Sample records for grapevine vitis vinifera

  1. Grapevine (Vitis vinifera L.).

    PubMed

    Bouquet, Alain; Torregrosa, Laurent; Iocco, Pat; Thomas, Mark R

    2006-01-01

    Grapevine (Vitis) is considered to be one of the major fruit crops in the world based on hectares cultivated and economic value. Grapes are used not only for wine but also for fresh fruit, dried fruit, and juice production. Wine is by far the major product of grapes and the focus of this chapter is on wine grape cultivars. Grapevine cultivars of Vitis vinifera L. have a reputation for producing premium quality wines. These premium quality wines are produced from a small number of cultivars that enjoy a high level of consumer acceptance and are firmly entrenched in the market place because of varietal name branding and the association of certain wine styles and regions with specific cultivars. In light of this situation, grapevine improvement by a transgenic approach is attractive when compared to a classical breeding approach. The transfer of individual traits as single genes with a minimum disruption to the original genome would leave the traditional characteristics of the cultivar intact. However, a reliable transformation system is required for a successful transgenic approach to grapevine improvement. There are three criteria for achieving an efficient Agrobacterium-mediated transformation system: (1) the production of highly regenerative transformable tissue, (2) optimal co-cultivation conditions for both grapevine tissue and Agrobacterium, and (3) an efficient selection regime for transgenic plant regeneration. In this chapter, we describe a grapevine transformation system which meets the above mentioned criteria.

  2. Grapevine (Vitis vinifera L.).

    PubMed

    Torregrosa, Laurent; Vialet, Sandrine; Adivèze, Angélique; Iocco-Corena, Pat; Thomas, Mark R

    2015-01-01

    Grapevine (Vitis) is considered to be one of the major fruit crops in the world based on hectares cultivated and economic value. Grapes are used not only for wine but also for fresh fruit, dried fruit, and juice production. Wine is by far the major product of grapes, and the focus of this chapter is on wine grape cultivars. Grapevine cultivars of Vitis vinifera L. have a reputation for producing premium quality wines. These premium quality wines are produced from a small number of cultivars that enjoy a high level of consumer acceptance and are firmly entrenched in the market place because of varietal name branding and the association of certain wine styles and regions with specific cultivars. In light of this situation, grapevine improvement by a transgenic approach is attractive when compared to a classical breeding approach. The transfer of individual traits as single genes with a minimum disruption to the original genome would leave the traditional characteristics of the cultivar intact. However, a reliable transformation system is required for a successful transgenic approach to grapevine improvement. There are three criteria for achieving an efficient Agrobacterium-mediated transformation system: (1) the production of highly regenerative transformable tissue, (2) optimal cocultivation conditions for both grapevine tissue and Agrobacterium, and (3) an efficient selection regime for transgenic plant regeneration. In this chapter, we describe a grapevine transformation system that meets these criteria. We also describe a protocol for the production of transformed roots suitable for functional gene studies and for the production of semi-transgenic grafted plants.

  3. VitisCyc: a metabolic pathway knowledgebase for grapevine (Vitis vinifera)

    PubMed Central

    Naithani, Sushma; Raja, Rajani; Waddell, Elijah N.; Elser, Justin; Gouthu, Satyanarayana; Deluc, Laurent G.; Jaiswal, Pankaj

    2014-01-01

    We have developed VitisCyc, a grapevine-specific metabolic pathway database that allows researchers to (i) search and browse the database for its various components such as metabolic pathways, reactions, compounds, genes and proteins, (ii) compare grapevine metabolic networks with other publicly available plant metabolic networks, and (iii) upload, visualize and analyze high-throughput data such as transcriptomes, proteomes, metabolomes etc. using OMICs-Viewer tool. VitisCyc is based on the genome sequence of the nearly homozygous genotype PN40024 of Vitis vinifera “Pinot Noir” cultivar with 12X v1 annotations and was built on BioCyc platform using Pathway Tools software and MetaCyc reference database. Furthermore, VitisCyc was enriched for plant-specific pathways and grape-specific metabolites, reactions and pathways. Currently VitisCyc harbors 68 super pathways, 362 biosynthesis pathways, 118 catabolic pathways, 5 detoxification pathways, 36 energy related pathways and 6 transport pathways, 10,908 enzymes, 2912 enzymatic reactions, 31 transport reactions and 2024 compounds. VitisCyc, as a community resource, can aid in the discovery of candidate genes and pathways that are regulated during plant growth and development, and in response to biotic and abiotic stress signals generated from a plant's immediate environment. VitisCyc version 3.18 is available online at http://pathways.cgrb.oregonstate.edu. PMID:25538713

  4. Copper homeostasis in grapevine: functional characterization of the Vitis vinifera copper transporter 1.

    PubMed

    Martins, Viviana; Bassil, Elias; Hanana, Mohsen; Blumwald, Eduardo; Gerós, Hernâni

    2014-07-01

    The Vitis vinifera copper transporter 1 is capable of self-interaction and mediates intracellular copper transport. An understanding of copper homeostasis in grapevine (Vitis vinifera L.) is particularly relevant to viticulture in which copper-based fungicides are intensively used. In the present study, the Vitis vinifera copper transporter 1 (VvCTr1), belonging to the Ctr family of copper transporters, was cloned and functionally characterized. Amino acid sequence analysis showed that VvCTr1 monomers are small peptides composed of 148 amino acids with 3 transmembrane domains and several amino acid residues typical of Ctr transporters. Bimolecular fluorescence complementation (BiFC) demonstrated that Ctr monomers are self-interacting and subcellular localization studies revealed that VvCTr1 is mobilized via the trans-Golgi network, through the pre-vacuolar compartment and located to the vacuolar membrane. The heterologous expression of VvCTr1 in a yeast strain lacking all Ctr transporters fully rescued the phenotype, while a deficient complementation was observed in a strain lacking only plasma membrane-bound Ctrs. Given the common subcellular localization of VvCTr1 and AtCOPT5 and the highest amino acid sequence similarity in comparison to the remaining AtCOPT proteins, Arabidopsis copt5 plants were stably transformed with VvCTr1. The impairment in root growth observed in copt5 seedlings in copper-deficient conditions was fully rescued by VvCTr1, further supporting its involvement in intracellular copper transport. Expression studies in V. vinifera showed that VvCTr1 is mostly expressed in the root system, but transcripts were also present in leaves and stems. The functional characterization of VvCTr-mediated copper transport provides the first step towards understanding the physiological and molecular responses of grapevines to copper-based fungicides.

  5. Analysis of the genetic diversity and structure of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia regions.

    USDA-ARS?s Scientific Manuscript database

    Background: The mountainous region between the Caucasus and China is considered to be the center of diversity for many temperate fruit crops including grapevine (Vitis vinifera subsp. sativa L). The wild forms of the subsp. Vitis vinifera spp. sylvestris, cultivated and ancient local varieties, were...

  6. Xylella fastidiosa requires polygalacturonase for colonization and pathogenicity in Vitis vinifera grapevines.

    PubMed

    Roper, M Caroline; Greve, L Carl; Warren, Jeremy G; Labavitch, John M; Kirkpatrick, Bruce C

    2007-04-01

    Xylella fastidiosa is the causal agent of Pierce's disease of grape, an economically significant disease for the grape industry. X. fastidiosa systemically colonizes the xylem elements of grapevines and is able to breach the pit pore membranes separating xylem vessels by unknown mechanisms. We hypothesized that X. fastidiosa utilizes cell wall degrading enzymes to break down pit membranes, based on the presence of genes involved in plant cell wall degradation in the X. fastidiosa genome. These genes include several beta-1,4 endoglucanases, several xylanases, several xylosidases, and one polygalacturonase (PG). In this study, we demonstrated that the pglA gene encodes a functional PG. A mutant in pglA lost pathogenicity and was compromised in its ability to systemically colonize Vitis vinifera grapevines. The results indicate that PG is required for X. fastidiosa to successfully infect grapevines and is a critical virulence factor for X. fastidiosa pathogenesis in grapevine.

  7. VTCdb: a gene co-expression database for the crop species Vitis vinifera (grapevine).

    PubMed

    Wong, Darren C J; Sweetman, Crystal; Drew, Damian P; Ford, Christopher M

    2013-12-16

    Gene expression datasets in model plants such as Arabidopsis have contributed to our understanding of gene function and how a single underlying biological process can be governed by a diverse network of genes. The accumulation of publicly available microarray data encompassing a wide range of biological and environmental conditions has enabled the development of additional capabilities including gene co-expression analysis (GCA). GCA is based on the understanding that genes encoding proteins involved in similar and/or related biological processes may exhibit comparable expression patterns over a range of experimental conditions, developmental stages and tissues. We present an open access database for the investigation of gene co-expression networks within the cultivated grapevine, Vitis vinifera. The new gene co-expression database, VTCdb (http://vtcdb.adelaide.edu.au/Home.aspx), offers an online platform for transcriptional regulatory inference in the cultivated grapevine. Using condition-independent and condition-dependent approaches, grapevine co-expression networks were constructed using the latest publicly available microarray datasets from diverse experimental series, utilising the Affymetrix Vitis vinifera GeneChip (16 K) and the NimbleGen Grape Whole-genome microarray chip (29 K), thus making it possible to profile approximately 29,000 genes (95% of the predicted grapevine transcriptome). Applications available with the online platform include the use of gene names, probesets, modules or biological processes to query the co-expression networks, with the option to choose between Affymetrix or Nimblegen datasets and between multiple co-expression measures. Alternatively, the user can browse existing network modules using interactive network visualisation and analysis via CytoscapeWeb. To demonstrate the utility of the database, we present examples from three fundamental biological processes (berry development, photosynthesis and flavonoid biosynthesis

  8. Poly(lactic- co-glycolic) acid nanoparticles uptake by Vitis vinifera and grapevine-pathogenic fungi

    NASA Astrophysics Data System (ADS)

    Valletta, Alessio; Chronopoulou, Laura; Palocci, Cleofe; Baldan, Barbara; Donati, Livia; Pasqua, Gabriella

    2014-12-01

    Poly(lactic- co-glycolic) acid (PLGA)-based NPs are currently considered among the most promising drug carriers, nevertheless their use in plants has never been investigated. In this work, for the first time, we demonstrated the ability of PLGA NPs to cross the plant cell wall and membrane of Vitis vinifera cell cultures and grapevine-pathogenic fungi. By means of fluorescence microscopy, we established that PLGA NPs can enter in grapevine leaf tissues through stomata openings and that they can be absorbed by the roots and transported to the shoot through vascular tissues. TEM analysis on cultured cells showed that NPs ≤ 50 nm could enter cells, while bigger ones remained attached to the cell wall. Viability tests demonstrated that PLGA NPs were not cytotoxic for V. vinifera-cultured cells. The cellular uptake of PLGA NPs by some important grapevine-pathogenic fungi has also been observed, thus suggesting that PLGA NPs could be used to deliver antifungal compounds within fungal cells. Overall the results reported suggest that such NPs may play a key role in future developments of agrobiotechnologies, as it is currently happening in biomedicine.

  9. Post-veraison irreversible stem shrinkage in grapevine (Vitis vinifera) is caused by periderm formation.

    PubMed

    Van de Wal, Bart A E; Leroux, Olivier; Steppe, Kathy

    2018-05-01

    Grapevines are characterized by a period of irreversible stem shrinkage around the onset of ripening of the grape berries. Since this shrinkage is unrelated to meteorological conditions or drought, it is often suggested that it is caused by the increased sink strength of the grape berries during this period. However, no studies so far have experimentally investigated the mechanisms underlying this irreversible stem shrinkage. We therefore combined continuous measurements of stem diameter variations and histology of potted 2-year-old grapevines (Vitis vinifera L. 'Boskoop Glory'). Sink strength was altered by pruning all grape clusters (treatment P), while non-pruned grapevines served as control (treatment C). Unexpectedly, our results showed irreversible post-veraison stem shrinkage in both treatments, suggesting that the shrinkage is not linked to grape berry sink strength. Anatomical analysis indicated that the shrinkage is the result of the formation of successive concentric periderm layers, and the subsequent dehydration and compression of the older bark tissues, an anatomical feature that is characteristic of Vitis stems. Stem shrinkage is hence unrelated to grape berry development, in contrast to what has been previously suggested.

  10. Overexpression of a thaumatin-like protein gene from Vitis amurensis improves downy mildew resistance in Vitis vinifera grapevine.

    PubMed

    He, Rongrong; Wu, Jiao; Zhang, Yali; Agüero, Cecilia B; Li, Xinlong; Liu, Shaoli; Wang, Chaoxia; Walker, M Andrew; Lu, Jiang

    2017-07-01

    Downy mildew is a highly destructive disease in grapevine production. A gene encoding pathogenesis-related (PR) thaumatin-like protein was isolated from the downy mildew-resistant grapevine "Zuoshan-1," a clonal selection from wild Vitis amurensis Rupr. The predicted thaumatin-like protein (VaTLP) has 225 amino acids and it is acidic, with a calculated isoelectric point of 4.8. The full length of the VaTLP gene was transformed into somatic embryogenic calli of V. vinifera 'Thompson Seedless' via Agrobacterium tumefaciens. Real-time RT-PCR confirmed that the VaTLP gene was expressed at a high level in the transgenic grapevines. Improved resistance of the transgenic lines against downy mildew was evaluated using leaf disks and whole plants inoculated with Plasmopara viticola, the pathogen causing grapevine downy mildew disease. Bioassay of the pathogen showed that both hyphae growth and asexual reproduction were inhibited significantly among the transgenic plants. Histological analysis also confirmed this disease resistance by demonstrating the inhibition and malformation of hyphae development in leaf tissue of the transgenic plants. These results indicated that the accumulation of VaTLP could enhance resistance to P. viticola in transgenic 'Thompson Seedless' grapevines.

  11. The accumulation and localization of chalcone synthase in grapevine (Vitis vinifera L.).

    PubMed

    Wang, Huiling; Wang, Wei; Zhan, JiCheng; Yan, Ailing; Sun, Lei; Zhang, Guojun; Wang, Xiaoyue; Ren, Jiancheng; Huang, Weidong; Xu, Haiying

    2016-09-01

    Chalcone synthase (CHS, E.C.2.3.1.74) is the first committed enzyme in the flavonoid pathway. Previous studies have primarily focused on the cloning, expression and regulation of the gene at the transcriptional level. Little is yet known about the enzyme accumulation, regulation at protein level, as well as its localization in grapevine. In present study, the accumulation, tissue and subcellular localization of CHS in different grapevine tissues (Vitis vinifera L. Cabernet Sauvignon) were investigated via the techniques of Western blotting, immunohistochemical localization, immunoelectron microscopy and confocal microscopy. The results showed that CHS were mainly accumulated in the grape berry skin, leaves, stem tips and stem phloem, correlated with flavonoids accumulation. The accumulation of CHS is developmental dependent in grape berry skin and flesh. Immunohistochemical analysis revealed that CHS were primarily localized in the exocarp and vascular bundles of the fruits during berry development; in palisade, spongy tissues and vascular bundles of the leaves; in the primary phloem and pith ray in the stems; in the growth point, leaf primordium, and young leaves of leaf buds; and in the endoderm and primary phloem of grapevine roots. Furthermore, at the subcellular level, the cell wall, cytoplasm and nucleus localized patterns of CHS were observed in the grapevine vegetative tissue cells. Results above indicated that distribution of CHS in grapevine was organ-specific and tissue-specific. This work will provide new insight for the biosynthesis and regulation of diverse flavonoid compounds in grapevine. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. VvMJE1 of the grapevine (Vitis vinifera) VvMES methylesterase family encodes for methyl jasmonate esterase and has a role in stress response

    USDA-ARS?s Scientific Manuscript database

    The known members of the plant methyl esterase (MES) family catalyze hydrolysis of a C-O ester linkage of methyl esters of several phytohormones including indole-3-acetic acid, salicylic acid, and jasmonic acid. The genome of grapevine (Vitis vinifera) was found to contain 15 MES genes, designated V...

  13. Genome Wide Transcriptional Profile Analysis of Vitis amurensis and Vitis vinifera in Response to Cold Stress

    PubMed Central

    Xin, Haiping; Zhu, Wei; Wang, Lina; Xiang, Yue; Fang, Linchuan; Li, Jitao; Sun, Xiaoming; Wang, Nian; Londo, Jason P.; Li, Shaohua

    2013-01-01

    Grape is one of the most important fruit crops worldwide. The suitable geographical locations and productivity of grapes are largely limited by temperature. Vitis amurensis is a wild grapevine species with remarkable cold-tolerance, exceeding that of Vitis vinifera, the dominant cultivated species of grapevine. However, the molecular mechanisms that contribute to the enhanced freezing tolerance of V. amurensis remain unknown. Here we used deep sequencing data from restriction endonuclease-generated cDNA fragments to evaluate the whole genome wide modification of transcriptome of V. amurensis under cold treatment. Vitis vinifera cv. Muscat of Hamburg was used as control to help investigate the distinctive features of V. amruensis in responding to cold stress. Approximately 9 million tags were sequenced from non-cold treatment (NCT) and cold treatment (CT) cDNA libraries in each species of grapevine sampled from shoot apices. Alignment of tags into V. vinifera cv. Pinot noir (PN40024) annotated genome identified over 15,000 transcripts in each library in V. amruensis and more than 16,000 in Muscat of Hamburg. Comparative analysis between NCT and CT libraries indicate that V. amurensis has fewer differential expressed genes (DEGs, 1314 transcripts) than Muscat of Hamburg (2307 transcripts) when exposed to cold stress. Common DEGs (408 transcripts) suggest that some genes provide fundamental roles during cold stress in grapes. The most robust DEGs (more than 20-fold change) also demonstrated significant differences between two kinds of grapevine, indicating that cold stress may trigger species specific pathways in V. amurensis. Functional categories of DEGs indicated that the proportion of up-regulated transcripts related to metabolism, transport, signal transduction and transcription were more abundant in V. amurensis. Several highly expressed transcripts that were found uniquely accumulated in V. amurensis are discussed in detail. This subset of unique candidate

  14. A forensic perspective on the genetic identification of grapevine (Vitis vinifera L.) varieties using STR markers.

    PubMed

    Santos, Sara; Oliveira, Manuela; Amorim, António; van Asch, Barbara

    2014-11-01

    The grapevine (Vitis vinifera subsp. vinifera) is one of the most important agricultural crops worldwide. A long interest in the historical origins of ancient and cultivated current grapevines, as well as the need to establish phylogenetic relationships and parentage, solve homonymies and synonymies, fingerprint cultivars and clones, and assess the authenticity of plants and wines has encouraged the development of genetic identification methods. STR analysis is currently the most commonly used method for these purposes. A large dataset of grapevines genotypes for many cultivars worldwide has been produced in the last decade using a common set of recommended dinucleotide nuclear STRs. This type of marker has been replaced by long core-repeat loci in standardized state-of-the-art human forensic genotyping. The first steps toward harmonized grapevine genotyping have already been taken to bring the genetic identification methods closer to human forensic STR standards by previous authors. In this context, we bring forward a set of basic suggestions that reinforce the need to (i) guarantee trueness-to-type of the sample; (ii) use the long core-repeat markers; (iii) verify the specificity and amplification consistency of PCR primers; (iv) sequence frequent alleles and use these standardized allele ladders; (v) consider mutation rates when evaluating results of STR-based parentage and pedigree analysis; (vi) genotype large and representative samples in order to obtain allele frequency databases; (vii) standardize genotype data by establishing allele nomenclature based on repeat number to facilitate information exchange and data compilation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A knowledge base for Vitis vinifera functional analysis.

    PubMed

    Pulvirenti, Alfredo; Giugno, Rosalba; Distefano, Rosario; Pigola, Giuseppe; Mongiovi, Misael; Giudice, Girolamo; Vendramin, Vera; Lombardo, Alessandro; Cattonaro, Federica; Ferro, Alfredo

    2015-01-01

    Vitis vinifera (Grapevine) is the most important fruit species in the modern world. Wine and table grapes sales contribute significantly to the economy of major wine producing countries. The most relevant goals in wine production concern quality and safety. In order to significantly improve the achievement of these objectives and to gain biological knowledge about cultivars, a genomic approach is the most reliable strategy. The recent grapevine genome sequencing offers the opportunity to study the potential roles of genes and microRNAs in fruit maturation and other physiological and pathological processes. Although several systems allowing the analysis of plant genomes have been reported, none of them has been designed specifically for the functional analysis of grapevine genomes of cultivars under environmental stress in connection with microRNA data. Here we introduce a novel knowledge base, called BIOWINE, designed for the functional analysis of Vitis vinifera genomes of cultivars present in Sicily. The system allows the analysis of RNA-seq experiments of two different cultivars, namely Nero d'Avola and Nerello Mascalese. Samples were taken under different climatic conditions of phenological phases, diseases, and geographic locations. The BIOWINE web interface is equipped with data analysis modules for grapevine genomes. In particular users may analyze the current genome assembly together with the RNA-seq data through a customized version of GBrowse. The web interface allows users to perform gene set enrichment by exploiting third-party databases. BIOWINE is a knowledge base implementing a set of bioinformatics tools for the analysis of grapevine genomes. The system aims to increase our understanding of the grapevine varieties and species of Sicilian products focusing on adaptability to different climatic conditions, phenological phases, diseases, and geographic locations.

  16. Transcriptional Analysis of Tendril and Inflorescence Development in Grapevine (Vitis vinifera L.)

    PubMed Central

    Díaz-Riquelme, José; Martínez-Zapater, José M.; Carmona, María J.

    2014-01-01

    In grapevine (Vitis vinifera L.), the lateral meristem can give rise to either tendrils or inflorescences which are determined organs. To get insights into the processes of tendril and inflorescence development, we characterized the transcriptional variation taking place in both organs. The results of the global transcriptional analyses along tendril and inflorescence development suggested that these two homologous organs initially share a common transcriptional program related to cell proliferation and growth functions. In later developmental stages they showed organ specific gene expression programs related to the particular differentiation processes taking place in each organ. In this way, tendrils showed higher transcription of genes related to photosynthesis, hormone signaling and secondary metabolism than inflorescences, while inflorescences displayed higher transcriptional activity for genes encoding transcription factors, mainly those belonging to the MADS-box gene family. The expression profiles of selected transcription factors related with inflorescence and flower meristem identity and with flower organogenesis were generally conserved with respect to their homologs in model species. Regarding tendrils, it was interesting to find that genes related with reproductive development in other species were also recruited for grapevine tendril development. These results suggest a role for those genes in the regulation of basic cellular mechanisms common to both developmental processes. PMID:24637773

  17. The bouquet of grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) flowers arises from the biosynthesis of sesquiterpene volatiles in pollen grains

    PubMed Central

    Martin, Diane M.; Toub, Omid; Chiang, Angela; Lo, Bernard C.; Ohse, Sebastian; Lund, Steven T.; Bohlmann, Jörg

    2009-01-01

    Terpenoid volatiles are important information molecules that enable pollinators to locate flowers and may protect reproductive tissues against pathogens or herbivores. Inflorescences of grapevine (Vitis vinifera L.) are composed of tiny green flowers that produce an abundance of sesquiterpenoid volatiles. We demonstrate that male flower parts of grapevines are responsible for sesquiterpenoid floral scent formation. We describe temporal and spatial patterns of biosynthesis and release of floral volatiles throughout the blooming of V. vinifera L. cv. Cabernet Sauvignon. The biosynthesis of sesquiterpene volatiles, which are emitted with a light-dependent diurnal pattern early in the morning at prebloom and bloom, is localized to anthers and, more specifically, within the developing pollen grains. Valencene synthase (VvValCS) enzyme activity, which produces the major sesquiterpene volatiles of grapevine flowers, is present in anthers. VvValCS transcripts are most abundant in flowers at prebloom stages. Western blot analysis identified VvValCS protein in anthers, and in situ immunolabeling located VvValCS protein in pollen grains during bloom. Histochemical staining, as well as immunolabeling analysis by fluorescent microscopy and transmission electron microscopy, indicated that VvValCS localizes close to lipid bodies within the maturing microspore. PMID:19359488

  18. Assessment of wild grapevine (Vitis vinifera ssp. sylvestris) chlorotypes and accompanying woody species in the Eastern Adriatic region.

    PubMed

    Butorac, Lukrecija; Hančević, Katarina; Lukšić, Katarina; Škvorc, Željko; Leko, Mario; Maul, Erika; Zdunić, Goran

    2018-01-01

    The Eastern Adriatic region, encompassing Croatia and Bosnia and Herzegovina, is considered an important area of natural populations of wild grapevines (Vitis vinifera ssp. sylvestris). The wild grapevine arises in the Eastern Adriatic region in a contact zone of the EU-Mediterranean and the sub-Mediterranean characterized by typical karst relief. This study focuses on the chloroplast DNA (cpDNA) analysis of wild grapevines and the biodiversity of accompanying woody species to better understand the genetic variation of the sylvestris populations of the Eastern Adriatic region and to investigate how this variation fits within today's wild grapevine distribution in the European continent. The allelic variation at nine cpDNA microsatellite loci of wild individuals was used to characterize haplotype diversity in 53 individuals from four population sites. All individuals were grouped into two chlorotypes: A and D, D being the rare haplotype among wild populations on the European continent. In total, 52 woody plant species were identified. However, the studied vegetation structures have been affected by permanent human pressure on natural resources and the preservation status of the collection sites. Based on our results, we conclude that the investigated areas were probably shelter zones for wild grapevine preservation during the unfavorable glaciation era.

  19. Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L

    PubMed Central

    2012-01-01

    Background Zinc (Zn) deficiency is one of the most widespread mineral nutritional problems that affect normal development in plants. Because Zn cannot passively diffuse across cell membranes, it must be transported into intracellular compartments for all biological processes where Zn is required. Several members of the Zinc-regulated transporters, Iron-regulated transporter-like Protein (ZIP) gene family have been characterized in plants, and have shown to be involved in metal uptake and transport. This study describes the first putative Zn transporter in grapevine. Unravelling its function may explain an important symptom of Zn deficiency in grapevines, which is the production of clusters with fewer and usually smaller berries than normal. Results We identified and characterized a putative Zn transporter from berries of Vitis vinifera L., named VvZIP3. Compared to other members of the ZIP family identified in the Vitis vinifera L. genome, VvZIP3 is mainly expressed in reproductive tissue - specifically in developing flowers - which correlates with the high Zn accumulation in these organs. Contrary to this, the low expression of VvZIP3 in parthenocarpic berries shows a relationship with the lower Zn accumulation in this tissue than in normal seeded berries where its expression is induced by Zn. The predicted protein sequence indicates strong similarity with several members of the ZIP family from Arabidopsis thaliana and other species. Moreover, VvZIP3 complemented the growth defect of a yeast Zn-uptake mutant, ZHY3, and is localized in the plasma membrane of plant cells, suggesting that VvZIP3 has the function of a Zn uptake transporter. Conclusions Our results suggest that VvZIP3 encodes a putative plasma membrane Zn transporter protein member of the ZIP gene family that might play a role in Zn uptake and distribution during the early reproductive development in Vitis vinifera L., indicating that the availability of this micronutrient may be relevant for

  20. Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L.

    PubMed

    Gainza-Cortés, Felipe; Pérez-Dïaz, Ricardo; Pérez-Castro, Ramón; Tapia, Jaime; Casaretto, José A; González, Sebastián; Peña-Cortés, Hugo; Ruiz-Lara, Simón; González, Enrique

    2012-07-23

    Zinc (Zn) deficiency is one of the most widespread mineral nutritional problems that affect normal development in plants. Because Zn cannot passively diffuse across cell membranes, it must be transported into intracellular compartments for all biological processes where Zn is required. Several members of the Zinc-regulated transporters, Iron-regulated transporter-like Protein (ZIP) gene family have been characterized in plants, and have shown to be involved in metal uptake and transport. This study describes the first putative Zn transporter in grapevine. Unravelling its function may explain an important symptom of Zn deficiency in grapevines, which is the production of clusters with fewer and usually smaller berries than normal. We identified and characterized a putative Zn transporter from berries of Vitis vinifera L., named VvZIP3. Compared to other members of the ZIP family identified in the Vitis vinifera L. genome, VvZIP3 is mainly expressed in reproductive tissue - specifically in developing flowers - which correlates with the high Zn accumulation in these organs. Contrary to this, the low expression of VvZIP3 in parthenocarpic berries shows a relationship with the lower Zn accumulation in this tissue than in normal seeded berries where its expression is induced by Zn. The predicted protein sequence indicates strong similarity with several members of the ZIP family from Arabidopsis thaliana and other species. Moreover, VvZIP3 complemented the growth defect of a yeast Zn-uptake mutant, ZHY3, and is localized in the plasma membrane of plant cells, suggesting that VvZIP3 has the function of a Zn uptake transporter. Our results suggest that VvZIP3 encodes a putative plasma membrane Zn transporter protein member of the ZIP gene family that might play a role in Zn uptake and distribution during the early reproductive development in Vitis vinifera L., indicating that the availability of this micronutrient may be relevant for reproductive development.

  1. Hybridization of cultivated Vitis vinifera with wild V. californica and V. girdiana in California

    USDA-ARS?s Scientific Manuscript database

    The native wild grape species of northern California, Vitis californica Benth. (California wild grape), and V. girdiana Munson (desert wild grape) in southern California are under increasing pressure from loss of habitat and from interbreeding with the domesticated grapevine, V. vinifera L. For its...

  2. Glucosylation of Smoke-Derived Volatiles in Grapevine (Vitis vinifera) is Catalyzed by a Promiscuous Resveratrol/Guaiacol Glucosyltransferase.

    PubMed

    Härtl, Katja; Huang, Fong-Chin; Giri, Ashok P; Franz-Oberdorf, Katrin; Frotscher, Johanna; Shao, Yang; Hoffmann, Thomas; Schwab, Wilfried

    2017-07-19

    Vinification of grapes (Vitis vinifera) exposed to forest fire smoke can yield unpalatable wine due to the presence of taint compounds from smoke and the release of smoke derived volatiles from their respective glycosides during the fermentation process or in-mouth during consumption. To identify glycosyltransferases (GTs) involved in the formation of glycosidically bound smoke-derived volatiles we performed gene expression analysis of candidate GTs in different grapevine tissues. Second, substrates derived from bushfire smoke or naturally occurring in grapes were screened with the candidate recombinant GTs. A resveratrol GT (UGT72B27) gene, highly expressed in grapevine leaves and berries was identified to be responsible for the production of the phenolic glucosides. UGT72B27 converted the stilbene trans-resveratrol mainly to the 3-O-glucoside. Kinetic analyses yielded specificity constants (k cat /K M ) of 114, 17, 9, 8, and 2 mM -1 s -1 for guaiacol, trans-resveratrol, syringol, methylsyringol, and methylguaiacol, respectively. This knowledge will help to design strategies for managing the risk of producing smoke-affected wines.

  3. Characterization of Vitis vinifera NPR1 homologs involved in the regulation of Pathogenesis-Related gene expression

    PubMed Central

    Le Henanff, Gaëlle; Heitz, Thierry; Mestre, Pere; Mutterer, Jerôme; Walter, Bernard; Chong, Julie

    2009-01-01

    Background Grapevine protection against diseases needs alternative strategies to the use of phytochemicals, implying a thorough knowledge of innate defense mechanisms. However, signalling pathways and regulatory elements leading to induction of defense responses have yet to be characterized in this species. In order to study defense response signalling to pathogens in Vitis vinifera, we took advantage of its recently completed genome sequence to characterize two putative orthologs of NPR1, a key player in salicylic acid (SA)-mediated resistance to biotrophic pathogens in Arabidopsis thaliana. Results Two cDNAs named VvNPR1.1 and VvNPR1.2 were isolated from Vitis vinifera cv Chardonnay, encoding proteins showing 55% and 40% identity to Arabidopsis NPR1 respectively. Constitutive expression of VvNPR1.1 and VvNPR1.2 monitored in leaves of V. vinifera cv Chardonnay was found to be enhanced by treatment with benzothiadiazole, a SA analog. In contrast, VvNPR1.1 and VvNPR1.2 transcript levels were not affected during infection of resistant Vitis riparia or susceptible V. vinifera with Plasmopara viticola, the causal agent of downy mildew, suggesting regulation of VvNPR1 activity at the protein level. VvNPR1.1-GFP and VvNPR1.2-GFP fusion proteins were transiently expressed by agroinfiltration in Nicotiana benthamiana leaves, where they localized predominantly to the nucleus. In this system, VvNPR1.1 and VvNPR1.2 expression was sufficient to trigger the accumulation of acidic SA-dependent Pathogenesis-Related proteins PR1 and PR2, but not of basic chitinases (PR3) in the absence of pathogen infection. Interestingly, when VvNPR1.1 or AtNPR1 were transiently overexpressed in Vitis vinifera leaves, the induction of grapevine PR1 was significantly enhanced in response to P. viticola. Conclusion In conclusion, our data identified grapevine homologs of NPR1, and their functional analysis showed that VvNPR1.1 and VvNPR1.2 likely control the expression of SA-dependent defense genes

  4. Study of defense-related gene expression in grapevine infested by Colomerus vitis (Acari: Eriophyidae).

    PubMed

    Javadi Khederi, Saeid; Khanjani, Mohammad; Gholami, Mansur; Bruno, Giovanni Luigi

    2018-05-01

    Real-time quantitative polymerase chain reaction was used to study the expression of some marker genes involved in the interaction between grape (Vitis vinifera L.) and the erineum mite Colomerus vitis Pagenstecher (Acari: Eriophyidae). Potted vines of cultivars Atabaki (resistant to C. vitis), Ghalati (susceptible to C. vitis) and Muscat Gordo (moderately resistant to C. vitis) were infested at the six-leaf stage. The expression of protease inhibitor (PIN), beta-1,3-glucanase (GLU), polygalacturonase inhibitor (PGIP), Vitis vinifera proline-rich protein 1 (PRP1), stilbene synthase (STS), and lipoxygenase (LOX) genes was assessed on young leaves collected 96, 120 and 144 h after mite infestation (hami). As a control, non-infested leaves collected 24 h before mite infestations were used. Differences were detected in expression of the selected genes during the C. vitis-grapevine interaction. The resistant cultivar Atabaki increased the expression of LOX, STS, GLU, PGIP and PRP1 genes during the first 120 hami. On the contrary, in the susceptible Ghalati, all selected genes showed an expression level similar or lower than non-infested leaves. Muscat Gordo increased the expression of all selected genes in comparison with non-infested leaves, but it was lower than in Atabaki. Significant transcript accumulation of PIN gene was detected for Muscat Gordo whereas it was slightly up-regulated in Ghalati and Atabaki. LOX, STS, PIN, GLU, PGIP and PRP1 genes were clearly expressed in response to C. vitis infestation. We therefore infer that expression of PGIP, PIN and PRP1 genes could represent a defense strategy against C. vitis infestations in grapevine leaves.

  5. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera

    PubMed Central

    2010-01-01

    Background The AP2/ERF protein family contains transcription factors that play a crucial role in plant growth and development and in response to biotic and abiotic stress conditions in plants. Grapevine (Vitis vinifera) is the only woody crop whose genome has been fully sequenced. So far, no detailed expression profile of AP2/ERF-like genes is available for grapevine. Results An exhaustive search for AP2/ERF genes was carried out on the Vitis vinifera genome and their expression profile was analyzed by Real-Time quantitative PCR (qRT-PCR) in different vegetative and reproductive tissues and under two different ripening stages. One hundred and forty nine sequences, containing at least one ERF domain, were identified. Specific clusters within the AP2 and ERF families showed conserved expression patterns reminiscent of other species and grapevine specific trends related to berry ripening. Moreover, putative targets of group IX ERFs were identified by co-expression and protein similarity comparisons. Conclusions The grapevine genome contains an amount of AP2/ERF genes comparable to that of other dicot species analyzed so far. We observed an increase in the size of specific groups within the ERF family, probably due to recent duplication events. Expression analyses in different aerial tissues display common features previously described in other plant systems and introduce possible new roles for members of some ERF groups during fruit ripening. The presented analysis of AP2/ERF genes in grapevine provides the bases for studying the molecular regulation of berry development and the ripening process. PMID:21171999

  6. Bioarchaeological Insights into the Process of Domestication of Grapevine (Vitis vinifera L.) during Roman Times in Southern France

    PubMed Central

    Bouby, Laurent; Figueiral, Isabel; Bouchette, Anne; Rovira, Nuria; Ivorra, Sarah; Lacombe, Thierry; Pastor, Thierry; Picq, Sandrine; Marinval, Philippe; Terral, Jean-Frédéric

    2013-01-01

    Grapevine (Vitis vinifera), one of the most important fruit species in the Classical Mediterranean world, is thought to have been domesticated first in South-Western Asia, during the Neolithic. However, the domestication process remains largely unknown. Crucial unanswered questions concern the duration of the process (rapid or slow?) and the related geographical area (single or multiple-origins?). Seeds from domesticated grapevine and from its wild ancestor are reported to differ according to shape. Our work aims, first, to confirm this difference and secondly to identify the extent of domestication in the grapes cultivated by Romans in Southern France during the period 50 BCE–500 CE. We had the opportunity to analyze uncharred waterlogged grape pips from 17 archaeological sites. Based on an extended reference sample of modern wild grapevines and cultivars our work shows that both subspecies can be discriminated using simple measurements. The elongation gradient of the pip’s body and stalk may be regarded as an indicator of the strength of the selection pressures undergone by domesticated grapes. Grapevines cultivated during the Roman period included a mix of morphotypes comprising wild, intermediate and moderately selected domesticated forms. Our data point to a relative shift towards more selected types during the Roman period. Domestication of the grapevine appears to have been a slow process. This could result from the recurrent incorporation into cultivation of plants originating from sexual reproduction, when grape cultivation essentially relies on vegetative propagation. PMID:23690998

  7. Bioarchaeological insights into the process of domestication of grapevine (Vitis vinifera L.) during Roman times in Southern France.

    PubMed

    Bouby, Laurent; Figueiral, Isabel; Bouchette, Anne; Rovira, Nuria; Ivorra, Sarah; Lacombe, Thierry; Pastor, Thierry; Picq, Sandrine; Marinval, Philippe; Terral, Jean-Frédéric

    2013-01-01

    Grapevine (Vitis vinifera), one of the most important fruit species in the Classical Mediterranean world, is thought to have been domesticated first in South-Western Asia, during the Neolithic. However, the domestication process remains largely unknown. Crucial unanswered questions concern the duration of the process (rapid or slow?) and the related geographical area (single or multiple-origins?). Seeds from domesticated grapevine and from its wild ancestor are reported to differ according to shape. Our work aims, first, to confirm this difference and secondly to identify the extent of domestication in the grapes cultivated by Romans in Southern France during the period 50 BCE-500 CE. We had the opportunity to analyze uncharred waterlogged grape pips from 17 archaeological sites. Based on an extended reference sample of modern wild grapevines and cultivars our work shows that both subspecies can be discriminated using simple measurements. The elongation gradient of the pip's body and stalk may be regarded as an indicator of the strength of the selection pressures undergone by domesticated grapes. Grapevines cultivated during the Roman period included a mix of morphotypes comprising wild, intermediate and moderately selected domesticated forms. Our data point to a relative shift towards more selected types during the Roman period. Domestication of the grapevine appears to have been a slow process. This could result from the recurrent incorporation into cultivation of plants originating from sexual reproduction, when grape cultivation essentially relies on vegetative propagation.

  8. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera

    USDA-ARS?s Scientific Manuscript database

    WRKY transcription factors are one of the largest families of transcriptional regulators in plants. WRKY genes are not only found to play significant roles in biotic and abiotic stress response, but also regulate growth and development. Grapevine (Vitis vinifera) production is largely limited by str...

  9. Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs.

    PubMed

    Laucou, Valérie; Launay, Amandine; Bacilieri, Roberto; Lacombe, Thierry; Adam-Blondon, Anne-Françoise; Bérard, Aurélie; Chauveau, Aurélie; de Andrés, Maria Teresa; Hausmann, Ludger; Ibáñez, Javier; Le Paslier, Marie-Christine; Maghradze, David; Martinez-Zapater, José Miguel; Maul, Erika; Ponnaiah, Maharajah; Töpfer, Reinhard; Péros, Jean-Pierre; Boursiquot, Jean-Michel

    2018-01-01

    Grapevine is a very important crop species that is mainly cultivated worldwide for fruits, wine and juice. Identification of the genetic bases of performance traits through association mapping studies requires a precise knowledge of the available diversity and how this diversity is structured and varies across the whole genome. An 18k SNP genotyping array was evaluated on a panel of Vitis vinifera cultivars and we obtained a data set with no missing values for a total of 10207 SNPs and 783 different genotypes. The average inter-SNP spacing was ~47 kbp, the mean minor allele frequency (MAF) was 0.23 and the genetic diversity in the sample was high (He = 0.32). Fourteen SNPs, chosen from those with the highest MAF values, were sufficient to identify each genotype in the sample. Parentage analysis revealed 118 full parentages and 490 parent-offspring duos, thus confirming the close pedigree relationships within the cultivated grapevine. Structure analyses also confirmed the main divisions due to an eastern-western gradient and human usage (table vs. wine). Using a multivariate approach, we refined the structure and identified a total of eight clusters. Both the genetic diversity (He, 0.26-0.32) and linkage disequilibrium (LD, 28.8-58.2 kbp) varied between clusters. Despite the short span LD, we also identified some non-recombining haplotype blocks that may complicate association mapping. Finally, we performed a genome-wide association study that confirmed previous works and also identified new regions for important performance traits such as acidity. Taken together, all the results contribute to a better knowledge of the genetics of the cultivated grapevine.

  10. Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs

    PubMed Central

    Launay, Amandine; Bacilieri, Roberto; Lacombe, Thierry; Adam-Blondon, Anne-Françoise; Bérard, Aurélie; Chauveau, Aurélie; de Andrés, Maria Teresa; Maghradze, David; Maul, Erika; Ponnaiah, Maharajah; Töpfer, Reinhard; Péros, Jean-Pierre; Boursiquot, Jean-Michel

    2018-01-01

    Grapevine is a very important crop species that is mainly cultivated worldwide for fruits, wine and juice. Identification of the genetic bases of performance traits through association mapping studies requires a precise knowledge of the available diversity and how this diversity is structured and varies across the whole genome. An 18k SNP genotyping array was evaluated on a panel of Vitis vinifera cultivars and we obtained a data set with no missing values for a total of 10207 SNPs and 783 different genotypes. The average inter-SNP spacing was ~47 kbp, the mean minor allele frequency (MAF) was 0.23 and the genetic diversity in the sample was high (He = 0.32). Fourteen SNPs, chosen from those with the highest MAF values, were sufficient to identify each genotype in the sample. Parentage analysis revealed 118 full parentages and 490 parent-offspring duos, thus confirming the close pedigree relationships within the cultivated grapevine. Structure analyses also confirmed the main divisions due to an eastern-western gradient and human usage (table vs. wine). Using a multivariate approach, we refined the structure and identified a total of eight clusters. Both the genetic diversity (He, 0.26–0.32) and linkage disequilibrium (LD, 28.8–58.2 kbp) varied between clusters. Despite the short span LD, we also identified some non-recombining haplotype blocks that may complicate association mapping. Finally, we performed a genome-wide association study that confirmed previous works and also identified new regions for important performance traits such as acidity. Taken together, all the results contribute to a better knowledge of the genetics of the cultivated grapevine. PMID:29420602

  11. Cooking impact in color, pigments and volatile composition of grapevine leaves (Vitis vinifera L. var. Malvasia Fina and Touriga Franca).

    PubMed

    Lima, Adriano; Pereira, José Alberto; Baraldi, Ilton; Malheiro, Ricardo

    2017-04-15

    Grapevine leaves (Vitis vinifera L. var. Malvasia Fina and Touriga Franca) under culinary treatment (blanching and boiling at 60, 75 and 90min) were studied for their color, pigments and volatile fraction changes. Blanching and boiling caused a decrease in luminosity and a loss of green coloration in both varieties, while a yellow-brownish color arose. Significant correlations were established between the loss of green color (monochromatic variable a ∗ ) and the total chlorophylls content. The main volatiles in fresh leaves [(Z)-3-hexenal, (Z)-3-hexen-1-ol, and (Z)-3-hexenyl acetate] were drastically reduced by blanching and suppressed by boiling. Other compounds like pentanal and 6-methyl-5-hepten-2 one arose from blanching and boiling. A boiling time of 60min is adequate for the culinary process of grapevine leaves, since the product is considered edible and the pigments and volatile changes are not as drastic as observed at 75 and 90min of boiling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs)

    PubMed Central

    Gong, Peijie; Li, Shuxiu; Wang, Yuejin; Zhang, Chaohong

    2016-01-01

    Vacuolar processing enzymes (VPEs) have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD), which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvβVPE, VvγVPE, and VvδVPE) from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs) from the ‘Vitis vinifera cv. Pinot Noir’ and ‘Vitis vinifera cv. Thompson Seedless’ varietals. Each of the VPEs contained a typical catalytic dyad [His (177), Cys (219)] and substrate binding pocket [Arg (112), Arg (389), Ser (395)], except that Ser (395) in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvβVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR) suggested that VvβVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF), close to the timing of endosperm abortion at 32 DAF. These results suggested that VvβVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs. PMID:27551866

  13. Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs).

    PubMed

    Tang, Yujin; Wang, Ruipu; Gong, Peijie; Li, Shuxiu; Wang, Yuejin; Zhang, Chaohong

    2016-01-01

    Vacuolar processing enzymes (VPEs) have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD), which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvβVPE, VvγVPE, and VvδVPE) from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs) from the 'Vitis vinifera cv. Pinot Noir' and 'Vitis vinifera cv. Thompson Seedless' varietals. Each of the VPEs contained a typical catalytic dyad [His (177), Cys (219)] and substrate binding pocket [Arg (112), Arg (389), Ser (395)], except that Ser (395) in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvβVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR) suggested that VvβVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF), close to the timing of endosperm abortion at 32 DAF. These results suggested that VvβVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs.

  14. Ectopic expression of Arabidopsis broad-spectrum resistance gene RPW8.2 improves the resistance to powdery mildew in grapevine (Vitis vinifera).

    PubMed

    Hu, Yang; Li, Yajuan; Hou, Fengjuan; Wan, Dongyan; Cheng, Yuan; Han, Yongtao; Gao, Yurong; Liu, Jie; Guo, Ye; Xiao, Shunyuan; Wang, Yuejin; Wen, Ying-Qiang

    2018-02-01

    Powdery mildew is the most economically important disease of cultivated grapevines worldwide. Here, we report that the Arabidopsis broad-spectrum disease resistance gene RPW8.2 could improve resistance to powdery mildew in Vitis vinifera cv. Thompson Seedless. The RPW8.2-YFP fusion gene was stably expressed in grapevines from either the constitutive 35S promoter or the native promoter (NP) of RPW8.2. The grapevine shoots and plantlets transgenic for 35S::RPW8.2-YFP showed reduced rooting and reduced growth at later development stages in the absence of any pathogens. Infection tests with an adapted grapevine powdery mildew isolate En NAFU1 showed that hyphal growth and sporulation were significantly restricted in transgenic grapevines expressing either of the two constructs. The resistance appeared to be attributable to the ectopic expression of RPW8.2, and associated with the enhanced encasement of the haustorial complex (EHC) and onsite accumulation of H 2 O 2 . In addition, the RPW8.2-YFP fusion protein showed focal accumulation around the fungal penetration sites. Transcriptome analysis revealed that ectopic expression of RPW8.2 in grapevines not only significantly enhanced salicylic acid-dependent defense signaling, but also altered expression of other phytohormone-associated genes. Taken together, our results indicate that RPW8.2 could be utilized as a transgene for improving resistance against powdery mildew in grapevines. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Procedure for collecting and packaging grapevine samples

    USDA-ARS?s Scientific Manuscript database

    Grapevine yellows (GY) is a term that is used to refer to any of several diseases of grapevine (Vitis vinifera) that are caused by phytoplasmas. Around the globe, diverse ‘Candidatus Phytoplasma’ species cause indistinguishable disease symptoms in V. vinifera and are spread by different species of ...

  16. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera)

    PubMed Central

    2014-01-01

    Background Basic leucine zipper (bZIP) transcription factor gene family is one of the largest and most diverse families in plants. Current studies have shown that the bZIP proteins regulate numerous growth and developmental processes and biotic and abiotic stress responses. Nonetheless, knowledge concerning the specific expression patterns and evolutionary history of plant bZIP family members remains very limited. Results We identified 55 bZIP transcription factor-encoding genes in the grapevine (Vitis vinifera) genome, and divided them into 10 groups according to the phylogenetic relationship with those in Arabidopsis. The chromosome distribution and the collinearity analyses suggest that expansion of the grapevine bZIP (VvbZIP) transcription factor family was greatly contributed by the segment/chromosomal duplications, which may be associated with the grapevine genome fusion events. Nine intron/exon structural patterns within the bZIP domain and the additional conserved motifs were identified among all VvbZIP proteins, and showed a high group-specificity. The predicted specificities on DNA-binding domains indicated that some highly conserved amino acid residues exist across each major group in the tree of land plant life. The expression patterns of VvbZIP genes across the grapevine gene expression atlas, based on microarray technology, suggest that VvbZIP genes are involved in grapevine organ development, especially seed development. Expression analysis based on qRT-PCR indicated that VvbZIP genes are extensively involved in drought- and heat-responses, with possibly different mechanisms. Conclusions The genome-wide identification, chromosome organization, gene structures, evolutionary and expression analyses of grapevine bZIP genes provide an overall insight of this gene family and their potential involvement in growth, development and stress responses. This will facilitate further research on the bZIP gene family regarding their evolutionary history and

  17. Recent amplification and impact of MITEs on the genome of grapevine (Vitis vinifera L.)

    PubMed Central

    Benjak, Andrej; Boué, Stéphanie; Forneck, Astrid

    2009-01-01

    Miniature inverted-repeat transposable elements (MITEs) are a particular type of defective class II transposons present in genomes as highly homogeneous populations of small elements. Their high copy number and close association to genes make their potential impact on gene evolution particularly relevant. Here, we present a detailed analysis of the MITE families directly related to grapevine “cut-and-paste” transposons. Our results show that grapevine MITEs have transduplicated and amplified genomic sequences, including gene sequences and fragments of other mobile elements. Our results also show that although some of the MITE families were already present in the ancestor of the European and American Vitis wild species, they have been amplified and have been actively transposing accompanying grapevine domestication and breeding. We show that MITEs are abundant in grapevine and some of them are frequently inserted within the untranslated regions of grapevine genes. MITE insertions are highly polymorphic among grapevine cultivars, which frequently generate transcript variability. The data presented here show that MITEs have greatly contributed to the grapevine genetic diversity which has been used for grapevine domestication and breeding. PMID:20333179

  18. A small XY chromosomal region explains sex determination in wild dioecious V. vinifera and the reversal to hermaphroditism in domesticated grapevines.

    PubMed

    Picq, Sandrine; Santoni, Sylvain; Lacombe, Thierry; Latreille, Muriel; Weber, Audrey; Ardisson, Morgane; Ivorra, Sarah; Maghradze, David; Arroyo-Garcia, Rosa; Chatelet, Philippe; This, Patrice; Terral, Jean-Frédéric; Bacilieri, Roberto

    2014-09-03

    In Vitis vinifera L., domestication induced a dramatic change in flower morphology: the wild sylvestris subspecies is dioecious while hermaphroditism is largely predominant in the domesticated subsp. V. v. vinifera. The characterisation of polymorphisms in genes underlying the sex-determining chromosomal region may help clarify the history of domestication in grapevine and the evolution of sex chromosomes in plants. In the genus Vitis, sex determination is putatively controlled by one major locus with three alleles, male M, hermaphrodite H and female F, with an allelic dominance M > H > F. Previous genetic studies located the sex locus on chromosome 2. We used DNA polymorphisms of geographically diverse V. vinifera genotypes to confirm the position of this locus, to characterise the genetic diversity and traces of selection in candidate genes, and to explore the origin of hermaphroditism. In V. v. sylvestris, a sex-determining region of 154.8 kb, also present in other Vitis species, spans less than 1% of chromosome 2. It displays haplotype diversity, linkage disequilibrium and differentiation that typically correspond to a small XY sex-determining region with XY males and XX females. In male alleles, traces of purifying selection were found for a trehalose phosphatase, an exostosin and a WRKY transcription factor, with strikingly low polymorphism levels between distant geographic regions. Both diversity and network analysis revealed that H alleles are more closely related to M than to F alleles. Hermaphrodite alleles appear to derive from male alleles of wild grapevines, with successive recombination events allowing import of diversity from the X into the Y chromosomal region and slowing down the expansion of the region into a full heteromorphic chromosome. Our data are consistent with multiple domestication events and show traces of introgression from other Asian Vitis species into the cultivated grapevine gene pool.

  19. Sequence Polymorphisms and Structural Variations among Four Grapevine (Vitis vinifera L.) Cultivars Representing Sardinian Agriculture

    PubMed Central

    Mercenaro, Luca; Nieddu, Giovanni; Porceddu, Andrea; Pezzotti, Mario; Camiolo, Salvatore

    2017-01-01

    The genetic diversity among grapevine (Vitis vinifera L.) cultivars that underlies differences in agronomic performance and wine quality reflects the accumulation of single nucleotide polymorphisms (SNPs) and small indels as well as larger genomic variations. A combination of high throughput sequencing and mapping against the grapevine reference genome allows the creation of comprehensive sequence variation maps. We used next generation sequencing and bioinformatics to generate an inventory of SNPs and small indels in four widely cultivated Sardinian grape cultivars (Bovale sardo, Cannonau, Carignano and Vermentino). More than 3,200,000 SNPs were identified with high statistical confidence. Some of the SNPs caused the appearance of premature stop codons and thus identified putative pseudogenes. The analysis of SNP distribution along chromosomes led to the identification of large genomic regions with uninterrupted series of homozygous SNPs. We used a digital comparative genomic hybridization approach to identify 6526 genomic regions with significant differences in copy number among the four cultivars compared to the reference sequence, including 81 regions shared between all four cultivars and 4953 specific to single cultivars (representing 1.2 and 75.9% of total copy number variation, respectively). Reads mapping at a distance that was not compatible with the insert size were used to identify a dataset of putative large deletions with cultivar Cannonau revealing the highest number. The analysis of genes mapping to these regions provided a list of candidates that may explain some of the phenotypic differences among the Bovale sardo, Cannonau, Carignano and Vermentino cultivars. PMID:28775732

  20. Gibberellin metabolism in Vitis vinifera L. during bloom and fruit-set: functional characterization and evolution of grapevine gibberellin oxidases

    PubMed Central

    Giacomelli, Lisa

    2013-01-01

    Gibberellins (GAs) are involved in the regulation of flowering and fruit-set in grapes (Vitis vinifera L.), but the molecular mechanisms behind this process are mostly unknown. In this work, the family of grapevine GA oxidases involved in the biosynthesis and deactivation of GAs was characterized. Six putative GA 20-oxidase (GA20ox), three GA 3-oxidase (GA3ox), and eight GA 2-oxidase (GA2ox) proteins, the latter further divided into five C19-GA 2ox and three C20-GA2ox proteins, were identified. Phylogenetic analyses suggest a common origin of the GA3ox and C19-GA2ox groups and challenge previous evolutionary models. In vitro analysis revealed that all GA3ox and GA20ox enzymes prefer substrates of the non-13-hydroxylation pathway. In addition, ectopic expression of GA2ox genes in Arabidopsis thaliana confirmed the activity of their encoded proteins in vivo. The results show that bioactive GA1 accumulates in opening grapevine flowers, whereas at later developmental stages only GA4 is detected in the setting fruit. By studying the expression pattern of the grapevine GA oxidase genes in different organs, and at different stages of flowering and fruit-set, it is proposed that the pool of bioactive GAs is controlled by a fine regulation of the abundance and localization of GA oxidase transcripts. PMID:24006417

  1. Clone lineages of grape phylloxera differ in their performance on Vitis vinifera.

    PubMed

    Herbert, K S; Umina, P A; Mitrovski, P J; Powell, K S; Viduka, K; Hoffmann, A A

    2010-12-01

    Grape phylloxera, Daktulosphaira vitifoliae Fitch, is an important pest of grapevines (Vitis vinifera L.) (Vitaceae). The distribution and frequency of phylloxera clone lineages vary within infested regions of Australia, suggesting the introduction of separate lineages of D. vitifoliae with host associations. Virulence levels of particular phylloxera clones may vary on V. vinifera, but much of this evidence is indirect. In this study, we directly tested the performance of phylloxera clones on V. vinifera using an established excised root assay and a new glasshouse vine assessment. In the root assay, grape phylloxera clones differed in egg production and egg to adult survivorship. In the vine assay, clones differed in the number of immature and adult life stages on roots. In addition vine characteristics, including mean stem weight, root weight, leaf chlorophyll and leaf area, were affected by different phylloxera clones. The two most widespread clones displayed high levels of virulence. These results point to only some phylloxera clones being highly virulent on V. vinifera, helping to explain patterns of field damage, phylloxera distributions and continued survival and production of V. vinifera vines in some infested areas.

  2. Contrasting Susceptibilities to Flavescence Dorée in Vitis vinifera, Rootstocks and Wild Vitis Species

    PubMed Central

    Eveillard, Sandrine; Jollard, Camille; Labroussaa, Fabien; Khalil, Dima; Perrin, Mireille; Desqué, Delphine; Salar, Pascal; Razan, Frédérique; Hévin, Cyril; Bordenave, Louis; Foissac, Xavier; Masson, Jean E.; Malembic-Maher, Sylvie

    2016-01-01

    Flavescence dorée (FD) is a quarantine disease of grapevine, involving interactions between the plants, leafhopper vectors, and FD phytoplasma. Characterizing the susceptibility of vine varieties could limit disease propagation. After extensive surveys in vineyards, we showed that Cabernet Sauvignon (CS) is highly susceptible, with a high proportion of symptomatic branches and phytoplasma titers, in contrast to Merlot (M). Localized insect transmissions and grafting showed that phytoplasma circulate in the whole plant in the CS cultivar, but in M they are restricted to the transmission point. Insect-mediated transmission under high confinement mimicking natural conditions confirmed these phenotypes and allowed the classification of 28 Vitis accessions into three distinct categories, according to the percentage of infected plants and their phytoplasma titers. Reduced symptoms, low phytoplasma titers, and low percentages of infected plants were found to be associated in the Vitis vinifera cultivars tested. Interestingly, the low susceptibility of M was observed for one of its parents, i.e., Magdeleine Noire des Charentes. Rootstocks and their Vitis parents, although having high percentages of infected plants and intermediate to high phytoplasma titers, shared a symptomless response. This is troubling, because rootstocks can constitute a silent reservoir of contamination in mother plants or when they grow wild nearby vineyards. Altogether, data suggest distribution of genetic traits within the Vitis genus involved in insect-mediated phytoplasma transmission, multiplication, circulation, and symptom development. PMID:27965681

  3. Impact of grapevine (Vitis vinifera) varieties on reproduction of the northern root-knot nematode (Meloidogyne hapla)

    USDA-ARS?s Scientific Manuscript database

    Plant-parasitic nematodes are microscopic soil worms that attack the roots of grape plants and cause yield loss. One of the most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards is Meloidogyne hapla, the northern root-knot nematode. The selection of plant...

  4. Stable MSAP markers for the distinction of Vitis vinifera cv Pinot noir clones.

    PubMed

    Ocaña, Juan; Walter, Bernard; Schellenbaum, Paul

    2013-11-01

    Grapevine is one of the most economically important fruit crops. Molecular markers have been used to study grapevine diversity. For instance, simple sequence repeats are a powerful tool for identification of grapevine cultivars, while amplified fragment length polymorphisms have shown their usefulness in intra-varietal diversity studies. Other techniques such as sequence-specific amplified polymorphism are based on the presence of mobile elements in the genome, but their detection lies upon their activity. Relevant attention has been drawn toward epigenetic sources of variation. In this study, a set of Vitis vinifera cv Pinot noir clones were analyzed using the methylation-sensitive amplified polymorphism technique with isoschizomers MspI and HpaII. Nine out of fourteen selective primer combinations were informative and generated two types of polymorphic fragments which were categorized as "stable" and "unstable." In total, 23 stable fragments were detected and they discriminated 92.5 % of the studied clones. Detected stable polymorphisms were either common to several clones, restricted to a few clones or unique to a single clone. The identification of these stable epigenetic markers will be useful in clonal diversity studies. We highlight the relevance of stable epigenetic variation in V. vinifera clones and analyze at which level these markers could be applicable for the development of forthright techniques for clonal distinction.

  5. Identification, characterization, and expression analysis of calmodulin and calmodulin-like genes in grapevine (Vitis vinifera) reveal likely roles in stress responses.

    PubMed

    Vandelle, Elodie; Vannozzi, Alessandro; Wong, Darren; Danzi, Davide; Digby, Anne-Marie; Dal Santo, Silvia; Astegno, Alessandra

    2018-06-04

    Calcium (Ca 2+ ) is an ubiquitous key second messenger in plants, where it modulates many developmental and adaptive processes in response to various stimuli. Several proteins containing Ca 2+ binding domain have been identified in plants, including calmodulin (CaM) and calmodulin-like (CML) proteins, which play critical roles in translating Ca 2+ signals into proper cellular responses. In this work, a genome-wide analysis conducted in Vitis vinifera identified three CaM- and 62 CML-encoding genes. We assigned gene family nomenclature, analyzed gene structure, chromosomal location and gene duplication, as well as protein motif organization. The phylogenetic clustering revealed a total of eight subgroups, including one unique clade of VviCaMs distinct from VviCMLs. VviCaMs were found to contain four EF-hand motifs whereas VviCML proteins have one to five. Most of grapevine CML genes were intronless, while VviCaMs were intron rich. All the genes were well spread among the 19 grapevine chromosomes and displayed a high level of duplication. The expression profiling of VviCaM/VviCML genes revealed a broad expression pattern across all grape organs and tissues at various developmental stages, and a significant modulation in biotic stress-related responses. Our results highlight the complexity of CaM/CML protein family also in grapevine, supporting the versatile role of its different members in modulating cellular responses to various stimuli, in particular to biotic stresses. This work lays the foundation for further functional and structural studies on specific grapevine CaMs/CMLs in order to better understand the role of Ca 2+ -binding proteins in grapevine and to explore their potential for further biotechnological applications. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. VvGONST-A and VvGONST-B are Golgi-localised GDP-sugar transporters in grapevine (Vitis vinifera L.).

    PubMed

    Utz, Daniella; Handford, Michael

    2015-02-01

    Plant nucleotide-sugar transporters (NSTs) are responsible for the import of nucleotide-sugar substrates into the Golgi lumen, for subsequent use in glycosylation reactions. NSTs are specific for either GDP- or UDP-sugars, and almost all transporters studied to date have been isolated from Arabidopsis thaliana L. In order to determine the conservation of the import mechanism in other higher plant species, here we report the identification and characterisation of VvGONST-A and VvGONST-B from grapevine (Vitis vinifera L. cv. Thompson Seedless), which are the orthologues of the GDP-sugar transporters GONST3 and GONST4 in Arabidopsis. Both grapevine NSTs possess the molecular features characteristic of GDP-sugar transporters, including a GDP-binding domain (GXL/VNK) towards the C-terminal. VvGONST-A and VvGONST-B expression is highest at berry setting and decreases throughout berry development and ripening. Moreover, we show using green fluorescent protein (GFP) tagged versions and brefeldin A treatments, that both are localised in the Golgi apparatus. Additionally, in vitro transport assays after expression of both NSTs in tobacco leaves indicate that VvGONST-A and VvGONST-B are capable of transporting GDP-mannose and GDP-glucose, respectively, but not a range of other UDP- and GDP-sugars. The possible functions of these NSTs in glucomannan synthesis and/or glycosylation of sphingolipids are discussed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Identification and functional characterisation of an allene oxide synthase from grapevine (Vitis vinifera L. Sauvignon blanc).

    PubMed

    Dumin, Walftor; Rostas, Michael; Winefield, Christopher

    2018-06-01

    Jasmonic acid (JA) is known to be an important phytohormone that orchestrates plant defence mechanisms against a range of herbivores and pathogens. Studies have suggested allene oxide synthase (AOS; E.C 4.2.1.92), the first committed step in JA biosynthesis, is essential for JA biosynthesis, yet clear evidence of its role as a biosynthetic regulatory point is lacking, in the main due to conflicting results derived from transgenic studies. However other studies lend support to a biosynthetic regulatory role for AOS. These studies have suggested that certain amino acid substitutions can increase the biosynthetic capacity of the enzyme and consequently improve pathogen tolerance in plants. To explore the role of AOS in Grapevine we isolated and functionally characterised this enzyme for the first time from Vitis vinifera L. Sauvignon blanc. The cloned AOS consisted of a single 1563 bp open reading frame. Comparative sequence analysis showed that the cloned gene (VvAOS) was highly conserved compared to those from other species. Complementation of an Arabidopsis AOS null mutant (aos) with VvAOS recovered the male sterile mutant phenotype and confirmed its function. Transcript analysis showed that VvAOS was wound responsive in leaves and was detectable in most tissues, with the highest levels of transcript in the mesocarp (pulp) of mature berries. Sub-cellular localisation of the VvAOS protein indicated that VvAOS is associated with the chloroplast membrane. Unexpectedly high levels of VvAOS transcript in complemented aos lines did not lead to predicted increases in JA. We have functionally characterised the sole AOS from Grapevine. Patterns of transcript accumulation in grapevine suggest roles in growth, development as well as an important role for JA in fruit ripening. Expression of VvAOS in Arabidopsis suggest complex epigenetic interactions between transgenic and endogenous AOS alleles, providing a possible explanation for why transgenic studies of AOS have

  8. Comparative transcriptomics of wild North American Vitis species

    USDA-ARS?s Scientific Manuscript database

    The cultivated grapevine (Vitis vinifera) is one of the world’s most important fruit crops. While grapes are now cultivated across the world, biotic and abiotic stresses often limit the production of grapes. Compared with the cultivated grape, wild grapevine species possess adaptive traits for str...

  9. Responses of In vitro-Grown Plantlets (Vitis vinifera) to Grapevine leafroll-Associated Virus-3 and PEG-Induced Drought Stress.

    PubMed

    Cui, Zhen-Hua; Bi, Wen-Lu; Hao, Xin-Yi; Xu, Yan; Li, Peng-Min; Walker, M Andrew; Wang, Qiao-Chun

    2016-01-01

    Stresses caused by viral diseases and drought have long threatened sustainable production of grapevine. These two stresses frequently occur simultaneously in many of grapevine growing regions of the world. We studied responses of in vitro-grown plantlets (Vitis vinifera) to Grapevine leafroll associated virus-3 (GLRaV-3) and PEG-induced drought stress. Results showed that stress induced by either virus infection or drought had negative effects on vegetative growth, caused significant decreases and increases in total soluble protein and free proline, respectively, induced obvious cell membrane damage and cell death, and markedly increased accumulations of [Formula: see text] and H2O2. Co-stress by virus and drought had much severer effects than single stress on the said parameters. Virus infection alone did not cause significant alternations in activities of POD, ROS, and SOD, and contents of MDA, which, however, markedly increased in the plantlets when grown under single drought stress and co-stress by the virus and drought. Levels of ABA increased, while those of IAA decreased in the plantlets stressed by virus infection or drought. Simultaneous stresses by the virus and drought had co-effects on the levels of ABA and IAA. Up-regulation of expressions of ABA biosynthesis genes and down-regulation of expressions of IAA biosynthesis genes were responsible for the alternations of ABA and IAA levels induced by either the virus infection or drought stress and co-stress by them. Experimental strategies established in the present study using in vitro system facilitate investigations on 'pure' biotic and abiotic stress on plants. The results obtained here provide new insights into adverse effects of stress induced by virus and drought, in single and particularly their combination, on plants, and allow us to re-orientate agricultural managements toward sustainable development of the agriculture.

  10. Novel functional microRNAs from virus-free and infected Vitis vinifera plants under water stress

    PubMed Central

    Pantaleo, Vitantonio; Vitali, Marco; Boccacci, Paolo; Miozzi, Laura; Cuozzo, Danila; Chitarra, Walter; Mannini, Franco; Lovisolo, Claudio; Gambino, Giorgio

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate the post-transcriptional control of several pathway intermediates, thus playing pivotal roles in plant growth, development and response to biotic and abiotic stresses. In recent years, the grapevine genome release, small(s)-RNAseq and degradome-RNAseq together has allowed the discovery and characterisation of many miRNA species, thus rendering the discovery of additional miRNAs difficult and uncertain. Taking advantage of the miRNA responsiveness to stresses and the availability of virus-free Vitis vinifera plants and those infected only by a latent virus, we have analysed grapevines subjected to drought in greenhouse conditions. The sRNA-seq and other sequence-specific molecular analyses have allowed us to characterise conserved miRNA expression profiles in association with specific eco-physiological parameters. In addition, we here report 12 novel grapevine-specific miRNA candidates and describe their expression profile. We show that latent viral infection can influence the miRNA profiles of V. vinifera in response to drought. Moreover, study of eco-physiological parameters showed that photosynthetic rate, stomatal conductance and hydraulic resistance to water transport were significantly influenced by drought and viral infection. Although no unequivocal cause–effect explanation could be attributed to each miRNA target, their contribution to the drought response is discussed. PMID:26833264

  11. Comparing Wild American Grapes with Vitis vinifera: A Metabolomics Study of Grape Composition.

    PubMed

    Narduzzi, Luca; Stanstrup, Jan; Mattivi, Fulvio

    2015-08-05

    We analyzed via untargeted UHPLC-ESI-Q-TOF-MS the metabolome of the berry tissues (skin, pulp, seeds) of some American Vitis species (Vitis cinerea, Vitis californica, Vitis arizonica), together with four interspecific hybrids, and seven Vitis vinifera cultivars, aiming to find differences in the metabolomes of the American Vitis sp. versus Vitis vinifera. Apart from the known differences, that is, more complex content of anthocyanins and stilbenoids in the American grapes, we observed higher procyanidin accumulation (tens to hundreds of times) in the vinifera skin and seeds in comparison to American berries, and we confirmed this result via phloroglucinolysis. In the American grapes considered, we did not detect the accumulation of pleasing aroma precursors (terpenoids, glycosides), whereas they are common in vinifera grapes. We also found accumulation of hydrolyzable tannins and their precursors in the skin of the wild American grapes, which has never been reported earlier in any of the species under investigation. Such information is needed to improve the design of new breeding programs, lowering the risk of retaining undesirable characteristics in the chemical phenotype of the offspring.

  12. Molecular characterization of DNA repair protein Ku70 from Vitis vinifera and its purification from transgenic tobacco.

    PubMed

    Tak, Himanshu; Mhatre, Minal

    2013-08-01

    The DNA double strand break repair in plants is preferentially by non homologous end joining (NHEJ) pathway. A key protein of NHEJ pathway is Ku70. We have identified Ku70 homolog (VvKu70) from grapevine genome database. In this report we characterize a Ku70 homologue from Vitis vinifera cv. Mango. The VvKu70 expression was found to increase strongly in response to gamma radiation. The transcript level of VvKu70 was found to increase up to 36 h in gamma irradiated shoots of grapevine. The expression of VvKu70 was found in many organs like stem, leaves and roots. A GFP fused VvKu70 protein was found to be nuclear localized which indicates that the VvKu70 is a nuclear localized protein. The VvKu70 identified by in silico approaches is present as a single copy number in V. vinifera cv. Mango genome. The VvKu70-GFP fused protein possesses ATPase activity and fails to bind dsDNA but binds ssDNA.

  13. Patterns of sequence polymorphism in the fleshless berry locus in cultivated and wild Vitis vinifera accessions

    PubMed Central

    2010-01-01

    Background Unlike in tomato, little is known about the genetic and molecular control of fleshy fruit development of perennial fruit trees like grapevine (Vitis vinifera L.). Here we present the study of the sequence polymorphism in a 1 Mb grapevine genome region at the top of chromosome 18 carrying the fleshless berry mutation (flb) in order, first to identify SNP markers closely linked to the gene and second to search for possible signatures of domestication. Results In total, 62 regions (17 SSR, 3 SNP, 1 CAPS and 41 re-sequenced gene fragments) were scanned for polymorphism along a 3.4 Mb interval (85,127-3,506,060 bp) at the top of the chromosome 18, in both V. vinifera cv. Chardonnay and a genotype carrying the flb mutation, V. vinifera cv. Ugni Blanc mutant. A nearly complete homozygosity in Ugni Blanc (wild and mutant forms) and an expected high level of heterozygosity in Chardonnay were revealed. Experiments using qPCR and BAC FISH confirmed the observed homozygosity. Under the assumption that flb could be one of the genes involved into the domestication syndrome of grapevine, we sequenced 69 gene fragments, spread over the flb region, representing 48,874 bp in a highly diverse set of cultivated and wild V. vinifera genotypes, to identify possible signatures of domestication in the cultivated V. vinifera compartment. We identified eight gene fragments presenting a significant deviation from neutrality of the Tajima's D parameter in the cultivated pool. One of these also showed higher nucleotide diversity in the wild compartments than in the cultivated compartments. In addition, SNPs significantly associated to berry weight variation were identified in the flb region. Conclusions We observed the occurrence of a large homozygous region in a non-repetitive region of the grapevine otherwise highly-heterozygous genome and propose a hypothesis for its formation. We demonstrated the feasibility to apply BAC FISH on the very small grapevine chromosomes and provided

  14. Influence of constitutive phenolic compounds on the response of grapevine (Vitis vinifera L.) leaves to infection by Plasmopara viticola.

    PubMed

    Latouche, Gwendal; Bellow, Sébastien; Poutaraud, Anne; Meyer, Sylvie; Cerovic, Zoran G

    2013-01-01

    Flavonols and hydroxycinnamic acids are known to contribute to plant resistance against pathogens, but there are few reports on the implication of flavonols in the resistance of grapevine against Plasmopara viticola, and none on the involvement of hydroxycinnamic acids. In order to analyze the effect of flavonols on P. viticola infection, variable amounts of flavonols were induced by different light conditions in otherwise phenologically identical leaves. Differences in content of leaf hydroxycinnamic acids were induced at the same time. A non-invasive monitoring of flavonols and hydroxycinnamic acids was performed with Dualex leaf-clip optical sensors. Whatever the light condition, there were no significant changes in flavonol or in hydroxycinnamic acid contents for control and inoculated leaves during the development of P. viticola until 6 days after inoculation. The violet-blue autofluorescence of stilbenes, the main phytoalexins of grapevine that accumulate in inoculated leaves, was used as an indicator of infection by P. viticola. The implication of leaf constitutive flavonols and hydroxycinnamic acids in the defence of Vitis vinifera against P. viticola could be investigated in vivo thanks to this indicator. The increase in stilbene violet-blue autofluorescence started earlier for leaves with low flavonol content than for leaves with higher content, suggesting that constitutive flavonols are able to slow down the infection by P. viticola. On the contrary, constitutive hydroxycinnamic acids did not seem to play a role in defence against P. viticola. The non-destructive nature of the methods used alleviates the major problem of destructive experiments: the large variability in leaf phenolic contents.

  15. Strategies for durable resistance to the grapevine powdery mildew fungus, Erysiphe necator

    USDA-ARS?s Scientific Manuscript database

    Nearly all cultivars of Vitis vinifera are highly susceptible to the grapevine powdery mildew fungus, Erysiphe necator. Grape breeders around the world are working to introgress resistance from wild Vitis. Of the widely-used introgressions, most involve dominant, race-specific resistance phenotype...

  16. Surface disinfection procedure and in vitro regeneration of grapevine (Vitis vinifera L.) axillary buds.

    PubMed

    Lazo-Javalera, M F; Troncoso-Rojas, R; Tiznado-Hernández, M E; Martínez-Tellez, M A; Vargas-Arispuro, I; Islas-Osuna, M A; Rivera-Domínguez, M

    2016-01-01

    Establishment of an efficient explants surface disinfection protocol is essential for in vitro cell and tissue culture as well as germplasm conservation, such as the case of Grapevine (Vitis spp.) culture. In this research, different procedures for disinfection and regeneration of field-grown grapevine cv. 'Flame seedless' axillary buds were evaluated. The buds were disinfected using either NaOCl or allyl, benzyl, phenyl and 2-phenylethyl isothiocyanates. Two different media for shooting and four media for rooting were tested. Shoot and root development per buds were registered. The best disinfection procedure with 90 % of tissue survival involved shaking for 60 min in a solution containing 20 % Clorox with 50 drops/L Triton(®) X-100. These tissues showed the potential to regenerate a complete plant. Plant regeneration was conducted using full strength Murashigue and Skoog (MS) medium supplemented with 8 µM benzyl aminopurine for shoot induction and multiplication, whereas rooting was obtained on half strength MS supplemented with 2 mg L(-1) of indole-3-butyric acid and 200 mg L(-1) of activated charcoal. In this work, it was designed the protocols for obtaining sterile field-grown grapevine buds and in vitro plant development. This methodology showed potential to produce vigorous and healthy plants in 5 weeks for clonal grapevine propagation. Regenerated plants were successfully established in soil.

  17. SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation

    PubMed Central

    Morales, Norma B.; Moskwa, Sam; Clingeleffer, Peter R.; Thomas, Mark R.

    2018-01-01

    Plant parasitic nematodes, including root knot nematode Meloidogyne species, cause extensive damage to agriculture and horticultural crops. As Vitis vinifera cultivars are susceptible to root knot nematode parasitism, rootstocks resistant to these soil pests provide a sustainable approach to maintain grapevine production. Currently, most of the commercially available root knot nematode resistant rootstocks are highly vigorous and take up excess potassium, which reduces wine quality. As a result, there is a pressing need to breed new root knot nematode resistant rootstocks, which have no impact on wine quality. To develop molecular markers that predict root knot nematode resistance for marker assisted breeding, a genetic approach was employed to identify a root knot nematode resistance locus in grapevine. To this end, a Meloidogyne javanica resistant Vitis cinerea accession was crossed to a susceptible Vitis vinifera cultivar Riesling and results from screening the F1 individuals support a model that root knot nematode resistance, is conferred by a single dominant allele, referred as MELOIDOGYNE JAVANICA RESISTANCE1 (MJR1). Further, MJR1 resistance appears to be mediated by a hypersensitive response that occurs in the root apical meristem. Single nucleotide polymorphisms (SNPs) were identified using genotyping-by-sequencing and results from association and genetic mapping identified the MJR1 locus, which is located on chromosome 18 in the Vitis cinerea accession. Validation of the SNPs linked to the MJR1 locus using a Sequenom MassARRAY platform found that only 50% could be validated. The validated SNPs that flank and co-segregate with the MJR1 locus can be used for marker-assisted selection for Meloidogyne javanica resistance in grapevine. PMID:29462210

  18. SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation.

    PubMed

    Smith, Harley M; Smith, Brady P; Morales, Norma B; Moskwa, Sam; Clingeleffer, Peter R; Thomas, Mark R

    2018-01-01

    Plant parasitic nematodes, including root knot nematode Meloidogyne species, cause extensive damage to agriculture and horticultural crops. As Vitis vinifera cultivars are susceptible to root knot nematode parasitism, rootstocks resistant to these soil pests provide a sustainable approach to maintain grapevine production. Currently, most of the commercially available root knot nematode resistant rootstocks are highly vigorous and take up excess potassium, which reduces wine quality. As a result, there is a pressing need to breed new root knot nematode resistant rootstocks, which have no impact on wine quality. To develop molecular markers that predict root knot nematode resistance for marker assisted breeding, a genetic approach was employed to identify a root knot nematode resistance locus in grapevine. To this end, a Meloidogyne javanica resistant Vitis cinerea accession was crossed to a susceptible Vitis vinifera cultivar Riesling and results from screening the F1 individuals support a model that root knot nematode resistance, is conferred by a single dominant allele, referred as MELOIDOGYNE JAVANICA RESISTANCE1 (MJR1). Further, MJR1 resistance appears to be mediated by a hypersensitive response that occurs in the root apical meristem. Single nucleotide polymorphisms (SNPs) were identified using genotyping-by-sequencing and results from association and genetic mapping identified the MJR1 locus, which is located on chromosome 18 in the Vitis cinerea accession. Validation of the SNPs linked to the MJR1 locus using a Sequenom MassARRAY platform found that only 50% could be validated. The validated SNPs that flank and co-segregate with the MJR1 locus can be used for marker-assisted selection for Meloidogyne javanica resistance in grapevine.

  19. Mitogen-activated protein kinase cascades in Vitis vinifera

    PubMed Central

    Çakır, Birsen; Kılıçkaya, Ozan

    2015-01-01

    Protein phosphorylation is one of the most important mechanisms to control cellular functions in response to external and endogenous signals. Mitogen-activated protein kinases (MAPK) are universal signaling molecules in eukaryotes that mediate the intracellular transmission of extracellular signals resulting in the induction of appropriate cellular responses. MAPK cascades are composed of four protein kinase modules: MAPKKK kinases (MAPKKKKs), MAPKK kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In plants, MAPKs are activated in response to abiotic stresses, wounding, and hormones, and during plant pathogen interactions and cell division. In this report, we performed a complete inventory of MAPK cascades genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with MAPK, MAPK kinases, MAPK kinase kinases and MAPK kinase kinase kinase kinase members of Arabidopsis thaliana, we revealed the existence of 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs in Vitis vinifera. We identified orthologs of V. vinifera putative MAPKs in different species, and ESTs corresponding to members of MAPK cascades in various tissues. This work represents the first complete inventory of MAPK cascades in V. vinifera and could help elucidate the biological and physiological functions of these proteins in V. vinifera. PMID:26257761

  20. RUN1 and REN1 Pyramiding in Grapevine (Vitis vinifera cv. Crimson Seedless) Displays an Improved Defense Response Leading to Enhanced Resistance to Powdery Mildew (Erysiphe necator)

    PubMed Central

    Agurto, Mario; Schlechter, Rudolf O.; Armijo, Grace; Solano, Esteban; Serrano, Carolina; Contreras, Rodrigo A.; Zúñiga, Gustavo E.; Arce-Johnson, Patricio

    2017-01-01

    Fungal pathogens are the cause of the most common diseases in grapevine and among them powdery mildew represents a major focus for disease management. Different strategies for introgression of resistance in grapevine are currently undertaken in breeding programs. For example, introgression of several resistance genes (R) from different sources for making it more durable and also strengthening the plant defense response. Taking this into account, we cross-pollinated P09-105/34, a grapevine plant carrying both RUN1 and REN1 pyramided loci of resistance to Erysiphe necator inherited from a pseudo-backcrossing scheme with Muscadinia rotundifolia and Vitis vinifera ‘Dzhandzhal Kara,’ respectively, with the susceptible commercial table grape cv. ‘Crimson Seedless.’ We developed RUN1REN1 resistant genotypes through conventional breeding and identified them by marker assisted selection. The characterization of defense response showed a highly effective defense mechanism against powdery mildew in these plants. Our results reveal that RUN1REN1 grapevine plants display a robust defense response against E. necator, leading to unsuccessful fungal establishment with low penetration rate and poor hypha development. This resistance mechanism includes reactive oxygen species production, callose accumulation, programmed cell death induction and mainly VvSTS36 and VvPEN1 gene activation. RUN1REN1 plants have a great potential as new table grape cultivars with durable complete resistance to E. necator, and are valuable germplasm to be included in grape breeding programs to continue pyramiding with other sources of resistance to grapevine diseases. PMID:28553300

  1. Colonization of Vitis vinifera by a Green Fluorescence Protein-Labeled, gfp-Marked Strain of Xylophilus ampelinus, the Causal Agent of Bacterial Necrosis of Grapevine

    PubMed Central

    Grall, Sophie; Manceau, Charles

    2003-01-01

    The dynamics of Xylophilus ampelinus were studied in Vitis vinifera cv. Ugni blanc using gfp-marked bacterial strains to evaluate the relative importance of epiphytic and endophytic phases of plant colonization in disease development. Currently, bacterial necrosis of grapevine is of economic importance in vineyards in three regions in France: the Cognac, Armagnac, and Die areas. This disease is responsible for progressive destruction of vine shoots, leading to their death. We constructed gfp-marked strains of the CFBP2098 strain of X. ampelinus for histological studies. We studied the colonization of young plants of V. vinifera cv. Ugni blanc by X. ampelinus after three types of artificial contamination in a growth chamber and in a greenhouse. (i) After wounding of the stem and inoculation, the bacteria progressed down to the crown through the xylem vessels, where they organized into biofilms. (ii) When the bacteria were forced into woody cuttings, they rarely colonized the emerging plantlets. Xylem vessels could play a key role in the multiplication and conservation of the bacteria, rather than being a route for plant colonization. (iii) When bacterial suspensions were sprayed onto the plants, bacteria progressed in two directions: both in emerging organs and down to the crown, thus displaying the importance of epiphytic colonization in disease development. PMID:12676663

  2. Colonization of Vitis vinifera by a green fluorescence protein-labeled, gfp-marked strain of Xylophilus ampelinus, the causal agent of bacterial necrosis of grapevine.

