mucilage, concentration of 14C was higher in the rhizosphere of plants grown under dry conditions. This observation can be explained by: (a) higher allocation of 14C from roots to rhizosphere in dry soils, (b) a fast diffusion of exudates in wet soils, and (c) faster root growth in wet soils, which results in lower exudation per root length. In summary, the combination of neutron radiography and 14C imaging was successfully used to visualize and to quantify the distribution of mucilage and root exudates in the rhizosphere of plants grown in soil. The high concentration of root exudates in rhizosphere under dry conditions might be strategy of plants to increase their water and nutrient availability unfavorable conditions.

  5. Vertical Distribution of Pasteuria penetrans Parasitizing Meloidogyne incognita on Pittosporum tobira in Florida.

    PubMed

    Baidoo, Richard; Mengistu, Tesfamariam Mekete; Brito, Janete A; McSorley, Robert; Stamps, Robert H; Crow, William T

    2017-09-01

    Pasteuria penetrans is considered as the primary agent responsible for soil suppressiveness to root-knot nematodes widely distributed in many agricultural fields. A preliminary survey on a Pittosporum tobira field where the grower had experienced a continuous decline in productivity caused by Meloidogyne incognita showed that the nematode was infected with Pasteuria penetrans . For effective control of the nematode, the bacterium and the host must coexist in the same root zone. The vertical distribution of Pasteuria penetrans and its relationship with the nematode host in the soil was investigated to identify (i) the vertical distribution of P. penetrans endospores in an irrigated P. tobira field and (ii) the relationship among P. penetrans endospore density, M. incognita J2 population density, and host plant root distribution over time. Soil bioassays revealed that endospore density was greater in the upper 18 cm of the top soil compared with the underlying depths. A correlation analysis showed that the endospore density was positively related to the J2 population density and host plant root distribution. Thus, the vertical distribution of P. penetrans was largely dependent on its nematode host which in turn was determined by the distribution of the host plant roots. The Pasteuria was predominant mostly in the upper layers of the soil where their nematode host and the plant host roots are abundant, a factor which may be a critical consideration when using P. penetrans as a nematode biological control agent.

  6. Vertical Distribution of Pasteuria penetrans Parasitizing Meloidogyne incognita on Pittosporum tobira in Florida

    PubMed Central

    Baidoo, Richard; Mengistu, Tesfamariam Mekete; Brito, Janete A.; McSorley, Robert; Stamps, Robert H.; Crow, William T.

    2017-01-01

    Pasteuria penetrans is considered as the primary agent responsible for soil suppressiveness to root-knot nematodes widely distributed in many agricultural fields. A preliminary survey on a Pittosporum tobira field where the grower had experienced a continuous decline in productivity caused by Meloidogyne incognita showed that the nematode was infected with Pasteuria penetrans. For effective control of the nematode, the bacterium and the host must coexist in the same root zone. The vertical distribution of Pasteuria penetrans and its relationship with the nematode host in the soil was investigated to identify (i) the vertical distribution of P. penetrans endospores in an irrigated P. tobira field and (ii) the relationship among P. penetrans endospore density, M. incognita J2 population density, and host plant root distribution over time. Soil bioassays revealed that endospore density was greater in the upper 18 cm of the top soil compared with the underlying depths. A correlation analysis showed that the endospore density was positively related to the J2 population density and host plant root distribution. Thus, the vertical distribution of P. penetrans was largely dependent on its nematode host which in turn was determined by the distribution of the host plant roots. The Pasteuria was predominant mostly in the upper layers of the soil where their nematode host and the plant host roots are abundant, a factor which may be a critical consideration when using P. penetrans as a nematode biological control agent. PMID:29062154

  7. Measurement of Bremsstrahlung radiation for in vivo monitoring of 14C tracer distribution between fruit and roots of kiwifruit (Actinidia arguta) cuttings.

    PubMed

    Black, Marykate Z; Minchin, Peter E H; Gould, Nick; Patterson, Kevin J; Clearwater, Michael J

    2012-10-01

    In vivo measurements of (14)C tracer distribution have usually involved monitoring the β(-) particles produced as (14)C decays. These particles are only detectable over short distances, limiting the use of this technique to thin plant material. In the present experiments, X-ray detectors were used to monitor the Bremsstrahlung radiation emitted since β(-) particles were absorbed in plant tissues. Bremsstrahlung radiation is detectable through larger tissue depths. The aim of these experiments was to demonstrate the Bremsstrahlung method by monitoring in vivo tracer-labelled photosynthate partitioning in small kiwifruit (Actinidia arguta (Siebold & Zucc.) Planch. ex Miq.) plants in response to root pruning. A source shoot, consisting of four leaves, was pulse labelled with (14)CO(2). Detectors monitored import into a fruit and the root system, and export from a source leaf. Repeat pulse labelling enabled the comparison of pre- and post-treatment observations within an individual plant. Diurnal trends were observed in the distribution of tracer, with leaf export reduced at night. Tracer accumulated in the roots declined after approximately 48 h, which may have resulted from export of (14)C from the roots in carbon skeletons. Cutting off half the roots did not affect tracer distribution to the remaining half. Tracer distribution to the fruit was increased after root pruning, demonstrating the higher competitive strength of the fruit than the roots for carbohydrate supply. Increased partitioning to the fruit following root pruning has also been demonstrated in kiwifruit field trials.

  8. Simulations and field observations of root water uptake in plots with different soil water availability.

    NASA Astrophysics Data System (ADS)

    Cai, Gaochao; Vanderborght, Jan; Couvreur, Valentin; Javaux, Mathieu; Vereecken, Harry