    PubMed

    Grall, Sophie; Manceau, Charles

    2003-04-01

    The dynamics of Xylophilus ampelinus were studied in Vitis vinifera cv. Ugni blanc using gfp-marked bacterial strains to evaluate the relative importance of epiphytic and endophytic phases of plant colonization in disease development. Currently, bacterial necrosis of grapevine is of economic importance in vineyards in three regions in France: the Cognac, Armagnac, and Die areas. This disease is responsible for progressive destruction of vine shoots, leading to their death. We constructed gfp-marked strains of the CFBP2098 strain of X. ampelinus for histological studies. We studied the colonization of young plants of V. vinifera cv. Ugni blanc by X. ampelinus after three types of artificial contamination in a growth chamber and in a greenhouse. (i) After wounding of the stem and inoculation, the bacteria progressed down to the crown through the xylem vessels, where they organized into biofilms. (ii) When the bacteria were forced into woody cuttings, they rarely colonized the emerging plantlets. Xylem vessels could play a key role in the multiplication and conservation of the bacteria, rather than being a route for plant colonization. (iii) When bacterial suspensions were sprayed onto the plants, bacteria progressed in two directions: both in emerging organs and down to the crown, thus displaying the importance of epiphytic colonization in disease development.

  3. Variation in the chilling requirement and bud burst rate of wild Vitis species

    USDA-ARS?s Scientific Manuscript database

    Cultivated grapevine (Vitis vinifera) is one of the most important agricultural fruit crops in the world. In the United States, grapevines are often grown in environments very different than the Mediterranean climate from where the cultivated species was domesticated. Predictions of changing clima...

  4. Relationship between Agronomic Parameters, Phenolic Composition of Grape Skin, and Texture Properties of Vitis vinifera L. cv. Tempranillo.

    PubMed

    García-Estévez, Ignacio; Andrés-García, Paula; Alcalde-Eon, Cristina; Giacosa, Simone; Rolle, Luca; Rivas-Gonzalo, Julián C; Quijada-Morín, Natalia; Escribano-Bailón, M Teresa

    2015-09-09

    The relationship between the agronomic parameters of grapevine and the phenolic composition of skin of Vitis vinifera L. cv. Tempranillo grapes was assessed. The physical and mechanical properties of berries and their skins were also determined and correlated to the chemical composition. Results showed a significant negative correlation between grapevine vigor-related parameters (such as leaf area and bunch weight) and anthocyanin composition, whereas the percentage (w/w) of seeds was negatively correlated with the amount of flavanols of grape skins. Texture properties of grape skins also showed an important relationship with chemical composition. Berry hardness showed a negative correlation with the coumaroyl-anthocyanin derivatives, but it was positively correlated to skin flavanic composition. Moreover, significant regressions with high coefficients of determination were found between phenolic composition and grapevine vigor-related and texture variables, thus pointing out that these parameters might be useful for estimating the phenolic composition of grape skins.

  5. Jasmonic acid-isoleucine formation in grapevine (Vitis vinifera L.) by two enzymes with distinct transcription profiles.

    PubMed

    Böttcher, Christine; Burbidge, Crista A; di Rienzo, Valentina; Boss, Paul K; Davies, Christopher

    2015-07-01

    The plant hormone jasmonic acid (JA) is essential for stress responses and the formation of reproductive organs, but its role in fruit development and ripening is unclear. Conjugation of JA to isoleucine is a crucial step in the JA signaling pathway since only JA-Ile is recognized by the jasmonate receptor. The conjugation reaction is catalyzed by JA-amido synthetases, belonging to the family of Gretchen Hagen3 (GH3) proteins. Here, in vitro studies of two grapevine (Vitis vinifera L. cv Shiraz) GH3 enzymes, VvGH3-7 and VvGH3-9, demonstrated JA-conjugating activities with an overlapping range of amino acid substrates, including isoleucine. Expression studies of the corresponding genes in grape berries combined with JA and JA-Ile measurements suggested a primary role for JA signaling in fruit set and cell division and did not support an involvement of JA in the ripening process. In response to methyl JA (MeJA) treatment, and in wounded and unwounded (distal) leaves, VvGH3-9 transcripts accumulated, indicating a participation in the JA response. In contrast, VvGH3-7 was unresponsive to MeJA and local wounding, demonstrating a differential transcriptional regulation of VvGH3-7 and VvGH3-9. The transient induction of VvGH3-7 in unwounded, distal leaves was suggestive of the involvement of an unknown mobile wound signal. © 2014 Institute of Botany, Chinese Academy of Sciences.

  6. Grapevine rootstock effects on scion sap phenolic levels, resistance to Xylella fastidiosa infection, and progression of Pierce’s disease

    USDA-ARS?s Scientific Manuscript database

    The xylem-limited bacterium Xylella fastidiosa (Xf) causes Pierce’s disease (PD), an important disease of grapevine, Vitis vinifera L. Grapevine rootstocks were developed to provide increased resistance to root disease, but rootstock effects on cane and vine diseases remain unclear. Grapevines that ...

  7. The Rhizosphere Bacterial Microbiota of Vitis vinifera cv. Pinot Noir in an Integrated Pest Management Vineyard.

    PubMed

    Novello, Giorgia; Gamalero, Elisa; Bona, Elisa; Boatti, Lara; Mignone, Flavio; Massa, Nadia; Cesaro, Patrizia; Lingua, Guido; Berta, Graziella

    2017-01-01

    Microorganisms associated with Vitis vinifera (grapevine) can affect its growth, health and grape quality. The aim of this study was to unravel the biodiversity of the bacterial rhizosphere microbiota of grapevine in an integrated pest management vineyard located in Piedmont, Italy. Comparison between the microbial community structure in the bulk and rhizosphere soil (variable: space) were performed. Moreover, the possible shifts of the bulk and rhizosphere soil microbiota according to two phenological stages such as flowering and early fruit development (variable: time) were characterized. The grapevine microbiota was identified using metagenomics and next-generation sequencing. Biodiversity was higher in the rhizosphere than in the bulk soil, independent of the phenological stage. Actinobacteria were the dominant class with frequencies ≥ 50% in all the soil samples, followed by Proteobacteria, Gemmatimonadetes, and Bacteroidetes. While Actinobacteria and Proteobacteria are well-known as being dominant in soil, this is the first time the presence of Gemmatimonadetes has been observed in vineyard soils. Gaiella was the dominant genus of Actinobacteria in all the samples. Finally, the microbiota associated with grapevine differed from the bulk soil microbiota and these variations were independent of the phenological stage of the plant.

  8. Genotyping points to divergent evolution of ‘Candidatus Phytoplasma asteris’ strains causing North American grapevine yellows and strains causing aster yellows

    USDA-ARS?s Scientific Manuscript database

    Grapevine yellows diseases occur in cultivated grapevine (Vitis vinifera L.) on several continents, where the diseases are known by different names depending upon the identities of the causal phytoplasmas. In this study, phytoplasma strains associated with grapevine yellows disease (North American ...

  9. Impact of Grapevine (Vitis vinifera) Varieties on Reproduction of the Northern Root-Knot Nematode (Meloidogyne hapla).

    PubMed

    Howland, Amanda D; Skinkis, Patricia A; Wilson, John H; Riga, Ekaterini; Pinkerton, John N; Schreiner, R Paul; Zasada, Inga A

    2015-06-01

    One of the most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards is Meloidogyne hapla; however, limited research exists on the impact of this nematode on V. vinifera. The objectives of this research were to determine the impact of M. hapla on Chardonnay and Cabernet Sauvignon vine establishment and to determine the host status of V. vinifera varieties/clones predominantly grown in Washington to M. hapla. In a microplot experiment, Chardonnay and Cabernet Sauvignon vines were planted into soil inoculated with different densities of M. hapla; population dynamics of M. hapla and vine performance were monitored over 3 yr. In greenhouse experiments, several clones representing five V. vinifera varieties, Chardonnay, Riesling, Cabernet Sauvignon, Merlot, and Syrah, were evaluated as hosts for M. hapla. In both microplot and greenhouse experiments, white varieties were significantly better hosts than red varieties. In the greenhouse experiments, Chardonnay and Riesling had 40% higher reproduction factor values than Syrah and Merlot, however, all varieties/clones screened were good hosts for M. hapla (reproduction factors > 3). In the microplot experiment, M. hapla eggs/g root were 4.5 times greater in Chardonnay compared to Cabernet Sauvignon 3 yr after planting but there was no evident impact of M. hapla on vine establishment.

  10. Impact of Grapevine (Vitis vinifera) Varieties on Reproduction of the Northern Root-Knot Nematode (Meloidogyne hapla)

    PubMed Central

    Howland, Amanda D.; Skinkis, Patricia A.; Wilson, John H.; Riga, Ekaterini; Pinkerton, John N.; Schreiner, R. Paul; Zasada, Inga A.

    2015-01-01

    One of the most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards is Meloidogyne hapla; however, limited research exists on the impact of this nematode on V. vinifera. The objectives of this research were to determine the impact of M. hapla on Chardonnay and Cabernet Sauvignon vine establishment and to determine the host status of V. vinifera varieties/clones predominantly grown in Washington to M. hapla. In a microplot experiment, Chardonnay and Cabernet Sauvignon vines were planted into soil inoculated with different densities of M. hapla; population dynamics of M. hapla and vine performance were monitored over 3 yr. In greenhouse experiments, several clones representing five V. vinifera varieties, Chardonnay, Riesling, Cabernet Sauvignon, Merlot, and Syrah, were evaluated as hosts for M. hapla. In both microplot and greenhouse experiments, white varieties were significantly better hosts than red varieties. In the greenhouse experiments, Chardonnay and Riesling had 40% higher reproduction factor values than Syrah and Merlot, however, all varieties/clones screened were good hosts for M. hapla (reproduction factors > 3). In the microplot experiment, M. hapla eggs/g root were 4.5 times greater in Chardonnay compared to Cabernet Sauvignon 3 yr after planting but there was no evident impact of M. hapla on vine establishment. PMID:26170476

  11. High-throughput sequencing data clarify evolutionary relationships among North American Vitis species and improve identification in USDA Vitis germplasm collections

    USDA-ARS?s Scientific Manuscript database

    Grapes are one of the most economically important berry crops worldwide, with the vast majority of production derived from the domesticated Eurasian species Vitis vinifera. Expansion of production into new areas, development of new cultivars, and concerns about adapting grapevines for changing clima...

  12. Cytochrome P450 CYP71BE5 in grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound (−)-rotundone

    PubMed Central

    Takase, Hideki; Sasaki, Kanako; Shinmori, Hideyuki; Shinohara, Akira; Mochizuki, Chihiro; Kobayashi, Hironori; Ikoma, Gen; Saito, Hiroshi; Matsuo, Hironori; Suzuki, Shunji; Takata, Ryoji

    2016-01-01

    (−)-Rotundone is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapevines (Vitis vinifera). It is considered to be a significant compound in wines and grapes because of its low sensory threshold and aroma properties. (−)-Rotundone was first identified in red wine made from the grape cultivar Syrah and here we report the identification of VvSTO2 as a α-guaiene 2-oxidase which can transform α-guaiene to (−)-rotundone in the grape cultivar Syrah. It is a cytochrome P450 (CYP) enzyme belonging to the CYP 71BE subfamily, which overlaps with the very large CYP71D family and, to the best of our knowledge, this is the first functional characterization of an enzyme from this family. VvSTO2 was expressed at a higher level in the Syrah grape exocarp (skin) in accord with the localization of (−)-rotundone accumulation in grape berries. α-Guaiene was also detected in the Syrah grape exocarp at an extremely high concentration. These findings suggest that (−)-rotundone accumulation is regulated by the VvSTO2 expression along with the availability of α-guaiene as a precursor. VvSTO2 expression during grape maturation was considerably higher in Syrah grape exocarp compared to Merlot grape exocarp, consistent with the patterns of α-guaiene and (−)-rotundone accumulation. On the basis of these findings, we propose that VvSTO2 may be a key enzyme in the biosynthesis of (−)-rotundone in grapevines by acting as a α-guaiene 2-oxidase. PMID:26590863

  13. Influence of a deficit irrigation regime during ripening on berry composition in grapevines (Vitis vinifera L.) grown in semi-arid areas.

    PubMed

    López, María-Isabel; Sánchez, María-Teresa; Díaz, Antonio; Ramírez, Pilar; Morales, José

    2007-11-01

    A study was made of the effects of irrigation management strategies during ripening on the quality of Spanish field-grown grapevine (Vitis vinifera L.) cultivars (Baladi, Airén, Montepila, Muscat Blanc à Petits Grains and Pedro Ximénez) grown under the "Montilla-Moriles" Appellation of Origin in Cordoba, Spain. From 1999 to 2002, two water-availability regimes were established: irrigation and non-irrigation. The study aimed to ascertain the effect of irrigation on berry development and ripening, and hence on grape juice quality. Changes in phenological stages, vegetative growth, vineyard yield, berry weight, total soluble solids, titrable acidity, pH, tartaric acid, malic acid, and potassium content were monitored. No significant differences were noted in phenological phases between the non-irrigation and deficit irrigation regimes. The Ravaz index, pruning weight, vineyard yield and berry weight were significantly higher in all varieties and years under deficit irrigation. Deficit irrigation induced higher titrable acidity, higher malic acid and potassium contents and a lower pH, but had no significant effects on berry sugar accumulation or tartaric acid content. Deficit irrigation thus appears to be a promising technique for the production of quality young wines in semi-arid areas.

  14. The coding region of the UFGT gene is a source of diagnostic SNP markers that allow single-locus DNA genotyping for the assessment of cultivar identity and ancestry in grapevine (Vitis vinifera L.)

    PubMed Central

    2013-01-01

    Background Vitis vinifera L. is one of society’s most important agricultural crops with a broad genetic variability. The difficulty in recognizing grapevine genotypes based on ampelographic traits and secondary metabolites prompted the development of molecular markers suitable for achieving variety genetic identification. Findings Here, we propose a comparison between a multi-locus barcoding approach based on six chloroplast markers and a single-copy nuclear gene sequencing method using five coding regions combined with a character-based system with the aim of reconstructing cultivar-specific haplotypes and genotypes to be exploited for the molecular characterization of 157 V. vinifera accessions. The analysis of the chloroplast target regions proved the inadequacy of the DNA barcoding approach at the subspecies level, and hence further DNA genotyping analyses were targeted on the sequences of five nuclear single-copy genes amplified across all of the accessions. The sequencing of the coding region of the UFGT nuclear gene (UDP-glucose: flavonoid 3-0-glucosyltransferase, the key enzyme for the accumulation of anthocyanins in berry skins) enabled the discovery of discriminant SNPs (1/34 bp) and the reconstruction of 130 V. vinifera distinct genotypes. Most of the genotypes proved to be cultivar-specific, and only few genotypes were shared by more, although strictly related, cultivars. Conclusion On the whole, this technique was successful for inferring SNP-based genotypes of grapevine accessions suitable for assessing the genetic identity and ancestry of international cultivars and also useful for corroborating some hypotheses regarding the origin of local varieties, suggesting several issues of misidentification (synonymy/homonymy). PMID:24298902

  15. Cytochrome P450 CYP71BE5 in grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound (-)-rotundone.

    PubMed

    Takase, Hideki; Sasaki, Kanako; Shinmori, Hideyuki; Shinohara, Akira; Mochizuki, Chihiro; Kobayashi, Hironori; Ikoma, Gen; Saito, Hiroshi; Matsuo, Hironori; Suzuki, Shunji; Takata, Ryoji

    2016-02-01

    (-)-Rotundone is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapevines (Vitis vinifera). It is considered to be a significant compound in wines and grapes because of its low sensory threshold and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah and here we report the identification of VvSTO2 as a α-guaiene 2-oxidase which can transform α-guaiene to (-)-rotundone in the grape cultivar Syrah. It is a cytochrome P450 (CYP) enzyme belonging to the CYP 71BE subfamily, which overlaps with the very large CYP71D family and, to the best of our knowledge, this is the first functional characterization of an enzyme from this family. VvSTO2 was expressed at a higher level in the Syrah grape exocarp (skin) in accord with the localization of (-)-rotundone accumulation in grape berries. α-Guaiene was also detected in the Syrah grape exocarp at an extremely high concentration. These findings suggest that (-)-rotundone accumulation is regulated by the VvSTO2 expression along with the availability of α-guaiene as a precursor. VvSTO2 expression during grape maturation was considerably higher in Syrah grape exocarp compared to Merlot grape exocarp, consistent with the patterns of α-guaiene and (-)-rotundone accumulation. On the basis of these findings, we propose that VvSTO2 may be a key enzyme in the biosynthesis of (-)-rotundone in grapevines by acting as a α-guaiene 2-oxidase. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Performance of a New Model for Predicting End of Flowering Date (bbch 69) of Grapevine (Vitis Vinifera L.)

    NASA Astrophysics Data System (ADS)

    Gentilucci, Matteo

    2017-04-01

    The end of flowering date (BBCH 69) is an important phenological stage for grapevine (Vitis Vinifera L.), in fact up to this date the growth is focused on the plant and gradually passes on the berries through fruit set. The aim of this study is to perform a model to predict the date of the end of flowering (BBCH69) for some grapevine varieties. This research carried out using three cultivars of grapevine (Maceratino, Montepulciano, Sangiovese) in three different locations (Macerata, Morrovalle and Potenza Picena), places of an equal number of wine farms for the time interval between 2006 and 2013. In order to have reliable temperatures for each location, the data of 6 weather stations near these farms have been interpolated using cokriging methods with elevation as independent variable. The procedure to predict the end of flowering date starts with an investigation of cardinal temperatures typical of each grapevine cultivar. In fact the analysis is characterized by four temperature thresholds (cardinals): minimum activity temperature (TCmin = below this temperature there is no growth for the plant), lower optimal temperature (TLopt = above this temperature there is maximum growth), upper optimal temperature (TUopt = below this temperature there is maximum growth) and maximum activity temperature (TC max = above this temperature there is no growth). Thus this model take into consideration maximum, mean and minimum daily temperatures of each location, relating them with the four above mentioned cultivar temperature thresholds. In this way it has been obtained some possible cases (32) corresponding to as many equations, depending on the position of temperatures compared with the thresholds, in order to calculate the amount of growing degree units (GDU) for each day. Several iterative tests (about 1000 for each cultivar) have been performed, changing the values of temperature thresholds and GDU in order to find the best possible combination which minimizes error

  17. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera) Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    PubMed Central

    2010-01-01

    Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS) were predicted by in silico analysis of the grapevine (Vitis vinifera) genome assembly [1]. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information about gene structure and

  18. Comparison of odor-active compounds in grapes and wines from vitis vinifera and non-foxy American grape species.

    PubMed

    Sun, Qun; Gates, Matthew J; Lavin, Edward H; Acree, Terry E; Sacks, Gavin L

    2011-10-12

    Native American grape (Vitis) species have many desirable properties for winegrape breeding, but hybrids of these non-vinifera wild grapes with Vitis vinifera often have undesirable aromas. Other than the foxy-smelling compounds in Vitis labrusca and Vitis rotundifolia , the aromas inherent to American Vitis species are not well characterized. In this paper, the key odorants in wine produced from the American grape species Vitis riparia and Vitis cinerea were characterized in comparison to wine produced from European winegrapes (V. vinifera). Volatile compounds were extracted by solid-phase microextraction (SPME) and identified by gas chromatography-olfactometry/mass spectrometry (GC-O/MS). On the basis of flavor dilution values, most grape-derived compounds with fruity and floral aromas were at similar potency, but non-vinifera wines had higher concentrations of odorants with vegetative and earthy aromas: eugenol, cis-3-hexenol, 1,8-cineole, 3-isobutyl-2-methoxypyrazine (IBMP), and 3-isopropyl-2-methoxypyrazine (IPMP). Elevated concentrations of these compounds in non-vinifera wines were confirmed by quantitative GC-MS. Concentrations of IBMP and IPMP were well above sensory threshold in both non-vinifera wines. In a follow-up study, IBMP and IPMP were surveyed in 31 accessions of V. riparia, V. rupestris, and V. cinerea. Some accessions had concentrations of >350 pg/g IBMP or >30 pg/g IPMP, well above concentrations reported in previous studies of harvest-ripe vinifera grapes. Methyl anthranilate and 2-aminoacetophenone, key odorants responsible for the foxiness of V. labrusca grapes, were undetectable in both the V. riparia and V. cinerea wines (<10 μg/L).

  19. Genetic structure of the fungal grapevine pathogen Eutypa lata from four continents

    USDA-ARS?s Scientific Manuscript database

    Deciphering the geographic origins of pathogens and elucidating the population biology of these microscopic organisms are necessary steps to establish effective disease-control strategies. The generalist ascomycete fungus Eutypa lata causes Eutypa dieback of grapevine (Vitis vinifera) worldwide. To ...

  20. Genetic structure of the fungal grapevine pathogen Eutypa lata from four continents

    USDA-ARS?s Scientific Manuscript database

    The generalist ascomycete fungus Eutypa lata causes Eutypa dieback of grapevine (Vitis vinifera) worldwide. To decipher the cosmopolitan distribution of this fungus, the population genetic structure of 17 geographic samples was investigated from four continental regions (Australia, California, Europ...

  1. Induction of stilbene phytoalexins in grapevine (Vitis vinifera) and transgenic stilbene synthase-apple plants (Malus domestica) by a culture filtrate of Aureobasidium pullulans.

    PubMed

    Rühmann, Susanne; Pfeiffer, Judith; Brunner, Philipp; Szankowski, Iris; Fischer, Thilo C; Forkmann, Gert; Treutter, Dieter

    2013-11-01

    Products containing the epiphytic yeast Aureobasidium pullulans are commercially available and applied by fruit growers to prevent several fungal and bacterial diseases of fruit trees. The proposed beneficial mechanisms relate to limitations of space and nutrients for the pathogens in presence of the rapidly proliferating yeast cells. These explanations ignore the potential of yeasts to elicit the plant's defense. Our experiments aim at clarifying if an autoclaved and centrifuged suspension of A. pullulans may induce defense mechanisms. As a model system, the biosynthesis and accumulation of stilbene phytoalexins in callus and shoots of grapevine Vitis vinifera grown in vitro was used. Yeast application to the plant tissue stimulated stilbene biosynthesis, sometimes at the cost of flavonoids. The expression of the gene encoding stilbene synthase was enhanced and the enzyme showed higher activity while chalcone synthase activity and expression was reduced in some cases. An accumulation of stilbenes was also found in transgenic apple trees (Malus domestica cv. Holsteiner Cox) harboring the stilbene synthase-gene under control of its own promoter. These results clearly show that the application of A. pullulans may induce defense mechanisms of the treated plants. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Effects of Bois noir on carbon assimilation, transpiration, stomatal conductance of leaves and yield of grapevine (Vitis vinifera) cv. Chardonnay.

    PubMed

    Endeshaw, Solomon T; Murolo, Sergio; Romanazz, Gianfranco; Neri, Davide

    2012-06-01

    Bois noir (BN) is one of the main phytoplasma diseases of grapevine (Vitis vinifera). It is widespread, and can cause severe losses in European vineyards. The infective agent colonizes phloem elements and induces visible symptoms of leaf yellowing or reddening after a relatively long incubation period. As the most sensitive cultivars to BN, Chardonnay plants were grouped as healthy or symptomatic in spring, based on the records from the previous year. Leaf gas exchange and chlorophyll a fluorescence were measured weekly from July to September in healthy plants, and in symptomatic and asymptomatic leaves from symptomatic plants. The midday relative water content (mRWC) was measured once per month. The detection of phytoplasma DNA by nested-polymerase chain reaction revealed BN infection in symptomatic leaf samples at the end of September. A significant decrease in pigment content and maximum quantum efficiency of photosystem II (Fv/Fm) of these symptomatic leaves was detected from July to September, although in the asymptomatic leaves of the symptomatic plants the net photosynthesis (Pn) decrease was not significant. In the leaves from the healthy plants, Pn and transpiration were relatively stable. Of note, in July, an initially healthy plant showed a strong Pn reduction that was followed by visible leaf yellowing symptoms only in August. The phytoplasma infection also stimulated significant reductions in mRWC of the symptomatic leaves, with a final large decrease in yield.

  3. Morphology and Hydraulic Architecture of Vitis vinifera L. cv. Syrah and Torrontés Riojano Plants Are Unaffected by Variations in Red to Far-Red Ratio

    PubMed Central

    González, Carina Verónica; Jofré, María Florencia; Vila, Hernán F.; Stoffel, Markus; Bottini, Rubén; Giordano, Carla Valeria

    2016-01-01

    Plants have evolved an array of specific photoreceptors to acclimate to the light environment. By sensing light signals, photoreceptors modulate plant morphology, carbon- and water-physiology, crop yield and quality of harvestable organs, among other responses. Many cultural practices and crop management decisions alter light quantity and quality perceived by plants cultivated in the field. Under full sunlight, phytochromes perceive high red to far red ratios (R:FR; 1.1), whereas overhead or lateral low R:FR (below 1.1) are sensed in the presence of plant shade or neighboring plants, respectively. Grapevine is one of the most important fruit crops in the world. To date, studies on grapevine response to light focused on different Photosynthetic Active Radiation (PAR) levels; however, limited data exist about its response to light quality. In this study we aimed to investigate morphological, biochemical, and hydraulic responses of Vitis vinifera to variations in R:FR. Therefore, we irradiated Syrah and Torrontés Riojano plants, grown in a glasshouse, with lateral FR light (low lateral R:FR treatment), while others, that were kept as controls, were not irradiated (ambient lateral R:FR treatment). In response to the low lateral R:FR treatment, grapevine plants did not display any of the SAS morphological markers (i.e. stem length, petiole length and angle, number of lateral shoots) in any of the cultivars assessed, despite an increase in gibberelins and auxin concentrations in leaf tissues. Low lateral R:FR did not affect dry matter partitioning, water-related traits (stomata density and index, wood anatomy), or water-related physiology (plant conductance, transpiration rate, stem hydraulic conductivity, stomatal conductance). None of the Vitis vinifera varieties assessed displayed the classical morphological and hydraulic responses associated to SAS induced by phytochromes. We discuss these results in the context of natural grapevine environment and agronomical

  4. Morphology and Hydraulic Architecture of Vitis vinifera L. cv. Syrah and Torrontés Riojano Plants Are Unaffected by Variations in Red to Far-Red Ratio.

    PubMed

    González, Carina Verónica; Jofré, María Florencia; Vila, Hernán F; Stoffel, Markus; Bottini, Rubén; Giordano, Carla Valeria

    2016-01-01

    Plants have evolved an array of specific photoreceptors to acclimate to the light environment. By sensing light signals, photoreceptors modulate plant morphology, carbon- and water-physiology, crop yield and quality of harvestable organs, among other responses. Many cultural practices and crop management decisions alter light quantity and quality perceived by plants cultivated in the field. Under full sunlight, phytochromes perceive high red to far red ratios (R:FR; 1.1), whereas overhead or lateral low R:FR (below 1.1) are sensed in the presence of plant shade or neighboring plants, respectively. Grapevine is one of the most important fruit crops in the world. To date, studies on grapevine response to light focused on different Photosynthetic Active Radiation (PAR) levels; however, limited data exist about its response to light quality. In this study we aimed to investigate morphological, biochemical, and hydraulic responses of Vitis vinifera to variations in R:FR. Therefore, we irradiated Syrah and Torrontés Riojano plants, grown in a glasshouse, with lateral FR light (low lateral R:FR treatment), while others, that were kept as controls, were not irradiated (ambient lateral R:FR treatment). In response to the low lateral R:FR treatment, grapevine plants did not display any of the SAS morphological markers (i.e. stem length, petiole length and angle, number of lateral shoots) in any of the cultivars assessed, despite an increase in gibberelins and auxin concentrations in leaf tissues. Low lateral R:FR did not affect dry matter partitioning, water-related traits (stomata density and index, wood anatomy), or water-related physiology (plant conductance, transpiration rate, stem hydraulic conductivity, stomatal conductance). None of the Vitis vinifera varieties assessed displayed the classical morphological and hydraulic responses associated to SAS induced by phytochromes. We discuss these results in the context of natural grapevine environment and agronomical

  5. A transcriptome analysis of two grapevine populations segregating for tendril phyllotaxy

    USDA-ARS?s Scientific Manuscript database

    The shoot structure of cultivated grapevine Vitis vinifera L. typically exhibits a 3-node modular repetitive pattern, two sequential leaf-opposed tendrils followed by a tendril-free node. In this study, we investigated the molecular basis of this pattern by characterizing differentially expressed ge...

  6. Impacts of Grapevine Leafroll Disease on Fruit Yield and Grape and Wine Chemistry in a Wine Grape (Vitis vinifera L.) Cultivar

    PubMed Central

    Gutha, Linga R.; Larsen, Richard C.; Henick-Kling, Thomas; Harbertson, James F.; Naidu, Rayapati A.

    2016-01-01

    Grapevine leafroll disease (GLD) is an economically important virus disease affecting wine grapes (Vitis vinifera L.), but little is known about its effect on wine chemistry and sensory composition of wines. In this study, impacts of GLD on fruit yield, berry quality and wine chemistry and sensory features were investigated in a red wine grape cultivar planted in a commercial vineyard. Own-rooted Merlot vines showing GLD symptoms and tested positive for Grapevine leafroll-associated virus 3 and adjacent non-symptomatic vines that tested negative for the virus were compared during three consecutive seasons. Number and total weight of clusters per vine were significantly less in symptomatic relative to non-symptomatic vines. In contrast to previous studies, a time-course analysis of juice from grapes harvested at different stages of berry development from symptomatic and non-symptomatic vines indicated more prominent negative impacts of GLD on total soluble solids (TSS) and berry skin anthocyanins than in juice pH and titratable acidity. Differences in TSS between grapes of symptomatic and non-symptomatic vines were more pronounced after the onset of véraison, with significantly lower concentrations of TSS in grapes from symptomatic vines throughout berry ripening until harvest. Wines made from grapes of GLD-affected vines had significantly lower alcohol, polymeric pigments, and anthocyanins compared to corresponding wines from grapes of non-symptomatic vines. Sensory descriptive analysis of 2010 wines indicated significant differences in color, aroma and astringency between wines made from grapes harvested from GLD-affected and unaffected vines. The impacts of GLD on yield and fruit and wine quality traits were variable between the seasons, with greater impacts observed during a cooler season, suggesting the influence of host plant × environment interactions on overall impacts of the disease. PMID:26919614

  7. Impacts of Grapevine Leafroll Disease on Fruit Yield and Grape and Wine Chemistry in a Wine Grape (Vitis vinifera L.) Cultivar.

    PubMed

    Alabi, Olufemi J; Casassa, L Federico; Gutha, Linga R; Larsen, Richard C; Henick-Kling, Thomas; Harbertson, James F; Naidu, Rayapati A

    2016-01-01

    Grapevine leafroll disease (GLD) is an economically important virus disease affecting wine grapes (Vitis vinifera L.), but little is known about its effect on wine chemistry and sensory composition of wines. In this study, impacts of GLD on fruit yield, berry quality and wine chemistry and sensory features were investigated in a red wine grape cultivar planted in a commercial vineyard. Own-rooted Merlot vines showing GLD symptoms and tested positive for Grapevine leafroll-associated virus 3 and adjacent non-symptomatic vines that tested negative for the virus were compared during three consecutive seasons. Number and total weight of clusters per vine were significantly less in symptomatic relative to non-symptomatic vines. In contrast to previous studies, a time-course analysis of juice from grapes harvested at different stages of berry development from symptomatic and non-symptomatic vines indicated more prominent negative impacts of GLD on total soluble solids (TSS) and berry skin anthocyanins than in juice pH and titratable acidity. Differences in TSS between grapes of symptomatic and non-symptomatic vines were more pronounced after the onset of véraison, with significantly lower concentrations of TSS in grapes from symptomatic vines throughout berry ripening until harvest. Wines made from grapes of GLD-affected vines had significantly lower alcohol, polymeric pigments, and anthocyanins compared to corresponding wines from grapes of non-symptomatic vines. Sensory descriptive analysis of 2010 wines indicated significant differences in color, aroma and astringency between wines made from grapes harvested from GLD-affected and unaffected vines. The impacts of GLD on yield and fruit and wine quality traits were variable between the seasons, with greater impacts observed during a cooler season, suggesting the influence of host plant × environment interactions on overall impacts of the disease.

  8. Whole-Genome Survey of the Putative ATP-Binding Cassette Transporter Family Genes in Vitis vinifera

    PubMed Central

    Çakır, Birsen; Kılıçkaya, Ozan

    2013-01-01

    The ATP-binding cassette (ABC) protein superfamily constitutes one of the largest protein families known in plants. In this report, we performed a complete inventory of ABC protein genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with ABC protein members of Arabidopsis thaliana, we identified 135 putative ABC proteins with 1 or 2 NBDs in V. vinifera. Of these, 120 encode intrinsic membrane proteins, and 15 encode proteins missing TMDs. V. vinifera ABC proteins can be divided into 13 subfamilies with 79 “full-size,” 41 “half-size,” and 15 “soluble” putative ABC proteins. The main feature of the Vitis ABC superfamily is the presence of 2 large subfamilies, ABCG (pleiotropic drug resistance and white-brown complex homolog) and ABCC (multidrug resistance-associated protein). We identified orthologs of V. vinifera putative ABC transporters in different species. This work represents the first complete inventory of ABC transporters in V. vinifera. The identification of Vitis ABC transporters and their comparative analysis with the Arabidopsis counterparts revealed a strong conservation between the 2 species. This inventory could help elucidate the biological and physiological functions of these transporters in V. vinifera. PMID:24244377

  9. Effects of Grapevine Leafroll associated Virus 3 (GLRaV-3) and duration of infection on fruit composition and wine chemical profile of Vitis vinifera L. cv. Sauvignon blanc.

    PubMed

    Montero, R; Mundy, D; Albright, A; Grose, C; Trought, M C T; Cohen, D; Chooi, K M; MacDiarmid, R; Flexas, J; Bota, J

    2016-04-15

    In order to determine the effects of Grapevine Leafroll associated Virus 3 (GLRaV-3) on fruit composition and chemical profile of juice and wine from Vitis vinifera L. cv. Sauvignon blanc grown in New Zealand, composition variables were measured on fruit from vines either infected with GLRaV-3 (established or recent infections) or uninfected vines. Physiological ripeness (20.4°Brix) was the criterion established to determine the harvest date for each of the three treatments. Date of grape ripeness was strongly affected by virus infection. In juice and wine, GLRaV-3 infection prior to 2008 reduced titratable acidity compared with the uninfected control. Differences observed in amino acids from the three infection status groups did not modify basic wine chemical properties. In conclusion, GLRaV-3 infection slowed grape ripening, but at equivalent ripeness to result in minimal effects on the juice and wine chemistry. Time of infection produced differences in specific plant physiological variables. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Strategies for RUN1 deployment using RUN2 and REN2 to manage grapevine powdery mildew informed by studies of race-specificity

    USDA-ARS?s Scientific Manuscript database

    The TIR-NB-LRR gene, Resistance to Uncinula necator 1 (RUN1), from Vitis rotundifolia was recently identified and confirmed to confer resistance to the grapevine powdery mildew fungus Erysiphe necator (syn. U. necator) in transgenic Vitis vinifera cultivars. However, powdery mildew cleistothecia ha...

  11. Global genetic structure of the fungal grapevine pathogen Eutypa lata

    USDA-ARS?s Scientific Manuscript database

    The ascomycete fungus Eutypa lata is a trunk pathogen of cultivated grapevine (Vitis vinifera) in all major grape-growing regions of the world. Throughout its geographic range, it is considered a generalist pathogen that can complete its life cycle on a broad range of hosts. To decipher the cosmopol...

  12. The alternative oxidase family of Vitis vinifera reveals an attractive model to study the importance of genomic design.

    PubMed

    Costa, José Hélio; de Melo, Dirce Fernandes; Gouveia, Zélia; Cardoso, Hélia Guerra; Peixe, Augusto; Arnholdt-Schmitt, Birgit

    2009-12-01

    'Genomic design' refers to the structural organization of gene sequences. Recently, the role of intron sequences for gene regulation is being better understood. Further, introns possess high rates of polymorphism that are considered as the major source for speciation. In molecular breeding, the length of gene-specific introns is recognized as a tool to discriminate genotypes with diverse traits of agronomic interest. 'Economy selection' and 'time-economy selection' have been proposed as models for explaining why highly expressed genes typically contain small introns. However, in contrast to these theories, plant-specific selection reveals that highly expressed genes contain introns that are large. In the presented research, 'wet'Aox gene identification from grapevine is advanced by a bioinformatics approach to study the species-specific organization of Aox gene structures in relation to available expressed sequence tag (EST) data. Two Aox1 and one Aox2 gene sequences have been identified in Vitis vinifera using grapevine cultivars from Portugal and Germany. Searching the complete genome sequence data of two grapevine cultivars confirmed that V. vinifera alternative oxidase (Aox) is encoded by a small multigene family composed of Aox1a, Aox1b and Aox2. An analysis of EST distribution revealed high expression of the VvAox2 gene. A relationship between the atypical long primary transcript of VvAox2 (in comparison to other plant Aox genes) and its expression level is suggested. V. vinifera Aox genes contain four exons interrupted by three introns except for Aox1a which contains an additional intron in the 3'-UTR. The lengths of primary Aox transcripts were estimated for each gene in two V. vinifera varieties: PN40024 and Pinot Noir. In both varieties, Aox1a and Aox1b contained small introns that corresponded to primary transcript lengths ranging from 1501 to 1810 bp. The Aox2 of PN40024 (12 329 bp) was longer than that from Pinot Noir (7279 bp) because of selection

  13. Susceptibility of cultivated and wild Vitis to wood infection by fungal trunk pathogens

    USDA-ARS?s Scientific Manuscript database

    Cultivars of European grapevine, Vitis vinifera, show varying levels of susceptibility to Eutypa dieback and Esca, in terms of foliar symptoms. However, little is known regarding cultivar susceptibility of their woody tissues to canker formation. Accordingly, we evaluated the relative susceptibility...

  14. VULNERABILITY TO CAVITATION IN GRAPEVINES HAS BEEN OVERESTIMATED BY THE CENTRIFUGE TECHNIQUE

    USDA-ARS?s Scientific Manuscript database

    Grapevines are considered among the most vulnerable woody plant species to water stress-induced cavitation with embolism forming at slight tensions. However, we found that native embolism in stems of field grown Vitis vinifera cv. Chardonnay never exceeded 30% despite xylem water potentials ('x) rea...

  15. Grapevines respond to glassy-winged sharpshooter (Homalodisca vitripennis) oviposition by increasing local and systemic terpenoid levels

    USDA-ARS?s Scientific Manuscript database

    Grapevines (Vitis vinifera) have been observed to respond to oviposition by glassy-winged sharpshooters [Homalodisca vitripennis (Germar)(Hemiptera: Cicadellidae)] by producing volatile compounds that attract egg parasitoids such as Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae). Recent work ...

  16. Cadophora species as trunk pathogens and wood-infecting fungi of grapevine in North America

    USDA-ARS?s Scientific Manuscript database

    Cadophora species, in particular Cadophora luteo-olivacea, are reported from grapevine (Vitis vinifera L.) in California, South Africa, Spain, Uruguay, and Canada. Frequent isolation from vines co-infected with the Esca pathogens (Togninia minima, Phaeomoniella chlamydospora), and confirmation of it...

  17. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera

    PubMed Central

    2014-01-01

    Background WRKY transcription factors are one of the largest families of transcriptional regulators in plants. WRKY genes are not only found to play significant roles in biotic and abiotic stress response, but also regulate growth and development. Grapevine (Vitis vinifera) production is largely limited by stressful climate conditions such as cold stress and the role of WRKY genes in the survival of grapevine under these conditions remains unknown. Results We identified a total of 59 VvWRKYs from the V. vinifera genome, belonging to four subgroups according to conserved WRKY domains and zinc-finger structure. The majority of VvWRKYs were expressed in more than one tissue among the 7 tissues examined which included young leaves, mature leaves, tendril, stem apex, root, young fruits and ripe fruits. Publicly available microarray data suggested that a subset of VvWRKYs was activated in response to diverse stresses. Quantitative real-time PCR (qRT-PCR) results demonstrated that the expression levels of 36 VvWRKYs are changed following cold exposure. Comparative analysis was performed on data from publicly available microarray experiments, previous global transcriptome analysis studies, and qRT-PCR. We identified 15 VvWRKYs in at least two of these databases which may relate to cold stress. Among them, the transcription of three genes can be induced by exogenous ABA application, suggesting that they can be involved in an ABA-dependent signaling pathway in response to cold stress. Conclusions We identified 59 VvWRKYs from the V. vinifera genome and 15 of them showed cold stress-induced expression patterns. These genes represented candidate genes for future functional analysis of VvWRKYs involved in the low temperature-related signal pathways in grape. PMID:24755338

  18. First report of a new grapevine yellows disease in Peru and its association with infection by a ‘Candidatus Phytoplasma brasiliense’-related phytoplasma strain

    USDA-ARS?s Scientific Manuscript database

    Grapevine (Vitis vinifera L.), key source for wine production, is one of the most valuable horticultural crops in the world. Native to the Mediterranean region, V. vinifera is now cultivated on every continent and covers nearly eight million hectares of land. However, the health of this cultivate...

  19. Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera.

    PubMed

    Vega, Andrea; Gutiérrez, Rodrigo A; Peña-Neira, Alvaro; Cramer, Grant R; Arce-Johnson, Patricio

    2011-10-01

    Virus infections in grapevine cause important economic losses and affect fruit quality worldwide. Although the phenotypic symptoms associated to viral infections have been described, the molecular plant response triggered by virus infection is still poorly understood in Vitis vinifera. As a first step to understand the fruit changes and mechanisms involved in the compatible grapevine-virus interaction, we analyzed the berry transcriptome in two stages of development in the red wine cultivar Cabernet Sauvignon infected with Grapevine leaf-roll-associated virus-3 (GLRaV-3). Analysis of global gene expression patterns indicate incomplete berry maturation in infected berries as compared to uninfected fruit suggesting viral infection interrupts the normal berry maturation process. Genes with altered expression in berries harvested from GLRaV-3-infected vines as compared to uninfected tissue include anthocyanin biosynthesis and sugar metabolism genes. The reduction in transcript accumulation for sugar and anthocyanin metabolism during fruit development is consistent with a dramatic reduction in anthocyanin biosynthesis as well as reduced sugar levels in berries, a hallmark phenotypic change observed in virus infected grapevines. Analysis of key regulatory factors provides a mechanism for the observed gene expression changes. Our results provide insight into commonly observed phenotypic alterations in virus infected vines and the molecular mechanisms associated with the plant response to the virus during berry ripening.

  20. Metabolic Profiling of Xylem Sap from Pierce’s Disease Resistant and Susceptible Grapevines

    USDA-ARS?s Scientific Manuscript database

    Pierce’s Disease (PD) of grapevines is caused by a gram-negative, xylem-limited bacterium Xylella fastidiosa (Xf). All Vitis vinifera-based cultivars are highly susceptible to Xf infection. However, some grape species from the southern United States such as V. arizonica, V. Shuttleworthii, and Musca...

  1. The R2R3-MYB Transcription Factors MYB14 and MYB15 Regulate Stilbene Biosynthesis in Vitis vinifera[W

    PubMed Central

    Höll, Janine; Vannozzi, Alessandro; Czemmel, Stefan; D'Onofrio, Claudio; Walker, Amanda R.; Rausch, Thomas; Lucchin, Margherita; Boss, Paul K.; Dry, Ian B.; Bogs, Jochen

    2013-01-01

    Plant stilbenes are phytoalexins that accumulate in a small number of plant species, including grapevine (Vitis vinifera), in response to biotic and abiotic stresses and have been implicated in many beneficial effects on human health. In particular, resveratrol, the basic unit of all other complex stilbenes, has received widespread attention because of its cardio-protective, anticarcinogenic, and antioxidant properties. Although stilbene synthases (STSs), the key enzymes responsible for resveratrol biosynthesis, have been isolated and characterized from several plant species, the transcriptional regulation underlying stilbene biosynthesis is unknown. Here, we report the identification and functional characterization of two R2R3-MYB–type transcription factors (TFs) from grapevine, which regulate the stilbene biosynthetic pathway. These TFs, designated MYB14 and MYB15, strongly coexpress with STS genes, both in leaf tissues under biotic and abiotic stress and in the skin and seed of healthy developing berries during maturation. In transient gene reporter assays, MYB14 and MYB15 were demonstrated to specifically activate the promoters of STS genes, and the ectopic expression of MYB15 in grapevine hairy roots resulted in increased STS expression and in the accumulation of glycosylated stilbenes in planta. These results demonstrate the involvement of MYB14 and MYB15 in the transcriptional regulation of stilbene biosynthesis in grapevine. PMID:24151295

  2. Above ground drip application practices alter water productivity of Malbec grapevines under sustained deficit

    USDA-ARS?s Scientific Manuscript database

    The influence of irrigation event frequency on water productivity, yield components, and berry maturity under two severities of sustained deficit irrigation was evaluated in field grown Malbec grapevines (Vitis vinifera L.) over three growing seasons. Above ground drip was used to supply vines with ...

  3. Identification of race-specific resistance in North American Vitis species limiting Erysiphe necator hyphal growth

    USDA-ARS?s Scientific Manuscript database

    While race-specific resistance against powdery mildews is well documented in small grains, race specificity against grapevine powdery mildew (Erysiphe necator) is undocumented. In the current study, two sources of powdery mildew resistance introgressed into Vitis vinifera were evaluated in the gree...

  4. Flowering in Vitis: Conversion of tendrils into inflorescences and bunches of grapes.

    PubMed

    Srinivasan, C; Mullins, M G

    1979-01-01

    Inflorescences and fruits with viable seeds were produced in place of tendrils in plants of Vitis vinifera L. cv. "Muscat of Alexandria" and in a staminate hybrid grapevine (Vitis vinifera x V. rupestris Scheele) following repeated applications of 10-20 μl of 50-200 μM 6-(benzylamino)-9-(2-tetrahydropyranyl)-9H-purine (PBA) to apices. Young leaves, shoot tips and axillary buds were removed before the PBA treatments were commenced. The number and weight of berries produced by inflorescences derived from tendrils was closely correlated with the number and area of leaves retained. When application of PBA was continued after floral initiation there was formation of fused flowers and cleistogamous pollination.

  5. Alternative SNP detection platforms, HRM and biosensors, for varietal identification in Vitis vinifera L. using F3H and LDOX genes.

    PubMed

    Gomes, Sónia; Castro, Cláudia; Barrias, Sara; Pereira, Leonor; Jorge, Pedro; Fernandes, José R; Martins-Lopes, Paula

    2018-04-11

    The wine sector requires quick and reliable methods for Vitis vinifera L. varietal identification. The number of V. vinifera varieties is estimated in about 5,000 worldwide. Single Nucleotide Polymorphisms (SNPs) represent the most basic and abundant form of genetic sequence variation, being adequate for varietal discrimination. The aim of this work was to develop DNA-based assays suitable to detect SNP variation in V. vinifera, allowing varietal discrimination. Genotyping by sequencing allowed the detection of eleven SNPs on two genes of the anthocyanin pathway, the flavanone 3-hydroxylase (F3H, EC: 1.14.11.9), and the leucoanthocyanidin dioxygenase (LDOX, EC 1.14.11.19; synonym anthocyanidin synthase, ANS) in twenty V. vinifera varieties. Three High Resolution Melting (HRM) assays were designed based on the sequencing information, discriminating five of the 20 varieties: Alicante Bouschet, Donzelinho Tinto, Merlot, Moscatel Galego and Tinta Roriz. Sanger sequencing of the HRM assay products confirmed the HRM profiles. Three probes, with different lengths and sequences, were used as bio-recognition elements in an optical biosensor platform based on a long period grating (LPG) fiber optic sensor. The label free platform detected a difference of a single SNP using genomic DNA samples. The two different platforms were successfully applied for grapevine varietal identification.

  6. RNASeq-based genome annotation and identification of long-noncoding RNAs in the grapevine cultivar 'Riesling'

    USDA-ARS?s Scientific Manuscript database

    The technological advances of RNA-seq and de novo transcriptome assembly have enabled genome annotation and transcriptome profiling in heterozygous species. This is a promising approach to improving the annotation of the reference genome sequence of grapevine (Vitis vinifera L.), a species of high-l...

  7. Foliar applications of iron promote flavonoids accumulation in grape berry of Vitis vinifera cv. Merlot grown in the iron deficiency soil.

    PubMed

    Shi, Pengbao; Song, Changzheng; Chen, Haiju; Duan, Bingbing; Zhang, Zhenwen; Meng, Jiangfei

    2018-07-01

    Flavonoids are important compounds for grape and wine quality. Foliar fertilization with iron compounds has been reported to have a substantial impact on grape composition in the grapevines growing in calcareous soil. However, much less is known about its real impact on flavonoid composition. In the present study, Ferric ethylenediamine di (O-hydroxyphenylacetic) acid (Fe-EDDHA) was foliar applied to Merlot (Vitis vinifera L.) grapevines growing in calcareous soil over two consecutive vintages in order to study its effect on grape flavonoid composition. Fe-EDDHA foliar supply tended to increase grape sugar, anthocyanin and flavonol content, decrease acid content and enhance the juice pH when compared to the control. Principal component analysis showed that the vintage also had influence on grape quality. The results suggested that Fe-EDDHA foliar application had an enhancement effect on grape secondary metabolism, and the effect increased the nutritional value of the consequent grapes and wines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Genome Diversity and Intra- and Inter-Species Recombination Events in Grapevine fanleaf virus

    USDA-ARS?s Scientific Manuscript database

    Grapevine fanleaf virus (GFLV) was documented in four wine grape (Vitis vinifera) cultivars grown as own-rooted vines. GFLV was found as a mixed virus infection in cvs. Pinot Noir and Chardonnay, but not in cvs. Merlot and Cabernet Franc. Fanleaf disease symptoms were observed only in the first two...

  9. Mechanisms of quantitative resistance to Erysiphe necator in Vitis rupestris B38

    USDA-ARS?s Scientific Manuscript database

    Vitis rupestris B38 is a North American grapevine resistant to the powdery mildew pathogen, Erysiphe necator. The segregation of foliar powdery mildew severity in a F1 family derived from a cross of V. rupestris B38 x V. vinifera ‘Chardonnay’ was observed in the field over three growing seasons and ...

  10. Abscisic acid form, concentration, and application timing influence phenology and bud cold hardiness in Merlot grapevines

    USDA-ARS?s Scientific Manuscript database

    The effects of abscisic acid (ABA) form, concentration and application timing on bud cold hardiness, phenology and fruiting performance on ‘Merlot’ grapevines (Vitis vinifera) were evaluated in a three year field trial with site locations in British Columbia Canada, Ontario Canada, Washington U.S. ...

  11. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling

    PubMed Central

    2010-01-01

    Background In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis. Results In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters), has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3), one polyol (VvPMT5) and one sucrose (VvSUC27) transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2) and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2) genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5), in roots (VvHT2) or in mature leaves (VvHT5). Conclusions This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and revealed that sugar

  12. Low level of pollen-mediated gene flow from cultivated to wild grapevine: consequences for the evolution of the endangered subspecies Vitis vinifera L. subsp. silvestris.

    PubMed

    Di Vecchi-Staraz, Manuel; Laucou, Valérie; Bruno, Gérard; Lacombe, Thierry; Gerber, Sophie; Bourse, Thibaut; Boselli, Maurizio; This, Patrice

    2009-01-01

    A parentage and a paternity-based approach were tested for estimation of pollen-mediated gene flow in wild grapevine (Vitis vinifera L. subsp. silvestris), a wind-pollinated species occurring in Mediterranean Europe and southwestern Asia. For this purpose, 305 seedlings collected in 2 years at 2 locations in France from 4 wild female individuals and 417 wild individuals prospected from France and Italy were analyzed using 20 highly polymorphic microsatellite loci. Their profiles were compared with a database consisting of 3203 accessions from the Institut National de la Recherche Agronomique Vassal collection including cultivars, rootstocks, interspecific hybrids, and other wild individuals. Paternity was assigned for 202 (66.2%) of the 305 seedlings, confirming the feasibility of the method. Most of the fertilizing pollen could be assigned to wild males growing nearby. Estimates of pollen immigration from the cultivated compartment (i.e., the totality of cultivars) ranged from 4.2% to 26% from nearby vineyards and from hidden pollinators such as cultivars and rootstocks that had escaped from farms. In an open landscape, the pollen flow was correlated to the distance between individuals, the main pollinator being the closest wild male (accounting for 51.4-86.2% of the pollen flow). In a closed landscape, more complex pollination occurred. Analysis of the parentage of the 417 wild individuals also revealed relationships between nearby wild individuals, but in the case of 12 individuals (3%), analysis revealed pollen immigration from vineyards, confirming the fitness of the hybrid seedlings. These pollen fluxes may have a significant effect on the evolution of wild populations: on the one hand, the low level of pollen-mediated gene flow from cultivated to wild grapevine could contribute to a risk of extinction of the wild compartment (i.e., the totality of the wild individuals). On the other hand, pollen dispersal within the wild populations may induce inbreeding

  13. Consequences of Mesocriconema xenoplax parasitism on ‘Pinot noir’ grapevines grafted on rootstocks of varying susceptibility

    USDA-ARS?s Scientific Manuscript database

    Pinot noir grapevines grafted to five rootstocks (Vitis vinifera) and a self-rooted control known to vary in resistance to ring nematode (Mesocriconema xenoplax) were studied over four years in field microplots to 1) evaluate durability of resistance to ring nematode under conditions allowing for hi...

  14. Profiling of Disease-Related Metabolites in Grapevine Internode Tissues Infected with Agrobacterium vitis

    PubMed Central

    Jung, Sung-Min; Hur, Youn-Young; Preece, John E.; Fiehn, Oliver; Kim, Young-Ho

    2016-01-01

    Green shoot cuttings of 10 different grapevine species were inoculated with Agrobacterium vitis to find disease-related metabolites in the grapevine. Crown galls formed 60 days after inoculation varied in gall severity (GS) evaluated by gall incidence (GI) and gall diameter (GD), which were classified into three response types as RR (low GI and small GD), SR (high GI and small GD), and SS (high GI and large GD), corresponding to resistant, moderately resistant, and susceptible responses, respectively. In this, 4, 4, and 2 Vitis species were classified into RR, SR, and SS, respectively. Gas chromatography mass spectrometry (GC-MS) analysis of the grapevine stem metabolites with A. vitis infection showed 134 metabolites in various compound classes critically occurred, which were differentially clustered with the response types by the principal component analysis. Multivariate analysis of the metabolite profile revealed that 11 metabolites increased significantly in relation to the response types, mostly at post-inoculation stages, more prevalently (8 metabolites) at two days after inoculation than other stages, and more related to SS (7 metabolites) than RR (3 metabolites) or SR (one metabolite). This suggests most of the disease-related metabolites may be rarely pre-existing but mostly induced by pathogen infection largely for facilitating gall development except stilbene compound resveratrol, a phytoalexin that may be involved in the resistance response. All of these aspects may be used for the selection of resistant grapevine cultivars and their rootstocks for the control of the crown gall disease of the grapevine. PMID:27904455

  15. Effects of Leaf Removal and Applied Water on Flavonoid Accumulation in Grapevine (Vitis vinifera L. cv. Merlot) Berry in a Hot Climate.

    PubMed

    Yu, Runze; Cook, Michael G; Yacco, Ralph S; Watrelot, Aude A; Gambetta, Gregory; Kennedy, James A; Kurtural, S Kaan

    2016-11-02

    The relationships between variations in grapevine (Vitis vinifera L. cv. Merlot) fruit zone light exposure and water deficits and the resulting berry flavonoid composition were investigated in a hot climate. The experimental design involved application of mechanical leaf removal (control, pre-bloom, post-fruit set) and differing water deficits (sustained deficit irrigation and regulated deficit irrigation). Flavonol and anthocyanin concentrations were measured by C18 reversed-phased HPLC and increased with pre-bloom leaf removal in 2013, but with post-fruit set leaf removal in 2014. Proanthocyanidin isolates were characterized by acid catalysis in the presence of excess phloroglucinol followed by reversed-phase HPLC. Post-fruit set leaf removal increased total proanthocyanidin concentration in both years, whereas no effect was observed with applied water amounts. Mean degree of polymerization of skin proanthocyanidins increased with post-fruit set leaf removal compared to pre-bloom, whereas water deficit had no effect. Conversion yield was greater with post-fruit set leaf removal. Seed proanthocyanidin concentration was rarely affected by applied treatments. The application of post-fruit set leaf removal, regardless of water deficit. increased the proportion of proanthocyanidins derived from the skin, whereas no leaf removal or pre-bloom leaf removal regardless of water deficit increased the proportion of seed-derived proanthocyanidins. The study provides fundamental information to viticulturists and winemakers on how to manage red wine grape low molecular weight phenolics and polymeric proanthocyanidin composition in a hot climate.

  16. The Induction of Noble Rot (Botrytis cinerea) Infection during Postharvest Withering Changes the Metabolome of Grapevine Berries (Vitis vinifera L., cv. Garganega)

    PubMed Central

    Negri, Stefano; Lovato, Arianna; Boscaini, Filippo; Salvetti, Elisa; Torriani, Sandra; Commisso, Mauro; Danzi, Roberta; Ugliano, Maurizio; Polverari, Annalisa; Tornielli, Giovanni B.; Guzzo, Flavia

    2017-01-01

    The natural or induced development of noble rot caused by the fungus Botrytis cinerea during the late stages of grapevine (Vitis vinifera L.) berry ripening is used in some traditional viticulture areas to produce high-quality wines such as Sauternes and Tokaji. In this research, we wanted to verify if by changing the environmental conditions during post-harvest withering we could induce the noble rot development on harvested berries in order to positively change the wine produced from withered Garganega berries. Therefore, we exposed the berries to postharvest withering under normal or artificially humid conditions, the latter to induce noble rot. The presence of noble rot symptoms was associated with the development of B. cinerea in the berries maintained under humid conditions. The composition of infected and non-infected berries was investigated by untargeted metabolomics using liquid chromatography/mass spectrometry. We also explored the effects of the two withering methods on the abundance of volatile organic compounds in wine by yeast-inoculated micro-fermentation followed by targeted gas chromatography/mass spectrometry. These experiments revealed significant metabolic differences between berries withered under normal and humid conditions, indicating that noble rot affects berry metabolism and composition. As well as well-known botrytization markers, we detected two novel lipids that have not been observed before in berries infected with noble rot. Unraveling the specific metabolic profile of berries infected with noble rot may help to determine the compounds responsible for the organoleptic quality traits of botrytized Garganega wines. PMID:28680428

  17. Moderate water stress from regulated deficit irrigation decreases transpiration similarly to net carbon exchange in grapevine canopies

    USDA-ARS?s Scientific Manuscript database

    To determine the effects of timing and extent of regulated deficit irrigation (RDI) on grapevine (Vitis vinifera) canopies, whole-canopy transpiration (TrV) and canopy conductance to water vapor (gc) were calculated from whole-vine gas exchange near key stages of fruit development. The vines were ma...

  18. Anti-oxidant properties and polyphenolic profile screening of Vitis vinifera stems and leaves crude extracts grown in Perlis, Malaysia

    NASA Astrophysics Data System (ADS)

    Zakaria, Nursyahda; Zulkifli, Razauden Mohamed; Akhir, Fazrena Nadia Md; Basar, Norazah

    2014-03-01

    Grape has become a fast growing agricultural sector in Malaysia producing between 0.62 kg to 2.03 kg waste per vinestock. This study aims to generate useful information on anti-oxidative properties as well as polyphenolic composition of grapevine waste. Stems and leaves of Vitis vinifera cultivated in Perlis, Malaysia were extracted using methanol, ethyl acetate and petroleum ether. Ethyl acetate stems extract exhibited highest total phenolic content. While in DPPH assay, methanolic stems extract show the highest antioxidant activities. This result indicates that total phenolic content in the extracts may not contribute directly to the antioxidant activities. Thin Layer Chromatograms of all crude extracts exhibited good separation under solvent system petroleum ether-ethyl acetate (2:3) resulted in detection of resveratrol in ethyl acetate stems crude extract.

  19. The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L.

    PubMed Central

    2012-01-01

    Background Carotenoids are a heterogeneous group of plant isoprenoids primarily involved in photosynthesis. In plants the cleavage of carotenoids leads to the formation of the phytohormones abscisic acid and strigolactone, and C13-norisoprenoids involved in the characteristic flavour and aroma compounds in flowers and fruits and are of specific importance in the varietal character of grapes and wine. This work extends the previous reports of carotenoid gene expression and photosynthetic pigment analysis by providing an up-to-date pathway analysis and an important framework for the analysis of carotenoid metabolic pathways in grapevine. Results Comparative genomics was used to identify 42 genes putatively involved in carotenoid biosynthesis/catabolism in grapevine. The genes are distributed on 16 of the 19 chromosomes and have been localised to the physical map of the heterozygous ENTAV115 grapevine sequence. Nine of the genes occur as single copies whereas the rest of the carotenoid metabolic genes have more than one paralogue. The cDNA copies of eleven corresponding genes from Vitis vinifera L. cv. Pinotage were characterised, and four where shown to be functional. Microarrays provided expression profiles of 39 accessions in the metabolic pathway during three berry developmental stages in Sauvignon blanc, whereas an optimised HPLC analysis provided the concentrations of individual carotenoids. This provides evidence of the functioning of the lutein epoxide cycle and the respective genes in grapevine. Similarly, orthologues of genes leading to the formation of strigolactone involved in shoot branching inhibition were identified: CCD7, CCD8 and MAX1. Moreover, the isoforms typically have different expression patterns, confirming the complex regulation of the pathway. Of particular interest is the expression pattern of the three VvNCEDs: Our results support previous findings that VvNCED3 is likely the isoform linked to ABA content in berries. Conclusions The

  20. Berry and phenology-related traits in grapevine (Vitis vinifera L.): From Quantitative Trait Loci to underlying genes

    PubMed Central

    Costantini, Laura; Battilana, Juri; Lamaj, Flutura; Fanizza, Girolamo; Grando, Maria Stella

    2008-01-01

    Background The timing of grape ripening initiation, length of maturation period, berry size and seed content are target traits in viticulture. The availability of early and late ripening varieties is desirable for staggering harvest along growing season, expanding production towards periods when the fruit gets a higher value in the market and ensuring an optimal plant adaptation to climatic and geographic conditions. Berry size determines grape productivity; seedlessness is especially demanded in the table grape market and is negatively correlated to fruit size. These traits result from complex developmental processes modified by genetic, physiological and environmental factors. In order to elucidate their genetic determinism we carried out a quantitative analysis in a 163 individuals-F1 segregating progeny obtained by crossing two table grape cultivars. Results Molecular linkage maps covering most of the genome (2n = 38 for Vitis vinifera) were generated for each parent. Eighteen pairs of homologous groups were integrated into a consensus map spanning over 1426 cM with 341 markers (mainly microsatellite, AFLP and EST-derived markers) and an average map distance between loci of 4.2 cM. Segregating traits were evaluated in three growing seasons by recording flowering, veraison and ripening dates and by measuring berry size, seed number and weight. QTL (Quantitative Trait Loci) analysis was carried out based on single marker and interval mapping methods. QTLs were identified for all but one of the studied traits, a number of them steadily over more than one year. Clusters of QTLs for different characters were detected, suggesting linkage or pleiotropic effects of loci, as well as regions affecting specific traits. The most interesting QTLs were investigated at the gene level through a bioinformatic analysis of the underlying Pinot noir genomic sequence. Conclusion Our results revealed novel insights into the genetic control of relevant grapevine features. They

  1. Protein-precipitable tannin in wines from Vitis vinifera and interspecific hybrid grapes (Vitis ssp.): differences in concentration, extractability, and cell wall binding.

    PubMed

    Springer, Lindsay F; Sacks, Gavin L

    2014-07-30

    Although they possess significant viticultural advantages, interspecific hybrid grapes (Vitis spp.) are reported to produce wine with lower tannin concentrations than European wine varieties (Vitis vinifera). However, extensive quantitative data on this phenomenon as well as mechanistic explanations for these differences are lacking. A survey of primarily commercial wines from the Finger Lakes American Viticultural Area (New York) using a protein precipitation method determined that hybrid-based wines had >4-fold lower tannin concentrations than vinifera wines. To elucidate factors responsible for differences in wine tannin, 24 wines were produced from both red hybrid and vinifera cultivars under identical conditions. Lower wine tannin in French-American hybrid- than vinifera-based wines could be partially explained by lower grape tannin. However, experiments in which cell wall material was incubated with tannin indicated that cell wall binding may be of equal or greater importance in explaining lower wine tannin concentrations in hybrid-based wines. Subsequent characterization of cell wall material revealed that protein in flesh cell walls and, to a lesser extent, pectin in skin cell walls were correlated with cell wall binding.

  2. Host status of own-rooted Vitis vinifera varieties to Meloidogyne hapla

    USDA-ARS?s Scientific Manuscript database

    Plant-parasitic nematodes are microscopic soil worms that attack the roots of grape plants and cause yield loss. One of the most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards is Meloidogyne hapla, the northern root-knot nematode. The selection of plant...

  3. Total antioxidant and antiproliferative activities of twenty-four Vitis vinifera grapes

    USDA-ARS?s Scientific Manuscript database

    The phytochemical profiles of 24 Vitis vinifera grape cultivars, including total phenolics, total flavonoids, total antioxidant activity and antiproliferative activity, were determined. Total phenolic contents in the cultivars ranged from 95.3 to 686.5 mg of gallic acid equivalents/100 g FW, and to...

  4. Evaluation of pollen dispersal and cross pollination using transgenic grapevine plants.

    PubMed

    Harst, Margit; Cobanov, Beatrix-Axinja; Hausmann, Ludger; Eibach, Rudolf; Töpfer, Reinhard

    2009-01-01

    Public debate about the possible risk of genetically modified plants often concerns putative effects of pollen dispersal and out-crossing into conventional fields in the neighborhood of transgenic plants. Though Vitis vinifera (grapevine) is generally considered to be self-pollinating, it cannot be excluded that vertical gene transfer might occur. For monitoring pollen flow and out-crossing events, transgenic plants of Vitis vinifera cv. 'Dornfelder' harboring the gus-int gene were planted in the center of a field experiment in Southwest Germany in 1999. The rate of pollen dispersal was determined by pollen traps placed at radial distances of 5-150 m from the pollen-donor plants, at 1.00 and 1.80 m above ground. Transgenic pollen was evaluated by GUS staining, and could clearly be distinguished from pollen originating from non-transgenic grapevine plants. Transgenic pollen was observed up to 150 m from the pollen donors. The rate of out-crossing was determined by sampling seeds of selected grapevines at a distance of 10 m to the pollen source, and of a sector at 20 m distance, respectively, followed by GUS analysis of seedlings. The average cross-pollination rate during the experiment (2002-2004) was 2.7% at a distance of 20 m. The results of this first pilot study present a good base for further assessment under the conditions of normal viticulture practice.

  5. Metabolic changes of Vitis vinifera berries and leaves exposed to Bordeaux mixture.

    PubMed

    Martins, Viviana; Teixeira, António; Bassil, Elias; Blumwald, Eduardo; Gerós, Hernâni

    2014-09-01

    Since the development of Bordeaux mixture in the late 1800's, copper-based fungicides have been widely used against grapevine (Vitis vinifera L.) diseases, mainly in organic but also in conventional viticulture; however their intensive use has raised phytotoxicity concerns. In this study, the composition of grape berries and leaves upon Bordeaux mixture treatment was investigated during the fructification season by a metabolomic approach. Four applications of Bordeaux mixture till 3 weeks before harvest were performed following the regular management practices of organic viticulture. Results showed that the copper-based treatment affected the content in sugars, organic acids, lipids and flavan-3-ols of grapes and leaves at specific developmental stages. Nonetheless, the levels of sucrose, glucose and fructose, and of tartaric and malic acids were not significantly affected in mature grapes. In contrast, a sharp decrease in free natural amino acids was observed, together with a reduction in protein content and in mineral nitrogen forms. The treatment with Bordeaux mixture increased by 7-fold the copper levels in tissue extracts from surface-washed mature berries. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Mycotoxin potential in high-risk American Vitis vinifera vineyards and wines

    USDA-ARS?s Scientific Manuscript database

    Mycotoxins pose a serious worldwide threat to the safety of numerous food commodities. Red wine made from Vitis vinifera grapes is particularly prone to contamination from ochratoxin A, produced by black-spored Aspergillus spp. worldwide, and it was recently discovered that these species can also p...

  7. Shoot development in grapevine (Vitis vinifera) is affected by the modular branching pattern of the stem and intra- and inter-shoot trophic competition.

    PubMed

    Lebon, Eric; Pellegrino, Anne; Tardieu, Francois; Lecoeur, Jeremie

    2004-03-01

    Shoot architecture variability in grapevine (Vitis vinifera) was analysed using a generic modelling approach based on thermal time developed for annual herbaceous species. The analysis of shoot architecture was based on various levels of shoot organization, including pre-existing and newly formed parts of the stem, and on the modular structure of the stem, which consists of a repeated succession of three phytomers (P0-P1-P2). Four experiments were carried out using the cultivar 'Grenache N': two on potted vines (one of which was carried out in a glasshouse) and two on mature vines in a vineyard. These experiments resulted in a broad diversity of environmental conditions, but none of the plants experienced soil water deficit. Development of the main axis was highly dependent on air temperature, being linearly related to thermal time for all stages of leaf development from budbreak to veraison. The stable progression of developmental stages along the main stem resulted in a thermal-time based programme of leaf development. Leaf expansion rate varied with trophic competition (shoot and cluster loads) and environmental conditions (solar radiation, VPD), accounting for differences in final leaf area. Branching pattern was highly variable. Classification of the branches according to ternary modular structure increased the accuracy of the quantitative analysis of branch development. The rate and duration of leaf production were higher for branches derived from P0 phytomers than for branches derived from P1 or P2 phytomers. Rates of leaf production, expressed as a -function of thermal time, were not stable and depended on trophic competition and environmental conditions such as solar radiation or VPD. The application to grapevine of a generic model developed in annual plants made it possible to identify constants in main stem development and to determine the hierarchical structure of branches with respect to the modular structure of the stem in response to intra- and inter

  8. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit.

    PubMed

    Rienth, Markus; Torregrosa, Laurent; Luchaire, Nathalie; Chatbanyong, Ratthaphon; Lecourieux, David; Kelly, Mary T; Romieu, Charles

    2014-04-28

    Global climate change will noticeably affect plant vegetative and reproductive development. The recent increase in temperatures has already impacted yields and composition of berries in many grapevine-growing regions. Physiological processes underlying temperature response and tolerance of the grapevine fruit have not been extensively investigated. To date, all studies investigating the molecular regulation of fleshly fruit response to abiotic stress were only conducted during the day, overlooking possible critical night-specific variations. The present study explores the night and day transcriptomic response of grapevine fruit to heat stress at several developmental stages. Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered according to the developmental stages along their vertical axes. The recently proposed microvine model (DRCF-Dwarf Rapid Cycling and Continuous Flowering) was grown in climatic chambers in order to circumvent common constraints and biases inevitable in field experiments with perennial macrovines. Post-véraison berry heterogeneity within clusters was avoided by constituting homogenous batches following organic acids and sugars measurements of individual berries. A whole genome transcriptomic approach was subsequently conducted using NimbleGen 090818 Vitis 12X (30 K) microarrays. Present work reveals significant differences in heat stress responsive pathways according to day or night treatment, in particular regarding genes associated with acidity and phenylpropanoid metabolism. Precise distinction of ripening stages led to stage-specific detection of malic acid and anthocyanin-related transcripts modulated by heat stress. Important changes in cell wall modification related processes as well as indications for heat-induced delay of ripening and sugar accumulation were observed at véraison, an effect that was reversed at later stages. This first day - night study on heat stress adaption of the

  9. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit

    PubMed Central

    2014-01-01

    Background Global climate change will noticeably affect plant vegetative and reproductive development. The recent increase in temperatures has already impacted yields and composition of berries in many grapevine-growing regions. Physiological processes underlying temperature response and tolerance of the grapevine fruit have not been extensively investigated. To date, all studies investigating the molecular regulation of fleshly fruit response to abiotic stress were only conducted during the day, overlooking possible critical night-specific variations. The present study explores the night and day transcriptomic response of grapevine fruit to heat stress at several developmental stages. Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered according to the developmental stages along their vertical axes. The recently proposed microvine model (DRCF-Dwarf Rapid Cycling and Continuous Flowering) was grown in climatic chambers in order to circumvent common constraints and biases inevitable in field experiments with perennial macrovines. Post-véraison berry heterogeneity within clusters was avoided by constituting homogenous batches following organic acids and sugars measurements of individual berries. A whole genome transcriptomic approach was subsequently conducted using NimbleGen 090818 Vitis 12X (30 K) microarrays. Results Present work reveals significant differences in heat stress responsive pathways according to day or night treatment, in particular regarding genes associated with acidity and phenylpropanoid metabolism. Precise distinction of ripening stages led to stage-specific detection of malic acid and anthocyanin-related transcripts modulated by heat stress. Important changes in cell wall modification related processes as well as indications for heat-induced delay of ripening and sugar accumulation were observed at véraison, an effect that was reversed at later stages. Conclusions This first day - night

  10. Isolation of Resveratrol from Vitis Viniferae Caulis and Its Potent Inhibition of Human Tyrosinase

    PubMed Central

    Park, Jiaa; Boo, Yong Chool

    2013-01-01

    Tyrosinase (TYR) catalyzes rate-limiting reactions of cellular melanin synthesis, and its inhibitors are of commercial interest as potential skin whitening agents. However, the limited availability of human TYR makes the screening of TYR inhibitors difficult. To overcome this hurdle, we transformed nonmelanocytic human embryonic kidney (HEK) 293 cells to express human TYR constitutively. Using these cells as a source of human TYR, the ethanolic extracts of 52 medicinal plants grown in Korea were tested for human TYR activity, and the extract of Vitis Viniferae Caulis (dried stems of the grape tree, Vitis vinifera L.) was found to inhibit human TYR activity potently. An active compound was isolated from this extract by solvent fractionation followed by liquid column chromatography and identified as resveratrol by spectroscopic and chromatographic analyses. Resveratrol was determined to be a highly potent inhibitor of human TYR (IC50 = 0.39 μg mL−1) as compared with p-coumaric acid (IC50 = 0.66 μg mL−1) and arbutin (IC50 > 100 μg mL−1) and inhibited melanin synthesis by human epidermal melanocytes at subtoxic concentrations. This study suggests that resveratrol and resveratrol-containing extracts of Vitis Viniferae Caulis have a potential use as skin whitening agents. PMID:23476698

  11. Structural, kinetic and computational investigation of Vitis vinifera DHDPS reveals new insight into the mechanism of lysine-mediated allosteric inhibition.

    PubMed

    Atkinson, Sarah C; Dogovski, Con; Downton, Matthew T; Czabotar, Peter E; Dobson, Renwick C J; Gerrard, Juliet A; Wagner, John; Perugini, Matthew A

    2013-03-01

    Lysine is one of the most limiting amino acids in plants and its biosynthesis is carefully regulated through inhibition of the first committed step in the pathway catalyzed by dihydrodipicolinate synthase (DHDPS). This is mediated via a feedback mechanism involving the binding of lysine to the allosteric cleft of DHDPS. However, the precise allosteric mechanism is yet to be defined. We present a thorough enzyme kinetic and thermodynamic analysis of lysine inhibition of DHDPS from the common grapevine, Vitis vinifera (Vv). Our studies demonstrate that lysine binding is both tight (relative to bacterial DHDPS orthologs) and cooperative. The crystal structure of the enzyme bound to lysine (2.4 Å) identifies the allosteric binding site and clearly shows a conformational change of several residues within the allosteric and active sites. Molecular dynamics simulations comparing the lysine-bound (PDB ID 4HNN) and lysine free (PDB ID 3TUU) structures show that Tyr132, a key catalytic site residue, undergoes significant rotational motion upon lysine binding. This suggests proton relay through the catalytic triad is attenuated in the presence of lysine. Our study reveals for the first time the structural mechanism for allosteric inhibition of DHDPS from the common grapevine.

  12. Development of a 3D seed morphological tool for grapevine variety identification, and its comparison with SSR analysis.

    PubMed

    Karasik, Avshalom; Rahimi, Oshrit; David, Michal; Weiss, Ehud; Drori, Elyashiv

    2018-04-25

    Grapevine (Vitis vinifera L.) is one of the classical fruits of the Old World. Among the thousands of domesticated grapevine varieties and variable wild sylvestris populations, the range of variation in pip morphology is very wide. In this study we scanned representative samples of grape pip populations, in an attempt to probe the possibility of using the 3D tool for grape variety identification. The scanning was followed by mathematical and statistical analysis using innovative algorithms from the field of computer sciences. Using selected Fourier coefficients, a very clear separation was obtained between most of the varieties, with only very few overlaps. These results show that this method enables the separation between different Vitis vinifera varieties. Interestingly, when using the 3D approach to analyze couples of varieties, considered synonyms by the standard 22 SSR analysis approach, we found that the varieties in two of the considered synonym couples were clearly separated by the morphological analysis. This work, therefore, suggests a new systematic tool for high resolution variety discrimination.

  13. Arcopilus aureus, a Resveratrol-Producing Endophyte from Vitis vinifera.

    PubMed

    Dwibedi, Vagish; Saxena, Sanjai

    2018-04-14

    Resveratrol is extensively being used as a therapeutic moiety, as well as a pharmacophore for development of new drugs due to its multifarious beneficial effects. The objective of the present study was to isolate and screen the resveratrol-producing endophytic fungi from different varieties of Vitis vinifera. A total of 53 endophytic fungi belonging to different fungal genera were isolated from the stem and leaf tissues of Vitis vinifera (merlot, wild, pinot noir, Shiraz, muscat) from different grape-producing locations of India. Only 29 endophytic fungal isolates exhibited a positive test for phenolics by phytochemical methods. The resveratrol obtained after ethyl acetate extraction was confirmed using standard molecule on thin layer chromatography (TLC) with a retention factor (R f ) of 0.69. The purified and standard resveratrol were visualized under UV light as a violet-colored spot. In HPLC analysis of the ethyl acetate extract of culture broth of 11 endophytic isolates, the highest resveratrol content was found in #12VVLPM (89.1 μg/ml) followed by #18VVLPM (37.3 μg/ml) and 193VVSTPM (25.2 μg/ml) exhibiting a retention time of 3.36 min which corresponded to the standard resveratrol. The resveratrol-producing isolates belong to seven genera viz. Aspergillus, Botryosphaeria, Penicillium, Fusarium, Alternaria, Arcopilus, and Lasiodiplodia, and using morphological and molecular methods, #12VVLPM was identified as Arcopilus aureus.

  14. Isolation and Identification of the Indigenous Yeast Population during Spontaneous Fermentation of Isabella (Vitis labrusca L.) Grape Must.

    PubMed

    Raymond Eder, María L; Reynoso, Cristina; Lauret, Santiago C; Rosa, Alberto L

    2017-01-01

    Grape must harbors a complex community of yeast species responsible for spontaneous alcoholic fermentation. Although there are detailed studies on the microbiota of Vitis vinifera L. grapes, less is known about the diversity and behavior of yeast communities present on fermenting grape must from other species of Vitis . In this work, we used a culture-dependent method to study the identity and dynamics of the indigenous yeast population present during the spontaneous fermentation of Isabella ( Vitis labrusca L.) grape must. Alcoholic fermentation was conducted using standard enological practices, and the associated non- Saccharomyces and S. cerevisiae yeast community was analyzed using selective growth media and 5.8-ITS DNA sequencing. Candida californica, Candida hellenica, Starmerella bacillaris (synonym Candida zemplinina ), Hanseniaspora uvarum , and Hanseniaspora vineae were the main non- Saccharomyces species identified on Isabella fermenting must. Issatchenkia hanoiensis , a yeast species rarely found on Vitis vinifera L. grapes, was also recognized on Isabella grape must. Candida azymoides, Candida californica and Pichia cecembensis , identified in this work on Isabella fermenting must, have not previously been found on Vitis vinifera L. grape must. Interestingly, C. azymoides, I. hanoiensis and P. cecembensis have recently been isolated from the surface of Vitis labrusca L. grapes from vineyards in the Azores archipelago, suggesting that specific Vitis -yeast species associations are formed independently of geographic origin. We suggest that C. azymoides, C. californica , and P. cecembensis are yeast species preferentially associated with Vitis labrusca L. grapes. Specific biological interactions between grapevines and yeast species may underlie the assembly of differential Vitis -microbial communities.

  15. Isolation and Identification of the Indigenous Yeast Population during Spontaneous Fermentation of Isabella (Vitis labrusca L.) Grape Must

    PubMed Central

    Raymond Eder, María L.; Reynoso, Cristina; Lauret, Santiago C.; Rosa, Alberto L.

    2017-01-01

    Grape must harbors a complex community of yeast species responsible for spontaneous alcoholic fermentation. Although there are detailed studies on the microbiota of Vitis vinifera L. grapes, less is known about the diversity and behavior of yeast communities present on fermenting grape must from other species of Vitis. In this work, we used a culture-dependent method to study the identity and dynamics of the indigenous yeast population present during the spontaneous fermentation of Isabella (Vitis labrusca L.) grape must. Alcoholic fermentation was conducted using standard enological practices, and the associated non-Saccharomyces and S. cerevisiae yeast community was analyzed using selective growth media and 5.8-ITS DNA sequencing. Candida californica, Candida hellenica, Starmerella bacillaris (synonym Candida zemplinina), Hanseniaspora uvarum, and Hanseniaspora vineae were the main non-Saccharomyces species identified on Isabella fermenting must. Issatchenkia hanoiensis, a yeast species rarely found on Vitis vinifera L. grapes, was also recognized on Isabella grape must. Candida azymoides, Candida californica and Pichia cecembensis, identified in this work on Isabella fermenting must, have not previously been found on Vitis vinifera L. grape must. Interestingly, C. azymoides, I. hanoiensis and P. cecembensis have recently been isolated from the surface of Vitis labrusca L. grapes from vineyards in the Azores archipelago, suggesting that specific Vitis-yeast species associations are formed independently of geographic origin. We suggest that C. azymoides, C. californica, and P. cecembensis are yeast species preferentially associated with Vitis labrusca L. grapes. Specific biological interactions between grapevines and yeast species may underlie the assembly of differential Vitis-microbial communities. PMID:28424672

  16. Enhanced Stilbene Production and Excretion in Vitis vinifera cv Pinot Noir Hairy Root Cultures.

    PubMed

    Tisserant, Leo-Paul; Aziz, Aziz; Jullian, Nathalie; Jeandet, Philippe; Clément, Christophe; Courot, Eric; Boitel-Conti, Michèle

    2016-12-10

    Stilbenes are defense molecules produced by grapevine in response to stresses including various elicitors and signal molecules. Together with their prominent role in planta, stilbenes have been the center of much attention in recent decades due to their pharmaceutical properties. With the aim of setting up a cost-effective and high purity production of resveratrol derivatives, hairy root lines were established from Vitis vinifera cv Pinot Noir 40024 to study the organ-specific production of various stilbenes. Biomass increase and stilbene production by roots were monitored during flask experiments. Although there was a constitutive production of stilbenes in roots, an induction of stilbene synthesis by methyl jasmonate (MeJA) after 18 days of growth led to further accumulation of ε-viniferin, δ-viniferin, resveratrol and piceid. The use of 100 µM MeJA after 18 days of culture in the presence of methyl-β-cyclodextrins (MCDs) improved production levels, which reached 1034µg/g fresh weight (FW) in roots and 165 mg/L in the extracellular medium, corresponding to five-and 570-foldincrease in comparison to control. Whereas a low level of stilbene excretion was measured in controls, addition of MeJA induced excretion of up to 37% of total stilbenes. The use of MCDs increased the excretion phenomenon even more, reaching up to 98%. Our results demonstrate the ability of grapevine hairy roots to produce various stilbenes. This production was significantly improved in response to elicitation by methyl jasmonate and/or MCDs. This supports the interest of using hairy roots as a potentially valuable system for producing resveratrol derivatives.

  17. No evidence for an open vessel effect in centrifuge-based vulnerability curves of a long-vesselled liana (Vitis vinifera).

    PubMed

    Jacobsen, Anna L; Pratt, R Brandon

    2012-06-01

    Vulnerability to cavitation curves are used to estimate xylem cavitation resistance and can be constructed using multiple techniques. It was recently suggested that a technique that relies on centrifugal force to generate negative xylem pressures may be susceptible to an open vessel artifact in long-vesselled species. Here, we used custom centrifuge rotors to measure different sample lengths of 1-yr-old stems of grapevine to examine the influence of open vessels on vulnerability curves, thus testing the hypothesized open vessel artifact. These curves were compared with a dehydration-based vulnerability curve. Although samples differed significantly in the number of open vessels, there was no difference in the vulnerability to cavitation measured on 0.14- and 0.271-m-long samples of Vitis vinifera. Dehydration and centrifuge-based curves showed a similar pattern of declining xylem-specific hydraulic conductivity (K(s)) with declining water potential. The percentage loss in hydraulic conductivity (PLC) differed between dehydration and centrifuge curves and it was determined that grapevine is susceptible to errors in estimating maximum K(s) during dehydration because of the development of vessel blockages. Our results from a long-vesselled liana do not support the open vessel artifact hypothesis. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  18. Spatial distribution of plant-parasitic nematodes in semi-arid Vitis vinifera vineyards in Washington

    USDA-ARS?s Scientific Manuscript database

    The most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards are Meloidogyne hapla, Mesocriconema xenoplax, Pratylenchus spp., Xiphinema americanum, and Paratylenchus sp.; however, little is known about their distribution in the soil profile. The vertical an...