    2015-04-01

    Root water uptake is a main process in the hydrological cycle and vital for water management in agronomy. In most models of root water uptake, the spatial and temporal soil water status and plant root distributions are required for water flow simulations. However, dynamic root growth and root distributions are not easy and time consuming to measure by normal approaches. Furthermore, root water uptake cannot be measured directly in the field. Therefore, it is necessary to incorporate monitoring data of soil water content and potential and root distributions within a modeling framework to explore the interaction between soil water availability and root water uptake. But, most models are lacking a physically based concept to describe water uptake from soil profiles with vertical variations in soil water availability. In this contribution, we present an experimental setup in which root development, soil water content and soil water potential are monitored non-invasively in two field plots with different soil texture and for three treatments with different soil water availability: natural rain, sheltered and irrigated treatment. Root development is monitored using 7-m long horizontally installed minirhizotubes at six depths with three replicates per treatment. The monitoring data are interpreted using a model that is a one-dimensional upscaled version of root water uptake model that describes flow in the coupled soil-root architecture considering water potential gradients in the system and hydraulic conductances of the soil and root system (Couvreur et al., 2012). This model approach links the total root water uptake to an effective soil water potential in the root zone. The local root water uptake is a function of the difference between the local soil water potential and effective root zone water potential so that compensatory uptake in heterogeneous soil water potential profiles is simulated. The root system conductance is derived from inverse modelling using measurements of soil water potentials, water contents, and root distributions. The results showed that this modelling approach reproduced soil water dynamics well in the different plots and treatments. Root water uptake reduced when the effective soil water potential decreased to around -70 to -100 kPa in the root zone. Couvreur, V., Vanderborght, J., and Javaux, M.: A simple three dimensional macroscopic root water uptake model based on the hydraulic architecture approach, Hydrol. Earth Syst. Sci., 16, 2957-2971, doi:10.5194/hess-16-2957-2012, 2012.

  9. Phenotypic and genomic survey on organic acid utilization profile of Pseudomonas mendocina strain S5.2, a vineyard soil isolate.

    PubMed

    Chong, Teik Min; Chen, Jian-Woon; See-Too, Wah-Seng; Yu, Choo-Yee; Ang, Geik-Yong; Lim, Yan Lue; Yin, Wai-Fong; Grandclément, Catherine; Faure, Denis; Dessaux, Yves; Chan, Kok-Gan

    2017-12-01

    Root exudates are chemical compounds that are released from living plant roots and provide significant energy, carbon, nitrogen and phosphorus sources for microbes inhabiting the rhizosphere. The exudates shape the microflora associated with the plant, as well as influences the plant health and productivity. Therefore, a better understanding of the trophic link that is established between the plant and the associated bacteria is necessary. In this study, a comprehensive survey on the utilization of grapevine and rootstock related organic acids were conducted on a vineyard soil isolate which is Pseudomonas mendocina strain S5.2. Phenotype microarray analysis has demonstrated that this strain can utilize several organic acids including lactic acid, succinic acid, malic acid, citric acid and fumaric acid as sole growth substrates. Complete genome analysis using single molecule real-time technology revealed that the genome consists of a 5,120,146 bp circular chromosome and a 252,328 bp megaplasmid. A series of genetic determinants associated with the carbon utilization signature of the strain were subsequently identified in the chromosome. Of note, the coexistence of genes encoding several iron-sulfur cluster independent isoenzymes in the genome indicated the importance of these enzymes in the events of iron deficiency. Synteny and comparative analysis have also unraveled the unique features of D-lactate dehydrogenase of strain S5.2 in the study. Collective information of this work has provided insights on the metabolic role of this strain in vineyard soil rhizosphere.

  10. Genome-wide analysis of the MADS-box gene family in polyploid cotton (Gossypium hirsutum) and in its diploid parental species (Gossypium arboreum and Gossypium raimondii).

    PubMed

    Nardeli, Sarah Muniz; Artico, Sinara; Aoyagi, Gustavo Mitsunori; de Moura, Stéfanie Menezes; da Franca Silva, Tatiane; Grossi-de-Sa, Maria Fatima; Romanel, Elisson; Alves-Ferreira, Marcio

    2018-06-01

    The MADS-box gene family encodes transcription factors that share a highly conserved domain known to bind to DNA. Members of this family control various processes of development in plants, from root formation to fruit ripening. In this work, a survey of diploid (Gossypium raimondii and Gossypium arboreum) and tetraploid (Gossypium hirsutum) cotton genomes found a total of 147, 133 and 207 MADS-box genes, respectively, distributed in the MIKC, Mα, Mβ, Mγ, and Mδ subclades. A comparative phylogenetic analysis among cotton species, Arabidopsis, poplar and grapevine MADS-box homologous genes allowed us to evaluate the evolution of each MADS-box lineage in cotton plants and identify sequences within well-established subfamilies. Chromosomal localization and phylogenetic analysis revealed that G. raimondii and G. arboreum showed a conserved evolution of the MIKC subclade and a distinct pattern of duplication events in the Mα, Mγ and Mδ subclades. Additionally, G. hirsutum showed a combination of its parental subgenomes followed by a distinct evolutionary history including gene gain and loss in each subclade. qPCR analysis revealed the expression patterns of putative homologs in the AP1, AP3, AGL6, SEP4, AGL15, AG, AGL17, TM8, SVP, SOC and TT16 subfamilies of G. hirsutum. The identification of putative cotton orthologs is discussed in the light of evolution and gene expression data from other plants. This analysis of the MADS-box genes in Gossypium species opens an avenue to understanding the origin and evolution of each gene subfamily within diploid and polyploid species and paves the way for functional studies in cotton species. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Development and Validation of a New Methodology to Assess the Vineyard Water Status by On-the-Go Near Infrared Spectroscopy

    PubMed Central

    Diago, Maria P.; Fernández-Novales, Juan; Gutiérrez, Salvador; Marañón, Miguel; Tardaguila, Javier

    2018-01-01

    Assessing water status and optimizing irrigation is of utmost importance in most winegrowing countries, as the grapevine vegetative growth, yield, and grape quality can be impaired under certain water stress situations. Conventional plant-based methods for water status monitoring are either destructive or time and labor demanding, therefore unsuited to detect the spatial variation of moisten content within a vineyard plot. In this context, this work aims at the development and comprehensive validation of a novel, non-destructive methodology to assess the vineyard water status distribution using on-the-go, contactless, near infrared (NIR) spectroscopy. Likewise, plant water status prediction models were built and intensely validated using the stem water potential (ψs) as gold standard. Predictive models were developed making use of a vast number of measurements, acquired on 15 dates with diverse environmental conditions, at two different spatial scales, on both sides of vertical shoot positioned canopies, over two consecutive seasons. Different cross-validation strategies were also tested and compared. Predictive models built from east-acquired spectra yielded the best performance indicators in both seasons, with determination coefficient of prediction (RP2) ranging from 0.68 to 0.85, and sensitivity (expressed as prediction root mean square error) between 0.131 and 0.190 MPa, regardless the spatial scale. These predictive models were implemented to map the spatial variability of the vineyard water status at two different dates, and provided useful, practical information to help delineating specific irrigation schedules. The performance and the large amount of data that this on-the-go spectral solution provides, facilitates the exploitation of this non-destructive technology to monitor and map the vineyard water status variability with high spatial and temporal resolution, in the context of precision and sustainable viticulture. PMID:29441086

  12. Development and Validation of a New Methodology to Assess the Vineyard Water Status by On-the-Go Near Infrared Spectroscopy.