  19. Differences in Stylet Penetration Behaviors of Glassy-winged Sharpshooters on Xylella-Resistant Vitis candicans vs. Susceptible Vitis vinifera cv. ‘Chardonnay’

    USDA-ARS?s Scientific Manuscript database

    Electrical penetration graph (EPG) monitoring was used to compare stylet penetration behaviors of glassy-winged sharpshooter (GWSS), a vector of Xylella fastidiosa (Xf), on Xf-resistant Vitis candicans grape vs. susceptible V. vinifera cv. ‘Chardonnay.’ Frequency of occurrence of X waves (represent...

  20. Unraveling the etiology of North American grapevine yellows (NAGY): multilocus genotyping and structural analysis of secY proteins distinguish NAGYIII phytoplasma strains from strains causing X-disease

    USDA-ARS?s Scientific Manuscript database

    North American grapevine yellows (NAGY) disease has sometimes been ascribed to infection of Vitis vinifera L. by X-disease phytoplasma, but the accuracy of this attribution has remained open to question. In the present study of NAGY etiology, the disease was discovered in Maryland, Pennsylvania, Oh...

  1. Impact of clonal variability in Vitis vinifera Cabernet franc on grape composition, wine quality, leaf blade stilbene content, and downy mildew resistance.

    PubMed

    van Leeuwen, Cornelis; Roby, Jean-Philippe; Alonso-Villaverde, Virginia; Gindro, Katia

    2013-01-09

    In this study, 10 clones of Vitis vinifera Cabernet franc (not yet commercial) have been phenotyped on precocity, grape composition, and assessment of wine quality made by microvinification in 2008-2010. Additionally, two original criteria have been considered: concentration of 3-isobutyl-2-methoxypyrazine (IBMP) in grapes and wines (the green bell pepper flavor) and resistance of grapevines to downy mildew ( Plasmopara viticola ) by stilbene quantification upon infection. Precocity of veraison varied up to four days at veraison. Berry size and yield were highly variable among clones. However, these variables were not correlated. Tanins and anthocyanins varied among clones in grapes and wines. Variations in grape and wine IBMP were not significant. Some clones showed lower susceptibility for downy mildew on leaves. Lower susceptibility was linked to a higher production of stilbenic phytoalexins involved in downy mildew resistance mechanisms.

  2. Somatic embryogenesis from seeds in a broad range of Vitis vinifera L. varieties: rescue of true-to-type virus-free plants.

    PubMed

    San Pedro, Tània; Gammoudi, Najet; Peiró, Rosa; Olmos, Antonio; Gisbert, Carmina

    2017-11-29

    Somatic embryogenesis is the preferred method for cell to plant regeneration in Vitis vinifera L. However, low frequencies of plant embryo conversion are commonly found. In a previous work we obtained from cut-seeds of a grapevine infected with the Grapevine leafroll associated viruses 1 and 3 (GLRaV-1 and GLRaV-3), high rates of direct regeneration, embryo plant conversion and sanitation. The aim of this study is to evaluate the usefulness of this procedure for regeneration of other grapevine varieties which include some infected with one to three common grapevine viruses (GLRaV-3, Grapevine fanleaf virus (GFLV) and Grapevine fleck virus (GFkV)). As grapevine is highly heterozygous, it was necessary to select from among the virus-free plants those that regenerated from mother tissues around the embryo, (true-to-type). Somatic embryogenesis and plant regeneration were achieved in a first experiment, using cut-seeds from the 14 grapevine varieties Airén, Cabernet Franc, Cabernet Sauvignon, Mencía, Merlot, Monastrell, Petit Verdot, Pinot Blanc (infected by GFLV and GFkV), Pinot Gris, Pinot Meunier, Pinot Noir, Syrah, Tempranillo (infected by GFLV), and Verdil. All regenerated plants were confirmed to be free of GFkV whereas at least 68% sanitation was obtained for GFLV. The SSR profiles of the virus-free plants showed, in both varieties, around 10% regeneration from mother tissue (the same genetic make-up as the mother plant). In a second experiment, this procedure was used to sanitize the varieties Cabernet Franc, Godello, Merlot and Valencí Blanc infected by GLRaV-3, GFkV and/or GFLV. Cut-seeds can be used as explants for embryogenesis induction and plant conversion in a broad range of grapevine varieties. The high regeneration rates obtained with this procedure facilitate the posterior selection of true-to-type virus-free plants. A sanitation rate of 100% was obtained for GFkV as this virus is not seed-transmitted. However, the presence of GLRaV-3 and GFLV in

  3. VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine

    PubMed Central

    De Bei, Roberta; Fuentes, Sigfredo; Gilliham, Matthew; Tyerman, Steve; Edwards, Everard; Bianchini, Nicolò; Smith, Jason; Collins, Cassandra

    2016-01-01

    Leaf area index (LAI) and plant area index (PAI) are common and important biophysical parameters used to estimate agronomical variables such as canopy growth, light interception and water requirements of plants and trees. LAI can be either measured directly using destructive methods or indirectly using dedicated and expensive instrumentation, both of which require a high level of know-how to operate equipment, handle data and interpret results. Recently, a novel smartphone and tablet PC application, VitiCanopy, has been developed by a group of researchers from the University of Adelaide and the University of Melbourne, to estimate grapevine canopy size (LAI and PAI), canopy porosity, canopy cover and clumping index. VitiCanopy uses the front in-built camera and GPS capabilities of smartphones and tablet PCs to automatically implement image analysis algorithms on upward-looking digital images of canopies and calculates relevant canopy architecture parameters. Results from the use of VitiCanopy on grapevines correlated well with traditional methods to measure/estimate LAI and PAI. Like other indirect methods, VitiCanopy does not distinguish between leaf and non-leaf material but it was demonstrated that the non-leaf material could be extracted from the results, if needed, to increase accuracy. VitiCanopy is an accurate, user-friendly and free alternative to current techniques used by scientists and viticultural practitioners to assess the dynamics of LAI, PAI and canopy architecture in vineyards, and has the potential to be adapted for use on other plants. PMID:27120600

  4. VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine.

    PubMed

    De Bei, Roberta; Fuentes, Sigfredo; Gilliham, Matthew; Tyerman, Steve; Edwards, Everard; Bianchini, Nicolò; Smith, Jason; Collins, Cassandra

    2016-04-23

    Leaf area index (LAI) and plant area index (PAI) are common and important biophysical parameters used to estimate agronomical variables such as canopy growth, light interception and water requirements of plants and trees. LAI can be either measured directly using destructive methods or indirectly using dedicated and expensive instrumentation, both of which require a high level of know-how to operate equipment, handle data and interpret results. Recently, a novel smartphone and tablet PC application, VitiCanopy, has been developed by a group of researchers from the University of Adelaide and the University of Melbourne, to estimate grapevine canopy size (LAI and PAI), canopy porosity, canopy cover and clumping index. VitiCanopy uses the front in-built camera and GPS capabilities of smartphones and tablet PCs to automatically implement image analysis algorithms on upward-looking digital images of canopies and calculates relevant canopy architecture parameters. Results from the use of VitiCanopy on grapevines correlated well with traditional methods to measure/estimate LAI and PAI. Like other indirect methods, VitiCanopy does not distinguish between leaf and non-leaf material but it was demonstrated that the non-leaf material could be extracted from the results, if needed, to increase accuracy. VitiCanopy is an accurate, user-friendly and free alternative to current techniques used by scientists and viticultural practitioners to assess the dynamics of LAI, PAI and canopy architecture in vineyards, and has the potential to be adapted for use on other plants.

  5. Chemical Characterization, Free Radical Scavenging, and Cellular Antioxidant and Anti-Inflammatory Properties of a Stilbenoid-Rich Root Extract of Vitis vinifera

    PubMed Central

    Esatbeyoglu, Tuba; Ewald, Philipp; Yasui, Yoshiaki; Yokokawa, Haruka; Wagner, Anika E.; Matsugo, Seiichi; Winterhalter, Peter; Rimbach, Gerald

    2016-01-01

    Dietary stilbenoids are receiving increasing attention due to their potential health benefits. However, most studies concerning the bioactivity of stilbenoids were conducted with pure compounds, for example, resveratrol. The aim of this study was to characterize a complex root extract of Vitis vinifera in terms of its free radical scavenging and cellular antioxidant and anti-inflammatory properties. HPLC-ESI-MS/MS analyses of the root extract of Vitis vinifera identified seven stilbenoids including two monomeric (resveratrol and piceatannol), two dimeric (trans-ɛ-viniferin and ampelopsin A), one trimeric (miyabenol C), and two tetrameric (r-2-viniferin = vitisin A and r-viniferin = vitisin B) compounds which may mediate its biological activity. Electron spin resonance and spin trapping experiments indicate that the root extract scavenged 2,2-diphenyl-1-picrylhydrazyl, hydroxyl, galvinoxyl, and superoxide free radicals. On a cellular level it was observed that the root extract of Vitis vinifera protects against hydrogen peroxide-induced DNA damage and induces Nrf2 and its target genes heme oxygenase-1 and γ-glutamylcysteine synthetase. Furthermore, the root extract could induce the antiatherogenic hepatic enzyme paraoxonase 1 and downregulate proinflammatory gene expression (interleukin 1β, inducible nitric oxide synthase) in macrophages. Collectively our data suggest that the root extract of Vitis vinifera exhibits free radical scavenging as well as cellular antioxidant and anti-inflammatory properties. PMID:26788254

  6. Can vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? Lessons from Dutch elm disease and esca disease in grapevine

    PubMed Central

    Pouzoulet, Jérôme; Pivovaroff, Alexandria L.; Santiago, Louis S.; Rolshausen, Philippe E.

    2014-01-01

    This review illuminates key findings in our understanding of grapevine xylem resistance to fungal vascular wilt diseases. Grapevine (Vitis spp.) vascular diseases such as esca, botryosphaeria dieback, and eutypa dieback, are caused by a set of taxonomically unrelated ascomycete fungi. Fungal colonization of the vascular system leads to a decline of the plant host because of a loss of the xylem function and subsequent decrease in hydraulic conductivity. Fungal vascular pathogens use different colonization strategies to invade and kill their host. Vitis vinifera cultivars display different levels of tolerance toward vascular diseases caused by fungi, but the plant defense mechanisms underlying those observations have not been completely elucidated. In this review, we establish a parallel between two vascular diseases, grapevine esca disease and Dutch elm disease, and argue that the former should be viewed as a vascular wilt disease. Plant genotypes exhibit differences in xylem morphology and resistance to fungal pathogens causing vascular wilt diseases. We provide evidence that the susceptibility of three commercial V. vinifera cultivars to esca disease is correlated to large vessel diameter. Additionally, we explore how xylem morphological traits related to water transport are influenced by abiotic factors, and how these might impact host tolerance of vascular wilt fungi. Finally, we explore the utility of this concept for predicting which V. vinifera cultivars are most vulnerable of fungal vascular wilt diseases and propose new strategies for disease management. PMID:24971084

  7. Transmission competency of single-female Xiphinema index lines for Grapevine fanleaf virus.

    PubMed

    Demangeat, Gérard; Komar, Véronique; Van-Ghelder, Cyril; Voisin, Roger; Lemaire, Olivier; Esmenjaud, Daniel; Fuchs, Marc

    2010-04-01

    Grapevine fanleaf virus (GFLV) is vectored specifically from grapevine to grapevine by the ectoparasitic nematode Xiphinema index. Limited information is available on the vector competency of X. index populations from diverse geographical origins. We determined the transmissibility of two GFLV strains showing 4.6% amino acid divergence within their coat protein (e.g., strains F13 and GHu) by seven clonal lines of X. index developed from seven distinct populations from the Mediterranean basin (Cyprus, southern France, Israel, Italy, and Spain), northern France, and California. X. index lines derived from single adult females were produced on fig (Ficus carica) plants to obtain genetically homogenous aviruliferous clones. A comparative reproductive rate analysis on Vitis rupestris du Lot and V. vinifera cv. Cabernet Sauvignon showed significant differences among clones, with the single-female Cyprus line showing the highest rate (30-fold the initial population) and the Spain and California lines showing the lowest rate (10-fold increase), regardless of the grapevine genotype. However, there was no differential vector competency among the seven X. index lines for GFLV strains F13 and GHu. The implications of our findings for the dynamic of GFLV transmission in vineyards and screening of Vitis spp. for resistance to GFLV are discussed.

  8. Ancestral synteny shared between distantly-related plant species from the asterid (Coffea canephora and Solanum Sp.) and rosid (Vitis vinifera) clades

    PubMed Central

    2012-01-01

    Background Coffee trees (Rubiaceae) and tomato (Solanaceae) belong to the Asterid clade, while grapevine (Vitaceae) belongs to the Rosid clade. Coffee and tomato separated from grapevine 125 million years ago, while coffee and tomato diverged 83-89 million years ago. These long periods of divergent evolution should have permitted the genomes to reorganize significantly. So far, very few comparative mappings have been performed between very distantly related species belonging to different clades. We report the first multiple comparison between species from Asterid and Rosid clades, to examine both macro-and microsynteny relationships. Results Thanks to a set of 867 COSII markers, macrosynteny was detected between coffee, tomato and grapevine. While coffee and tomato genomes share 318 orthologous markers and 27 conserved syntenic segments (CSSs), coffee and grapevine also share a similar number of syntenic markers and CSSs: 299 and 29 respectively. Despite large genome macrostructure reorganization, several large chromosome segments showed outstanding macrosynteny shedding new insights into chromosome evolution between Asterids and Rosids. We also analyzed a sequence of 174 kb containing the ovate gene, conserved in a syntenic block between coffee, tomato and grapevine that showed a high-level of microstructure conservation. A higher level of conservation was observed between coffee and grapevine, both woody and long life-cycle plants, than between coffee and tomato. Out of 16 coffee genes of this syntenic segment, 7 and 14 showed complete synteny between coffee and tomato or grapevine, respectively. Conclusions These results show that significant conservation is found between distantly related species from the Asterid (Coffea canephora and Solanum sp.) and Rosid (Vitis vinifera) clades, at the genome macrostructure and microstructure levels. At the ovate locus, conservation did not decline in relation to increasing phylogenetic distance, suggesting that the time

  9. Can Pierce’s disease resistance introgressed into Vitis vinifera be translocated from a resistant rootstock to a susceptible scion?

    USDA-ARS?s Scientific Manuscript database

    The goal of this research is to evaluate the potential of a non-transgenic, PD-resistant Vitis vinifera selection used as an experimental rootstock to confer systemic resistance to PD-susceptible V. vinifera scions. Source of PD-susceptible plant material was the wine grape variety ‘Chardonnay’, kno...

  10. Can Pierce’s disease resistance introgressed into Vitis vinifera be translocated from a resistant rootstock to a susceptible scion?

    USDA-ARS?s Scientific Manuscript database

    The goal of this research is to evaluate the potential of a non-transgenic, PD resistant Vitis vinifera selection used as an experimental rootstock to confer systemic resistance to PD susceptible V. vinifera scions. Source of PD susceptible plant material will be the wine grape variety ‘Chardonnay’,...

  11. The Novel Gene VpPR4-1 from Vitis pseudoreticulata Increases Powdery Mildew Resistance in Transgenic Vitis vinifera L.

    PubMed Central

    Dai, Lingmin; Wang, Dan; Xie, Xiaoqing; Zhang, Chaohong; Wang, Xiping; Xu, Yan; Wang, Yuejin; Zhang, Jianxia

    2016-01-01

    Pathogenesis-related proteins (PRs) can lead to increased resistance of the whole plant to pathogen attack. Here, we isolate and characterize a PR-4 protein (VpPR4-1) from a wild Chinese grape Vitis pseudoreticulata which shows greatly elevated transcription following powdery mildew infection. Its expression profiles under a number of abiotic stresses were also investigated. Powdery mildew, salicylic acid, and jasmonic acid methyl ester significantly increased the VpPR4-1 induction while NaCl and heat treatments just slightly induced VpPR4-1 expression. Abscisic acid and cold treatment slightly affected the expression level of VpPR4-1. The VpPR4-1 gene was overexpressed in 30 regenerated V. vinifera cv. Red Globe via Agrobacterium tumefaciens-mediated transformation and verified by the Western blot. The 26 transgenic grapevines exhibited higher expression levels of PR-4 protein content than wild-type vines and six of them were inoculated with powdery mildew which showed that the growth of powdery mildew was repressed. The powdery mildew-resistance of Red Globe transformed with VpPR4-1 was enhanced inoculated with powdery mildew. Moreover, other powdery mildew resistant genes were associated with feedback regulation since VpPR4-1 is in abundance. This study demonstrates that PR-4 protein in grapes plays a vital role in defense against powdery mildew invasion. PMID:27303413

  12. The Novel Gene VpPR4-1 from Vitis pseudoreticulata Increases Powdery Mildew Resistance in Transgenic Vitis vinifera L.

    PubMed

    Dai, Lingmin; Wang, Dan; Xie, Xiaoqing; Zhang, Chaohong; Wang, Xiping; Xu, Yan; Wang, Yuejin; Zhang, Jianxia

    2016-01-01

    Pathogenesis-related proteins (PRs) can lead to increased resistance of the whole plant to pathogen attack. Here, we isolate and characterize a PR-4 protein (VpPR4-1) from a wild Chinese grape Vitis pseudoreticulata which shows greatly elevated transcription following powdery mildew infection. Its expression profiles under a number of abiotic stresses were also investigated. Powdery mildew, salicylic acid, and jasmonic acid methyl ester significantly increased the VpPR4-1 induction while NaCl and heat treatments just slightly induced VpPR4-1 expression. Abscisic acid and cold treatment slightly affected the expression level of VpPR4-1. The VpPR4-1 gene was overexpressed in 30 regenerated V. vinifera cv. Red Globe via Agrobacterium tumefaciens-mediated transformation and verified by the Western blot. The 26 transgenic grapevines exhibited higher expression levels of PR-4 protein content than wild-type vines and six of them were inoculated with powdery mildew which showed that the growth of powdery mildew was repressed. The powdery mildew-resistance of Red Globe transformed with VpPR4-1 was enhanced inoculated with powdery mildew. Moreover, other powdery mildew resistant genes were associated with feedback regulation since VpPR4-1 is in abundance. This study demonstrates that PR-4 protein in grapes plays a vital role in defense against powdery mildew invasion.

  13. Dissecting the Transcriptional Response to Elicitors in Vitis vinifera Cells

    PubMed Central

    Belchí-Navarro, Sarai; Bru, Roque; Martínez-Zapater, José M.; Lijavetzky, Diego; Pedreño, María A.

    2014-01-01

    The high effectiveness of cyclic oligosaccharides like cyclodextrins in the production of trans-resveratrol in Vitis vinifera cell cultures is enhanced in the presence of methyl jasmonate. In order to dissect the basis of the interactions among the elicitation responses triggered by these two compounds, a transcriptional analysis of grapevine cell cultures treated with cyclodextrins and methyl jasmonate separately or in combination was carried out. The results showed that the activation of genes encoding enzymes from phenylpropanoid and stilbene biosynthesis induced by cyclodextrins alone was partially enhanced in the presence of methyl jasmonate, which correlated with their effects on trans-resveratrol production. In addition, protein translation and cell cycle regulation were more highly repressed in cells treated with cyclodextrins than in those treated with methyl jasmonate, and this response was enhanced in the combined treatment. Ethylene signalling was activated by all treatments, while jasmonate signalling and salicylic acid conjugation were activated only in the presence of methyl jasmonate and cyclodextrins, respectively. Moreover, the combined treatment resulted in a crosstalk between the signalling cascades activated by cyclodextrins and methyl jasmonate, which, in turn, provoked the activation of additional regulatory pathways involving the up-regulation of MYB15, NAC and WRKY transcription factors, protein kinases and calcium signal transducers. All these results suggest that both elicitors cause an activation of the secondary metabolism in detriment of basic cell processes like the primary metabolism or cell division. Crosstalk between cyclodextrins and methyl jasmonate-induced signalling provokes an intensification of these responses resulting in a greater trans-resveratrol production. PMID:25314001

  14. NMR metabolomics of esca disease-affected Vitis vinifera cv. Alvarinho leaves.

    PubMed

    Lima, Marta R M; Felgueiras, Mafalda L; Graça, Gonçalo; Rodrigues, João E A; Barros, António; Gil, Ana M; Dias, Alberto C P

    2010-09-01

    Esca is a destructive disease that affects vineyards leading to important losses in wine production. Information about the response of Vitis vinifera plants to this disease is scarce, particularly concerning changes in plant metabolism. In order to study the metabolic changes in Vitis plants affected by esca, leaves from both infected and non-affected cordons of V. vinifera cv. Alvarinho (collected in the Vinho Verde region, Portugal) were analysed. The metabolite composition of leaves from infected cordons with visible symptoms [diseased leaves (dl)] and from asymptomatic cordons [healthy leaves (hl)] was evaluated by 1D and 2D (1)H-nuclear magnetic resonance (NMR) spectroscopy. Principal component analysis (PCA) of the NMR spectra showed a clear separation between dl and hl leaves, indicating differential compound production due to the esca disease. NMR/PCA analysis allowed the identification of specific compounds characterizing each group, and the corresponding metabolic pathways are discussed. Altogether, the study revealed a significant increase of phenolic compounds in dl, compared with hl, accompanied by a decrease in carbohydrates, suggesting that dl are rerouting carbon and energy from primary to secondary metabolism. Other metabolic alterations detected comprised increased levels of methanol, alanine, and gamma-aminobutyric acid in dl, which might be the result of the activation of other defence mechanisms.

  15. Grapevine Pathogenic Microorganisms: Understanding Infection Strategies and Host Response Scenarios

    PubMed Central

    Armijo, Grace; Schlechter, Rudolf; Agurto, Mario; Muñoz, Daniela; Nuñez, Constanza; Arce-Johnson, Patricio

    2016-01-01

    Grapevine (Vitis vinifera L.) is one of the most important fruit crop worldwide. Commercial cultivars are greatly affected by a large number of pathogenic microorganisms that cause diseases during pre- and/or post-harvest periods, affecting production, processing and export, along with fruit quality. Among the potential threats, we can find bacteria, fungi, oomycete, or viruses with different life cycles, infection mechanisms and evasion strategies. While plant–pathogen interactions are cycles of resistance and susceptibility, resistance traits from natural resources are selected and may be used for breeding purposes and for a sustainable agriculture. In this context, here we summarize some of the most important diseases affecting V. vinifera together with their causal agents. The aim of this work is to bring a comprehensive review of the infection strategies deployed by significant types of pathogens while understanding the host response in both resistance and susceptibility scenarios. New approaches being used to uncover grapevine status during biotic stresses and scientific-based procedures needed to control plant diseases and crop protection are also addressed. PMID:27066032

  16. An improved embryo-rescue protocol for hybrid progeny from seedless Vitis vinifera grapes × wild Chinese Vitis species.

    PubMed

    Li, Gui Rong; Ji, Wei; Wang, Gang; Zhang, Jian Xia; Wang, Yue Jin

    A highly efficient technique of embryo rescue is critical when using stenospermocarpic Vitis vinifera cultivars (female parents) to breed novel, disease-resistant, seedless grape cultivars by hybridizing with wild Chinese Vitis species (male parents) having many disease-resistance alleles. The effects of various factors on the improvement of embryo formation, germination, and plantlet development for seven hybrid combinations were studied. The results indicated that Beichun and Shuangyou were the best male parents. The best sampling time for ovule inoculation differed among the female parents. When hybrid ovules were cultured on a double-phase medium with five different solid medium types, percent embryo formation was highest (11.3-28.3%) on a modified MM3 medium. Percentages of embryo germination (15.4-55.4%) and plantlet development (11.15-44.6%) were all highest when embryos were cultured on Woody Plant Medium + 5.7 μM indole-3-acetic acid + 4.4 μM 6-benzylaminopurine + 1.4 μM gibberellic acid + 2% sucrose + 0.05% casein hydrolysate + 0.3% activated charcoal + 0.7% agar. In the absence of other amino acids, the addition of proline significantly increased embryo formation (36.1%), embryo germination (64.6%), and plantlet development (90.5%). A highly efficient protocol has been developed for hybrid embryo rescue from seedless V. vinifera grapes × wild Chinese Vitis species that results in a significant improvement in breeding efficiency for new disease-resistant seedless grapes.

  17. The Accumulation of miRNAs Differentially Modulated by Drought Stress Is Affected by Grafting in Grapevine1[OPEN

    PubMed Central

    Vitali, Marco; Vitulo, Nicola; Incarbone, Marco

    2017-01-01

    Grapevine (Vitis vinifera) is routinely grafted, and rootstocks inducing drought tolerance represent a source for adapting vineyards to climate change in temperate areas. Our goal was to investigate drought stress effects on microRNA (miRNA) abundance in a drought-resistant grapevine rootstock, M4 (Vitis vinifera × Vitis berlandieri), compared with a commercial cultivar, Cabernet Sauvignon, using their autografts and reciprocal grafts. RNA extracted from roots and leaves of droughted and irrigated plants of different graft combinations was used to prepare cDNA libraries for small RNA sequencing and to analyze miRNAs by quantitative real-time polymerase chain reaction (RT-qPCR). Measurements of leaf water potential, leaf gas exchange, and root hydraulic conductance attested that, under irrigation, M4 reduced water loss in comparison with cultivar Cabernet Sauvignon mostly through nonhydraulic, root-specific mechanisms. Under drought, stomatal conductance decreased at similar levels in the two genotypes. Small RNA sequencing allowed the identification of 70 conserved miRNAs and the prediction of 28 novel miRNAs. Different accumulation trends of miRNAs, observed upon drought and in different genotypes and organs, were confirmed by RT-qPCR. Corresponding target transcripts, predicted in silico and validated by RT-qPCR, often showed opposite expression profiles than the related miRNAs. Drought effects on miRNA abundance differed between the two genotypes. Furthermore, the concentration of drought-responsive miRNAs in each genotype was affected by reciprocal grafting, suggesting either the movement of signals inducing miRNA expression in the graft partner or, possibly, miRNA transport between scion and rootstock. These results open new perspectives in the selection of rootstocks for improving grapevine adaptation to drought. PMID:28235889

  18. A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence.

    PubMed

    Jiao, Yuntong; Xu, Weirong; Duan, Dong; Wang, Yuejin; Nick, Peter

    2016-10-01

    Stilbenes are central phytoalexins in Vitis, and induction of the key enzyme stilbene synthase (STS) is pivotal for disease resistance. Here, we address the potential for breeding resistance using an STS allele isolated from Chinese wild grapevine Vitis pseudoreticulata (VpSTS) by comparison with its homologue from Vitis vinifera cv. 'Carigane' (VvSTS). Although the coding regions of both alleles are very similar (>99% identity on the amino acid level), the promoter regions are significantly different. By expression in Arabidopsis as a heterologous system, we show that the allele from the wild Chinese grapevine can confer accumulation of stilbenes and resistance against the powdery mildew Golovinomyces cichoracearum, whereas the allele from the vinifera cultivar cannot. To dissect the upstream signalling driving the activation of this promoter, we used a dual-luciferase reporter system in a grapevine cell culture. We show elevated responsiveness of the promoter from the wild grape to salicylic acid (SA) and to the pathogen-associated molecular pattern (PAMP) flg22, equal induction of both alleles by jasmonic acid (JA), and a lack of response to the cell death-inducing elicitor Harpin. This elevated SA response of the VpSTS promoter depends on calcium influx, oxidative burst by RboH, mitogen-activated protein kinase (MAPK) signalling, and JA synthesis. We integrate the data in the context of a model where the resistance of V. pseudoreticulata is linked to a more efficient recruitment of SA signalling for phytoalexin synthesis. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses.

    PubMed

    Salazar-Parra, Carolina; Aranjuelo, Iker; Pascual, Inmaculada; Erice, Gorka; Sanz-Sáez, Álvaro; Aguirreolea, Jone; Sánchez-Díaz, Manuel; Irigoyen, Juan José; Araus, José Luis; Morales, Fermín

    2015-02-01

    Although plant performance under elevated CO2 has been extensively studied in the past little is known about photosynthetic performance changing simultaneously CO2, water availability and temperature conditions. Moreover, despite of its relevancy in crop responsiveness to elevated CO2 conditions, plant level C balance is a topic that, comparatively, has received little attention. In order to test responsiveness of grapevine photosynthetic apparatus to predicted climate change conditions, grapevine (Vitis vinifera L. cv. Tempranillo) fruit-bearing cuttings were exposed to different CO2 (elevated, 700ppm vs. ambient, ca. 400ppm), temperature (ambient vs. elevated, ambient +4°C) and irrigation levels (partial vs. full irrigation). Carbon balance was followed monitoring net photosynthesis (AN, C gain), respiration (RD) and photorespiration (RL) (C losses). Modification of environment (13)C isotopic composition (δ(13)C) under elevated CO2 (from -10.30 to -24.93‰) enabled the further characterization of C partitioning into roots, cuttings, shoots, petioles, leaves, rachides and berries. Irrespective of irrigation level and temperature, exposure to elevated CO2 induced photosynthetic acclimation of plants. C/N imbalance reflected the inability of plants grown at 700ppm CO2 to develop strong C sinks. Partitioning of labeled C to storage organs (main stem and roots) did not avoid accumulation of labeled photoassimilates in leaves, affecting negatively Rubisco carboxylation activity. The study also revealed that, after 20 days of treatment, no oxidative damage to chlorophylls or carotenoids was observed, suggesting a protective role of CO2 either at current or elevated temperatures against the adverse effect of water stress. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Interkingdom transfer of the acne-causing agent, Propionibacterium acnes, from human to grapevine.

    PubMed

    Campisano, Andrea; Ometto, Lino; Compant, Stéphane; Pancher, Michael; Antonielli, Livio; Yousaf, Sohail; Varotto, Claudio; Anfora, Gianfranco; Pertot, Ilaria; Sessitsch, Angela; Rota-Stabelli, Omar

    2014-05-01

    Here, we report the surprising and, to our knowledge, unique example of horizontal interkingdom transfer of a human opportunistic pathogen (Propionibacterium acnes) to a crop plant (the domesticated grapevine Vitis vinifera L.). Humans, like most organisms, have established a long-lasting cohabitation with a variety of microbes, including pathogens and gut-associated bacteria. Studies which have investigated the dynamics of such associations revealed numerous cases of bacterial host switches from domestic animals to humans. Much less is, however, known about the exchange of microbial symbionts between humans and plants. Fluorescent in situ hybridization localized P. acnes in the bark, in xylem fibers, and, more interestingly, inside pith tissues. Phylogenetic and population genetic analyses suggest that the establishment of the grapevine-associated P. acnes as obligate endophyte is compatible with a recent transfer event, likely during the Neolithic, when grapevine was domesticated.

  1. Vitis vinifera Extract Ameliorate Hepatic and Renal Dysfunction Induced by Dexamethasone in Albino Rats

    PubMed Central

    Hasona, Nabil A.; Alrashidi, Ahmed A.; Aldugieman, Thamer Z.; Alshdokhi, Ali M.; Ahmed, Mohammed Q.

    2017-01-01

    This study was conducted to evaluate the biochemical effects of grape seed extract against dexamethasone-induced hepatic and renal dysfunction in a female albino rat. Twenty-eight adult female rats were divided randomly into four equal groups: Group 1: animals were injected subcutaneously with saline and consider as normal control one. Group 2: animals were injected subcutaneously with dexamethasone in a dose of 0.1 mg/kg body weight. Group 3: animals were injected subcutaneously with 0.1 mg/kg body weight of dexamethasone, and then treated with a grape seed extract in a dose of 200 mg/kg body weight by oral gavage. Group 4: animals were injected subcutaneously with 0.1 mg/kg body weight of dexamethasone, and then treated with a grape seed extract in a dose of 400 mg/kg body weight by oral gavage. After 4 weeks, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) activities, albumin, uric acid, creatinine, and glucose levels were assayed. Hepatic reduced glutathione (GSH), total protein content, and catalase and glucose-6-phosphate dehydrogenase activities were also assayed. Dexamethasone administration caused elevation of serum levels of glucose, uric acid, creatinine, ALT, AST activities, and a decrease in other parameters such as hepatic glutathione, total protein levels, and catalase enzyme activity. Treatment with Vitis vinifera L. seed extract showed a significant increase in the body weight of rats in the group treated with Vitis vinifera L. seed extract orally compared with the dexamethasone control group. An increase in GSH and catalase activity in response to oral treatment with Vitis vinifera L. seed extract was observed after treatment. Grape seed extract positively affects glucocorticoid-induced hepatic and renal alteration in albino rats. PMID:29051443

  2. Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease

    PubMed Central

    Qiu, Wenping; Feechan, Angela; Dry, Ian

    2015-01-01

    The most economically important disease of cultivated grapevines worldwide is powdery mildew (PM) caused by the ascomycete fungus Erysiphe necator. The majority of grapevine cultivars used for wine, table grape, and dried fruit production are derived from the Eurasian grape species Vitis vinifera because of its superior aroma and flavor characteristics. However, this species has little genetic resistance against E. necator meaning that grape production is highly dependent on the frequent use of fungicides. The integration of effective genetic resistance into cultivated grapevines would lead to significant financial and environmental benefits and represents a major challenge for viticultural industries and researchers worldwide. This review will outline the strategies being used to increase our understanding of the molecular basis of V. vinifera susceptibility to this fungal pathogen. It will summarize our current knowledge of different resistance loci/genes that have evolved in wild grapevine species to restrict PM infection and assess the potential application of these defense genes in the generation of PM-resistant grapevine germplasm. Finally, it addresses future research priorities which will be important in the rapid identification, evaluation, and deployment of new PM resistance genes which are capable of conferring effective and durable resistance in the vineyard. PMID:26504571

  3. Herbicides in vineyards reduce grapevine root mycorrhization and alter soil microorganisms and the nutrient composition in grapevine roots, leaves, xylem sap and grape juice.

    PubMed

    Zaller, Johann G; Cantelmo, Clemens; Santos, Gabriel Dos; Muther, Sandrina; Gruber, Edith; Pallua, Paul; Mandl, Karin; Friedrich, Barbara; Hofstetter, Ingrid; Schmuckenschlager, Bernhard; Faber, Florian

    2018-06-03

    Herbicides are increasingly applied in vineyards worldwide. However, not much is known on potential side effects on soil organisms or on the nutrition of grapevines (Vitis vinifera). In an experimental vineyard in Austria, we examined the impacts of three within-row herbicide treatments (active ingredients: flazasulfuron, glufosinate, glyphosate) and mechanical weeding on grapevine root mycorrhization; soil microorganisms; earthworms; and nutrient concentration in grapevine roots, leaves, xylem sap and grape juice. The three herbicides reduced grapevine root mycorrhization on average by 53% compared to mechanical weeding. Soil microorganisms (total colony-forming units, CFU) were significantly affected by herbicides with highest CFUs under glufosinate and lowest under glyphosate. Earthworms (surface casting activity, density, biomass, reproduction) or litter decomposition in soil were unaffected by herbicides. Herbicides altered nutrient composition in grapevine roots, leaves, grape juice and xylem sap that was collected 11 months after herbicide application. Xylem sap under herbicide treatments also contained on average 70% more bacteria than under mechanical weeding; however, due to high variability, this was not statistically significant. We conclude that interdisciplinary approaches should receive more attention when assessing ecological effects of herbicides in vineyard ecosystems.

  4. Virus-Derived Gene Expression and RNA Interference Vector for Grapevine

    PubMed Central

    Kurth, Elizabeth G.; Peremyslov, Valera V.; Prokhnevsky, Alexey I.; Kasschau, Kristin D.; Miller, Marilyn; Carrington, James C.

    2012-01-01

    The improvement of the agricultural and wine-making qualities of the grapevine (Vitis vinifera) is hampered by adherence to traditional varieties, the recalcitrance of this plant to genetic modifications, and public resistance to genetically modified organism (GMO) technologies. To address these challenges, we developed an RNA virus-based vector for the introduction of desired traits into grapevine without heritable modifications to the genome. This vector expresses recombinant proteins in the phloem tissue that is involved in sugar transport throughout the plant, from leaves to roots to berries. Furthermore, the vector provides a powerful RNA interference (RNAi) capability of regulating the expression of endogenous genes via virus-induced gene-silencing (VIGS) technology. Additional advantages of this vector include superb genetic capacity and stability, as well as the swiftness of technology implementation. The most significant applications of the viral vector include functional genomics of the grapevine and disease control via RNAi-enabled vaccination against pathogens or invertebrate pests. PMID:22438553

  5. Divergence in the transcriptional landscape between low temperature and freeze shock in cultivated grapevine (Vitis vinifera)

    USDA-ARS?s Scientific Manuscript database

    Low temperature stresses limit the sustainability and productivity of grapevines when early spring frosts damage young grapevine leaves. Spring conditions often expose grapevines to low, but not damaging, chilling temperatures and these temperatures have been shown to increase freeze resistance in o...

  6. Monoterpenyl Glycosyltransferases Differentially Contribute to Production of Monoterpenyl Glycosides in Two Aromatic Vitis vinifera Varieties.

    PubMed

    Li, Xiang-Yi; Wen, Ya-Qin; Meng, Nan; Qian, Xu; Pan, Qiu-Hong

    2017-01-01

    HIGHLIGHTS A similar trend on accumulation of glycosidically bound monoterpenes was observed in both varietiesTwo VvGT7 alleles mutations occurred at key sites in Muscat blanc à Petit VvGT14 exerted a major role in production of monoterpenyl glycosides in both varieties Terpenoids are the major aroma components and generally exist as both free and glycosidically-bound forms, of which nonvolatile glycosides account for a large fraction in grape berries. Our previous study has indicated that differential accumulation of monoterpenyl glycosides in Vitis vinifera "Muscat blanc à Petit" between two regions is closely correlated to monoterpenyl glucosyltransferase ( VvGT14 , XM_002285734.2) transcript abundance. However, it has not been determined yet whether this correlation also exists in other Vitis vinifera varieties. This study investigated the evolution of free and glycosidically bound monoterpenes in two Vitis vinifera variety "Muscat blanc à Petit" and "Gewurztraminer" under two vintages, and further assessed the relation between the accumulation of bound monoterpenes and two monoterpenyl glycosyltransferase transcript levels. Results showed that free monoterpenes exhibited three evolution patterns in both varieties during berry development of two vintages, whereas glycosidically bound monoterpenes showed a concentration elevation with berry maturation. The Cis -rose oxide and geraniol were major components contributing to the aroma odors of "Gewürztraminer" grapes while linalool was major aroma contributor to the "Muscat blanc à Petit grain" grapes. The accumulation of glycosidically bound monoterpenes in both varieties was accompanied with the high expression of VvGT7 (XM_002276510.2) and VvGT14 . Only one allele of VvGT7 was found in the variety "Gewürztraminer" and no mutation was observed in its enzyme active sites. XB-VvGT7-4 and XB-VvGT7-5 were two alleles of VvGT7 detected in "Muscat blanc à Petit grain." The mutation on its enzyme active site

  7. Changes in transcription of cytokinin metabolism and signalling genes in grape (Vitis vinifera L.) berries are associated with the ripening-related increase in isopentenyladenine.

    PubMed

    Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher

    2015-09-16

    Cytokinins are known to play an important role in fruit set and early fruit growth, but their involvement in later stages of fruit development is less well understood. Recent reports of greatly increased cytokinin concentrations in the flesh of ripening kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang & A.R. Ferguson) and grapes (Vitis vinifera L.) have suggested that these hormones are implicated in the control of ripening-related processes. A similar pattern of isopentenyladenine (iP) accumulation was observed in the ripening fruit of several grapevine cultivars, strawberry (Fragaria ananassa Duch.) and tomato (Solanum lycopersicum Mill.), suggesting a common, ripening-related role for this cytokinin. Significant differences in maximal iP concentrations between grapevine cultivars and between fruit species might reflect varying degrees of relevance or functional adaptations of this hormone in the ripening process. Grapevine orthologues of five Arabidopsis (Arabidopsis thaliana L.) gene families involved in cytokinin metabolism and signalling were identified and analysed for their expression in developing grape berries and a range of other grapevine tissues. Members of each gene family were characterised by distinct expression profiles during berry development and in different grapevine organs, suggesting a complex regulation of cellular cytokinin activities throughout the plant. The post-veraison-specific expression of a set of biosynthesis, activation, perception and signalling genes together with a lack of expression of degradation-related genes during the ripening phase were indicative of a local control of berry iP concentrations leading to the observed accumulation of iP in ripening grapes. The transcriptional analysis of grapevine genes involved in cytokinin production, degradation and response has provided a possible explanation for the ripening-associated accumulation of iP in grapes and other fruit. The pre- and post-veraison-specific expression of

  8. Up-regulated transcripts in a compatible powdery mildew-grapevine interaction.

    PubMed

    Fekete, Csaba; Fung, Raymond W M; Szabó, Zoltán; Qiu, Wenping; Chang, Le; Schachtman, Daniel P; Kovács, László G

    2009-08-01

    Powdery mildews (Erysiphales) are obligate biotrophic pathogens that invade susceptible plant cells without triggering cell death. This suggests a highly adept mechanism of parasitism which enables powdery mildews to avoid detection or evade defenses by their host. To better understand this plant-pathogen interaction, we employed suppression subtractive hybridization (SSH), differential hybridization and quantitative real-time (qRT) PCR for the identification of grapevine (Vitis vinifera L.) genes that were specifically up-regulated in response to the grape powdery mildew Erysiphe necator Schwein. We identified 25 grapevine transcripts that increased in abundance upon infection in leaves of the susceptible host V. vinifera Cabernet Sauvignon. Despite the compatible interaction between the pathogen and plant, several of the E. necator-induced transcripts represented typical defense response genes. Among the transcripts identified were those that encoded a leucine-rich repeat serine/threonine kinase-like receptor, an MYB transcription factor, and two ubiquitination-associated proteins, indicating the stimulation of intracellular signal transduction and regulatory functions. A number of genes characteristic of senescence processes, including metallothioneins, a deoxyribonuclease, an aspartyl protease and a subtilase-like serine protease, also were identified. These transcripts expanded the list of previously identified E. necator-responsive grapevine genes and facilitated a more comprehensive view of the molecular events that underlie this economically important plant-pathogen interaction.

  9. Editing of the grapevine mitochondrial cytochrome b mRNA and molecular modeling of the protein.

    PubMed

    Islas-Osuna, María A; Silva-Moreno, Begonia; Caceres-Carrizosa, Nidia; García-Robles, Jesús M; Sotelo-Mundo, Rogerio R; Yepiz-Plascencia, Gloria M

    2006-05-01

    Cytochrome b (COB), the central catalytic subunit of ubiquinol cytochrome c reductase, is a component of the transmembrane electron transfer chain that generates proton motive force. Some plant COB mRNAs are processed by RNA editing, which changes the gene coding sequence. This report presents the sequences of the grapevine (Vitis vinifera L.) mitochondrial gene for apocytochrome b (cob), the edited mRNA and the deduced protein. Grapevine COB is 393 amino acids long and is 98% identical to homologs in rapeseed, Arabidopsis thaliana and Oenothera sp. Twenty-one C-U editing sites were identified in the grapevine cob mRNA, resulting in 20 amino acid changes. These changes increase the overall hydrophobicity of the protein and result in a more conserved protein. Molecular modeling of grapevine COB shows that residues changed by RNA editing fit the secondary structure characteristic of an integral membrane protein. This is the first complete mitochondrial gene reported for grapevine. Novel RNA editing sites were identified in grapevine cob, which have not been previously reported for other plants.

  10. Review of the Pharmacological Effects of Vitis vinifera (Grape) and its Bioactive Constituents: An Update.

    PubMed

    Nassiri-Asl, Marjan; Hosseinzadeh, Hossein

    2016-09-01

    Vitis vinifera fruit (grape) contains various phenolic compounds, flavonoids and stilbenes. In recent years, active constituents found in the fruits, seeds, stems, skin and pomaces of grapes have been identified and some have been studied. In this review, we summarize the active constituents of different parts of V. vinifera and their pharmacological effects including skin protection, antioxidant, antibacterial, anticancer, antiinflammatory and antidiabetic activities, as well as hepatoprotective, cardioprotective and neuroprotective effects in experimental studies published after our 2009 review. Clinical and toxicity studies have also been examined. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Can Pierce’s disease PdR1 resistance introgressed into Vitis vinifera be translocated from a resistant rootstock to a susceptible scion?

    USDA-ARS?s Scientific Manuscript database

    The goal of this research is to evaluate the potential of a non-transgenic, PD resistant Vitis vinifera selection used as an experimental rootstock to confer systemic resistance to PD susceptible V. vinifera scions. Source of PD susceptible plant material was the wine grape variety ‘Chardonnay’, kno...

  12. Flower development and sex specification in wild grapevine.

    PubMed

    Ramos, Miguel Jesus Nunes; Coito, João Lucas; Silva, Helena Gomes; Cunha, Jorge; Costa, Maria Manuela Ribeiro; Rocheta, Margarida

    2014-12-12

    Wild plants of Vitis closely related to the cultivated grapevine (V. v. vinifera) are believed to have been first domesticated 10,000 years BC around the Caspian Sea. V. v. vinifera is hermaphrodite whereas V. v. sylvestris is a dioecious species. Male flowers show a reduced pistil without style or stigma and female flowers present reflexed stamens with infertile pollen. V. vinifera produce perfect flowers with all functional structures. The mechanism for flower sex determination and specification in grapevine is still unknown. To understand which genes are involved during the establishment of male, female and complete flowers, we analysed and compared the transcription profiles of four developmental stages of the three genders. We showed that sex determination is a late event during flower development and that the expression of genes from the ABCDE model is not directly correlated with the establishment of sexual dimorphism. We propose a temporal comprehensive model in which two mutations in two linked genes could be players in sex determination and indirectly establish the Vitis domestication process. Additionally, we also found clusters of genes differentially expressed between genders and between developmental stages that suggest a role involved in sex differentiation. Also, the detection of differentially transcribed regions that extended existing gene models (intergenic regions) between sexes suggests that they may account for some of the variation between the subspecies. There is no evidence of differences of expression levels in genes from the ABCDE model that could explain the shift from hermaphroditism to dioecy. We propose that sex specification occurs after floral organ identity has been established and therefore, sex determination genes might be having an effect downstream of the ABCDE model genes.For the first time a full transcriptomic analysis was performed in different flower developmental stages in the same individual. Our experimental approach

  13. Sugars, organic acids, and phenolic compounds of ancient grape cultivars (Vitis vinifera L.) from Igdir province of Eastern Turkey.

    PubMed

    Eyduran, Sadiye Peral; Akin, Meleksen; Ercisli, Sezai; Eyduran, Ecevit; Maghradze, David

    2015-01-13

    The Eurasian grapevine (Vitis vinifera L.) is the most widely cultivated and economically important horticultural crop in the world. As a one of the origin area, Anatolia played an important role in the diversification and spread of the cultivated form V. vinifera ssp. vinifera cultivars and also the wild form V. vinifera ssp. sylvestris ecotypes. Although several biodiversity studies have been conducted with local cultivars in different regions of Anatolia, no information has been reported so far on the biochemical (organic acids, sugars, phenolic acids, vitamin C) and antioxidant diversity of local historical table V. vinifera cultivars grown in Igdir province. In this work, we studied these traits in nine local table grape cultivars viz. 'Beyaz Kismis' (synonym name of Sultanina or Thompson seedless), 'Askeri', 'El Hakki', 'Kirmizi Kismis', 'Inek Emcegi', 'Hacabas', 'Kerim Gandi', 'Yazen Dayi', and 'Miskali' spread in the Igdir province of Eastern part of Turkey. Variability of all studied parameters is strongly influenced by cultivars (P < 0.01). Among the cultivars investigated, 'Miskali' showed the highest citric acid content (0.959 g/l) while 'Kirmizi Kismis' produced predominant contents in tartaric acid (12.71 g/l). The highest glucose (16.47 g/100 g) and fructose (15.55 g/100 g) contents were provided with 'Beyaz Kismis'. 'Kirmizi Kismis' cultivar had also the highest quercetin (0.55 mg/l), o-coumaric acid (1.90 mg/l), and caffeic acid (2.73 mg/l) content. The highest ferulic acid (0.94 mg/l), and syringic acid (2.00 mg/l) contents were observed with 'Beyaz Kismis' cultivar. The highest antioxidant capacity was obtained as 9.09 μmol TE g(-1) from 'Inek Emcegi' in TEAC (Trolox equivalent Antioxidant Capacity) assay. 'Hacabas' cultivar had the highest vitamin C content of 35.74 mg/100 g. Present results illustrated that the historical table grape cultivars grown in Igdir province of Eastern part of Turkey contained diverse

  14. The photoprotective role of epidermal anthocyanins and surface pubescence in young leaves of grapevine (Vitis vinifera).

    PubMed

    Liakopoulos, Georgios; Nikolopoulos, Dimosthenis; Klouvatou, Aspasia; Vekkos, Kornilios-Andrianos; Manetas, Yiannis; Karabourniotis, George

    2006-07-01

    Depending on cultivar, surfaces of young leaves of Vitis vinifera may be glabrous-green ('Soultanina') or transiently have anthocyanins ('Siriki') or pubescence ('Athiri'). A test is made of the hypothesis that anthocyanins and pubescence act as light screens affording a photoprotective advantage to the corresponding leaves, and an assessment is made of the magnitude of their effect. Measurements were made on young leaves of the three cultivars in spring under field conditions. Photosynthetic gas-exchange and in vivo chlorophyll fluorescence were measured. Photosynthetic and photoprotective pigments were analysed by HPLC. Compared with glabrous-green leaves, both anthocyanic and pubescent leaves had greater dark-adapted PSII photochemical efficiency and net photosynthesis. In leaves possessing either anthocyanins or pubescence, the ratio of xanthophyll cycle components to total chlorophyll, and mid-day de-epoxidation state of the xanthophyll cycle were considerably smaller, than in glabrous-green leaves. These differences were more evident in pubescent leaves, probably indicating that trichomes were more effective in decreasing light stress than anthocyanins in the epidermis. Light screens, especially in the form of pubescence, decrease the risk of photoinhibition whilst allowing leaves to maintain a smaller content of xanthophyll cycle components and depend less on xanthophyll cycle energy dissipation. This combination of photoprotective features, i.e. decreased photon flux to the photosynthetic apparatus and lower xanthophyll cycle utilization rates may be particularly advantageous under stressful conditions.

  15. Floral Meristem Identity Genes Are Expressed during Tendril Development in Grapevine1

    PubMed Central

    Calonje, Myriam; Cubas, Pilar; Martínez-Zapater, José M.; Carmona, María José

    2004-01-01

    To study the early steps of flower initiation and development in grapevine (Vitis vinifera), we have isolated two MADS-box genes, VFUL-L and VAP1, the putative FUL-like and AP1 grapevine orthologs, and analyzed their expression patterns during vegetative and reproductive development. Both genes are expressed in lateral meristems that, in grapevine, can give rise to either inflorescences or tendrils. They are also coexpressed in inflorescence and flower meristems. During flower development, VFUL-L transcripts are restricted to the central part of young flower meristems and, later, to the prospective carpel-forming region, which is consistent with a role of this gene in floral transition and carpel and fruit development. Expression pattern of VAP1 suggests that it may play a role in flowering transition and flower development. However, its lack of expression in sepal primordia, does not support its role as an A-function gene in grapevine. Neither VFUL-L nor VAP1 expression was detected in vegetative organs such as leaves or roots. In contrast, they are expressed throughout tendril development. Transcription of both genes in tendrils of very young plants that have not undergone flowering transition indicates that this expression is independent of the flowering process. These unique expression patterns of genes typically involved in reproductive development have implications on our understanding of flower induction and initiation in grapevine, on the origin of grapevine tendrils and on the functional roles of AP1-and FUL-like genes in plant development. These results also provide molecular support to the hypothesis that Vitis tendrils are modified reproductive organs adapted to climb. PMID:15247405

  16. Grapevine virus I, a putative new vitivirus detected in co-infection with grapevine virus G in New Zealand.

    PubMed

    Blouin, Arnaud G; Chooi, Kar Mun; Warren, Ben; Napier, Kathryn R; Barrero, Roberto A; MacDiarmid, Robin M

    2018-05-01

    A novel virus, with characteristics of viruses classified within the genus Vitivirus, was identified from a sample of Vitis vinifera cv. Chardonnay in New Zealand. The virus was detected with high throughput sequencing (small RNA and total RNA) and its sequence was confirmed by Sanger sequencing. Its genome is 7507 nt long (excluding the polyA tail) with an organisation similar to that described for other classifiable members of the genus Vitivirus. The closest relative of the virus is grapevine virus E (GVE) with 65% aa identity in ORF1 (65% nt identity) and 63% aa identity in the coat protein (66% nt identity). The relationship with GVE was confirmed with phylogenetic analysis, showing the new virus branching with GVE, Agave tequilina leaf virus and grapevine virus G (GVG). A limited survey revealed the presence of this virus in multiple plants from the same location where the newly described GVG was discovered, and in most cases both viruses were detected as co-infections. The genetic characteristics of this virus suggest it represents an isolate of a new species within the genus Vitivirus and following the current nomenclature, we propose the name "Grapevine virus I".

  17. Extracellular compounds produced by fungi associated with Botryosphaeria dieback induce differential defence gene expression patterns and necrosis in Vitis vinifera cv. Chardonnay cells.

    PubMed

    Ramírez-Suero, M; Bénard-Gellon, M; Chong, J; Laloue, H; Stempien, E; Abou-Mansour, E; Fontaine, F; Larignon, P; Mazet-Kieffer, F; Farine, S; Bertsch, C

    2014-11-01

    Three major grapevine trunk diseases, esca, botryosphaeria dieback and eutypa dieback, pose important economic problems for vineyards worldwide, and currently, no efficient treatment is available to control these diseases. The different fungi associated with grapevine trunk diseases can be isolated in the necrotic wood, but not in the symptomatic leaves. Other factors seem to be responsible for the foliar symptoms and may represent the link between wood and foliar symptoms. One hypothesis is that the extracellular compounds produced by the fungi associated with grapevine trunk diseases are responsible for pathogenicity.In the present work, we used Vitis vinifera cv. Chardonnay cells to test the aggressiveness of total extracellular compounds produced by Diplodia seriata and Neofusicoccum parvum, two causal agents associated with botryosphaeria dieback. Additionally, the toxicity of purified mellein, a characteristic toxin present in the extracellular compounds of Botryosphaeriaceae, was assessed.Our results show that the total extracellular compounds produced by N. parvum induce more necrosis on Chardonnay calli and induce a different defence gene expression pattern than those of D. seriata. Mellein was produced by both fungi in amounts proportional to its aggressiveness. However, when purified mellein was added to the culture medium of calli, only a delayed necrosis and a lower-level expression of defence genes were observed. Extracellular compounds seem to be involved in the pathogenicity of the fungi associated with botryosphaeria dieback. However, the doses of mellein used in this study are 100 times higher than those found in the liquid fungal cultures: therefore, the possible function of this toxin is discussed.

  18. Monoterpenyl Glycosyltransferases Differentially Contribute to Production of Monoterpenyl Glycosides in Two Aromatic Vitis vinifera Varieties

    PubMed Central

    Li, Xiang-Yi; Wen, Ya-Qin; Meng, Nan; Qian, Xu; Pan, Qiu-Hong

    2017-01-01

    HIGHLIGHTS A similar trend on accumulation of glycosidically bound monoterpenes was observed in both varietiesTwo VvGT7 alleles mutations occurred at key sites in Muscat blanc à PetitVvGT14 exerted a major role in production of monoterpenyl glycosides in both varieties Terpenoids are the major aroma components and generally exist as both free and glycosidically-bound forms, of which nonvolatile glycosides account for a large fraction in grape berries. Our previous study has indicated that differential accumulation of monoterpenyl glycosides in Vitis vinifera “Muscat blanc à Petit” between two regions is closely correlated to monoterpenyl glucosyltransferase (VvGT14, XM_002285734.2) transcript abundance. However, it has not been determined yet whether this correlation also exists in other Vitis vinifera varieties. This study investigated the evolution of free and glycosidically bound monoterpenes in two Vitis vinifera variety “Muscat blanc à Petit” and “Gewurztraminer” under two vintages, and further assessed the relation between the accumulation of bound monoterpenes and two monoterpenyl glycosyltransferase transcript levels. Results showed that free monoterpenes exhibited three evolution patterns in both varieties during berry development of two vintages, whereas glycosidically bound monoterpenes showed a concentration elevation with berry maturation. The Cis-rose oxide and geraniol were major components contributing to the aroma odors of “Gewürztraminer” grapes while linalool was major aroma contributor to the “Muscat blanc à Petit grain” grapes. The accumulation of glycosidically bound monoterpenes in both varieties was accompanied with the high expression of VvGT7 (XM_002276510.2) and VvGT14. Only one allele of VvGT7 was found in the variety “Gewürztraminer” and no mutation was observed in its enzyme active sites. XB-VvGT7-4 and XB-VvGT7-5 were two alleles of VvGT7 detected in “Muscat blanc à Petit grain.” The mutation on its

  19. A Stress-Inducible Resveratrol O-Methyltransferase Involved in the Biosynthesis of Pterostilbene in Grapevine1

    PubMed Central

    Schmidlin, Laure; Poutaraud, Anne; Claudel, Patricia; Mestre, Pere; Prado, Emilce; Santos-Rosa, Maria; Wiedemann-Merdinoglu, Sabine; Karst, Francis; Merdinoglu, Didier; Hugueney, Philippe

    2008-01-01

    Stilbenes are considered the most important phytoalexin group in grapevine (Vitis vinifera) and they are known to contribute to the protection against various pathogens. The main stilbenes in grapevine are resveratrol and its derivatives and, among these, pterostilbene has recently attracted much attention due both to its antifungal and pharmacological properties. Indeed, pterostilbene is 5 to 10 times more fungitoxic than resveratrol in vitro and recent studies have shown that pterostilbene exhibits anticancer, hypolipidemic, and antidiabetic properties. A candidate gene approach was used to identify a grapevine resveratrol O-methyltransferase (ROMT) cDNA and the activity of the corresponding protein was characterized after expression in Escherichia coli. Transient coexpression of ROMT and grapevine stilbene synthase in tobacco (Nicotiana benthamiana) using the agroinfiltration technique resulted in the accumulation of pterostilbene in tobacco tissues. Taken together, these results showed that ROMT was able to catalyze the biosynthesis of pterostilbene from resveratrol both in vitro and in planta. ROMT gene expression in grapevine leaves was induced by different stresses, including downy mildew (Plasmopara viticola) infection, ultraviolet light, and AlCl3 treatment. PMID:18799660

  20. Ecophysiological and phytochemical response to ozone of wine grape cultivars of Vitis vinifera L.

    PubMed

    Valletta, Alessio; Salvatori, Elisabetta; Rita Santamaria, Anna; Nicoletti, Marcello; Toniolo, Chiara; Caboni, Emilia; Bernardini, Alessandra; Pasqua, Gabriella; Manes, Fausto

    2015-12-18

    Vitis vinifera sensitivity to tropospheric ozone (O 3 ) has been evidenced in several studies. In this work, physiological and metabolic effects of O 3 on two wine cultivars of V. vinifera (i.e. Maturano and San Giuseppe) have been studied. Moreover, chlorogenic acid (CGA) production, in consideration of its importance in the biosynthetic pathway of polyphenols and as antioxidant, has been investigated. Maturano cultivar resulted more sensitive to O 3 , as evidenced by the gas exchange reduction at the early stage of treatment, and by the increase in Ci/Ca and the decoupling of net photosynthesis and the stomatal conductance at the end of the treatment. Unexpectedly, O 3 did not activate stilbene production. Ozone induced an early CGA decrease, significantly more consistent in cv. Maturano, and an increase after 8 days, more consistent in cv. S. Giuseppe. These results suggest that CGA could be considered a biochemical marker of O 3 -induced stress in V. vinifera.

  1. Identification of microRNAs from Amur grape (vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics

    PubMed Central

    2012-01-01

    Background MicroRNA (miRNA) is a class of functional non-coding small RNA with 19-25 nucleotides in length while Amur grape (Vitis amurensis Rupr.) is an important wild fruit crop with the strongest cold resistance among the Vitis species, is used as an excellent breeding parent for grapevine, and has elicited growing interest in wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs) from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species. Results A small RNA library from Amur grape was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNAs belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grape-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, and accumulation of 18 new va-miRNAs in seven tissues of grapevines confirmed by real time RT-PCR (qRT-PCR) analysis. The expression levels of va-miRNAs in flowers and berries were found to be basically consistent in identity to those from deep sequenced sRNAs libraries of combined corresponding tissues. We also describe the conservation and variation of va-miRNAs using miR-SNPs and miR-LDs during plant evolution based on comparison of orthologous sequences, and further reveal that the number and sites of miR-SNP in diverse miRNA families exhibit distinct divergence. Finally, 346 target genes for the new miRNAs were predicted and they include a number of Amur grape stress tolerance genes and many genes regulating anthocyanin synthesis and sugar metabolism. Conclusions Deep sequencing of short RNAs from Amur grape flowers and berries identified 72 new potential miRNAs and

  2. Identification of microRNAs from Amur grape (Vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics.

    PubMed

    Wang, Chen; Han, Jian; Liu, Chonghuai; Kibet, Korir Nicholas; Kayesh, Emrul; Shangguan, Lingfei; Li, Xiaoying; Fang, Jinggui

    2012-03-29

    MicroRNA (miRNA) is a class of functional non-coding small RNA with 19-25 nucleotides in length while Amur grape (Vitis amurensis Rupr.) is an important wild fruit crop with the strongest cold resistance among the Vitis species, is used as an excellent breeding parent for grapevine, and has elicited growing interest in wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs) from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species. A small RNA library from Amur grape was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNAs belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grape-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, and accumulation of 18 new va-miRNAs in seven tissues of grapevines confirmed by real time RT-PCR (qRT-PCR) analysis. The expression levels of va-miRNAs in flowers and berries were found to be basically consistent in identity to those from deep sequenced sRNAs libraries of combined corresponding tissues. We also describe the conservation and variation of va-miRNAs using miR-SNPs and miR-LDs during plant evolution based on comparison of orthologous sequences, and further reveal that the number and sites of miR-SNP in diverse miRNA families exhibit distinct divergence. Finally, 346 target genes for the new miRNAs were predicted and they include a number of Amur grape stress tolerance genes and many genes regulating anthocyanin synthesis and sugar metabolism. Deep sequencing of short RNAs from Amur grape flowers and berries identified 72 new potential miRNAs and 34 known but non-conserved mi

  3. Grapevine MLO candidates required for powdery mildew pathogenicity?

    PubMed Central

    Feechan, Angela; Jermakow, Angelica M

    2009-01-01

    MLOs belong to the largest family of seven-transmembrane (7TM) domain proteins found in plants. The Arabidopsis and rice genomes contain 15 and 12 MLO family members, respectively. Although the biological function of most MLO family members remains elusive, a select group of MLO proteins have been demonstrated to negatively regulate defence responses to the obligate biotrophic pathogen, powdery mildew, thereby acting as “susceptibility” genes. Recently we identified a family of 17 putative VvMLO genes in the genome of the cultivated winegrape species, Vitis vinifera. Expression analysis indicated that the VvMLO family members respond differently to biotic and abiotic stimuli. Infection of V. vinifera by grape powdery mildew (Erysiphe necator) specifically upregulates four VvMLO genes that are orthologous to the Arabidopsis and tomato MLOs previously demonstrated to be required for powdery mildew susceptibility. We postulate that one or more of these E. necator responsive VvMLOs may have a role in the powdery mildew susceptibility of grapevine. PMID:19816131

  4. Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine.

    PubMed

    Salomon, María Victoria; Bottini, Rubén; de Souza Filho, Gonçalo Apolinário; Cohen, Ana Carmen; Moreno, Daniela; Gil, Mariana; Piccoli, Patricia

    2014-08-01

    Eleven bacterial strains were isolated at different soil depths from roots and rhizosphere of grapevines from a commercial vineyard. By 16S rRNA gene sequencing 10 different genera and 8 possible at species level were identified. From them, Bacillus licheniformis Rt4M10 and Pseudomonas fluorescens Rt6M10 were selected according to their characteristics as plant growth promoting rhizobacteria (PGPR). Both produced abscisic acid (ABA), indole-3-acetic acid (IAA) and the gibberellins A1 and A3 in chemically-defined medium. They also colonized roots of in vitro grown Vitis vinifera cv. Malbec plants. As result of bacterization ABA levels in 45 days-old in vitro plants were increased 76-fold by B. licheniformis and 40-fold by P. fluorescens as compared to controls. Both bacteria diminished plant water loss rate in correlation with increments of ABA. Twenty and 30 days post bacterization the plants incremented terpenes. The monoterpenes α-pinene, terpinolene, 4-carene, limonene, eucalyptol and lilac aldehyde A, and the sesquiterpenes α-bergamotene, α-farnesene, nerolidol and farnesol were assessed by gas chromatography-electron impact mass spectrometry analysis. α-Pinene and nerolidol were the most abundant (µg per g of tissue in plants bacterized with P. fluorescens). Only α-pinene, eucalyptol and farnesol were identified at low concentration in non-bacterized plants treated with ABA, while no terpenes were detected in controls. The results obtained along with others from literature suggest that B. licheniformis and P. fluorescens act as stress alleviators by inducing ABA synthesis so diminishing water losses. These bacteria also elicit synthesis of compounds of plant defense via an ABA independent mechanism. © 2013 Scandinavian Plant Physiology Society.

  5. First description of Grapevine leafroll-associated virus 5 in Argentina and partial genome sequence.

    PubMed

    Gómez Talquenca, Sebastián; Muñoz, Claudio; Grau, Oscar; Gracia, Olga

    2009-02-01

    An accession of Vitis vinifera cv. Red Globe from Argentina, was found to be infected with Grapevine leafroll-associated virus-5 by ELISA. It was partially sequenced, and three ORFs, corresponding to HSP70h, HSP90h, and CP, were found. This isolate shares a high aminoacid identity with the previously reported sequence of the virus, and identities between 80% and 90% with previously reported GLRaV-9 and GLRaV-4 isolates. The analysis of the sequence supports the clustering together with GLRaV-4 and GLRV-9 inside the Ampelovirus genus.

  6. Comparative expression profiling in grape (Vitis vinifera) berries derived from frequency analysis of ESTs and MPSS signatures.

    PubMed

    Iandolino, Alberto; Nobuta, Kan; da Silva, Francisco Goes; Cook, Douglas R; Meyers, Blake C

    2008-05-12

    Vitis vinifera (V. vinifera) is the primary grape species cultivated for wine production, with an industry valued annually in the billions of dollars worldwide. In order to sustain and increase grape production, it is necessary to understand the genetic makeup of grape species. Here we performed mRNA profiling using Massively Parallel Signature Sequencing (MPSS) and combined it with available Expressed Sequence Tag (EST) data. These tag-based technologies, which do not require a priori knowledge of genomic sequence, are well-suited for transcriptional profiling. The sequence depth of MPSS allowed us to capture and quantify almost all the transcripts at a specific stage in the development of the grape berry. The number and relative abundance of transcripts from stage II grape berries was defined using Massively Parallel Signature Sequencing (MPSS). A total of 2,635,293 17-base and 2,259,286 20-base signatures were obtained, representing at least 30,737 and 26,878 distinct sequences. The average normalized abundance per signature was approximately 49 TPM (Transcripts Per Million). Comparisons of the MPSS signatures with available Vitis species' ESTs and a unigene set demonstrated that 6,430 distinct contigs and 2,190 singletons have a perfect match to at least one MPSS signature. Among the matched sequences, ESTs were identified from tissues other than berries or from berries at different developmental stages. Additional MPSS signatures not matching to known grape ESTs can extend our knowledge of the V. vinifera transcriptome, particularly when these data are used to assist in annotation of whole genome sequences from Vitis vinifera. The MPSS data presented here not only achieved a higher level of saturation than previous EST based analyses, but in doing so, expand the known set of transcripts of grape berries during the unique stage in development that immediately precedes the onset of ripening. The MPSS dataset also revealed evidence of antisense expression not

  7. Exogenous Abscisic Acid Promotes Anthocyanin Biosynthesis and Increased Expression of Flavonoid Synthesis Genes in Vitis vinifera × Vitis labrusca Table Grapes in a Subtropical Region

    PubMed Central

    Koyama, Renata; Roberto, Sergio R.; de Souza, Reginaldo T.; Borges, Wellington F. S.; Anderson, Mauri; Waterhouse, Andrew L.; Cantu, Dario; Fidelibus, Matthew W.; Blanco-Ulate, Barbara

    2018-01-01

    Hybrid (Vitis vinifera ×Vitis labrusca) table grape cultivars grown in the subtropics often fail to accumulate sufficient anthocyanins to achieve good uniform berry color. Growers of V. vinifera table grapes in temperate regions generally use ethephon and, more recently, (S)-cis-abscisic acid (S-ABA) to overcome this problem. The objective of this study was to determine if S-ABA applications at different timings and concentrations have an effect on anthocyanin regulatory and biosynthetic genes, pigment accumulation, and berry color of the Selection 21 cultivar, a new V. vinifera ×V. labrusca hybrid seedless grape that presents lack of red color when grown in subtropical areas. Applications of S-ABA 400 mg/L resulted in a higher accumulation of total anthocyanins and of the individual anthocyaninsanthocyanins: delphinidin-3-glucoside, cyanidin-3-glucoside, peonidin-3-glucoside, and malvidin-3-glucoside in the berry skin and improved the color attributes of the berries. Treatment with two applications at 7 days after véraison (DAV) and 21 DAV of S-ABA 400 mg/L resulted in a higher accumulation of total anthocyanins in the skin of berries and increased the gene expression of CHI, F3H, DFR, and UFGT and of the VvMYBA1 and VvMYBA2 transcription factors in the seedless grape cultivar. PMID:29632542

  8. Genetic diversity of stilbene metabolism in Vitis sylvestris

    PubMed Central

    Duan, Dong; Halter, David; Baltenweck, Raymonde; Tisch, Christine; Tröster, Viktoria; Kortekamp, Andreas; Hugueney, Philippe; Nick, Peter

    2015-01-01

    Stilbenes, as important secondary metabolites of grapevine, represent central phytoalexins and therefore constitute an important element of basal immunity. In this study, potential genetic variation in Vitis vinifera ssp. sylvestris, the ancestor of cultivated grapevine, was sought with respect to their output of stilbenes and potential use for resistance breeding. Considerable variation in stilbene inducibility was identified in V. vinifera ssp. sylvestris. Genotypic differences in abundance and profiles of stilbenes that are induced in response to a UV-C pulse are shown. Two clusters of stilbene ‘chemovars’ emerged: one cluster showed quick and strong accumulation of stilbenes, almost exclusively in the form of non-glycosylated resveratrol and viniferin, while the second cluster accumulated fewer stilbenes and relatively high proportions of piceatannol and the glycosylated piceid. For all 86 genotypes, a time dependence of the stilbene pattern was observed: piceid, resveratrol, and piceatannol accumulated earlier, whereas the viniferins were found later. It was further observed that the genotypic differences in stilbene accumulation were preceded by differential accumulation of the transcripts for chalcone synthase (CHS) and stilbene-related genes: phenylalanine ammonium lyase (PAL), stilbene synthase (StSy), and resveratrol synthase (RS). A screen of the population with respect to susceptibility to downy mildew of grapevine (Plasmopara viticola) revealed considerable variability. The subpopulation of genotypes with high stilbene inducibility was significantly less susceptible as compared with low-stilbene genotypes, and for representative genotypes it could be shown that the inducibility of stilbene synthase by UV correlated with the inducibility by the pathogen. PMID:25873669

  9. Genome-Wide Analysis of the Sucrose Synthase Gene Family in Grape (Vitis vinifera): Structure, Evolution, and Expression Profiles

    PubMed Central

    Zhu, Xudong; Wang, Mengqi; Li, Xiaopeng; Jiu, Songtao; Wang, Chen; Fang, Jinggui

    2017-01-01

    Sucrose synthase (SS) is widely considered as the key enzyme involved in the plant sugar metabolism that is critical to plant growth and development, especially quality of the fruit. The members of SS gene family have been identified and characterized in multiple plant genomes. However, detailed information about this gene family is lacking in grapevine (Vitis vinifera L.). In this study, we performed a systematic analysis of the grape (V. vinifera) genome and reported that there are five SS genes (VvSS1–5) in the grape genome. Comparison of the structures of grape SS genes showed high structural conservation of grape SS genes, resulting from the selection pressures during the evolutionary process. The segmental duplication of grape SS genes contributed to this gene family expansion. The syntenic analyses between grape and soybean (Glycine max) demonstrated that these genes located in corresponding syntenic blocks arose before the divergence of grape and soybean. Phylogenetic analysis revealed distinct evolutionary paths for the grape SS genes. VvSS1/VvSS5, VvSS2/VvSS3 and VvSS4 originated from three ancient SS genes, which were generated by duplication events before the split of monocots and eudicots. Bioinformatics analysis of publicly available microarray data, which was validated by quantitative real-time reverse transcription PCR (qRT-PCR), revealed distinct temporal and spatial expression patterns of VvSS genes in various tissues, organs and developmental stages, as well as in response to biotic and abiotic stresses. Taken together, our results will be beneficial for further investigations into the functions of SS gene in the processes of grape resistance to environmental stresses. PMID:28350372

  10. Inheritance of downy mildew (Plasmopara viticola) and anthracnose (Sphaceloma ampelinum) resistance in grapevines.

    PubMed

    Poolsawat, O; Mahanil, S; Laosuwan, P; Wongkaew, S; Tharapreuksapong, A; Reisch, B I; Tantasawat, P A

    2013-12-13

    Downy mildew (Plasmopara viticola) and anthracnose (Sphaceloma ampelinum) are two of the major diseases of most grapevine (Vitis vinifera L.) cultivars grown in Thailand. Therefore, breeding grapevines for improved downy mildew and anthracnose resistance is crucial. Factorial crosses were made between three downy mildew and/or anthracnose resistant lines ('NY88.0517.01', 'NY65.0550.04', and 'NY65.0551.05'; male parents) and two or three susceptible cultivars of V. vinifera ('Black Queen', 'Carolina Black Rose', and/or 'Italia'; female parents). F1 hybrid seedlings were evaluated for downy mildew and anthracnose resistance using a detached/excised leaf assay. For both diseases, the general combining ability (GCA) variance among male parents was significant, while the variance of GCA among females and the specific combining ability (SCA) variance were not significant, indicating the prevalence of additive over non-additive gene actions. The estimated narrow sense heritabilities of downy mildew and anthracnose resistance were 55.6 and 79.2%, respectively, suggesting that downy mildew/anthracnose resistance gene(s) were highly heritable. The 'Carolina Black Rose x NY65.0550.04' cross combination is recommended for future use.

  11. Wild Grape-Associated Yeasts as Promising Biocontrol Agents against Vitis vinifera Fungal Pathogens.

    PubMed

    Cordero-Bueso, Gustavo; Mangieri, Nicola; Maghradze, David; Foschino, Roberto; Valdetara, Federica; Cantoral, Jesús M; Vigentini, Ileana

    2017-01-01

    The increasing level of hazardous residues in the environment and food chains has led the European Union to restrict the use of chemical fungicides. Thus, exploiting new natural antagonistic microorganisms against fungal diseases could serve the agricultural production to reduce pre- and post-harvest losses, to boost safer practices for workers and to protect the consumers' health. The main aim of this work was to evaluate the antagonistic potential of epiphytic yeasts against Botrytis cinerea, Aspergillus carbonarius , and Penicillium expansum pathogen species. In particular, yeast isolation was carried out from grape berries of Vitis vinifera ssp sylvestris populations, of the Eurasian area, and V. vinifera ssp vinifera cultivars from three different farming systems (organic, biodynamic, and conventional). Strains able to inhibit or slow the growth of pathogens were selected by in vitro and in vivo experiments. The most effective antagonist yeast strains were subsequently assayed for their capability to colonize the grape berries. Finally, possible modes of action, such as nutrients and space competition, iron depletion, cell wall degrading enzymes, diffusible and volatile antimicrobial compounds, and biofilm formation, were investigated as well. Two hundred and thirty-one yeast strains belonging to 26 different species were isolated; 20 of them, ascribed to eight species, showed antagonistic action against all molds. Yeasts isolated from V. vinifera ssp sylvestris were more effective (up to 50%) against B. cinerea rather than those isolated from V. vinifera ssp vinifera. Six strains, all isolated from wild vines, belonging to four species ( Meyerozyma guilliermondii, Hanseniaspora uvarum, Hanseniaspora clermontiae , and Pichia kluyveri ) revealed one or more phenotypical characteristics associated to the analyzed modes of antagonistic action.

  12. Wild Grape-Associated Yeasts as Promising Biocontrol Agents against Vitis vinifera Fungal Pathogens

    PubMed Central

    Cordero-Bueso, Gustavo; Mangieri, Nicola; Maghradze, David; Foschino, Roberto; Valdetara, Federica; Cantoral, Jesús M.; Vigentini, Ileana

    2017-01-01

    The increasing level of hazardous residues in the environment and food chains has led the European Union to restrict the use of chemical fungicides. Thus, exploiting new natural antagonistic microorganisms against fungal diseases could serve the agricultural production to reduce pre- and post-harvest losses, to boost safer practices for workers and to protect the consumers' health. The main aim of this work was to evaluate the antagonistic potential of epiphytic yeasts against Botrytis cinerea, Aspergillus carbonarius, and Penicillium expansum pathogen species. In particular, yeast isolation was carried out from grape berries of Vitis vinifera ssp sylvestris populations, of the Eurasian area, and V. vinifera ssp vinifera cultivars from three different farming systems (organic, biodynamic, and conventional). Strains able to inhibit or slow the growth of pathogens were selected by in vitro and in vivo experiments. The most effective antagonist yeast strains were subsequently assayed for their capability to colonize the grape berries. Finally, possible modes of action, such as nutrients and space competition, iron depletion, cell wall degrading enzymes, diffusible and volatile antimicrobial compounds, and biofilm formation, were investigated as well. Two hundred and thirty-one yeast strains belonging to 26 different species were isolated; 20 of them, ascribed to eight species, showed antagonistic action against all molds. Yeasts isolated from V. vinifera ssp sylvestris were more effective (up to 50%) against B. cinerea rather than those isolated from V. vinifera ssp vinifera. Six strains, all isolated from wild vines, belonging to four species (Meyerozyma guilliermondii, Hanseniaspora uvarum, Hanseniaspora clermontiae, and Pichia kluyveri) revealed one or more phenotypical characteristics associated to the analyzed modes of antagonistic action. PMID:29163377

  13. Developmental control of hypoxia during bud burst in grapevine.

    PubMed

    Meitha, Karlia; Agudelo-Romero, Patricia; Signorelli, Santiago; Gibbs, Daniel J; Considine, John A; Foyer, Christine H; Considine, Michael J

    2018-05-01

    Dormant or quiescent buds of woody perennials are often dense and in the case of grapevine (Vitis vinifera L.) have a low tissue oxygen status. The precise timing of the decision to resume growth is difficult to predict, but once committed, the increase in tissue oxygen status is rapid and developmentally regulated. Here, we show that more than a third of the grapevine homologues of widely conserved hypoxia-responsive genes and nearly a fifth of all grapevine genes possessing a plant hypoxia-responsive promoter element were differentially regulated during bud burst, in apparent harmony with resumption of meristem identity and cell-cycle gene regulation. We then investigated the molecular and biochemical properties of the grapevine ERF-VII homologues, which in other species are oxygen labile and function in transcriptional regulation of hypoxia-responsive genes. Each of the 3 VvERF-VIIs were substrates for oxygen-dependent proteolysis in vitro, as a function of the N-terminal cysteine. Collectively, these data support an important developmental function of oxygen-dependent signalling in determining the timing and effective coordination bud burst in grapevine. In addition, novel regulators, including GASA-, TCP-, MYB3R-, PLT-, and WUS-like transcription factors, were identified as hallmarks of the orderly and functional resumption of growth following quiescence in buds. © 2018 John Wiley & Sons Ltd.

  14. Molecular Profiling of Pierce's Disease Outlines the Response Circuitry of Vitis vinifera to Xylella fastidiosa Infection.

    PubMed

    Zaini, Paulo A; Nascimento, Rafael; Gouran, Hossein; Cantu, Dario; Chakraborty, Sandeep; Phu, My; Goulart, Luiz R; Dandekar, Abhaya M

    2018-01-01

    Pierce's disease is a major threat to grapevines caused by the bacterium Xylella fastidiosa . Although devoid of a type 3 secretion system commonly employed by bacterial pathogens to deliver effectors inside host cells, this pathogen is able to influence host parenchymal cells from the xylem lumen by secreting a battery of hydrolytic enzymes. Defining the cellular and biochemical changes induced during disease can foster the development of novel therapeutic strategies aimed at reducing the pathogen fitness and increasing plant health. To this end, we investigated the transcriptional, proteomic, and metabolomic responses of diseased Vitis vinifera compared to healthy plants. We found that several antioxidant strategies were induced, including the accumulation of gamma-aminobutyric acid (GABA) and polyamine metabolism, as well as iron and copper chelation, but these were insufficient to protect the plant from chronic oxidative stress and disease symptom development. Notable upregulation of phytoalexins, pathogenesis-related proteins, and various aromatic acid metabolites was part of the host responses observed. Moreover, upregulation of various cell wall modification enzymes followed the proliferation of the pathogen within xylem vessels, consistent with the intensive thickening of vessels' secondary walls observed by magnetic resonance imaging. By interpreting the molecular profile changes taking place in symptomatic tissues, we report a set of molecular markers that can be further explored to aid in disease detection, breeding for resistance, and developing therapeutics.

  15. Using specific length amplified fragment sequencing to construct the high-density genetic map for Vitis (Vitis vinifera L. × Vitis amurensis Rupr.).

    PubMed

    Guo, Yinshan; Shi, Guangli; Liu, Zhendong; Zhao, Yuhui; Yang, Xiaoxu; Zhu, Junchi; Li, Kun; Guo, Xiuwu

    2015-01-01

    In this study, 149 F1 plants from the interspecific cross between 'Red Globe' (Vitis vinifera L.) and 'Shuangyou' (Vitis amurensis Rupr.) and the parent were used to construct a molecular genetic linkage map by using the specific length amplified fragment sequencing technique. DNA sequencing generated 41.282 Gb data consisting of 206,411,693 paired-end reads. The average sequencing depths were 68.35 for 'Red Globe,' 63.65 for 'Shuangyou,' and 8.01 for each progeny. In all, 115,629 high-quality specific length amplified fragments were detected, of which 42,279 were polymorphic. The genetic map was constructed using 7,199 of these polymorphic markers. These polymorphic markers were assigned to 19 linkage groups; the total length of the map was 1929.13 cm, with an average distance of 0.28 cm between each maker. To our knowledge, the genetic maps constructed in this study contain the largest number of molecular markers. These high-density genetic maps might form the basis for the fine quantitative trait loci mapping and molecular-assisted breeding of grape.

  16. Causative Role of Grapevine Red Blotch Virus in Red Blotch Disease.

    PubMed

    Yepes, Luz Marcela; Cieniewicz, Elizabeth; Krenz, Björn; McLane, Heather; Thompson, Jeremy R; Perry, Keith Lloyd; Fuchs, Marc

    2018-05-17

    Grapevine red blotch virus (GRBV) has a monopartite single-stranded DNA genome and is the type species of the genus Grablovirus in the family Geminiviridae. To address the etiological role of GRBV in the recently recognized red blotch disease of grapevine, infectious GRBV clones were engineered from the genome of each of the two previously identified phylogenetic clades for Agrobacterium tumefaciens-mediated inoculations of tissue culture-grown Vitis spp. plants. Following agroinoculation and one or two dormancy cycles, systemic GRBV infection was detected by multiplex polymerase chain reaction (PCR) in Vitis vinifera exhibiting foliar disease symptoms but not in asymptomatic vines. Infected rootstock genotype SO4 (V. berlandieri × V. riparia) exhibited leaf chlorosis and cupping, while infection was asymptomatic in agroinoculated 110R (V. berlandieri × V. rupestris), 3309C (V. riparia × V. rupestris), and V. rupestris. Spliced GRBV transcripts of the replicase-associated protein coding region accumulated in leaves of agroinfected vines, as shown by reverse-transcription PCR; this was consistent with systemic infection resulting from virus replication. Additionally, a virus progeny identical in nucleotide sequence to the infectious GRBV clones was recovered from agroinfected vines by rolling circle amplification, cloning, and sequencing. Concomitantly, subjecting naturally infected grapevines to microshoot tip culture resulted in an asymptomatic plant progeny that tested negative for GRBV in multiplex PCR. Altogether, our agroinoculation and therapeutic experiments fulfilled Koch's postulates and revealed the causative role of GRBV in red blotch disease.

  17. Impact of Quillaja saponaria saponins on grapevine ecosystem organisms.

    PubMed

    Fischer, Marc J C; Pensec, Flora; Demangeat, Gérard; Farine, Sibylle; Chong, Julie; Ramírez-Suero, Montserrat; Mazet, Flore; Bertsch, Christophe

    2011-08-01

    The control of grapevine pathogens is a rising concern in Vitis vinifera culture. The current international trend is toward banning chemicals that are highly toxic to the environment and human workers, and adopting tighter regulations. We evaluated the impact of saponins on three kinds of organisms found in grapevine culture. The ectoparasitic nematode Xiphinema index, the parasitic fungus Botrytis cinerea and various yeast strains representative of the must fermentation population were incubated on synthetic media supplemented with variable concentrations of Quillaja saponaria saponins. Saponins induced reduction in the growth of B. cinerea and showed nematicide effects on X. index. The control of X. index and Botrytis cinerea is discussed in the context of the potential use of these chemicals as environmentally-friendly grapevine treatments. With Saccharomyces cerevisiae and other yeasts, saponins showed higher toxicity against S. cerevisiae strains isolated from wine or palm wine whereas laboratory strains or strains isolated from oak exhibited better resistance. This indicates that Q. saponaria saponins effects against yeast microflora should be assessed in the field before they can be considered an environmentally-safe new molecule against B. cinerea and X. index.

  18. Elimination of Grapevine leafroll associated virus-3, Grapevine rupestris stem pitting associated virus and Grapevine virus A from a Tunisian Cultivar by Somatic Embryogenesis and Characterization of the Somaclones Using Ampelographic Descriptors

    PubMed Central

    Bouamama-Gzara, Badra; Selmi, Ilhem; Chebil, Samir; Melki, Imene; Mliki, Ahmed; Ghorbel, Abdelwahed; Carra, Angela; Carimi, Francesco; Mahfoudhi, Naima

    2017-01-01

    Prospecting of local grapevine (Vitis vinifera L.) germplasm revealed that Tunisia possesses a rich patrimony which presents diversified organoleptic characteristics. However, viral diseases seriously affect all local grapevine cultivars which risk a complete extinction. Sanitation programs need to be established to preserve and exploit, as a gene pool, the Tunisian vineyards areas. The presence of the Grapevine leafroll associated virus-3 (GLRaV-3), Grapevine stem pitting associated virus (GRSPaV) and Grapevine virus A (GVA), were confirmed in a Tunisian grapevine cultivar using serological and molecular analyses. The association between GRSPaV and GVA viruses induces more rugose wood symptoms and damages. For this reason the cleansing of the infected cultivar is highly advisable. Direct and recurrent somatic embryos of cv. ‘Hencha’ were successfully induced from filament, when cultured on Chée and Pool (1987). based-medium, enriched with 2 mg 1−1 of 2,4-dichlorophenoxyacetic acid and 2.5 mg 1−1 of Thidiazuron, after 36 weeks of culture. After six months of acclimatization, RT-PCR carried on 50 somaplants confirmed the absence of GVA, GRSPa-V as well as GLRaV-3 viruses in all somaplants. Ampelographic analysis, based on eight OIV descriptors, was carried out on two years acclimated somaplants, compared to the mother plant. Results demonstrated that the shape and contours of 46 somaclones leaves are identical to mother plant leaves and four phenotypically off-type plants were observed. The healthy state of 100% ‘Hencha’ somaclones and the high percentage of phenotypically true-to-type plants demonstrate that somatic embryogenesis is a promising technique to adopt for grapevine viruses elimination. PMID:29238279

  19. Elimination of Grapevine leafroll associated virus-3, Grapevine rupestris stem pitting associated virus and Grapevine virus A from a Tunisian Cultivar by Somatic Embryogenesis and Characterization of the Somaclones Using Ampelographic Descriptors.

    PubMed

    Bouamama-Gzara, Badra; Selmi, Ilhem; Chebil, Samir; Melki, Imene; Mliki, Ahmed; Ghorbel, Abdelwahed; Carra, Angela; Carimi, Francesco; Mahfoudhi, Naima

    2017-12-01

    Prospecting of local grapevine ( Vitis vinifera L.) germplasm revealed that Tunisia possesses a rich patrimony which presents diversified organoleptic characteristics. However, viral diseases seriously affect all local grapevine cultivars which risk a complete extinction. Sanitation programs need to be established to preserve and exploit, as a gene pool, the Tunisian vineyards areas. The presence of the Grapevine leafroll associated virus-3 (GLRaV-3), Grapevine stem pitting associated virus (GRSPaV) and Grapevine virus A (GVA), were confirmed in a Tunisian grapevine cultivar using serological and molecular analyses. The association between GRSPaV and GVA viruses induces more rugose wood symptoms and damages. For this reason the cleansing of the infected cultivar is highly advisable. Direct and recurrent somatic embryos of cv. 'Hencha' were successfully induced from filament, when cultured on Chée and Pool (1987). based-medium, enriched with 2 mg 1 -1 of 2,4-dichlorophenoxyacetic acid and 2.5 mg 1 -1 of Thidiazuron, after 36 weeks of culture. After six months of acclimatization, RT-PCR carried on 50 somaplants confirmed the absence of GVA, GRSPa-V as well as GLRaV-3 viruses in all somaplants. Ampelographic analysis, based on eight OIV descriptors, was carried out on two years acclimated somaplants, compared to the mother plant. Results demonstrated that the shape and contours of 46 somaclones leaves are identical to mother plant leaves and four phenotypically off-type plants were observed. The healthy state of 100% 'Hencha' somaclones and the high percentage of phenotypically true-to-type plants demonstrate that somatic embryogenesis is a promising technique to adopt for grapevine viruses elimination.

  20. Identification of a novel vitivirus from grapevines in New Zealand.

    PubMed

    Blouin, Arnaud G; Keenan, Sandi; Napier, Kathryn R; Barrero, Roberto A; MacDiarmid, Robin M

    2018-01-01

    We report a sequence of a novel vitivirus from Vitis vinifera obtained using two high-throughput sequencing (HTS) strategies on RNA. The initial discovery from small-RNA sequencing was confirmed by HTS of the total RNA and Sanger sequencing. The new virus has a genome structure similar to the one reported for other vitiviruses, with five open reading frames (ORFs) coding for the conserved domains described for members of that genus. Phylogenetic analysis of the complete genome sequence confirmed its affiliation to the genus Vitivirus, with the closest described viruses being grapevine virus E (GVE) and Agave tequilana leaf virus (ATLV). However, the virus we report is distinct and shares only 51% amino acid sequence identity with GVE in the replicase polyprotein and 66.8% amino acid sequence identity with ATLV in the coat protein. This is well below the threshold determined by the ICTV for species demarcation, and we propose that this virus represents a new species. It is provisionally named "grapevine virus G".

  1. Safety assessment of Vitis vinifera (grape)-derived ingredients as used in cosmetics.

    PubMed

    Fiume, Monice M; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2014-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of 24 Vitis vinifera (grape)-derived ingredients and found them safe in the present practices of use and concentration in cosmetics. These ingredients function in cosmetics mostly as skin-conditioning agents, but some function as antioxidants, flavoring agents, and/or colorants. The Panel reviewed the available animal and clinical data to determine the safety of these ingredients. Additionally, some constituents of grapes have been assessed previously for safety as cosmetic ingredients by the Panel, and others are compounds that have been discussed in previous Panel safety assessments. © The Author(s) 2014.

  2. Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache×Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought

    PubMed Central

    Coupel-Ledru, Aude; Lebon, Éric; Christophe, Angélique; Doligez, Agnès; Cabrera-Bosquet, Llorenç; Péchier, Philippe; Hamard, Philippe; This, Patrice; Simonneau, Thierry

    2014-01-01

    In the face of water stress, plants evolved with different abilities to limit the decrease in leaf water potential, notably in the daytime (ΨM). So-called isohydric species efficiently maintain high ΨM, whereas anisohydric species cannot prevent ΨM from dropping as soil water deficit develops. The genetic and physiological origins of these differences in (an)isohydric behaviours remain to be clarified. This is of particular interest within species such as Vitis vinifera L. where continuous variation in the level of isohydry has been observed among cultivars. With this objective, a 2 year experiment was conducted on the pseudo-F1 progeny from a cross between the two widespread cultivars Syrah and Grenache using a phenotyping platform coupled to a controlled-environment chamber. Potted plants of all the progeny were analysed for ΨM, transpiration rate, and soil-to-leaf hydraulic conductance, under both well-watered and water deficit conditions. A high genetic variability was found for all the above traits. Four quantitative trait loci (QTLs) were detected for ΨM under water deficit conditions, and 28 other QTLs were detected for the different traits in either condition. Genetic variation in ΨM maintenance under water deficit weakly correlated with drought-induced reduction in transpiration rate in the progeny, and QTLs for both traits did not completely co-localize. This indicates that genetic variation in the control of ΨM under water deficit was not due simply to variation in transpiration sensitivity to soil drying. Possible origins of the diversity in (an)isohydric behaviours in grapevine are discussed on the basis of concurrent variations in soil-to-leaf hydraulic conductance and stomatal control of transpiration. PMID:25381432

  3. Manipulation of VviAGL11 expression changes the seed content in grapevine (Vitis vinifera L.).

    PubMed

    Malabarba, Jaiana; Buffon, Vanessa; Mariath, Jorge E A; Maraschin, Felipe S; Margis-Pinheiro, Márcia; Pasquali, Giancarlo; Revers, Luís F

    2018-04-01

    Seedlessness in grapes is a desirable trait, especially for in natura consumption. Previously, we showed that VviAGL11 is the main responsible gene for seed morphogenesis in grapevine. Here we tested the function of this gene in grapevine with the use of plant plasmids. VviAGL11 was cloned into silencing and overexpression versions of p28iIR plasmid. Reproductive grapevine bunches from different seeded and seedless cultivars were separately treated with VviAGL11-harboring plasmids, along with controls. Plasmids were detected in leaves after a month of treatment, and berries, leaves, stems and seeds were analyzed for ectopic gene expression by RT-qPCR after 90 days of plasmid injection. Fruits from the seedless 'Linda' treated with the VviAGL11-overexpression plasmid showed high expression levels of VviAGL11 and exhibited small seeds that were not found in the untreated control samples. Mature grapes from seeded 'Italia' and 'Ruby' bunches treated with the VviAGL11-silencing plasmid showed decreased VviAGL11 expression, reduced number of seeds and increased number of seed traces. The present study confirms that VviAGL11 is a key master regulator of seed morphogenesis in grapevine and corroborates with the applicability of plant plasmids as promising biotechnological tools to functionally test genes in perennial plants in a rapid and confident way. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Quantitating Organoleptic Volatile Phenols in Smoke-Exposed Vitis vinifera Berries.

    PubMed

    Noestheden, Matthew; Thiessen, Katelyn; Dennis, Eric G; Tiet, Ben; Zandberg, Wesley F

    2017-09-27

    Accurate methods for quantitating volatile phenols (i.e., guaiacol, syringol, 4-ethylphenol, etc.) in smoke-exposed Vitis vinifera berries prior to fermentation are needed to predict the likelihood of perceptible smoke taint following vinification. Reported here is a complete, cross-validated analytical workflow to accurately quantitate free and glycosidically bound volatile phenols in smoke-exposed berries using liquid-liquid extraction, acid-mediated hydrolysis, and gas chromatography-tandem mass spectrometry. The reported workflow addresses critical gaps in existing methods for volatile phenols that impact quantitative accuracy, most notably the effect of injection port temperature and the variability in acid-mediated hydrolytic procedures currently used. Addressing these deficiencies will help the wine industry make accurate, informed decisions when producing wines from smoke-exposed berries.

  5. Molecular Profiling of Pierce’s Disease Outlines the Response Circuitry of Vitis vinifera to Xylella fastidiosa Infection

    PubMed Central

    Zaini, Paulo A.; Nascimento, Rafael; Gouran, Hossein; Cantu, Dario; Chakraborty, Sandeep; Phu, My; Goulart, Luiz R.; Dandekar, Abhaya M.

    2018-01-01

    Pierce’s disease is a major threat to grapevines caused by the bacterium Xylella fastidiosa. Although devoid of a type 3 secretion system commonly employed by bacterial pathogens to deliver effectors inside host cells, this pathogen is able to influence host parenchymal cells from the xylem lumen by secreting a battery of hydrolytic enzymes. Defining the cellular and biochemical changes induced during disease can foster the development of novel therapeutic strategies aimed at reducing the pathogen fitness and increasing plant health. To this end, we investigated the transcriptional, proteomic, and metabolomic responses of diseased Vitis vinifera compared to healthy plants. We found that several antioxidant strategies were induced, including the accumulation of gamma-aminobutyric acid (GABA) and polyamine metabolism, as well as iron and copper chelation, but these were insufficient to protect the plant from chronic oxidative stress and disease symptom development. Notable upregulation of phytoalexins, pathogenesis-related proteins, and various aromatic acid metabolites was part of the host responses observed. Moreover, upregulation of various cell wall modification enzymes followed the proliferation of the pathogen within xylem vessels, consistent with the intensive thickening of vessels’ secondary walls observed by magnetic resonance imaging. By interpreting the molecular profile changes taking place in symptomatic tissues, we report a set of molecular markers that can be further explored to aid in disease detection, breeding for resistance, and developing therapeutics.

  6. Development of highly polymorphic EST-SSR markers and segregation in F₁ hybrid population of Vitis vinifera L.

    PubMed

    Kayesh, E; Zhang, Y Y; Liu, G S; Bilkish, N; Sun, X; Leng, X P; Fang, J G

    2013-09-23

    The objectives of this investigation were to develop and validate the expressed sequence tag (EST)-simple sequence repeat (SSR) markers from large EST sequences, and to study the segregation and distribution of SSRs within two grapevine parental lines. In total, 94 F₁ lines crossed between "Early Rose" and "Red Globe" were studied. Approximately 2100 EST-SSR sequences of Vitis vinifera L. were searched for SSRs and analyzed for the design of polymerase chain reaction (PCR) primers amplifying the SSR-rich regions. Trinucleotide repeats were found to be the most abundant, followed by other nucleotide repeats. A total of 182 SSR primer pairs were first developed for the study on the parental polymorphism. Among the 182 SSR primers, 142 primer pairs (78%) could amplify the anticipated PCR products, among which only 52 primer pairs (36.62%) showed polymorphism between the two parents. These polymorphic bands were further surveyed among the 94 F₁ lines, and the results showed that a total of 162 bands were amplified, and 98 of them were polymorphic in both parents (60.86% polymorphism), with an average of 1.88 polymorphic DNA bands for each primer pair. After testing with the chi-square test, 33 of the clearly amplified polymorphic bands followed a 3:1 ratio, and 37 followed a 1:1 ratio. The rest showed distorted segregation ratios.

  7. Iron Supply Affects Anthocyanin Content and Related Gene Expression in Berries of Vitis vinifera cv. Cabernet Sauvignon.

    PubMed

    Shi, Pengbao; Li, Bing; Chen, Haiju; Song, Changzheng; Meng, Jiangfei; Xi, Zhumei; Zhang, Zhenwen

    2017-02-14

    Anthocyanins are important compounds for red grape and red wine quality, and can be influenced by supply of nutrients such as nitrogen, phosphorus, potassium, zinc, and iron. The present work aims to gain a better understanding of the effect of iron supply on anthocyanins concentration in grape berries. To this end, own-rooted four-year-old Cabernet Sauvignon grapevines ( Vitis vinifera ) were fertigated every three days with 0, 23, 46, 92, and 184 μM iron (Fe) from ferric ethylenediamine di ( o -hydroxyphenylacetic) acid (Fe-EDDHA) in a complete nutrient solution. Fe deficiency or excess generally led to higher concentrations of titratable acidity and skin/berry ratio, and to lower reducing sugar content, sugar/acid ratio, pH, berry weight, and concentration of anthocyanins. Most of the individual anthocyanins detected in this study, except cyanidin-3- O -glucoside, delphinidin-3- O -glucoside, and cyanidin-3- O -(6- O -coumaryl)-glucoside, in moderate Fe treatment (46 μM) grapes were significantly higher than those of other treatments. Genes encoding chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), leucoanthocyanidin dioxygenase (LDOX), and anthocyanin O -methyltransferase (AOMT) exhibited higher transcript levels in berries from plants cultivated with 46 μM Fe compared to the ones cultivated with other Fe concentrations. We suggest that grape sugar content, anthocyanins content, and transcriptions of genes involved in anthocyanin biosynthesis were correlated with Fe supply concentrations.

  8. Global transcriptome analysis of grapevine (Vitis vinifera L.) leaves under salt stress reveals differential response at early and late stages of stress in table grape cv. Thompson Seedless.

    PubMed

    Upadhyay, Anuradha; Gaonkar, Tulsi; Upadhyay, Ajay Kumar; Jogaiah, Satisha; Shinde, Manisha P; Kadoo, Narendra Y; Gupta, Vidya S

    2018-05-31

    Among the different abiotic stresses, salt stress has a significant effect on the growth and yield of grapevine (Vitis vinifera L.). In this study, we employed RNA sequence based transcriptome analysis to study salinity stress response in grape variety Thompson Seedless. Salt stress adversely affected the growth related and physiological parameters and the effect on physiological parameters was significant within 10 days of stress imposition. A total of 343 genes were differentially expressed in response to salt stress. Among the differentially expressed genes (DEGs) only 42 genes were common at early and late stages of stress. The gene enrichment analysis revealed that GO terms related to transcription factors were over-represented. Among the DEGs, 52 were transcription factors belonging to WRKY, EREB, MYB, NAC and bHLH families. Salt stress significantly affected several pathways like metabolic pathways, biosynthesis of secondary metabolites, membrane transport development related pathways etc. 343 DEGs were distributed on all the 19 chromosomes, however clustered regions of DEGs were present on chromosomes 2, 5, 6 and 12 suggesting probable QTLs for imparting tolerance to salt and other abiotic stresses. Real-time PCR of selected genes in control and treated samples of grafted and own root vines demonstrated that rootstock influenced expression of salt stress responsive genes. Microsatellite regions were identified in ten selected salt responsive genes and highly polymorphic markers were identified using fifteen grape genotypes. This information will be useful for the identification of key genes involved in salt stress tolerance in grape. The identified DEGs could also be useful for genome wide analysis for the identification of polymorphic markers for their subsequent use in molecular breeding for developing salt tolerant grape genotypes. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Structure and transcriptional regulation of the major intrinsic protein gene family in grapevine.

    PubMed

    Wong, Darren Chern Jan; Zhang, Li; Merlin, Isabelle; Castellarin, Simone D; Gambetta, Gregory A

    2018-04-11

    The major intrinsic protein (MIP) family is a family of proteins, including aquaporins, which facilitate water and small molecule transport across plasma membranes. In plants, MIPs function in a huge variety of processes including water transport, growth, stress response, and fruit development. In this study, we characterize the structure and transcriptional regulation of the MIP family in grapevine, describing the putative genome duplication events leading to the family structure and characterizing the family's tissue and developmental specific expression patterns across numerous preexisting microarray and RNAseq datasets. Gene co-expression network (GCN) analyses were carried out across these datasets and the promoters of each family member were analyzed for cis-regulatory element structure in order to provide insight into their transcriptional regulation. A total of 29 Vitis vinifera MIP family members (excluding putative pseudogenes) were identified of which all but two were mapped onto Vitis vinifera chromosomes. In this study, segmental duplication events were identified for five plasma membrane intrinsic protein (PIP) and four tonoplast intrinsic protein (TIP) genes, contributing to the expansion of PIPs and TIPs in grapevine. Grapevine MIP family members have distinct tissue and developmental expression patterns and hierarchical clustering revealed two primary groups regardless of the datasets analyzed. Composite microarray and RNA-seq gene co-expression networks (GCNs) highlighted the relationships between MIP genes and functional categories involved in cell wall modification and transport, as well as with other MIPs revealing a strong co-regulation within the family itself. Some duplicated MIP family members have undergone sub-functionalization and exhibit distinct expression patterns and GCNs. Cis-regulatory element (CRE) analyses of the MIP promoters and their associated GCN members revealed enrichment for numerous CREs including AP2/ERFs and NACs

  10. Using specific length amplified fragment sequencing to construct the high-density genetic map for Vitis (Vitis vinifera L. × Vitis amurensis Rupr.)

    PubMed Central

    Guo, Yinshan; Shi, Guangli; Liu, Zhendong; Zhao, Yuhui; Yang, Xiaoxu; Zhu, Junchi; Li, Kun; Guo, Xiuwu

    2015-01-01

    In this study, 149 F1 plants from the interspecific cross between ‘Red Globe’ (Vitis vinifera L.) and ‘Shuangyou’ (Vitis amurensis Rupr.) and the parent were used to construct a molecular genetic linkage map by using the specific length amplified fragment sequencing technique. DNA sequencing generated 41.282 Gb data consisting of 206,411,693 paired-end reads. The average sequencing depths were 68.35 for ‘Red Globe,’ 63.65 for ‘Shuangyou,’ and 8.01 for each progeny. In all, 115,629 high-quality specific length amplified fragments were detected, of which 42,279 were polymorphic. The genetic map was constructed using 7,199 of these polymorphic markers. These polymorphic markers were assigned to 19 linkage groups; the total length of the map was 1929.13 cm, with an average distance of 0.28 cm between each maker. To our knowledge, the genetic maps constructed in this study contain the largest number of molecular markers. These high-density genetic maps might form the basis for the fine quantitative trait loci mapping and molecular-assisted breeding of grape. PMID:26089826

  11. Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants

    PubMed Central

    Tavares, Sílvia; Wirtz, Markus; Beier, Marcel P.; Bogs, Jochen; Hell, Rüdiger; Amâncio, Sara

    2015-01-01

    In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC). In this study we identify and characterize the SERAT gene family of the crop plant Vitis vinifera. The identified four members of the VvSERAT protein family are assigned to three distinct groups upon their sequence similarities to Arabidopsis SERATs. Expression of fluorescently labeled VvSERAT proteins uncover that the sub-cellular localization of VvSERAT1;1 and VvSERAT3;1 is the cytosol and that VvSERAT2;1 and VvSERAT2;2 localize in addition in plastids and mitochondria, respectively. The purified VvSERATs of group 1 and 2 have higher enzymatic activity than VvSERAT3;1, which display a characteristic C-terminal extension also present in AtSERAT3;1. VvSERAT1;1 and VvSERAT2;2 are evidenced to form the CSC. CSC formation activates VvSERAT2;2, by releasing CSC-associated VvSERAT2;2 from cysteine inhibition. Thus, subcellular distribution of SERAT isoforms and CSC formation in cytosol and mitochondria is conserved between Arabidopsis and grapevine. Surprisingly, VvSERAT2;1 lack the canonical C-terminal tail of plant SERATs, does not form the CSC and is almost insensitive to cysteine inhibition (IC50 = 1.9 mM cysteine). Upon sulfate depletion VvSERAT2;1 is strongly induced at the transcriptional level, while transcription of other VvSERATs is almost unaffected in sulfate deprived grapevine cell suspension cultures. Application of abiotic stresses to soil grown grapevine plants revealed isoform-specific induction of VvSERAT2;1 in leaves upon drought, whereas high light- or temperature- stress hardly trigger VvSERAT2;1 transcription. PMID:25741355

  12. Shared and divergent pathways for flower abscission are triggered by gibberellic acid and carbon starvation in seedless Vitis vinifera L.

    PubMed

    Domingos, Sara; Fino, Joana; Cardoso, Vânia; Sánchez, Claudia; Ramalho, José C; Larcher, Roberto; Paulo, Octávio S; Oliveira, Cristina M; Goulao, Luis F

    2016-02-01

    Abscission is a highly coordinated developmental process by which plants control vegetative and reproductive organs load. Aiming at get new insights on flower abscission regulation, changes in the global transcriptome, metabolome and physiology were analyzed in 'Thompson Seedless' grapevine (Vitis vinifera L.) inflorescences, using gibberellic acid (GAc) spraying and shading as abscission stimuli, applied at bloom. Natural flower drop rates increased from 63.1% in non-treated vines to 83% and 99% in response to GAc and shade treatments, respectively. Both treatments had a broad effect on inflorescences metabolism. Specific impacts from shade included photosynthesis inhibition, associated nutritional stress, carbon/nitrogen imbalance and cell division repression, whereas GAc spraying induced energetic metabolism simultaneously with induction of nucleotide biosynthesis and carbon metabolism, therefore, disclosing alternative mechanisms to regulate abscission. Regarding secondary metabolism, changes in flavonoid metabolism were the most represented metabolic pathways in the samples collected following GAc treatment while phenylpropanoid and stilbenoid related pathways were predominantly affected in the inflorescences by the shade treatment. However, both GAc and shade treated inflorescences revealed also shared pathways, that involved the regulation of putrescine catabolism, the repression of gibberellin biosynthesis, the induction of auxin biosynthesis and the activation of ethylene signaling pathways and antioxidant mechanisms, although often the quantitative changes occurred on specific transcripts and metabolites of the pathways. Globally, the results suggest that chemical and environmental cues induced contrasting effects on inflorescence metabolism, triggering flower abscission by different mechanisms and pinpointing the participation of novel abscission regulators. Grapevine showed to be considered a valid model to study molecular pathways of flower abscission

  13. vitisFlower®: Development and Testing of a Novel Android-Smartphone Application for Assessing the Number of Grapevine Flowers per Inflorescence Using Artificial Vision Techniques.

    PubMed

    Aquino, Arturo; Millan, Borja; Gaston, Daniel; Diago, María-Paz; Tardaguila, Javier

    2015-08-28

    Grapevine flowering and fruit set greatly determine crop yield. This paper presents a new smartphone application for automatically counting, non-invasively and directly in the vineyard, the flower number in grapevine inflorescence photos by implementing artificial vision techniques. The application, called vitisFlower(®), firstly guides the user to appropriately take an inflorescence photo using the smartphone's camera. Then, by means of image analysis, the flowers in the image are detected and counted. vitisFlower(®) has been developed for Android devices and uses the OpenCV libraries to maximize computational efficiency. The application was tested on 140 inflorescence images of 11 grapevine varieties taken with two different devices. On average, more than 84% of flowers in the captures were found, with a precision exceeding 94%. Additionally, the application's efficiency on four different devices covering a wide range of the market's spectrum was also studied. The results of this benchmarking study showed significant differences among devices, although indicating that the application is efficiently usable even with low-range devices. vitisFlower is one of the first applications for viticulture that is currently freely available on Google Play.

  14. vitisFlower®: Development and Testing of a Novel Android-Smartphone Application for Assessing the Number of Grapevine Flowers per Inflorescence Using Artificial Vision Techniques

    PubMed Central

    Aquino, Arturo; Millan, Borja; Gaston, Daniel; Diago, María-Paz; Tardaguila, Javier

    2015-01-01

    Grapevine flowering and fruit set greatly determine crop yield. This paper presents a new smartphone application for automatically counting, non-invasively and directly in the vineyard, the flower number in grapevine inflorescence photos by implementing artificial vision techniques. The application, called vitisFlower®, firstly guides the user to appropriately take an inflorescence photo using the smartphone’s camera. Then, by means of image analysis, the flowers in the image are detected and counted. vitisFlower® has been developed for Android devices and uses the OpenCV libraries to maximize computational efficiency. The application was tested on 140 inflorescence images of 11 grapevine varieties taken with two different devices. On average, more than 84% of flowers in the captures were found, with a precision exceeding 94%. Additionally, the application’s efficiency on four different devices covering a wide range of the market’s spectrum was also studied. The results of this benchmarking study showed significant differences among devices, although indicating that the application is efficiently usable even with low-range devices. vitisFlower is one of the first applications for viticulture that is currently freely available on Google Play. PMID:26343664

  15. Colaspis caligula, a new species found in association with Vitis vinifera (L.) crops in Argentina (Coleoptera: Chrysomelidae).

    PubMed

    Agrain, Federico A; Cabrera, Nora; Holgado, Miriam G; Vicchi, Franco R

    2016-09-05

    Some species of Colaspis Fabricius are well-known pests of several crops in Argentina. In this contribution, we describe a new species within this genus: Colaspis caligula n. sp., found in association with Vitis vinifera (Linnaeus) crops. We provide descriptions and illustrations of the mature larva, pupa and adult, as well as notes on its diagnostic characters, life cycle, and the damages produced to the plants.

  16. Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines.

    PubMed

    Divilov, Konstantin; Barba, Paola; Cadle-Davidson, Lance; Reisch, Bruce I

    2018-05-01

    Downy mildew resistance across days post-inoculation, experiments, and years in two interspecific grapevine F 1 families was investigated using linear mixed models and Bayesian networks, and five new QTL were identified. Breeding grapevines for downy mildew disease resistance has traditionally relied on qualitative gene resistance, which can be overcome by pathogen evolution. Analyzing two interspecific F 1 families, both having ancestry derived from Vitis vinifera and wild North American Vitis species, across 2 years and multiple experiments, we found multiple loci associated with downy mildew sporulation and hypersensitive response in both families using a single phenotype model. The loci explained between 7 and 17% of the variance for either phenotype, suggesting a complex genetic architecture for these traits in the two families studied. For two loci, we used RNA-Seq to detect differentially transcribed genes and found that the candidate genes at these loci were likely not NBS-LRR genes. Additionally, using a multiple phenotype Bayesian network analysis, we found effects between the leaf trichome density, hypersensitive response, and sporulation phenotypes. Moderate-high heritabilities were found for all three phenotypes, suggesting that selection for downy mildew resistance is an achievable goal by breeding for either physical- or non-physical-based resistance mechanisms, with the combination of the two possibly providing durable resistance.

  17. Increasing the source/sink ratio in Vitis vinifera (cv Sangiovese) induces extensive transcriptome reprogramming and modifies berry ripening

    PubMed Central

    2011-01-01

    Background Cluster thinning is an agronomic practice in which a proportion of berry clusters are removed from the vine to increase the source/sink ratio and improve the quality of the remaining berries. Until now no transcriptomic data have been reported describing the mechanisms that underlie the agronomic and biochemical effects of thinning. Results We profiled the transcriptome of Vitis vinifera cv. Sangiovese berries before and after thinning at veraison using a genome-wide microarray representing all grapevine genes listed in the latest V1 gene prediction. Thinning increased the source/sink ratio from 0.6 to 1.2 m2 leaf area per kg of berries and boosted the sugar and anthocyanin content at harvest. Extensive transcriptome remodeling was observed in thinned vines 2 weeks after thinning and at ripening. This included the enhanced modulation of genes that are normally regulated during berry development and the induction of a large set of genes that are not usually expressed. Conclusion Cluster thinning has a profound effect on several important cellular processes and metabolic pathways including carbohydrate metabolism and the synthesis and transport of secondary products. The integrated agronomic, biochemical and transcriptomic data revealed that the positive impact of cluster thinning on final berry composition reflects a much more complex outcome than simply enhancing the normal ripening process. PMID:22192855

  18. Identification of genes differentially expressed in grapevine associated with resistance to Elsinoe ampelina through suppressive subtraction hybridization.

    PubMed

    Gao, Min; Wang, Qian; Wan, Ran; Fei, Zhangjun; Wang, Xiping

    2012-09-01

    Anthracnose, caused by the biotrophic fungus Elsinoe ampelina, is an economically devastating disease of grapevine (Vitis vinifera L.) prevalent in warm and humid regions of the world. In order to investigate the molecular resistance mechanisms and identify genes related to anthracnose resistance in grapevine, a Suppression Subtractive Hybridization (SSH) library was constructed using mixed cDNAs prepared from leaves of Chinese wild Vitis quinquangularis clone 'Shang-24', cDNA prepared from leaves infected with the pathogen E. ampelina served as tester and cDNA from mock-inoculated leaves as driver. A total of 670 high-quality ESTs were clustered and assembled into a collection of 461 unique genes comprising 85 contigs and 376 singletons. By Gene ontology (GO) analysis 310 unigenes were assigned to 22 GO slims within the molecular function category, while 317 unigenes could be sorted into 43 GO slims within the biological process category. The expression profiles of 20 selected genes, monitored by quantitative RT-PCR, indicated that expression of these genes in the E. ampelina-resistant 'Shang-24' was quicker and more intense, than in the susceptible 'Red Globe' where the reaction was delayed and limited. The results imply that these up-regulated genes could be involved in grapevine responses against E. ampelina infection. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. Vitis vinifera peel and seed gold nanoparticles exhibit chemopreventive potential, antioxidant activity and induce apoptosis through mutant p53, Bcl-2 and pan cytokeratin down-regulation in experimental animals.

    PubMed

    Nirmala, J Grace; Narendhirakannan, R T

    2017-05-01

    Several studies suggest surface modifications of gold nanoparticles (AuNPs) by capping agents or surface coatings could play an important role in biological systems, and site directed delivery. The present study was carried out to assess the antioxidant and apoptotic activities of the Vitis vinifera peel and seed gold nanoparticles in experimentally induced cancer in Swiss albino mice. 12-dimethylbenz [a] anthracene (DMBA) (single application) and 12-O-tetradecanoylphorbol 13-acetate (TPA) (thrice a week) were applied on the dorsal area of the skin to induce skin papillomagenesis in Swiss albino mice for 16 weeks. Gold nanoparticles were synthesized using Vitis vinifera peel and seed aqueous extracts and characterized by Transmission electron microscopic (TEM) analyses. On topical application, peel and seed gold nanoparticles demonstrated chemopreventive potential by significantly (p<0.05) reducing the cumulative number of tumors while increasing the antioxidant enzyme activities in the gold nanoparticles treated mice. The down-regulated expression of mutant p53, Bcl-2 and the levels of pan-cytokeratins might have facilitated the process of apoptosis in the chemical carcinogenesis process. The results were supported by the histopathological evaluation which exhibited mild dysplasia and acanthosis in the skin tissues of Vitis vinifera peel and seed AuNPs treated mice. Based on the present study, the chemopreventive action of Vitis vinifera peel and seed AuNPs is probably due to its ability to stimulate the antioxidant enzymes within the cells and suppressed abnormal skin cell proliferation that occurred during DMBA-induced skin papillomagenesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Forest management guidelines for controlling wild grapevines

    Treesearch

    H. Clay Smith

    1984-01-01

    Grapevines (Vitis spp.) are becoming a major problem to forest managers in the Appalachians, especially when clearcutting is done on highly productive hardwood sites. Where present, grapevines can reduce tree quality and growth, and eventually kill the tree. Silvical characteristics of grapevines are discussed as background for grapevine control....

  1. Structural and Functional Analysis of the GRAS Gene Family in Grapevine Indicates a Role of GRAS Proteins in the Control of Development and Stress Responses

    PubMed Central

    Grimplet, Jérôme; Agudelo-Romero, Patricia; Teixeira, Rita T.; Martinez-Zapater, Jose M.; Fortes, Ana M.

    2016-01-01

    GRAS transcription factors are involved in many processes of plant growth and development (e.g., axillary shoot meristem formation, root radial patterning, nodule morphogenesis, arbuscular development) as well as in plant disease resistance and abiotic stress responses. However, little information is available concerning this gene family in grapevine (Vitis vinifera L.), an economically important woody crop. We performed a model curation of GRAS genes identified in the latest genome annotation leading to the identification of 52 genes. Gene models were improved and three new genes were identified that could be grapevine- or woody-plant specific. Phylogenetic analysis showed that GRAS genes could be classified into 13 groups that mapped on the 19 V. vinifera chromosomes. Five new subfamilies, previously not characterized in other species, were identified. Multiple sequence alignment showed typical GRAS domain in the proteins and new motifs were also described. As observed in other species, both segmental and tandem duplications contributed significantly to the expansion and evolution of the GRAS gene family in grapevine. Expression patterns across a variety of tissues and upon abiotic and biotic conditions revealed possible divergent functions of GRAS genes in grapevine development and stress responses. By comparing the information available for tomato and grapevine GRAS genes, we identified candidate genes that might constitute conserved transcriptional regulators of both climacteric and non-climacteric fruit ripening. Altogether this study provides valuable information and robust candidate genes for future functional analysis aiming at improving the quality of fleshy fruits. PMID:27065316

  2. The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two Central Asian grapevines

    PubMed Central

    2009-01-01

    Background Grape powdery mildew is caused by the North American native pathogen Erysiphe necator. Eurasian Vitis vinifera varieties were all believed to be susceptible. REN1 is the first resistance gene naturally found in cultivated plants of Vitis vinifera. Results REN1 is present in 'Kishmish vatkana' and 'Dzhandzhal kara', two grapevines documented in Central Asia since the 1920's. These cultivars have a second-degree relationship (half sibs, grandparent-grandchild, or avuncular), and share by descent the chromosome on which the resistance allele REN1 is located. The REN1 interval was restricted to 1.4 cM using 38 SSR markers distributed across the locus and the segregation of the resistance phenotype in two progenies of collectively 461 offspring, derived from either resistant parent. The boundary markers delimit a 1.4-Mbp sequence in the PN40024 reference genome, which contains 27 genes with known functions, 2 full-length coiled-coil NBS-LRR genes, and 9 NBS-LRR pseudogenes. In the REN1 locus of PN40024, NBS genes have proliferated through a mixture of segmental duplications, tandem gene duplications, and intragenic recombination between paralogues, indicating that the REN1 locus has been inherently prone to producing genetic variation. Three SSR markers co-segregate with REN1, the outer ones confining the 908-kb array of NBS-LRR genes. Kinship and clustering analyses based on genetic distances with susceptible cultivars representative of Central Asian Vitis vinifera indicated that 'Kishmish vatkana' and 'Dzhandzhal kara' fit well into local germplasm. 'Kishmish vatkana' also has a parent-offspring relationship with the seedless table grape 'Sultanina'. In addition, the distant genetic relatedness to rootstocks, some of which are derived from North American species resistant to powdery mildew and have been used worldwide to guard against phylloxera since the late 1800's, argues against REN1 being infused into Vitis vinifera from a recent interspecific

  3. The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape

    PubMed Central

    Tillett, Richard L.; Wheatley, Matthew D.; Tattersall, Elizabeth A.R.; Schlauch, Karen A.; Cramer, Grant R.; Cushman, John C.

    2014-01-01

    Summary Chilling and freezing can reduce significantly vine survival and fruit set in Vitis vinifera wine grape. To overcome such production losses, a recently identified grapevine C-repeat binding factor (CBF) gene, VvCBF4, was overexpressed in grape vine cv. “Freedom” and found to improve freezing survival and reduced freezing-induced electrolyte leakage by up to 2°C in non-cold-acclimated vines. In addition, overexpression of this transgene caused a reduced growth phenotype similar to that observed for CBF overexpression in Arabidopsis and other species. Both freezing tolerance and reduced growth phenotypes were manifested in a transgene dose-dependent manner. To understand the mechanistic basis of VvCBF4 transgene action, one transgenic line (9–12) was genotyped using microarray-based mRNA expression profiling. Forty-seven and 12 genes were identified in unstressed transgenic shoots with either a greater than 1.5-fold increase or decrease in mRNA abundance, respectively. Comparison of mRNA changes with characterized CBF regulons in woody and herbaceous species revealed partial overlaps suggesting that CBF-mediated cold acclimation responses are widely conserved. Putative VvCBF4-regulon targets included genes with functions in cell wall structure, lipid metabolism, epicuticular wax formation, and stress-responses suggesting that the observed cold tolerance and dwarf phenotypes are the result of a complex network of diverse functional determinants. PMID:21914113

  4. Resistance evaluation of Chinese wild Vitis genotypes against Botrytis cinerea and different responses of resistant and susceptible hosts to the infection.

    PubMed

    Wan, Ran; Hou, Xiaoqing; Wang, Xianhang; Qu, Jingwu; Singer, Stacy D; Wang, Yuejin; Wang, Xiping

    2015-01-01

    The necrotrophic fungus Botrytis cinerea is a major threat to grapevine cultivation worldwide. A screen of 41 Vitis genotypes for leaf resistance to B. cinerea suggested species independent variation and revealed 18 resistant Chinese wild Vitis genotypes, while most investigated V. vinifera, or its hybrids, were susceptible. A particularly resistant Chinese wild Vitis, "Pingli-5" (V. sp. [Qinling grape]) and a very susceptible V. vinifera cultivar, "Red Globe" were selected for further study. Microscopic analysis demonstrated that B. cinerea growth was limited during early infection on "Pingli-5" before 24 h post-inoculation (hpi) but not on Red Globe. It was found that reactive oxygen species (ROS) and antioxidative system were associated with fungal growth. O[Formula: see text] accumulated similarly in B. cinerea 4 hpi on both Vitis genotypes. Lower levels of O[Formula: see text] (not H2O2) were detected 4 hpi and ROS (H2O2 and O[Formula: see text]) accumulation from 8 hpi onwards was also lower in "Pingli-5" leaves than in "Red Globe" leaves. B. cinerea triggered sustained ROS production in "Red Globe" but not in "Pingli-5" with subsequent infection progresses. Red Globe displayed little change in antioxidative activities in response to B. cinerea infection, instead, antioxidative activities were highly and timely elevated in resistant "Pingli-5" which correlated with its minimal ROS increases and its high resistance. These findings not only enhance our understanding of the resistance of Chinese wild Vitis species to B. cinerea, but also lay the foundation for breeding B. cinerea resistant grapes in the future.

  5. Pyrosequencing detects human and animal pathogenic taxa in the grapevine endosphere

    PubMed Central

    Yousaf, Sohail; Bulgari, Daniela; Bergna, Alessandro; Pancher, Michael; Quaglino, Fabio; Casati, Paola; Campisano, Andrea

    2014-01-01

    Generally, plants are not considered as hosts for human and animal pathogens (HAP). The recent produce-associated outbreaks of food-borne diseases have drawn attention toward significant deficiencies in our understanding of the ecology of HAP, and their potential for interkingdom transfer. To examine the association of microorganisms classified as HAP with plants, we surveyed the presence and distribution of HAP bacterial taxa (henceforth HAPT, for brevity's sake) in the endosphere of grapevine (Vitis vinifera L.) both in the plant stems and leaves. An enrichment protocol was used on leaves to detect taxa with very low abundance in undisturbed tissues. We used pyrosequencing and phylogenetic analyses of the 16S rDNA gene. We identified several HAPT, and focused on four genera (Propionibacterium, Staphylococcus, Clostridium, and Burkholderia). The majority of the bacterial sequences in the genus Propionibacterium, from grapevine leaf and stem, were identified as P. acnes. Clostridia were detected in leaves and stems, but their number was much higher in leaves after enrichment. HAPT were indentified both in leaves and wood of grapevines. This depicts the ability of these taxa to be internalized within plant tissues and maintain their population levels in a variety of environments. Our analysis highlighted the presence of HAPT in the grapevine endosphere and unexpected occurrence of these bacterial taxa in this atypical environment. PMID:25071740

  6. Pyrosequencing detects human and animal pathogenic taxa in the grapevine endosphere.

    PubMed

    Yousaf, Sohail; Bulgari, Daniela; Bergna, Alessandro; Pancher, Michael; Quaglino, Fabio; Casati, Paola; Campisano, Andrea

    2014-01-01

    Generally, plants are not considered as hosts for human and animal pathogens (HAP). The recent produce-associated outbreaks of food-borne diseases have drawn attention toward significant deficiencies in our understanding of the ecology of HAP, and their potential for interkingdom transfer. To examine the association of microorganisms classified as HAP with plants, we surveyed the presence and distribution of HAP bacterial taxa (henceforth HAPT, for brevity's sake) in the endosphere of grapevine (Vitis vinifera L.) both in the plant stems and leaves. An enrichment protocol was used on leaves to detect taxa with very low abundance in undisturbed tissues. We used pyrosequencing and phylogenetic analyses of the 16S rDNA gene. We identified several HAPT, and focused on four genera (Propionibacterium, Staphylococcus, Clostridium, and Burkholderia). The majority of the bacterial sequences in the genus Propionibacterium, from grapevine leaf and stem, were identified as P. acnes. Clostridia were detected in leaves and stems, but their number was much higher in leaves after enrichment. HAPT were indentified both in leaves and wood of grapevines. This depicts the ability of these taxa to be internalized within plant tissues and maintain their population levels in a variety of environments. Our analysis highlighted the presence of HAPT in the grapevine endosphere and unexpected occurrence of these bacterial taxa in this atypical environment.

  7. Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants.

    PubMed

    Marchive, Chloé; Mzid, Rim; Deluc, Laurent; Barrieu, François; Pirrello, Julien; Gauthier, Adrien; Corio-Costet, Marie-France; Regad, Farid; Cailleteau, Bernard; Hamdi, Saïd; Lauvergeat, Virginie

    2007-01-01

    Pathogen attack represents a major problem for viticulture and for agriculture in general. At present, the use of phytochemicals is more and more restrictive, and therefore it is becoming essential to control disease by having a thorough knowledge of resistance mechanisms. The present work focused on the trans-regulatory proteins potentially involved in the control of the plant defence response, the WRKY proteins. A full-length cDNA, designated VvWRKY1, was isolated from a grape berry library (Vitis vinifera L. cv. Cabernet Sauvignon). It encodes a polypeptide of 151 amino acids whose structure is characteristic of group IIc WRKY proteins. VvWRKY1 gene expression in grape is regulated in a developmental manner in berries and leaves and by various signal molecules involved in defence such as salicylic acid, ethylene, and hydrogen peroxide. Biochemical analysis indicates that VvWRKY1 specifically interacts with the W-box in various nucleotidic contexts. Functional analysis of VvWRKY1 was performed by overexpression in tobacco, and transgenic plants exhibited reduced susceptibility to various fungi but not to viruses. These results are consistent with a possible role for VvWRKY1 in grapevine defence against fungal pathogens.

  8. Gonadotropin Promotion of Adventitious Root Production on Cuttings of Begonia semperflorens and Vitis vinifera 1

    PubMed Central

    Leshem, Y.; Lunenfeld, B.

    1968-01-01

    Adventitious rooting of Begonia semperflorens cv. Indian Maid and Vitis vinifera cv. Semillon stem cuttings was significantly promoted by human chorionic gonadotropin (HCG). Basal sections of HCG treated cuttings upon which promoted rooting took place had markedly less endogenous gibberellin (GA) activity than non-treated controls or apical sections of treated ones, while changes in auxin levels were not found. HCG also inhibited GA3-induced reducing sugar release from embryoless barley endosperm halves. These findings are discussed in the light of a possible analogy to gonadotropin action in animal systems. PMID:5641189

  9. Delayed response to ring nematode (Mesocriconema xenoplax) feeding on grape roots linked to vine carbohydrate reserves and nematode feeding pressure

    USDA-ARS?s Scientific Manuscript database

    The chronic impact of ring nematode (Mesocriconema xenoplax) feeding on grapevine (Vitis vinifera) was studied under controlled conditions. 'Pinot noir' grapevines were exposed to ring nematode or kept nematode-free for three growing seasons, and vines were either grown in full sunlight, 15% of full...

  10. Modulation of Protein Phosphorylation, N-Glycosylation and Lys-Acetylation in Grape (Vitis vinifera) Mesocarp and Exocarp Owing to Lobesia botrana Infection*

    PubMed Central

    Melo-Braga, Marcella N.; Verano-Braga, Thiago; León, Ileana R.; Antonacci, Donato; Nogueira, Fábio C. S.; Thelen, Jay J.; Larsen, Martin R.; Palmisano, Giuseppe

    2012-01-01

    Grapevine (Vitis vinifera) is an economically important fruit crop that is subject to many types of insect and pathogen attack. To better elucidate the plant response to Lobesia botrana pathogen infection, we initiated a global comparative proteomic study monitoring steady-state protein expression as well as changes in N-glycosylation, phosphorylation, and Lys-acetylation in control and infected mesocarp and exocarp from V. vinifera cv Italia. A multi-parallel, large-scale proteomic approach employing iTRAQ labeling prior to three peptide enrichment techniques followed by tandem mass spectrometry led to the identification of a total of 3059 proteins, 1135 phosphorylation sites, 323 N-linked glycosylation sites and 138 Lys-acetylation sites. Of these, we could identify changes in abundance of 899 proteins. The occupancy of 110 phosphorylation sites, 10 N-glycosylation sites and 20 Lys-acetylation sites differentially changed during L. botrana infection. Sequence consensus analysis for phosphorylation sites showed eight significant motifs, two of which containing up-regulated phosphopeptides (X-G-S-X and S-X-X-D) and two containing down-regulated phosphopeptides (R-X-X-S and S-D-X-E) in response to pathogen infection. Topographical distribution of phosphorylation sites within primary sequences reveal preferential phosphorylation at both the N- and C termini, and a clear preference for C-terminal phosphorylation in response to pathogen infection suggesting induction of region-specific kinase(s). Lys-acetylation analysis confirmed the consensus X-K-Y-X motif previously detected in mammals and revealed the importance of this modification in plant defense. The importance of N-linked protein glycosylation in plant response to biotic stimulus was evident by an up-regulated glycopeptide belonging to the disease resistance response protein 206. This study represents a substantial step toward the understanding of protein and PTMs-mediated plant-pathogen interaction shedding

  11. Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera fruit.

    PubMed

    Sweetman, C; Sadras, V O; Hancock, R D; Soole, K L; Ford, C M

    2014-11-01

    Berries of the cultivated grapevine Vitis vinifera are notably responsive to temperature, which can influence fruit quality and hence the future compatibility of varieties with their current growing regions. Organic acids represent a key component of fruit organoleptic quality and their content is significantly influenced by temperature. The objectives of this study were to (i) manipulate thermal regimes to realistically capture warming-driven reduction of malate content in Shiraz berries, and (ii) investigate the mechanisms behind temperature-sensitive malate loss and the potential downstream effects on berry metabolism. In the field we compared untreated controls at ambient temperature with longer and milder warming (2-4 °C differential for three weeks; Experiment 1) or shorter and more severe warming (4-6 °C differential for 11 days; Experiment 2). We complemented field trials with control (25/15 °C) and elevated (35/20 °C) day/night temperature controlled-environment trials using potted vines (Experiment 3). Elevating maximum temperatures (4-10 °C above controls) during pre-véraison stages led to higher malate content, particularly with warmer nights. Heating at véraison and ripening stages reduced malate content, consistent with effects typically seen in warm vintages. However, when minimum temperatures were also raised by 4-6 °C, malate content was not reduced, suggesting that the regulation of malate metabolism differs during the day and night. Increased NAD-dependent malic enzyme activity and decreased phosphoenolpyruvate carboxylase and pyruvate kinase activities, as well as the accumulation of various amino acids and γ-aminobutyric acid, suggest enhanced anaplerotic capacity of the TCA cycle and a need for coping with decreased cytosolic pH in heated fruit. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera fruit

    PubMed Central

    Sweetman, C.; Sadras, V. O.; Hancock, R. D.; Soole, K. L.; Ford, C. M.

    2014-01-01

    Berries of the cultivated grapevine Vitis vinifera are notably responsive to temperature, which can influence fruit quality and hence the future compatibility of varieties with their current growing regions. Organic acids represent a key component of fruit organoleptic quality and their content is significantly influenced by temperature. The objectives of this study were to (i) manipulate thermal regimes to realistically capture warming-driven reduction of malate content in Shiraz berries, and (ii) investigate the mechanisms behind temperature-sensitive malate loss and the potential downstream effects on berry metabolism. In the field we compared untreated controls at ambient temperature with longer and milder warming (2–4 °C differential for three weeks; Experiment 1) or shorter and more severe warming (4–6 °C differential for 11 days; Experiment 2). We complemented field trials with control (25/15 °C) and elevated (35/20 °C) day/night temperature controlled-environment trials using potted vines (Experiment 3). Elevating maximum temperatures (4–10 °C above controls) during pre-véraison stages led to higher malate content, particularly with warmer nights. Heating at véraison and ripening stages reduced malate content, consistent with effects typically seen in warm vintages. However, when minimum temperatures were also raised by 4–6 °C, malate content was not reduced, suggesting that the regulation of malate metabolism differs during the day and night. Increased NAD-dependent malic enzyme activity and decreased phosphoenolpyruvate carboxylase and pyruvate kinase activities, as well as the accumulation of various amino acids and γ-aminobutyric acid, suggest enhanced anaplerotic capacity of the TCA cycle and a need for coping with decreased cytosolic pH in heated fruit. PMID:25180109

  13. Comprehensive and comparative lipidome analysis of Vitis vinifera L. cv. Pinot Noir and Japanese indigenous V. vinifera L. cv. Koshu grape berries.

    PubMed

    Arita, Kayo; Honma, Taro; Suzuki, Shunji

    2017-01-01

    Vitis vinifera cv. Koshu is an indigenous grape cultivar that has been cultivated for more than a thousand years in Japan and one of the most important cultivars in white winemaking. To improve Koshu wine quality, it is necessary to identify the metabolites in Koshu berry. We conducted a comprehensive and comparative lipidome analysis of Koshu and Pinot Noir berries cultivated in the same location in Japan using GC-MS/MS for fatty acids and LC-MS for glycerolipids and glycerophospholipids. Koshu skins and juices contained 22 and 19 fatty acids, respectively, whereas 23 and 20 fatty acids were detected in Pinot Noir skins and juices. C22:6n3 and C24:0 contents in Koshu skins were two and three times higher than those in Pinot Noir skins. C24:0 content in Koshu juices was also higher than that in Pinot Noir juices. Forty-nine lipid components (six digalactosyldiacylglycerols, one monogalactosyldiacylglycerol, 10 phosphatidylcholines, 12 phosphatidylethanolamines, and 20 triglycerides) were detected in Pinot Noir and Koshu skins. Strong peaks were observed for MGDG 36:6, DGDG 36:6, PC 34:2, PC 36:5, TG 54:6, TG 54:7, and TG 54:8 in Koshu skins. The contents of 36 of the 49 lipid components were significantly higher in Pinot Noir skins than Koshu skins. Pinot Noir skins contained more lipids whose alkyl chains have more than 18 carbons than Koshu skins. Further analysis of both lipid profiles revealed that the number of double bonds in a fatty acid molecule in Pinot Noir skins and juices was significantly larger than that in Koshu skins and juices. A strong relationship exists between the heat requirement of grapevine cultivars and the level of fatty acid desaturation. C18-fatty acids were the major components in Koshu and Pinot Noir berries. The expression levels of C18-fatty acid desaturases regulated the accumulation of C18-unsaturated fatty acids in berry skins. The loss of C18:3 in Koshu berries at the end of ripening was observed. Koshu might effectively convert

  14. Comprehensive and comparative lipidome analysis of Vitis vinifera L. cv. Pinot Noir and Japanese indigenous V. vinifera L. cv. Koshu grape berries

    PubMed Central

    Arita, Kayo; Honma, Taro

    2017-01-01

    Vitis vinifera cv. Koshu is an indigenous grape cultivar that has been cultivated for more than a thousand years in Japan and one of the most important cultivars in white winemaking. To improve Koshu wine quality, it is necessary to identify the metabolites in Koshu berry. We conducted a comprehensive and comparative lipidome analysis of Koshu and Pinot Noir berries cultivated in the same location in Japan using GC-MS/MS for fatty acids and LC-MS for glycerolipids and glycerophospholipids. Koshu skins and juices contained 22 and 19 fatty acids, respectively, whereas 23 and 20 fatty acids were detected in Pinot Noir skins and juices. C22:6n3 and C24:0 contents in Koshu skins were two and three times higher than those in Pinot Noir skins. C24:0 content in Koshu juices was also higher than that in Pinot Noir juices. Forty-nine lipid components (six digalactosyldiacylglycerols, one monogalactosyldiacylglycerol, 10 phosphatidylcholines, 12 phosphatidylethanolamines, and 20 triglycerides) were detected in Pinot Noir and Koshu skins. Strong peaks were observed for MGDG 36:6, DGDG 36:6, PC 34:2, PC 36:5, TG 54:6, TG 54:7, and TG 54:8 in Koshu skins. The contents of 36 of the 49 lipid components were significantly higher in Pinot Noir skins than Koshu skins. Pinot Noir skins contained more lipids whose alkyl chains have more than 18 carbons than Koshu skins. Further analysis of both lipid profiles revealed that the number of double bonds in a fatty acid molecule in Pinot Noir skins and juices was significantly larger than that in Koshu skins and juices. A strong relationship exists between the heat requirement of grapevine cultivars and the level of fatty acid desaturation. C18-fatty acids were the major components in Koshu and Pinot Noir berries. The expression levels of C18-fatty acid desaturases regulated the accumulation of C18-unsaturated fatty acids in berry skins. The loss of C18:3 in Koshu berries at the end of ripening was observed. Koshu might effectively convert

  15. Grapevine fruit extract protects against radiation-induced oxidative stress and apoptosis in human lymphocyte.

    PubMed

    Singha, Indrani; Das, Subir Kumar

    2015-11-01

    Ionizing radiation (IR) causes oxidative stress through overwhelming generation of reactive oxygen species (ROS) in the living cells leading the oxidative damage further to biomolecules. Grapevine (Vitis vinifera L.) posses several bioactive phytochemicals and is the richest source of antioxidants. In this study, we investigated V. vinifera for its phytochemical content, enzymes profile and, ROS- and oxidant-scavenging activities. We have also studied the fruit extract of four different grapevine viz., Thompson seedless, Flame seedless, Kishmish chorni and Red globe for their radioprotective actions in human lymphocytes. The activities of ascorbic acid oxidase and catalase significantly (P < 0.01) differed among extracts within the same cultivar, while that of peroxidase and polyphenol oxidase did not differ significantly. The superoxide radical-scavenging activity was higher in the seed as compared to the skin or pulp of the same cultivar. Pretreatment with grape extracts attenuated the oxidative stress induced by 4 Gy γ-radiation in human lymphocytes in vitro. Further, γ-radiation-induced increase in caspase 3/7 activity was significantly attenuated by grape extracts. These results suggest that grape extract serve as a potential source of natural antioxidants against the IR-induced oxidative stress and also inhibit apoptosis. Furthermore, the protective action of grape depends on the source of extract (seed, skin or pulp) and type of the cultivars.

  16. Structural characterization of lignin from grape stalks (Vitis vinifera L.).

    PubMed

    Prozil, Sónia O; Evtuguin, Dmitry V; Silva, Artur M S; Lopes, Luísa P C

    2014-06-18

    The chemical structure of lignin from grape stalks, an abundant waste of winemaking, has been studied. The dioxane lignin was isolated from extractive- and protein-free grape stalks (Vitis vinifera L.) by modified acidolytic procedure and submitted to a structural analysis by wet chemistry (nitrobenzene and permanganate oxidation (PO)) and spectroscopic techniques. The results obtained suggest that grape stalk lignin is an HGS type with molar proportions of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units of 3:71:26. Structural analysis by (1)H and (13)C NMR spectroscopy and PO indicates the predominance of β-O-4' structures (39% mol) in grape stalk lignin together with moderate amounts of β-5', β-β, β-1', 5-5', and 4-O-5' structures. NMR studies also revealed that grape lignin should be structurally associated with tannins. The condensation degree of grape stalks lignin is higher than that of conventional wood lignins and lignins from other agricultural residues.

  17. Resistance evaluation of Chinese wild Vitis genotypes against Botrytis cinerea and different responses of resistant and susceptible hosts to the infection

    PubMed Central

    Wan, Ran; Hou, Xiaoqing; Wang, Xianhang; Qu, Jingwu; Singer, Stacy D.; Wang, Yuejin; Wang, Xiping

    2015-01-01

    The necrotrophic fungus Botrytis cinerea is a major threat to grapevine cultivation worldwide. A screen of 41 Vitis genotypes for leaf resistance to B. cinerea suggested species independent variation and revealed 18 resistant Chinese wild Vitis genotypes, while most investigated V. vinifera, or its hybrids, were susceptible. A particularly resistant Chinese wild Vitis, “Pingli-5” (V. sp. [Qinling grape]) and a very susceptible V. vinifera cultivar, “Red Globe” were selected for further study. Microscopic analysis demonstrated that B. cinerea growth was limited during early infection on “Pingli-5” before 24 h post-inoculation (hpi) but not on Red Globe. It was found that reactive oxygen species (ROS) and antioxidative system were associated with fungal growth. O2- accumulated similarly in B. cinerea 4 hpi on both Vitis genotypes. Lower levels of O2- (not H2O2) were detected 4 hpi and ROS (H2O2 and O2-) accumulation from 8 hpi onwards was also lower in “Pingli-5” leaves than in “Red Globe” leaves. B. cinerea triggered sustained ROS production in “Red Globe” but not in “Pingli-5” with subsequent infection progresses. Red Globe displayed little change in antioxidative activities in response to B. cinerea infection, instead, antioxidative activities were highly and timely elevated in resistant “Pingli-5” which correlated with its minimal ROS increases and its high resistance. These findings not only enhance our understanding of the resistance of Chinese wild Vitis species to B. cinerea, but also lay the foundation for breeding B. cinerea resistant grapes in the future. PMID:26579134

  18. Diversity of Diaporthe species associated with wood cankers of fruit and nut crops in northern California

    USDA-ARS?s Scientific Manuscript database

    Diaporthe ampelina, causal agent of Phomopsis cane and leaf spot of grapevine (Vitis vinifera L.), is also frequently isolated from grapevine wood, causing Phomopsis dieback. In California, Diaporthe species cause a wide range of symptoms not only on grape, but also other fruit and nut crops. To bet...

  19. Comparison of investigation methods of heat injury in grapevine (Vitis) and assessment to heat tolerance in different cultivars and species.

    PubMed

    Xu, Hongguo; Liu, Guojie; Liu, Guotian; Yan, Bofang; Duan, Wei; Wang, Lijun; Li, Shaohua

    2014-06-05

    In the context of global climate change, heat stress is becoming an increasingly important constraint on grapevine growth and berry quality. There is a need to breed new grape cultivars with heat tolerance and to design effective physiological defenses against heat stress. The investigation of heat injury to plants or tissues under high temperature is an important step in achieving these goals. At present, evaluation methods for heat injury include the gas exchange parameters of photosynthesis, membrane thermostability, chlorophyll content etc.; however, these methods have obvious disadvantages, such as insensitivity, inconvenience and delayed information. An effective and convenient method for investigating the heat injury of grapevine must be developed. In this study, an investigation protocol for a critical temperature (47°C) and heat treatment time (40 min) was developed in detached grape leaves. Based on the results, we found that the OJIP test was superior to measuring electrolyte leakage or photosynthetic O₂ evolution for investigating the heat injury of three cultivars of grapevine. Heat tolerance of 47 grape species and cultivars was evaluated through investigating heat injury using the OJIP test. Moreover, the electron transport chain (donor side, acceptor side and reaction center) of PSII in photosynthesis was further investigated. The OJIP test was a rapid, sensitive and convenient method for investigating heat injury in grapevine. An analysis of PSII function using this method indicated that the acceptor side was less sensitive to heat than was the donor side or the reaction center in grape leaves. Among the 47 taxa evaluated (cultivars, hybrids, and wild species), heat tolerance varied largely in each genotype group: most wild species and hybrids between V. labrusca and V. vinifera had relatively strong heat tolerance, but most cultivars from V. vinifera had relatively weak heat tolerance.

  20. Comparison of investigation methods of heat injury in grapevine (Vitis) and assessment to heat tolerance in different cultivars and species

    PubMed Central

    2014-01-01

    Background In the context of global climate change, heat stress is becoming an increasingly important constraint on grapevine growth and berry quality. There is a need to breed new grape cultivars with heat tolerance and to design effective physiological defenses against heat stress. The investigation of heat injury to plants or tissues under high temperature is an important step in achieving these goals. At present, evaluation methods for heat injury include the gas exchange parameters of photosynthesis, membrane thermostability, chlorophyll content etc.; however, these methods have obvious disadvantages, such as insensitivity, inconvenience and delayed information. An effective and convenient method for investigating the heat injury of grapevine must be developed. Results In this study, an investigation protocol for a critical temperature (47°C) and heat treatment time (40 min) was developed in detached grape leaves. Based on the results, we found that the OJIP test was superior to measuring electrolyte leakage or photosynthetic O2 evolution for investigating the heat injury of three cultivars of grapevine. Heat tolerance of 47 grape species and cultivars was evaluated through investigating heat injury using the OJIP test. Moreover, the electron transport chain (donor side, acceptor side and reaction center) of PSII in photosynthesis was further investigated. Conclusions The OJIP test was a rapid, sensitive and convenient method for investigating heat injury in grapevine. An analysis of PSII function using this method indicated that the acceptor side was less sensitive to heat than was the donor side or the reaction center in grape leaves. Among the 47 taxa evaluated (cultivars, hybrids, and wild species), heat tolerance varied largely in each genotype group: most wild species and hybrids between V. labrusca and V. vinifera had relatively strong heat tolerance, but most cultivars from V. vinifera had relatively weak heat tolerance. PMID:24898786

  1. Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants.

    PubMed

    Bulgari, Daniela; Casati, Paola; Crepaldi, Paola; Daffonchio, Daniele; Quaglino, Fabio; Brusetti, Lorenzo; Bianco, Piero Attilio

    2011-07-01

    Length heterogeneity-PCR assays, combined with statistical analyses, highlighted that the endophytic bacterial community associated with healthy grapevines was characterized by a greater diversity than that present in diseased and recovered plants. The findings suggest that phytoplasmas can restructure the bacterial community by selecting endophytic strains that could elicit a plant defense response.

  2. The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape.

    PubMed

    Tillett, Richard L; Wheatley, Matthew D; Tattersall, Elizabeth A R; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2012-01-01

    Chilling and freezing can reduce significantly vine survival and fruit set in Vitis vinifera wine grape. To overcome such production losses, a recently identified grapevine C-repeat binding factor (CBF) gene, VvCBF4, was overexpressed in grape vine cv. 'Freedom' and found to improve freezing survival and reduced freezing-induced electrolyte leakage by up to 2 °C in non-cold-acclimated vines. In addition, overexpression of this transgene caused a reduced growth phenotype similar to that observed for CBF overexpression in Arabidopsis and other species. Both freezing tolerance and reduced growth phenotypes were manifested in a transgene dose-dependent manner. To understand the mechanistic basis of VvCBF4 transgene action, one transgenic line (9-12) was genotyped using microarray-based mRNA expression profiling. Forty-seven and 12 genes were identified in unstressed transgenic shoots with either a >1.5-fold increase or decrease in mRNA abundance, respectively. Comparison of mRNA changes with characterized CBF regulons in woody and herbaceous species revealed partial overlaps, suggesting that CBF-mediated cold acclimation responses are widely conserved. Putative VvCBF4-regulon targets included genes with functions in cell wall structure, lipid metabolism, epicuticular wax formation and stress-responses suggesting that the observed cold tolerance and dwarf phenotypes are the result of a complex network of diverse functional determinants. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  3. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways

    PubMed Central

    Domingos, Sara; Scafidi, Pietro; Cardoso, Vania; Leitao, Antonio E.; Di Lorenzo, Rosario; Oliveira, Cristina M.; Goulao, Luis F.

    2015-01-01

    Understanding abscission is both a biological and an agronomic challenge. Flower abscission induced independently by shade and gibberellic acid (GAc) sprays was monitored in grapevine (Vitis vinifera L.) growing under a soilless greenhouse system during two seasonal growing conditions, in an early and late production cycle. Physiological and metabolic changes triggered by each of the two distinct stimuli were determined. Environmental conditions exerted a significant effect on fruit set as showed by the higher natural drop rate recorded in the late production cycle with respect to the early cycle. Shade and GAc treatments increased the percentage of flower drop compared to the control, and at a similar degree, during the late production cycle. The reduction of leaf gas exchanges under shade conditions was not observed in GAc treated vines. The metabolic profile assessed in samples collected during the late cycle differently affected primary and secondary metabolisms and showed that most of the treatment-resulting variations occurred in opposite trends in inflorescences unbalanced in either hormonal or energy deficit abscission-inducing signals. Particularly concerning carbohydrates metabolism, sucrose, glucose, tricarboxylic acid metabolites and intermediates of the raffinose family oligosaccharides pathway were lower in shaded and higher in GAc samples. Altered oxidative stress remediation mechanisms and indolacetic acid (IAA) concentration were identified as abscission signatures common to both stimuli. According to the global analysis performed, we report that grape flower abscission mechanisms triggered by GAc application and C-starvation are not based on the same metabolic pathways. PMID:26157448

  4. Transcriptome analyses of the Dof-like gene family in grapevine reveal its involvement in berry, flower and seed development.

    PubMed

    da Silva, Danielle Costenaro; da Silveira Falavigna, Vítor; Fasoli, Marianna; Buffon, Vanessa; Porto, Diogo Denardi; Pappas, Georgios Joannis; Pezzotti, Mario; Pasquali, Giancarlo; Revers, Luís Fernando

    2016-01-01

    The Dof (DNA-binding with one finger) protein family spans a group of plant transcription factors involved in the regulation of several functions, such as plant responses to stress, hormones and light, phytochrome signaling and seed germination. Here we describe the Dof-like gene family in grapevine (Vitis vinifera L.), which consists of 25 genes coding for Dof. An extensive in silico characterization of the VviDofL gene family was performed. Additionally, the expression of the entire gene family was assessed in 54 grapevine tissues and organs using an integrated approach with microarray (cv Corvina) and real-time PCR (cv Pinot Noir) analyses. The phylogenetic analysis comparing grapevine sequences with those of Arabidopsis, tomato, poplar and already described Dof genes in other species allowed us to identify several duplicated genes. The diversification of grapevine DofL genes during evolution likely resulted in a broader range of biological roles. Furthermore, distinct expression patterns were identified between samples analyzed, corroborating such hypothesis. Our expression results indicate that several VviDofL genes perform their functional roles mainly during flower, berry and seed development, highlighting their importance for grapevine growth and production. The identification of similar expression profiles between both approaches strongly suggests that these genes have important regulatory roles that are evolutionally conserved between grapevine cvs Corvina and Pinot Noir.

  5. Transcriptome analyses of the Dof-like gene family in grapevine reveal its involvement in berry, flower and seed development

    PubMed Central

    da Silva, Danielle Costenaro; da Silveira Falavigna, Vítor; Fasoli, Marianna; Buffon, Vanessa; Porto, Diogo Denardi; Pappas, Georgios Joannis; Pezzotti, Mario; Pasquali, Giancarlo; Revers, Luís Fernando

    2016-01-01

    The Dof (DNA-binding with one finger) protein family spans a group of plant transcription factors involved in the regulation of several functions, such as plant responses to stress, hormones and light, phytochrome signaling and seed germination. Here we describe the Dof-like gene family in grapevine (Vitis vinifera L.), which consists of 25 genes coding for Dof. An extensive in silico characterization of the VviDofL gene family was performed. Additionally, the expression of the entire gene family was assessed in 54 grapevine tissues and organs using an integrated approach with microarray (cv Corvina) and real-time PCR (cv Pinot Noir) analyses. The phylogenetic analysis comparing grapevine sequences with those of Arabidopsis, tomato, poplar and already described Dof genes in other species allowed us to identify several duplicated genes. The diversification of grapevine DofL genes during evolution likely resulted in a broader range of biological roles. Furthermore, distinct expression patterns were identified between samples analyzed, corroborating such hypothesis. Our expression results indicate that several VviDofL genes perform their functional roles mainly during flower, berry and seed development, highlighting their importance for grapevine growth and production. The identification of similar expression profiles between both approaches strongly suggests that these genes have important regulatory roles that are evolutionally conserved between grapevine cvs Corvina and Pinot Noir. PMID:27610237

  6. Image analysis-based modelling for flower number estimation in grapevine.

    PubMed

    Millan, Borja; Aquino, Arturo; Diago, Maria P; Tardaguila, Javier

    2017-02-01

    Grapevine flower number per inflorescence provides valuable information that can be used for assessing yield. Considerable research has been conducted at developing a technological tool, based on image analysis and predictive modelling. However, the behaviour of variety-independent predictive models and yield prediction capabilities on a wide set of varieties has never been evaluated. Inflorescence images from 11 grapevine Vitis vinifera L. varieties were acquired under field conditions. The flower number per inflorescence and the flower number visible in the images were calculated manually, and automatically using an image analysis algorithm. These datasets were used to calibrate and evaluate the behaviour of two linear (single-variable and multivariable) and a nonlinear variety-independent model. As a result, the integrated tool composed of the image analysis algorithm and the nonlinear approach showed the highest performance and robustness (RPD = 8.32, RMSE = 37.1). The yield estimation capabilities of the flower number in conjunction with fruit set rate (R 2  = 0.79) and average berry weight (R 2  = 0.91) were also tested. This study proves the accuracy of flower number per inflorescence estimation using an image analysis algorithm and a nonlinear model that is generally applicable to different grapevine varieties. This provides a fast, non-invasive and reliable tool for estimation of yield at harvest. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Grape (Vitis spp.) - Grapevine Red Blotch Disease

    USDA-ARS?s Scientific Manuscript database

    Grapevine red blotch disease is caused by Grapevine red blotch-associated virus (GRBaV), which was first reported in 2012 from New York and subsequently in California, Washington, Oregon, Idaho and elsewhere in the U.S. The discovery occurred when grapevines with red leaf symptoms that tested negati...

  8. The Evolutionary History and Diverse Physiological Roles of the Grapevine Calcium-Dependent Protein Kinase Gene Family

    PubMed Central

    Chen, Fei; Fasoli, Marianna; Tornielli, Giovanni Battista; Dal Santo, Silvia; Pezzotti, Mario; Zhang, Liangsheng; Cai, Bin; Cheng, Zong-Ming

    2013-01-01

    Calcium-dependent protein kinases (CDPKs) are molecular switches that bind Ca2+, ATP, and protein substrates, acting as sensor relays and responders that convert Ca2+ signals, created by developmental processes and environmental stresses, into phosphorylation events. The precise functions of the CDPKs in grapevine (Vitis vinifera) are largely unknown. We therefore investigated the phylogenetic relationships and expression profiles of the 17 CDPK genes identified in the 12x grapevine genome sequence, resolving them into four subfamilies based on phylogenetic tree topology and gene structures. The origins of the CDPKs during grapevine evolution were characterized, involving 13 expansion events. Transcriptomic analysis using 54 tissues and developmental stages revealed three types of CDPK gene expression profiles: constitutive (housekeeping CDPKs), partitioned functions, and prevalent in pollen/stamen. We identified two duplicated CDPK genes that had evolved from housekeeping to pollen-prevalent functions and whose origin correlated with that of seed plants, suggesting neofunctionalization with an important role in pollen development and also potential value in the breeding of seedless varieties. We also found that CDPKs were involved in three abiotic stress signaling pathways and could therefore be used to investigate the crosstalk between stress responses. PMID:24324631

  9. Global DNA Methylation Patterns Can Play a Role in Defining Terroir in Grapevine (Vitis vinifera cv. Shiraz)

    PubMed Central

    Xie, Huahan; Konate, Moumouni; Sai, Na; Tesfamicael, Kiflu G.; Cavagnaro, Timothy; Gilliham, Matthew; Breen, James; Metcalfe, Andrew; Stephen, John R.; De Bei, Roberta; Collins, Cassandra; Lopez, Carlos M. R.

    2017-01-01

    Understanding how grapevines perceive and adapt to different environments will provide us with an insight into how to better manage crop quality. Mounting evidence suggests that epigenetic mechanisms are a key interface between the environment and the genotype that ultimately affect the plant’s phenotype. Moreover, it is now widely accepted that epigenetic mechanisms are a source of useful variability during crop varietal selection that could affect crop performance. While the contribution of DNA methylation to plant performance has been extensively studied in other major crops, very little work has been done in grapevine. To study the genetic and epigenetic diversity across 22 vineyards planted with the cultivar Shiraz in six wine sub-regions of the Barossa, South Australia. Methylation sensitive amplified polymorphisms (MSAPs) were used to obtain global patterns of DNA methylation. The observed epigenetic profiles showed a high level of differentiation that grouped vineyards by their area of provenance despite the low genetic differentiation between vineyards and sub-regions. Pairwise epigenetic distances between vineyards indicate that the main contributor (23–24%) to the detected variability is associated to the distribution of the vineyards on the N–S axis. Analysis of the methylation profiles of vineyards pruned with the same system increased the positive correlation observed between geographic distance and epigenetic distance suggesting that pruning system affects inter-vineyard epigenetic differentiation. Finally, methylation sensitive genotyping by sequencing identified 3,598 differentially methylated genes in grapevine leaves that were assigned to 1,144 unique gene ontology terms of which 8.6% were associated with response to environmental stimulus. Our results suggest that DNA methylation differences between vineyards and sub-regions within The Barossa are influenced both by the geographic location and, to a lesser extent, by pruning system

  10. Metabolic Consequences of Infection of Grapevine (Vitis vinifera L.) cv. “Modra frankinja” with Flavescence Dorée Phytoplasma

    PubMed Central

    Prezelj, Nina; Covington, Elizabeth; Roitsch, Thomas; Gruden, Kristina; Fragner, Lena; Weckwerth, Wolfram; Chersicola, Marko; Vodopivec, Maja; Dermastia, Marina

    2016-01-01

    Flavescence dorée, caused by the quarantine phytoplasma FDp, represents the most devastating of the grapevine yellows diseases in Europe. In an integrated study we have explored the FDp–grapevine interaction in infected grapevines of cv. “Modra frankinja” under natural conditions in the vineyard. In FDp-infected leaf vein-enriched tissues, the seasonal transcriptional profiles of 14 genes selected from various metabolic pathways showed an FDp-specific plant response compared to other grapevine yellows and uncovered a new association of the SWEET17a vacuolar transporter of fructose with pathogens. Non-targeted metabolome analysis from leaf vein-enriched tissues identified 22 significantly changed compounds with increased levels during infection. Several metabolites corroborated the gene expression study. Detailed investigation of the dynamics of carbohydrate metabolism revealed significant accumulation of sucrose and starch in the mesophyll of FDp-infected leaves, as well as significant up-regulation of genes involved in their biosynthesis. In addition, infected leaves had high activities of ADP-glucose pyrophosphorylase and, more significantly, sucrose synthase. The data support the conclusion that FDp infection inhibits phloem transport, resulting in accumulation of carbohydrates and secondary metabolites that provoke a source-sink transition and defense response status. PMID:27242887

  11. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera.

    PubMed

    De Angeli, Alexis; Baetz, Ulrike; Francisco, Rita; Zhang, Jingbo; Chaves, Maria Manuela; Regalado, Ana

    2013-08-01

    Vitis vinifera L. represents an economically important fruit species. Grape and wine flavour is made from a complex set of compounds. The acidity of berries is a major parameter in determining grape berry quality for wine making and fruit consumption. Despite the importance of malic and tartaric acid (TA) storage and transport for grape berry acidity, no vacuolar transporter for malate or tartrate has been identified so far. Some members of the aluminium-activated malate transporter (ALMT) anion channel family from Arabidopsis thaliana have been shown to be involved in mediating malate fluxes across the tonoplast. Therefore, we hypothesised that a homologue of these channels could have a similar role in V. vinifera grape berries. We identified homologues of the Arabidopsis vacuolar anion channel AtALMT9 through a TBLASTX search on the V. vinifera genome database. We cloned the closest homologue of AtALMT9 from grape berry cDNA and designated it VvALMT9. The expression profile revealed that VvALMT9 is constitutively expressed in berry mesocarp tissue and that its transcription level increases during fruit maturation. Moreover, we found that VvALMT9 is targeted to the vacuolar membrane. Using patch-clamp analysis, we could show that, besides malate, VvALMT9 mediates tartrate currents which are higher than in its Arabidopsis homologue. In summary, in the present study we provide evidence that VvALMT9 is a vacuolar malate channel expressed in grape berries. Interestingly, in V. vinifera, a tartrate-producing plant, the permeability of the channel is apparently adjusted to TA.

  12. Association of RGA-SSCP markers with resistance to downy mildew and anthracnose in grapevines.

    PubMed

    Tantasawat, P A; Poolsawat, O; Prajongjai, T; Chaowiset, W; Tharapreuksapong, A

    2012-07-02

    Downy mildew (Plasmopara viticola) and anthracnose (Sphaceloma ampelinum) are two major diseases that severely affect most grapevine (Vitis vinifera) cultivars grown commercially in Thailand. Progress of conventional breeding programs of grapevine for improved resistance to these diseases can be speeded up by selection of molecular markers associated with resistance traits. We evaluated the association between 13 resistance gene analog (RGA)-single-strand conformation polymorphism (SSCP) markers with resistance to downy mildew and anthracnose in 71 segregating progenies of seven cross combinations between susceptible cultivars and resistant lines. F(1) hybrids from each cross were assessed for resistance to downy mildew and anthracnose (isolates Nk4-1 and Rc2-1) under laboratory conditions. Association of resistance traits with RGA-SSCP markers was evaluated using simple linear regression analysis. Three RGA-SSCP markers were found to be significantly correlated with anthracnose resistance, whereas significant correlation with downy mildew resistance was observed for only one RGA-SSCP marker. These results demonstrate the usefulness of RGA-SSCP markers. Four candidate markers with significant associations to resistance to these two major diseases of grapevine were identified. However, these putative associations between markers and resistance need to be verified with larger segregating populations before they can be used for marker-assisted selection.

  13. A transcriptome analysis of two grapevine populations segregating for tendril phyllotaxy

    PubMed Central

    Arro, Jie; Cuenca, Jose; Yang, Yingzhen; Liang, Zhenchang; Cousins, Peter; Zhong, Gan-Yuan

    2017-01-01

    The shoot structure of cultivated grapevine Vitis vinifera L. typically exhibits a three-node modular repetitive pattern, two sequential leaf-opposed tendrils followed by a tendril-free node. In this study, we investigated the molecular basis of this pattern by characterizing differentially expressed genes in 10 bulk samples of young tendril tissue from two grapevine populations showing segregation of mutant or wild-type shoot/tendril phyllotaxy. One population was the selfed progeny and the other one, an outcrossed progeny of a Vitis hybrid, ‘Roger’s Red’. We analyzed 13 375 expressed genes and carried out in-depth analyses of 324 of them, which were differentially expressed with a minimum of 1.5-fold changes between the mutant and wild-type bulk samples in both selfed and cross populations. A significant portion of these genes were direct cis-binding targets of 14 transcription factor families that were themselves differentially expressed. Network-based dependency analysis further revealed that most of the significantly rewired connections among the 10 most connected hub genes involved at least one transcription factor. TCP3 and MYB12, which were known important for plant-form development, were among these transcription factors. More importantly, TCP3 and MYB12 were found in this study to be involved in regulating the lignin gene PRX52, which is important to plant-form development. A further support evidence for the roles of TCP3-MYB12-PRX52 in contributing to tendril phyllotaxy was the findings of two other lignin-related genes uniquely expressed in the mutant phyllotaxy background. PMID:28713572

  14. VpRFP1, a novel C4C4-type RING finger protein gene from Chinese wild Vitis pseudoreticulata, functions as a transcriptional activator in defence response of grapevine

    PubMed Central

    Yu, Yihe; Xu, Weirong; Wang, Shengyi; Xu, Yan; Li, Hui'e; Wang, Yuejin; Li, Shuxiu

    2011-01-01

    RING finger proteins comprise a large family and play important roles in regulation of growth and development, hormone signalling, and responses to biotic and abiotic stresses in plants. In this study, the identification and functional characterization of a C4C4-type RING finger protein gene from the Chinese wild grapevine Vitis pseudoreticulata (designated VpRFP1) are reported. VpRFP1 was initially identified as an expressed sequence tag (EST) from a cDNA library constructed from leaves of V. pseudoreticulata inoculated with the grapevine powdery mildew Uncinula necator. Sequence analysis of the deduced VpRFP1 protein based on the full-length cDNA revealed an N-terminal nuclear localization signal (NLS) and a C-terminal C4C4-type RING finger motif with the consensus sequence Cys-X2-Cys-X13-Cys-X1-Cys-X4-Cys-X2-Cys-X10-Cys-X2-Cys. Upon inoculation with U. necator, expression of VpRFP1 was rapidly induced to higher levels in mildew-resistant V. pseudoreticulata plants. In contrast, expression of VpRFP1 was down-regulated in mildew-susceptible V. vinifera plants. Western blotting using an antibody raised against VpRFP1 showed that VpRFP1 was also induced to higher levels in V. pseudoreticulata plants at 12–48 hours post-inoculation (hpi). However, there was only slight increase in VpRFP in V. vinifera plants in the same time frame, even though a more significant increase was observed at 96–144 hpi in these plants. Results from transactivation assays in yeast showed that the RING finger motif of VpRFP1 exhibited some activity of transcriptional activation; however, no activity was seen with the full-length VpRFP1. Overexpression of VpRFP1 in Arabidopsis plants was found to enhance resistance to Arabidopsis powdery mildew Golovinomyces cichoracearum, which seemed to be correlated with increased transcript levels of AtPR1 and AtPR2 in the pathogen-infected tissues. In addition, the Arabidopsis transgenic lines showed enhanced resistance to a virulent bacterial

  15. The chemotaxis regulator pilG of Xylella fastidiosa is required for virulence in Vitis vinifera grapevines

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a Gram-negative, xylem-limited pathogenic bacterium that causes Pierce’s disease of grapevines. Type IV pili of X. fastidiosa are regulated by pilG, a chemotaxis regulator in Pil-Chp operon involving signal transduction pathways. To elucidate the role of pilG in twitching motil...