    PubMed

    Diago, Maria P; Fernández-Novales, Juan; Gutiérrez, Salvador; Marañón, Miguel; Tardaguila, Javier

    2018-01-01

    Assessing water status and optimizing irrigation is of utmost importance in most winegrowing countries, as the grapevine vegetative growth, yield, and grape quality can be impaired under certain water stress situations. Conventional plant-based methods for water status monitoring are either destructive or time and labor demanding, therefore unsuited to detect the spatial variation of moisten content within a vineyard plot. In this context, this work aims at the development and comprehensive validation of a novel, non-destructive methodology to assess the vineyard water status distribution using on-the-go, contactless, near infrared (NIR) spectroscopy. Likewise, plant water status prediction models were built and intensely validated using the stem water potential (ψ s ) as gold standard. Predictive models were developed making use of a vast number of measurements, acquired on 15 dates with diverse environmental conditions, at two different spatial scales, on both sides of vertical shoot positioned canopies, over two consecutive seasons. Different cross-validation strategies were also tested and compared. Predictive models built from east-acquired spectra yielded the best performance indicators in both seasons, with determination coefficient of prediction ([Formula: see text]) ranging from 0.68 to 0.85, and sensitivity (expressed as prediction root mean square error) between 0.131 and 0.190 MPa, regardless the spatial scale. These predictive models were implemented to map the spatial variability of the vineyard water status at two different dates, and provided useful, practical information to help delineating specific irrigation schedules. The performance and the large amount of data that this on-the-go spectral solution provides, facilitates the exploitation of this non-destructive technology to monitor and map the vineyard water status variability with high spatial and temporal resolution, in the context of precision and sustainable viticulture.

  13. Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range

    USGS Publications Warehouse

    Roering, J.J.; Schmidt, K.M.; Stock, J.D.; Dietrich, W.E.; Montgomery, D.R.

    2003-01-01

    The influence of root reinforcement on shallow landsliding has been well established through mechanistic and empirical studies, yet few studies have examined how local vegetative patterns influence slope stability. Because root networks spread outward from trees, the species, size, and spacing of trees should influence the spatial distribution of root strength. We documented the distribution and characteristics of trees adjacent to 32 shallow landslides that occurred during 1996 in the Oregon Coast Range. Although broadly classified as a conifer-dominated forest, we observed sparse coniferous and abundant hardwood trees near landslide scars in an industrial forest (Mapleton) that experienced widespread burning in the 19th century. In industrial forests that were burned, selectively harvested, and not replanted (Elliott State Forest), swordfern was ubiquitous near landslides, and we observed similar numbers of live conifer and hardwood trees proximal to landslide scarps. We demonstrate that root strength quantified in landslide scarps and soil pits correlates with a geometry-based index of root network contribution derived from mapping the size, species, condition, and spacing of local trees, indicating that root strength can be predicted by mapping the distribution and characteristics of trees on potentially unstable slopes. In our study sites, landslides tend to occur in areas of reduced root strength, suggesting that to make site-specific predictions of landslide occurrence slope stability analyses must account for the diversity and distribution of vegetation in potentially unstable terrain.

  14. From experiments to simulations: tracing Na+ distribution around roots under different transpiration rates and salinity levels

    NASA Astrophysics Data System (ADS)

    Perelman, Adi; Jorda, Helena; Vanderborght, Jan; Pohlmeier, Andreas; Lazarovitch, Naftali

    2017-04-01

    When salinity increases beyond a certain threshold it will result in reduced crop yield at a fixed rate, according to Maas and Hoffman model (1976). Thus, there is a great importance of predicting salinization and its impact on crops. Current models do not consider the impact of environmental conditions on plants salt tolerance, even though these conditions are affecting plant water uptake and therefore salt accumulation around the roots. Different factors, such as transpiration rates, can influence the plant sensitivity to salinity by influencing salt concentrations around the roots. Better parametrization of a model can help improving predicting the real effects of salinity on crop growth and yield. The aim of this research is to study Na+ distribution around roots at different scales using different non-invasive methods, and study how this distribution is being affected by transpiration rate and plant water uptake. Results from tomato plants growing on Rhizoslides (capillary paper growth system), show that Na+ concentration is higher at the root- substrate interface, compared with the bulk. Also, Na+ accumulation around the roots decreased under low transpiration rate, which is supporting our hypothesis. Additionally, Rhizoslides enable to study roots' growth rate and architecture under different salinity levels. Root system architecture was retrieved from photos taken during the experiment and enabled us to incorporate real root systems into a simulation. To observe the correlation of root system architectures and Na+ distribution in three dimensions, we used magnetic resonance imaging (MRI). MRI provides fine resolution of Na+ accumulation around a single root without disturbing the root system. With time, Na+ was accumulating only where roots were found in the soil and later on around specific roots. These data are being used for model calibration, which is expected to predict root water uptake in saline soils for different climatic conditions and different soil water availabilities.

  15. First description of Grapevine leafroll-associated virus 5 in Argentina and partial genome sequence.

    PubMed

    Gómez Talquenca, Sebastián; Muñoz, Claudio; Grau, Oscar; Gracia, Olga

    2009-02-01

    An accession of Vitis vinifera cv. Red Globe from Argentina, was found to be infected with Grapevine leafroll-associated virus-5 by ELISA. It was partially sequenced, and three ORFs, corresponding to HSP70h, HSP90h, and CP, were found. This isolate shares a high aminoacid identity with the previously reported sequence of the virus, and identities between 80% and 90% with previously reported GLRaV-9 and GLRaV-4 isolates. The analysis of the sequence supports the clustering together with GLRaV-4 and GLRV-9 inside the Ampelovirus genus.

  16. Grapevine canopy reflectance and yield

    NASA Technical Reports Server (NTRS)

    Minden, K. A.; Philipson, W. R.

    1982-01-01

    Field spectroradiometric and airborne multispectral scanner data were applied in a study of Concord grapevines. Spectroradiometric measurements of 18 experimental vines were collected on three dates during one growing season. Spectral reflectance, determined at 30 intervals from 0.4 to 1.1 microns, was correlated with vine yield, pruning weight, clusters/vine, and nitrogen input. One date of airborne multispectral scanner data (11 channels) was collected over commercial vineyards, and the average radiance values for eight vineyard sections were correlated with the corresponding average yields. Although some correlations were significant, they were inadequate for developing a reliable yield prediction model.