  16. The Course of Colonization of Two Different Vitis Genotypes by Plasmopara viticola Indicates Compatible and Incompatible Host-Pathogen Interactions.

    PubMed

    Unger, Sabine; Büche, Claudia; Boso, Susana; Kassemeyer, Hanns-Heinz

    2007-07-01

    ABSTRACT The course of colonization of leaf mesophyll by the causal agent of grapevine downy mildew, Plasmopara viticola, in a susceptible and a resistant grapevine genotype was examined in order to characterize the development of the pathogen in compatible and incompatible host-pathogen interactions. Within a few hours after inoculation, the pathogen was established in the susceptible Vitis vinifera cv. Müller-Thurgau and formed primary hyphae with a first haustorium. No further development occurred in the following 10 to 18 h. The next step, in which the hyphae grew and branched to colonize the intercellular space of the host tissue, was observed 1.5 days after inoculation. After 3 days, the intercostal fields were entirely filled with mycelium and sporulation was abundant under favorable environmental conditions. The first infection steps were essentially the same in the resistant V. rupestris. However, the invasive growth of P. viticola was delayed, and further development ceased before the intercostal fields were filled with mycelium.

  17. Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer.

    PubMed

    Goremykin, Vadim V; Salamini, Francesco; Velasco, Riccardo; Viola, Roberto

    2009-01-01

    The mitochondrial genome of grape (Vitis vinifera), the largest organelle genome sequenced so far, is presented. The genome is 773,279 nt long and has the highest coding capacity among known angiosperm mitochondrial DNAs (mtDNAs). The proportion of promiscuous DNA of plastid origin in the genome is also the largest ever reported for an angiosperm mtDNA, both in absolute and relative terms. In all, 42.4% of chloroplast genome of Vitis has been incorporated into its mitochondrial genome. In order to test if horizontal gene transfer (HGT) has also contributed to the gene content of the grape mtDNA, we built phylogenetic trees with the coding sequences of mitochondrial genes of grape and their homologs from plant mitochondrial genomes. Many incongruent gene tree topologies were obtained. However, the extent of incongruence between these gene trees is not significantly greater than that observed among optimal trees for chloroplast genes, the common ancestry of which has never been in doubt. In both cases, we attribute this incongruence to artifacts of tree reconstruction, insufficient numbers of characters, and gene paralogy. This finding leads us to question the recent phylogenetic interpretation of Bergthorsson et al. (2003, 2004) and Richardson and Palmer (2007) that rampant HGT into the mtDNA of Amborella best explains phylogenetic incongruence between mitochondrial gene trees for angiosperms. The only evidence for HGT into the Vitis mtDNA found involves fragments of two coding sequences stemming from two closteroviruses that cause the leaf roll disease of this plant. We also report that analysis of sequences shared by both chloroplast and mitochondrial genomes provides evidence for a previously unknown gene transfer route from the mitochondrion to the chloroplast.

  18. Differentiation of Vitis vinifera varieties by MALDI-MS analysis of the grape seed proteins.

    PubMed

    Pesavento, Ivana Chiara; Bertazzo, Antonella; Flamini, Riccardo; Vedova, Antonio Dalla; De Rosso, Mirko; Seraglia, Roberta; Traldi, Pietro

    2008-02-01

    Until now the study of pathogenic related proteins in grape juice and wine, performed by ESI-MS, LC/ESI-MS, and MALDI/MS, has been proposed for differentiation of varieties. In fact, chitinases and thaumatin-like proteins persist through the vinification process and cause hazes and sediments in bottled wines. An additional instrument, potentially suitable for the grape varieties differentiation, has been developed by MALDI/MS for the grape seed protein analysis. The hydrosoluble protein profiles of seeds extract from three different Vitis vinifera grape (red and white) varieties were analyzed and compared. In order to evaluate the environmental conditions and harvest effects, the seed protein profiles of one grape variety from different locations and harvests were studied. (c) 2008 John Wiley & Sons, Ltd.

  19. Impact of soil texture and water availability on the hydraulic control of plant and grape-berry development

    Treesearch

    Sara Tramontini; Cornelis van Leeuwen; Jean-Christophe Domec; Agnès Destrac-Irvine; Cyril Basteau; Marco Vitali; Olaf Mosbach-Schulz; Claudio Lovisolo

    2013-01-01

    All components of the soil-plant-atmosphere (s-p-a) continuum are known to control berry quality in grapevine (Vitis vinifera L.) via ecophysiological interactions between water uptake by roots and water loss by leaves. The scope of the present work was to explore how the main hydraulic components of grapevine influence fruit quality through changes...

  20. ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters.

    PubMed

    Murcia, Germán; Pontin, Mariela; Reinoso, Herminda; Baraldi, Rita; Bertazza, Gianpaolo; Gómez-Talquenca, Sebastián; Bottini, Rubén; Piccoli, Patricia N

    2016-03-01

    Grape quality for winemaking depends on sugar accumulation and metabolism in berries. Abscisic acid (ABA) and gibberellins (GAs) have been reported to control sugar allocation in economically important crops, although the mechanisms involved are still unknown. The present study tested if ABA and gibberellin A3 (GA3) enhance carbon allocation in fruits of grapevines by modifying phloem loading, phloem area and expression of sugar transporters in leaves and berries. Pot-grown Vitis vinifera cv. Malbec plants were sprayed with ABA and GA3 solutions. The amount of soluble sugars in leaves and berries related to photosynthesis were examined at three points of berry growth: pre-veraison, full veraison and post-veraison. Starch levels and amylase activity in leaves, gene expression of sugar transporters in leaves and berries and phloem anatomy were examined at full veraison. Accumulation of glucose and fructose in berries was hastened in ABA-treated plants at the stage of full veraison, which was correlated with enhancement of Vitis vinifera HEXOSE TRANSPORTER 2 (VvHT2) and Vitis vinifera HEXOSE TRANSPORTER 6 (VvHT6) gene expression, increases of phloem area and sucrose content in leaves. On the other hand, GA3 increased the quantity of photoassimilates delivered to the stem thus increasing xylem growth. In conclusion, stimulation of sugar transport by ABA and GA3 to berries and stems, respectively, was due to build-up of non-structural carbohydrates in leaves, modifications in phloem tissue and modulation in gene expression of sugar transporters. © 2015 Scandinavian Plant Physiology Society.

  1. Grapevine fleck virus-like viruses in Vitis.

    PubMed

    Sabanadzovic, S; Abou-Ghanem, N; Castellano, M A; Digiaro, M; Martelli, G P

    2000-01-01

    Two sets of degenerate primers for the specific amplification of 572-575 nt and 386 nt segments of the methyltransferase and RNA- dependent RNA polymerase cistrons of members of the genera Tymovirus and Marafivirus and of the unassigned virus Grapevine fleck virus (GFkV) were designed on the basis of available sequences. These primers were used for amplifying and subsequent cloning and sequencing part of the open reading frame 1 of the genome of GFkV, Grapevine asteroid mosaic-associated virus (GAMaV) and of another previously unreported virus, for which the name Grapevine red globe virus (GRGV) is proposed. Computer-assisted analysis of the amplified genome portions showed that the three grapevine viruses are phylogenetically related with one another and with sequenced tymoviruses and marafiviruses. The relationships with tymoviruses was confirmed by the type of ultrastructural modifications induced in the host cells. RdRp-specific degenerate primers were successfully used for the aspecific detection of the three viruses in crude grapevine sap extracts. Specific virus identification was obtained with RT-PCR using antisense virus-specific primers.

  2. Radicinin from Cochliobolus sp. inhibits Xylella fastidiosa, the causal agent of Pierce's Disease of grapevine.

    PubMed

    Aldrich, Thomas J; Rolshausen, Philippe E; Roper, M Caroline; Reader, Jordan M; Steinhaus, Matthew J; Rapicavoli, Jeannette; Vosburg, David A; Maloney, Katherine N

    2015-08-01

    The fastidious phytopathogenic bacterium, Xylella fastidiosa, poses a substantial threat to many economically important crops, causing devastating diseases including Pierce's Disease of grapevine. Grapevines (Vitis vinifera L.) planted in an area under Pierce's Disease pressure often display differences in disease severity and symptom expression, with apparently healthy vines growing alongside the dying ones, despite the fact that all the vines are genetic clones of one another. Under the hypothesis that endophytic microbes might be responsible for this non-genetic resistance to X. fastidiosa, endophytic fungi were isolated from vineyard cvs. 'Chardonnay' and 'Cabernet Sauvignon' grown under high Pierce's Disease pressure. A Cochliobolus sp. isolated from a Cabernet Sauvignon grapevine inhibited the growth of X. fastidiosa in vitro. Bioassay-guided isolation of an organic extract of Cochliobolus sp. yielded the natural product radicinin as the major active compound. Radicinin also inhibited proteases isolated from the culture supernatant of X. fastidiosa. In order to assess structure-activity relationships, three semi-synthetic derivatives of radicinin were prepared and tested for activity against X. fastidiosa in vitro. Assay results of these derivatives are consistent with enzyme inactivation by conjugate addition to carbon-10 of radicinin, as proposed previously. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The Application of Leaf Ultrasonic Resonance to Vitis vinifera L. Suggests the Existence of a Diurnal Osmotic Adjustment Subjected to Photosynthesis

    PubMed Central

    Sancho-Knapik, Domingo; Medrano, Hipólito; Peguero-Pina, José J.; Mencuccini, Maurizio; Fariñas, Maria D.; Álvarez-Arenas, Tomás G.; Gil-Pelegrín, Eustaquio

    2016-01-01

    The main objective of this study was to apply the air-coupled broad-band ultrasonic spectroscopy in attached transpiring leaves of Vitis vinifera L. to monitor changes in leaf water potential (Ψ) through the measurements of the standardized value of the resonant frequency associated with the maximum transmitance (f/fo). With this purpose, the response of grapevine to a drought stress period was investigated in terms of leaf water status, ultrasounds, gas exchange and sugar accumulation. Two strong correlations were obtained between f/fo and Ψ measured at predawn (pd) and at midday (md) with different slopes. This fact implied the existence of two values of Ψ for a given value of f/fo, which was taken as a sign that the ultrasonic technique was not directly related to the overall Ψ, but only to one of its components: the turgor pressure (P). The difference in Ψ at constant f/fo (δ) was found to be dependent on net CO2 assimilation (A) and might be used as a rough estimator of photosynthetic activity. It was then, the other main component of Ψ, osmotic potential (π), the one that may have lowered the values of md Ψ with respect to pd Ψ by the accumulation of sugars associated to net CO2 assimilation. This phenomenon suggests the existence of a diurnal osmotic adjustment in this species associated to sugars production in well-watered plants. PMID:27833626

  4. Restructuring of Endophytic Bacterial Communities in Grapevine Yellows-Diseased and Recovered Vitis vinifera L. Plants ▿

    PubMed Central

    Bulgari, Daniela; Casati, Paola; Crepaldi, Paola; Daffonchio, Daniele; Quaglino, Fabio; Brusetti, Lorenzo; Bianco, Piero Attilio

    2011-01-01

    Length heterogeneity-PCR assays, combined with statistical analyses, highlighted that the endophytic bacterial community associated with healthy grapevines was characterized by a greater diversity than that present in diseased and recovered plants. The findings suggest that phytoplasmas can restructure the bacterial community by selecting endophytic strains that could elicit a plant defense response. PMID:21622794

  5. Wound-healing properties of the oils of Vitis vinifera and Vaccinium macrocarpon.

    PubMed

    Shivananda Nayak, B; Dan Ramdath, D; Marshall, Julien R; Isitor, Godwin; Xue, Sophia; Shi, John

    2011-08-01

    Vitis vinifera (grape) and Vaccinium macrocarpon (cranberry) are well known medicinal plants; most of the pharmacologically active phytochemicals have been isolated from the skin, fruit juice, fermented extract and alcohol fractions of the plants above. Here, the pharmacological properties of the phytochemical constituents present in oils of cranberry and grape were investigated. The oil of grape and cranberry has been evaluated for their wound healing activity by using an excision wound model in rats. The animals were divided into four groups of six each (n = 6). The experimental group 1 and 2 animals were treated topically with the grape and cranberry oil (100 mg/kg body weight), respectively. The controls were treated with petroleum jelly. The standard group of animals were treated with mupirocin ointment (100 mg/kg body weight). The healing was assessed by the rate of wound contraction and hydroxyproline content. On day 13, animals treated with cranberry oil exhibited a (88.1%) reduction in the wound area compared with grape-oil treated (84.6%), controls (74.1%) and standard group animals (78.4%) (p < 0.001). The hydroxyproline content of the granulation tissue was significantly higher in the animals treated with cranberry and the grape-oil (p < 0.000). Comparative investigation of the curative properties of the oils of V. vinifera and V. macrocarpon revealed a significant result which suggests their wound-healing potential. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Overwintering Stages of Meloidogyne incognita in Vitis vinifera.

    PubMed

    Melakeberhan, H; Ferris, H; McKenry, M V; Gaspard, J T

    1989-01-01

    The overwintering of Meloidogyne incognita in and around Vitis vinifera cv. French Colombard roots was studied in a naturally infested vineyard at the Kearney Agricultural Center, in a growth chamber, in inoculated vines in microplots at the University of California, Davis, and in a greenhouse. Infected roots were sampled at intervals from onset of vine dormancy until plants accumulated about 800 degree days (DD - base 10 C). Embryogenesis within eggs, classified as less than or more than 16 cells and fully differentiated, and numbers of juveniles (second to fourth stage) and preovipositional and mature (egg-laying) adult stages in roots were determined. All stages were present at the onset of dormancy. Juveniles and immature females were not recovered during the dormant period. Mature females and eggs were always present in roots, although the number of mature females generally decreased with time after onset of dormancy. In contrast, in a greenhouse experiment that accumulated comparable DD without the host plant going through dormancy, the number of mature females increased. After bud break, the number of eggs per female increased and all nematode stages were found in host roots. Eggs in all stages of embryogenesis were observed at all times of sampling, indicating that females overwinter and are capable of laying eggs when conditions improve in the spring and need to be considered in nematode management decisions.

  7. A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety

    PubMed Central

    Cartwright, Dustin A.; Cestaro, Alessandro; Pruss, Dmitry; Pindo, Massimo; FitzGerald, Lisa M.; Vezzulli, Silvia; Reid, Julia; Malacarne, Giulia; Iliev, Diana; Coppola, Giuseppina; Wardell, Bryan; Micheletti, Diego; Macalma, Teresita; Facci, Marco; Mitchell, Jeff T.; Perazzolli, Michele; Eldredge, Glenn; Gatto, Pamela; Oyzerski, Rozan; Moretto, Marco; Gutin, Natalia; Stefanini, Marco; Chen, Yang; Segala, Cinzia; Davenport, Christine; Demattè, Lorenzo; Mraz, Amy; Battilana, Juri; Stormo, Keith; Costa, Fabrizio; Tao, Quanzhou; Si-Ammour, Azeddine; Harkins, Tim; Lackey, Angie; Perbost, Clotilde; Taillon, Bruce; Stella, Alessandra; Solovyev, Victor; Fawcett, Jeffrey A.; Sterck, Lieven; Vandepoele, Klaas; Grando, Stella M.; Toppo, Stefano; Moser, Claudio; Lanchbury, Jerry; Bogden, Robert; Skolnick, Mark; Sgaramella, Vittorio; Bhatnagar, Satish K.; Fontana, Paolo; Gutin, Alexander; Van de Peer, Yves; Salamini, Francesco; Viola, Roberto

    2007-01-01

    Background Worldwide, grapes and their derived products have a large market. The cultivated grape species Vitis vinifera has potential to become a model for fruit trees genetics. Like many plant species, it is highly heterozygous, which is an additional challenge to modern whole genome shotgun sequencing. In this paper a high quality draft genome sequence of a cultivated clone of V. vinifera Pinot Noir is presented. Principal Findings We estimate the genome size of V. vinifera to be 504.6 Mb. Genomic sequences corresponding to 477.1 Mb were assembled in 2,093 metacontigs and 435.1 Mb were anchored to the 19 linkage groups (LGs). The number of predicted genes is 29,585, of which 96.1% were assigned to LGs. This assembly of the grape genome provides candidate genes implicated in traits relevant to grapevine cultivation, such as those influencing wine quality, via secondary metabolites, and those connected with the extreme susceptibility of grape to pathogens. Single nucleotide polymorphism (SNP) distribution was consistent with a diffuse haplotype structure across the genome. Of around 2,000,000 SNPs, 1,751,176 were mapped to chromosomes and one or more of them were identified in 86.7% of anchored genes. The relative age of grape duplicated genes was estimated and this made possible to reveal a relatively recent Vitis-specific large scale duplication event concerning at least 10 chromosomes (duplication not reported before). Conclusions Sanger shotgun sequencing and highly efficient sequencing by synthesis (SBS), together with dedicated assembly programs, resolved a complex heterozygous genome. A consensus sequence of the genome and a set of mapped marker loci were generated. Homologous chromosomes of Pinot Noir differ by 11.2% of their DNA (hemizygous DNA plus chromosomal gaps). SNP markers are offered as a tool with the potential of introducing a new era in the molecular breeding of grape. PMID:18094749

  8. The Phytoalexin Resveratrol Regulates the Initiation of Hypersensitive Cell Death in Vitis Cell

    PubMed Central

    Chang, Xiaoli; Heene, Ernst; Qiao, Fei; Nick, Peter

    2011-01-01

    Resveratrol is a major phytoalexin produced by plants in response to various stresses and promotes disease resistance. The resistance of North American grapevine Vitis rupestris is correlated with a hypersensitive reaction (HR), while susceptible European Vitis vinifera cv. ‘Pinot Noir’ does not exhibit HR, but expresses basal defence. We have shown previously that in cell lines derived from the two Vitis species, the bacterial effector Harpin induced a rapid and sensitive accumulation of stilbene synthase (StSy) transcripts, followed by massive cell death in V. rupestris. In the present work, we analysed the function of the phytoalexin resveratrol, the product of StSy. We found that cv. ‘Pinot Noir’ accumulated low resveratrol and its glycoside trans-piceid, whereas V. rupestris produced massive trans-resveratrol and the toxic oxidative δ-viniferin, indicating that the preferred metabolitism of resveratrol plays role in Vitis resistance. Cellular responses to resveratrol included rapid alkalinisation, accumulation of pathogenesis-related protein 5 (PR5) transcripts, oxidative burst, actin bundling, and cell death. Microtubule disruption and induction of StSy were triggered by Harpin, but not by resveratrol. Whereas most responses proceeded with different amplitude for the two cell lines, the accumulation of resveratrol, and the competence for resveratrol-induced oxidative burst differed in quality. The data lead to a model, where resveratrol, in addition to its classical role as antimicrobial phytoalexin, represents an important regulator for initiation of HR-related cell death. PMID:22053190

  9. RNA-Sequencing Reveals Biological Networks during Table Grapevine (‘Fujiminori’) Fruit Development

    PubMed Central

    Shangguan, Lingfei; Mu, Qian; Fang, Xiang; Zhang, Kekun; Jia, Haifeng; Li, Xiaoying; Bao, Yiqun; Fang, Jinggui

    2017-01-01

    Grapevine berry development is a complex and genetically controlled process, with many morphological, biochemical and physiological changes occurring during the maturation process. Research carried out on grapevine berry development has been mainly concerned with wine grape, while barely focusing on table grape. ‘Fujiminori’ is an important table grapevine cultivar, which is cultivated in most provinces of China. In order to uncover the dynamic networks involved in anthocyanin biosynthesis, cell wall development, lipid metabolism and starch-sugar metabolism in ‘Fujiminori’ fruit, we employed RNA-sequencing (RNA-seq) and analyzed the whole transcriptome of grape berry during development at the expanding period (40 days after full bloom, 40DAF), véraison period (65DAF), and mature period (90DAF). The sequencing depth in each sample was greater than 12×, and the expression level of nearly half of the expressed genes were greater than 1. Moreover, greater than 64% of the clean reads were aligned to the Vitis vinifera reference genome, and 5,620, 3,381, and 5,196 differentially expressed genes (DEGs) were identified between different fruit stages, respectively. Results of the analysis of DEGs showed that the most significant changes in various processes occurred from the expanding stage to the véraison stage. The expression patterns of F3’H and F3’5’H were crucial in determining red or blue color of the fruit skin. The dynamic networks of cell wall development, lipid metabolism and starch-sugar metabolism were also constructed. A total of 4,934 SSR loci were also identified from 4,337 grapevine genes, which may be helpful for the development of phylogenetic analysis in grapevine and other fruit trees. Our work provides the foundation for developmental research of grapevine fruit as well as other non-climacteric fruits. PMID:28118385

  10. Spatio-temporal expression of miRNA159 family members and their GAMYB target gene during the modulation of gibberellin-induced grapevine parthenocarpy.

    PubMed

    Wang, Chen; Jogaiah, Sudisha; Zhang, WenYing; Abdelrahman, Mostafa; Fang, Jing Gui

    2018-06-27

    Grapevine, Vitis vinifera, is an important economic fruit crop that is highly sensitive to gibberellin (GA), and the exogenous application of GA can efficiently induce grapevine parthenocarpy. However, the molecular mechanisms underlying this process remain elusive. In this study, morphological changes during flower development in response to GA treatments were examined in the 'Zuijinxiang' cultivar. To obtain insights into the roles of miRNA159s in GA-induced grapevine parthenocarpy, VvmiR159a, VvmiR159b, VvmiR159c, and their target gene VvGAMYB were isolated, sequenced and characterized. Spatial-temporal expression analyses showed that VvmiR159c exhibited the highest expression levels at 4 d before flowering, followed by a gradual decrease, while VvGAMYB displayed an opposite pattern of expression with the lowest expression at the corresponding stage in response to GA treatment. A cleavage interaction between VvmiR159s and VvGAMYB and variations of their cleavage roles were confirmed in grapevine floral development. In addition, the potential roles of VvmiR159s in GA signaling were investigated through DELLA-protein repressors, indicating that GA-DELLA (SLR1)-VvmiR159c-VvGAMYB is the key signaling regulatory module in grapevine. Our findings provide novel insights into the GA-responsive roles of VvmiR159s in modulating grapevine floral development, which have important implications for the molecular breeding of high-quality seedless grapevine berry.

  11. Perfluorodecalins and Hexenol as Inducers of Secondary Metabolism in Taxus media and Vitis vinifera Cell Cultures.

    PubMed

    Vidal-Limon, Heriberto R; Almagro, Lorena; Moyano, Elisabeth; Palazon, Javier; Pedreño, Maria A; Cusido, Rosa M

    2018-01-01

    Plant cell cultures constitute a potentially efficient and sustainable tool for the production of high added-value bioactive compounds. However, due to the inherent restrictions in the expression of secondary metabolism, to date the yields obtained have generally been low. Plant cell culture elicitation can boost production, sometimes leading to dramatic improvements in yield, as well as providing insight into the target biosynthetic pathways and the regulation of the genes involved. Among the secondary compounds successfully being produced in biotechnological platforms are taxanes and trans -resveratrol ( t -R). In the current study, perfluorodecalins (PFDs) and hexenol (Hex) were tested for the first time with Taxus media and Vitis vinifera cell cultures to explore their effect on plant cell growth and secondary metabolite production, either alone or combined with other elicitors already established as highly effective, such as methyl jasmonate (MeJa), coronatine (Coro) or randomly methylated β-cyclodextrins (β-CDs). The total taxane content at the peak of production in T. media cell cultures treated with PFDs together with Coro plus β-CDs was 3.3-fold higher than in the control, whereas the t -R production in MeJa and β-CD-treated V. vinifera cell cultures increased 552.6-fold compared to the extremely low-yielding control. Hex was ineffective as an elicitor in V. vinifera cell cultures, and in T. media cell suspensions it blocked the taxol production but induced a clear enhancement of baccatin III. Regarding biosynthetic gene expression, a strong positive relationship was observed between the transcript level of targeted genes and taxol production in the T. media cell cultures, but not with t -R production in the elicited V. vinifera cell cultures.

  12. A Leafhopper-Transmissible DNA Virus with Novel Evolutionary Lineage in the Family Geminiviridae Implicated in Grapevine Redleaf Disease by Next-Generation Sequencing

    PubMed Central

    Poojari, Sudarsana; Alabi, Olufemi J.; Fofanov, Viacheslav Y.; Naidu, Rayapati A.

    2013-01-01

    A graft-transmissible disease displaying red veins, red blotches and total reddening of leaves in red-berried wine grape (Vitis vinifera L.) cultivars was observed in commercial vineyards. Next-generation sequencing technology was used to identify etiological agent(s) associated with this emerging disease, designated as grapevine redleaf disease (GRD). High quality RNA extracted from leaves of grape cultivars Merlot and Cabernet Franc with and without GRD symptoms was used to prepare cDNA libraries. Assembly of highly informative sequence reads generated from Illumina sequencing of cDNA libraries, followed by bioinformatic analyses of sequence contigs resulted in specific identification of taxonomically disparate viruses and viroids in samples with and without GRD symptoms. A single-stranded DNA virus, tentatively named Grapevine redleaf-associated virus (GRLaV), and Grapevine fanleaf virus were detected only in grapevines showing GRD symptoms. In contrast, Grapevine rupestris stem pitting-associated virus, Hop stunt viroid, Grapevine yellow speckle viroid 1, Citrus exocortis viroid and Citrus exocortis Yucatan viroid were present in both symptomatic and non-symptomatic grapevines. GRLaV was transmitted by the Virginia creeper leafhopper (Erythroneura ziczac Walsh) from grapevine-to-grapevine under greenhouse conditions. Molecular and phylogenetic analyses indicated that GRLaV, almost identical to recently reported Grapevine Cabernet Franc-associated virus from New York and Grapevine red blotch-associated virus from California, represents an evolutionarily distinct lineage in the family Geminiviridae with genome characteristics distinct from other leafhopper-transmitted geminiviruses. GRD significantly reduced fruit yield and affected berry quality parameters demonstrating negative impacts of the disease. Higher quantities of carbohydrates were present in symptomatic leaves suggesting their possible role in the expression of redleaf symptoms. PMID:23755117

  13. Atmospheric circulation patterns and phenological anomalies of grapevine in Italy

    NASA Astrophysics Data System (ADS)

    Cola, Gabriele; Alilla, Roberta; Dal Monte, Giovanni; Epifani, Chiara; Mariani, Luigi; Parisi, Simone Gabriele

    2014-05-01

    Grapevine (Vitis vinifera L.) is a fundamental crop for Italian agriculture as testified by the first place of Italy in the world producers ranking. This justify the importance of quantitative analyses referred to this crucial crop and aimed to quantify meteorological resources and limitations to development and production. Phenological rhythms of grapevine are strongly affected by surface fields of air temperature which in their turn are affected by synoptic circulation. This evidence highlights the importance of an approach based on dynamic climatology in order to detect and explain phenological anomalies that can have relevant effects on quantity and quality of grapevine production. In this context, this research is aimed to study the existing relation among the 850 hPa circulation patterns over the Euro-Mediterranean area from NOAA Ncep dataset and grapevine phenological fields for Italy over the period 2006-2013, highlighting the main phenological anomalies and analyzing synoptic determinants. This work is based on phenological fields with a standard pixel of 2 km routinely produced from 2006 by the Iphen project (Italian Phenological network) on the base of phenological observations spatialized by means of a specific algorithm based on cumulated thermal resources expressed as Normal Heat Hours (NHH). Anomalies have been evaluated with reference to phenological normal fields defined for the Italian area on the base of phenological observations and Iphen model. Results show that relevant phenological anomalies observed over the reference period are primarily associated with long lasting blocking systems driving cold air masses (Arctic or Polar-Continental) or hot ones (Sub-Tropical) towards the Italian area. Specific cases are presented for some years like 2007 and 2011.

  14. Transcriptomic Analysis of Grape (Vitis vinifera L.) Leaves after Exposure to Ultraviolet C Irradiation

    PubMed Central

    Xi, Huifen; Ma, Ling; Liu, Guotian; Wang, Nian; Wang, Junfang; Wang, Lina; Dai, Zhanwu; Li, Shaohua; Wang, Lijun

    2014-01-01

    Background Only a small amount of solar ultraviolet C (UV-C) radiation reaches the Earth's surface. This is because of the filtering effects of the stratospheric ozone layer. Artificial UV-C irradiation is used on leaves and fruits to stimulate different biological processes in plants. Grapes are a major fruit crop and are grown in many parts of the world. Research has shown that UV-C irradiation induces the biosynthesis of phenols in grape leaves. However, few studies have analyzed the overall changes in gene expression in grape leaves exposed to UV-C. Methodology/Principal Findings In the present study, transcriptional responses were investigated in grape (Vitis vinifera L.) leaves before and after exposure to UV-C irradiation (6 W·m−2 for 10 min) using an Affymetrix Vitis vinifera (Grape) Genome Array (15,700 transcripts). A total of 5274 differentially expressed probe sets were defined, including 3564 (67.58%) probe sets that appeared at both 6 and 12 h after exposure to UV-C irradiation but not before exposure. A total of 468 (8.87%) probe sets and 1242 (23.55%) probe sets were specifically expressed at these times. The probe sets were associated with a large number of important traits and biological pathways, including cell rescue (i.e., antioxidant enzymes), protein fate (i.e., HSPs), primary and secondary metabolism, and transcription factors. Interestingly, some of the genes involved in secondary metabolism, such as stilbene synthase, responded intensely to irradiation. Some of the MYB and WRKY family transcription factors, such as VvMYBPA1, VvMYB14, VvMYB4, WRKY57-like, and WRKY 65, were also strongly up-regulated (about 100 to 200 fold). Conclusions UV-C irridiation has an important role in some biology processes, especially cell rescue, protein fate, secondary metabolism, and regulation of transcription.These results opened up ways of exploring the molecular mechanisms underlying the effects of UV-C irradiation on grape leaves and have great

  15. Transcriptomic analysis of grape (Vitis vinifera L.) leaves after exposure to ultraviolet C irradiation.

    PubMed

    Xi, Huifen; Ma, Ling; Liu, Guotian; Wang, Nian; Wang, Junfang; Wang, Lina; Dai, Zhanwu; Li, Shaohua; Wang, Lijun

    2014-01-01

    Only a small amount of solar ultraviolet C (UV-C) radiation reaches the Earth's surface. This is because of the filtering effects of the stratospheric ozone layer. Artificial UV-C irradiation is used on leaves and fruits to stimulate different biological processes in plants. Grapes are a major fruit crop and are grown in many parts of the world. Research has shown that UV-C irradiation induces the biosynthesis of phenols in grape leaves. However, few studies have analyzed the overall changes in gene expression in grape leaves exposed to UV-C. In the present study, transcriptional responses were investigated in grape (Vitis vinifera L.) leaves before and after exposure to UV-C irradiation (6 W·m-2 for 10 min) using an Affymetrix Vitis vinifera (Grape) Genome Array (15,700 transcripts). A total of 5274 differentially expressed probe sets were defined, including 3564 (67.58%) probe sets that appeared at both 6 and 12 h after exposure to UV-C irradiation but not before exposure. A total of 468 (8.87%) probe sets and 1242 (23.55%) probe sets were specifically expressed at these times. The probe sets were associated with a large number of important traits and biological pathways, including cell rescue (i.e., antioxidant enzymes), protein fate (i.e., HSPs), primary and secondary metabolism, and transcription factors. Interestingly, some of the genes involved in secondary metabolism, such as stilbene synthase, responded intensely to irradiation. Some of the MYB and WRKY family transcription factors, such as VvMYBPA1, VvMYB14, VvMYB4, WRKY57-like, and WRKY 65, were also strongly up-regulated (about 100 to 200 fold). UV-C irridiation has an important role in some biology processes, especially cell rescue, protein fate, secondary metabolism, and regulation of transcription.These results opened up ways of exploring the molecular mechanisms underlying the effects of UV-C irradiation on grape leaves and have great implications for further studies.

  16. Distribution of YLOID in soil-grapevine system (Vitis vinifera L.) as tool for geographical characterization of agro-food products. A two years case study on different grafting combinations.

    PubMed

    Pisciotta, Antonino; Tutone, Livia; Saiano, Filippo

    2017-04-15

    The knowledge of a chemistry relationship between the soil and the agricultural products is an important tool for the quality assessment of food. We studied YLOID (Y, La and lanthanoids), recognized as very useful tracers due their coherent and predictable behavior, to trace and evaluate their distribution from soil to the grape in Vitis vinifera L. Because much of the world's viticulture is based on grafting, and rootstocks have proved affect vine growth, yield, fruit and wine quality, we carried out experimental trials to analyse the YLOID distribution of two different red cultivars, grafted onto six different rootstocks, on the same soil. The YLOID amounts, the relationship Heavy vs Light YLOID and the pattern of YLOID were calculated. The results showed that the different grafting combinations were not able to induce significant differences in YLOID uptake from the soil maintaining the same fingerprint (with the exception of Eu). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia.

    PubMed

    Riaz, Summaira; De Lorenzis, Gabriella; Velasco, Dianne; Koehmstedt, Anne; Maghradze, David; Bobokashvili, Zviad; Musayev, Mirza; Zdunic, Goran; Laucou, Valerie; Andrew Walker, M; Failla, Osvaldo; Preece, John E; Aradhya, Mallikarjuna; Arroyo-Garcia, Rosa

    2018-06-27

    The mountainous region between the Caucasus and China is considered to be the center of domestication for grapevine. Despite the importance of Central Asia in the history of grape growing, information about the extent and distribution of grape genetic variation in this region is limited in comparison to wild and cultivated grapevines from around the Mediterranean basin. The principal goal of this work was to survey the genetic diversity and relationships among wild and cultivated grape germplasm from the Caucasus, Central Asia, and the Mediterranean basin collectively to understand gene flow, possible domestication events and adaptive introgression. A total of 1378 wild and cultivated grapevines collected around the Mediterranean basin and from Central Asia were tested with a set of 20 nuclear SSR markers. Genetic data were analyzed (Cluster analysis, Principal Coordinate Analysis and STRUCTURE) to identify groups, and the results were validated by Nei's genetic distance, pairwise F ST analysis and assignment tests. All of these analyses identified three genetic groups: G1, wild accessions from Croatia, France, Italy and Spain; G2, wild accessions from Armenia, Azerbaijan and Georgia; and G3, cultivars from Spain, France, Italy, Georgia, Iran, Pakistan and Turkmenistan, which included a small group of wild accessions from Georgia and Croatia. Wild accessions from Georgia clustered with cultivated grape from the same area (proles pontica), but also with Western Europe (proles occidentalis), supporting Georgia as the ancient center of grapevine domestication. In addition, cluster analysis indicated that Western European wild grapes grouped with cultivated grapes from the same area, suggesting that the cultivated proles occidentalis contributed more to the early development of wine grapes than the wild vines from Eastern Europe. The analysis of genetic relationships among the tested genotypes provided evidence of genetic relationships between wild and cultivated

  18. Genetic relatedness and recombination analysis of Allorhizobium vitis strains associated with grapevine crown gall outbreaks in Europe.

    PubMed

    Kuzmanović, N; Biondi, E; Bertaccini, A; Obradović, A

    2015-09-01

    To analyse genetic diversity and epidemiological relationships among 54 strains of Allorhizobium vitis isolated in Europe during an 8-year period and to assess the relative contribution of mutation and recombination in shaping their diversity. By using random amplified polymorphic DNA (RAPD) PCR, strains studied were distributed into 12 genetic groups. Sequence analysis of dnaK, gyrB and recA housekeeping genes was employed to characterize a representative subcollection of 28 strains. A total of 15 different haplotypes were found. Nucleotide sequence analysis suggested the presence of recombination events in A. vitis, particularly affecting dnaK locus. Although prevalence of mutation over recombination was found, impact of recombination was about two times greater than mutation in the evolution of the housekeeping genes analysed. The RAPD analysis indicated high degree of genetic diversity among the strains. However, the most abundant RAPD group was composed of 35 strains, which could lead to the conclusion that they share a common origin and were distributed by the movement of infected grapevine planting material as a most common way of crossing long distances. Furthermore, it seems that recombination is acting as an important driving force in the evolution of A. vitis. As no substantial evidence of recombination was detected within recA gene fragment, this phylogenetic marker could be reliable to characterize phylogenetic relationships among A. vitis strains. We demonstrated clear epidemiological relationship between majority of strains studied, suggesting a need for more stringent phytosanitary measures in international trade. Moreover, this is the first study to report recombination in A. vitis. © 2015 The Society for Applied Microbiology.

  19. A 48 SNP set for grapevine cultivar identification

    PubMed Central

    2011-01-01

    Background Rapid and consistent genotyping is an important requirement for cultivar identification in many crop species. Among them grapevine cultivars have been the subject of multiple studies given the large number of synonyms and homonyms generated during many centuries of vegetative multiplication and exchange. Simple sequence repeat (SSR) markers have been preferred until now because of their high level of polymorphism, their codominant nature and their high profile repeatability. However, the rapid application of partial or complete genome sequencing approaches is identifying thousands of single nucleotide polymorphisms (SNP) that can be very useful for such purposes. Although SNP markers are bi-allelic, and therefore not as polymorphic as microsatellites, the high number of loci that can be multiplexed and the possibilities of automation as well as their highly repeatable results under any analytical procedure make them the future markers of choice for any type of genetic identification. Results We analyzed over 300 SNP in the genome of grapevine using a re-sequencing strategy in a selection of 11 genotypes. Among the identified polymorphisms, we selected 48 SNP spread across all grapevine chromosomes with allele frequencies balanced enough as to provide sufficient information content for genetic identification in grapevine allowing for good genotyping success rate. Marker stability was tested in repeated analyses of a selected group of cultivars obtained worldwide to demonstrate their usefulness in genetic identification. Conclusions We have selected a set of 48 stable SNP markers with a high discrimination power and a uniform genome distribution (2-3 markers/chromosome), which is proposed as a standard set for grapevine (Vitis vinifera L.) genotyping. Any previous problems derived from microsatellite allele confusion between labs or the need to run reference cultivars to identify allele sizes disappear using this type of marker. Furthermore, because SNP

  20. Grape (Vitis spp.)- Grapevine red blotch disease

    USDA-ARS?s Scientific Manuscript database

    This disease is caused by Grapevine red blotch-associated virus (GRBaV), which was first reported in 2012 from New York and subsequently in California, Washington, Oregon, Idaho, and elsewhere in the United States The discovery occurred when grapevines with red leaf symptoms that tested negative for...

  1. Collection and characterization of grapevine genetic resources (Vitis vinifera) in the Holy Land, towards the renewal of ancient winemaking practices.

    PubMed

    Drori, Elyashiv; Rahimi, Oshrit; Marrano, Annarita; Henig, Yakov; Brauner, Hodaya; Salmon-Divon, Mali; Netzer, Yishay; Prazzoli, Maria Lucia; Stanevsky, Maria; Failla, Osvaldo; Weiss, Ehud; Grando, Maria Stella

    2017-03-17

    The importance and extent of wine consumption in all life aspects at the Holy Land is well documented. The Muslim influence in this region led to the abandonment of winemaking practices, and possible loss of indigenous wine varieties. Here we present a country wide collection of the local grapevine population including wild and cultivated forms, and its characterization by genetic, ampelographic and enological methods. The ampelographic analysis shows clear differences between Sativa and Sylvestris groups in flower, leaf and cluster parameters, and that most Sativa belong to proles orientalis. Genetic population analysis was conducted by analyzing 22 common SSR markers, determining first the unique genotypes, and internally assessing the population's structure, showing the existence of two distinct Sativa and Sylvestris populations, and a third mixed one. Likewise, the relationship between the Israeli grapevine population and grapevine populations in Europe and parts of Asia was investigated, showing that the Israeli Sativa and Sylvestris populations cluster closely together, suggesting a common genetic source. Lastly, the enological characteristics of selected Sativa and Sylvestris genotypes are presented, demonstrating their potential for quality wine production. This research significantly contributes toward the re-establishment of indigenous and traditional local grapevine varieties into the modern international wine industry.

  2. Characterization of Vitis vinifera L. Cv. Carménère grape and wine proanthocyanidins.

    PubMed

    Fernández, Katherina; Kennedy, James A; Agosin, Eduardo

    2007-05-02

    A formal compositional study of the proanthocyanidins of Vitis vinifera L. cv. Carménère was conducted in this work. We first characterized the polymeric proanthocyanidins of Carménère skins, seeds, and wines. In addition, the wine astringency was analyzed and compared with Cabernet Sauvignon. Although Carménère wines had a higher proanthocyanidin concentration and mean degree of polymerization than Cabernet Sauvignon wines, the former wines were perceived as less astringent. The low seed/skin proportion in Carménère wines as compared to other varieties, as evidenced by the reduced number of seeds per berry and the higher amount of epigallocatechin subunits of Carménère wine proanthocyanidins, could explain this apparent paradox.

  3. Perfluorodecalins and Hexenol as Inducers of Secondary Metabolism in Taxus media and Vitis vinifera Cell Cultures

    PubMed Central

    Vidal-Limon, Heriberto R.; Almagro, Lorena; Moyano, Elisabeth; Palazon, Javier; Pedreño, Maria A.; Cusido, Rosa M.

    2018-01-01

    Plant cell cultures constitute a potentially efficient and sustainable tool for the production of high added-value bioactive compounds. However, due to the inherent restrictions in the expression of secondary metabolism, to date the yields obtained have generally been low. Plant cell culture elicitation can boost production, sometimes leading to dramatic improvements in yield, as well as providing insight into the target biosynthetic pathways and the regulation of the genes involved. Among the secondary compounds successfully being produced in biotechnological platforms are taxanes and trans-resveratrol (t-R). In the current study, perfluorodecalins (PFDs) and hexenol (Hex) were tested for the first time with Taxus media and Vitis vinifera cell cultures to explore their effect on plant cell growth and secondary metabolite production, either alone or combined with other elicitors already established as highly effective, such as methyl jasmonate (MeJa), coronatine (Coro) or randomly methylated β-cyclodextrins (β-CDs). The total taxane content at the peak of production in T. media cell cultures treated with PFDs together with Coro plus β-CDs was 3.3-fold higher than in the control, whereas the t-R production in MeJa and β-CD-treated V. vinifera cell cultures increased 552.6-fold compared to the extremely low-yielding control. Hex was ineffective as an elicitor in V. vinifera cell cultures, and in T. media cell suspensions it blocked the taxol production but induced a clear enhancement of baccatin III. Regarding biosynthetic gene expression, a strong positive relationship was observed between the transcript level of targeted genes and taxol production in the T. media cell cultures, but not with t-R production in the elicited V. vinifera cell cultures. PMID:29616056

  4. High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology

    PubMed Central

    Lijavetzky, Diego; Cabezas, José Antonio; Ibáñez, Ana; Rodríguez, Virginia; Martínez-Zapater, José M

    2007-01-01

    Background Single-nucleotide polymorphisms (SNPs) are the most abundant type of DNA sequence polymorphisms. Their higher availability and stability when compared to simple sequence repeats (SSRs) provide enhanced possibilities for genetic and breeding applications such as cultivar identification, construction of genetic maps, the assessment of genetic diversity, the detection of genotype/phenotype associations, or marker-assisted breeding. In addition, the efficiency of these activities can be improved thanks to the ease with which SNP genotyping can be automated. Expressed sequence tags (EST) sequencing projects in grapevine are allowing for the in silico detection of multiple putative sequence polymorphisms within and among a reduced number of cultivars. In parallel, the sequence of the grapevine cultivar Pinot Noir is also providing thousands of polymorphisms present in this highly heterozygous genome. Still the general application of those SNPs requires further validation since their use could be restricted to those specific genotypes. Results In order to develop a large SNP set of wide application in grapevine we followed a systematic re-sequencing approach in a group of 11 grape genotypes corresponding to ancient unrelated cultivars as well as wild plants. Using this approach, we have sequenced 230 gene fragments, what represents the analysis of over 1 Mb of grape DNA sequence. This analysis has allowed the discovery of 1573 SNPs with an average of one SNP every 64 bp (one SNP every 47 bp in non-coding regions and every 69 bp in coding regions). Nucleotide diversity in grape (π = 0.0051) was found to be similar to values observed in highly polymorphic plant species such as maize. The average number of haplotypes per gene sequence was estimated as six, with three haplotypes representing over 83% of the analyzed sequences. Short-range linkage disequilibrium (LD) studies within the analyzed sequences indicate the existence of a rapid decay of LD within the

  5. Comparison of three assembly strategies for a heterozygous seedless grapevine genome assembly.

    PubMed

    Patel, Sagar; Lu, Zhixiu; Jin, Xiaozhu; Swaminathan, Padmapriya; Zeng, Erliang; Fennell, Anne Y

    2018-01-17

    De novo heterozygous assembly is an ongoing challenge requiring improved assembly approaches. In this study, three strategies were used to develop de novo Vitis vinifera 'Sultanina' genome assemblies for comparison with the inbred V. vinifera (PN40024 12X.v2) reference genome and a published Sultanina ALLPATHS-LG assembly (AP). The strategies were: 1) a default PLATANUS assembly (PLAT_d) for direct comparison with AP assembly, 2) an iterative merging strategy using METASSEMBLER to combine PLAT_d and AP assemblies (MERGE) and 3) PLATANUS parameter modifications plus GapCloser (PLAT*_GC). The three new assemblies were greater in size than the AP assembly. PLAT*_GC had the greatest number of scaffolds aligning with a minimum of 95% identity and ≥1000 bp alignment length to V. vinifera (PN40024 12X.v2) reference genome. SNP analysis also identified additional high quality SNPs. A greater number of sequence reads mapped back with zero-mismatch to the PLAT_d, MERGE, and PLAT*_GC (>94%) than was found in the AP assembly (87%) indicating a greater fidelity to the original sequence data in the new assemblies than in AP assembly. A de novo gene prediction conducted using seedless RNA-seq data predicted > 30,000 coding sequences for the three new de novo assemblies, with the greatest number (30,544) in PLAT*_GC and only 26,515 for the AP assembly. Transcription factor analysis indicated good family coverage, but some genes found in the VCOST.v3 annotation were not identified in any of the de novo assemblies, particularly some from  the MYB and ERF families. The PLAT_d and PLAT*_GC had a greater number of synteny blocks with the V. vinifera (PN40024 12X.v2) reference genome than AP or MERGE. PLAT*_GC provided the most contiguous assembly with only 1.2% scaffold N, in contrast to AP (10.7% N), PLAT_d (6.6% N) and Merge (6.4% N). A PLAT*_GC pseudo-chromosome assembly with chromosome alignment to the reference genome V. vinifera, (PN40024 12X.v2) provides new information

  6. Berry Shriveling Significantly Alters Shiraz (Vitis vinifera L.) Grape and Wine Chemical Composition.

    PubMed

    Šuklje, Katja; Zhang, Xinyi; Antalick, Guillaume; Clark, Andrew C; Deloire, Alain; Schmidtke, Leigh M

    2016-02-03

    Berry shriveling is an often reported occurrence in the Shiraz (Vitis vinifera L.) cultivar. This study investigated the effect of berry shriveling occurring in a high yielding (18.6 ± 1.6 kg/vine) Shiraz vineyard in relation to a temporal investigation of grape and wine composition using three harvest dates. Berry shriveling resulted in delayed total soluble solids and amino acid accumulation into the berry, however differences between treatments diminished or became smaller by the third harvest date. Similarly, ethyl esters of fatty acids and higher alcohol acetates were lower in wines from shriveled berries from the first two harvests; anthocyanins were reduced in wines from shriveled berries at all harvest dates, whereas terpenes were unaltered. Wines made from shriveled berries had higher γ-nonalactone and β-damascenone concentrations. This study provides novel information on the chemical alterations of grapes and wines made from grapes affected by shriveling.

  7. Adaptogenic and nootropic activities of aqueous extract of Vitis vinifera (grape seed): an experimental study in rat model

    PubMed Central

    Sreemantula, Satyanarayana; Nammi, Srinivas; Kolanukonda, Rajabhanu; Koppula, Sushruta; Boini, Krishna M

    2005-01-01

    Background The aerial parts of Vitis vinifera (common grape or European grape) have been widely used in Ayurveda to treat a variety of common and stress related disorders. In the present investigation, the seed extract of V. vinifera was evaluated for antistress activity in normal and stress induced rats. Furthermore, the extract was studied for nootropic activity in rats and in-vitro antioxidant potential to correlate its antistress activity. Methods For the evaluation of antistress activity, groups of rats (n = 6) were subjected to forced swim stress one hour after daily treatment of V. vinifera extract. Urinary vanillylmandelic acid (VMA) and ascorbic acid were selected as non-invasive biomarkers to assess the antistress activity. The 24 h urinary excretion of vanillylmandelic acid (VMA) and ascorbic acid were determined by spectrophotometric methods in all groups under normal and stressed conditions. The nootropic activity of the extract as determined from acquisition, retention and retrieval in rats was studied by conditioned avoidance response using Cook's pole climbing apparatus. The in vitro antioxidant activity was determined based on the ability of V. vinifera to scavenge hydroxyl radicals. Results Daily administration of V. vinifera at doses of 100, 200 and 300 mg/kg body weight one hour prior to induction of stress inhibited the stress induced urinary biochemical changes in a dose dependent manner. However, no change in the urinary excretion of VMA and ascorbic acid was observed in normal animals at all the doses studied. The cognition, as determined by the acquisition, retention and recovery in rats was observed to be dose dependent. The extract also produced significant inhibition of hydroxyl radicals in comparison to ascorbic acid in a dose dependent manner. Conclusion The present study provides scientific support for the antistress (adaptogenic), antioxidant and nootropic activities of V. vinifera seed extract and substantiate the traditional claims

  8. Interactions between light and growing season temperatures on, growth and development and gas exchange of Semillon (Vitis vinifera L.) vines grown in an irrigated vineyard.

    PubMed

    Greer, Dennis H; Weedon, Mark M

    2012-05-01

    High-light intensities and temperatures of the warm climate regions of Australia and elsewhere have a major effect on the growth and development of grapevines (Vitis vinifera L.). The objective of this research was to assess interactions between the light and seasonal temperatures by shading some vines and comparing these with vines exposed to high-light intensities. Canopy temperatures were monitored using infrared radiometers and budbreak, phenology, growth, yield, berry ripening and gas exchange determined over three growing seasons. Results showed canopies were generally about 4 °C cooler than air and shading extended this cooling. Irradiance, irrespective of seasonal temperatures, had no effect on time of budbreak, shoot phenology, stem growth, yield and bunch fresh weights while bunch and leaf dry weights were reduced in low-light. Bunch ripening was initially delayed by low-light but thereafter the ripening process was highly temperature-dependent. Rates increased linearly with increasing temperature in both low and high-light and were optimal at about 35 °C. Maximum photosynthetic capacity was impaired by low irradiance, in accordance with shade leaf attributes, and attributable to stomatal closure. No effects of the low photosynthetic capacity apparently carried-over to sugar accumulation, consistent with the strong sink capacity of bunches. Crown Copyright © 2012. Published by Elsevier Masson SAS. All rights reserved.

  9. Flowers regulate the growth and vascular development of the inflorescence rachis in Vitis vinifera L.

    PubMed

    Gourieroux, Aude M; McCully, Margaret E; Holzapfel, Bruno P; Scollary, Geoffrey R; Rogiers, Suzy Y

    2016-11-01

    The rachis, the structural framework of the grapevine (Vitis vinifera L.) inflorescence (and subsequent bunch), consists of a main axis and one or more orders of lateral branches with the flower-bearing pedicels at their fine tips. The rachis is crucial both for support, and transport from the shoot. Earlier suggestions that the flowers per se affect normal rachis development are investigated further in this study. Different percentages (0, 25, 50, 75 or 100) of flowers were removed manually one week before anthesis on field-grown vines. Treatment effects on subsequent rachis development (curvature, vitality, anatomy, starch deposit) were assessed. Sections, both fixed and embedded, and fresh hand-cut were observed by fluorescence and bright-field optics after appropriate staining. Emphasis was on measurement of changes in cross-sectional area of secondary xylem and phloem, and on maturation of fibres and periderm. Specific defects in rachis development were dependent on the percent and location of flower removal one week prior to anthesis. The rachises curved inwards where most of the flowers were removed. When fully de-flowered, they became progressively necrotic from the laterals back to the primary axes and from the distal to the proximal end of those axes, with a concurrent disorganisation of their anatomy. A few remaining groups of flowers prevented desiccation and abscission of the rachis axes proximal to the group, but not distally. Flower removal (50%) reduced rachis elongation, while 75% removal reduced xylem and phloem area and delayed phloem fibre and periderm development. 75% flower removal did not affect starch present in the rachis during berry development. Developing flowers affect the growth and vitality of the rachis and the development of its vascular and support structures. The extent of these effects depends on the cultivar and the number and position of flowers remaining after some are removed one week before anthesis. Copyright © 2016

  10. Core Microbiota and Metabolome of Vitis vinifera L. cv. Corvina Grapes and Musts

    PubMed Central

    Stefanini, Irene; Carlin, Silvia; Tocci, Noemi; Albanese, Davide; Donati, Claudio; Franceschi, Pietro; Paris, Michele; Zenato, Alberto; Tempesta, Silvano; Bronzato, Alberto; Vrhovsek, Urska; Mattivi, Fulvio; Cavalieri, Duccio

    2017-01-01

    The composition and changes of the fungal population and of the metabolites present in grapes and in ferments of Vitis vinifera L. cv. Corvina, one of the major components of the Amarone musts, were dissected aiming at the identification of constant characteristics possibly influenced by the productive process. The fungal populations and metabolomic profiles were analyzed in three different vintages. 454-pyrosequencing on the ribosomal ITS1 region has been used to identify the fungal population present in Corvina grapes and fresh must. Samples were also subjected to metabolomics analysis measuring both free volatile compounds and glycosylated aroma precursors through an untargeted approach with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Albeit strongly dependent on the climate, both the mycobiota and metabolome of Corvina grapes and fresh musts show some characteristics recursive in different vintages. Such persistent characteristics are likely determined by the method adopted to produce Amarone or other dry wines made from partially dried grapes. In particular, the harsh conditions imposed by the prolonged withering appear to contribute to the shaping of the fungal populations. The fungal genera and metabolites present in different vintages in V. vinifera L. cv. Corvina grapes and fresh musts represent core components of the peculiar technique of production of Amarone. Their identification allows the in-depth understanding and improved control of the process of production of this economically and culturally relevant wine. PMID:28377754

  11. Xylella fastidiosa infection and ethylene exposure result in xylem and water movement disruption in grapevine shoots.

    PubMed

    Pérez-Donoso, Alonso G; Greve, L Carl; Walton, Jeffrey H; Shackel, Ken A; Labavitch, John M

    2007-02-01

    It is conventionally thought that multiplication of the xylem-limited bacterium Xylella fastidiosa (Xf) within xylem vessels is the sole factor responsible for the blockage of water movement in grapevines (Vitis vinifera) affected by Pierce's disease. However, results from our studies have provided substantial support for the idea that vessel obstructions, and likely other aspects of the Pierce's disease syndrome, result from the grapevine's active responses to the presence of Xf, rather than to the direct action of the bacterium. The use of magnetic resonance imaging (MRI) to observe the distribution of water within the xylem has allowed us to follow nondestructively the development of vascular system obstructions subsequent to inoculation of grapevines with Xf. Because we have hypothesized a role for ethylene produced in vines following infection, the impact of vine ethylene exposure on obstruction development was also followed using MRI. In both infected and ethylene-exposed plants, MRI shows that an important proportion of the xylem vessels become progressively air embolized after the treatments. The loss of xylem water-transporting function, assessed by MRI, has been also correlated with a decrease in stem-specific hydraulic conductivity (K(S)) and the presence of tyloses in the lumens of obstructed water conduits. We have observed that the ethylene production of leaves from infected grapevines is greater than that from healthy vines and, therefore, propose that ethylene may be involved in a series of cellular events that coordinates the vine's response to the pathogen.

  12. Response of Vitis vinifera cell cultures to Eutypa lata and Trichoderma atroviride culture filtrates: expression of defence-related genes and phenotypes.

    PubMed

    Mutawila, C; Stander, C; Halleen, F; Vivier, M A; Mostert, L

    2017-03-01

    Cell suspension cultures of Vitis vinifera cv. Dauphine berries were used to study the response to the vascular pathogen, Eutypa lata, in comparison with a biological control agent, Trichoderma atroviride, that was previously shown to be effective in pruning wound protection. The expression of genes coding for enzymes of the phenylpropanoid pathway and pathogenesis-related (PR) proteins was profiled over a 48-h period using quantitative reverse transcriptase PCR. The cell cultures responded to elicitors of both fungi with a hypersensitive-like response that lead to a decrease in cell viability. Similar genes were triggered by both the pathogen and biocontrol agent, but the timing patterns and magnitude of expression was dependent on the specific fungal elicitor. Culture filtrates of both fungi caused upregulation of phenylalanine ammonia-lyase (PAL), 4-coumaroyl Co-A ligase (CCo-A) and stilbene synthase (STS), and a downregulation of chalcone synthase (CHS) genes. The pathogen filtrate caused a biphasic pattern in the upregulation of PAL and STS genes which was not observed in cells treated with filtrates of the biocontrol agent. Analytical assays showed significantly higher total phenolic content and chitinolytic enzyme activity in the cell cultures treated with the T. atroviride filtrate compared to the pathogen filtrate. These results corresponded well to the higher expression of PAL and chitinase class IV genes. The response of the cell cultures to T. atroviride filtrate provides support for the notion that the wound protection by the biocontrol agent at least partially relies on the induction of grapevine resistance mechanisms.

  13. Artificial neural networks modeling the in vitro rhizogenesis and acclimatization of Vitis vinifera L.

    PubMed

    Gago, Jorge; Landín, Mariana; Gallego, Pedro Pablo

    2010-10-15

    This study employs artificial neural networks (ANNs) to create a model to identify relationships between variables affecting the in vitro rhizogenesis and acclimatization of two cultivars of Vitis vinifera L. Albariño and Mencía. The effects of three factors (inputs), the type of cultivar, concentration and exposure time to indolebutyric acid (IBA), on the success of in vitro rhizogenesis and acclimatization were evaluated. The developed model, using ANNs software, was assessed using a separate set of validation data and was in good agreement with the observed results. Exposure time to IBA was found to have the dominant role in influencing the height of acclimatized plantlets. ANNs can be a useful tool for modeling different complex processes and data sets, in plant tissue cultures or, more generally, in plant biology. Copyright (c) 2010 Elsevier GmbH. All rights reserved.

  14. Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin

    PubMed Central

    Castellarin, Simone D; Di Gaspero, Gabriele; Marconi, Raffaella; Nonis, Alberto; Peterlunger, Enrico; Paillard, Sophie; Adam-Blondon, Anne-Francoise; Testolin, Raffaele

    2006-01-01

    Background Structural genes of the phenyl-propanoid pathway which encode flavonoid 3'- and 3',5'-hydroxylases (F3'H and F3'5'H) have long been invoked to explain the biosynthesis of cyanidin- and delphinidin-based anthocyanin pigments in the so-called red cultivars of grapevine. The relative proportion of the two types of anthocyanins is largely under genetic control and determines the colour variation among red/purple/blue berry grape varieties and their corresponding wines. Results Gene fragments of VvF3'H and VvF3'5'H, that were isolated from Vitis vinifera 'Cabernet Sauvignon' using degenerate primers designed on plant homologous genes, translated into 313 and 239 amino acid protein fragments, respectively, with up to 76% and 82% identity to plant CYP75 cytochrome P450 monooxygenases. Putative function was assigned on the basis of sequence homology, expression profiling and its correlation with metabolite accumulation at ten different ripening stages. At the onset of colour transition, transcriptional induction of VvF3'H and VvF3'5'H was temporally coordinated with the beginning of anthocyanin biosynthesis, the expression being 2-fold and 50-fold higher, respectively, in red berries versus green berries. The peak of VvF3'5'H expression was observed two weeks later concomitantly with the increase of the ratio of delphinidin-/cyanidin-derivatives. The analysis of structural genomics revealed that two copies of VvF3'H are physically linked on linkage group no. 17 and several copies of VvF3'5'H are tightly clustered and embedded into a segmental duplication on linkage group no. 6, unveiling a high complexity when compared to other plant flavonoid hydroxylase genes known so far, mostly in ornamentals. Conclusion We have shown that genes encoding flavonoid 3'- and 3',5'-hydroxylases are expressed in any tissues of the grape plant that accumulate flavonoids and, particularly, in skin of ripening red berries that synthesise mostly anthocyanins. The correlation between

  15. Deep analysis of wild Vitis flower transcriptome reveals unexplored genome regions associated with sex specification.

    PubMed

    Ramos, Miguel Jesus Nunes; Coito, João Lucas; Fino, Joana; Cunha, Jorge; Silva, Helena; de Almeida, Patrícia Gomes; Costa, Maria Manuela Ribeiro; Amâncio, Sara; Paulo, Octávio S; Rocheta, Margarida

    2017-01-01

    RNA-seq of Vitis during early stages of bud development, in male, female and hermaphrodite flowers, identified new loci outside of annotated gene models, suggesting their involvement in sex establishment. The molecular mechanisms responsible for flower sex specification remain unclear for most plant species. In the case of V. vinifera ssp. vinifera, it is not fully understood what determines hermaphroditism in the domesticated subspecies and male or female flowers in wild dioecious relatives (Vitis vinifera ssp. sylvestris). Here, we describe a de novo assembly of the transcriptome of three flower developmental stages from the three Vitis vinifera flower types. The validation of de novo assembly showed a correlation of 0.825. The main goals of this work were the identification of V. v. sylvestris exclusive transcripts and the characterization of differential gene expression during flower development. RNA from several flower developmental stages was used previously to generate Illumina sequence reads. Through a sequential de novo assembly strategy one comprehensive transcriptome comprising 95,516 non-redundant transcripts was assembled. From this dataset 81,064 transcripts were annotated to V. v. vinifera reference transcriptome and 11,084 were annotated against V. v. vinifera reference genome. Moreover, we found 3368 transcripts that could not be mapped to Vitis reference genome. From all the non-redundant transcripts that were assembled, bioinformatics analysis identified 133 specific of V. v. sylvestris and 516 transcripts differentially expressed among the three flower types. The detection of transcription from areas of the genome not currently annotated suggests active transcription of previously unannotated genomic loci during early stages of bud development.

  16. Genetic diversity and geographical dispersal in grapevine clones revealed by microsatellite markers.

    PubMed

    Moncada, Ximena; Pelsy, Frédérique; Merdinoglu, Didier; Hinrichsen, Patricio

    2006-11-01

    Intravarietal genetic diversification associated with geographical dispersal of a vegetatively propagated species was studied using grapevine Vitis vinifera L. 'Cabernet Sauvignon' as a model. Fifty-nine clonal samples obtained from 7 countries (France, Chile, Spain, Australia, Hungary, USA, and Italy) were analyzed using 84 microsatellite markers. Eighteen polymorphic microsatellite loci (21.4%) were detected, finding 22 different genotypes in the population analyzed with a genetic similarity of over 97%. The presence of chimeric clones was evidenced at locus VMC5g7 by means of a segregation analysis of descendants by self-pollination of a triallelic Chilean clone and by somatic embryogenesis analysis, showing a mutation in L2 cell layer. Only 2 clones (obtained from France and Australia) presented the ancestral genotype, and the most divergent genotype was exhibited by another French clone, which had accumulated 5 somatic mutations. The 2 largest populations considered (from France and Chile) showed a clear divergency in the polymorphisms detected. These antecedents enabled the tracing of geographical dispersal with a phylogenetic hypothesis supporting France as the center of origin of diversification of Cabernet Sauvignon. The results obtained could help to explain diversification processes in other grapevine cultivars. The possibility that this kind of genetic variability occurs in other vegetatively propagated species is discussed, focusing on possible fingerprinting applications.

  17. Distinct transcriptome responses to water limitation in isohydric and anisohydric grapevine cultivars.

    PubMed

    Dal Santo, Silvia; Palliotti, Alberto; Zenoni, Sara; Tornielli, Giovanni Battista; Fasoli, Marianna; Paci, Paola; Tombesi, Sergio; Frioni, Tommaso; Silvestroni, Oriana; Bellincontro, Andrea; d'Onofrio, Claudio; Matarese, Fabiola; Gatti, Matteo; Poni, Stefano; Pezzotti, Mario

    2016-10-20

    Grapevine (Vitis vinifera L.) is an economically important crop with a wide geographical distribution, reflecting its ability to grow successfully in a range of climates. However, many vineyards are located in regions with seasonal drought, and these are often predicted to be global climate change hotspots. Climate change affects the entire physiology of grapevine, with strong effects on yield, wine quality and typicity, making it difficult to produce berries of optimal enological quality and consistent stability over the forthcoming decades. Here we investigated the reactions of two grapevine cultivars to water stress, the isohydric variety Montepulciano and the anisohydric variety Sangiovese, by examining physiological and molecular perturbations in the leaf and berry. A multidisciplinary approach was used to characterize the distinct stomatal behavior of the two cultivars and its impact on leaf and berry gene expression. Positive associations were found among the photosynthetic, physiological and transcriptional modifications, and candidate genes encoding master regulators of the water stress response were identified using an integrated approach based on the analysis of topological co-expression network properties. In particular, the genome-wide transcriptional study indicated that the isohydric behavior relies upon the following responses: i) faster transcriptome response after stress imposition; ii) faster abscisic acid-related gene modulation; iii) more rapid expression of heat shock protein (HSP) genes and iv) reversion of gene-expression profile at rewatering. Conversely, that reactive oxygen species (ROS)-scavenging enzymes, molecular chaperones and abiotic stress-related genes were induced earlier and more strongly in the anisohydric cultivar. Overall, the present work found original evidence of a molecular basis for the proposed classification between isohydric and anisohydric grapevine genotypes.

  18. Genome-wide Identification and Expression Analysis of the CDPK Gene Family in Grape, Vitis spp.

    PubMed

    Zhang, Kai; Han, Yong-Tao; Zhao, Feng-Li; Hu, Yang; Gao, Yu-Rong; Ma, Yan-Fei; Zheng, Yi; Wang, Yue-Jin; Wen, Ying-Qiang

    2015-06-30

    Calcium-dependent protein kinases (CDPKs) play vital roles in plant growth and development, biotic and abiotic stress responses, and hormone signaling. Little is known about the CDPK gene family in grapevine. In this study, we performed a genome-wide analysis of the 12X grape genome (Vitis vinifera) and identified nineteen CDPK genes. Comparison of the structures of grape CDPK genes allowed us to examine their functional conservation and differentiation. Segmentally duplicated grape CDPK genes showed high structural conservation and contributed to gene family expansion. Additional comparisons between grape and Arabidopsis thaliana demonstrated that several grape CDPK genes occured in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of grapevine and Arabidopsis. Phylogenetic analysis divided the grape CDPK genes into four groups. Furthermore, we examined the expression of the corresponding nineteen homologous CDPK genes in the Chinese wild grape (Vitis pseudoreticulata) under various conditions, including biotic stress, abiotic stress, and hormone treatments. The expression profiles derived from reverse transcription and quantitative PCR suggested that a large number of VpCDPKs responded to various stimuli on the transcriptional level, indicating their versatile roles in the responses to biotic and abiotic stresses. Moreover, we examined the subcellular localization of VpCDPKs by transiently expressing six VpCDPK-GFP fusion proteins in Arabidopsis mesophyll protoplasts; this revealed high variability consistent with potential functional differences. Taken as a whole, our data provide significant insights into the evolution and function of grape CDPKs and a framework for future investigation of grape CDPK genes.

  19. Attraction of female grapevine moth to common and specific olfactory cues from 2 host plants.

    PubMed

    Tasin, Marco; Bäckman, Anna-Carin; Anfora, Gianfranco; Carlin, Silvia; Ioriatti, Claudio; Witzgall, Peter

    2010-01-01

    In herbivorous insects with more than 1 host plant, attraction to host odor could conceptually be mediated by common compounds, by specific compounds released by each plant or by combinations of common and specific compounds. We have compared the attraction of female grapevine moth, Lobesia botrana, with specific and common (shared) odors from 2 different plants: a wild host (Daphne gnidium) and a recently colonized host (Vitis vinifera). Odor blends eliciting female attraction to V. vinifera have previously been identified. In this study, olfactory cues from D. gnidium were identified by electroantennographic detection and chemical analysis. The attraction of mated females to synthetic odor blends was then tested in a wind tunnel bioassay. Female attraction was elicited by a blend of compounds released by both from D. gnidium and V. vinifera and by 2 blends with the compounds released specifically from each host. However, more complete odor blends of the 2 plants elicited stronger attraction. The common compounds in combination with the specific compounds of D. gnidium were the most attractive blend. This blend was tested with the common compounds presented both in the ratio emitted by D. gnidium and by V. vinifera, but there was no difference in female attraction. Our findings suggest that specific as well as common plant odor cues play a role in L. botrana host recognition and that there is plasticity in attraction to partial blends. The results are discussed in relation to mechanisms behind host odor recognition and the evolution of insect-plant associations.

  20. Water deficit severity during berry development alters onset of dormancy transitions in wine grape cultivar Malbec

    USDA-ARS?s Scientific Manuscript database

    Dormancy is a survival strategy for withstanding exposure to adverse environmental conditions. Grapevines (Vitis vinifera L.) are often exposed to water deficits during the growing season and freezing temperatures during winter, yet the influence of water stress on dormancy has received little resea...

  1. Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression

    PubMed Central

    2012-01-01

    Background Vitis vinifera berry development is characterised by an initial phase where the fruit is small, hard and acidic, followed by a lag phase known as veraison. In the final phase, berries become larger, softer and sweeter and accumulate an array of organoleptic compounds. Since the physiological and biochemical makeup of grape berries at harvest has a profound impact on the characteristics of wine, there is great interest in characterising the molecular and biophysical changes that occur from flowering through veraison and ripening, including the coordination and temporal regulation of metabolic gene pathways. Advances in deep-sequencing technologies, combined with the availability of increasingly accurate V. vinifera genomic and transcriptomic data, have enabled us to carry out RNA-transcript expression analysis on a global scale at key points during berry development. Results A total of 162 million 100-base pair reads were generated from pooled Vitis vinifera (cv. Shiraz) berries sampled at 3-weeks post-anthesis, 10- and 11-weeks post-anthesis (corresponding to early and late veraison) and at 17-weeks post-anthesis (harvest). Mapping reads from each developmental stage (36-45 million) onto the NCBI RefSeq transcriptome of 23,720 V. vinifera mRNAs revealed that at least 75% of these transcripts were detected in each sample. RNA-Seq analysis uncovered 4,185 transcripts that were significantly upregulated at a single developmental stage, including 161 transcription factors. Clustering transcripts according to distinct patterns of transcription revealed coordination in metabolic pathways such as organic acid, stilbene and terpenoid metabolism. From the phenylpropanoid/stilbene biosynthetic pathway at least 46 transcripts were upregulated in ripe berries when compared to veraison and immature berries, and 12 terpene synthases were predominantly detected only in a single sample. Quantitative real-time PCR was used to validate the expression pattern of 12

  2. European Ethnopharmaceuticals for Self-Medication in Japan: Review Experience of Vitis vinifera L., Folium Extract and Vitex agnus-castus L., Fructus Extract as OTC Drugs.

    PubMed

    Hoshino, Tatsuro; Muto, Nanami; Tsukada, Shinsuke; Nakamura, Takatoshi; Maegawa, Hikoichiro

    2018-01-06

    Since the publication of "Application Guideline for Western Traditional Herbal Medicines as OTC Drugs" in 2007, only two European ethnopharmaceuticals, Vitis vinifera L., folium extract (Antistax) and Vitex agnus-castus L., fructus extract (Prefemin), have been approved as OTC drugs in Japan. In this review, we describe the current regulation of Western ethnopharmaceuticals in Japan, summarize our regulatory experiences and discuss the scientific and regulatory issues involved.

  3. Differential phenolic production in leaves of Vitis vinifera cv. Alvarinho affected with esca disease.

    PubMed

    Lima, Marta R M; Felgueiras, Mafalda L; Cunha, Ana; Chicau, Gisela; Ferreres, Federico; Dias, Alberto C P

    2017-03-01

    Esca is a destructive disease of complex etiology affecting grapevines worldwide. A major constraint to the study and control of esca is that the disease is not diagnosed until external leaf and/or fruit symptoms are visible; however external symptoms usually appear several years after infection onset. We studied the phenolic content of V. vinifera cv. Alvarinho leaves using high performance liquid chromatography-diode array detection-mass spectrometry (HPLC-DAD-MS)/LC-MS. Leaves from affected cordons with and without visible symptoms (diseased and apparently healthy leaves, respectively) and leaves from asymptomatic cordons (healthy leaves) were analyzed. Application of principal components analysis (PCA) to HPLC data showed a clear separation between diseased, apparently healthy, and healthy leaves, with the apparently healthy leaves clustered in a medial position. Several compounds were highly correlated with diseased leaves indicating a differential phenolic production due to esca disease in V. vinifera cv. Alvarinho leaves. Total phenolic production was shown to significantly increase in diseased leaves, compared to healthy leaves, with apparently healthy leaves containing a medial amount. Trans-caffeoyltartaric acid, trans-coumaroyl-tartaric acid, quercetin-3-O-glucoside, quercetin-3-O-galactoside, kaempferol-3-glucoside and myricetin were identified among the compounds associated with disease and their content shown to change similarly to total phenolic production. This study shows that it is possible to discriminate between diseased, healthy and apparently healthy leaves by applying PCA to HPLC data. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Extensin network formation in Vitis vinifera callus cells is an essential and causal event in rapid and H2O2-induced reduction in primary cell wall hydration

    PubMed Central

    2011-01-01

    Background Extensin deposition is considered important for the correct assembly and biophysical properties of primary cell walls, with consequences to plant resistance to pathogens, tissue morphology, cell adhesion and extension growth. However, evidence for a direct and causal role for the extensin network formation in changes to cell wall properties has been lacking. Results Hydrogen peroxide treatment of grapevine (Vitis vinifera cv. Touriga) callus cell walls was seen to induce a marked reduction in their hydration and thickness. An analysis of matrix proteins demonstrated this occurs with the insolubilisation of an abundant protein, GvP1, which displays a primary structure and post-translational modifications typical of dicotyledon extensins. The hydration of callus cell walls free from saline-soluble proteins did not change in response to H2O2, but fully regained this capacity after addition of extensin-rich saline extracts. To assay the specific contribution of GvP1 cross-linking and other wall matrix proteins to the reduction in hydration, GvP1 levels in cell walls were manipulated in vitro by binding selected fractions of extracellular proteins and their effect on wall hydration during H2O2 incubation assayed. Conclusions This approach allowed us to conclude that a peroxidase-mediated formation of a covalently linked network of GvP1 is essential and causal in the reduction of grapevine callus wall hydration in response to H2O2. Importantly, this approach also indicated that extensin network effects on hydration was only partially irreversible and remained sensitive to changes in matrix charge. We discuss this mechanism and the importance of these changes to primary wall properties in the light of extensin distribution in dicotyledons. PMID:21672244

  5. Influence of the erineum strain of Colomerus vitis (Acari: Eriophyidae) on grape (Vitis vinifera) defense mechanisms.

    PubMed

    Javadi Khederi, Saeid; Khanjani, Mohammad; Gholami, Mansur; Panzarino, Onofrio; de Lillo, Enrico

    2018-05-01

    Grape (Vitis vinifera) is commonly affected by the erineum strain of Colomerus vitis (GEM) in Iran and the susceptibility of grape cultivars to GEM is poorly understood. In order to evaluate the impact of GEM on grape and its defense mechanisms against the mite, an exploratory study was carried out on 19 cultivars (18 Iranian and the non-native Muscat Gordo). The differential susceptibility of cultivars to GEM was compared on the basis of the area of leaf damage induced by GEM. The cultivars White Thompson seedless of Bovanat, Atabaki Zarghan, Koladari Ghoochan and Sahebi Uroomie were less susceptible to GEM, whereas Ghalati Dodaj, Rishbaba, Muscat Gordo and Neyshaboori Birjand appeared to be the most affected by the mite. In a no-choice setup, plants of selected cultivars of these two groups were infested by GEM and assayed for 10 biomarkers usually related to plant stress mechanisms against plant feeders: the activity of defense enzymes-peroxidase (POX), polyphenol oxidase (PPO), superoxide dismutase (SOD), phenylalanine ammonia-lyase (PAL), catalase (CAT), the amount of total polyphenolics, total flavonoids, total soluble carbohydrates, hydrogen peroxide (H 2 O 2 ), and malondialdehyde (MDA) expressing lipid peroxidation. The biomarkers were assessed in grape leaves 7 days before releasing the mites, as well as 7, 14 and 28 days after infestation (DAI). The activity of the enzymes and the amount of the compounds usually increased in percentage after mite infestation. A significant negative correlation was found between the area of leaf damage and PPO, POX, SOD, MDA and H 2 O 2 for all sampling dates. The area of leaf damage showed a significant positive correlation with total soluble carbohydrates at 28 DAI, and significant negative correlations with CAT (at 14 and 28 DAI), PAL and total flavonoids (at 7 DAI). No correlation was observed between area of leaf damage and total polyphenolics. The biomarkers PPO, SOD, CAT activity and H 2 O 2 provided the best

  6. Metabolomic Study of Chardonnay Grapevines Double Stressed with Esca-Associated Fungi and Drought.

    PubMed

    Lima, Marta R M; Machado, Antoinette F; Gubler, Walter D

    2017-06-01

    Esca is a complex grapevine trunk disease associated with fungal infection of the xylem. However, the inconstancy of external symptoms and the ability of esca-associated fungi to inhabit grapevines without causing apparent disease suggests that abiotic factors might be involved in the disease. Water stress has been proposed to be one of the factors influencing esca symptom manifestation but the specific role played by water stress on esca development is unknown. We conducted a proton nuclear magnetic resonance spectroscopy-based metabolomic study aiming at unveiling drought-induced modifications in xylem sap composition that could contribute to esca-related infection progression. Vitis vinifera 'Chardonnay' plants were inoculated with Phaeomoniella chlamydospora or Phaeoacremonium minimum and exposed to water stress. Using this approach, 28 metabolites were identified in xylem sap. The results show that water stress induces a concentration increase of most metabolites in xylem sap. An average increase >100% was found for asparagine, isoleucine, leucine, methionine, phenylalanine, proline, tyrosine, valine, sarcosine, and trigonelline. The increase of these compounds seems to be also modulated by fungal infection. This study offers further support to the putative role of drought in esca expression, and opens new avenues of research by extending the current knowledge about metabolites possibly involved in esca disease.

  7. Dynamic thermal-time model of cold hardiness for dormant grapevine buds

    USDA-ARS?s Scientific Manuscript database

    Grapevine (Vitis spp.) cold hardiness varies dynamically throughout the dormant season, primarily in response to changes in temperature. We describe development and possible uses of a discrete-dynamic model of bud cold hardiness for three Vitis genotypes. Iterative methods were used to optimize and ...

  8. Recombinant expression, purification, and characterization of polyphenol oxidase 2 (VvPPO2) from "Shine Muscat" (Vitis labruscana Bailey × Vitis vinifera L.).

    PubMed

    Katayama-Ikegami, Ayako; Suehiro, Yuka; Katayama, Takane; Jindo, Kazushi; Itamura, Hiroyuki; Esumi, Tomoya

    2017-12-01

    Polyphenol oxidases (PPOs) catalyze browning reactions in various plant organs, therefore controlling the reactions is important for the food industry. PPOs have been assumed to be involved in skin browning of white grape cultivars; however, the molecular mechanism underlying PPO-mediated browning process remains elusive. We have recently identified a new PPO gene named VvPPO2 from "Shine Muscat" (Vitis labruscana Bailey × V. vinifera L.), and have shown that the gene is transcribed at a higher level than the previously identified VvPPO1 in browning, physiologically disordered berry skins at the maturation stage. In this study, we expressed VvPPO2 in Escherichia coli and, using the purified preparation, revealed unique physicochemical characteristics of the enzyme. Our study opens up a way to not only understand the berry skin browning process but also to elucidate the enzymatic maturation process of grape PPOs.

  9. Characterization of the adaptive response of grapevine (cv. Tempranillo) to UV-B radiation under water deficit conditions.

    PubMed

    Martínez-Lüscher, J; Morales, F; Delrot, S; Sánchez-Díaz, M; Gomès, E; Aguirreolea, J; Pascual, I

    2015-03-01

    This work aims to characterize the physiological response of grapevine (Vitis vinifera L.) cv. Tempranillo to UV-B radiation under water deficit conditions. Grapevine fruit-bearing cuttings were exposed to three levels of supplemental biologically effective UV-B radiation (0, 5.98 and 9.66kJm(-2)day(-1)) and two water regimes (well watered and water deficit), in a factorial design, from fruit-set to maturity under glasshouse-controlled conditions. UV-B induced a transient decrease in net photosynthesis (Anet), actual and maximum potential efficiency of photosystem II, particularly on well watered plants. Methanol extractable UV-B absorbing compounds (MEUVAC) concentration and superoxide dismutase activity increased with UV-B. Water deficit effected decrease in Anet and stomatal conductance, and did not change non-photochemical quenching and the de-epoxidation state of xanthophylls, dark respiration and photorespiration being alternative ways to dissipate the excess of energy. Little interactive effects between UV-B and drought were detected on photosynthesis performance, where the impact of UV-B was overshadowed by the effects of water deficit. Grape berry ripening was strongly delayed when UV-B and water deficit were applied in combination. In summary, deficit irrigation did not modify the adaptive response of grapevine to UV-B, through the accumulation of MEUVAC. However, combined treatments caused additive effects on berry ripening. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Ecophysiological Modeling of Grapevine Water Stress in Burgundy Terroirs by a Machine-Learning Approach.

    PubMed

    Brillante, Luca; Mathieu, Olivier; Lévêque, Jean; Bois, Benjamin

    2016-01-01

    In a climate change scenario, successful modeling of the relationships between plant-soil-meteorology is crucial for a sustainable agricultural production, especially for perennial crops. Grapevines (Vitis vinifera L. cv Chardonnay) located in eight experimental plots (Burgundy, France) along a hillslope were monitored weekly for 3 years for leaf water potentials, both at predawn (Ψpd) and at midday (Ψstem). The water stress experienced by grapevine was modeled as a function of meteorological data (minimum and maximum temperature, rainfall) and soil characteristics (soil texture, gravel content, slope) by a gradient boosting machine. Model performance was assessed by comparison with carbon isotope discrimination (δ(13)C) of grape sugars at harvest and by the use of a test-set. The developed models reached outstanding prediction performance (RMSE < 0.08 MPa for Ψstem and < 0.06 MPa for Ψpd), comparable to measurement accuracy. Model predictions at a daily time step improved correlation with δ(13)C data, respect to the observed trend at a weekly time scale. The role of each predictor in these models was described in order to understand how temperature, rainfall, soil texture, gravel content and slope affect the grapevine water status in the studied context. This work proposes a straight-forward strategy to simulate plant water stress in field condition, at a local scale; to investigate ecological relationships in the vineyard and adapt cultural practices to future conditions.