  17. Bio-engineering traits of Pinus radiata D.Don

    NASA Astrophysics Data System (ADS)

    Giadrossich, Filippo; Marden, Michael; Marrosu, Roberto; Schwarz, Massimiliano; Phillips, Chris John; Cohen, Denis; Niedda, Marcello

    2017-04-01

    Pinus radiata is widely cultivated in New Zealand. Due to steep slopes and intense rainfall, the silviculture of Pinus radiata forests is important to control erosion and slope stability. Bio-engineering traits such as root distribution and root tensile strength are fundamental to understand the effectiveness of Pinus radiata. This information is needed to use the state of the art root reinforcement model (the Root Bundle Model) and the physically-based slope stability model SOSlope. Yet, little is known about root distribution and tensile strength for this specie. We measured soil moisture and carried out 30 field tensile tests on roots of Pinus radiata. We also measured root distribution data from 5 plants, digging arc of circles 0.6 radian around the trees in four opposite directions. We fully excavated the root system of two trees. Using the Root Bundle Model, results of our measurements allow estimation of root reinforcement. With the slope stability model SOSlope, information on the intensity and frequency of harvesting and on the development of weak zones that can be supported by a stand of Pinus radiata in relation to slope stability can be calculated. An added value is that the collected data allow us to make inferences between number and sizes of roots, and growth direction.

  18. Reductions in maize root-tip elongation by salt and osmotic stress do not correlate with apoplastic O2*- levels.

    PubMed

    Bustos, Dolores; Lascano, Ramiro; Villasuso, Ana Laura; Machado, Estela; Senn, María Eugenia; Córdoba, Alicia; Taleisnik, Edith

    2008-10-01

    Experimental evidence in the literature suggests that O(2)(*-) produced in the elongation zone of roots and leaves by plasma membrane NADPH oxidase activity is required for growth. This study explores whether growth changes along the root tip induced by hyperosmotic treatments in Zea mays are associated with the distribution of apoplastic O(2)(*-). Stress treatments were imposed using 150 mm NaCl or 300 mM sorbitol. Root elongation rates and the spatial distribution of growth rates in the root tip were measured. Apoplastic O(2)(*-) was determined using nitro blue tetrazolium, and H(2)O(2) was determined using 2', 7'-dichlorofluorescin. In non-stressed plants, the distribution of accelerating growth and highest O(2)(*-) levels coincided along the root tip. Salt and osmotic stress of the same intensity had similar inhibitory effects on root elongation, but O(2)(*-) levels increased in sorbitol-treated roots and decreased in NaCl-treated roots. The lack of association between apoplastic O(2)(*-) levels and root growth inhibition under hyper-osmotic stress leads us to hypothesize that under those conditions the role of apoplastic O(2)(*-) may be to participate in signalling processes, that convey information on the nature of the substrate that the growing root is exploring.

  19. Changes in fine-root production, phenology and spatial distribution in response to N application in irrigated sweet cherry trees.

    PubMed

    Artacho, Pamela; Bonomelli, Claudia

    2016-05-01

    Factors regulating fine-root growth are poorly understood, particularly in fruit tree species. In this context, the effects of N addition on the temporal and spatial distribution of fine-root growth and on the fine-root turnover were assessed in irrigated sweet cherry trees. The influence of other exogenous and endogenous factors was also examined. The rhizotron technique was used to measure the length-based fine-root growth in trees fertilized at two N rates (0 and 60 kg ha(-1)), and the above-ground growth, leaf net assimilation, and air and soil variables were simultaneously monitored. N fertilization exerted a basal effect throughout the season, changing the magnitude, temporal patterns and spatial distribution of fine-root production and mortality. Specifically, N addition enhanced the total fine-root production by increasing rates and extending the production period. On average, N-fertilized trees had a length-based production that was 110-180% higher than in control trees, depending on growing season. Mortality was proportional to production, but turnover rates were inconsistently affected. Root production and mortality was homogeneously distributed in the soil profile of N-fertilized trees while control trees had 70-80% of the total fine-root production and mortality concentrated below 50 cm depth. Root mortality rates were associated with soil temperature and water content. In contrast, root production rates were primarily under endogenous control, specifically through source-sink relationships, which in turn were affected by N supply through changes in leaf photosynthetic level. Therefore, exogenous and endogenous factors interacted to control the fine-root dynamics of irrigated sweet cherry trees. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Changes in fine-root production, phenology and spatial distribution in response to N application in irrigated sweet cherry trees

    PubMed Central

    Artacho, Pamela; Bonomelli, Claudia

    2016-01-01

    Factors regulating fine-root growth are poorly understood, particularly in fruit tree species. In this context, the effects of N addition on the temporal and spatial distribution of fine-root growth and on the fine-root turnover were assessed in irrigated sweet cherry trees. The influence of other exogenous and endogenous factors was also examined. The rhizotron technique was used to measure the length-based fine-root growth in trees fertilized at two N rates (0 and 60 kg ha−1), and the above-ground growth, leaf net assimilation, and air and soil variables were simultaneously monitored. N fertilization exerted a basal effect throughout the season, changing the magnitude, temporal patterns and spatial distribution of fine-root production and mortality. Specifically, N addition enhanced the total fine-root production by increasing rates and extending the production period. On average, N-fertilized trees had a length-based production that was 110–180% higher than in control trees, depending on growing season. Mortality was proportional to production, but turnover rates were inconsistently affected. Root production and mortality was homogeneously distributed in the soil profile of N-fertilized trees while control trees had 70–80% of the total fine-root production and mortality concentrated below 50 cm depth. Root mortality rates were associated with soil temperature and water content. In contrast, root production rates were primarily under endogenous control, specifically through source–sink relationships, which in turn were affected by N supply through changes in leaf photosynthetic level. Therefore, exogenous and endogenous factors interacted to control the fine-root dynamics of irrigated sweet cherry trees. PMID:26888890

  1. The effect of spaceflight on the gravity-sensing auxin gradient of roots: GFP reporter gene microscopy on orbit

    PubMed Central

    Ferl, Robert J; Paul, Anna-Lisa

    2016-01-01

    Our primary aim was to determine whether gravity has a direct role in establishing the auxin-mediated gravity-sensing system in primary roots. Major plant architectures have long been thought to be guided by gravity, including the directional growth of the primary root via auxin gradients that are then disturbed when roots deviate from the vertical as a gravity sensor. However, experiments on the International Space Station (ISS) now allow physical clarity with regard to any assumptions regarding the role of gravity in establishing fundamental root auxin distributions. We examined the spaceflight green fluorescent protein (GFP)-reporter gene expression in roots of transgenic lines of Arabidopsis thaliana: pDR5r::GFP, pTAA1::TAA1–GFP, pSCR::SCR–GFP to monitor auxin and pARR5::GFP to monitor cytokinin. Plants on the ISS were imaged live with the Light Microscopy Module (LMM), and compared with control plants imaged on the ground. Preserved spaceflight and ground control plants were examined post flight with confocal microscopy. Plants on orbit, growing in the absence of any physical reference to the terrestrial gravity vector, displayed typically “vertical” distribution of auxin in the primary root. This confirms that the establishment of the auxin-gradient system, the primary guide for gravity signaling in the root, is gravity independent. The cytokinin distribution in the root tip differs between spaceflight and the ground controls, suggesting spaceflight-induced features of root growth may be cytokinin related. The distribution of auxin in the gravity-sensing portion of the root is not dependent on gravity. Spaceflight appears benign to auxin and its role in the development of the primary root tip, whereas spaceflight may influence cytokinin-associated processes. PMID:28725721

  2. Effects of the duration and inorganic nitrogen composition of a nutrient-rich patch on soil exploration by the roots of Lolium perenne in a heterogeneous environment.

    PubMed

    Nakamura, Ryoji; Kachi, N; Suzuki, J-I

    2010-05-01

    We investigated the growth of and soil exploration by Lolium perenne under a heterogeneous environment before its roots reached a nutrient-rich patch. Temporal changes in the distribution of inorganic nitrogen, i.e., NO(3)(-)-N and NH(4)(+)-N, in the heterogeneous environment during the experimental period were also examined. The results showed that roots randomly explored soil, irrespective of the patchy distribution of inorganic nitrogen and differences in the chemical composition of inorganic nitrogen distribution between heterogeneous and homogeneous environments. We have also elucidated the potential effects of patch duration and inorganic nitrogen distribution on soil exploration by roots and thus on plant growth.

  3. Comparison of MRI techniques and modelling with R-SWMS for determining solute distribution patterns and root water uptake of a white lupine plant (Lupinus Albus L.).

    NASA Astrophysics Data System (ADS)

    Koch, Axelle; Schröder, Natalie; Pohlmeier, Andreas; Garré, Sarah; Vanderborght, Jan; Javaux, Mathieu

    2017-04-01

    Measuring water extraction by plant would allow us to better understand root water uptake processes and how soil and plant properties affect them. Yet, direct measurement of root water uptake is still challenging and determining its distribution requires coupling experimentation and modelling. In this study, we investigated how the 3D monitoring of a tracer movement in a sand container with a lupine plant could inform us about root water uptake process. A sand column (10 cm height, 5 cm inner diameter) planted with an 18-day-old white lupine was subject to a tracer experiment with a chemically inert tracer (1 mmol/L Gd-DTPA2-) applied for 6 days. Then the tracer and water fluxes were stopped. The plume was monitored in 3-D for 7 days by Magnetic Resonance Imaging (Haber-Pohlmeier et al, unp). In addition the breakthrough curve at the outlet was also measured. We used a biophysical 3-D soil-plant model: R-SWMS (Javaux et al, 2008) to extract information from this experiment. First, we ran a virtual experiment to check the assumption that Gd concentration increase around roots is proportional to the extracted soil water during the same period. We also investigated whether this type of experiment helps discriminate different root hydraulic properties with a sensitivity analysis. Then, we compared the experimental and simulated Gd concentration patterns. A preliminary (qualitative) assessment showed that measured Gd distribution patterns were better represented by the model at day 7, where the main driver of the concentration distribution was root and not soil heterogeneity (which is not taken into account in the model). The main spatial and temporal features of the transport where adequately reproduced by the model in particular during the last day. The distribution of the tracer was shown to be sensitive to the root hydraulic properties. To conclude, information about root water uptake distributions and so about root hydraulic properties could be deduced from Gd concentration maps. Keywords: R-SWMS; Modelling; MRI; Root Water Uptake; Gadolinium

  4. Technical note: Application of geophysical tools for tree root studies in forest ecosystems in complex soils

    NASA Astrophysics Data System (ADS)

    Rodríguez-Robles, Ulises; Arredondo, Tulio; Huber-Sannwald, Elisabeth; Alfredo Ramos-Leal, José; Yépez, Enrico A.

    2017-11-01

    While semiarid forests frequently colonize rocky substrates, knowledge is scarce on how roots garner resources in these extreme habitats. The Sierra San Miguelito Volcanic Complex in central Mexico exhibits shallow soils and impermeable rhyolitic-rock outcrops, which impede water movement and root placement beyond the soil matrix. However, rock fractures, exfoliated rocks and soil pockets potentially permit downward water percolation and root growth. With ground-penetrating radar (GPR) and electrical resistivity tomography (ERT), two geophysical methods advocated by Jayawickreme et al. (2014) to advance root ecology, we advanced in the method development studying root and water distribution in shallow rocky soils and rock fractures in a semiarid forest. We calibrated geophysical images with in situ root measurements, and then extrapolated root distribution over larger areas. Using GPR shielded antennas, we identified both fine and coarse pine and oak roots from 0.6 to 7.5 cm diameter at different depths into either soil or rock fractures. We also detected, trees anchoring their trunks using coarse roots underneath rock outcroppings. With ERT, we tracked monthly changes in humidity at the soil-bedrock interface, which clearly explained spatial root distribution of both tree species. Geophysical methods have enormous potential in elucidating root ecology. More interdisciplinary research could advance our understanding in belowground ecological niche functions and their role in forest ecohydrology and productivity.

  5. Root distributions of Eurotia lanata in association with two species of agropyron on disturbed soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonham, C.D.; Mack, S.E.