  11. European Ethnopharmaceuticals for Self-Medication in Japan: Review Experience of Vitis vinifera L., Folium Extract and Vitex agnus-castus L., Fructus Extract as OTC Drugs

    PubMed Central

    Hoshino, Tatsuro; Muto, Nanami; Tsukada, Shinsuke; Nakamura, Takatoshi; Maegawa, Hikoichiro

    2018-01-01

    Since the publication of “Application Guideline for Western Traditional Herbal Medicines as OTC Drugs” in 2007, only two European ethnopharmaceuticals, Vitis vinifera L., folium extract (Antistax) and Vitex agnus-castus L., fructus extract (Prefemin), have been approved as OTC drugs in Japan. In this review, we describe the current regulation of Western ethnopharmaceuticals in Japan, summarize our regulatory experiences and discuss the scientific and regulatory issues involved. PMID:29316611

  12. Proteomic analysis of grapevine resistance induced by Trichoderma harzianum T39 reveals specific defence pathways activated against downy mildew

    PubMed Central

    Perazzolli, Michele

    2012-01-01

    Downy mildew is caused by the oomycete Plasmopara viticola and is one of the most serious diseases of grapevine. The beneficial microorganism Trichoderma harzianum T39 (T39) has previously been shown to induce plant-mediated resistance and to reduce the severity of downy mildew in susceptible grapevines. In order to better understand the cellular processes associated with T39-induced resistance, the proteomic and histochemical changes activated by T39 in grapevine were investigated before and 1 day after P. viticola inoculation. A comprehensive proteomic analysis of T39-induced resistance in grapevine was performed using an eight-plex iTRAQ protocol, resulting in the identification and quantification of a total of 800 proteins. Most of the proteins directly affected by T39 were found to be involved in signal transduction, indicating activation of a complete microbial recognition machinery. Moreover, T39-induced resistance was associated with rapid accumulation of reactive oxygen species and callose at infection sites, as well as changes in abundance of proteins involved in response to stress and redox balance, indicating an active defence response to downy mildew. On the other hand, proteins affected by P. viticola in control plants mainly decreased in abundance, possibly reflecting the establishment of a compatible interaction. Finally, the high-throughput iTRAQ protocol allowed de novo peptide sequencing, which will be used to improve annotation of the Vitis vinifera cv. Pinot Noir proteome. PMID:23105132

  13. Water deficit modulates the response of Vitis vinifera to the Pierce's disease pathogen Xylella fastidiosa.

    PubMed

    Choi, Hong-Kyu; Iandolino, Alberto; da Silva, Francisco Goes; Cook, Douglas R

    2013-06-01

    Pierce's disease, caused by the bacterium Xylella fastidiosa, is one of the most devastating diseases of cultivated grape, currently restricted to the Americas. To test the long-standing hypothesis that Pierce's disease results from pathogen-induced drought stress, we used the Affymetrix Vitis GeneChip to compare the transcriptional response of Vitis vinifera to Xylella infection, water deficit, or a combination of the two stresses. The results reveal a redirection of gene transcription involving 822 genes with a minimum twofold change (P < 0.05), including the upregulation of transcripts for phenylpropanoid and flavonoid biosynthesis, pathogenesis-related proteins, abscisic acid- and jasmonic acid-responsive biosynthesis, and downregulation of transcripts related to photosynthesis, growth, and nutrition. Although the transcriptional response of plants to Xylella infection was largely distinct from the response of healthy plants to water stress, we find that 138 of the pathogen-induced genes exhibited a significantly stronger transcriptional response when plants were simultaneously exposed to infection and drought stress, suggesting a strong interaction between disease and water deficit. This interaction between drought stress and disease was mirrored in planta at the physiological level for aspects of water relations and photosynthesis and in terms of the severity of disease symptoms and the extent of pathogen colonization, providing a molecular correlate of the classical concept of the disease triangle in which environment impacts disease severity.

  14. A Focused Multiple Reaction Monitoring (MRM) Quantitative Method for Bioactive Grapevine Stilbenes by Ultra-High-Performance Liquid Chromatography Coupled to Triple-Quadrupole Mass Spectrometry (UHPLC-QqQ).

    PubMed

    Hurtado-Gaitán, Elías; Sellés-Marchart, Susana; Martínez-Márquez, Ascensión; Samper-Herrero, Antonio; Bru-Martínez, Roque

    2017-03-07

    Grapevine stilbenes are a family of polyphenols which derive from trans -resveratrol having antifungal and antimicrobial properties, thus being considered as phytoalexins. In addition to their diverse bioactive properties in animal models, they highlight a strong potential in human health maintenance and promotion. Due to this relevance, highly-specific qualitative and quantitative methods of analysis are necessary to accurately analyze stilbenes in different matrices derived from grapevine. Here, we developed a rapid, sensitive, and specific analysis method using ultra-high-performance liquid chromatography coupled to triple-quadrupole mass spectrometry (UHPLC-QqQ) in MRM mode to detect and quantify five grapevine stilbenes, trans -resveratrol, trans -piceid, trans -piceatannol, trans -pterostilbene, and trans -ε-viniferin, whose interest in relation to human health is continuously growing. The method was optimized to minimize in-source fragmentation of piceid and to avoid co-elution of cis -piceid and trans -resveratrol, as both are detected with resveratrol transitions. The applicability of the developed method of stilbene analysis was tested successfully in different complex matrices including cellular extracts of Vitis vinifera cell cultures, reaction media of biotransformation assays, and red wine.

  15. The MADS-box gene Agamous-like 11 is essential for seed morphogenesis in grapevine.

    PubMed

    Malabarba, Jaiana; Buffon, Vanessa; Mariath, Jorge E A; Gaeta, Marcos L; Dornelas, Marcelo C; Margis-Pinheiro, Márcia; Pasquali, Giancarlo; Revers, Luís F

    2017-03-01

    Despite the wide appreciation of seedless grapes, little is known about the molecular mechanisms that drive the stenospermocarpic seedless-type phenotype in grapevine. In order to address the molecular mechanisms that control seedlessness in grapevine, our study aimed to characterize VviAGL11, a class D MADS-box transcription factor gene that has been proposed as the major candidate gene involved in Vitis vinifera seed morphogenesis. VviAGL11 allelic variations in seeded and seedless grapevine cultivars were determined, and its correlations with allele-specific steady-state mRNA levels were investigated. VviAGL11 relative expression was significantly higher in seeds at 2, 4, and 6 weeks after fruit set, whereas in the seedless grape its transcript levels were extremely low in all stages analyzed. In situ hybridization revealed transcript accumulation specifically in the dual endotesta layer of the seeds, which is responsible for elongation and an increase of cell number, a necessary step to determine the lignification and the final seed size. No hybridization signals were visible in the seedless grapevine tissues, and a morphoanatomical analysis showed an apparent loss of identity of the endotesta layer of the seed traces. Ectopic expression of VviAGL11 in the Arabidopsis SEEDSTICK mutant background restored the wild-type phenotype and confirmed the direct role of VviAGL11 in seed morphogenesis, suggesting that depletion of its expression is responsible for the erroneous development of a highly essential seed layer, therefore culminating in the typical apirenic phenotype. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Dormancy and cold hardiness transitions in wine grape cultivars Chardonnay and Cabernet Sauvignon

    USDA-ARS?s Scientific Manuscript database

    Dormancy and cold hardiness influence grapevine (Vitis vinifera L.) susceptibility to cold injury, which is a major cause of economic loss in high latitude growing regions. The objectives of this study were to compare dormancy and cold hardiness transitions in wine grape cultivars considered more (C...

  17. Characterization of polyphenols and antioxidant potential of white grape pomace byproducts (Vitis vinifera L.).

    PubMed

    González-Centeno, María Reyes; Jourdes, Michael; Femenia, Antoni; Simal, Susana; Rosselló, Carmen; Teissedre, Pierre-Louis

    2013-11-27

    A detailed assessment of the total phenolic and total tannin contents, the monomeric and oligomeric flavan-3-ol composition, the proanthocyanidin profile, and the antioxidant potential of the grape pomace byproducts (considered as a whole, both skins and seeds), derived from four white grape varieties (Vitis vinifera L.), was performed. Significant differences (p < 0.05) of the total phenolic content, total tannin content, and antioxidant capacity of grape pomace byproducts were observed among the different grape varieties studied. For the first time in the literature, the particular flavan-3-ol composition of the four grape varieties investigated was described for the whole fraction of their grape pomace byproducts. The phenolic composition and antioxidant capacity of grape pomaces were compared to those of their corresponding stems. The global characterization of these white grape varieties provided a basis for an integrated exploitation of both winemaking byproducts as potential, inexpensive, and easily available sources of bioactive compounds for the pharmaceutical, cosmetic, and food industries.

  18. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening.

    PubMed

    Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher

    2013-12-23

    Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated concentrations of ethylene prior to the

  19. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening

    PubMed Central

    2013-01-01

    Background Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. Results Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. Conclusions In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated

  20. Simulated digestion of Vitis vinifera seed powder: polyphenolic content and antioxidant properties.

    PubMed

    Janisch, Kerstin M; Olschläger, Carolin; Treutter, Dieter; Elstner, Erich F

    2006-06-28

    There is increasing evidence that reactive oxygen species arising from several enzymatic reactions are mediators of inflammatory events. Plant preparations have the potential for scavenging such reactive oxygen species. Flavans and procyanidins are bioavailable and stable during the process of cooking. This study used conditions that mimicked digestion of Vitis vinifera seed powder in the stomach (acidic preparation) and small intestine (neutral preparation). The flavonoids of these two preparations were released during simulated digestion and were determined with HPLC analysis. Biochemical model reactions relevant for the formation of reactive oxygen species in vivo at inflammatory sites were used to determine the antioxidant properties of the two preparations. The inhibition of the indicator reaction for the formation of reactive oxygen species represents a potential mechanism of the physiological activity of the corresponding preparation. The results of this work show clearly that the polyphenols released during the simulated digestion of the two preparations have good scavenging potential against superoxide radicals, hydroxyl radicals, and singlet oxygen. They protect low-density lipoprotein against copper-induced oxidation due to the copper-chelating properties and their chain-breaking abilities in lipid peroxidation.

  1. Food coloring agents and plant food supplements derived from Vitis vinifera: a new source of human exposure to ochratoxin A.

    PubMed

    Solfrizzo, Michele; Piemontese, Luca; Gambacorta, Lucia; Zivoli, Rosanna; Longobardi, Francesco

    2015-04-08

    Grape pomaces are increasingly being used as starting material in the industrial production of plant food supplements (PFS), food coloring, and tartrates, but they are at risk of ochratoxin A (OTA) contamination, a mycotoxin with nephrotoxic and carcinogenic effects. We analyzed 24 commercial PFS and 13 food coloring samples derived from Vitis vinifera, mainly pomaces, using a HPLC-FLD method for OTA determination. OTA was found in 75% of PFS samples and 69% of food coloring samples at levels of <1.16-20.23 μg/kg and <1.16-32.00 μg/kg, respectively. The four commercial leavening agents containing tartrates were found to be negative for OTA. All eight samples collected in two distilleries that use grape pomaces and wine lees to produce tartrates and other byproducts contained OTA at levels of <1.16-240.93 μg/kg. The high incidence of OTA contamination in PFS and food coloring agents derived from V. vinifera suggests that maximum permitted level(s) should be established for this mycotoxin in these products.

  2. Analysis of HRCT-derived xylem network reveals reverse flow in some vessels

    USDA-ARS?s Scientific Manuscript database

    Flow in xylem vessels is modeled based on constructions of three dimensional xylem networks derived from High Resolution Computed Tomography (HRCT) images of grapevine (Vitis vinifera) stems. Flow in 6-14% of the vessels was found to be oriented in the opposite direction to the bulk flow under norma...

  3. Genome-wide analysis of autophagy-related genes (ARGs) in grapevine and plant tolerance to copper stress.

    PubMed

    Shangguan, Lingfei; Fang, Xiang; Chen, Lide; Cui, Liwen; Fang, Jinggui

    2018-06-01

    Grapevine autophagy-related genes (ARGs) include 35 members that have unique evolutionary backgrounds and expression patterns, with some of them responding to abiotic stresses, including copper stress. Autophagy is one of the most crucial self-regulating phenomena in livings organisms, including animals, plants, yeasts, etc. In the genomes of plants, like Arabidopsis, rice, tobacco, and barley, more than 30 autophagy-related genes (ARGs) have been found. These ARGs are involved in plant development, programed cell death, and the stress response process. In plants, and particularly in grapevine, high copper stress results from the application of the Bordeaux mixture, a widely used fungicide. However, the function of autophagy in plant tolerance to copper stress is unknown. Accordingly, in this study, a genome-wide analysis was performed to identify Vitis vinifera ARGs (VvARGs), and 35 VvARGs were detected. A gene family analysis revealed that the tandem and segmental duplication events played significant roles in the VvARG gene family expansion. Moreover, there was more intense signature of purifying selection for the comparison between grape and rice than between grape and Arabidopsis. In response to copper treatment, both the autophagosome number and malondialdehyde concentration increased during the initial 4 h post-treatment, and reached maximal values at 24 h. An expression analysis indicated that most VvARGs responded to copper stress at 4 h post-treatment, and some VvARGs (e.g., VvATG6, VvATG8i, and VvATG18h) exhibited responses to most abiotic stresses. These results provide a detailed overview of the ARGs in grapevine and indicate multiple functions of autophagy in fruit development and abiotic stresses in grapevine. The key ARG (e.g., ATG8i) should be investigated in more detail in grapevine and other plant species.

  4. The grapevine VvCAX3 is a cation/H+ exchanger involved in vacuolar Ca2+ homeostasis.

    PubMed

    Martins, Viviana; Carneiro, Filipa; Conde, Carlos; Sottomayor, Mariana; Gerós, Hernâni

    2017-12-01

    The grapevine VvCAX3 mediates calcium transport in the vacuole and is mostly expressed in green grape berries and upregulated by Ca 2+ , Na + and methyl jasmonate. Calcium is an essential plant nutrient with important regulatory and structural roles in the berries of grapevine (Vitis vinifera L.). On the other hand, the proton-cation exchanger CAX proteins have been shown to impact Ca 2+ homeostasis with important consequences for fruit integrity and resistance to biotic/abiotic stress. Here, the CAX gene found in transcriptomic databases as having one of the highest expressions in grapevine tissues, VvCAX3, was cloned and functionally characterized. Heterologous expression in yeast showed that a truncated version of VvCAX3 lacking its NNR autoinhibitory domain (sCAX3) restored the ability of the yeast strain to grow in 100-200 mM Ca 2+ , demonstrating a role in Ca 2+ transport. The truncated VvCAX3 was further shown to be involved in the transport of Na + , Li + , Mn 2+ and Cu 2+ in yeast cells. Subcellular localization studies using fluorescently tagged proteins confirmed VvCAX3 as a tonoplast transporter. VvCAX3 is expressed in grapevine stems, leaves, roots, and berries, especially at pea size, decreasing gradually throughout development, in parallel with the pattern of calcium accumulation in the fruit. The transcript abundance of VvCAX3 was shown to be regulated by methyl jasmonate (MeJA), Ca 2+ , and Na + in grape cell suspensions, and the VvCAX3 promotor contains several predicted cis-acting elements related to developmental and stress response processes. As a whole, the results obtained add new insights on the mechanisms involved in calcium homeostasis and intracellular compartmentation in grapevine, and indicate that VvCAX3 may be an interesting target towards the development of strategies for enhancement of grape berry properties.

  5. Insights into the Vitis complex in the Danube floodplain (Austria).

    PubMed

    Arnold, Claire; Bachmann, Olivier; Schnitzler, Annik

    2017-10-01

    European grapevine populations quickly disappeared from most of their range, massively killed by the spread of North American grapevine pests and diseases. Nowadays taxonomic pollution represents a new threat. A large Vitis complex involves escaped cultivars, rootstocks, and wild grapevines. The study aimed to provide insight into the Vitis complex in the Danube region through field and genetic analyses. Among the five other major rivers in Europe which still host wild grapevine populations, the Danube floodplain is the only one benefiting from an extensive protected forest area (93 km²) and an relatively active dynamic flood pulse. The Donau-Auen National Park also regroups the largest wild grapevine population in Europe. Ninety-two percent of the individuals collected in the park were true wild grapevines, and 8% were hybrids and introgressed individuals of rootstocks, wild grapevines, and cultivars. These three groups are interfertile acting either as pollen donor or receiver. Hybrids were established within and outside the dykes, mostly in anthropized forest edges. The best-developed individuals imply rootstock genes. They establish in the most erosive parts of the floodplain. 42% of the true wild grapevines lived at the edges of forest/meadow, 33.3% at the edges forest/channels, and 23.9% in forest gaps. DBH (Diameter Breast Height) varied significantly with the occurrence of flooding. Clones were found in both true wild and hybrids/introgressed grapevines. The process of cloning seemed to be prevented in places where flooding dynamics is reduced. The current global distribution of true wild grapevines shows a strong tendency toward clustering, in sites where forestry practices were the most extensive. However, the reduced flooding activity is a danger for long-term sustainability of the natural wild grapevine population.

  6. Grapevine petioles are more sensitive to drought induced embolism than stems: evidence from in vivo MRI and microcomputed tomography observations of hydraulic vulnerability segmentation.

    PubMed

    Hochberg, Uri; Albuquerque, Caetano; Rachmilevitch, Shimon; Cochard, Herve; David-Schwartz, Rakefet; Brodersen, Craig R; McElrone, Andrew; Windt, Carel W

    2016-09-01

    The 'hydraulic vulnerability segmentation' hypothesis predicts that expendable distal organs are more susceptible to water stress-induced embolism than the main stem of the plant. In the current work, we present the first in vivo visualization of this phenomenon. In two separate experiments, using magnetic resonance imaging or synchrotron-based microcomputed tomography, grapevines (Vitis vinifera) were dehydrated while simultaneously scanning the main stems and petioles for the occurrence of emboli at different xylem pressures (Ψx ). Magnetic resonance imaging revealed that 50% of the conductive xylem area of the petioles was embolized at a Ψx of -1.54 MPa, whereas the stems did not reach similar losses until -1.9 MPa. Microcomputed tomography confirmed these findings, showing that approximately half the vessels in the petioles were embolized at a Ψx of -1.6 MPa, whereas only few were embolized in the stems. Petioles were shown to be more resistant to water stress-induced embolism than previously measured with invasive hydraulic methods. The results provide the first direct evidence for the hydraulic vulnerability segmentation hypothesis and highlight its importance in grapevine responses to severe water stress. Additionally, these data suggest that air entry through the petiole into the stem is unlikely in grapevines during drought. © 2015 John Wiley & Sons Ltd.

  7. Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR.

    PubMed

    Bulgari, Daniela; Casati, Paola; Brusetti, Lorenzo; Quaglino, Fabio; Brasca, Milena; Daffonchio, Daniele; Bianco, Piero Attilio

    2009-08-01

    Diversity of bacterial endophytes associated with grapevine leaf tissues was analyzed by cultivation and cultivation-independent methods. In order to identify bacterial endophytes directly from metagenome, a protocol for bacteria enrichment and DNA extraction was optimized. Sequence analysis of 16S rRNA gene libraries underscored five diverse Operational Taxonomic Units (OTUs), showing best sequence matches with gamma-Proteobacteria, family Enterobacteriaceae, with a dominance of the genus Pantoea. Bacteria isolation through cultivation revealed the presence of six OTUs, showing best sequence matches with Actinobacteria, genus Curtobacterium, and with Firmicutes genera Bacillus and Enterococcus. Length Heterogeneity-PCR (LH-PCR) electrophoretic peaks from single bacterial clones were used to setup a database representing the bacterial endophytes identified in association with grapevine tissues. Analysis of healthy and phytoplasma-infected grapevine plants showed that LH-PCR could be a useful complementary tool for examining the diversity of bacterial endophytes especially for diversity survey on a large number of samples.

  8. Distribution and Occurrence of Fungi Associated with Grapevine Trunk Diseases in Northeastern American Vineyards.

    USDA-ARS?s Scientific Manuscript database

    Winegrape production in northeastern America is a relatively new, developing industry. Concord (Vitis labruscana) has been the main grape grown for juice production. However, in recent years New York wine production (V. vinifera) has been recognized nationwide for their quality and typicity. Vitis v...

  9. Determination of abscisic acid and its glucosyl ester in embryogenic callus cultures of Vitis vinifera in relation to the maturation of somatic embryos using a new liquid chromatography-ELISA analysis method.

    PubMed

    Prado, María Jesús; Largo, Asier; Domínguez, Cristina; González, María Victoria; Rey, Manuel; Centeno, María Luz

    2014-06-15

    The levels of abscisic acid (ABA), its conjugate ABA-GE, and IAA were determined in embryogenic calli of Vitis vinifera L. (cv. Mencía) cultured in DM1 differentiation medium, to relate them to the maturation process of somatic embryos. To achieve this goal, we developed an analytical method that included two steps of solid-phase extraction, chromatographic separation by HPLC, ABA-GE hydrolysis, and sensitive ELISA quantification. Because the ABA immunoassay was based on new polyclonal antibodies raised against a C4'-ABA conjugate, the assay was characterized (detection limit, midrange, measure range, and cross-reaction) and validated by a comparison of the ABA data obtained with this ELISA procedure and with a physicochemical method (LC-ESI-MS/MS). Radioactive-labeled internal standards were initially added to callus extracts to correct the losses of plant hormones, and thus assure the accuracy of the measurements. The endogenous concentration of ABA in the embryogenic callus cultured in DM1 medium was doubled at the fifth week of culture, concurring with the maturation process of somatic embryos, as indicated by the accumulation of carbohydrates observed through histological analysis. The ABA-GE content was higher than ABA, decreasing at 21 days of culture in DM1 medium but increasing thereafter. The data suggest the involvement of the synthesis and conjugation of ABA in the final stages of development in grapevine somatic embryos from embryogenic callus. IAA levels were low, suggesting that auxin plays no significant role during the maturation of somatic embryos. In addition, the lower ABA levels in calli cultured in DM differentiation medium with PGRs, a medium presenting high precocious germination and deficiencies in somatic embryo development indicate that an increase in ABA content during the development of somatic embryos in grapevine is necessary for their correct maturation. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Stilbene production in cell cultures of Vitis vinifera L. cvs Red Globe and Michele Palieri elicited by methyl jasmonate.

    PubMed

    Santamaria, A R; Antonacci, D; Caruso, G; Cavaliere, C; Gubbiotti, R; Lagana, A; Valletta, A; Pasqua, G

    2010-09-01

    Cell cultures obtained from Vitis vinifera cvs Michele Palieri and Red Globe were cultured in order to stimulate stilbene production. In the calli, stilbene production peaked at day 22 of culture for both cultivars; the main compound was trans-piceid, followed by cis-piceid. Methyl jasmonate, which was added to cell suspensions in the first half of the exponential growth phase, enhanced stilbene accumulation, producing mainly trans-piceid and epsilon-viniferin. Other stilbenoids, though in lower quantities, were identified by liquid chromatography/positive electrospray mass spectrometry. epsilon-Viniferin and trans-resveratrol were the main compounds released into the culture medium. The total quantity of stilbenes was genotype dependent, with a better response found for the cv Red Globe.

  11. Crystal structure of an indole-3-acetic acid amido synthetase from grapevine involved in auxin homeostasis.

    PubMed

    Peat, Thomas S; Böttcher, Christine; Newman, Janet; Lucent, Del; Cowieson, Nathan; Davies, Christopher

    2012-11-01

    Auxins are important for plant growth and development, including the control of fruit ripening. Conjugation to amino acids by indole-3-acetic acid (IAA)-amido synthetases is an important part of auxin homeostasis. The structure of the auxin-conjugating Gretchen Hagen3-1 (GH3-1) enzyme from grapevine (Vitis vinifera), in complex with an inhibitor (adenosine-5'-[2-(1H-indol-3-yl)ethyl]phosphate), is presented. Comparison with a previously published benzoate-conjugating enzyme from Arabidopsis thaliana indicates that grapevine GH3-1 has a highly similar domain structure and also undergoes a large conformational change during catalysis. Mutational analyses and structural comparisons with other proteins have identified residues likely to be involved in acyl group, amino acid, and ATP substrate binding. Vv GH3-1 is a monomer in solution and requires magnesium ions solely for the adenlyation reaction. Modeling of IAA and two synthetic auxins, benzothiazole-2-oxyacetic acid (BTOA) and 1-naphthaleneacetic acid (NAA), into the active site indicates that NAA and BTOA are likely to be poor substrates for this enzyme, confirming previous enzyme kinetic studies. This suggests a reason for the increased effectiveness of NAA and BTOA as auxins in planta and provides a tool for designing new and effective auxins.

  12. Polysaccharide Compositions of Intervessel Pit Membranes Contribute to Pierce’s Disease Resistance of Grapevines1[OA

    PubMed Central

    Sun, Qiang; Greve, L. Carl; Labavitch, John M.

    2011-01-01

    Symptom development of Pierce’s disease (PD) in grapevine (Vitis vinifera) depends largely on the ability of the bacterium Xylella fastidiosa to use cell wall-degrading enzymes (CWDEs) to break up intervessel pit membranes (PMs) and spread through the vessel system. In this study, an immunohistochemical technique was developed to analyze pectic and hemicellulosic polysaccharides of intervessel PMs. Our results indicate that PMs of grapevine genotypes with different PD resistance differed in the composition and structure of homogalacturonans (HGs) and xyloglucans (XyGs), the potential targets of the pathogen’s CWDEs. The PMs of PD-resistant grapevine genotypes lacked fucosylated XyGs and weakly methyl-esterified HGs (ME-HGs), and contained a small amount of heavily ME-HGs. In contrast, PMs of PD-susceptible genotypes all had substantial amounts of fucosylated XyGs and weakly ME-HGs, but lacked heavily ME-HGs. The intervessel PM integrity and the pathogen’s distribution in Xylella-infected grapevines also showed differences among the genotypes. In pathogen-inoculated, PD-resistant genotypes PM integrity was well maintained and Xylella cells were only found close to the inoculation site. However, in inoculated PD-susceptible genotypes, PMs in the vessels associated with bacteria lost their integrity and the systemic presence of the X. fastidiosa pathogen was confirmed. Our analysis also provided a relatively clear understanding of the process by which intervessel PMs are degraded. All of these observations support the conclusion that weakly ME-HGs and fucosylated XyGs are substrates of the pathogen’s CWDEs and their presence in or absence from PMs may contribute to grapevine’s PD susceptibility. PMID:21343427

  13. VitisExpDB: a database resource for grape functional genomics.

    PubMed

    Doddapaneni, Harshavardhan; Lin, Hong; Walker, M Andrew; Yao, Jiqiang; Civerolo, Edwin L

    2008-02-28

    The family Vitaceae consists of many different grape species that grow in a range of climatic conditions. In the past few years, several studies have generated functional genomic information on different Vitis species and cultivars, including the European grape vine, Vitis vinifera. Our goal is to develop a comprehensive web data source for Vitaceae. VitisExpDB is an online MySQL-PHP driven relational database that houses annotated EST and gene expression data for V. vinifera and non-vinifera grape species and varieties. Currently, the database stores approximately 320,000 EST sequences derived from 8 species/hybrids, their annotation (BLAST top match) details and Gene Ontology based structured vocabulary. Putative homologs for each EST in other species and varieties along with information on their percent nucleotide identities, phylogenetic relationship and common primers can be retrieved. The database also includes information on probe sequence and annotation features of the high density 60-mer gene expression chip consisting of approximately 20,000 non-redundant set of ESTs. Finally, the database includes 14 processed global microarray expression profile sets. Data from 12 of these expression profile sets have been mapped onto metabolic pathways. A user-friendly web interface with multiple search indices and extensively hyperlinked result features that permit efficient data retrieval has been developed. Several online bioinformatics tools that interact with the database along with other sequence analysis tools have been added. In addition, users can submit their ESTs to the database. The developed database provides genomic resource to grape community for functional analysis of genes in the collection and for the grape genome annotation and gene function identification. The VitisExpDB database is available through our website http://cropdisease.ars.usda.gov/vitis_at/main-page.htm.

  14. Antioxidant and Antiproliferative Activities of Twenty-Four Vitis vinifera Grapes

    PubMed Central

    Liang, Zhenchang; Cheng, Lailiang; Zhong, Gan-Yuan; Liu, Rui Hai

    2014-01-01

    Grapes are rich in phytochemicals with many proven health benefits. Phenolic profiles, antioxidant and antiproliferative activities of twenty-four selected Vitis vinifera grape cultivars were investigated in this study. Large ranges of variation were found in these cultivars for the contents of total phenolics (95.3 to 686.5 mg/100 g) and flavonoids (94.7 to 1055 mg/100 g) and antioxidant activities (oxygen radical absorbance capacity 378.7 to 3386.0 mg of Trolox equivalents/100 g and peroxylradical scavenging capacity14.2 to 557 mg of vitamin C equivalents/100 g), cellular antioxidant activities (3.9 to 139.9 µmol of quercetin equivalents/100 g without PBS wash and 1.4 to 95.8 µmol of quercetin equivalents /100 g with PBS wash) and antiproliferative activities (25 to 82% at the concentrations of 100 mg/mL extracts).The total antioxidant activities were significantly correlated with the total phenolics and flavonoids. However, no significant correlations were found between antiproliferative activities and total phenolics or total flavonoids content. Wine grapes and color grapes showed much higher levels of phytochemicals and antioxidant activities than table grapes and green/yellow grapes. Several germplasm accessions with much high contents of phenolics and flavonoids, and total antioxidant activity were identified. These germplasm can be valuable sources of genes for breeding grape cultivars with better nutritional qualities of wine and table grapes in the future. PMID:25133401

  15. Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery

    PubMed Central

    2014-01-01

    Background High temperature is a major environmental factor limiting grape yield and affecting berry quality. Thermotolerance includes the direct response to heat stress and the ability to recover from heat stress. To better understand the mechanism of the thermotolerance of Vitis, we combined a physiological analysis with iTRAQ-based proteomics of Vitis vinifera cv Cabernet Sauvignon, subjected to 43°C for 6 h, and then followed by recovery at 25/18°C. Results High temperature increased the concentrations of TBARS and inhibited electronic transport in photosynthesis apparatus, indicating that grape leaves were damaged by heat stress. However, these physiological changes rapidly returned to control levels during the subsequent recovery phase from heat stress. One hundred and seventy-four proteins were differentially expressed under heat stress and/or during the recovery phase, in comparison to unstressed controls, respectively. Stress and recovery conditions shared 42 proteins, while 113 and 103 proteins were respectively identified under heat stress and recovery conditions alone. Based on MapMan ontology, functional categories for these dysregulated proteins included mainly photosynthesis (about 20%), proteins (13%), and stress (8%). The subcellular localization using TargetP showed most proteins were located in the chloroplasts (34%), secretory pathways (8%) and mitochondrion (3%). Conclusion On the basis of these findings, we proposed that some proteins related to electron transport chain of photosynthesis, antioxidant enzymes, HSPs and other stress response proteins, and glycolysis may play key roles in enhancing grapevine adaptation to and recovery capacity from heat stress. These results provide a better understanding of the proteins involved in, and mechanisms of thermotolerance in grapevines. PMID:24774513

  16. Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development

    PubMed Central

    Böttcher, Christine; Boss, Paul K.; Davies, Christopher

    2011-01-01

    Nine Gretchen Hagen (GH3) genes were identified in grapevine (Vitis vinifera L.) and six of these were predicted on the basis of protein sequence similarity to act as indole-3-acetic acid (IAA)-amido synthetases. The activity of these enzymes is thought to be important in controlling free IAA levels and one auxin-inducible grapevine GH3 protein, GH3-1, has previously been implicated in the berry ripening process. Ex planta assays showed that the expression of only one other GH3 gene, GH3-2, increased following the treatment of grape berries with auxinic compounds. One of these was the naturally occurring IAA and the other two were synthetic, α-naphthalene acetic acid (NAA) and benzothiazole-2-oxyacetic acid (BTOA). The determination of steady-state kinetic parameters for the recombinant GH3-1 and GH3-2 proteins revealed that both enzymes efficiently conjugated aspartic acid (Asp) to IAA and less well to NAA, while BTOA was a poor substrate. GH3-2 gene expression was induced by IAA treatment of pre-ripening berries with an associated increase in levels of IAA-Asp and a decrease in free IAA levels. This indicates that GH3-2 responded to excess auxin to maintain low levels of free IAA. Grape berry ripening was not affected by IAA application prior to veraison (ripening onset) but was considerably delayed by NAA and even more so by BTOA. The differential effects of the three auxinic compounds on berry ripening can therefore be explained by the induction and acyl substrate specificity of GH3-2. These results further indicate an important role for GH3 proteins in controlling auxin-related plant developmental processes. PMID:21543520

  17. Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development.

    PubMed

    Böttcher, Christine; Boss, Paul K; Davies, Christopher

    2011-08-01

    Nine Gretchen Hagen (GH3) genes were identified in grapevine (Vitis vinifera L.) and six of these were predicted on the basis of protein sequence similarity to act as indole-3-acetic acid (IAA)-amido synthetases. The activity of these enzymes is thought to be important in controlling free IAA levels and one auxin-inducible grapevine GH3 protein, GH3-1, has previously been implicated in the berry ripening process. Ex planta assays showed that the expression of only one other GH3 gene, GH3-2, increased following the treatment of grape berries with auxinic compounds. One of these was the naturally occurring IAA and the other two were synthetic, α-naphthalene acetic acid (NAA) and benzothiazole-2-oxyacetic acid (BTOA). The determination of steady-state kinetic parameters for the recombinant GH3-1 and GH3-2 proteins revealed that both enzymes efficiently conjugated aspartic acid (Asp) to IAA and less well to NAA, while BTOA was a poor substrate. GH3-2 gene expression was induced by IAA treatment of pre-ripening berries with an associated increase in levels of IAA-Asp and a decrease in free IAA levels. This indicates that GH3-2 responded to excess auxin to maintain low levels of free IAA. Grape berry ripening was not affected by IAA application prior to veraison (ripening onset) but was considerably delayed by NAA and even more so by BTOA. The differential effects of the three auxinic compounds on berry ripening can therefore be explained by the induction and acyl substrate specificity of GH3-2. These results further indicate an important role for GH3 proteins in controlling auxin-related plant developmental processes.

  18. Influences of Agrobacterium rhizogenes strains, plant genotypes, and tissue types on the induction of transgenic hairy roots in Vitis species

    USDA-ARS?s Scientific Manuscript database

    Agrobacterium rhizogenes-mediated induction of transgenic hairy roots was previously demonstrated in Vitis vinifera L. and a few other Vitis species. In this study, 13 Vitis species, including V. aestivalis, V. afghanistan, V. champinii, V. doaniana, V. flexuosa, V. labrusca, V. nesbittiana, V. pal...

  19. Linkage of cold acclimation and disease resistance through plant-pathogen interaction pathway in Vitis amurensis grapevine.

    PubMed

    Wu, Jiao; Zhang, Yali; Yin, Ling; Qu, Junjie; Lu, Jiang

    2014-12-01

    Low temperatures cause severe damage to none cold hardy grapevines. A preliminary survey with Solexa sequencing technology was used to analyze gene expression profiles of cold hardy Vitis amurensis 'Zuoshan-1' after cold acclimation at 4 °C for 48 h. A total of 16,750 and 18,068 putative genes were annotated for 4 °C-treated and control library, respectively. Among them, 393 genes were upregulated for at least 20-fold, while 69 genes were downregulated for at least 20-fold under the 4 °C treatment for 48 h. A subset of 101 genes from this survey was investigated further using reverse transcription polymerase chain reaction (RT-PCR). Genes associated with signaling events in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), including generation of calcium signals (CNGC, CMLs), jasmonic acid signal (JAZ1), oxidative burst (Rboh), and phosphorylation (FLS2, BAK, MEKK1, MKKs) cascades, were upregulated after cold acclimation. Disease resistance genes (RPM1, RPS5, RIN4, PBS1) in the process of effector-triggered immunity (ETI) were also upregulated in the current condition. Defense-related genes (WRKYs, PR1, MIN7) involved in both PTI and ETI processes were abundantly expressed after cold acclimation. Our results indicated that plant-pathogen interaction pathways were linked to the cold acclimation in V. amurensis grapevine. Other biotic- and abiotic-related genes, such as defense (protein phosphatase 2C, U-box domain proteins, NCED1, stilbene synthase), transcription (DREBs, MYBs, ERFs, ZFPs), signal transduction (kinase, calcium, and auxin signaling), transport (ATP-binding cassette (ABC) transporters, auxin:hydrogen symporter), and various metabolism, were also abundantly expressed in the cold acclimation of V. Amurensis 'Zuoshan-1' grapevine. This study revealed a series of critical genes and pathways to delineate important biological processes affected by low temperature in 'Zuoshan-1'.

  20. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program.

    PubMed

    Fasoli, Marianna; Dal Santo, Silvia; Zenoni, Sara; Tornielli, Giovanni Battista; Farina, Lorenzo; Zamboni, Anita; Porceddu, Andrea; Venturini, Luca; Bicego, Manuele; Murino, Vittorio; Ferrarini, Alberto; Delledonne, Massimo; Pezzotti, Mario

    2012-09-01

    We developed a genome-wide transcriptomic atlas of grapevine (Vitis vinifera) based on 54 samples representing green and woody tissues and organs at different developmental stages as well as specialized tissues such as pollen and senescent leaves. Together, these samples expressed ∼91% of the predicted grapevine genes. Pollen and senescent leaves had unique transcriptomes reflecting their specialized functions and physiological status. However, microarray and RNA-seq analysis grouped all the other samples into two major classes based on maturity rather than organ identity, namely, the vegetative/green and mature/woody categories. This division represents a fundamental transcriptomic reprogramming during the maturation process and was highlighted by three statistical approaches identifying the transcriptional relationships among samples (correlation analysis), putative biomarkers (O2PLS-DA approach), and sets of strongly and consistently expressed genes that define groups (topics) of similar samples (biclustering analysis). Gene coexpression analysis indicated that the mature/woody developmental program results from the reiterative coactivation of pathways that are largely inactive in vegetative/green tissues, often involving the coregulation of clusters of neighboring genes and global regulation based on codon preference. This global transcriptomic reprogramming during maturation has not been observed in herbaceous annual species and may be a defining characteristic of perennial woody plants.

  1. A phage display-selected peptide inhibitor of Agrobacterium vitis polygalacturonase.

    PubMed

    Warren, Jeremy G; Kasun, George W; Leonard, Takara; Kirkpatrick, Bruce C

    2016-05-01

    Agrobacterium vitis, the causal agent of crown gall of grapevine, is a threat to viticulture worldwide. A major virulence factor of this pathogen is polygalacturonase, an enzyme that degrades pectin components of the xylem cell wall. A single gene encodes for the polygalacturonase gene. Disruption of the polygalacturonase gene results in a mutant that is less pathogenic and produces significantly fewer root lesions on grapevines. Thus, the identification of peptides or proteins that could inhibit the activity of polygalacturonase could be part of a strategy for the protection of plants against this pathogen. A phage-displayed combinatorial peptide library was used to isolate peptides with a high binding affinity to A. vitis polygalacturonase. These peptides showed sequence similarity to regions of Oryza sativa (EMS66324, Japonica) and Triticum urartu (NP_001054402, wild wheat) polygalacturonase-inhibiting proteins (PGIPs). Furthermore, these panning experiments identified a peptide, SVTIHHLGGGS, which was able to reduce A. vitis polygalacturonase activity by 35% in vitro. Truncation studies showed that the IHHL motif alone is sufficient to inhibit A. vitis polygalacturonase activity. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  2. The Synthesis and Accumulation of Resveratrol Are Associated with Veraison and Abscisic Acid Concentration in Beihong (Vitis vinifera × Vitis amurensis) Berry Skin

    PubMed Central

    Wang, Junfang; Wang, Shuqin; Liu, Guotian; Edwards, Everard J.; Duan, Wei; Li, Shaohua; Wang, Lijun

    2016-01-01

    Resveratrols are polyphenolic secondary metabolites that can benefit human health, and only occur in a few plant families including Vitaceae. It has been reported that abscisic acid (ABA) can induce veraison (the onset of grape berry ripening) and may induce the accumulation of resveratrol in berry skin. However, the relationships between ABA, veraison, the accumulation of anthocyanins and the accumulation of resveratrol in the berry are poorly understood. This study attempted to answer this question through an investigation of the effect of applied ABA and fluridone (a synthetic inhibitor of ABA) on the biosynthesis and accumulation of ABA, anthocyanin, and resveratrol in Beihong (Vitis vinifera × Vitis amurensis) berry skin. Under natural conditions, resveratrol concentration was very low before 91 DAA (days after anthesis), i.e., 2 weeks after veraison, however, it increased sharply from this point to 126 DAA (maturity). Exogenous ABA applications all resulted in an increase in berry skin ABA and anthocyanin concentration, irrespective of the developmental stage at which the treatment occurred (20 and 10 days pre-veraison, veraison or 7 days post-veraison), thereby advancing veraison. In contrast, resveratrol concentration increased only when ABA was applied at 10 days pre-veraison or at veraison. As a result, the accumulation of resveratrol was associated with veraison in grape berry skin and this accumulation, together with that of anthocyanins, was associated with ABA concentration. The response of resveratrol biosynthesis in the berry skin to manipulation of ABA varied during berry development and was less sensitive to ABA than the response of anthocyanin biosynthesis. PMID:27857716

  3. Inspection of the grapevine BURP superfamily highlights an expansion of RD22 genes with distinctive expression features in berry development and ABA-mediated stress responses.

    PubMed

    Matus, José Tomás; Aquea, Felipe; Espinoza, Carmen; Vega, Andrea; Cavallini, Erika; Dal Santo, Silvia; Cañón, Paola; Rodríguez-Hoces de la Guardia, Amparo; Serrano, Jennifer; Tornielli, Giovanni Battista; Arce-Johnson, Patricio

    2014-01-01

    The RESPONSIVE TO DEHYDRATION 22 (RD22) gene is a molecular link between abscisic acid (ABA) signalling and abiotic stress responses. Its expression has been used as a reliable ABA early response marker. In Arabidopsis, the single copy RD22 gene possesses a BURP domain also located at the C-terminus of USP embryonic proteins and the beta subunit of polygalacturonases. In grapevine, a RD22 gene has been identified but putative paralogs are also found in the grape genome, possibly forming a large RD22 family in this species. In this work, we searched for annotations containing BURP domains in the Vitis vinifera genome. Nineteen proteins were defined by a comparative analysis between the two genome predictions and RNA-Seq data. These sequences were compared to other plant BURPs identified in previous genome surveys allowing us to reconceive group classifications based on phylogenetic relationships and protein motif occurrence. We observed a lineage-specific evolution of the RD22 family, with the biggest expansion in grapevine and poplar. In contrast, rice, sorghum and maize presented highly expanded monocot-specific groups. The Vitis RD22 group may have expanded from segmental duplications as most of its members are confined to a region in chromosome 4. The inspection of transcriptomic data revealed variable expression of BURP genes in vegetative and reproductive organs. Many genes were induced in specific tissues or by abiotic and biotic stresses. Three RD22 genes were further studied showing that they responded oppositely to ABA and to stress conditions. Our results show that the inclusion of RNA-Seq data is essential while describing gene families and improving gene annotations. Robust phylogenetic analyses including all BURP members from other sequenced species helped us redefine previous relationships that were erroneously established. This work provides additional evidence for RD22 genes serving as marker genes for different organs or stresses in grapevine.

  4. Short- and long-term physiological responses of grapevine leaves to UV-B radiation.

    PubMed

    Martínez-Lüscher, J; Morales, F; Delrot, S; Sánchez-Díaz, M; Gomés, E; Aguirreolea, J; Pascual, I

    2013-12-01

    The present study aimed at evaluating the short- and long-term effects of UV-B radiation on leaves of grapevine Vitis vinifera (cv. Tempranillo). Grapevine fruit-bearing cuttings were exposed to two doses of supplemental biologically effective UV-B radiation (UV-BBE) under glasshouse-controlled conditions: 5.98 and 9.66kJm(-2)d(-1). The treatments were applied either for 20d (from mid-veraison to ripeness) or 75d (from fruit set to ripeness). A 0kJm(-2)d(-1) UV-B treatment was included as control. The main effects of UV-B were observed after the short-term exposure (20d) to 9.66kJm(-2)d(-1). Significant decreases in net photosynthesis, stomatal conductance, sub-stomatal CO2 concentration, the actual photosystem II (PSII) efficiency, total soluble proteins and de-epoxidation state of the VAZ cycle were observed, whereas the activities of several antioxidant enzymes increased significantly. UV-B did not markedly affect dark respiration, photorespiration, the maximum potential PSII efficiency (Fv/Fm), non-photochemical quenching (NPQ), as well as the intrinsic PSII efficiency. However, after 75d of exposure to 5.98and 9.66kJm(-2)d(-1) UV-B most photosynthetic and biochemical variables were unaffected and there were no sign of oxidative damage in leaves. The results suggest a high long-term acclimation capacity of grapevine to high UV-B levels, associated with a high accumulation of UV-B absorbing compounds in leaves, whereas plants seemed to be tolerant to moderate doses of UV-B. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Use of Endophytic and Rhizosphere Actinobacteria from Grapevine Plants To Reduce Nursery Fungal Graft Infections That Lead to Young Grapevine Decline

    PubMed Central

    Álvarez-Pérez, José Manuel; González-García, Sandra; Cobos, Rebeca; Olego, Miguel Ángel; Ibañez, Ana; Díez-Galán, Alba; Garzón-Jimeno, Enrique

    2017-01-01

    ABSTRACT Endophytic and rhizosphere actinobacteria isolated from the root system of 1-year-old grafted Vitis vinifera plants were evaluated for their activities against fungi that cause grapevine trunk diseases. A total of 58 endophytic and 94 rhizosphere isolates were tested. Based on an in vitro bioassay, 15.5% of the endophytic isolates and 30.8% of the rhizosphere isolates exhibited antifungal activity against the fungal pathogen Diplodia seriata, whereas 13.8% of the endophytic isolates and 16.0% of the rhizosphere isolates showed antifungal activity against Dactylonectria macrodidyma (formerly Ilyonectria macrodidyma). The strains which showed the greatest in vitro efficacy against both pathogens were further analyzed for their ability to inhibit the growth of Phaeomoniella chlamydospora and Phaeoacremonium minimum (formerly Phaeoacremonium aleophilum). Based on their antifungal activity, three rhizosphere isolates and three endophytic isolates were applied on grafts in an open-root field nursery in a 3-year trial. The field trial led to the identification of one endophytic strain, Streptomyces sp. VV/E1, and two rhizosphere isolates, Streptomyces sp. VV/R1 and Streptomyces sp. VV/R4, which significantly reduced the infection rates produced by the fungal pathogens Dactylonectria sp., Ilyonectria sp., P. chlamydospora, and P. minimum, all of which cause young grapevine decline. The VV/R1 and VV/R4 isolates also significantly reduced the mortality level of grafted plants in the nursery. This study shows that certain actinobacteria could represent a promising new tool for controlling fungal trunk pathogens that infect grapevine plants through the root system in nurseries. IMPORTANCE Grapevine trunk diseases are a major threat to the wine and grape industry worldwide. They cause a significant reduction in yields as well as in grape quality, and they can even cause plant death. Trunk diseases are caused by fungal pathogens that enter through pruning wounds and

  6. Use of Endophytic and Rhizosphere Actinobacteria from Grapevine Plants To Reduce Nursery Fungal Graft Infections That Lead to Young Grapevine Decline.

    PubMed

    Álvarez-Pérez, José Manuel; González-García, Sandra; Cobos, Rebeca; Olego, Miguel Ángel; Ibañez, Ana; Díez-Galán, Alba; Garzón-Jimeno, Enrique; Coque, Juan José R

    2017-12-15

    Endophytic and rhizosphere actinobacteria isolated from the root system of 1-year-old grafted Vitis vinifera plants were evaluated for their activities against fungi that cause grapevine trunk diseases. A total of 58 endophytic and 94 rhizosphere isolates were tested. Based on an in vitro bioassay, 15.5% of the endophytic isolates and 30.8% of the rhizosphere isolates exhibited antifungal activity against the fungal pathogen Diplodia seriata , whereas 13.8% of the endophytic isolates and 16.0% of the rhizosphere isolates showed antifungal activity against Dactylonectria macrodidyma (formerly Ilyonectria macrodidyma ). The strains which showed the greatest in vitro efficacy against both pathogens were further analyzed for their ability to inhibit the growth of Phaeomoniella chlamydospora and Phaeoacremonium minimum (formerly Phaeoacremonium aleophilum ). Based on their antifungal activity, three rhizosphere isolates and three endophytic isolates were applied on grafts in an open-root field nursery in a 3-year trial. The field trial led to the identification of one endophytic strain, Streptomyces sp. VV/E1, and two rhizosphere isolates, Streptomyces sp. VV/R1 and Streptomyces sp. VV/R4, which significantly reduced the infection rates produced by the fungal pathogens Dactylonectria sp., Ilyonectria sp., P. chlamydospora , and P. minimum , all of which cause young grapevine decline. The VV/R1 and VV/R4 isolates also significantly reduced the mortality level of grafted plants in the nursery. This study shows that certain actinobacteria could represent a promising new tool for controlling fungal trunk pathogens that infect grapevine plants through the root system in nurseries. IMPORTANCE Grapevine trunk diseases are a major threat to the wine and grape industry worldwide. They cause a significant reduction in yields as well as in grape quality, and they can even cause plant death. Trunk diseases are caused by fungal pathogens that enter through pruning wounds and/or the

  7. Mass spectrometric and enzymatic evidence confirm the existence of anthocyanidin 3,5-O-diglucosides in cabernet sauvignon (Vitis vinifera L.) grape berries.

    PubMed

    Xing, Ran-Ran; Li, Si-Yu; He, Fei; Yang, Zhe; Duan, Chang-Qing; Li, Zheng; Wang, Jun; Pan, Qiu-Hong

    2015-04-01

    It has been widely accepted that anthocyanidin 3,5-O-diglucosides do not exist in Vitis vinifera L. Cabernet Sauvignon (CS) berries. However, our anthocyanin analyses using HPLC-ESI-MS/MS detected the existence of a low level of anthocyanidin 3,5-O-diglucosides in the Cabernet Sauvignon grape berries grown in China. The authenticity of these samples was confirmed with microsatellite markers. The existence of anthocyanidin 3,5-O-diglucoside was further verified by the enzymatic evidence for the first time. Four putative 5-O-glucosyltransferase (5GT) genes were isolated from the Cabernet Sauvignon berries. The enzymatic analysis showed that a recombinant protein (designated as Vv5GT3) glucosylated the 3-O- and 5-O-positions of anthocyanidins and flavonols. A phylogenetic analysis revealed that this bifunctional enzyme belongs to the 5GT subfamily of UDP-glycosyltransferases. This finding brought a new understanding of the anthocyanins' profile and their biosynthesis in V. vinifera and would be helpful for further investigations of the mechanism of accumulation of anthocyanidin diglucosides in Cabernet Sauvignon berries in China's wine-producing regions.

  8. Linkage mapping and molecular diversity at the flower sex locus in wild and cultivated grapevine reveal a prominent SSR haplotype in hermaphrodite plants.

    PubMed

    Battilana, Juri; Lorenzi, Silvia; Moreira, Flavia M; Moreno-Sanz, Paula; Failla, Osvaldo; Emanuelli, Francesco; Grando, M Stella

    2013-07-01

    Cultivars used for wine and table grape have self-fertile hermaphrodite flowers whereas wild European vines and American and Asian species are dioecious, having either male or female flowers. Consistent with previous studies, the flower sex trait was mapped as a single major locus on chromosome 2 based on a pure Vitis vinifera population segregating for hermaphrodite and female progeny, and a hybrid population producing all three flower sex types. The sex locus was placed between the same SSR and SNP markers on both genetic maps, although abnormal segregation hampered to fine map the genomic region. From a total of 55 possible haplotypes inferred for three SSR markers around the sex locus, in a population of 132 V. sylvestris accessions and 171 V. vinifera cultivars, one of them accounted for 66 % of the hermaphrodite individuals and may be the result of domestication. Specific size variants of the VVIB23 microsatellite sequence within the 3'-UTR of a putative YABBY1 gene were found to be statistically significantly associated with the sex alleles M, H and f; these markers can provide assistance in defining the status of wild grapevine germplasm.

  9. Reduction in pathogen populations at grapevine wound sites is associated with the mechanism underlying the biological control of crown gall by rhizobium vitis strain ARK-1.

    PubMed

    Kawaguchi, Akira

    2014-09-17

    A nonpathogenic strain of Rhizobium (=Agrobacterium) vitis, ARK-1, limited the development of grapevine crown gall. A co-inoculation with ARK-1 and the tumorigenic strain VAT07-1 at a 1:1 cell ratio resulted in a higher population of ARK-1 than VAT07-1 in shoots without tumors, but a significantly lower population of ARK-1 than VAT07-1 in grapevine shoots with tumors. ARK-1 began to significantly suppress the VAT07-1 population 2 d after the inoculation. This result indicated that ARK-1 reduced the pathogen population at the wound site through biological control. Although ARK-1 produced a zone of inhibition against other tumorigenic Rhizobium spp. in in vitro assays, antibiosis depended on the culture medium. ARK-1 did not inhibit the growth of tumorigenic R. radiobacter strain AtC1 in the antibiosis assay, but suppressed the AtC1-induced formation of tumors on grapevine shoots, suggesting that antibiosis by ARK-1 may not be the main mechanism responsible for biological control.

  10. Selection of reference genes for miRNA qRT-PCR under abiotic stress in grapevine.

    PubMed

    Luo, Meng; Gao, Zhen; Li, Hui; Li, Qin; Zhang, Caixi; Xu, Wenping; Song, Shiren; Ma, Chao; Wang, Shiping

    2018-03-13

    Grapevine is among the fruit crops with high economic value, and because of the economic losses caused by abiotic stresses, the stress resistance of Vitis vinifera has become an increasingly important research area. Among the mechanisms responding to environmental stresses, the role of miRNA has received much attention recently. qRT-PCR is a powerful method for miRNA quantitation, but the accuracy of the method strongly depends on the appropriate reference genes. To determine the most suitable reference genes for grapevine miRNA qRT-PCR, 15 genes were chosen as candidate reference genes. After eliminating 6 candidate reference genes with unsatisfactory amplification efficiency, the expression stability of the remaining candidate reference genes under salinity, cold and drought was analysed using four algorithms, geNorm, NormFinder, deltaCt and Bestkeeper. The results indicated that U6 snRNA was the most suitable reference gene under salinity and cold stresses; whereas miR168 was the best for drought stress. The best reference gene sets for salinity, cold and drought stresses were miR160e + miR164a, miR160e + miR168 and ACT + UBQ + GAPDH, respectively. The selected reference genes or gene sets were verified using miR319 or miR408 as the target gene.

  11. The proteins of the grape (Vitis vinifera L.) seed endosperm: fractionation and identification of the major components.

    PubMed

    Gazzola, Diana; Vincenzi, Simone; Gastaldon, Luca; Tolin, Serena; Pasini, Gabriella; Curioni, Andrea

    2014-07-15

    In the present study, grape (Vitis vinifera L.) seed endosperm proteins were characterized after sequential fractionation, according to a modified Osborne procedure. The salt-soluble fraction (albumins and globulins) comprised the majority (58.4%) of the total extracted protein. The protein fractions analysed by SDS-PAGE showed similar bands, indicating different solubility of the same protein components. SDS-PAGE in non-reducing and reducing conditions revealed the polypeptide composition of the protein bands. The main polypeptides, which were similar in all the grape varieties analysed, were identified by LC-MS/MS as homologous to the 11S globulin-like seed storage proteins of other plant species, while a monomeric 43 kDa protein presented high homology with the 7S globulins of legume seeds. The results provide new insights about the identity, structure and polypeptide composition of the grape seed storage proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Modelling leaf photosynthetic and transpiration temperature-dependent responses in Vitis vinifera cv. Semillon grapevines growing in hot, irrigated vineyard conditions

    PubMed Central

    Greer, Dennis H.

    2012-01-01

    Background and aims Grapevines growing in Australia are often exposed to very high temperatures and the question of how the gas exchange processes adjust to these conditions is not well understood. The aim was to develop a model of photosynthesis and transpiration in relation to temperature to quantify the impact of the growing conditions on vine performance. Methodology Leaf gas exchange was measured along the grapevine shoots in accordance with their growth and development over several growing seasons. Using a general linear statistical modelling approach, photosynthesis and transpiration were modelled against leaf temperature separated into bands and the model parameters and coefficients applied to independent datasets to validate the model. Principal results Photosynthesis, transpiration and stomatal conductance varied along the shoot, with early emerging leaves having the highest rates, but these declined as later emerging leaves increased their gas exchange capacities in accordance with development. The general linear modelling approach applied to these data revealed that photosynthesis at each temperature was additively dependent on stomatal conductance, internal CO2 concentration and photon flux density. The temperature-dependent coefficients for these parameters applied to other datasets gave a predicted rate of photosynthesis that was linearly related to the measured rates, with a 1 : 1 slope. Temperature-dependent transpiration was multiplicatively related to stomatal conductance and the leaf to air vapour pressure deficit and applying the coefficients also showed a highly linear relationship, with a 1 : 1 slope between measured and modelled rates, when applied to independent datasets. Conclusions The models developed for the grapevines were relatively simple but accounted for much of the seasonal variation in photosynthesis and transpiration. The goodness of fit in each case demonstrated that explicitly selecting leaf temperature as a model parameter

  13. Grapevine and Arabidopsis Cation-Chloride Cotransporters Localize to the Golgi and Trans-Golgi Network and Indirectly Influence Long-Distance Ion Transport and Plant Salt Tolerance1[OPEN

    PubMed Central

    Henderson, Sam W.; Wege, Stefanie; Qiu, Jiaen; Blackmore, Deidre H.; Walker, Amanda R.; Tyerman, Stephen D.; Walker, Rob R.; Gilliham, Matthew

    2015-01-01

    Plant cation-chloride cotransporters (CCCs) have been implicated in conferring salt tolerance. They are predicted to improve shoot salt exclusion by directly catalyzing the retrieval of sodium (Na+) and chloride (Cl−) ions from the root xylem. We investigated whether grapevine (Vitis vinifera [Vvi]) CCC has a role in salt tolerance by cloning and functionally characterizing the gene from the cultivar Cabernet Sauvignon. Amino acid sequence analysis revealed that VviCCC shares a high degree of similarity with other plant CCCs. A VviCCC-yellow fluorescent protein translational fusion protein localized to the Golgi and the trans-Golgi network and not the plasma membrane when expressed transiently in tobacco (Nicotiana benthamiana) leaves and Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts. AtCCC-green fluorescent protein from Arabidopsis also localized to the Golgi and the trans-Golgi network. In Xenopus laevis oocytes, VviCCC targeted to the plasma membrane, where it catalyzed bumetanide-sensitive 36Cl–, 22Na+, and 86Rb+ uptake, suggesting that VviCCC (like AtCCC) belongs to the Na+-K+-2Cl– cotransporter class of CCCs. Expression of VviCCC in an Arabidopsis ccc knockout mutant abolished the mutant’s stunted growth phenotypes and reduced shoot Cl– and Na+ content to wild-type levels after growing plants in 50 mm NaCl. In grapevine roots, VviCCC transcript abundance was not regulated by Cl– treatment and was present at similar levels in both the root stele and cortex of three Vitis spp. genotypes that exhibit differential shoot salt exclusion. Our findings indicate that CCC function is conserved between grapevine and Arabidopsis, but neither protein is likely to directly mediate ion transfer with the xylem or have a direct role in salt tolerance. PMID:26378102

  14. Distribution of rare earth elements in soil and grape berries of Vitis vinifera cv. "Glera".

    PubMed

    Pepi, Salvatore; Sansone, Luigi; Chicca, Milvia; Marrocchino, Elena; Vaccaro, Carmela

    2016-08-01

    The renowned Vitis vinifera L. cultivar "Glera" (Magnoliopsida Vitaceae) has been grown for hundreds of years in the Italian regions of Veneto and Friuli to produce the sparkling Prosecco wine, with controlled designation of origin (DOC). We evaluated the relationship among the concentrations of rare earth elements (REE) in soil and in "Glera" grape berries in vineyards belonging to five different localities in the Veneto alluvial plain, all included in the DOC area of Prosecco. The concentration of REE in samples of soil and juice or solid residues of grape berries was determined by inductively coupled plasma mass spectrometry (ICP-MS), and the index of bioaccumulation was calculated to define the specific assimilation of these elements from soil to grape berries. The concentration of REE in soil samples allowed an identification of each locality examined, and REE were mostly detected in solid grape berry residues in comparison to juice. These data may be useful to associate REE distribution in soil and grape berries to a specific geographical origin, in order to prevent fraudulent use of wine denomination labels.

  15. Immunomodulating and anti-allergic effects of Negroamaro and Koshu Vitis vinifera fermented grape marc (FGM).

    PubMed

    Marzulli, Giuseppe; Magrone, Thea; Vonghia, Luisa; Kaneko, Masahiro; Takimoto, Hiroaki; Kumazawa, Yoshio; Jirillo, Emilio

    2014-01-01

    Polyphenols contained in FGM from Negroamaro (N) and Koshu (K) Vitis vinifera have been shown to exhibit several immunomodulating activities. For instance, mice affected by experimental colitis when administered with K-FGM showed an attenuation of the inflammatory process. In murine asthma, K-FGM reduced IgE production and eosinophil number in bronchial alveolar lavage fluid. In vitro, both N- and K-FGM were able to induce T regulatory cells in terms of Foxp-3 molecule expression and release of interleukin-10. In another set of experiments both N- and K-FGM were able to balance rate of proliferation/apoptosis/necrosis of normal human peripheral lymphocytes, thus indicating the property of these compounds to maintain immune homeostatic mechanisms in the host. On the other hand, N- and K-FGM inhibited human basophil degranulation, thus, confirming our previous results obtained with rat basophilic leukemia cells. Finally, N- and K-FGM also decreased oxidative burst of human polymorphonuclear cells and monocytes.Taken together, these findings imply the potential clinical usefulness of FGM administration in inflammatory/allergic conditions, such as chronic asthma.

  16. Grapevine cell early activation of specific responses to DIMEB, a resveratrol elicitor

    PubMed Central

    Zamboni, Anita; Gatto, Pamela; Cestaro, Alessandro; Pilati, Stefania; Viola, Roberto; Mattivi, Fulvio; Moser, Claudio; Velasco, Riccardo

    2009-01-01

    Background In response to pathogen attack, grapevine synthesizes phytoalexins belonging to the family of stilbenes. Grapevine cell cultures represent a good model system for studying the basic mechanisms of plant response to biotic and abiotic elicitors. Among these, modified β-cyclodextrins seem to act as true elicitors inducing strong production of the stilbene resveratrol. Results The transcriptome changes of Vitis riparia × Vitis berlandieri grapevine cells in response to the modified β-cyclodextrin, DIMEB, were analyzed 2 and 6 h after treatment using a suppression subtractive hybridization experiment and a microarray analysis respectively. At both time points, we identified a specific set of induced genes belonging to the general phenylpropanoid metabolism, including stilbenes and hydroxycinnamates, and to defence proteins such as PR proteins and chitinases. At 6 h we also observed a down-regulation of the genes involved in cell division and cell-wall loosening. Conclusions We report the first large-scale study of the molecular effects of DIMEB, a resveratrol inducer, on grapevine cell cultures. This molecule seems to mimic a defence elicitor which enhances the physical barriers of the cell, stops cell division and induces phytoalexin synthesis. PMID:19660119

  17. Grapevine necrotic union, A newly recognized disease of unknown etiology in grapevines grafted on 110 Richter rootstock in California

    USDA-ARS?s Scientific Manuscript database

    In Northern California, surveys of several vineyards planted to Vitis vinifera cv. Pinot noir (PN) clones 02A, 667, 777, and UCD 04 grafted onto the rootstock V. berlandieri x V. rupestris 110 Richter (110R) revealed 2 to 45% of vines showing solid red leaf canopies and two distinct disease stages, ...

  18. Growth, Yield and Fruit Quality of Grapevines under Organic and Biodynamic Management

    PubMed Central

    Döring, Johanna; Frisch, Matthias; Tittmann, Susanne; Stoll, Manfred; Kauer, Randolf

    2015-01-01

    The main objective of this study was to determine growth, yield and fruit quality of grapevines under organic and biodynamic management in relation to integrated viticultural practices. Furthermore, the mechanisms for the observed changes in growth, yield and fruit quality were investigated by determining nutrient status, physiological performance of the plants and disease incidence on bunches in three consecutive growing seasons. A field trial (Vitis vinifera L. cv. Riesling) was set up at Hochschule Geisenheim University, Germany. The integrated treatment was managed according to the code of good practice. Organic and biodynamic plots were managed according to Regulation (EC) No 834/2007 and Regulation (EC) No 889/2008 and according to ECOVIN- and Demeter-Standards, respectively. The growth and yield of the grapevines differed strongly among the different management systems, whereas fruit quality was not affected by the management system. The organic and the biodynamic treatments showed significantly lower growth and yield in comparison to the integrated treatment. The physiological performance was significantly lower in the organic and the biodynamic systems, which may account for differences in growth and cluster weight and might therefore induce lower yields of the respective treatments. Soil management and fertilization strategy could be responsible factors for these changes. Yields of the organic and the biodynamic treatments partially decreased due to higher disease incidence of downy mildew. The organic and the biodynamic plant protection strategies that exclude the use of synthetic fungicides are likely to induce higher disease incidence and might partially account for differences in the nutrient status of vines under organic and biodynamic management. Use of the biodynamic preparations had little influence on vine growth and yield. Due to the investigation of important parameters that induce changes especially in growth and yield of grapevines under

  19. The Grapevine VvPMEI1 Gene Encodes a Novel Functional Pectin Methylesterase Inhibitor Associated to Grape Berry Development

    PubMed Central

    Lionetti, Vincenzo; Raiola, Alessandro; Mattei, Benedetta; Bellincampi, Daniela

    2015-01-01

    Pectin is secreted in a highly methylesterified form and partially de-methylesterified in the cell wall by pectin methylesterases (PMEs). PME activity is expressed during plant growth, development and stress responses. PME activity is controlled at the post-transcriptional level by proteins named PME inhibitors (PMEIs). We have identified, expressed and characterized VvPMEI1, a functional PME inhibitor of Vitis vinifera. VvPMEI1 typically affects the activity of plant PMEs and is inactive against microbial PMEs. The kinetics of PMEI-PME interaction, studied by surface plasmon resonance, indicates that the inhibitor strongly interacts with PME at apoplastic pH while the stability of the complex is reduced by increasing the pH. The analysis of VvPMEI1 expression in different grapevine tissues and during grape fruit development suggests that this inhibitor controls PME activity mainly during the earlier phase of berry development. A proteomic analysis performed at this stage indicates a PME isoform as possible target of VvPMEI1. PMID:26204516

  20. R2R3 MYB transcription factors: key regulators of the flavonoid biosynthetic pathway in grapevine.

    PubMed

    Czemmel, Stefan; Heppel, Simon C; Bogs, Jochen

    2012-06-01

    Flavonoids compose one of the most abundant and important subgroups of secondary metabolites with more than 6,000 compounds detected so far in higher plants. They are found in various compositions and concentrations in nearly all plant tissues. Besides the attraction of pollinators and dispersers to fruits and flowers, flavonoids also protect against a plethora of stresses including pathogen attack, wounding and UV irradiation. Flavonoid content and composition of fruits such as grapes, bilberries, strawberries and apples as well as food extracts such as green tea, wine and chocolate have been associated with fruit quality including taste, colour and health-promoting effects. To unravel the beneficial potentials of flavonoids on fruit quality, research has been focused recently on the molecular basis of flavonoid biosynthesis and regulation in economically important fruit-producing plants such as grapevine (Vitis vinifera L.). Transcription factors and genes encoding biosynthetic enzymes have been characterized, studies that set a benchmark for future research on the regulatory networks controlling flavonoid biosynthesis and diversity. This review summarizes recent advances in the knowledge of regulatory cascades involved in flavonoid biosynthesis in grapevine. Transcriptional regulation of flavonoid biosynthesis during berry development is highlighted, with a particular focus on MYB transcription factors as molecular clocks, key regulators and powerful biotechnological tools to identify novel pathway enzymes to optimize flavonoid content and composition in grapes.

  1. Cellular expansion and gene expression in the developing grape (Vitis vinifera L.).

    PubMed

    Schlosser, J; Olsson, N; Weis, M; Reid, K; Peng, F; Lund, S; Bowen, P

    2008-01-01

    Expression profiles of genes involved in cell wall metabolism and water transport were compared with changes in grape (Vitis vinifera L.) berry growth, basic chemical composition, and the shape, size, and wall thickness of cells within tissues of the berry pericarp. Expression of cell wall-modifying and aquaporin genes in berry pericarp tissues generally followed a bimodal expression profile with high levels of expression coinciding with the two periods of rapid berry growth, stages I and III, and low levels of expression corresponding to the slow-growth period, stage II. Cellular expansion was observed throughout all tissues during stage I, and only mesocarp cellular expansion was observed during stage III. Expansion of only exocarp cells was evident during transition between stages II and III. Cell wall-modifying and aquaporin gene expression profiles followed similar trends in exocarp and mesocarp tissues throughout berry development, with the exception of the up-regulation of pectin methylesterase, pectate lyase, two aquaporin genes (AQ1 and AQ2), and two expansin genes (EXP3 and EXPL) during stage II, which was delayed in the exocarp tissue compared with mesocarp tissue. Exocarp endo-(1-->3)-beta-glucanase and expansin-like gene expression was concurrent with increases in epidermal and hypodermal cell wall thickness. These results indicate a potential role of the grape berry skin in modulating grape berry growth.

  2. VitisExpDB: A database resource for grape functional genomics

    PubMed Central

    Doddapaneni, Harshavardhan; Lin, Hong; Walker, M Andrew; Yao, Jiqiang; Civerolo, Edwin L

    2008-01-01

    Background The family Vitaceae consists of many different grape species that grow in a range of climatic conditions. In the past few years, several studies have generated functional genomic information on different Vitis species and cultivars, including the European grape vine, Vitis vinifera. Our goal is to develop a comprehensive web data source for Vitaceae. Description VitisExpDB is an online MySQL-PHP driven relational database that houses annotated EST and gene expression data for V. vinifera and non-vinifera grape species and varieties. Currently, the database stores ~320,000 EST sequences derived from 8 species/hybrids, their annotation (BLAST top match) details and Gene Ontology based structured vocabulary. Putative homologs for each EST in other species and varieties along with information on their percent nucleotide identities, phylogenetic relationship and common primers can be retrieved. The database also includes information on probe sequence and annotation features of the high density 60-mer gene expression chip consisting of ~20,000 non-redundant set of ESTs. Finally, the database includes 14 processed global microarray expression profile sets. Data from 12 of these expression profile sets have been mapped onto metabolic pathways. A user-friendly web interface with multiple search indices and extensively hyperlinked result features that permit efficient data retrieval has been developed. Several online bioinformatics tools that interact with the database along with other sequence analysis tools have been added. In addition, users can submit their ESTs to the database. Conclusion The developed database provides genomic resource to grape community for functional analysis of genes in the collection and for the grape genome annotation and gene function identification. The VitisExpDB database is available through our website . PMID:18307813

  3. The composition of cell walls from grape skin in Vitis vinifera intraspecific hybrids.

    PubMed

    Apolinar-Valiente, Rafael; Gómez-Plaza, Encarna; Terrier, Nancy; Doco, Thierry; Ros-García, José María

    2017-09-01

    Monastrell is a red grape cultivar adapted to the dry environmental conditions of Murcia, SE Spain. Its berries seem to be characterized by a rigid cell wall structure, which could make difficult the winemaking process. Cabernet Sauvignon cultivar is used to complement Monastrell wines in this region owing to its high phenolic content with high extractability. This study explores the skin cell wall composition of grapes from plants resulting from intraspecific crosses of Vitis vinifera cultivars Monastrell × Cabernet Sauvignon. Moreover, the morphology of the cell wall material (CWM) from some representative samples was visualized by transmission optical microscopy. The total sugar content of CWM from nine out of ten genotypes of the progeny was lower than that from Monastrell. Seven out of ten genotypes showed lower phenolic content than Cabernet Sauvignon. The CWM from nine out of ten hybrids presented lower protein content than that from Monastrell. This study confirms that skin cell walls from Monastrell × Cabernet Sauvignon hybrid grapes presented major differences in composition compared with their parents. These data could help in the development of new cultivars adapted to the dry conditions of SE Spain and with a cell wall composition favouring extractability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Quantification of abscisic acid in grapevine leaf (Vitis vinifera) by isotope-dilution liquid chromatography-mass spectrometry.

    PubMed

    Vilaró, Francisca; Canela-Xandri, Anna; Canela, Ramon

    2006-09-01

    A specific, sensitive, precise, and accurate method for the determination of abscisic acid (ABA) in grapevine leaf tissues is described. The method employs high-performance liquid chromatography and electrospray ionization-mass spectrometry (LC-ESI-MS) in selected ion monitoring mode (SIM) to analyze ABA using a stable isotope-labeled ABA as an internal standard. Absolute recoveries ranged from 72% to 79% using methanol/water pH 5.5 (50:50 v/v) as an extraction solvent. The best efficiency was obtained when the chromatographic separation was carried out by using a porous graphitic carbon (PGC) column. The statistical evaluation of the method was satisfactory in the work range. A relative standard deviation (RDS) of < 5.5% and < 6.0% was obtained for intra-batch and inter-batch comparisons, respectively. As for accuracy, the relative error (%Er) was between -2.7 and 4.3%, and the relative recovery ranged from 95% to 107%.

  5. Genetic diversity of Grapevine virus A in Washington and California vineyards.

    PubMed

    Alabi, Olufemi J; Al Rwahnih, Maher; Mekuria, Tefera A; Naidu, Rayapati A

    2014-05-01

    Grapevine virus A (GVA; genus Vitivirus, family Betaflexiviridae) has been implicated with the Kober stem grooving disorder of the rugose wood disease complex. In this study, 26 isolates of GVA recovered from wine grape (Vitis vinifera) cultivars from California and Washington were analyzed for their genetic diversity. An analysis of a portion of the RNA-dependent RNA polymerase (RdRp) and complete coat protein (CP) sequences revealed intra- and inter-isolate sequence diversity. Our results indicated that both RdRp and CP are under strong negative selection based on the normalized values for the ratio of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site. A global phylogenetic analysis of CP sequences revealed segregation of virus isolates into four major clades with no geographic clustering. In contrast, the RdRp-based phylogenetic tree indicated segregation of GVA isolates from California and Washington into six clades, independent of geographic origin or cultivar. Phylogenetic network coupled with recombination analyses showed putative recombination events in both RdRp and CP sequence data sets, with more of these events located in the CP sequence. The preponderance of divergent variants of GVA co-replicating within individual grapevines could increase viral genotypic complexity with implications for phylogenetic analysis and evolutionary history of the virus. The knowledge of genetic diversity of GVA generated in this study will provide a foundation for elucidating the epidemiological characteristics of virus populations at different scales and implementing appropriate management strategies for minimizing the spread of genetic variants of the virus by vectors and via planting materials supplied to nurseries and grape growers.

  6. Assessment of the potential health benefits of certain total extracts from Vitis vinifera, Aesculus hyppocastanum and Curcuma longa

    PubMed Central

    MARGINĂ, DENISA; OLARU, OCTAVIAN TUDOREL; ILIE, MIHAELA; GRĂDINARU, DANIELA; GUȚU, CLAUDIA; VOICU, SORINA; DINISCHIOTU, ANCA; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.

    2015-01-01

    A number of recent studies have illustrated the active role of food/natural components in the prevention of chronic diseases and in the improvement of the quality of life. In the present study, we aimed to obtain and characterize certain extracts from Vitis vinifera L., Aesculus hippocastanum L. and Curcuma longa L., focusing on their antioxidant effects in vitro. Three vegetal extracts were obtained for each plant: in water, 50% water-alcohol and in 96% ethanol. These extracts were then analyzed for their qualitative composition by high performance thin layer chromatography (HPTLC) and total phenolic content by ultraviolet-visible spectrophotometry (UV-VIS). The antioxidant activity of the extracts was assessed in vitro by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay; the effects of lipid peroxidation on the cell membrane were evaluated using Jurkat cells in two experimental models: normoglycemic and hyperglycemic medium, in order for the results to be able to be translated into clinical practice. In addition, the resistance of the extracts to acid and alkaline hydrolysis was investigated. The obtained extracts had 0.4–39 µg phenolics/mg total extract. The largest amount of phenolics was found in the Cucurma longa extracts, while the lowest was found in the Aesculus hippocastanum extacts. HPTLC analysis identified the main phenolic compounds in the extracts which were ferulic acid, gallic acid, caffeic acid and coumaric acid, as well as quercetin, kaempferol, apigenin, curcumin, luteolin and esculetin. The Aesculus hippocastanum extracts had a low antioxidant efficacy, while both the Curcuma longa and Vitis vinifera extracts had a high antioxidant activity; the products resulting from alkaline hydrolisis were significantly more efficient in scavenging DPPH radicals compared to the products resulting from acid hydrolisis. The antioxidant effects of the Curcuma longa extracts exerted on the membranes of Jurkat cells were the most prominent under both normal and

  7. Assessment of the potential health benefits of certain total extracts from Vitis vinifera, Aesculus hyppocastanum and Curcuma longa.

    PubMed

    Margină, Denisa; Olaru, Octavian Tudorel; Ilie, Mihaela; Grădinaru, Daniela; GuȚu, Claudia; Voicu, Sorina; Dinischiotu, Anca; Spandidos, Demetrios A; Tsatsakis, Aristidis M

    2015-11-01

    A number of recent studies have illustrated the active role of food/natural components in the prevention of chronic diseases and in the improvement of the quality of life. In the present study, we aimed to obtain and characterize certain extracts from Vitis vinifera L., Aesculus hippocastanum L. and Curcuma longa L., focusing on their antioxidant effects in vitro . Three vegetal extracts were obtained for each plant: in water, 50% water-alcohol and in 96% ethanol. These extracts were then analyzed for their qualitative composition by high performance thin layer chromatography (HPTLC) and total phenolic content by ultraviolet-visible spectrophotometry (UV-VIS). The antioxidant activity of the extracts was assessed in vitro by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay; the effects of lipid peroxidation on the cell membrane were evaluated using Jurkat cells in two experimental models: normoglycemic and hyperglycemic medium, in order for the results to be able to be translated into clinical practice. In addition, the resistance of the extracts to acid and alkaline hydrolysis was investigated. The obtained extracts had 0.4-39 µg phenolics/mg total extract. The largest amount of phenolics was found in the Cucurma longa extracts, while the lowest was found in the Aesculus hippocastanum extacts. HPTLC analysis identified the main phenolic compounds in the extracts which were ferulic acid, gallic acid, caffeic acid and coumaric acid, as well as quercetin, kaempferol, apigenin, curcumin, luteolin and esculetin. The Aesculus hippocastanum extracts had a low antioxidant efficacy, while both the Curcuma longa and Vitis vinifera extracts had a high antioxidant activity; the products resulting from alkaline hydrolisis were significantly more efficient in scavenging DPPH radicals compared to the products resulting from acid hydrolisis. The antioxidant effects of the Curcuma longa extracts exerted on the membranes of Jurkat cells were the most prominent under both normal and

  8. How will climate change influence grapevine cv. Tempranillo photosynthesis under different soil textures?

    PubMed

    Leibar, Urtzi; Aizpurua, Ana; Unamunzaga, Olatz; Pascual, Inmaculada; Morales, Fermín

    2015-05-01

    While photosynthetic responses to elevated CO2, elevated temperature, or water availability have previously been reported for grapevine as responses to single stress factors, reports on the combined effect of multiple stress factors are scarce. In the present work, we evaluated effects of simulated climate change [CC; 700 ppm CO2, 28/18 °C, and 33/53% relative humidity (RH), day/night] versus current conditions (375 ppm CO2, 24/14 °C, and 45/65% RH), water availability (well-irrigated vs. water deficit), and different types of soil textures (41, 19, and 8% of soil clay contents) on grapevine (Vitis vinifera L. cv. Tempranillo) photosynthesis. Plants were grown using the fruit-bearing cutting model. CC increased the photosynthetic activity of grapevine plants grown under well-watered conditions, but such beneficial effects of elevated CO2, elevated temperature, and low RH were abolished by water deficit. Under water-deficit conditions, plants subjected to CC conditions had similar photosynthetic rates as those grown under current conditions, despite their higher sub-stomatal CO2 concentrations. As expected, water deficit reduced photosynthetic activity in association with inducing stomatal closure that prevents water loss. Evidence for photosynthetic downregulation under elevated CO2 was observed, with decreases in photosynthetic capacity and leaf N content and increases in the C/N ratio in plants subjected to CC conditions. Soil texture had no marked effects on photosynthesis and did not modify the photosynthetic response to CC and water-deficit conditions. However, in mature well-irrigated plants grown in the soils with the highest sand content, an important decrease in stomatal conductance was observed as well as a slight decrease in the utilization of absorbed light in photosynthetic electron transport (measured as photochemical quenching), possibly related to a low water-retention capacity of these soils even under well-watered conditions.

  9. Anti-Dermatophyte and Anti-Malassezia Activity of Extracts Rich in Polymeric Flavan-3-ols Obtained from Vitis vinifera Seeds.

    PubMed

    Simonetti, Giovanna; D'Auria, Felicia Diodata; Mulinacci, Nadia; Innocenti, Marzia; Antonacci, Donato; Angiolella, Letizia; Santamaria, Anna Rita; Valletta, Alessio; Donati, Livia; Pasqua, Gabriella

    2017-01-01

    Several human skin diseases are associated with fungi as dermatophytes and Malassezia. Skin mycoses are increasing and new alternatives to conventional treatments with improved efficacy and/or safety profiles are desirable. For the first time, the anti-dermatophytes and the anti-Malassezia activities of Vitis vinifera seed extracts obtained from different table and wine cultivars have been evaluated. Geometric minimal inhibitory concentration ranged from 20 to 97 µg/mL for dermatophytes and from 32 to 161 µg/mL for Malassezia furfur. Dried grape seed extracts analyzed by HPLC/DAD/ESI/MS showed different quali-quantitative compositions in terms of monomeric and polymeric flavan-3-ols. The minimal inhibitory concentrations for Trichophyton mentagrophytes and for M. furfur were inversely correlated with the amount of the polymeric fraction (r = -0.7639 and r = -0.7228, respectively). Differently, the antifungal activity against T. mentagrophytes was not correlated to the content of flavan-3-ol monomers (r = 0.2920) and only weakly correlated for M. furfur (r = -0.53604). These results suggest that extracts rich in polymeric flavan-3-ols, recovered from V.  vinifera seeds, could be used for the treatment of skin fungal infections. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Enhancement of viniferin production in Vitis vinifera L. cv. Alphonse Lavallée Cell suspensions by low-energy ultrasound alone and in combination with methyl jasmonate.

    PubMed

    Santamaria, Anna Rita; Innocenti, Marzia; Mulinacci, Nadia; Melani, Fabrizio; Valletta, Alessio; Sciandra, Ilaria; Pasqua, Gabriella

    2012-11-07

    This study examined for the first time the effect of low-energy ultrasound (US), used alone or in combination with methyl jasmonate (MeJA), on viniferin production in cell cultures of Vitis vinifera L. cv Alphonse Lavallée. Cell suspensions were exposed for 2 min to US (power 30, 60, and 90 mW cm(-3)). The highest viniferin production was obtained at 30 mW cm(-3). When sonication was performed twice, the effect on viniferin production was negligible, whereas triple sonication slightly increased production. US treatment at 30 mW cm(-3) for 5 min decreased viniferin production and induced cellular death. The combined use of MeJA and US (2 min) increased the production of δ-viniferin, the dominant stilbene, more than each elicitor used alone. These results suggest that low-energy US, alone and in combination with MeJA, can act as a physical elicitor to stimulate viniferin production in V. vinifera cell cultures.

  11. Evidence for Hydraulic Vulnerability Segmentation and Lack of Xylem Refilling under Tension.

    PubMed

    Charrier, Guillaume; Torres-Ruiz, José M; Badel, Eric; Burlett, Regis; Choat, Brendan; Cochard, Herve; Delmas, Chloe E L; Domec, Jean-Christophe; Jansen, Steven; King, Andrew; Lenoir, Nicolas; Martin-StPaul, Nicolas; Gambetta, Gregory Alan; Delzon, Sylvain

    2016-11-01

    The vascular system of grapevine (Vitis spp.) has been reported as being highly vulnerable, even though grapevine regularly experiences seasonal drought. Consequently, stomata would remain open below water potentials that would generate a high loss of stem hydraulic conductivity via xylem embolism. This situation would necessitate daily cycles of embolism repair to restore hydraulic function. However, a more parsimonious explanation is that some hydraulic techniques are prone to artifacts in species with long vessels, leading to the overestimation of vulnerability. The aim of this study was to provide an unbiased assessment of (1) the vulnerability to drought-induced embolism in perennial and annual organs and (2) the ability to refill embolized vessels in two Vitis species X-ray micro-computed tomography observations of intact plants indicated that both Vitis vinifera and Vitis riparia were relatively vulnerable, with the pressure inducing 50% loss of stem hydraulic conductivity = -1.7 and -1.3 MPa, respectively. In V. vinifera, both the stem and petiole had similar sigmoidal vulnerability curves but differed in pressure inducing 50% loss of hydraulic conductivity (-1.7 and -1 MPa for stem and petiole, respectively). Refilling was not observed as long as bulk xylem pressure remained negative (e.g. at the apical part of the plants; -0.11 ± 0.02 MPa) and change in percentage loss of conductivity was 0.02% ± 0.01%. However, positive xylem pressure was observed at the basal part of the plant (0.04 ± 0.01 MPa), leading to a recovery of conductance (change in percentage loss of conductivity = -0.24% ± 0.12%). Our findings provide evidence that grapevine is unable to repair embolized xylem vessels under negative pressure, but its hydraulic vulnerability segmentation provides significant protection of the perennial stem. © 2016 American Society of Plant Biologists. All Rights Reserved.