    1990-12-01

    Root distributions of Eurotia lanata in association with Agropyron inerme and A. smithii on soils that were mechanically disturbed were studied. Root diagrams and measurements were made for plants in competitive pairs from soils representing two depths of soil disturbance (30 cm and 1 m) and control areas. Soil disturbance was observed to reduce significantly depth of root penetration and root concentration of E. lanata. Root depth, maximum lateral spread of roots, and zone of root concentration of E. lanata plants were greatest in pure stand pairs. Eurotia lanata associated with A. inerme had the smallest root concentration. The areamore » occupied by E. lanata roots was 59% greater in pure stands than when found adjacent to A. inerme. Agropyron inerme apparently used more available soil water in the top 20 cm of soil than did the shrub and resulted in reduced root growth for E. lanata. On the other hand, the asexual reproductive strategy of A. smithii, where roots and rhizomes were distributed both vertically and laterally, enables the grass species to minimize detrimental effects of its association with E. lanata. The results have important implications for selection of species combinations to reseed disturbed soils in semiarid or arid environments. In particular, attention should be given to use of species that have differing specializations as indicated by their growth and morphology.« less

  6. Localization of ascorbic acid, ascorbic acid oxidase, and glutathione in roots of Cucurbita maxima L.

    PubMed

    Liso, Rosalia; De Tullio, Mario C; Ciraci, Samantha; Balestrini, Raffaella; La Rocca, Nicoletta; Bruno, Leonardo; Chiappetta, Adriana; Bitonti, Maria Beatrice; Bonfante, Paola; Arrigoni, Oreste

    2004-12-01

    To understand the function of ascorbic acid (ASC) in root development, the distribution of ASC, ASC oxidase, and glutathione (GSH) were investigated in cells and tissues of the root apex of Cucubita maxima. ASC was regularly distributed in the cytosol of almost all root cells, with the exception of quiescent centre (QC) cells. ASC also occurred at the surface of the nuclear membrane and correspondingly in the nucleoli. No ASC could be observed in vacuoles. ASC oxidase was detected by immunolocalization mainly in cell walls and vacuoles. This enzyme was particularly abundant in the QC and in differentiating vascular tissues and was absent in lateral root primordia. Administration of the ASC precursor L-galactono-gamma-lactone markedly increased ASC content in all root cells, including the QC. Root treatment with the ASC oxidized product, dehydroascorbic acid (DHA), also increased ASC content, but caused ASC accumulation only in peripheral tissues, where DHA was apparently reduced at the expense of GSH. The different pattern of distribution of ASC in different tissues and cell compartments reflects its possible role in cell metabolism and root morphogenesis.

  7. Distribution of expansins in graviresponding maize roots

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    To test if expansins, wall loosening proteins that disrupt binding between microfibrils and cell wall matrix, participate in the differential elongation of graviresponding roots, Zea mays L. cv. Merit roots were gravistimulated and used for immunolocalization with anti-expansin. Western blots showed cross-reaction with two proteins of maize, one of the same mass as cucumber expansin (29 kDa), the second slightly larger (32 kDa). Maize roots contained mainly the larger protein, but both were found in coleoptiles. The expansin distribution in cucumber roots and hypocotyls was similar to the distribution in maize. Roots showed stronger expansin signals on the expanding convex side than the concave flank as early as 30 min after gravistimulation. Treatment with brefeldin A, a vesicle transport inhibitor, or the auxin transport inhibitor, naphthylphthalamic acid, showed delayed graviresponse and the appearance of differential staining. Our results indicate that expansins may be transported and secreted to cell walls via vesicles and function in wall expansion.

  8. Seasonal abundance and spatio-temporal distribution of dominant xylem fluid-feeding hemiptera in vineyards of central Texas and surrounding habitats.

    PubMed

    Lauzière, Isabelle; Sheather, Simon; Mitchell, Forrest

    2008-08-01

    A survey of xylem fluid-feeding insects (Hemiptera) exhibiting potential for transmission of Xylella fastidiosa, the bacterium causing Pierce's disease of grapevine, was conducted from 2004 to 2006 in the Hill Country grape growing region of central Texas. Nineteen insect species were collected from yellow sticky traps. Among these, two leafhoppers and one spittlebug comprised 94.57% of the xylem specialists caught in this region. Homalodisca vitripennis (Germar), Graphocephala versuta (Say), and Clastoptera xanthocephala Germar trap catches varied significantly over time, with greatest counts usually recorded between May or June and August and among localities. A comparison of insect counts from traps placed inside and outside vineyards indicated that G. versuta is always more likely captured on the vegetation adjacent to the vineyard. C. xanthocephala was caught inside the vineyard during the summer. Between October and December, the natural habitat offers more suitable host plants, and insects were absent from the vineyards after the first freezes. H. vitripennis was caught in higher numbers inside the vineyards throughout the grape vegetative season. However, insects were also caught in the habitat near the affected crop throughout the year, and residual populations overwintering near vineyards were also recorded. This study shed new light on the fauna of xylem fluid-feeding insects of Texas. These results also provide critical information to vineyard managers for timely applications of insecticides before insect feeding and vectoring to susceptible grapevines.

  9. Identifying the optimal spatially and temporally invariant root distribution for a semiarid environment

    NASA Astrophysics Data System (ADS)

    Sivandran, Gajan; Bras, Rafael L.

    2012-12-01

    In semiarid regions, the rooting strategies employed by vegetation can be critical to its survival. Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. Vegetation roots have strong control over this partitioning, and assuming a static root profile, predetermine the manner in which this partitioning is undertaken.A coupled, dynamic vegetation and hydrologic model, tRIBS + VEGGIE, was used to explore the role of vertical root distribution on hydrologic fluxes. Point-scale simulations were carried out using two spatially and temporally invariant rooting schemes: uniform: a one-parameter model and logistic: a two-parameter model. The simulations were forced with a stochastic climate generator calibrated to weather stations and rain gauges in the semiarid Walnut Gulch Experimental Watershed (WGEW) in Arizona. A series of simulations were undertaken exploring the parameter space of both rooting schemes and the optimal root distribution for the simulation, which was defined as the root distribution with the maximum mean transpiration over a 100-yr period, and this was identified. This optimal root profile was determined for five generic soil textures and two plant-functional types (PFTs) to illustrate the role of soil texture on the partitioning of moisture at the land surface. The simulation results illustrate the strong control soil texture has on the partitioning of rainfall and consequently the depth of the optimal rooting profile. High-conductivity soils resulted in the deepest optimal rooting profile with land surface moisture fluxes dominated by transpiration. As we move toward the lower conductivity end of the soil spectrum, a shallowing of the optimal rooting profile is observed and evaporation gradually becomes the dominate flux from the land surface. This study offers a methodology through which local plant, soil, and climate can be accounted for in the parameterization of rooting profiles in semiarid regions.

  10. Vertical and horizontal root distribution of mature aspen clones: mechanisms for resource acquisition

    NASA Astrophysics Data System (ADS)

    Landhäusser, S. M.; Snedden, J.; Silins, U.; Devito, K. J.

    2012-04-01

    Spatial root distribution, root morphology, and intra- and inter-clonal connections of mature boreal trembling aspen clones (Populus tremuloides Michx.) were explored to shed light on the functional relationships between vertical and horizontal distribution of roots and the variation in soil water availability along hill slopes. Root systems of mature aspen were hydraulically excavated in large plots (6 m wide and 12 m long) and to a depth of 30 cm. Most aspen roots were located in the upper 20 cm of the soil and fine and coarse root occupancy was highest in the lower slope positions and lowest towards the upper hill slope position likely because of soil moisture availability. Observation of the root system distribution along the hill slope correlated well with the observation of greater leaf area carried by trees growing at the lower portion of the hill slope. Interestingly, trees growing at the bottom of the slope required also less sapwood area to support the same amount of leaf area of trees growing at the top of a slope. These observations appear to be closely related to soil moisture availability and with that greater productivity at the bottom of the slope. However, trees growing on the upper slope tended to have long lateral roots extending downslope, which suggests long distance water transport through these lateral feeder roots. Genetic analysis indicated that both intra- and inter-clonal root connections occur in aspen, which can play a role in the sharing of resources along moisture gradients. Root systems of boreal aspen growing on upper slope positions exhibited a combination of three attributes (1) asymmetric lateral root systems, that are skewed downslope, (2) deeper taproots, and (3) intra and inter-clonal root connections, which can all be considered adaptive strategies to avoid drought stress in upper slope positions.

  11. Tillage and Water Deficit Stress Effects on Corn (Zea mays, L.) Root Distribution

    USDA-ARS?s Scientific Manuscript database

    One goal of soil management is to provide optimum conditions for root growth. Corn root distributions were measured in 2004 from a crop rotation – tillage experiment that was started in 2000. Corn was grown either following corn or following sunflower with either no till or deep chisel tillage. Wate...

  12. SEASONAL PATTERNS OF FINE ROOT PRODUCTION AND TURNOVER IN PONDEROSA PINE STANDS OF DIFFERENT AGES

    EPA Science Inventory

    Root minirhizotron tubes were installed in two ponderosa pine (Pinus ponderosa Laws.) stands around three different tree age classes (16, 45, and > 250 yr old) to examine root spatial distribution in relation to canopy size and tree distribution, and to determine if rates of fine...

  13. The unseen iceberg: Plant roots in arctic tundra

    USGS Publications Warehouse

    Iverson, Colleen M.; Sloan, Victoria L.; Sullivan, Patrick F.; Euskirchen, E.S.; McGuire, A. David; Norby, Richard J.; Walker, Anthony P.; Warren, Jeffrey M.; Wullschleger, Stan D.

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits – including distribution, chemistry, anatomy and resource partitioning – play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.

  14. Micro-PIXE studies of elemental distribution in Cd-accumulating Brassica juncea L.

    NASA Astrophysics Data System (ADS)

    Schneider, Thorsten; Haag-Kerwer, Angela; Maetz, Mischa; Niecke, Manfred; Povh, Bogdan; Rausch, Thomas; Schüßler, Arthur

    1999-10-01

    Brassica juncea L. is a high biomass producing crop plant, being able to accumulate Cd and other heavy metals in their roots and shoots. It is a good candidate for efficient phytoextraction of heavy metals - such as Cd - from polluted soils. PIXE and STIM analyses were applied to investigate Cd-uptake in roots and the resulting effects on the elemental distribution of Cd stressed plants. The axial distribution of trace elements as a function of distance from the root tip as well as the radial distribution within cross-sections were analysed. The results are compared with the elemental distribution in control plants.

  15. Simulating vegetation controls on hurricane-induced shallow landslides with a distributed ecohydrological model

    Treesearch

    Taehee Hwang; Lawrence E. Band; T. C. Hales; Chelcy F. Miniat; James M. Vose; Paul V. Bolstad; Brian Miles; Katie Price

    2015-01-01

    The spatial distribution of shallow landslides in steep forested mountains is strongly controlled by aboveground and belowground biomass, including the distribution of root cohesion. While remote sensing of aboveground canopy properties is relatively advanced, estimating the spatial distribution of root cohesion at the forest landscape scale remains challenging. We...

  16. An in situ approach to detect tree root ecology: linking ground-penetrating radar imaging to isotope-derived water acquisition zones

    PubMed Central

    Isaac, Marney E; Anglaaere, Luke C N

    2013-01-01

    Tree root distribution and activity are determinants of belowground competition. However, studying root response to environmental and management conditions remains logistically challenging. Methodologically, nondestructive in situ tree root ecology analysis has lagged. In this study, we tested a nondestructive approach to determine tree coarse root architecture and function of a perennial tree crop, Theobroma cacao L., at two edaphically contrasting sites (sandstone and phyllite–granite derived soils) in Ghana, West Africa. We detected coarse root vertical distribution using ground-penetrating radar and root activity via soil water acquisition using isotopic matching of δ18O plant and soil signatures. Coarse roots were detected to a depth of 50 cm, however, intraspecifc coarse root vertical distribution was modified by edaphic conditions. Soil δ18O isotopic signature declined with depth, providing conditions for plant–soil δ18O isotopic matching. This pattern held only under sandstone conditions where water acquisition zones were identifiably narrow in the 10–20 cm depth but broader under phyllite–granite conditions, presumably due to resource patchiness. Detected coarse root count by depth and measured fine root density were strongly correlated as were detected coarse root count and identified water acquisition zones, thus validating root detection capability of ground-penetrating radar, but exclusively on sandstone soils. This approach was able to characterize trends between intraspecific root architecture and edaphic-dependent resource availability, however, limited by site conditions. This study successfully demonstrates a new approach for in situ root studies that moves beyond invasive point sampling to nondestructive detection of root architecture and function. We discuss the transfer of such an approach to answer root ecology questions in various tree-based landscapes. PMID:23762519

  17. A Grapevine TTG2-Like WRKY Transcription Factor Is Involved in Regulating Vacuolar Transport and Flavonoid Biosynthesis.