  12. Evidence for Hydraulic Vulnerability Segmentation and Lack of Xylem Refilling under Tension1[OPEN

    PubMed Central

    Charrier, Guillaume; Choat, Brendan; Delmas, Chloe E. L.; Domec, Jean-Christophe; King, Andrew; Lenoir, Nicolas

    2016-01-01

    The vascular system of grapevine (Vitis spp.) has been reported as being highly vulnerable, even though grapevine regularly experiences seasonal drought. Consequently, stomata would remain open below water potentials that would generate a high loss of stem hydraulic conductivity via xylem embolism. This situation would necessitate daily cycles of embolism repair to restore hydraulic function. However, a more parsimonious explanation is that some hydraulic techniques are prone to artifacts in species with long vessels, leading to the overestimation of vulnerability. The aim of this study was to provide an unbiased assessment of (1) the vulnerability to drought-induced embolism in perennial and annual organs and (2) the ability to refill embolized vessels in two Vitis species X-ray micro-computed tomography observations of intact plants indicated that both Vitis vinifera and Vitis riparia were relatively vulnerable, with the pressure inducing 50% loss of stem hydraulic conductivity = −1.7 and −1.3 MPa, respectively. In V. vinifera, both the stem and petiole had similar sigmoidal vulnerability curves but differed in pressure inducing 50% loss of hydraulic conductivity (−1.7 and −1 MPa for stem and petiole, respectively). Refilling was not observed as long as bulk xylem pressure remained negative (e.g. at the apical part of the plants; −0.11 ± 0.02 MPa) and change in percentage loss of conductivity was 0.02% ± 0.01%. However, positive xylem pressure was observed at the basal part of the plant (0.04 ± 0.01 MPa), leading to a recovery of conductance (change in percentage loss of conductivity = −0.24% ± 0.12%). Our findings provide evidence that grapevine is unable to repair embolized xylem vessels under negative pressure, but its hydraulic vulnerability segmentation provides significant protection of the perennial stem. PMID:27613852

  13. Evolution and history of grapevine (Vitis vinifera) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars

    PubMed Central

    Terral, Jean-Frédéric; Tabard, Elidie; Bouby, Laurent; Ivorra, Sarah; Pastor, Thierry; Figueiral, Isabel; Picq, Sandrine; Chevance, Jean-Baptiste; Jung, Cécile; Fabre, Laurent; Tardy, Christophe; Compan, Michel; Bacilieri, Roberto; Lacombe, Thierry; This, Patrice

    2010-01-01

    Background and Aims In spite of the abundance of archaeological, bio-archaeological, historical and genetic data, the origins, historical biogeography, identity of ancient grapevine cultivars and mechanisms of domestication are still largely unknown. Here, analysis of variation in seed morphology aims to provide accurate criteria for the discrimination between wild grapes and modern cultivars and to understand changes in functional traits in relation to the domestication process. This approach is also used to quantify the phenotypic diversity in the wild and cultivated compartments and to provide a starting point for comparing well-preserved archaeological material, in order to elucidate the history of grapevine varieties. Methods Geometrical analysis (elliptic Fourier transform method) was applied to grapevine seed outlines from modern wild individuals, cultivars and well-preserved archaeological material from southern France, dating back to the first to second centuries. Key Results and Conclusions Significant relationships between seed shape and taxonomic status, geographical origin (country or region) of accessions and parentage of varieties are highlighted, as previously noted based on genetic approaches. The combination of the analysis of modern reference material and well-preserved archaeological seeds provides original data about the history of ancient cultivated forms, some of them morphologically close to the current ‘Clairette’ and ‘Mondeuse blanche’ cultivars. Archaeobiological records seem to confirm the complexity of human contact, exchanges and migrations which spread grapevine cultivation in Europe and in Mediterranean areas, and argue in favour of the existence of local domestication in the Languedoc (southern France) region during Antiquity. PMID:20034966

  14. Circadian oscillatory transcriptional programs in grapevine ripening fruits

    PubMed Central

    2014-01-01

    Background Temperature and solar radiation influence Vitis vinifera L. berry ripening. Both environmental conditions fluctuate cyclically on a daily period basis and the strength of this fluctuation affects grape ripening too. Additionally, a molecular circadian clock regulates daily cyclic expression in a large proportion of the plant transcriptome modulating multiple developmental processes in diverse plant organs and developmental phases. Circadian cycling of fruit transcriptomes has not been characterized in detail despite their putative relevance in the final composition of the fruit. Thus, in this study, gene expression throughout 24 h periods in pre-ripe berries of Tempranillo and Verdejo grapevine cultivars was followed to determine whether different ripening transcriptional programs are activated during certain times of day in different grape tissues and genotypes. Results Microarray analyses identified oscillatory transcriptional profiles following circadian variations in the photocycle and the thermocycle. A higher number of expression oscillating transcripts were detected in samples carrying exocarp tissue including biotic stress-responsive transcripts activated around dawn. Thermotolerance-like responses and regulation of circadian clock-related genes were observed in all studied samples. Indeed, homologs of core clock genes were identified in the grapevine genome and, among them, VvREVEILLE1 (VvRVE1), showed a consistent circadian expression rhythm in every grape berry tissue analysed. Light signalling components and terpenoid biosynthetic transcripts were specifically induced during the daytime in Verdejo, a cultivar bearing white-skinned and aromatic berries, whereas transcripts involved in phenylpropanoid biosynthesis were more prominently regulated in Tempranillo, a cultivar bearing black-skinned berries. Conclusions The transcriptome of ripening fruits varies in response to daily environmental changes, which might partially be under the control

  15. Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening.

    PubMed

    Böttcher, Christine; Keyzers, Robert A; Boss, Paul K; Davies, Christopher

    2010-08-01

    In fleshy fruit, levels of indole-3-acetic acid (IAA), the most abundant auxin, decline towards the onset of ripening. The application of auxins to immature fruit can delay the ripening processes. However, the mechanisms by which the decrease in endogenous IAA concentrations and the maintenance of low auxin levels in maturing fruit are achieved remain elusive. The transcript of a GH3 gene (GH3-1), encoding for an IAA-amido synthetase which conjugates IAA to amino acids, was detected in grape berries (Vitis vinifera L.). GH3-1 expression increased at the onset of ripening (veraison), suggesting that it might be involved in the establishment and maintenance of low IAA concentrations in ripening berries. Furthermore, this grapevine GH3 gene, responded positively to the combined application of abscisic acid and sucrose and to ethylene, linking it to the control of ripening processes. Levels of IAA-aspartic acid (IAA-Asp), an in vitro product of recombinant GH3-1, rose after veraison and remained high during the following weeks of the ripening phase when levels of free IAA were low. A similar pattern of changes in free IAA and IAA-Asp levels was detected in developing tomatoes (Solanum lycopersicum Mill.), where low concentrations of IAA and an increase in IAA-Asp concentrations coincided with the onset of ripening in this climacteric fruit. Since IAA-Asp might be involved in IAA degradation, the GH3 catalysed formation of this conjugate at, and after, the onset of ripening could represent a common IAA inactivation mechanism in climacteric and non-climacteric fruit which enables ripening.

  16. A Grapevine Anthocyanin Acyltransferase, Transcriptionally Regulated by VvMYBA, Can Produce Most Acylated Anthocyanins Present in Grape Skins1

    PubMed Central

    Rinaldo, Amy R.; Cavallini, Erika; Jia, Yong; Moss, Sarah M.A.; McDavid, Debra A.J.; Hooper, Lauren C.; Robinson, Simon P.; Tornielli, Giovanni B.; Zenoni, Sara; Ford, Christopher M.; Boss, Paul K.; Walker, Amanda R.

    2015-01-01

    Anthocyanins are flavonoid compounds responsible for red/purple colors in the leaves, fruit, and flowers of many plant species. They are produced through a multistep pathway that is controlled by MYB transcription factors. VvMYBA1 and VvMYBA2 activate anthocyanin biosynthesis in grapevine (Vitis vinifera) and are nonfunctional in white grapevine cultivars. In this study, transgenic grapevines with altered VvMYBA gene expression were developed, and transcript analysis was carried out on berries using a microarray technique. The results showed that VvMYBA is a positive regulator of the later stages of anthocyanin synthesis, modification, and transport in cv Shiraz. One up-regulated gene, ANTHOCYANIN 3-O-GLUCOSIDE-6″-O-ACYLTRANSFERASE (Vv3AT), encodes a BAHD acyltransferase protein (named after the first letter of the first four characterized proteins: BEAT [for acetyl CoA:benzylalcohol acetyltransferase], AHCT [for anthocyanin O-hydroxycinnamoyltransferase], HCBT [for anthranilate N-hydroxycinnamoyl/benzoyltransferase], and DAT [for deacetylvindoline 4-O-acetyltransferase]), belonging to a clade separate from most anthocyanin acyltransferases. Functional studies (in planta and in vitro) show that Vv3AT has a broad anthocyanin substrate specificity and can also utilize both aliphatic and aromatic acyl donors, a novel activity for this enzyme family found in nature. In cv Pinot Noir, a red-berried grapevine mutant lacking acylated anthocyanins, Vv3AT contains a nonsense mutation encoding a truncated protein that lacks two motifs required for BAHD protein activity. Promoter activation assays confirm that Vv3AT transcription is activated by VvMYBA1, which adds to the current understanding of the regulation of the BAHD gene family. The flexibility of Vv3AT to use both classes of acyl donors will be useful in the engineering of anthocyanins in planta or in vitro. PMID:26395841

  17. Grapevine rootstock effects on scion sap phenolic levels, resistance to Xylella fastidiosa infection, and progression of Pierce's disease

    PubMed Central

    Wallis, Christopher M.; Wallingford, Anna K.; Chen, Jianchi

    2013-01-01

    The xylem-limited bacterium Xylella fastidiosa (Xf) causes Pierce's disease (PD), an important disease of grapevine, Vitis vinifera L. Grapevine rootstocks were developed to provide increased resistance to root disease, but rootstock effects on cane and vine diseases remain unclear. Grapevines that consisted of Cabernet Sauvignon or Chardonnay grafted to 13 different rootstocks were inoculated with Xf and evaluated for PD severity and Xf titer after 6 months. A subset of six rootstock/scion combinations had xylem sap phenolic levels assessed in non-infected and Xf-infected grapevines. Vigor also was analyzed by measuring root lengths and masses. Cabernet Sauvignon grafted to 101-14MG, 1103P, 420A, or Schwarzmann had reduced PD severity compared to Cabernet Sauvignon grafted to 110R, 5BB, or SO4. Chardonnay grafted to Salt Creek or Freedom had reduced PD severity compared to Chardonnay grafted to RS3 or Schwarzmann. Chardonnay grafted to RS3 had greater Xf titer than Chardonnay grafted to 101-14MG, Freedom, or Salt Creek. No other differences in Xf titer among rootstocks were observed. Of the six scion/rootstock combinations which had xylem sap phenolics analyzed, Chardonnay/RS3 had the highest levels of most phenolics whereas Cabernet Sauvignon/101-14MG had the lowest phenolic levels. However, Chardonnay/101-14MG, which had mild PD symptoms, had greater sap levels of caftaric acid than other scion/rootstock combinations. Sap levels of caftaric acid, methyl salicylate, a procyanidin trimer, and quinic acid were greater in Xf-infected vs. non-infected grapevines. Chardonnay on 101-14MG or Salt Creek had greater root mass than Chardonnay on RS3. Cabernet Sauvignon on 101-14MG had greater root mass than Cabernet Sauvignon on 110R. These results identified rootstocks with the capacity for reducing PD symptom progression. Rootstocks also were shown to affect Xf titer, xylem sap phenolic levels, and plant vigor. PMID:24376452

  18. Melatonin levels, determined by LC-ESI-MS/MS, fluctuate during the day/night cycle in Vitis vinifera cv Malbec: evidence of its antioxidant role in fruits.

    PubMed

    Boccalandro, Hernán E; González, Carina V; Wunderlin, Daniel A; Silva, María F

    2011-09-01

    The identification of melatonin in plants has inspired new investigations to understand its biological function and which endogenous and external factors control its levels in these organisms. Owing to the therapeutical and nutraceutical properties of melatonin, it should be important to develop reliable analytical methods for its quantification in vegetal matrices containing this indoleamine, such as grape and wine. The main objectives of the present study were to test whether melatonin levels fluctuate during the day in berry skins of Vitis vinifera L. cv Malbec, thereby possibly relating its abundance to its putative antioxidant function, to determine whether daylight reaching clusters negatively controls melatonin levels, and to evaluate whether total polyphenols and anthocyanins also change through a 24-hr period. Grapes were harvested throughout the day/night to determine the moment when high levels of these components are present in grapes. The presence of melatonin in grapes was evaluated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. It is shown for the first time that melatonin levels fluctuate during the day/night cycle in plants grown under field conditions in a fruit organ of the species Vitis vinifera. We also determined that the diurnal decay of melatonin in berry skins is induced by sunlight, because covered bunches retained higher melatonin levels than exposed ones, thus explaining at least part of the basis of its daily fluctuation. Evidence of melatonin's antioxidant role in grapes is also suggested by monitoring malondialdehyde levels during the day. © 2011 John Wiley & Sons A/S.

  19. Free radical scavenging of grape pomace extracts from Cabernet sauvingnon (Vitis vinifera).

    PubMed

    de Campos, Luanda M A S; Leimann, Fernanda V; Pedrosa, Rozangela Curi; Ferreira, Sandra R S

    2008-11-01

    Pressed grape pomace obtained from the wine production of Cabernet sauvignon (Vitis vinifera) vintage was dried until 9.8% moisture content, ground and submitted to extraction of soluble components from different extraction techniques. Low pressure extractions were performed with ethanol maceration followed by fractionation with n-hexane, dichloromethane, butanol and ethyl acetate. These solvents were furthermore applied for soxhlet extraction. Supercritical fluid extraction (SFE) was also performed to obtain grape pomace extracts by using pure CO2 and CO2 with ethanol as co-solvent in concentrations of 10, 15 and 20%w/w. The operating condition used in high pressure extractions was 150bar and 40 degrees C. The antioxidant activity of the grape pomace extracts was determined considering the free radical scavenging assay using 1,1-Diphenyl-2-picrylhydrazyl (DPPH) and was correlated with the total phenol content determined according to the Folin-Ciocalteu method. The results obtained in DPPH tests indicate the highest antioxidant activity of 96.6+/-0.3%AA, with an IC50 value of 13+/-1, for the extracts obtained with ethyl acetate in solid-liquid extraction. The highest yield values were achieved in soxhlet extraction with ethanol (13.2%w/w) and with butanol (12.2%w/w), and also by SFE with 15% ethanol (9.2%w/w). The lipophilic composition of grape pomace extracts was evaluated by gas chromatography-mass spectrometry with the identification of components like linoleic acid and ethyl linoleate, with important therapeutic activities.

  20. Grapes ( Vitis vinifera) drying by semitransparent photovoltaic module (SPVM) integrated solar dryer: an experimental study

    NASA Astrophysics Data System (ADS)

    Tiwari, Sumit; Tiwari, G. N.

    2018-06-01

    In present research paper, semi-transparent photovoltaic module (SPVM) integrated greenhouse solar drying system has been used for grapes ( Vitis vinifera) drying. Based on hourly experimental information namely solar intensity, moisture evaporated, ambient air temperature, grape surface temperatures, relative humidity and greenhouse air temperature etc. heat and mass transfer coefficient for the SPVM drying system have been evaluated. It has been seen that the convective heat transfer coefficients for grapes found between 3.1-0.84 W/m2 K. Also, there is a fair agreement between theoretical and practical mass transfer (moisture evaporated) during drying of grapes with a correlation coefficient (r) and root mean square percentage deviation (e) of 0.88 and 11.56 respectively. Further, nonlinear regression procedure has been used to fit various drying models namely Henderson and Pabis model, Newton's model, and Page's model. From the analysis, it was found that Page's model is best fitted for grapes drying in SPV greenhouse as well as open sun drying. Further, net electrical energy, thermal energy and equivalent thermal energy were found to be 3.61, 17.66 and 27.15 kWh during six days of drying respectively.

  1. A Grapevine TTG2-Like WRKY Transcription Factor Is Involved in Regulating Vacuolar Transport and Flavonoid Biosynthesis.

    PubMed

    Amato, Alessandra; Cavallini, Erika; Zenoni, Sara; Finezzo, Laura; Begheldo, Maura; Ruperti, Benedetto; Tornielli, Giovanni Battista

    2016-01-01

    A small set of TTG2-like homolog proteins from different species belonging to the WRKY family of transcription factors were shown to share a similar mechanism of action and to control partially conserved biochemical/developmental processes in their native species. In particular, by activating P-ATPases residing on the tonoplast, PH3 from Petunia hybrida promotes vacuolar acidification in petal epidermal cells whereas TTG2 from Arabidopsis thaliana enables the accumulation of proanthocyanidins in the seed coat. In this work we functionally characterized VvWRKY26 identified as the closest grapevine homolog of PhPH3 and AtTTG2 . When constitutively expressed in petunia ph3 mutant, VvWRKY26 can fulfill the PH3 function in the regulation of vacuolar pH and restores the wild type pigmentation phenotype. By a global correlation analysis of gene expression and by transient over-expression in Vitis vinifera , we showed transcriptomic relationships of VvWRKY26 with many genes related to vacuolar acidification and transport in grapevine. Moreover, our results indicate an involvement in flavonoid pathway possibly restricted to the control of proanthocyanidin biosynthesis that is consistent with its expression pattern in grape berry tissues. Overall, the results show that, in addition to regulative mechanisms and biological roles shared with TTG2-like orthologs, VvWRKY26 can play roles in fleshy fruit development that have not been previously reported in studies from dry fruit species. This study paves the way toward the comprehension of the regulatory network controlling vacuolar acidification and flavonoid accumulation mechanisms that contribute to the final berry quality traits in grapevine.

  2. A Grapevine TTG2-Like WRKY Transcription Factor Is Involved in Regulating Vacuolar Transport and Flavonoid Biosynthesis

    PubMed Central

    Amato, Alessandra; Cavallini, Erika; Zenoni, Sara; Finezzo, Laura; Begheldo, Maura; Ruperti, Benedetto; Tornielli, Giovanni Battista

    2017-01-01

    A small set of TTG2-like homolog proteins from different species belonging to the WRKY family of transcription factors were shown to share a similar mechanism of action and to control partially conserved biochemical/developmental processes in their native species. In particular, by activating P-ATPases residing on the tonoplast, PH3 from Petunia hybrida promotes vacuolar acidification in petal epidermal cells whereas TTG2 from Arabidopsis thaliana enables the accumulation of proanthocyanidins in the seed coat. In this work we functionally characterized VvWRKY26 identified as the closest grapevine homolog of PhPH3 and AtTTG2. When constitutively expressed in petunia ph3 mutant, VvWRKY26 can fulfill the PH3 function in the regulation of vacuolar pH and restores the wild type pigmentation phenotype. By a global correlation analysis of gene expression and by transient over-expression in Vitis vinifera, we showed transcriptomic relationships of VvWRKY26 with many genes related to vacuolar acidification and transport in grapevine. Moreover, our results indicate an involvement in flavonoid pathway possibly restricted to the control of proanthocyanidin biosynthesis that is consistent with its expression pattern in grape berry tissues. Overall, the results show that, in addition to regulative mechanisms and biological roles shared with TTG2-like orthologs, VvWRKY26 can play roles in fleshy fruit development that have not been previously reported in studies from dry fruit species. This study paves the way toward the comprehension of the regulatory network controlling vacuolar acidification and flavonoid accumulation mechanisms that contribute to the final berry quality traits in grapevine. PMID:28105033

  3. CLAVATA3-like genes are differentially expressed in grape vine (Vitis vinifera) tissues.

    PubMed

    Tominaga-Wada, Rumi; Nukumizu, Yuka; Wada, Takuji; Sawa, Shinichiro; Tetsumura, Takuya

    2013-10-15

    The CLAVATA3 (CLV3)/endosperm surrounding region [(ESR) CLE] peptides function as intercellular signaling molecules that regulate various physiological and developmental processes in diverse plant species. We identified five CLV3-like genes from grape vine (Vitis vinifera var. Pinot Noir): VvCLE 6, VvCLE 25-1, VvCLE 25-2, VvCLE 43 and VvCLE TDIF. These CLV3-like genes encode short proteins containing 43-128 amino acids. Except VvCLE TDIF, grape vine CLV3-like proteins possess a consensus amino acid sequence known as the CLE domain. Phylogenic analysis suggests that the VvCLE 6, VvCLE25-1, VvCLE25-2 and VvCLE43 genes have evolved from a single common ancestor to the Arabidopsis CLV3 gene. Expression analyses showed that the five grape CLV3-like genes are expressed in leaves, stems, roots and axillary buds with significant differences in their levels of expression. For example, while all of them were strongly expressed in axillary buds, VvCLE6 and VvCLE43 expression prevailed in roots, and VvCLE25-1, VvCLE25-2 and VvCLE TDIF expression in stems. The differential expression of the five grape CLV3-like peptides suggests that they play different roles in different organs and developmental stages. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. Pink berry grape (Vitis vinifera L.) characterization: Reflectance spectroscopy, HPLC and molecular markers.

    PubMed

    Rustioni, Laura; De Lorenzis, Gabriella; Hârţa, Monica; Failla, Osvaldo

    2016-01-01

    Color has a fundamental role for the qualitative evaluation and cultivar characterization of fruits. In grape, a normally functional pigment biosynthesis leads to the accumulation of a high quantity of anthocyanins. In this work, 28 Vitis vinifera L. cultivars accumulating low anthocyanins in berries were studied to characterize the biosynthetic dysfunctions in both a phenotypic and genotypic point of view. Reflectance spectroscopy, HPLC profiles and molecular markers related to VvMybA1 and VvMybA2 genes allowed a detailed description of the pigment-related characteristics of these cultivars. Data were consistent concerning the heterozygosity of the non-functional allele in both investigated genes, resulting in a low colored phenotype as described by reflectance. However, the variability in berry colour among our samples was not fully explained by MybA locus, probably due to specific interferences among the biosynthetic pathways, as suggested by the anthocyanin profile variations detected among our samples. The results presented in this work confirmed the importance of the genetic background: grapes accumulating high levels of cyanidin-3-O-glucosides (di-substituted anthocyanin) are generally originated by white cultivar retro-mutations and they seem to preserve the anomalies in the flavonoid hydroxylases enzymes which negatively affect the synthesis of tri-substituted anthocyanins. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Volatile components of grape pomaces from different cultivars of Sicilian Vitis vinifera L.

    PubMed

    Ruberto, Giuseppe; Renda, Agatino; Amico, Vincenzo; Tringali, Corrado

    2008-01-01

    The volatile components of grape pomace coming from the processing of some of the most important varieties of grape (Vitis vinifera L.) cultivated in Sicily, namely Nero d'Avola, Nerello Mascalese, Frappato and Cabernet Sauvignon, have been determined by gas-chromatography (GC) and gas-chromatography-mass spectrometry (GC-MS). According to the winemaking procedure that entails the removal of stalks before fermentation, two kinds of grape pomace are obtained. The first consists of skins, pulp residues and seeds, the proper grape pomace, which is partially used for grappa, a typical Italian spirit, and alcohol production, the second consists almost exclusively of stalks. On the whole, 38 components have been characterized in the samples of grape pomaces, with Frappato cv. showing the richest composition; instead, 88 components have been detected in the stalks of Frappato, Nero d'Avola, Nerello Mascalese and Cabernet Sauvignon varieties. In order to make a comparison between the grape varieties easier, the volatile components detected in the two sets of samples (grape pomaces and stalks) have been grouped in different classes. Significant differences among varieties have been detected and statistical treatment of data is also reported. This study is part of a wider project aimed at the possible exploitation of the main agro-industrial by-products. At the same time it is one of the first reports on the volatile components of this waste material.

  6. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family.

    PubMed

    Guo, Chunlei; Guo, Rongrong; Xu, Xiaozhao; Gao, Min; Li, Xiaoqin; Song, Junyang; Zheng, Yi; Wang, Xiping

    2014-04-01

    WRKY proteins comprise a large family of transcription factors that play important roles in plant defence regulatory networks, including responses to various biotic and abiotic stresses. To date, no large-scale study of WRKY genes has been undertaken in grape (Vitis vinifera L.). In this study, a total of 59 putative grape WRKY genes (VvWRKY) were identified and renamed on the basis of their respective chromosome distribution. A multiple sequence alignment analysis using all predicted grape WRKY genes coding sequences, together with those from Arabidopsis thaliana and tomato (Solanum lycopersicum), indicated that the 59 VvWRKY genes can be classified into three main groups (I-III). An evaluation of the duplication events suggested that several WRKY genes arose before the divergence of the grape and Arabidopsis lineages. Moreover, expression profiles derived from semiquantitative PCR and real-time quantitative PCR analyses showed distinct expression patterns in various tissues and in response to different treatments. Four VvWRKY genes showed a significantly higher expression in roots or leaves, 55 responded to varying degrees to at least one abiotic stress treatment, and the expression of 38 were altered following powdery mildew (Erysiphe necator) infection. Most VvWRKY genes were downregulated in response to abscisic acid or salicylic acid treatments, while the expression of a subset was upregulated by methyl jasmonate or ethylene treatments.

  7. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family

    PubMed Central

    Guo, Chunlei; Guo, Rongrong; Wang, Xiping

    2014-01-01

    WRKY proteins comprise a large family of transcription factors that play important roles in plant defence regulatory networks, including responses to various biotic and abiotic stresses. To date, no large-scale study of WRKY genes has been undertaken in grape (Vitis vinifera L.). In this study, a total of 59 putative grape WRKY genes (VvWRKY) were identified and renamed on the basis of their respective chromosome distribution. A multiple sequence alignment analysis using all predicted grape WRKY genes coding sequences, together with those from Arabidopsis thaliana and tomato (Solanum lycopersicum), indicated that the 59 VvWRKY genes can be classified into three main groups (I–III). An evaluation of the duplication events suggested that several WRKY genes arose before the divergence of the grape and Arabidopsis lineages. Moreover, expression profiles derived from semiquantitative PCR and real-time quantitative PCR analyses showed distinct expression patterns in various tissues and in response to different treatments. Four VvWRKY genes showed a significantly higher expression in roots or leaves, 55 responded to varying degrees to at least one abiotic stress treatment, and the expression of 38 were altered following powdery mildew (Erysiphe necator) infection. Most VvWRKY genes were downregulated in response to abscisic acid or salicylic acid treatments, while the expression of a subset was upregulated by methyl jasmonate or ethylene treatments. PMID:24510937

  8. Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.).

    PubMed

    de la Cerda-Carrasco, Aarón; López-Solís, Remigio; Nuñez-Kalasic, Hugo; Peña-Neira, Álvaro; Obreque-Slier, Elías

    2015-05-01

    Phenolic compounds are widely distributed secondary metabolites in plants usually conferring them with unique taste, flavour and health-promoting properties. In fruits of Vitis vinifera L., phenolic composition is highly dependent on grape variety. Differential extraction of these compounds from grapes during winemaking is critically associated with wine quality. By-products of winemaking, such as grape pomace, can contain significant amounts of polyphenols. However, information concerning the varietal effect on wine grape pomace is scarce. In this study, pomaces from Sauvignon Blanc (SB), Chardonnay (CH), Cabernet Sauvignon (CS) and Carménère (CA) grape varieties were characterized spectroscopically and by HPLC-DAD analysis. White grape pomaces (SB and CH) presented higher antioxidant capacities and higher contents of total phenols and total proanthocyanidins compared with red grape pomaces (CS and CA), whereas the latter showed much higher anthocyanin levels and colour intensities. Concentrations of monomeric proanthocyanidins and low-molecular-weight phenols in the four grape pomace varieties were significantly different. Grape pomaces from four varieties showed high but diverse contents of polyphenols and antioxidant capacities. Thus grape pomaces represent an important potential source of polyphenols, which could be useful for nutritional and/or pharmacological purposes. © 2014 Society of Chemical Industry.

  9. Grapes (Vitis vinifera) as a Potential Candidate for the Therapy of the Metabolic Syndrome.

    PubMed

    Akaberi, Maryam; Hosseinzadeh, Hosein

    2016-04-01

    Metabolic syndrome is associated with several disorders, including hypertension, diabetes, hyperlipidemia as well as cardiovascular diseases and stroke. Plant-derived polyphenols, compounds found in numerous plant species, play an important role as potential treatments for components of metabolic syndrome. Studies have provided evidence for protective effects of various polyphenol-rich foods against metabolic syndrome. Fruits, vegetables, cereals, nuts, and berries are rich in polyphenolic compounds. Grapes (Vitis vinifera), especially grape seeds, stand out as rich sources of polyphenol potent antioxidants and have been reported helpful for inhibiting the risk factors involved in the metabolic syndrome such as hyperlipidemia, hyperglycemia, and hypertension. There are also many studies about gastroprotective, hepatoprotective, and anti-obesity effects of grape polyphenolic compounds especially proanthocyanidins in the literature. The present study investigates the protective effects of grape seeds in metabolic syndrome. The results of this study show that grape polyphenols have significant effects on the level of blood glucose, lipid profile, blood pressure, as well as beneficial activities in liver and heart with various mechanisms. In addition, the pharmacokinetics of grape polyphenols is discussed. More detailed mechanistic investigations and phytochemical studies for finding the exact bioactive component(s) and molecular signaling pathways are suggested. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Proteomics approach to identify unique xylem sap proteins in Pierce's disease-tolerant Vitis species.

    PubMed

    Basha, Sheikh M; Mazhar, Hifza; Vasanthaiah, Hemanth K N

    2010-03-01

    Pierce's disease (PD) is a destructive bacterial disease of grapes caused by Xylella fastidiosa which is xylem-confined. The tolerance level to this disease varies among Vitis species. Our research was aimed at identifying unique xylem sap proteins present in PD-tolerant Vitis species. The results showed wide variation in the xylem sap protein composition, where a set of polypeptides with pI between 4.5 and 4.7 and M(r) of 31 kDa were present in abundant amount in muscadine (Vitis rotundifolia, PD-tolerant), in reduced levels in Florida hybrid bunch (Vitis spp., PD-tolerant) and absent in bunch grapes (Vitis vinifera, PD-susceptible). Liquid chromatography/mass spectrometry/mass spectrometry analysis of these proteins revealed their similarity to beta-1, 3-glucanase, peroxidase, and a subunit of oxygen-evolving enhancer protein 1, which are known to play role in defense and oxygen generation. In addition, the amount of free amino acids and soluble sugars was found to be significantly lower in xylem sap of muscadine genotypes compared to V. vinifera genotypes, indicating that the higher nutritional value of bunch grape sap may be more suitable for Xylella growth. These data suggest that the presence of these unique proteins in xylem sap is vital for PD tolerance in muscadine and Florida hybrid bunch grapes.

  11. Domain analysis of 3 Keto Acyl-CoA synthase for structural variations in Vitis vinifera and Oryza brachyantha using comparative modelling.

    PubMed

    Sagar, Mamta; Pandey, Neetesh; Qamar, Naseha; Singh, Brijendra; Shukla, Akanksha

    2015-03-01

    The long chain fatty acids incorporated into plant lipids are derived from the iterative addition of C2 units which is provided by malonyl-CoA to an acyl-CoA after interactions with 3-ketoacyl-CoA synthase (KCS), found in several plants. This study provides functional characterization of three 3 ketoacyl CoA synthase like proteins in Vitis vinifera (one) and Oryza brachyantha (two proteins). Sequence analysis reveals that protein of Oryza brachyantha shows 96% similarity to a hypothetical protein in Sorghum bicolor; total 11 homologs were predicted in Sorghum bicolor. Conserved domain prediction confirm the presence of FAE1/Type III polyketide synthase-like protein, Thiolase-like, subgroup; Thiolase-like and 3-Oxoacyl-ACP synthase III, C-terminal and chalcone synthase like domain but very long chain 3-keto acyl CoA domain is absent. All three proteins were found to have Chalcone and stilbene synthases C terminal domain which is similar to domain of thiolase and β keto acyl synthase. Its N terminal domain is absent in J3M9Z7 protein of Oryza brachyantha and F6HH63 protein of Vitis vinifera. Differences in N-terminal domain is responsible for distinguish activity. The J3MF16 protein of Oryza brachyantha contains N terminal domain and C terminal domain and characterized using annotation of these domains. Domains Gcs (streptomyces coelicolor) and Chalcone-stilbene synthases (KAS) in 2-pyrone synthase (Gerbera hybrid) and chalcone synthase 2 (Medicago sativa) were found to be present in three proteins. This similarity points toward anthocyanin biosynthetic process. Similarity to chalcone synthase 2 reveals its possible role in Naringenine and Chalcone synthase like activity. In 3 keto acyl CoA synthase of Oryza brachyantha. Active site residues C-240, H-407, N-447 are present in J3MF16 protein that are common in these three protein at different positions. Structural variations among dimer interface, product binding site, malonyl-CoA binding sites, were predicted in

  12. Graft union formation in grapevine induces transcriptional changes related to cell wall modification, wounding, hormone signalling, and secondary metabolism

    PubMed Central

    Cookson, Sarah Jane; Clemente Moreno, Maria José; Hevin, Cyril; Nyamba Mendome, Larissa Zita; Delrot, Serge; Trossat-Magnin, Claudine; Ollat, Nathalie

    2013-01-01

    Grafting is particularly important to the cultivation of perennial crops such as grapevine (Vitis vinifera) because rootstocks can provide resistance to soil-borne pests and diseases as well as improve tolerance to some abiotic stresses. Successful grafting is a complex biochemical and structural process beginning with the adhesion of the two grafted partners, followed by callus formation and the establishment of a functional vascular system. At the molecular level, the sequence of events underlying graft union formation remains largely uncharacterized. The present study investigates the transcriptome of grapevine rootstock and graft interface tissues sampled 3 d and 28 d after grafting of over-wintering stems in the spring. Many genes were differentially expressed over time, from 3 d to 28 d after grafting, which could be related to the activation of stem growth and metabolic activity in the spring. This hypothesis is supported by the up-regulation of many genes associated with cell wall synthesis, and phloem and xylem development. Generally, there was an up-regulation of gene expression in the graft interface tissue compared with the rootstock, particularly genes involved in cell wall synthesis, secondary metabolism, and signalling. Although there was overlap between the genes differentially expressed over time (from 3 d to 28 d after grafting) with the gene differentially expressed between the rootstock and the graft interface, numerous graft interface-specific genes were identified. PMID:23698628

  13. Nocturnal and daytime stomatal conductance respond to root-zone temperature in 'Shiraz' grapevines.

    PubMed

    Rogiers, Suzy Y; Clarke, Simon J

    2013-03-01

    Daytime root-zone temperature may be a significant factor regulating water flux through plants. Water flux can also occur during the night but nocturnal stomatal response to environmental drivers such as root-zone temperature remains largely unknown. Here nocturnal and daytime leaf gas exchange was quantified in 'Shiraz' grapevines (Vitis vinifera) exposed to three root-zone temperatures from budburst to fruit-set, for a total of 8 weeks in spring. Despite lower stomatal density, night-time stomatal conductance and transpiration rates were greater for plants grown in warm root-zones. Elevated root-zone temperature resulted in higher daytime stomatal conductance, transpiration and net assimilation rates across a range of leaf-to-air vapour pressure deficits, air temperatures and light levels. Intrinsic water-use efficiency was, however, lowest in those plants with warm root-zones. CO(2) response curves of foliar gas exchange indicated that the maximum rate of electron transport and the maximum rate of Rubisco activity did not differ between the root-zone treatments, and therefore it was likely that the lower photosynthesis in cool root-zones was predominantly the result of a stomatal limitation. One week after discontinuation of the temperature treatments, gas exchange was similar between the plants, indicating a reversible physiological response to soil temperature. In this anisohydric grapevine variety both night-time and daytime stomatal conductance were responsive to root-zone temperature. Because nocturnal transpiration has implications for overall plant water status, predictive climate change models using stomatal conductance will need to factor in this root-zone variable.

  14. Differences in respiration between dormant and non-dormant buds suggest the involvement of ABA in the development of endodormancy in grapevines.

    PubMed

    Parada, Francisca; Noriega, Ximena; Dantas, Débora; Bressan-Smith, Ricardo; Pérez, Francisco J

    2016-08-20

    Grapevine buds (Vitis vinifera L) enter endodormancy (ED) after perceiving the short-day (SD) photoperiod signal and undergo metabolic changes that allow them to survive the winter temperatures. In the present study, we observed an inverse relationship between the depth of ED and the respiration rate of grapevine buds. Moreover, the respiration of dormant and non-dormant buds differed in response to temperature and glucose, two stimuli that normally increase respiration in plant tissues. While respiration in non-dormant buds rose sharply in response to both stimuli, respiration in dormant buds was only slightly affected. This suggests that a metabolic inhibitor is present. Here, we propose that the plant hormone abscisic acid (ABA) could be this inhibitor. ABA inhibits respiration in non-dormant buds and represses the expression of respiratory genes, such as ALTERNATIVE NADH DEHYDROGENASE (VaND1, VvaND2), CYTOCHROME OXIDASE (VvCOX6) and CYTOCHROME C (VvCYTC), and induces the expression of VvSnRK1, a gene encoding a member of a highly conserved family of protein kinases that act as energy sensors and regulate gene expression in response to energy depletion. In addition to inducing ED the SD-photoperiod up-regulated the expression of VvNCED, a gene that encodes a key enzyme in ABA synthesis. Taken together, these results suggest that ABA through the mediation of VvSnRK1, could play a key role in the regulation of the metabolic changes accompanying the entry into ED of grapevine buds. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Polyphenolic diversity and characterization in the red-purple berries of East Asian wild Vitis species.

    PubMed

    Koyama, Kazuya; Kamigakiuchi, Hiroshi; Iwashita, Kazuhiro; Mochioka, Ryosuke; Goto-Yamamoto, Nami

    2017-02-01

    Grapes (Vitis spp.) produce diverse polyphenolic compounds, which are phytochemicals that contribute to human health. In this study, the polyphenolic profiles of the red-purple berries of two wild grape species native to Japan, Vitis ficifolia and V. coignetiae, and their interspecific hybrid cultivars were investigated and compared with the profiles of V. vinifera and V. × labruscana cultivars. Proanthocyanidins (PAs) were present at lower concentrations in both skins and seeds of wild grape species and their hybrid cultivars than those in V. vinifera cultivars. They also differed in their composition, consisting mainly of epicatechin in wild grape species, but containing considerable amounts of both epigallocatechin in the skins and epicatechin gallate in the seeds of V. vinifera. In contrast, V. ficifolia varieties and their hybrid cultivars accumulated high concentrations of diverse anthocyanins, and whose compositions of anthocyanins and flavonols differed between species in their degree of modification by glucosylation, acylation, methylation and B-ring hydroxylation. Principal component analysis (PCA) indicated that the polyphenolic constituents clearly separate V. vinifera and V. × labruscana cultivars from the wild grape species as well as between wild grape species, V. coignetiae and V. ficifolia. Intermediate compositions were also observed in the hybrid cultivars between these wild grape species and V. vinifera. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Influence of plant water status on the production of C13-norisoprenoid precursors in Vitis vinifera L. Cv. cabernet sauvignon grape berries.

    PubMed

    Bindon, Keren A; Dry, Peter R; Loveys, Brian R

    2007-05-30

    The influence of irrigation strategy on grape berry carotenoids and C13-norisoprenoid precursors was investigated for Vitis vinifera L. cv. Cabernet Sauvignon. Two irrigation treatments were compared, one in which vines received reduced irrigation applied alternately to either side of the vine (partial rootzone drying, PRD) and a second control treatment in which water was applied to both sides of the vine. Over the two years of the experiments, PRD vines received on average 66% of the water applied to the controls. Initially, the PRD treatment did not alter midday leaf (psiL) and stem (psiS) water potential relative to the control, but decreased stomatal conductance (gs). Continued exposure to the PRD treatment resulted in treated grapevines experiencing hydraulic water deficit relative to the control treatment and induced lowered midday psiL and psiS, which was also reflected in decreased berry weight at harvest. In both irrigation treatments, the most abundant grape berry carotenoids, beta-carotene and lutein, followed the developmental pattern typical of other grape varieties, decreasing post-veraison. At certain points in time, as the fruit approached maturity, the concentration of these carotenoids was increased in fruit of PRD-treated vines relative to the controls. This effect was greater for lutein than for beta-carotene. PRD consistently caused increases in the concentration of hydrolytically released C13-norisoprenoids beta-damascenone, beta-ionone, and 1,1,6-trimethyl-1,2-dihydronaphthalene in fruit at harvest (24 degrees Brix) over two seasons. The effect of the PRD treatment on the concentration of hydrolytically released C13-norisoprenoids was greater in the second of the two seasons of the experiment and was also reflected in an increase in total C13-norisoprenoid content per berry. This suggests that the increases in the concentration of the C13-norisoprenoids in response to PRD were independent of water deficit induced changes in berry size and

  17. Genome-wide identification and characterization of the NF-Y gene family in grape (vitis vinifera L.).

    PubMed

    Ren, Chong; Zhang, Zhan; Wang, Yi; Li, Shaohua; Liang, Zhenchang

    2016-08-11

    Nuclear factor Y (NF-Y) transcription factor is composed of three distinct subunits: NF-YA, NF-YB and NF-YC. Many members of NF-Y family have been reported to be key regulators in plant development, phytohormone signaling and drought tolerance. However, the function of the NF-Y family is less known in grape (Vitis vinifera L.). A total of 34 grape NF-Y genes that distributed unevenly on grape (V. vinifera) chromosomes were identified in this study. Phylogenetic analysis was performed to predict functional similarities between Arabidopsis thaliana and grape NF-Y genes. Comparison of the structures of grape NF-Y genes (VvNF-Ys) revealed their functional conservation and alteration. Furthermore, we investigated the expression profiles of VvNF-Ys in response to various stresses, phytohormone treatments, and in leaves and grape berries with various sugar contents at different developmental stages. The relationship between VvNF-Y transcript levels and sugar content was examined to select candidates for exogenous sugar treatments. Quantitative real-time PCR (qPCR) indicated that many VvNF-Ys responded to different sugar stimuli with variations in transcript abundance. qPCR and publicly available microarray data suggest that VvNF-Ys exhibit distinct expression patterns in different grape organs and developmental stages, and a number of VvNF-Ys may participate in responses to multiple abiotic and biotic stresses, phytohormone treatments and sugar accumulation or metabolism. In this study, we characterized 34 VvNF-Ys based on their distributions on chromosomes, gene structures, phylogenetic relationship with Arabidopsis NF-Y genes, and their expression patterns. The potential roles of VvNF-Ys in sugar accumulation or metabolism were also investigated. Altogether, the data provide significant insights on VvNF-Ys, and lay foundations for further functional studies of NF-Y genes in grape.

  18. A Three-dimensional Statistical Reconstruction Model of Grapevine (Vitis vinifera) Simulating Canopy Structure Variability within and between Cultivar/Training System Pairs

    PubMed Central

    Louarn, Gaëtan; Lecoeur, Jérémie; Lebon, Eric

    2008-01-01

    Background and Aims In grapevine, canopy-structure-related variations in light interception and distribution affect productivity, yield and the quality of the harvested product. A simple statistical model for reconstructing three-dimensional (3D) canopy structures for various cultivar–training system (C × T) pairs has been implemented with special attention paid to balance the time required for model parameterization and accuracy of the representations from organ to stand scales. Such an approach particularly aims at overcoming the weak integration of interplant variability using the usual direct 3D measurement methods. Model This model is original in combining a turbid-medium-like envelope enclosing the volume occupied by vine shoots with the use of discrete geometric polygons representing leaves randomly located within this volume to represent plant structure. Reconstruction rules were adapted to capture the main determinants of grapevine shoot architecture and their variability. Using a simplified set of parameters, it was possible to describe (1) the 3D path of the main shoot, (2) the volume occupied by the foliage around this path and (3) the orientation of individual leaf surfaces. Model parameterization (estimation of the probability distribution for each parameter) was carried out for eight contrasting C × T pairs. Key Results and Conclusions The parameter values obtained in each situation were consistent with our knowledge of grapevine architecture. Quantitative assessments for the generated virtual scenes were carried out at the canopy and plant scales. Light interception efficiency and local variations of light transmittance within and between experimental plots were correctly simulated for all canopies studied. The approach predicted these key ecophysiological variables significantly more accurately than the classical complete digitization method with a limited number of plants. In addition, this model accurately reproduced the characteristics of a

  19. 'Bois noir' phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine

    PubMed Central

    Hren, Matjaž; Nikolić, Petra; Rotter, Ana; Blejec, Andrej; Terrier, Nancy; Ravnikar, Maja; Dermastia, Marina; Gruden, Kristina

    2009-01-01

    Background Phytoplasmas are bacteria without cell walls from the class Mollicutes. They are obligate intracellular plant pathogens which cause diseases in hundreds of economically important plants including the grapevine (Vitis vinifera). Knowledge of their biology and the mechanisms of their interactions with hosts is largely unknown because they are uncultivable and experimentally inaccessible in their hosts. We detail here the global transcriptional profiling in grapevine responses to phytoplasmas. The gene expression patterns were followed in leaf midribs of grapevine cv. 'Chardonnay' naturally infected with a phytoplasma from the stolbur group 16SrXII-A, which is associated with the grapevine yellows disease 'Bois noir'. Results We established an on field experimental system in a productive vineyard that allowed application of molecular tools in a plant natural environment. Global transcription profiles of infected samples were compared with the healthy ones using microarray datasets and metabolic pathway analysis software (MapMan). The two-year-long experiment revealed that plant genes involved in primary and secondary metabolic pathways were changed in response to infection and that these changes might support phytoplasma nutrition. A hypothesis that phytoplasmas interact with the plant carbohydrate metabolism was proven and some possibilities how the products of this pathway might be utilized by phytoplasmas are discussed. In addition, several photosynthetic genes were largely down-regulated in infected plants, whereas defense genes from the metabolic pathway leading to formation of flavonoids and some PR proteins were significantly induced. Few other genes involved in defense-signaling were differentially expressed in healthy and infected plants. A set of 17 selected genes from several differentially expressed pathways was additionally analyzed with quantitative real-time PCR and confirmed to be suitable for a reliable classification of infected plants and

  20. Evaluation of Anti-Candida Activity of Vitis vinifera L. Seed Extracts Obtained from Wine and Table Cultivars

    PubMed Central

    Santamaria, Anna Rita; D'Auria, Felicia Diodata; Innocenti, Marzia; Gabrielli, Elena; Panella, Simona; Antonacci, Donato; Palamara, Anna Teresa; Vecchiarelli, Anna

    2014-01-01

    For the first time, grape seed extracts (GSEs), obtained from wine and table cultivars of Vitis vinifera L., cultured in experimental fields of Lazio and Puglia regions of Italy and grown in different agronomic conditions, have been tested on 43 Candida species strains. We demonstrated a significant correlation between the content of the flavan-3-ols in GSEs extracts, with a polymerization degree ≥4, and anti-Candida activity. Moreover, we demonstrated that GSEs, obtained from plants cultured with reduced irrigation, showed a content of polymeric flavan-3-ols >250 mg/g with geometric mean MIC values between 5.7 and 20.2 mg/L against Candida albicans reference strains. GSE, showing 573 mg/g of polymeric flavan-3-ols, has been tested in an experimental murine model of vaginal candidiasis by using noninvasive in vivo imaging technique. The results pointed out a significant inhibition of Candida albicans load 5 days after challenge. These findings indicate that GSEs with high content of polymeric flavan-3-ols can be used in mucosal infection as vaginal candidiasis. PMID:24864227

  1. Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality.

    PubMed

    Marasco, Ramona; Rolli, Eleonora; Fusi, Marco; Michoud, Grégoire; Daffonchio, Daniele

    2018-01-03

    The plant compartments of Vitis vinifera, including the rhizosphere, rhizoplane, root endosphere, phyllosphere and carposphere, provide unique niches that drive specific bacterial microbiome associations. The majority of phyllosphere endophytes originate from the soil and migrate up to the aerial compartments through the root endosphere. Thus, the soil and root endosphere partially define the aerial endosphere in the leaves and berries, contributing to the terroir of the fruit. However, V. vinifera cultivars are invariably grafted onto the rootstocks of other Vitis species and hybrids. It has been hypothesized that the plant species determines the microbiome of the root endosphere and, as a consequence, the aerial endosphere. In this work, we test the first part of this hypothesis. We investigate whether different rootstocks influence the bacteria selected from the surrounding soil, affecting the bacterial diversity and potential functionality of the rhizosphere and root endosphere. Bacterial microbiomes from both the root tissues and the rhizosphere of Barbera cultivars, both ungrafted and grafted on four different rootstocks, cultivated in the same soil from the same vineyard, were characterized by 16S rRNA high-throughput sequencing. To assess the influence of the root genotype on the bacterial communities' recruitment in the root system, (i) the phylogenetic diversity coupled with the predicted functional profiles and (ii) the co-occurrence bacterial networks were determined. Cultivation-dependent approaches were used to reveal the plant-growth promoting (PGP) potential associated with the grafted and ungrafted root systems. Richness, diversity and bacterial community networking in the root compartments were significantly influenced by the rootstocks. Complementary to a shared bacterial microbiome, different subsets of soil bacteria, including those endowed with PGP traits, were selected by the root system compartments of different rootstocks. The interaction

  2. A Tau Class Glutathione-S-Transferase is Involved in Trans-Resveratrol Transport Out of Grapevine Cells

    PubMed Central

    Martínez-Márquez, Ascensión; Martínez-Esteso, María J.; Vilella-Antón, María T.; Sellés-Marchart, Susana; Morante-Carriel, Jaime A.; Hurtado, Elias; Palazon, Javier; Bru-Martínez, Roque

    2017-01-01

    Vitis vinifera cell cultures respond to pathogens and elicitors by synthesizing and extracellularly accumulating stilbenoid phytoalexins. Large amounts of trans-resveratrol (t-R) are produced when a cell culture is elicited with methylated cyclodextrins (MBCD), either alone or combined with methyl jasmonate (MeJA). t-R transport to the extracellular medium, which represents the apoplastic space, would place this antifungal defense right in the battlefield to efficiently fight against pathogen attack. Yet despite their physiological relevance, these transport pathways are mostly unknown. A broad hypothesis-free DIGE-based proteomic experiment of a temporal series of elicited grapevine cell cultures was performed to explore the expression profiles of t-R biosynthetic proteins and other co-expressing proteins potentially involved in such a cell response. A correlation between two tau class glutathione-S-transferases (GSTs) with several stilbene synthase and phenylalanine ammonia-lyase isoforms, and with the t-R metabolite itself, was found and further assessed by a qRT-PCR gene expression analysis. The best candidate, GSTU-2, was cloned from the cDNA of the MBCD + MeJA-elicited grapevine cells and used for Agrobacterium-mediated grapevine cell transformation. The non-elicited lines that overexpressed GSTU-2 displayed an extracellular t-R accumulating phenotype, but stabilization of t-R required the addition to culture medium of adsorbent compounds, e.g., PVP or β-cyclodextrin. The wild-type cell cultures accumulated no t-R, not even in the presence of adsorbents. The transient expression of the GSTU-2-GFP fusion proteins in grapevine cells showed localisation in the plasma membrane, and the immunoprecipitation of HA-tagged GSTU-2 revealed its interaction with HIR, a plasma membrane-bound protein. These findings are consistent with a functional role in transport. This is the first report providing several pieces of experimental evidence for the involvement of a

  3. Genetic Analysis of East Asian Grape Cultivars Suggests Hybridization with Wild Vitis.

    PubMed

    Goto-Yamamoto, Nami; Sawler, Jason; Myles, Sean

    2015-01-01

    Koshu is a grape cultivar native to Japan and is one of the country's most important cultivars for wine making. Koshu and other oriental grape cultivars are widely believed to belong to the European domesticated grape species Vitis vinifera. To verify the domesticated origin of Koshu and four other cultivars widely grown in China and Japan, we genotyped 48 ancestry informative single nucleotide polymorphisms (SNPs) and estimated wild and domesticated ancestry proportions. Our principal components analysis (PCA) based ancestry estimation revealed that Koshu is 70% V. vinifera, and that the remaining 30% of its ancestry is most likely derived from wild East Asian Vitis species. Partial sequencing of chloroplast DNA suggests that Koshu's maternal line is derived from the Chinese wild species V. davidii or a closely related species. Our results suggest that many traditional East Asian grape cultivars such as Koshu were generated from hybridization events with wild grape species.

  4. Nocturnal and daytime stomatal conductance respond to root-zone temperature in ‘Shiraz’ grapevines

    PubMed Central

    Rogiers, Suzy Y.; Clarke, Simon J.

    2013-01-01

    Background and Aims Daytime root-zone temperature may be a significant factor regulating water flux through plants. Water flux can also occur during the night but nocturnal stomatal response to environmental drivers such as root-zone temperature remains largely unknown. Methods Here nocturnal and daytime leaf gas exchange was quantified in ‘Shiraz’ grapevines (Vitis vinifera) exposed to three root-zone temperatures from budburst to fruit-set, for a total of 8 weeks in spring. Key Results Despite lower stomatal density, night-time stomatal conductance and transpiration rates were greater for plants grown in warm root-zones. Elevated root-zone temperature resulted in higher daytime stomatal conductance, transpiration and net assimilation rates across a range of leaf-to-air vapour pressure deficits, air temperatures and light levels. Intrinsic water-use efficiency was, however, lowest in those plants with warm root-zones. CO2 response curves of foliar gas exchange indicated that the maximum rate of electron transport and the maximum rate of Rubisco activity did not differ between the root-zone treatments, and therefore it was likely that the lower photosynthesis in cool root-zones was predominantly the result of a stomatal limitation. One week after discontinuation of the temperature treatments, gas exchange was similar between the plants, indicating a reversible physiological response to soil temperature. Conclusions In this anisohydric grapevine variety both night-time and daytime stomatal conductance were responsive to root-zone temperature. Because nocturnal transpiration has implications for overall plant water status, predictive climate change models using stomatal conductance will need to factor in this root-zone variable. PMID:23293018

  5. Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants.

    PubMed

    Ikbal, Fatima Ezzohra; Hernández, José Antonio; Barba-Espín, Gregorio; Koussa, Tayeb; Aziz, Aziz; Faize, Mohamed; Diaz-Vivancos, Pedro

    2014-06-15

    The possible involvement of polyamines in the salt stress adaptation was investigated in grapevine (Vitis vinifera L.) plantlets focusing on photosynthesis and oxidative metabolism. Salt stress resulted in the deterioration of plant growth and photosynthesis, and treatment of plantlets with methylglyoxal-bis(guanylhydrazone) (MGBG), a S-adenosylmethionine decarboxylase (SAMDC) inhibitor, enhanced the salt stress effect. A decrease in PSII quantum yield (Fv/Fm), effective PSII quantum yield (Y(II)) and coefficient of photochemical quenching (qP) as well as increases in non-photochemical quenching (NPQ) and its coefficient (qN) was observed by these treatments. Salt and/or MGBG treatments also triggered an increase in lipid peroxidation and reactive oxygen species (ROS) accumulation as well as an increase of superoxide dismutase (SOD) and peroxidase (POX) activities, but not ascorbate peroxidase (APX) activity. Salt stress also resulted in an accumulation of oxidized ascorbate (DHA) and a decrease in reduced glutathione. MGBG alone or in combination with salt stress increased monodehydroascorbate reductase (MDHAR), SOD and POX activities and surprisingly no accumulation of DHA was noticed following treatment with MGBG. These salt-induced responses correlated with the maintaining of high level of free and conjugated spermidine and spermine, whereas a reduction of agmatine and putrescine levels was observed, which seemed to be amplified by the MGBG treatment. These results suggest that maintaining polyamine biosynthesis through the enhanced SAMDC activity in grapevine leaf tissues under salt stress conditions could contribute to the enhanced ROS scavenging activity and a protection of photosynthetic apparatus from oxidative damages. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Geochemical characterization of elements in Vitis vinifera cv. Negroamaro grape berries grown under different soil managements.

    PubMed

    Pepi, Salvatore; Coletta, Antonio; Crupi, Pasquale; Leis, Marilena; Russo, Sabrina; Sansone, Luigi; Tassinari, Renzo; Chicca, Milvia; Vaccaro, Carmela

    2016-04-01

    The present geochemical study concerns the impact of viticultural practices in the chemical composition of the grape cultivar "Negroamaro" in Apulia, a southern Italian region renowned for its quality wine. Three types of soil management (SM), two cover cropping with different mixtures, and a soil tillage were considered. For each SM, the vines were irrigated according to two irrigation levels. Chemical composition of soil and of berries of Vitis vinifera cultivar "Negroamaro" were analyzed by X-ray fluorescence, inductively coupled plasma-mass spectrometry and multivariate statistics (linear discrimination analysis). In detail, we investigated major and trace elements behavior in the soil according to irrigation levels, the related index of bioaccumulation (BA) and the relationship between trace element concentration and soil management in "Negroamaro" grapes. The results indicate that soil management affects the mobility of major and trace elements. A specific assimilation of these elements in grapes from vines grown under different soil management was confirmed by BA. Multivariate statistics allowed to associate the vines to the type of soil management. This geochemical characterization of elements could be useful to develop fingerprints of vines of the cultivar "Negroamaro" according to soil management and geographical origin.

  7. Exogenous Applications of Brassinosteroids Improve Color of Red Table Grape (Vitis vinifera L. Cv. "Redglobe") Berries.

    PubMed

    Vergara, Alexis E; Díaz, Katy; Carvajal, Rodrigo; Espinoza, Luis; Alcalde, José A; Pérez-Donoso, Alonso G

    2018-01-01

    Color and other quality parameters of "Redglobe" grape ( Vitis vinifera L.) berries were evaluated after treatment with brassinosteroid (BR) analogs. Three BRs analogs (24-epibrassinolide, Triol, or Lactone) were applied at three concentrations (0.0, 0.4, or 0.8 mg⋅L -1 ), at the onset of veraison. A commercial formulation (B-2000 ® ) was also applied, at a recommended rate of 0.06 mg⋅L -1 . The tested BR analogs were effective improving berry color (evaluated as color index for red grapes, CIRG), increasing the levels of soluble solids and anthocyanins, and changing the types of anthocyanins present without altering other quality and yield parameters. The effects of BR analogs on color enhancement could be explained by an increase in soluble solids content and/or anthocyanin content. Treatment with 24-epibrassinolide (at 0.4 mg⋅L -1 ) or the commercial formulation tended to favor the production of dihydroxylated anthocyanins, which are responsible for the red and pink colors of grape berries. Results indicate that the use of BRs constitutes a potential tool in the production of table grapes. This is the first report of this enhancement effect in a productive context.

  8. Low night temperature at veraison enhances the accumulation of anthocyanins in Corvina grapes (Vitis Vinifera L.).

    PubMed

    Gaiotti, Federica; Pastore, Chiara; Filippetti, Ilaria; Lovat, Lorenzo; Belfiore, Nicola; Tomasi, Diego

    2018-06-07

    Climate change is a major concern in grape production worldwide. Nights have been warming much faster than the days, raising attention on the effect of night temperatures on grape and wine composition. In this study we evaluated the effect of night temperatures on grape coloration in the cv. Corvina (Vitis vinifera L.). In 2015 and 2016 potted plants were cooled overnight (10-11 °C) during two berry ripening phases, veraison (TV) or post-veraison (TPV), and compared to control vines (C) grown at ambient night temperature (15-20 °C on average). Cooling treatment around veraison (TV) hastened berry anthocyanin accumulation, while the same treatment applied after veraison (TPV) was ineffective. Molecular analysis revealed an increased transcription of four key genes in anthocyanin biosynthesis (CHS3, F3H1, MYBA1 and UFGT) in TV treatment. These results suggest that the anthocyanin biosynthesis capacity was enhanced by cool nights during veraison. However, since the gene expression was not always temporally correlated to the increase in anthocyanin concentration, we speculate on the presence of mechanisms, such as enzymatic regulation or anthocyanin transport, which may contribute in determining the anthocyanin accumulation under low night temperatures.

  9. Biosynthesis of phenolic compounds inVitis vinifera cell suspension cultures: Study on hydroxycinnamoyl CoA:ligase.

    PubMed

    Lotfy, S; Lofty, S; Fleuriet, A; Ramos, T; Macheix, J J

    1989-02-01

    In cell suspensions cultures from grape berry pulp (Vitis vinifera cv. Gamay fréaux)hydroxycinnamoyl CoA ligase (CoAL) displayed maximum activity (100 %) forp-coumaric acid and then, in decreasing order, for ferulic acid (81.3 %) and caffeic acid (60.4 %). No activity was detected with sinapic and cinnamic acids. The changes in CoAL activity during the growth cycle of the culture displayed two peaks : the highest (6 h after subculturing) was linked with a strong increase in protein caused by dilution ; the second was weaker and occurred on the 7th day of culture.Grape cell suspension accumulated mainly peonidin (Pn) and cyanidin (Cy) glucosides (Pn 3-glucoside, Cy 3-glucoside, Pn 3-acetylglucoside, Pn 3-caffeylglucoside, Pn 3-p-coumarylglucoside, and Cy 3-p-coumarylglucoside). Maximum accumulation of anthocyanins was associated with the exponential growth phase of the culture and might be the result of the substantial increase in CoAL activity resulting from the effect of dilution. The second enzyme activity peak was probably oriented towards the acylation of anthocyanins since the percentage of acylated forms increased with time after subculturing.

  10. Aloe vera and Vitis vinifera improve wound healing in an in vivo rat burn wound model.

    PubMed

    Lin, Li-Xin; Wang, Peng; Wang, Yu-Ting; Huang, Yong; Jiang, Lei; Wang, Xue-Ming

    2016-02-01

    Aloe vera and Vitis vinifera have been traditionally used as wound healing agents. The present study aimed to investigate the effects of aloe emodin and resveratrol in the burn wound healing procedure. Burn wounds are common in developed and developing countries, however, in developing countries, the incidence of severe complications is higher and financial resources are limited. The results of the present study demonstrated that neither aloe emodin or resveratrol were cytotoxic to THP-1 macrophages at concentrations of 1, 100 and 500 ng/ml. A significant increase in wound-healing activity was observed in mice treated with the aloe emodin and resveratrol, compared with those which received control treatments. The levels of IL-1β in the exudates of the burn wound area of the treated mice increased in a time-dependent manner over 7 days following burn wound injury. At 10 days post-injury, steady and progressive wound healing was observed in the control animals. The present study confirmed that increased wound healing occurs following treatment with aloe emodin,, compared with resveratrol, providing support for the use of Aloe vera plants to improve burn wound healing.

  11. NMR-based phytochemical analysis of Vitis vinifera cv Falanghina leaves. Characterization of a previously undescribed biflavonoid with antiproliferative activity.

    PubMed

    Tartaglione, Luciana; Gambuti, Angelita; De Cicco, Paola; Ercolano, Giuseppe; Ianaro, Angela; Taglialatela-Scafati, Orazio; Moio, Luigi; Forino, Martino

    2018-03-01

    Vitis vinifera cv Falanghina is an ancient grape variety of Southern Italy. A thorough phytochemical analysis of the Falanghina leaves was conducted to investigate its specialised metabolite content. Along with already known molecules, such as caftaric acid, quercetin-3-O-β-d-glucopyranoside, quercetin-3-O-β-d-glucuronide, kaempferol-3-O-β-d-glucopyranoside and kaempferol-3-O-β-d-glucuronide, a previously undescribed biflavonoid was identified. For this last compound, a moderate bioactivity against metastatic melanoma cells proliferation was discovered. This datum can be of some interest to researchers studying human melanoma. The high content in antioxidant glycosylated flavonoids supports the exploitation of grape vine leaves as an inexpensive source of natural products for the food industry and for both pharmaceutical and nutraceutical companies. Additionally, this study offers important insights into the plant physiology, thus prompting possible technological researches of genetic selection based on the vine adaptation to specific pedo-climatic environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 1. Grape and wine chemistry.

    PubMed

    Bindon, Keren; Varela, Cristian; Kennedy, James; Holt, Helen; Herderich, Markus

    2013-06-01

    The study aimed to quantify the effects of grape maturity on wine alcohol, phenolics, flavour compounds and polysaccharides in Vitis vinifera L. cv Cabernet Sauvignon. Grapes were harvested at juice soluble solids from 20 to 26 °Brix which corresponded to a range of wine ethanol concentrations between 12% and 15.5%. Grape anthocyanin and skin tannin concentration increased as ripening progressed, while seed tannin declined. In the corresponding wines, monomeric anthocyanin and wine tannin concentration increased with harvest date, consistent with an enhanced extraction of skin-derived phenolics. In wines, there was an observed increase in yeast-derived metabolites, including volatile esters, dimethyl sulfide, glycerol and mannoproteins with harvest date. Wine volatiles which were significantly influenced by harvest date were isobutyl methoxypyrazine, C(6) alcohols and hexyl acetate, all of which decreased as ripening progressed. The implications of harvest date for wine composition is discussed in terms of both grape composition and yeast metabolism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Effect of γ-radiation on the production of aflatoxin B1 by Aspergillus parasiticus in raisins (Vitis vinifera L.)

    NASA Astrophysics Data System (ADS)

    Kanapitsas, Alexandros; Batrinou, Anthimia; Aravantinos, Athanasios; Markaki, Panagiota

    2015-01-01

    Aflatoxin B1 (AFB1) mostly produced by Aspergillus flavus and Aspergillus parasiticus, is an extremely toxic and carcinogenic metabolite. The effect of gamma irradiation at dose of 10 kGy on the production of aflatoxin B1 (AFB1) inoculated by Aspergillus parasiticus in raisins (Vitis vinifera L.) and on AFB1 in contaminated samples, was investigated. Values of the amount of aflatoxin B1 produced on the 12th day of incubation, after irradiation, showed that gamma radiation exposure at 10 kGy decreased AFB1 production at 65% compared with the non-irradiated sample, on the same day. The application of 10 kGy gamma radiation directly on 100 ng of AFB1 which were spiked in raisins resulted in ~29% reduction of AFB1. According to the risk assessment analysis the Provisional Maximum Tolerable Daily Intake (PMTDI) of 1.0 ng AFB1 kg-1bw, indicates that consumers are less exposed to AFB1 from the irradiated raisins.

  14. Effects of elicitors on the production of resveratrol and viniferins in cell cultures of Vitis vinifera L. cv Italia.

    PubMed

    Santamaria, Anna Rita; Mulinacci, Nadia; Valletta, Alessio; Innocenti, Marzia; Pasqua, Gabriella

    2011-09-14

    Methyl jasmonate, jasmonic acid and chitosan were tested as elicitors on cell suspension cultures obtained from Vitis vinifera cv Italia to investigate their effect on stilbene production. Stilbene accumulation in the callus, grown under nonelicited conditions, was also investigated. Calli and cell suspensions were obtained in a B5 culture medium supplemented with 0.2 mg L(-1) NAA and 1 mg L(-1) KIN. Stilbene determination was achieved by HPLC/DAD/MS. Whereas callus biosynthesized only piceid, cell suspensions elicited with jasmonates produced several stilbenes, mainly viniferins. In suspended cells, methyl jasmonate and jasmonic acid were the most effective in stimulating stilbene biosynthesis, whereas chitosan was less effective; in fact, the amount of stilbenes obtained with this elicitor was not significantly different from that obtained for the control cells. The maximum production of total stilbenes was at day 20 of culture with 0.970 and 1.023 mg g(-1) DW for MeJA and JA, respectively.

  15. Molecular cloning of a CC-NBS-LRR gene from Vitis quinquangularis and its expression pattern in response to downy mildew pathogen infection.

    PubMed

    Zhang, Shuwei; Ding, Feng; Peng, Hongxiang; Huang, Yu; Lu, Jiang

    2018-02-01

    Downy mildew, caused by Plasmopara viticola, can result in a substantial decrease in grapevine productivity. Vitis vinifera is a widely cultivated grapevine species, which is susceptible to this disease. Repeated pesticide applications are harmful for both the environment and human health. Thus, it is essential to develop varieties/cultivars that are resistant to downy mildew and other diseases. In our previous studies, we investigated the natural resistance of the Chinese wild grapevine V. quinquangularis accession 'PS' against P. viticola and obtained several candidate resistance (R) genes that may play important roles in plant disease resistance. In the present study, we isolated a CC-NBS-LRR-type R gene from 'PS' and designated it VqCN. Its open reading frame is 2676 bp which encodes a protein of 891 amino acids with a predicted molecular mass of 102.12 kDa and predicted isoelectric point of 6.53. Multiple alignments with other disease resistant (R) proteins revealed a conserved phosphate-binding loop (P-loop), resistance nucleotide binding site, a hydrophobic domain (GLPL) and methionine-histidine-aspartate (MHD) motifs, which are typical components of nucleotide-binding site leucine-rich repeat proteins, as well as a coiled-coil region in the N-terminus. Quantitative real-time polymerase chain reaction analysis showed that the transcript of VqCN was rapidly and highly induced after infection with P. viticola in 'PS'. Moreover, the leaves of susceptible 'Cabernet Sauvignon' transiently expressing VqCN manifested increased resistance to P. viticola. The results indicated that VqCN might play a positive role in protecting grapevine against infection with P. viticola. Cloning and functional analysis of a putative resistance gene provide a basis for disease-resistance breeding.

  16. Antioxidant and antimicrobial potentials of Serbian red wines produced from international Vitis vinifera grape varieties.

    PubMed

    Radovanović, Aleksandra N; Jovančićević, Branimir S; Radovanović, Blaga C; Mihajilov-Krstev, Tatjana; Zvezdanović, Jelena B

    2012-08-15

    Antioxidant and antimicrobial potentials of Serbian red wines produced from different international Vitis vinifera grape varieties and their correlation with contents of phenolic compounds were studied by spectrophotometric and chromatographic methods. The antioxidant activity of red wines was estimated through their ability to scavenge 2,2'-diphenyl-1-picrylhydrazyl free radical (DPPH(•) ). The red wines, gallic acid, (+)-catechin and quercetin were screened in vitro for antimicrobial activity against Gram-positive and Gram-negative strains using microdilution and disc diffusion techniques. Excellent correlations between the contents of quercetin-3-glucoside (R(2) = 0.9463) and quercetin (R(2) = 0.9337) and DPPH(•) -scavenging ability of the red wines were found. Serbian red wines exhibited significant activity against Staphylococcus aureus, Listeria inocua, Micrococcus flavus, Sarcina lutea, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Salmonella enteritidis and Shigella sonnei strains, which was in correlation with their phenolic composition and antioxidant activity. The compounds gallic acid, quercetin and (+)-catechin showed high activity against B. subtilis, S. aureus, S. lutea and M. flavus Gram-positive and S. enteritidis and P. aeruginosa Gram-negative strains. The results show that quercetin-3-glucoside and quercetin concentrations can be used as markers for the determination of antioxidant and antimicrobial potentials of red wines. Copyright © 2012 Society of Chemical Industry.

  17. Tracing phenolic biosynthesis in Vitis vinifera via in situ C-13 labeling and liquid chromatography-diode-array detector-mass spectrometer/mass spectrometer detection.

    PubMed

    Chassy, Alexander W; Adams, Douglas O; Laurie, V Felipe; Waterhouse, Andrew L

    2012-10-17

    Phenolic compounds in Vitis vinifera contribute important flavor, functionality, and health qualities to both table and wine grapes. The plant phenolic metabolic pathway has been well characterized, however many important questions remain regarding the influence of environmental conditions on pathway regulation. As a diagnostic for this pathway's regulation, we present a technique to incorporate a stable-isotopic tracer, L-phenyl-(13)C(6)-alanine (Phe(13)), into grape berries in situ and the accompanying high throughput analytical method based on LC-DAD-MS/MS to quantify and track the label into phenylalanine metabolites. Clusters of V. vinifera cv. Cabernet Sauvignon, either near the onset of ripening or 4 weeks later, were exposed to Phe(13) in the vineyard. Phe(13) was present in berries 9 days afterwards as well as labeled flavonols and anthocyanins, all of which possessed a molecular ion shift of 6 amu. However, nearly all the label was found in anthocyanins, indicating tight regulation of phenolic biosynthesis at this stage of maturity. This method provides a framework for examining the regulation of phenolic metabolism at different stages of maturity or under different environmental conditions. Additionally, this technique could serve as a tool to further probe the metabolism/catabolism of grape phenolics. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences

    PubMed Central

    2012-01-01

    Background The first draft assembly and gene prediction of the grapevine genome (8X base coverage) was made available to the scientific community in 2007, and functional annotation was developed on this gene prediction. Since then additional Sanger sequences were added to the 8X sequences pool and a new version of the genomic sequence with superior base coverage (12X) was produced. Results In order to more efficiently annotate the function of the genes predicted in the new assembly, it is important to build on as much of the previous work as possible, by transferring 8X annotation of the genome to the 12X version. The 8X and 12X assemblies and gene predictions of the grapevine genome were compared to answer the question, “Can we uniquely map 8X predicted genes to 12X predicted genes?” The results show that while the assemblies and gene structure predictions are too different to make a complete mapping between them, most genes (18,725) showed a one-to-one relationship between 8X predicted genes and the last version of 12X predicted genes. In addition, reshuffled genomic sequence structures appeared. These highlight regions of the genome where the gene predictions need to be taken with caution. Based on the new grapevine gene functional annotation and in-depth functional categorization, twenty eight new molecular networks have been created for VitisNet while the existing networks were updated. Conclusions The outcomes of this study provide a functional annotation of the 12X genes, an update of VitisNet, the system of the grapevine molecular networks, and a new functional categorization of genes. Data are available at the VitisNet website (http://www.sdstate.edu/ps/research/vitis/pathways.cfm). PMID:22554261

  19. Integrated Network Analysis Identifies Fight-Club Nodes as a Class of Hubs Encompassing Key Putative Switch Genes That Induce Major Transcriptome Reprogramming during Grapevine Development[W][OPEN

    PubMed Central

    Palumbo, Maria Concetta; Zenoni, Sara; Fasoli, Marianna; Massonnet, Mélanie; Farina, Lorenzo; Castiglione, Filippo; Pezzotti, Mario; Paci, Paola

    2014-01-01

    We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named “fight-club hubs” characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named “switch genes” was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops. PMID:25490918

  20. Thermal thresholds as predictors of seed dormancy release and germination timing: altitude-related risks from climate warming for the wild grapevine Vitis vinifera subsp. sylvestris.

    PubMed

    Orrù, Martino; Mattana, Efisio; Pritchard, Hugh W; Bacchetta, Gianluigi

    2012-12-01

    The importance of thermal thresholds for predicting seed dormancy release and germination timing under the present climate conditions and simulated climate change scenarios was investigated. In particular, Vitis vinifera subsp. sylvestris was investigated in four Sardinian populations over the full altitudinal range of the species (from approx. 100 to 800 m a.s.l). Dried and fresh seeds from each population were incubated in the light at a range of temperatures (10-25 and 25/10 °C), without any pre-treatment and after a warm (3 months at 25 °C) or a cold (3 months at 5 °C) stratification. A thermal time approach was then applied to the germination results for dried seeds and the seed responses were modelled according to the present climate conditions and two simulated scenarios of the Intergovernmental Panel on Climate Change (IPCC): B1 (+1·8 °C) and A2 (+3·4 °C). Cold stratification released physiological dormancy, while very few seeds germinated without treatments or after warm stratification. Fresh, cold-stratified seeds germinated significantly better (>80 %) at temperatures ≥20 °C than at lower temperatures. A base temperature for germination (T(b)) of 9·0-11·3 °C and a thermal time requirement for 50 % of germination (θ(50)) ranging from 33·6 °Cd to 68·6 °Cd were identified for non-dormant cold-stratified seeds, depending on the populations. This complex combination of thermal requirements for dormancy release and germination allowed prediction of field emergence from March to May under the present climatic conditions for the investigated populations. The thermal thresholds for seed germination identified in this study (T(b) and θ(50)) explained the differences in seed germination detected among populations. Under the two simulated IPCC scenarios, an altitude-related risk from climate warming is identified, with lowland populations being more threatened due to a compromised seed dormancy release and a narrowed seed germination window.

  1. Deep sequencing analysis of viral short RNAs from an infected Pinot Noir grapevine.

    PubMed

    Pantaleo, Vitantonio; Saldarelli, Pasquale; Miozzi, Laura; Giampetruzzi, Annalisa; Gisel, Andreas; Moxon, Simon; Dalmay, Tamas; Bisztray, György; Burgyan, Jozsef

    2010-12-05

    Virus-derived short interfering RNAs (vsiRNAs) isolated from grapevine V. vinifera Pinot Noir clone ENTAV 115 were analyzed by high-throughput sequencing using the Illumina Solexa platform. We identified and characterized vsiRNAs derived from grapevine field plants naturally infected with different viruses belonging to the genera Foveavirus, Maculavirus, Marafivirus and Nepovirus. These vsiRNAs were mainly of 21 and 22 nucleotides (nt) in size and were discontinuously distributed throughout Grapevine rupestris stem-pitting associated virus (GRSPaV) and Grapevine fleck virus (GFkV) genomic RNAs. Among the studied viruses, GRSPaV and GFkV vsiRNAs had a 5' terminal nucleotide bias, which differed from that described for experimental viral infections in Arabidopsis thaliana. VsiRNAs were found to originate from both genomic and antigenomic GRSPaV RNA strands, whereas with the grapevine tymoviruses GFkV and Grapevine Red Globe associated virus (GRGV), the large majority derived from the antigenomic viral strand, a feature never observed in other plant-virus interactions. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. The Effect of Vitis vinifera L. Juice on Serum Levels of Inhibin B, Sperm Count in Adult Male Rats

    PubMed Central

    Afzalzadeh, Mohammad Reza; Amirzargar, Ashraf; Varnamkhasti, Mohammad Kazemi; Ganjalidarani, Hadi

    2015-01-01

    Purpose Vitis vinifera is a species of Vitis that is native to the Mediterranean region, central Europe, and southwestern Asia, and has been used as a drug in traditional medicine. Traditional medicinal plants have been used for medical purposes with increasing effectiveness. It is important to identify drugs that inhibit spermatogenesis. Therefore, the present study aimed to investigate the effect of grape juice (GJ) on serum levels of inhibin B and sperm count in normal male rats. Materials and Methods Thirty-five adult male rats were randomly divided into five groups, each containing seven rats. Rats in the control group received 1 mL of normal saline over the course of the study. The experimental groups received GJ (100, 200, 400, and 1,600 mg/kg, orally, for 35 days consecutively). At the end of the treatment period, fertility indices were measured, including body weight difference, sex organ weight, sperm motility and count, epididymal sperm reserve, daily sperm production (DSP), and serum inhibin B levels. Results We found that GJ reduces body weight difference, was associated with decreased sperm motility and count in all treatment groups (p≤0.05 and p≤0.001, respectively). Moreover, DSP was significantly decreased in all treatment groups compared to the control group (p≤0.05), except in the group receiving 100 mg/kg of GJ. Inhibin B levels were significantly decreased in all treatment groups (p≤0.05). Conclusions The results of our study suggest that GJ in all doses, but especially in higher doses, may decrease fertility in male rats. PMID:26331128

  3. Estimation of the base temperature and growth phase duration in terms of thermal time for four grapevine cultivars

    NASA Astrophysics Data System (ADS)

    Zapata, D.; Salazar, M.; Chaves, B.; Keller, M.; Hoogenboom, G.

    2015-12-01

    Thermal time models have been used to predict the development of many different species, including grapevine ( Vitis vinifera L.). These models normally assume that there is a linear relationship between temperature and plant development. The goal of this study was to estimate the base temperature and duration in terms of thermal time for predicting veraison for four grapevine cultivars. Historical phenological data for four cultivars that were collected in the Pacific Northwest were used to develop the thermal time model. Base temperatures ( T b) of 0 and 10 °C and the best estimated T b using three different methods were evaluated for predicting veraison in grapevine. Thermal time requirements for each individual cultivar were evaluated through analysis of variance, and means were compared using the Fisher's test. The methods that were applied to estimate T b for the development of wine grapes included the least standard deviation in heat units, the regression coefficient, and the development rate method. The estimated T b varied among methods and cultivars. The development rate method provided the lowest T b values for all cultivars. For the three methods, Chardonnay had the lowest T b ranging from 8.7 to 10.7 °C, while the highest T b values were obtained for Riesling and Cabernet Sauvignon with 11.8 and 12.8 °C, respectively. Thermal time also differed among cultivars, when either the fixed or estimated T b was used. Predictions of the beginning of ripening with the estimated temperature resulted in the lowest variation in real days when compared with predictions using T b = 0 or 10 °C, regardless of the method that was used to estimate the T b.

  4. The effect of methyl jasmonate and light irradiation treatments on the stilbenoid biosynthetic pathway in Vitis vinifera cell suspension cultures.

    PubMed

    Andi, Seyed Ali; Gholami, Mansour; Ford, Christopher M

    2018-04-01

    Grape stilbenes are a well-known family of plant polyphenolics that have been confirmed to have many biological activities in relation to health benefits. In the present study, we investigated the effect of methyl jasmonate (MeJA) elicitor at four different concentrations (25, 50, 100 and 200 μM) in combination or not with high-level light irradiation (10,000 LUX) on a cell line obtained from the pulp of Vitis vinifera cv. Shahani. Our results showed that the stilbene synthesis pathway is inhibited by high-light conditions. A concentration of 50 μM MeJA was optimum for efficient production and high accumulation of total phenolics and total flavonoids as well as total stilbenoids. Furthermore, we showed that there is a significant negative correlation between the production of these metabolites and cell growth. These data provide valuable information for the future scale-up of cell cultures for the production of these very high value compounds in bioreactor system.

  5. Inhibition of local effects of Indian Daboia/Vipera russelli venom by the methanolic extract of grape (Vitis vinifera L.) seeds.

    PubMed

    Mahadeswaraswamy, Y H; Devaraja, S; Kumar, M S; Goutham, Y N J; Kemparaju, K

    2009-04-01

    Although anti-venom therapy is available for the treatment of fatal bite by snakes, it offers less or no protection against the local effects such as dermo- and myonecrosis, edema, hemorrhage and inflammation at the bitten region. The viper species are known for their violent local effects and such effects have been commonly treated with plant extracts without any scientific validation in rural India. In this investigation, the methanolic extract of grapes (Vitis vinifera L.) seed was studied against the Indian Daboia/Vipera russelli venom-induced local effects. The extract abolished the proteolytic and hyaluronidase activities and also efficiently neutralized the hemorrhage, edema-inducing and myonecrotic properties of the venom. In addition, the extract also inhibited partially the pro-coagulant activity of the venom and abolished the degradation of Aalpha and Bbeta chains of human fibrinogen. Thus, the extract possesses potent anti-snake venom property, especially against the local effects of viper bites.

  6. Hairy root culture optimization and resveratrol production from Vitis vinifera subsp. sylvesteris.

    PubMed

    Hosseini, Sayed Mehdi; Bahramnejad, Bahman; Douleti Baneh, Hamed; Emamifar, Aryo; Goodwin, Paul H

    2017-04-01

    Resveratrol is a polyphenolic compound produced in very low levels in grapes. To achieve high yield of resveratrol in wild grape, three Agrobacterium rhizogenes strains, Ar318, ArA4 and LBA9402, were used to induce hairy roots following infection of internodes, nodes or petioles of in vitro grown Vitis vinifera subsp. sylvesteris accessions W2 and W16, and cultivar Rasha. The effects of inoculation time, age of explants, bacterial concentration and co-cultivation times were examined on the efficiency of the production of hairy roots. Strains Ar318, ArA4 and LBA9402 all induced hairy roots in the tested genotypes, but the efficiency of ArA4 strain was higher than the other strains. The highest hairy root production was with using internodes as explants. The transformation of hairy roots lines was confirmed by PCR detection of rolB gene. Half Murashige and Skoog (MS) medium was better for biomass production compared with MS medium. HPLC analysis of resveratrol production in the hairy root cultures showed that all the genotypes produced higher amounts of resveratrol than control roots. The highest amount of resveratrol was produced from W16 internode cultures, which was 31-fold higher than that of control root. Furthermore, TLC analysis showed that treatments of hairy roots with sodium acetate and jasmonate elevated resveratrol levels both in hairy root tissue and excreted into the half MS medium. These results demonstrate that endogenous and exogenous factors can affect resveratrol production in hairy root culture of grape, and this strategy could be used to increase low resveratrol production in grapes.

  7. Profiling monoterpenol glycoconjugation in Vitis vinifera L. cv. Muscat of Alexandria using a novel putative compound database approach, high resolution mass spectrometry and collision induced dissociation fragmentation analysis.