    PubMed

    Amato, Alessandra; Cavallini, Erika; Zenoni, Sara; Finezzo, Laura; Begheldo, Maura; Ruperti, Benedetto; Tornielli, Giovanni Battista

    2016-01-01

    A small set of TTG2-like homolog proteins from different species belonging to the WRKY family of transcription factors were shown to share a similar mechanism of action and to control partially conserved biochemical/developmental processes in their native species. In particular, by activating P-ATPases residing on the tonoplast, PH3 from Petunia hybrida promotes vacuolar acidification in petal epidermal cells whereas TTG2 from Arabidopsis thaliana enables the accumulation of proanthocyanidins in the seed coat. In this work we functionally characterized VvWRKY26 identified as the closest grapevine homolog of PhPH3 and AtTTG2 . When constitutively expressed in petunia ph3 mutant, VvWRKY26 can fulfill the PH3 function in the regulation of vacuolar pH and restores the wild type pigmentation phenotype. By a global correlation analysis of gene expression and by transient over-expression in Vitis vinifera , we showed transcriptomic relationships of VvWRKY26 with many genes related to vacuolar acidification and transport in grapevine. Moreover, our results indicate an involvement in flavonoid pathway possibly restricted to the control of proanthocyanidin biosynthesis that is consistent with its expression pattern in grape berry tissues. Overall, the results show that, in addition to regulative mechanisms and biological roles shared with TTG2-like orthologs, VvWRKY26 can play roles in fleshy fruit development that have not been previously reported in studies from dry fruit species. This study paves the way toward the comprehension of the regulatory network controlling vacuolar acidification and flavonoid accumulation mechanisms that contribute to the final berry quality traits in grapevine.

  18. Population structure and genetic variability within isolates of Grapevine fanleaf virus from a naturally infected vineyard in France: evidence for mixed infection and recombination.

    PubMed

    Vigne, Emmanuelle; Bergdoll, Marc; Guyader, Sébastien; Fuchs, Marc

    2004-08-01

    The nematode-borne Grapevine fanleaf virus, from the genus Nepovirus in the family Comoviridae, causes severe degeneration of grapevines in most vineyards worldwide. We characterized 347 isolates from transgenic and conventional grapevines from two vineyard sites in the Champagne region of France for their molecular variant composition. The population structure and genetic diversity were examined in the coat protein gene by IC-RT-PCR-RFLP analysis with EcoRI and StyI, and nucleotide sequencing, respectively. RFLP data suggested that 55 % (191 of 347) of the isolates had a population structure consisting of one predominant variant. Sequencing data of 51 isolates representing the different restrictotypes confirmed the existence of mixed infection with a frequency of 33 % (17 of 51) and showed two major predominant haplotypes representing 71 % (60 of 85) of the sequence variants. Comparative nucleotide diversity among population subsets implied a lack of genetic differentiation according to host (transgenic vs conventional) or field site for most restrictotypes (17 of 18 and 13 of 18) and for haplotypes in most phylogenetic groups (seven of eight and six of eight), respectively. Interestingly, five of the 85 haplotypes sequenced had an intermediate divergence (0.036-0.066) between the lower (0.005-0.028) and upper range (0.083-0.138) of nucleotide variability, suggesting the occurrence of homologous RNA recombination. Sequence alignments clearly indicated a mosaic structure for four of these five variants, for which recombination sites were identified and parental lineages proposed. This is the first in-depth characterization of the population structure and genetic diversity in a nepovirus.

  19. Molecular cloning of a CC-NBS-LRR gene from Vitis quinquangularis and its expression pattern in response to downy mildew pathogen infection.

    PubMed

    Zhang, Shuwei; Ding, Feng; Peng, Hongxiang; Huang, Yu; Lu, Jiang

    2018-02-01

    Downy mildew, caused by Plasmopara viticola, can result in a substantial decrease in grapevine productivity. Vitis vinifera is a widely cultivated grapevine species, which is susceptible to this disease. Repeated pesticide applications are harmful for both the environment and human health. Thus, it is essential to develop varieties/cultivars that are resistant to downy mildew and other diseases. In our previous studies, we investigated the natural resistance of the Chinese wild grapevine V. quinquangularis accession 'PS' against P. viticola and obtained several candidate resistance (R) genes that may play important roles in plant disease resistance. In the present study, we isolated a CC-NBS-LRR-type R gene from 'PS' and designated it VqCN. Its open reading frame is 2676 bp which encodes a protein of 891 amino acids with a predicted molecular mass of 102.12 kDa and predicted isoelectric point of 6.53. Multiple alignments with other disease resistant (R) proteins revealed a conserved phosphate-binding loop (P-loop), resistance nucleotide binding site, a hydrophobic domain (GLPL) and methionine-histidine-aspartate (MHD) motifs, which are typical components of nucleotide-binding site leucine-rich repeat proteins, as well as a coiled-coil region in the N-terminus. Quantitative real-time polymerase chain reaction analysis showed that the transcript of VqCN was rapidly and highly induced after infection with P. viticola in 'PS'. Moreover, the leaves of susceptible 'Cabernet Sauvignon' transiently expressing VqCN manifested increased resistance to P. viticola. The results indicated that VqCN might play a positive role in protecting grapevine against infection with P. viticola. Cloning and functional analysis of a putative resistance gene provide a basis for disease-resistance breeding.

  20. Estimation of the base temperature and growth phase duration in terms of thermal time for four grapevine cultivars

    NASA Astrophysics Data System (ADS)

    Zapata, D.; Salazar, M.; Chaves, B.; Keller, M.; Hoogenboom, G.

    2015-12-01

    Thermal time models have been used to predict the development of many different species, including grapevine ( Vitis vinifera L.). These models normally assume that there is a linear relationship between temperature and plant development. The goal of this study was to estimate the base temperature and duration in terms of thermal time for predicting veraison for four grapevine cultivars. Historical phenological data for four cultivars that were collected in the Pacific Northwest were used to develop the thermal time model. Base temperatures ( T b) of 0 and 10 °C and the best estimated T b using three different methods were evaluated for predicting veraison in grapevine. Thermal time requirements for each individual cultivar were evaluated through analysis of variance, and means were compared using the Fisher's test. The methods that were applied to estimate T b for the development of wine grapes included the least standard deviation in heat units, the regression coefficient, and the development rate method. The estimated T b varied among methods and cultivars. The development rate method provided the lowest T b values for all cultivars. For the three methods, Chardonnay had the lowest T b ranging from 8.7 to 10.7 °C, while the highest T b values were obtained for Riesling and Cabernet Sauvignon with 11.8 and 12.8 °C, respectively. Thermal time also differed among cultivars, when either the fixed or estimated T b was used. Predictions of the beginning of ripening with the estimated temperature resulted in the lowest variation in real days when compared with predictions using T b = 0 or 10 °C, regardless of the method that was used to estimate the T b.

Top