    PubMed

    Hjelmeland, Anna K; Zweigenbaum, Jerry; Ebeler, Susan E

    2015-08-05

    In this work we present a novel approach for the identification of plant metabolites using ultrahigh performance liquid chromatography coupled to accurate mass time-of-flight mass spectrometry. The workflow involves developing an in-house compound database consisting of exact masses of previously identified as well as putative compounds. The database is used to screen accurate mass spectrometry (MS) data to identify possible compound matches. Subsequent tandem MS data is acquired for possible matches and used for structural elucidation. The methodology is applied to profile monoterpene glycosides in Vitis vinifera cv. Muscat of Alexandria grape berries over three developmental stages. Monoterpenes are a subclass of terpenes, the largest class of plant secondary metabolites, and are found in two major forms in the plant, "bound" to one or more sugar moieties or "free" of said sugar moieties. In the free form, monoterpenes are noted for their fragrance and play important roles in plant defense and as attractants for pollinators. However, glycoconjugation renders these compounds odorless, and it is this form that the plant uses for monoterpene storage. In order to gain insight into monoterpene biochemistry and their fate in the plant an analysis of intact glycosides is essential. Eighteen monoterpene glycosides were identified including a monoterpene trisaccharide glycoside, which is tentatively identified here for this first time in any plant. Additionally, while previous studies have identified monoterpene malonylated glucosides in other grapevine tissue, we tentatively identify them for the first time in grape berries. This analytical approach can be readily applied to other plants and the workflow approach can also be used for other classes of compounds. This approach, in general, provides researchers with data to support the identification of putative compounds, which is especially useful when no standard is available. Copyright © 2015 Elsevier B.V. All rights

  8. Water productivity, yield, and berry composition in sustained versus regulated deficit irrigation of Merlot grapevines

    USDA-ARS?s Scientific Manuscript database

    The wine grape cultivar Merlot (Vitis vinifera L.) was irrigated at incremental fractions of estimated crop evapotranspiration or a regulated deficit (RDI) regime to identify which practice best optimized water productivity and berry composition without compromising yield. Three severities of susta...

  9. Exogenous Applications of Brassinosteroids Improve Color of Red Table Grape (Vitis vinifera L. Cv. “Redglobe”) Berries

    PubMed Central

    Vergara, Alexis E.; Díaz, Katy; Carvajal, Rodrigo; Espinoza, Luis; Alcalde, José A.; Pérez-Donoso, Alonso G.

    2018-01-01

    Color and other quality parameters of “Redglobe” grape (Vitis vinifera L.) berries were evaluated after treatment with brassinosteroid (BR) analogs. Three BRs analogs (24-epibrassinolide, Triol, or Lactone) were applied at three concentrations (0.0, 0.4, or 0.8 mg⋅L-1), at the onset of veraison. A commercial formulation (B-2000®) was also applied, at a recommended rate of 0.06 mg⋅L-1. The tested BR analogs were effective improving berry color (evaluated as color index for red grapes, CIRG), increasing the levels of soluble solids and anthocyanins, and changing the types of anthocyanins present without altering other quality and yield parameters. The effects of BR analogs on color enhancement could be explained by an increase in soluble solids content and/or anthocyanin content. Treatment with 24-epibrassinolide (at 0.4 mg⋅L-1) or the commercial formulation tended to favor the production of dihydroxylated anthocyanins, which are responsible for the red and pink colors of grape berries. Results indicate that the use of BRs constitutes a potential tool in the production of table grapes. This is the first report of this enhancement effect in a productive context. PMID:29681907

  10. Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes

    PubMed Central

    2012-01-01

    Background Downy mildew, caused by Plasmopara viticola, is one of the most severe diseases of grapevine and is commonly controlled by fungicide treatments. The beneficial microorganism Trichoderma harzianum T39 (T39) can induce resistance to downy mildew, although the molecular events associated with this process have not yet been elucidated in grapevine. A next generation RNA sequencing (RNA-Seq) approach was used to study global transcriptional changes associated with resistance induced by T39 in Vitis vinifera Pinot Noir leaves. The long-term aim was to develop strategies to optimize the use of this agent for downy mildew control. Results More than 14.8 million paired-end reads were obtained for each biological replicate of T39-treated and control leaf samples collected before and 24 h after P. viticola inoculation. RNA-Seq analysis resulted in the identification of 7,024 differentially expressed genes, highlighting the complex transcriptional reprogramming of grapevine leaves during resistance induction and in response to pathogen inoculation. Our data show that T39 has a dual effect: it directly modulates genes related to the microbial recognition machinery, and it enhances the expression of defence-related processes after pathogen inoculation. Whereas several genes were commonly affected by P. viticola in control and T39-treated plants, opposing modulation of genes related to responses to stress and protein metabolism was found. T39-induced resistance partially inhibited some disease-related processes and specifically activated defence responses after P. viticola inoculation, causing a significant reduction of downy mildew symptoms. Conclusions The global transcriptional analysis revealed that defence processes known to be implicated in the reaction of resistant genotypes to downy mildew were partially activated by T39-induced resistance in susceptible grapevines. Genes identified in this work are an important source of markers for selecting novel

  11. Genome wide transcriptional profile analysis of Vitis amurensis in response to cold stress

    USDA-ARS?s Scientific Manuscript database

    Grape is one of the most important fruit crops worldwide and is cultivated on all of the continents except Antarctica. However, low temperatures can limit the geographical locations and productivity of grapes. Vitis amurensis is a wild grapevine species with remarkable cold-tolerance, exceeding th...

  12. Argentinean cultivars of Vitis vinifera grow better than European ones when cultured in vitro under salinity.

    PubMed

    Cavagnaro, Juan B; Ponce, María T; Guzmán, Javier; Cirrincione, Miguel A

    2006-04-01

    Argentinean Vitis vinifera cultivars although originated from Europe, have clear ampelographic and genotypic differences as compared with the European cultivars currently used in wine making. In vitro evaluation of salt tolerance has been used in many species. Our hypothesis was that Argentinean cultivars are more tolerant to salinity than European ones. Three European cultivars, Malbec, Cabernet Sauvignon and Chardonnay and four Argentincan cultivars, Cereza, Criolla Chica, Pedro Gimcnez and Torrontes Riojano were tested by in vitro culture. Treatments included: 1) Control, 2) 60 mEq/L of a mixture of three parts of NaCl and one part of CaCl2 and 3) 90 mEq/L of the salt mixture. Results from two experiments (I and II) are reported. No differences were found in plant survival, expressed as % of the respective control, among cultivars. Leaf area, leaf, stem and total dry matter (DM) in Experiment I and leaf area, leaf number and leaf, stem, root and total DM in Experiment II, were higher in Argentinean cultivars than in European ones. We conclude that Argentinean cultivars show better performance in growing under salinity, especially in the highest salt concentration. Differences among cultivars, inside each group, were found for most of the measured variables.

  13. Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa

    PubMed Central

    Le Cunff, Loïc; Fournier-Level, Alexandre; Laucou, Valérie; Vezzulli, Silvia; Lacombe, Thierry; Adam-Blondon, Anne-Françoise; Boursiquot, Jean-Michel; This, Patrice

    2008-01-01

    Background The first high quality draft of the grape genome sequence has just been published. This is a critical step in accessing all the genes of this species and increases the chances of exploiting the natural genetic diversity through association genetics. However, our basic knowledge of the extent of allelic variation within the species is still not sufficient. Towards this goal, we constructed nested genetic core collections (G-cores) to capture the simple sequence repeat (SSR) diversity of the grape cultivated compartment (Vitis vinifera L. subsp. sativa) from the world's largest germplasm collection (Domaine de Vassal, INRA Hérault, France), containing 2262 unique genotypes. Results Sub-samples of 12, 24, 48 and 92 varieties of V. vinifera L. were selected based on their genotypes for 20 SSR markers using the M-strategy. They represent respectively 58%, 73%, 83% and 100% of total SSR diversity. The capture of allelic diversity was analyzed by sequencing three genes scattered throughout the genome on 233 individuals: 41 single nucleotide polymorphisms (SNPs) were identified using the G-92 core (one SNP for every 49 nucleotides) while only 25 were observed using a larger sample of 141 individuals selected on the basis of 50 morphological traits, thus demonstrating the reliability of the approach. Conclusion The G-12 and G-24 core-collections displayed respectively 78% and 88% of the SNPs respectively, and are therefore of great interest for SNP discovery studies. Furthermore, the nested genetic core collections satisfactorily reflected the geographic and the genetic diversity of grape, which are also of great interest for the study of gene evolution in this species. PMID:18384667

  14. Integrated network analysis identifies fight-club nodes as a class of hubs encompassing key putative switch genes that induce major transcriptome reprogramming during grapevine development.

    PubMed

    Palumbo, Maria Concetta; Zenoni, Sara; Fasoli, Marianna; Massonnet, Mélanie; Farina, Lorenzo; Castiglione, Filippo; Pezzotti, Mario; Paci, Paola

    2014-12-01

    We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named "fight-club hubs" characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named "switch genes" was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops. © 2014 American Society of Plant Biologists. All rights reserved.

  15. Combinatorial Regulation of Stilbene Synthase Genes by WRKY and MYB Transcription Factors in Grapevine (Vitis vinifera L.).

    PubMed

    Vannozzi, Alessandro; Wong, Darren Chern Jan; Höll, Janine; Hmmam, Ibrahim; Matus, José Tomás; Bogs, Jochen; Ziegler, Tobias; Dry, Ian; Barcaccia, Gianni; Lucchin, Margherita

    2018-05-01

    Stilbene synthase (STS) is the key enzyme leading to the biosynthesis of resveratrol. Recently we reported two R2R3-MYB transcription factor (TF) genes that regulate the stilbene biosynthetic pathway in grapevine: VviMYB14 and VviMYB15. These genes are strongly co-expressed with STS genes under a range of stress and developmental conditions, in agreement with the specific activation of STS promoters by these TFs. Genome-wide gene co-expression analysis using two separate transcriptome compendia based on microarray and RNA sequencing data revealed that WRKY TFs were the top TF family correlated with STS genes. On the basis of correlation frequency, four WRKY genes, namely VviWRKY03, VviWRKY24, VviWRKY43 and VviWRKY53, were further shortlisted and functionally validated. Expression analyses under both unstressed and stressed conditions, together with promoter-luciferase reporter assays, suggested different hierarchies for these TFs in the regulation of the stilbene biosynthetic pathway. In particular, VviWRKY24 seems to act as a singular effector in the activation of the VviSTS29 promoter, while VviWRKY03 acts through a combinatorial effect with VviMYB14, suggesting that these two regulators may interact at the protein level as previously reported in other species.

  16. Cloning, sequencing, purification, and crystal structure of Grenache (Vitis vinifera) polyphenol oxidase.

    PubMed

    Virador, Victoria M; Reyes Grajeda, Juan P; Blanco-Labra, Alejandro; Mendiola-Olaya, Elizabeth; Smith, Gary M; Moreno, Abel; Whitaker, John R

    2010-01-27

    The full-length cDNA sequence (P93622_VITVI) of polyphenol oxidase (PPO) cDNA from grape Vitis vinifera L., cv Grenache, was found to encode a translated protein of 607 amino acids with an expected molecular weight of ca. 67 kDa and a predicted pI of 6.83. The translated amino acid sequence was 99%, identical to that of a white grape berry PPO (1) (5 out of 607 amino acid potential sequence differences). The protein was purified from Grenache grape berries by using traditional methods, and it was crystallized with ammonium acetate by the hanging-drop vapor diffusion method. The crystals were orthorhombic, space group C222(1). The structure was obtained at 2.2 A resolution using synchrotron radiation using the 39 kDa isozyme of sweet potato PPO (PDB code: 1BT1 ) as a phase donor. The basic symmetry of the cell parameters (a, b, and c and alpha, beta, and gamma) as well as in the number of asymmetric units in the unit cell of the crystals of PPO, differed between the two proteins. The structures of the two enzymes are quite similar in overall fold, the location of the helix bundles at the core, and the active site in which three histidines bind each of the two catalytic copper ions, and one of the histidines is engaged in a thioether linkage with a cysteine residue. The possibility that the formation of the Cys-His thioether linkage constitutes the activation step is proposed. No evidence of phosphorylation or glycoslyation was found in the electron density map. The mass of the crystallized protein appears to be only 38.4 kDa, and the processing that occurs in the grape berry that leads to this smaller size is discussed.

  17. Reduction of Dihydrokaempferol by Vitis vinfera Dihydroflavonol 4-Reductase to Produce Orange Pelargonidin-Type Anthocyanins.

    PubMed

    Xie, Sha; Zhao, Ting; Zhang, Zhenwen; Meng, Jiangfei

    2018-04-04

    Vitis vinifera has been thought to be unable to produce pelargonidin-type anthocyanins because its dihydroflavonol 4-reductase (DFR) does not efficiently reduce dihydrokaempferol. However, in this study, pelargonidin 3- O-glucoside was detected in the skins of V. vinifera 'Pinot Noir', 'Cabernet Sauvignon', and 'Yan73', as well as in the flesh of 'Yan73' by HPLC-ESI-MS/MS. Additionally, pelargonidin 3- O-(6-acetyl)-glucoside was detected in 'Yan73' skin and flesh for the first time. To further confirm the presence of pelargonidin-type anthocyanins in these grape cultivars, their DFRs were cloned, expressed in Escherichia coli, and purified. An enzyme-activity analysis revealed that V. vinifera DFR can reduce dihydrokaempferol to produce leucopelargonidin, although it prefers dihydroquercetin and dihydromyricetin as substrates. Thus, the existence of a pelargonidin-based anthocyanin-biosynthetic pathway was confirmed in V. vinifera via mass-spectrometric and enzymatic methods and redirected anthocyanin biosynthesis in V. vinifera L. cultivars.

  18. Genomics Assisted Ancestry Deconvolution in Grape

    PubMed Central

    Sawler, Jason; Reisch, Bruce; Aradhya, Mallikarjuna K.; Prins, Bernard; Zhong, Gan-Yuan; Schwaninger, Heidi; Simon, Charles; Buckler, Edward; Myles, Sean

    2013-01-01

    The genus Vitis (the grapevine) is a group of highly diverse, diploid woody perennial vines consisting of approximately 60 species from across the northern hemisphere. It is the world’s most valuable horticultural crop with ~8 million hectares planted, most of which is processed into wine. To gain insights into the use of wild Vitis species during the past century of interspecific grape breeding and to provide a foundation for marker-assisted breeding programmes, we present a principal components analysis (PCA) based ancestry estimation method to calculate admixture proportions of hybrid grapes in the United States Department of Agriculture grape germplasm collection using genome-wide polymorphism data. We find that grape breeders have backcrossed to both the domesticated V. vinifera and wild Vitis species and that reasonably accurate genome-wide ancestry estimation can be performed on interspecific Vitis hybrids using a panel of fewer than 50 ancestry informative markers (AIMs). We compare measures of ancestry informativeness used in selecting SNP panels for two-way admixture estimation, and verify the accuracy of our method on simulated populations of admixed offspring. Our method of ancestry deconvolution provides a first step towards selection at the seed or seedling stage for desirable admixture profiles, which will facilitate marker-assisted breeding that aims to introgress traits from wild Vitis species while retaining the desirable characteristics of elite V. vinifera cultivars. PMID:24244717

  19. A new leafminer on grapevine and Rhoicissus (Vitaceae) in South Africa within an expanded generic concept of Holocacista (Insecta, Lepidoptera, Heliozelidae)

    PubMed Central

    van Nieukerken, Erik J.; Geertsema, Henk

    2015-01-01

    Abstract A grapevine leafminer found recently in table grape orchards and vineyards in the Paarl region (Western Cape, South Africa) is described as Holocacista capensis sp. n. It has also been found on native Rhoicissus digitata and bred on that species in the laboratory. It is closely related to Holocacista salutans (Meyrick, 1921), comb. n. (from Antispila), described from Durban in KwaZulu-Natal, but widespread in southern Africa and a native leafminer of various Vitaceae: Rhoicissus tomentosa, Rhoicissus digitata, Rhoicissus tridentata and Cissus cornifolia. Holocacista capensis has been found on Vitis vinifera both in Gauteng and Western Cape, the earliest record being from 1950 in Pretoria. The initial host shift from native Vitaceae to Vitis must have occurred much earlier. The species is sometimes present in high densities, but hitherto no sizeable damage to the crops has been noted. The genus Holocacista Walsingham & Durrant, 1909, previously known from the single European grapevine leafminer Holocacista rivillei (Stainton, 1855), is expanded and redescribed and for the first time reported from Africa, East and South-East Asia and Australia. It comprises seven named species and at least 15 unnamed species. The following species are also recombined with Holocacista: transferred from Antispilina: South-African Holocacista varii (Mey, 2011), comb. n., feeding on Pelargonium, transferred from Antispila: the Indian species Holocacista micrarcha (Meyrick, 1926), comb. n. and Holocacista pariodelta (Meyrick, 1929), comb. n., both feeding on Lannea coromandelica, and Holocacista selastis (Meyrick, 1926), comb. n. on Psychotria dalzelii. We also remove the following from Antispila: Heliozela anna (Fletcher, 1920), comb. n. and Heliozela argyrozona (Meyrick, 1918), comb. n., whereas the following Indian Vitaceae feeding species are confirmed to belong in Antispila s. str.: Antispila argostoma Meyrick, 1916 and Antispila aristarcha Meyrick, 1916. Holocacista

  20. Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps

    USDA-ARS?s Scientific Manuscript database

    Quantitative trait locus (QTL) identification in perennial fruit crops is impeded largely by their lengthy generation time, resulting in costly and labor-intensive maintenance of breeding programs. In a grapevine (genus Vitis) breeding program, although experimental populations are typically unrepli...

  1. Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps

    USDA-ARS?s Scientific Manuscript database

    Quantitative trait locus (QTL) identification in perennial fruit crops is impeded largely by their lengthy generation time, resulting in costly and labor-intensive maintenance of breeding programs. In a grapevine (genus Vitis) breeding program, although experimental families are typically unreplicat...

  2. Genetic mechanisms underlying the methylation level of anthocyanins in grape (Vitis vinifera L.)

    PubMed Central

    2011-01-01

    Background Plant color variation is due not only to the global pigment concentration but also to the proportion of different types of pigment. Variation in the color spectrum may arise from secondary modifications, such as hydroxylation and methylation, affecting the chromatic properties of pigments. In grapes (Vitis vinifera L.), the level of methylation modifies the stability and reactivity of anthocyanin, which directly influence the color of the berry. Anthocyanin methylation, as a complex trait, is controlled by multiple molecular factors likely to involve multiple regulatory steps. Results In a Syrah × Grenache progeny, two QTLs were detected for variation in level of anthocyanin methylation. The first one, explaining up to 27% of variance, colocalized with a cluster of Myb-type transcription factor genes. The second one, explaining up to 20% of variance, colocalized with a cluster of O-methyltransferase coding genes (AOMT). In a collection of 32 unrelated cultivars, MybA and AOMT expression profiles correlated with the level of methylated anthocyanin. In addition, the newly characterized AOMT2 gene presented two SNPs associated with methylation level. These mutations, probably leading to a structural change of the AOMT2 protein significantly affected the enzyme specific catalytic efficiency for the 3'-O-methylation of delphinidin 3-glucoside. Conclusion We demonstrated that variation in methylated anthocyanin accumulation is susceptible to involve both transcriptional regulation and structural variation. We report here the identification of novel AOMT variants likely to cause methylated anthocyanin variation. The integration of QTL mapping and molecular approaches enabled a better understanding of how variation in gene expression and catalytic efficiency of the resulting enzyme may influence the grape anthocyanin profile. PMID:22171701

  3. Efficacy and Mode of Action of Kaolin in the Control of Empoasca vitis and Zygina rhamni (Hemiptera: Cicadellidae) in Vineyards.

    PubMed

    Tacoli, Federico; Pavan, Francesco; Cargnus, Elena; Tilatti, Elisabetta; Pozzebon, Alberto; Zandigiacomo, Pietro

    2017-06-01

    During 2015, the influence of kaolin applications and bunch-zone leaf removal on the grapevine leafhoppers, Empoasca vitis (Göthe) and Zygina rhamni Ferrari, and their egg parasitoids (Anagrus spp.) was tested in four vineyards of northeastern Italy. The mode of action of kaolin on E. vitis nymphs was also investigated in the laboratory. In the treated plots, kaolin was applied at a rate of 2% w/v on two occasions separated by 5-6 d. In two vineyards, it was applied either on the whole canopy or the bunch zone at the beginning of the E. vitis second generation (preventive criterion), and in the other two vineyards, it was applied to the whole canopy at the peak of the E. vitis third generation (curative criterion). Both the preventive and curative kaolin applications caused a significant decrease in the populations of E. vitis and Z. rhamni nymphs. The effect of the preventive applications was persistent and was associated with reduced E. vitis leaf symptoms. Kaolin did not influence the activity of Anagrus spp. Bunch-zone leaf removal did not affect leafhopper populations. Laboratory experiments showed that inhibition of feeding was the main mode of action through which kaolin affected nymph populations. Based on these outcomes, kaolin could be a valuable alternative to synthetic insecticides in controlling grapevine leafhoppers. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Abscisic Acid Down-Regulates Hydraulic Conductance of Grapevine Leaves in Isohydric Genotypes Only1[OPEN

    PubMed Central

    Masclef, Diane; Lebon, Eric; Christophe, Angélique

    2017-01-01

    Plants evolved different strategies to cope with water stress. While isohydric species maintain their midday leaf water potential (ΨM) under soil water deficit by closing their stomata, anisohydric species maintain higher stomatal aperture and exhibit substantial reductions in ΨM. It was hypothesized that isohydry is related to a locally higher sensitivity of stomata to the drought-hormone abscisic acid (ABA). Interestingly, recent lines of evidence in Arabidopsis (Arabidopsis thaliana) suggested that stomatal responsiveness is also controlled by an ABA action on leaf water supply upstream from stomata. Here, we tested the possibility in grapevine (Vitis vinifera) that different genotypes ranging from near isohydric to more anisohydric may have different sensitivities in these ABA responses. Measurements on whole plants in drought conditions were combined with assays on detached leaves fed with ABA. Two different methods consistently showed that leaf hydraulic conductance (Kleaf) was down-regulated by exogenous ABA, with strong variations depending on the genotype. Importantly, variation between isohydry and anisohydry correlated with Kleaf sensitivity to ABA, with Kleaf in the most anisohydric genotypes being unresponsive to the hormone. We propose that the observed response of Kleaf to ABA may be part of the overall ABA regulation of leaf water status. PMID:28899961

  5. Topical grape (Vitis vinifera) seed extract promotes repair of full thickness wound in rabbit.

    PubMed

    Hemmati, Ali A; Aghel, Nasrin; Rashidi, Iran; Gholampur-Aghdami, Ali

    2011-10-01

    In recent years, oxidative stress and free radicals have been implicated in impaired wound healing. Grape (Vitis vinifera) seed extract (GSE) possesses anti-inflammatory and antioxidant properties. The present study was undertaken to assess the potential activity of grape seed hydroalcoholic extract in wound healing in rabbits. Rabbits of either sex were subjected to a 20 × 20 mm square excision made over the skin of the back. The animals were randomly divided into seven experimental groups, as negative and positive control, eucerin and treatments. Negative control group did not receive any treatment. Positive control and eucerin groups received phenytoin cream (1%) and topical eucerin, respectively, twice a day from the beginning of experiments to complete wound closure. Treatment groups were treated topically by cream of GSE (2, 5, 10 and 70% w/w) in eucerin base, twice daily. For evaluation of the percentage of wound healing, area of the wound was measured daily. Histological studies were performed on the 7th and 15th days of treatments. After complete healing, hydroxyproline content and tensile strength measurement of tissue samples were done. Results showed that there were statistically significant differences between GSE treatments groups and eucerin animals (P < 0·05) in most of the days. Rabbits treated with 2% GSE had best results (completed healing in 13 days, higher hydroxyproline content and higher tissue resistance). We concluded that the extract of 2% GSE administered topically has a good potential to promote wound healing in wound model of rabbits. © 2011 The Authors. © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.

  6. Phenolics and antioxidant capacity of table grape (Vitis vinifera L.) cultivars grown in Chile.

    PubMed

    Lutz, Mariane; Jorquera, Katterin; Cancino, Beatriz; Ruby, Rene; Henriquez, Carolina

    2011-09-01

    Grapes (Vitis vinifera L.) possess health-promoting effects attributed to their supply of a wide variety of bioactive phenolics. Juice and skin fractions of 4 varieties of table grapes: Red Globe, Crimson Seedless, Autumn Royal, and Ribier were prepared to determine and compare their total phenolics content, antioxidant capacity (DPPH, FRAP, and ORAC), anthocyanins, and specific phenolics (caffeic acid, gallic acid, resveratrol, and catechin) content, since a series of positive health benefits are expected from the intake of any of these fractions. Higher amounts of total phenolics and antioxidant capacity were observed in the skin fractions (P < 0.05). Blue grapes (Autumn Royal and Ribier) exhibited higher phenolics content and antioxidant capacity (P < 0.05) than red grapes. The most abundant phenolic compound observed was catechin (P < 0.05). Significant correlations between the antioxidant capacity and total phenolics were observed in grape juice and skin fractions. Autumn Royal juice provides a very high amount of phenolics, anthocyanins, and exhibits the highest antioxidant capacity, offering the best health promoting properties compared with the other grape varieties studied. Grapes possess health-promoting effects attributed to their supply of a wide variety of bioactive phenolics. Grape juice made with blue grapes (Autumn Royal, Ribier) exhibit higher phenolics content and antioxidant capacity than juice elaborated with red grapes (Red Globe, Crimson Seedless). The skin is a good source of phenolics and has a high antioxidant capacity. Specific health-promoting phenolics are more abundant in blue grapes, mainly in their skin fraction, which should not be discarded. © 2011 Institute of Food Technologists®

  7. Cell Wall-Degrading Enzymes Enlarge the Pore Size of Intervessel Pit Membranes in Healthy and Xylella fastidiosa-Infected Grapevines1[C][W][OA

    PubMed Central

    Pérez-Donoso, Alonso G.; Sun, Qiang; Roper, M. Caroline; Greve, L. Carl; Kirkpatrick, Bruce; Labavitch, John M.

    2010-01-01

    The pit membrane (PM) is a primary cell wall barrier that separates adjacent xylem water conduits, limiting the spread of xylem-localized pathogens and air embolisms from one conduit to the next. This paper provides a characterization of the size of the pores in the PMs of grapevine (Vitis vinifera). The PM porosity (PMP) of stems infected with the bacterium Xylella fastidiosa was compared with the PMP of healthy stems. Stems were infused with pressurized water and flow rates were determined; gold particles of known size were introduced with the water to assist in determining the size of PM pores. The effect of introducing trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid (CDTA), oligogalacturonides, and polygalacturonic acid into stems on water flux via the xylem was also measured. The possibility that cell wall-degrading enzymes could alter the pore sizes, thus facilitating the ability of X. fastidiosa to cross the PMs, was tested. Two cell wall-degrading enzymes likely to be produced by X. fastidiosa (polygalactuoronase and endo-1,4- β -glucanase) were infused into stems, and particle passage tests were performed to check for changes in PMP. Scanning electron microscopy of control and enzyme-infused stem segments revealed that the combination of enzymes opened holes in PMs, probably explaining enzyme impacts on PMP and how a small X. fastidiosa population, introduced into grapevines by insect vectors, can multiply and spread throughout the vine and cause Pierce's disease. PMID:20107028

  8. Two dominant loci determine resistance to Phomopsis cane lesions in F1 families of hybrid grapevines.

    PubMed

    Barba, Paola; Lillis, Jacquelyn; Luce, R Stephen; Travadon, Renaud; Osier, Michael; Baumgartner, Kendra; Wilcox, Wayne F; Reisch, Bruce I; Cadle-Davidson, Lance

    2018-05-01

    Rapid characterization of novel NB-LRR-associated resistance to Phomopsis cane spot on grapevine using high-throughput sampling and low-coverage sequencing for genotyping, locus mapping and transcriptome analysis provides insights into genetic resistance to a hemibiotrophic fungus. Phomopsis cane and leaf spot, caused by the hemibiotrophic fungus Diaporthe ampelina (syn = Phomopsis viticola), reduces the productivity in grapevines. Host resistance was studied on three F 1 families derived from crosses involving resistant genotypes 'Horizon', Illinois 547-1, Vitis cinerea B9 and V. vinifera 'Chardonnay'. All families had progeny with extremely susceptible phenotypes, developing lesions on both dormant canes and maturing fruit clusters. Segregation of symptoms was observed under natural levels of inoculum in the field, while phenotypes on green shoots were confirmed under controlled inoculations in greenhouse. High-density genetic maps were used to localize novel qualitative resistance loci named Rda1 and Rda2 from V. cinerea B9 and 'Horizon', respectively. Co-linearity between reference genetic and physical maps allowed localization of Rda2 locus between 1.5 and 2.4 Mbp on chromosome 7, and Rda1 locus between 19.3 and 19.6 Mbp of chromosome 15, which spans a cluster of five NB-LRR genes. Further dissection of this locus was obtained by QTL mapping of gene expression values 14 h after inoculation across a subset of the 'Chardonnay' × V. cinerea B9 progeny. This provided evidence for the association between transcript levels of two of these NB-LRR genes with Rda1, with increased NB-LRR expression among susceptible progeny. In resistant parent V. cinerea B9, inoculation with D. ampelina was characterized by up-regulation of SA-associated genes and down-regulation of ethylene pathways, suggesting an R-gene-mediated response. With dominant effects associated with disease-free berries and minimal symptoms on canes, Rda1 and Rda2 are promising loci for grapevine

  9. Overexpression of VpPR10.1 by an efficient transformation method enhances downy mildew resistance in V. vinifera.

    PubMed

    Su, Hang; Jiao, Yun-Tong; Wang, Fang-Fang; Liu, Yue-E; Niu, Wei-Li; Liu, Guo-Tian; Xu, Yan

    2018-05-01

    Putrescine and spermidine increase the transformation efficiency of Vitis vinifera L. cv. Thompson seedless. Accumulation of VpPR10.1 in transgenic V. vinifera Thompson seedless, likely increases its resistance to downy mildew. A more efficient method is described for facilitating Agrobacterium-mediated transformation of Vitis vinifera L. cv. Thompson Seedless somatic embryogenesis using polyamines (PAs). The efficacies of putrescine, spermidine and spermine are identified at a range of concentrations (10 µM, 100 µM and 1 mM) added to the culture medium during somatic embryo growth. Putrescine (PUT) and spermidine (SPD) promote the recovery of proembryonic masses (PEM) and the development of somatic embryos (SE) after co-cultivation. Judging from the importance of the time-frame in genetic transformation, PAs added at the co-cultivation stage have a stronger effect than delayed selection treatments, which are superior to antibiotic treatments in the selection stage. Best embryogenic responses are with 1 mM PUT and 100 µM SPD added to the co-culture medium. Using the above method, a pathogenesis-related gene (VpPR10.1) from Chinese wild Vitis pseudoreticulata was transferred into Thompson Seedless for functional evaluation. The transgenic line, confirmed by western blot analysis, was inoculated with Plasmopara viticola to test for downy mildew resistance. Based on observed restrictions of hyphal growth and increases in H 2 O 2 accumulation in the transgenic plants, the accumulation of VpPR10.1 likely enhanced the transgenic plants resistance to downy mildew.

  10. Two dominant loci determine resistance to Phomopsis cane lesions in F1 families of hybrid grapevines

    USDA-ARS?s Scientific Manuscript database

    Phomopsis cane and leaf spot, caused by the hemibiotrophic fungus Diaporthe ampelina (syn = Phomopsis viticola), produces lesions on grapevine stems and berries, reducing productivity. Host resistance was studied on three F1 families derived from crosses involving ‘Horizon’, Illinois 547-1, Vitis ci...

  11. The Phenylpropanoid Pathway Is Controlled at Different Branches by a Set of R2R3-MYB C2 Repressors in Grapevine1

    PubMed Central

    Cavallini, Erika; Matus, José Tomás; Finezzo, Laura; Zenoni, Sara; Loyola, Rodrigo; Guzzo, Flavia; Schlechter, Rudolf; Ageorges, Agnès; Arce-Johnson, Patricio

    2015-01-01

    Because of the vast range of functions that phenylpropanoids possess, their synthesis requires precise spatiotemporal coordination throughout plant development and in response to the environment. The accumulation of these secondary metabolites is transcriptionally controlled by positive and negative regulators from the MYB and basic helix-loop-helix protein families. We characterized four grapevine (Vitis vinifera) R2R3-MYB proteins from the C2 repressor motif clade, all of which harbor the ethylene response factor-associated amphiphilic repression domain but differ in the presence of an additional TLLLFR repression motif found in the strong flavonoid repressor Arabidopsis (Arabidopsis thaliana) AtMYBL2. Constitutive expression of VvMYB4a and VvMYB4b in petunia (Petunia hybrida) repressed general phenylpropanoid biosynthetic genes and selectively reduced the amount of small-weight phenolic compounds. Conversely, transgenic petunia lines expressing VvMYBC2-L1 and VvMYBC2-L3 showed a severe reduction in petal anthocyanins and seed proanthocyanidins together with a higher pH of crude petal extracts. The distinct function of these regulators was further confirmed by transient expression in tobacco (Nicotiana benthamiana) leaves and grapevine plantlets. Finally, VvMYBC2-L3 was ectopically expressed in grapevine hairy roots, showing a reduction in proanthocyanidin content together with the down-regulation of structural and regulatory genes of the flavonoid pathway as revealed by a transcriptomic analysis. The physiological role of these repressors was inferred by combining the results of the functional analyses and their expression patterns in grapevine during development and in response to ultraviolet B radiation. Our results indicate that VvMYB4a and VvMYB4b may play a key role in negatively regulating the synthesis of small-weight phenolic compounds, whereas VvMYBC2-L1 and VvMYBC2-L3 may additionally fine tune flavonoid levels, balancing the inductive effects of

  12. Grapevine Plasticity in Response to an Altered Microclimate: Sauvignon Blanc Modulates Specific Metabolites in Response to Increased Berry Exposure1

    PubMed Central

    du Plessis, Kari; Jacobson, Dan A.

    2016-01-01

    In this study, the metabolic and physiological impacts of an altered microclimate on quality-associated primary and secondary metabolites in grape (Vitis vinifera) ‘Sauvignon Blanc’ berries was determined in a high-altitude vineyard. The leaf and lateral shoot removal in the bunch zones altered the microclimate by increasing the exposure of the berries. The physical parameters (berry diameter and weight), primary metabolites (sugars and organic acids), as well as bunch temperature and leaf water potential were predominantly not affected by the treatment. The increased exposure led to higher levels of specific carotenoids and volatile terpenoids in the exposed berries, with earlier berry stages reacting distinctly from the later developmental stages. Plastic/nonplastic metabolite responses could be further classified to identify metabolites that were developmentally controlled and/or responded to the treatment in a predictable fashion (assessed over two consecutive vintages). The study demonstrates that grapevine berries exhibit a degree of plasticity within their secondary metabolites and respond physiologically to the increased exposure by increasing metabolites with potential antioxidant activity. Taken together, the data provide evidence that the underlying physiological responses relate to the maintenance of stress pathways by modulating antioxidant molecules in the berries. PMID:26628747

  13. Unsaponifiable fraction isolated from grape (Vitis vinifera L.) seed oil attenuates oxidative and inflammatory responses in human primary monocytes.

    PubMed

    Millan-Linares, Maria C; Bermudez, Beatriz; Martin, Maria E; Muñoz, Ernesto; Abia, Rocio; Millan, Francisco; Muriana, Francisco J G; Montserrat-de la Paz, Sergio

    2018-04-25

    Grape (Vitis vinifera L.) seed has well-known potential for production of oil as a byproduct of winemaking and is a rich source of bioactive compounds. Herein, we report that the unsaponifiable fraction (UF) isolated from grape seed oil (GSO) possesses anti-oxidative and anti-inflammatory properties towards human primary monocytes. The UF isolated from GSO was phytochemically characterized by GC-MS and HPLC. Freshly obtained human monocytes were used to analyse the effects of GSOUF (10-100 μg mL-1) on oxidative and inflammatory responses using FACS analysis, RT-qPCR, and ELISA procedures. GSOUF skewed the monocyte plasticity towards the anti-inflammatory non-classical CD14+CD16++ monocytes and reduced the inflammatory competence of LPS-treated human primary monocytes diminishing TNF-α, IL-1β, and IL-6 gene expression and secretion. In addition, GSOUF showed a strong reactive oxygen species (ROS)-scavenging activity, reducing significantly nitrite levels with a significant decrease in Nos2 gene expression. Our results suggest that the UF isolated from GSO has significant potential for the management of inflammatory and oxidative conditions and offer novel benefits derived from the consumption of GSO in the prevention of inflammation-related diseases.

  14. A UDP-Glucose:Monoterpenol Glucosyltransferase Adds to the Chemical Diversity of the Grapevine Metabolome1[W

    PubMed Central

    Bönisch, Friedericke; Frotscher, Johanna; Stanitzek, Sarah; Rühl, Ernst; Wüst, Matthias; Bitz, Oliver; Schwab, Wilfried

    2014-01-01

    Terpenoids represent one of the major classes of natural products and serve different biological functions. In grape (Vitis vinifera), a large fraction of these compounds is present as nonvolatile terpene glycosides. We have extracted putative glycosyltransferase (GT) sequences from the grape genome database that show similarity to Arabidopsis (Arabidopsis thaliana) GTs whose encoded proteins glucosylate a diversity of terpenes. Spatial and temporal expression levels of the potential VvGT genes were determined in five different grapevine varieties. Heterologous expression and biochemical assays of candidate genes led to the identification of a UDP-glucose:monoterpenol β-d-glucosyltransferase (VvGT7). The VvGT7 gene was expressed in various tissues in accordance with monoterpenyl glucoside accumulation in grape cultivars. Twelve allelic VvGT7 genes were isolated from five cultivars, and their encoded proteins were biochemically analyzed. They varied in substrate preference and catalytic activity. Three amino acids, which corresponded to none of the determinants previously identified for other plant GTs, were found to be important for enzymatic catalysis. Site-specific mutagenesis along with the analysis of allelic proteins also revealed amino acids that impact catalytic activity and substrate tolerance. These results demonstrate that VvGT7 may contribute to the production of geranyl and neryl glucoside during grape ripening. PMID:24784757

  15. Identification of mildew resistance in wild and cultivated Central Asian grape germplasm

    PubMed Central

    2013-01-01

    Background Cultivated grapevines, Vitis vinifera subsp. sativa, evolved from their wild relative, V. vinifera subsp. sylvestris. They were domesticated in Central Asia in the absence of the powdery mildew fungus, Erysiphe necator, which is thought to have originated in North America. However, powdery mildew resistance has previously been discovered in two Central Asian cultivars and in Chinese Vitis species. Results A set of 380 unique genotypes were evaluated with data generated from 34 simple sequence repeat (SSR) markers. The set included 306 V. vinifera cultivars, 40 accessions of V. vinifera subsp. sylvestris, and 34 accessions of Vitis species from northern Pakistan, Afghanistan and China. Based on the presence of four SSR alleles previously identified as linked to the powdery mildew resistance locus, Ren1, 10 new mildew resistant genotypes were identified in the test set: eight were V. vinifera cultivars and two were V. vinifera subsp. sylvestris based on flower and seed morphology. Sequence comparison of a 620 bp region that includes the Ren1-linked allele (143 bp) of the co-segregating SSR marker SC8-0071-014, revealed that the ten newly identified genotypes have sequences that are essentially identical to the previously identified mildew resistant V. vinifera cultivars: ‘Kishmish vatkana’ and ‘Karadzhandal’. Kinship analysis determined that three of the newly identified powdery mildew resistant accessions had a relationship with ‘Kishmish vatkana’ and ‘Karadzhandal’, and that six were not related to any other accession in this study set. Clustering procedures assigned accessions into three groups: 1) Chinese species; 2) a mixed group of cultivated and wild V. vinifera; and 3) table grape cultivars, including nine of the powdery mildew resistant accessions. Gene flow was detected among the groups. Conclusions This study provides evidence that powdery mildew resistance is present in V. vinifera subsp. sylvestris, the dioecious wild

  16. Phenology, Canopy Aging and Seasonal Carbon Balance as Related to Delayed Winter Pruning of Vitis vinifera L. cv. Sangiovese Grapevines

    PubMed Central

    Gatti, Matteo; Pirez, Facundo J.; Chiari, Giorgio; Tombesi, Sergio; Palliotti, Alberto; Merli, Maria C.; Poni, Stefano

    2016-01-01

    Manipulating or shifting annual grapevine growing cycle to offset limitations imposed by global warming is a must today, and delayed winter pruning is a tool to achieve it. However, no information is available about its physiological background, especially in relation to modifications in canopy phenology, demography and seasonal carbon budget. Mechanistic hypothesis underlying this work was that very late winter pruning (LWP) can achieve significant postponement of phenological stages so that ripening might occur in a cooler period and, concurrently, ripening potential can be improved due to higher efficiency and prolonged longevity of the canopy. Variability in the dynamics of the annual cycle was created in mature potted cv. Sangiovese grapevines subjected to either standard winter pruning (SWP) or late and very late winter pruning (LWP, VLWP) performed when apical shoots on the unpruned canes were at the stage of 2 and 7 unfolded leaves. Vegetative growth, phenology and canopy net CO2 exchange (NCER) were followed throughout the season. Despite LWP and VLWP induced a bud-burst delay of 17 and 31 days vs. SWP, the delay was fully offset at harvest for LWP and was reduced to 6 days in VLWP. LWP showed notably higher canopy efficiency as shorter time needed to reach maximum NCER/leaf area (22 days vs. 34 in SWP), highest maximum NCER/leaf area (+37% as compared to SWP) and higher NCER/leaf area rates from veraison to end of season. As a result, seasonal cumulated carbon in LWP was 17% higher than SWP. A negative functional relationship was also established between amount of leaf area removed at winter pruning and yield per vine and berry number per cluster. Although retarded winter pruning was not able to postpone late-season phenological stages under the warm conditions of this study, it showed a remarkable potential to limit yield while improving grape quality, thereby fostering the hypothesis that it could be used to replace time-consuming and costly cluster

  17. Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine (Vitis amurensis L.) leaves.

    PubMed

    Luo, Hai-Bo; Ma, Ling; Xi, Hui-Feng; Duan, Wei; Li, Shao-Hua; Loescher, Wayne; Wang, Jun-Fang; Wang, Li-Jun

    2011-01-01

    The electron transport chain, Rubisco and stomatal conductance are important in photosynthesis. Little is known about their combined responses to heat treatment at different temperatures and following recovery in grapevines (Vitis spp.) which are often grown in climates with high temperatures. The electron transport function of photosystem II, the activation state of Rubisco and the influence of stomatal behavior were investigated in grapevine leaves during heat treatments and following recovery. High temperature treatments included 35, 40 and 45°C, with 25°C as the control and recovery temperature. Heat treatment at 35°C did not significantly (P>0.05) inhibit net photosynthetic rate (P(n)). However, with treatments at 40 and 45°C, P(n) was decreased, accompanied by an increase in substomatal CO(2) concentration (C(i)), decreases in stomatal conductance (g(s)) and the activation state of Rubisco, and inhibition of the donor side and the reaction center of PSII. The acceptor side of PSII was inhibited at 45°C but not at 40°C. When grape leaves recovered following heat treatment, P(n), g(s) and the activation state of Rubisco also increased, and the donor side and the reaction center of PSII recovered. The increase in P(n) during the recovery period following the second 45°C stress was slower than that following the 40°C stress, and these increases corresponded to the donor side of PSII and the activation state of Rubisco. Heat treatment at 35°C did not significantly (P>0.05) influence photosynthesis. The decrease of P(n) in grape leaves exposed to more severe heat stress (40 or 45°C) was mainly attributed to three factors: the activation state of Rubisco, the donor side and the reaction center of PSII. However, the increase of P(n) in grape leaves following heat stress was also associated with a stomatal response. The acceptor side of PSII in grape leaves was responsive but less sensitive to heat stress.

  18. Evaluation of powdery mildew-resistance of grape germplasm and rapid amplified polymorphic DNA markers associated with the resistant trait in Chinese wild Vitis.

    PubMed

    Zhang, J; Zhang, Y; Yu, H; Wang, Y

    2014-05-09

    The resistance of wild Vitis germplasm, including Chinese and American wild Vitis and Vitis vinifera cultivars, to powdery mildew (Uncinula necator Burr.) was evaluated for two consecutive years under natural conditions. Most of the Chinese and North American species displayed a resistant phenotype, whereas all of the European species were highly susceptible. The Alachua and Conquistador accessions of Vitis rotundifolia species, which originated in North America, were immune to the disease, while Baihe-35-1, one of the accessions of Vitis pseudoreticulata, showed the strongest resistance among all Chinese accessions evaluated. Three rapid amplified polymorphic DNA (RAPD) markers, OPW02-1756, OPO11-964, and OPY13-661, were obtained after screening 520 random primers among various germplasm, and these markers were found to be associated with powdery mildew resistance in Baihe-35-1 and in some Chinese species, but not in any European species. Analysis of F₁ and F₂ progenies of a cross between resistant Baihe-35-1 and susceptible Carignane (V. vinifera) revealed that the three RAPD markers were linked to the powdery resistant trait in Baihe-35-1 plants. Potential applications of the identified RAPD markers for gene mapping, marker-assisted selection, and breeding were investigated in 168 F₂ progenies of the same cross. Characterization of the resistant phenotype of the selected F₂ seedlings for breeding a new disease-resistant grape cultivar is in progress.

  19. Assessment of (poly)phenols in grape (Vitis vinifera L.) stems by using food/pharma industry compatible solvents and Response Surface Methodology.

    PubMed

    Domínguez-Perles, R; Teixeira, A I; Rosa, E; Barros, A I

    2014-12-01

    A Box-Behnken design of Response Surface Methodology (RSM) was conducted to analyse the effect of time (10-30 min), temperature (25-95°C), and solvents concentration (5-90%) on the extraction of total phenolics, flavonoids, ortho-diphenols, and anthocyanins as well as to assess the ABTS(+) scavenging capacity, which were considered as response variables. Values coefficients of determination (R(2)), ranging from 0.903 to 0.996, fitted for describing efficient extraction of bioactive (poly)phenols and antioxidant activity. The recorded data allowed to establish the optimal extraction conditions at 23.0 min, 95.0°C, and 57.9% of food-quality ethanol/water for Vitis vinifera L. var. 'Viosinho' (white variety), and 23.4 min, 84.2°C, and 63.8% for var. 'Touriga Nacional' (red variety). The achievement of optimal extraction conditions of phenolics from grape stems using solvents compatible with further uses in food/pharma industries demonstrated that RSM constitutes a powerful tool for deriving optimal conditions for extraction of antioxidant phenolic compounds from grape stems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 2. Wine sensory properties and consumer preference.

    PubMed

    Bindon, Keren; Holt, Helen; Williamson, Patricia O; Varela, Cristian; Herderich, Markus; Francis, I Leigh

    2014-07-01

    A series of five Vitis vinifera L. cv Cabernet Sauvignon wines were produced from sequentially-harvested grape parcels, with alcohol concentrations between 12% v/v and 15.5% v/v. A multidisciplinary approach, combining sensory analysis, consumer testing and detailed chemical analysis was used to better define the relationship between grape maturity, wine composition and sensory quality. The sensory attribute ratings for dark fruit, hotness and viscosity increased in wines produced from riper grapes, while the ratings for the attributes red fruit and fresh green decreased. Consumer testing of the wines revealed that the lowest-alcohol wines (12% v/v) were the least preferred and wines with ethanol concentration between 13% v/v and 15.5% v/v were equally liked by consumers. Partial least squares regression identified that many sensory attributes were strongly associated with the compositional data, providing evidence of wine chemical components which are important to wine sensory properties and consumer preferences, and which change as the grapes used for winemaking ripen. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Volatile components of vine leaves from two Portuguese grape varieties (Vitis vinifera L.), Touriga Nacional and Tinta Roriz, analysed by solid-phase microextraction.

    PubMed

    Fernandes, Bruno; Correia, Ana C; Cosme, Fernanda; Nunes, Fernando M; Jordão, António M

    2015-01-01

    The purpose of this work was to study the volatile composition of vine leaves and vine leaf infusion prepared from vine leaves collected at 30 and 60 days after grape harvest of two Vitis vinifera L. species. Eighteen volatile compounds were identified by gas chromatography-mass spectrometry in vine leaves and in vine leaf infusions. It was observed that the volatile compounds present in vine leaves are dependent on the time of harvest, with benzaldehyde being the major volatile present in vine leaves collected at 30 days after harvesting. There are significant differences in the volatile composition of the leaves from the two grape cultivars, especially in the sample collected at 60 days after grape harvest. This is not reflected in the volatile composition of the vine leaf infusion made from this two cultivars, the more important being the harvesting date for the volatile profile of vine leaf infusion than the vine leaves grape cultivar.

  2. Rare earth elements distribution in grapevine varieties grown on volcanic soils: an example from Mount Etna (Sicily, Italy).

    PubMed

    D'Antone, Carmelisa; Punturo, Rosalda; Vaccaro, Carmela

    2017-04-01

    A geochemical and statistical approach has allowed identifying in rare earth elements (REEs) absorption a good fingerprinting mark for determining the territoriality and the provenance of Vitis vinifera L. in the district of Mount Etna (southern Italy). Our aim is to define the REEs distribution in different parts of the plants which grow in the same volcanic soil and under the same climate conditions, and therefore to assess whether REEs distribution may reflect the composition of the provenance soil or if plants can selectively absorb REEs in order to recognize the fingerprint in the Etna Volcano soils as well as the REEs pattern characteristic of each cultivar of V. vinifera L. The characteristic pattern of REEs has been determined by ICP-MS analyses in the soils and in the selected grapevine varieties for all the following parts: leaves, seeds, juice, skin, and berries. These geochemical criteria, together with the multivariate statistical analysis of the principal component analysis (PCA) and of the linear discriminant analysis (LDA) that can be summarized with the box plot, suggest that leaves mostly absorb REEs than the other parts of the plant. This work investigates the various parts of the plant in order to verify if each grape variety presents a characteristic geochemical pattern in the absorption of REEs in relationship with the geochemical features of the soil so to highlight the individual compositional fingerprint. Based on REE patterns, our study is a useful tool that allows characterizing the differences among the grape varieties and lays the foundation for the use of REEs in the geographic origin of the Mount Etna wine district.

  3. The Diversity of Arbuscular Mycorrhizal Fungi Amplified from Grapevine Roots (Vitis vinifera L.) in Oregon Vineyards is Seasonally Stable and Influenced by Soil and Vine Age

    USDA-ARS?s Scientific Manuscript database

    The diversity of arbuscular mycorrhizal fungi (AMF) associated with the roots of grapevines in 10 commercial Oregon vineyards was assessed by examining spores in soil and by amplifying mycorrhizal DNA from ‘Pinot noir’ root extracts. Seventeen spore morphotypes were found in the soil beneath the vin...

  4. Growth and Energy Demand of Meloidogyne incognita on Susceptible and Resistant Vitis vinifera Cultivars.

    PubMed

    Melakeberhan, H; Ferris, H

    1988-10-01

    Food (energy) consumption rates ofMeloidogyne incognita were calculated on Vitis vinifera cv. French Colombard (highly susceptible) and cv. Thompson Seedless (moderately resistant). One-month-old grape seedlings in styrofoam cups were inoculated with 2,000 or 8,000 M. incognita second-stage juveniles (J2) and maintained at 17.5 degree days (DD - base 10 C)/day until maximum adult female growth and (or) the end of oviposition. At 70 DD intervals, nematode fresh biomass was calculated on the basis of volumes of 15-20 nematodes per plant obtained with a digitizer and computer algorithm. Egg production was measured at 50-80 DD intervals by weighing 7-10 egg masses and counting the number of eggs. Nematode growth and food (energy) consumption rates were calculated up to 1,000 DD based on biomass increase, respiratory requirements, and an assumption of 60 % assimilation efficiency. The growth rate of a single root-knot nematode, excluding egg production, was similar in both cultivars and had a logistic form. The maximum fresh weight of a mature female nematode was ca. 29-32 mug. The total biomass increase, including egg production, also had a logistic form. Maximum biomass (mature adult female and egg mass) was 211 mug on French Colombard and 127 mug on Thompson Seedless. The calculated total cost to the host for the development of a single J2 from root penetration to the end of oviposition for body growth and total biomass was 0.535 and 0.486 calories with a total energy demand of 1.176 and 0.834 calories in French Colombard and Thompson Seedless, respectively.

  5. Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer.

    PubMed

    Gutiérrez, Salvador; Tardaguila, Javier; Fernández-Novales, Juan; Diago, María P

    2015-01-01

    The identification of different grapevine varieties, currently attended using visual ampelometry, DNA analysis and very recently, by hyperspectral analysis under laboratory conditions, is an issue of great importance in the wine industry. This work presents support vector machine and artificial neural network's modelling for grapevine varietal classification from in-field leaf spectroscopy. Modelling was attempted at two scales: site-specific and a global scale. Spectral measurements were obtained on the near-infrared (NIR) spectral range between 1600 to 2400 nm under field conditions in a non-destructive way using a portable spectrophotometer. For the site specific approach, spectra were collected from the adaxial side of 400 individual leaves of 20 grapevine (Vitis vinifera L.) varieties one week after veraison. For the global model, two additional sets of spectra were collected one week before harvest from two different vineyards in another vintage, each one consisting on 48 measurement from individual leaves of six varieties. Several combinations of spectra scatter correction and smoothing filtering were studied. For the training of the models, support vector machines and artificial neural networks were employed using the pre-processed spectra as input and the varieties as the classes of the models. The results from the pre-processing study showed that there was no influence whether using scatter correction or not. Also, a second-degree derivative with a window size of 5 Savitzky-Golay filtering yielded the highest outcomes. For the site-specific model, with 20 classes, the best results from the classifiers thrown an overall score of 87.25% of correctly classified samples. These results were compared under the same conditions with a model trained using partial least squares discriminant analysis, which showed a worse performance in every case. For the global model, a 6-class dataset involving samples from three different vineyards, two years and leaves

  6. Varietal Dependence of GLVs Accumulation and LOX-HPL Pathway Gene Expression in Four Vitis vinifera Wine Grapes

    PubMed Central

    Qian, Xu; Xu, Xiao-Qing; Yu, Ke-Ji; Zhu, Bao-Qing; Lan, Yi-Bin; Duan, Chang-Qing; Pan, Qiu-Hong

    2016-01-01

    Variety is one of the major factors influencing grape and wine aromatic characteristics. Green leaf volatiles (GLVs), derived from lipoxygenase-hydroperoxides lyase (LOX-HPL) pathway, are important components for the aromatic quality of grapes and wines. However, the varietal difference regarding GLVs accumulation and related gene expression are poorly studied. This work exhibited that the accumulation of various GLVs and the expression of LOX-HPL pathway genes in four Vitis vinifera wine grape cultivars: Syrah, Muscat Tchervine, Gewürztraminer and Chardonnay. The results showed a variety dependence of GLVs profile. Muscat Tchervine harvested grapes contained less C6 aldehydes and the most abundant esters, which corresponded to very low VvLOXA and VvHPL1 expression abundance as well as high VvAAT transcript in this variety. High expression level of both VvLOXA and VvHPL1 paralleled with higher level of C6 aldehydes together with higher alcohols in Syrah grape. Gewürztraminer and Chardonnay grapes had high aldehydes and alcohols as well as low esters, which were resulted from their higher expression level of VvLOXA or VvHPL1 and lower VvAAT. From these above corresponding relations, it is concluded that VvLOXA, VvHPL1 and VvAAT in the LOX-HPL pathway are targets for altering GLVs composition in the grape varieties. PMID:27886056

  7. Vitis vinifera L. Fruit Diversity to Breed Varieties Anticipating Climate Changes.

    PubMed

    Bigard, Antoine; Berhe, Dargie T; Maoddi, Eleonora; Sire, Yannick; Boursiquot, Jean-Michel; Ojeda, Hernan; Péros, Jean-Pierre; Doligez, Agnès; Romieu, Charles; Torregrosa, Laurent

    2018-01-01

    The wine industry is facing critical issues due to climate changes since production is established on very tight Genotype × Environment interaction bases. While, some cultivation practices may reduce adverse effects of abiotic stresses on the vines, e.g., the use of irrigation to mitigate drought, the deleterious impacts of warming on fruit development are difficult to manage. Elevated temperature alters grapevine fruit growth and composition, with a critical increase of the sugars/organic acids ratio. Select grapes with improved metabolite balances to offset high temperature effects is a valuable option to sustain viticulture. Unfortunately, the lack of knowledge about the genetic diversity for fruit traits impacted by temperature impairs the design of breeding programs. This study aimed to assess the variation in berry volume, main sugars and organic acids amounts in genetic resources. Fruit phenotyping focused on two critical stages of development: the end of green lag phase when organic acidity reaches its maximum, and the ripe stage when sugar unloading and water uptake stop. For that purpose, we studied a panel of 33 genotypes, including 12 grapevine varieties and 21 microvine offspring. To determine the date of sampling for each critical stage, fruit texture and growth were carefully monitored. Analyses at both stages revealed large phenotypic variation for malic and tartaric acids, as well as for sugars and berry size. At ripe stage, fruit fresh weight ranged from 1.04 to 5.25 g and sugar concentration from 751 to 1353 mmol.L -1 . The content in organic acids varied both in quantity (from 80 to 361 meq.L -1 ) and in composition, with malic to tartaric acid ratio ranging from 0.13 to 3.62. At the inter-genotypic level, data showed no link between berry growth and osmoticum accumulation per fruit unit, suggesting that berry water uptake is not dependent only on fruit osmotic potential. Diversity among varieties for berry size, sugar accumulation and malic to

  8. Breeding for seedless grapes using Chinese wild Vitis spp. II. In vitro embryo rescue and plant development.

    PubMed

    Ji, Wei; Wang, Yuejin

    2013-12-01

    Since 1982, the embryo rescue technique has been widely applied to embryo germination of stenospermic grapes in cross-breeding programmes. This project aimed to: (1) use embryos to breed new seedless cultivars of Vitis vinifera as the female parents utilising wild Chinese Vitis spp. as the male parents; and (2) develop an efficient method for in vitro embryo rescue and plant development. Among the different genotypes, the productions of hybrid plants were significantly different, ranged from 21.1% ('Ruby Seedless' × 'Beichun') to only 1.1% ('Pink Seedless' × 'Beichun'), except for the combinations from which no surviving seedlings were obtained. We collected hybridisation fruits from 28 June to 3 August, and obtained their best sampling times described within days after flowering. The highest rates of embryo formation (24.3%) and plant development (91.4%) were found when ovules of 'Ruby Seedless' were cultured in MM4 + 500 mg L(-1) mashed banana. Seven new hybrids of V. vinifera with wild Chinese Vitis spp. were obtained. As a result of early nuclear-free character identification, 17 seedless grape lines were obtained. An efficient system of seedless grape breeding through embryo rescue was also established. © 2013 Society of Chemical Industry.

  9. A Phocus on Phenotyping: opportunities and challenges in local and centralized trait evaluation from the VitisGen experience

    USDA-ARS?s Scientific Manuscript database

    The integration of relevant genetic resources, robust phenotypes, and cutting-edge genotypic data is a challenge that individual scientists rarely overcome successfully. In the USDA-NIFA VitisGen project ( www.vitisgen.org ) for grapevine cultivar improvement, our research team has pursued a shared ...

  10. Identification and localization of the bilitranslocase homologue in white grape berries (Vitis vinifera L.) during ripening

    PubMed Central

    Bertolini, Alberto; Peresson, Carlo; Petrussa, Elisa; Braidot, Enrico; Passamonti, Sabina; Macrì, Francesco; Vianello, Angelo

    2009-01-01

    A homologue of the mammalian bilirubin transporter bilitranslocase (BTL) (TCDB 2.A.65.1.1), able to perform an apparent secondary active transport of flavonoids, has previously been found in carnation petals and red grape berries. In the present work, a BTL homologue was also shown in white berries from Vitis vinifera L. cv. Tocai/Friulano, using anti-sequence antibodies specific for rat liver BTL. This transporter, similarly to what found in red grape, was localized in the first layers of the epidermal tissue and in the vascular bundle cells of the mesocarp. In addition, a strong immunochemical reaction was detected in the placental tissue and particularly in peripheral integuments of the seed. The protein was expressed during the last maturation stages in both skin and pulp tissues and exhibited an apparent molecular mass of c. 31 kDa. Furthermore, the transport activity of such a carrier, measured as bromosulphophthalein (BSP) uptake, was detected in berry pulp microsomes, where it was inhibited by specific anti-BTL antibodies. The BTL homologue activity exhibited higher values, for both Km and Vmax, than those found in the red cultivar. Moreover, two non-pigmented flavonoids, such as quercetin (a flavonol) and eriodictyol (a flavanone), inhibited the uptake of BSP in an uncompetitive manner. Such results strengthen the hypothesis that this BTL homologue acts as a carrier involved also in the membrane transport of colourless flavonoids and demonstrate the presence of such a carrier in different organs and tissues. PMID:19596699

  11. Discovery and molecular characterization of a novel enamovirus, Grapevine enamovirus-1.

    PubMed

    Silva, João Marcos Fagundes; Al Rwahnih, Maher; Blawid, Rosana; Nagata, Tatsuya; Fajardo, Thor Vinícius Martins

    2017-08-01

    In this study, we describe a novel putative Enamovirus member, Grapevine enamovirus-1 (GEV-1), discovered by high-throughput sequencing (HTS). A limited survey using HTS of 17 grapevines (Vitis spp.) from the south, southeast, and northeast regions of Brazil led to the detection of GEV-1 exclusively on southern plants, infecting four grapevine cultivars (Cabernet Sauvignon, Semillon, CG 90450, and Cabernet franc) with a remarkable identity of around 99% at the nucleotide level. This novel virus was only detected in multiple-virus infected plants exhibiting viral-like symptoms. GEV-1 was also detected on a cv. Malvasia Longa by RT-PCR. We performed graft-transmissibility assays on GEV-1. The organization, products, and cis-acting regulatory elements of GEV-1 genome are also discussed here. The near complete genome sequence of GEV-1 was obtained during the course of this study, lacking only part of the 3' untranslated terminal region. This is the first report of a virus in the family Luteoviridae infecting grapevines. Based on its genomic properties and phylogenetic analyses, GEV-1 should be classified as a new member of the genus Enamovirus.

  12. Influence of berry ripeness on accumulation, composition and extractability of skin and seed flavonoids in cv. Sangiovese (Vitis vinifera L.).

    PubMed

    Allegro, Gianluca; Pastore, Chiara; Valentini, Gabriele; Muzzi, Enrico; Filippetti, Ilaria

    2016-10-01

    The anthocyanin and tannin concentration and composition of Vitis vinifera L. cv. Sangiovese berries were investigated from post-veraison to harvest. Exhaustive extraction with methanol and acetone was performed to determine the total flavonoid concentration, while a model hydroalcoholic solution was used to prepare extracts representing the winemaking process. The aim of this study was to improve the knowledge of the phenolic maturity of Sangiovese grape. The total anthocyanin concentration increased during ripening, but the quantity of extractable anthocyanins increased more rapidly than the total. The total skin tannin concentration declined from post-veraison to harvest, whereas the extractable portion increased, with little difference in the composition of the fractions. Both the total and extractable seed tannin concentration diminished rapidly just after veraison, and only small fluctuations were detected until harvest. These results indicate that the extractability of anthocyanins and skin tannins increases during ripening, whereas there is no clear trend for seed tannins during the same period. This is the first survey to study the behavior of phenolic compounds during different steps of ripening of Sangiovese grape. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Generic and sequence-variant specific molecular assays for the detection of the highly variable Grapevine leafroll-associated virus 3.

    PubMed

    Chooi, Kar Mun; Cohen, Daniel; Pearson, Michael N

    2013-04-01

    Grapevine leafroll-associated virus 3 (GLRaV-3) is an economically important virus, which is found in all grapevine growing regions worldwide. Its accurate detection in nursery and field samples is of high importance for certification schemes and disease management programmes. To reduce false negatives that can be caused by sequence variability, a new universal primer pair was designed against a divergent sequence data set, targeting the open reading frame 4 (heat shock protein 70 homologue gene), and optimised for conventional one-step RT-PCR and one-step SYBR Green real-time RT-PCR assays. In addition, primer pairs for the simultaneous detection of specific GLRaV-3 variants from groups 1, 2, 6 (specifically NZ-1) and the outlier NZ2 variant, and the generic detection of variants from groups 1 to 5 were designed and optimised as a conventional one-step multiplex RT-PCR assay using the plant nad5 gene as an internal control (i.e. one-step hexaplex RT-PCR). Results showed that the generic and variant specific assays detected in vitro RNA transcripts from a range of 1×10(1)-1×10(8) copies of amplicon per μl diluted in healthy total RNA from Vitis vinifera cv. Cabernet Sauvignon. Furthermore, the assays were employed effectively to screen 157 germplasm and 159 commercial field samples. Thus results demonstrate that the GLRaV-3 generic and variant-specific assays are prospective tools that will be beneficial for certification schemes and disease management programmes, as well as biological and epidemiological studies of the divergent GLRaV-3 populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Design of a Custom RT-qPCR Array for Assignment of Abiotic Stress Tolerance in Traditional Portuguese Grapevine Varieties

    PubMed Central

    Carvalho, Luísa C.; Silva, Marília; Coito, João L.; Rocheta, Margarida P.; Amâncio, Sara

    2017-01-01

    Widespread agricultural losses attributed to drought, often combined with high temperatures, frequently occur in the field, namely in Mediterranean climate areas, where the existing scenarios for climate change indicate an increase in the frequency of heat waves and severe drought events in summer. Grapevine (Vitis vinifera L.) is the most cultivated fruit species in the world and the most valuable one and is a traditional Mediterranean species. Currently, viticulture must adjust to impending climate changes that are already pushing vine-growers toward the use of ancient and resilient varieties. Portugal is very rich in grapevine biodiversity, however, currently, 90% of the total producing area is planted with only 16 varieties. There is a pressing need to understand the existing genetic diversity and the physiological potential of the varieties/genotypes available to be able to respond to climate changes. With the above scenario in mind, an assembly of 65 differentially expresses genes (DEGs) previously identified as responsive to abiotic stresses in two well studied genotypes, ‘Touriga Nacional’ and ‘Trincadeira,’ was designed to scan the gene expression of leaf samples from 10 traditional Portuguese varieties growing in two regions with distinct environmental conditions. Forty-five of those DEGs proved to be associated to “abiotic stress” and were chosen to build a custom qPCR array to identify uncharacterized genotypes as sensitive or tolerant to abiotic stress. According to the experimental set-up behind the array design these DEGs can also be used as indicators of the main abiotic stress that the plant is subjected and responding to (drought, heat, or excess light). PMID:29118776

  15. Effect of two different treatments for reducing grape yield in Vitis vinifera cv Syrah on wine composition and quality: berry thinning versus cluster thinning.

    PubMed

    Gil, M; Esteruelas, M; González, E; Kontoudakis, N; Jiménez, J; Fort, F; Canals, J M; Hermosín-Gutiérrez, I; Zamora, F

    2013-05-22

    The influence of two treatments for reducing grape yield, cluster thinning and berry thinning, on red wine composition and quality were studied in a Vitis vinifera cv Syrah vineyard in AOC Penedès (Spain). Cluster thinning reduced grape yield per vine by around 40% whereas berry thinning only reduced it by around 20%. Cluster thinning grapes had higher soluble solids content than control grapes, and their resultant wines have greater anthocyanin and polysaccharide concentrations than the control wine. Wine obtained from berry thinning grapes had a higher total phenolic index, greater flavonol, proanthocyanidin, and polysaccharide concentrations, and lower titratable acidity than the control wine. Wines obtained from both treatments were sufficiently different from the control wine to be significantly distinguished by a trained panel in a triangular test. Even though both treatments seem to be effective at improving the quality of wine, berry thinning has the advantage because it has less impact on crop yield reduction.

  16. Flavanol Quantification of Grapes via Multiple Reaction Monitoring Mass Spectrometry. Application to Differentiation among Clones of Vitis vinifera L. cv. Rufete Grapes.

    PubMed

    García-Estévez, Ignacio; Alcalde-Eon, Cristina; Escribano-Bailón, M Teresa

    2017-08-09

    The determination of the detailed flavanol composition in food matrices is not a simple task because of the structural similarities of monomers and, consequently, oligomers and polymers. The aim of this study was the development and validation of an HPLC-MS/MS-multiple reaction monitoring (MRM) method that would allow the accurate and precise quantification of catechins, gallocatechins, and oligomeric proanthocyanidins. The high correlation coefficients of the calibration curves (>0.993), the recoveries not statistically different from 100%, the good intra- and interday precisions (<5%), and the LOD and LOQ values, low enough to quantify flavanols in grapes, are good results from the method validation procedure. Its usefulness has also been tested by determining the detailed composition of Vitis vinifera L. cv. Rufete grapes. Seventy-two (38 nongalloylated and 34 galloylated) and 53 (24 procyanidins and 29 prodelphinidins) flavanols have been identified and quantified in grape seed and grape skin, respectively. The use of HCA and PCA on the detailed flavanol composition has allowed differentiation among Rufete clones.

  17. Variability in chemical composition of Vitis vinifera cv Mencía from different geographic areas and vintages in Ribeira Sacra (NW Spain).

    PubMed

    Vilanova, M; Rodríguez, I; Canosa, P; Otero, I; Gamero, E; Moreno, D; Talaverano, I; Valdés, E

    2015-02-15

    A chemical study was conducted from 2009 to 2012 to examine spatial and seasonal variability of red Vitis vinifera Mencía located in different geographic areas (Amandi, Chantada, Quiroga-Bibei, Ribeiras do Sil and Ribeiras do Miño) from NW Spain. Mencía samples were analysed for phenolic, (flavan-3-ols, flavonols, anthocyanins, acids and resveratrol), nitrogen (TAC, TAN, YAN and TAS) and volatiles compounds (alcohols, C6 compounds, ethyl esters, terpenes, aldehydes, acids, lactones, volatile phenols and carbonyl compounds) by GC-MS and HPLC. Results showed that the composition of Mencía cultivar was more affected by the vintage than the geographic area. The amino acid composition was less affected by both geographic origin and vintage, showing more varietal stability. Application of Principal Component Analysis (PCA) to experimental data showed a good separation of Mencía grape according to geographical origin and vintages. PCA also showed high correlations between the ripening ratio and C6 compounds, resveratrol and carbonyl compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Linkage maps of grapevine displaying the chromosomal locations of 420 microsatellite markers and 82 markers for R-gene candidates.

    PubMed

    Di Gaspero, G; Cipriani, G; Adam-Blondon, A-F; Testolin, R

    2007-05-01

    Genetic maps functionally oriented towards disease resistance have been constructed in grapevine by analysing with a simultaneous maximum-likelihood estimation of linkage 502 markers including microsatellites and resistance gene analogs (RGAs). Mapping material consisted of two pseudo-testcrosses, 'Chardonnay' x 'Bianca' and 'Cabernet Sauvignon' x '20/3' where the seed parents were Vitis vinifera genotypes and the male parents were Vitis hybrids carrying resistance to mildew diseases. Individual maps included 320-364 markers each. The simultaneous use of two mapping crosses made with two pairs of distantly related parents allowed mapping as much as 91% of the markers tested. The integrated map included 420 Simple Sequence Repeat (SSR) markers that identified 536 SSR loci and 82 RGA markers that identified 173 RGA loci. This map consisted of 19 linkage groups (LGs) corresponding to the grape haploid chromosome number, had a total length of 1,676 cM and a mean distance between adjacent loci of 3.6 cM. Single-locus SSR markers were randomly distributed over the map (CD = 1.12). RGA markers were found in 18 of the 19 LGs but most of them (83%) were clustered on seven LGs, namely groups 3, 7, 9, 12, 13, 18 and 19. Several RGA clusters mapped to chromosomal regions where phenotypic traits of resistance to fungal diseases such as downy mildew and powdery mildew, bacterial diseases such as Pierce's disease, and pests such as dagger and root-knot nematode, were previously mapped in different segregating populations. The high number of RGA markers integrated into this new map will help find markers linked to genetic determinants of different pest and disease resistances in grape.

  19. Synergistic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures

    PubMed Central

    Lijavetzky, Diego; Almagro, Lorena; Belchi-Navarro, Sarai; Martínez-Zapater, José M; Bru, Roque; Pedreño, Maria A

    2008-01-01

    Background Plant cell cultures have been shown as feasible systems for the production of secondary metabolites, being the elicitation with biotic or abiotic stimuli the most efficient strategy to increase the production of those metabolites. Vitaceae phytoalexins constitute a group of molecules belonging to the stilbene family which are derivatives of the trans-resveratrol structure and are produced by plants and cell cultures as a response to biotic and abiotic stresses. The potential benefits of resveratrol on human health have made it one of the most thoroughly studied phytochemical molecules. The aim of this study was to evaluate the elicitor effect of both cyclodextrin (CD) and methyljasmonate (MeJA) on grapevine cell cultures by carrying out a quantitative analysis of their role on resveratrol production and on the expression of stilbene biosynthetic genes in Vitis vinifera cv Monastrell albino cell suspension cultures. Findings MeJA and CD significantly but transiently induced the expression of stilbene biosynthetic genes when independently used to treat grapevine cells. This expression correlated with resveratrol production in CD-treated cells but not in MeJA-treated cells, which growth was drastically affected. In the combined treatment of CD and MeJA cell growth was similarly affected, however resveratrol production was almost one order of magnitude higher, in correlation with maximum expression values for stilbene biosynthetic genes. Conclusion The effect of MeJA on cell division combined with a true and strong elicitor like CD could be responsible for the observed synergistic effect of both compounds on resveratrol production and on the expression of genes in the stilbene pathway. PMID:19102745

  20. Grapevine Plasticity in Response to an Altered Microclimate: Sauvignon Blanc Modulates Specific Metabolites in Response to Increased Berry Exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Philip R.; Eyeghe-Bickong, Hans A.; du Plessis, Kari

    In this paper, the metabolic and physiological impacts of an altered microclimate on quality-associated primary and secondary metabolites in grape (Vitis vinifera) ‘Sauvignon Blanc’ berries was determined in a high-altitude vineyard. The leaf and lateral shoot removal in the bunch zones altered the microclimate by increasing the exposure of the berries. The physical parameters (berry diameter and weight), primary metabolites (sugars and organic acids), as well as bunch temperature and leaf water potential were predominantly not affected by the treatment. The increased exposure led to higher levels of specific carotenoids and volatile terpenoids in the exposed berries, with earlier berrymore » stages reacting distinctly from the later developmental stages. Plastic/nonplastic metabolite responses could be further classified to identify metabolites that were developmentally controlled and/or responded to the treatment in a predictable fashion (assessed over two consecutive vintages). The study demonstrates that grapevine berries exhibit a degree of plasticity within their secondary metabolites and respond physiologically to the increased exposure by increasing metabolites with potential antioxidant activity. Finally, taken together, the data provide evidence that the underlying physiological responses relate to the maintenance of stress pathways by modulating antioxidant molecules in the berries.« less

  1. Grapevine Plasticity in Response to an Altered Microclimate: Sauvignon Blanc Modulates Specific Metabolites in Response to Increased Berry Exposure

    DOE PAGES

    Young, Philip R.; Eyeghe-Bickong, Hans A.; du Plessis, Kari; ...

    2015-12-01

    In this paper, the metabolic and physiological impacts of an altered microclimate on quality-associated primary and secondary metabolites in grape (Vitis vinifera) ‘Sauvignon Blanc’ berries was determined in a high-altitude vineyard. The leaf and lateral shoot removal in the bunch zones altered the microclimate by increasing the exposure of the berries. The physical parameters (berry diameter and weight), primary metabolites (sugars and organic acids), as well as bunch temperature and leaf water potential were predominantly not affected by the treatment. The increased exposure led to higher levels of specific carotenoids and volatile terpenoids in the exposed berries, with earlier berrymore » stages reacting distinctly from the later developmental stages. Plastic/nonplastic metabolite responses could be further classified to identify metabolites that were developmentally controlled and/or responded to the treatment in a predictable fashion (assessed over two consecutive vintages). The study demonstrates that grapevine berries exhibit a degree of plasticity within their secondary metabolites and respond physiologically to the increased exposure by increasing metabolites with potential antioxidant activity. Finally, taken together, the data provide evidence that the underlying physiological responses relate to the maintenance of stress pathways by modulating antioxidant molecules in the berries.« less

  2. Grapevine Plasticity in Response to an Altered Microclimate: Sauvignon Blanc Modulates Specific Metabolites in Response to Increased Berry Exposure.

    PubMed

    Young, Philip R; Eyeghe-Bickong, Hans A; du Plessis, Kari; Alexandersson, Erik; Jacobson, Dan A; Coetzee, Zelmari; Deloire, Alain; Vivier, Melané A

    2016-03-01

    In this study, the metabolic and physiological impacts of an altered microclimate on quality-associated primary and secondary metabolites in grape (Vitis vinifera) 'Sauvignon Blanc' berries was determined in a high-altitude vineyard. The leaf and lateral shoot removal in the bunch zones altered the microclimate by increasing the exposure of the berries. The physical parameters (berry diameter and weight), primary metabolites (sugars and organic acids), as well as bunch temperature and leaf water potential were predominantly not affected by the treatment. The increased exposure led to higher levels of specific carotenoids and volatile terpenoids in the exposed berries, with earlier berry stages reacting distinctly from the later developmental stages. Plastic/nonplastic metabolite responses could be further classified to identify metabolites that were developmentally controlled and/or responded to the treatment in a predictable fashion (assessed over two consecutive vintages). The study demonstrates that grapevine berries exhibit a degree of plasticity within their secondary metabolites and respond physiologically to the increased exposure by increasing metabolites with potential antioxidant activity. Taken together, the data provide evidence that the underlying physiological responses relate to the maintenance of stress pathways by modulating antioxidant molecules in the berries. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. Resistance of Some Vitis Rootstocks to Xiphinema index.

    PubMed

    Harris, A R

    1983-07-01

    Thirty-eight grapevine (Vitis spp.) rootstocks were screened in pots for resistance to the dagger nematode, Xiphinema index, from 1979 to 1981. Resistance ratings were based on visible root symptoms and on changes in the nematode populations over 16 months. Nineteen of the 23 Californian hybrid rootstocks tested were resistant, as were 'Harmony',' 'Freedom,' 'Schwarzmann,' and '3309.' Two hybrids of V. rufotomentosa, '171-52' and '176-9,' were possibly immune to X. index. The rootstocks 'ARG 1,' ' 110 R,' '1202,' and '1616,' which are used commercially for phylloxera resistance were susceptible.

  4. Species identification of the causal agent of Eutypa dieback of grapevine in northeastern American and southeastern Canadian vineyards

    USDA-ARS?s Scientific Manuscript database

    Eutypa dieback of Vitis (grape) is caused by the Ascomycete fungus Eutypa lata. The pathogen infects grapevine through wounds, and cause wood canker and dieback symptoms. E. lata has been identified in all major grape production areas in the world. The first report of Eutypa dieback from northeaster...

  5. A transient expression assay for the in planta efficacy screening of an antimicrobial peptide against grapevine bacterial pathogens.

    PubMed

    Visser, M; Stephan, D; Jaynes, J M; Burger, J T

    2012-06-01

    Natural and synthetic antimicrobial peptides (AMPs) are of increasing interest as potential resistance conferring elements in plants against pathogen infection. The efficacy of AMPs against pathogens is prescreened by in vitro assays, and promising AMP candidates are introduced as transgenes into plants. As in vitro and in planta environments differ, a prescreening procedure of the AMP efficacy in the plant environment is desired. Here, we report the efficacy of the purified synthetic peptide D4E1 against the grapevine-infecting bacterial pathogens Agrobacterium vitis and Xylophilus ampelinus in vitro and describe for the first time an in planta prescreening procedure based on transiently expressed D4E1. The antimicrobial effect of D4E1 against Ag. vitis and X. ampelinus was shown by a reduction in colony-forming units in vitro in a traditional plate-based assay and by a reduction in bacterial titres in planta as measured by quantitative real-time PCR (qPCR) in grapevine leaves transiently expressing D4E1. A statistically significant reduction in titre was shown for X. ampelinus, but for Ag. vitis, a significant reduction in titre was only observed in a subset of plants. The titres of both grapevine-infecting bacterial pathogens were reduced in an in vitro assay and for X. ampelinus in an in planta assay by D4E1 application. This widens the applicability of D4E1 as a potential resistance-enhancing element to additional pathogens and in a novel plant species. D4E1 is a promising candidate to confer enhanced resistance against the two tested grapevine bacterial pathogens, and the applied transient expression system proved to be a valuable tool for prescreening of D4E1 efficacy in an in planta environment. The described prescreening procedure can be used for other AMPs and might be adapted to other plant species and pathogens before the expensive and tedious development of stably transgenic lines is started. © 2012 The Authors. Letters in Applied Microbiology © 2012

  6. Identification and utilization of a new Erysiphe necator isolate NAFU1 to quickly evaluate powdery mildew resistance in wild Chinese grapevine species using detached leaves.

    PubMed

    Gao, Yu-Rong; Han, Yong-Tao; Zhao, Feng-Li; Li, Ya-Juan; Cheng, Yuan; Ding, Qin; Wang, Yue-Jin; Wen, Ying-Qiang

    2016-01-01

    The most economically important disease of cultivated grapevines worldwide is powdery mildew caused by the biotrophic fungal pathogen Erysiphe necator. To integrate effective genetic resistance into cultivated grapevines, numerous disease resistance screens of diverse Vitis germplasm, including wild species, have been conducted to identify powdery mildew resistance, but the results have been inconsistent. Here, a new powdery mildew isolate that is infectious on grapevines, designated Erysiphe necator NAFU1 (En. NAFU1), was identified and characterized by phylogeny inferred from the internal transcribed spacer (ITS) of pathogen ribosomal DNA sequences. Three classical methods were compared for the maintenance of En. NAFU1, and the most convenient method was maintenance on detached leaves and propagation by contact with infected leaves. Furthermore, controlled inoculations of En. NAFU1 were performed using detached leaves from 57 wild Chinese grapevine accessions to quickly evaluate powdery mildew resistance based on trypan blue staining of leaf sections. The results were compared with previous natural epidemics in the field. Among the screened accessions inoculated with En. NAFU1, 22.8% were resistant, 33.3% were moderately resistant, and 43.9% were susceptible. None of the accessions assessed herein were immune from infection. These results support previous findings documenting the presence of race-specific resistance to E. necator in wild Chinese grapevine. The resistance of wild Chinese grapevine to En. NAFU1 could be due to programmed cell death. The present results suggest that En. NAFU1 isolate could be used for future large-scale screens of resistance to powdery mildew in diverse Vitis germplasms and investigations of the interaction between grapevines and pathogens. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and coronatine.

    PubMed

    Almagro, Lorena; Belchí-Navarro, Sarai; Martínez-Márquez, Ascensión; Bru, Roque; Pedreño, María A

    2015-12-01

    In the present work the effect of cyclodextrin and coronatine on both trans-resveratrol production and the expression of stilbene biosynthetic genes in Vitis vinifera L. cv Monastrell suspension cultured cells were evaluated. The results showed the maximum level of trans-resveratrol produced by cells and secreted to the culture medium with 50 mM cyclodextrins and 1 μM coronatine. Since the levels of trans-resveratrol produced in the combined treatment were higher than the sum of the individual treatments, a synergistic effect between both elicitors was assumed. In addition, all the analysed genes were induced by cyclodextrins and/or coronatine. The expression of the phenylalanine ammonia lyase and stilbene synthase genes was greatly enhanced by coronatine although an increase in the amount of trans-resveratrol in the spent medium was not detected. Therefore, despite the fact that trans-resveratrol production is related with the expression of genes involved in the biosynthetic process, other factors may be involved, such as post-transcriptional and post-traductional regulation. The expression maximal levels of cinnamate 4-hydroxylase and 4-coumarate-CoA ligase genes were found with cyclodextrins alone or in combination with coronatine suggesting that the activity of these enzymes could be not only important for the formation of intermediates of trans-R biosynthesis but also for those intermediates involved in the biosynthesis of lignins and/or flavonoids. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Enhanced resveratrol production in Vitis vinifera cell suspension cultures by heavy metals without loss of cell viability.

    PubMed

    Cai, Zhenzhen; Kastell, Anja; Speiser, Claire; Smetanska, Iryna

    2013-09-01

    The effects of heavy metal ions (Co(2+), Ag(+), Cd(2+)) on cell viability and secondary metabolite production, particularly anthocyanins and phenolic acids in Vitis vinifera cell suspension cultures, were investigated. Of these, Co at all three used concentrations (5.0, 25, and 50 μM), Ag, and Cd at low concentration (5.0 μM) were most effective to stimulate the phenolic acid production, increasing the 3-O-glucosyl-resveratrol up to 1.6-fold of the control level (250.5 versus 152.4 μmol/g), 4 h after the treatments. Meanwhile, the elicitors at effective concentrations did not suppress cell growth, while the cell viability maintained. In contrast, Ag and Cd at high concentrations (25 and 50 μM) remarkably reduced the cell viability, decreasing the cell viability up to about 15 % of the control level, 24 h after the treatments. The heavy metal ions did not affect the anthocyanin production. These observations show how, in a single system, different groups of secondary products can show distinct differences in their responses to potential elicitors. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, peroxidase activity, medium pH value, and conductivity were only slightly elevated by the heavy metal ions. The results suggest that some of the secondary metabolites production was stimulated by the used elicitors, but there was not a stress response of the cells.

  9. Strategies for RUN1 Deployment Using RUN2 and REN2 to Manage Grapevine Powdery Mildew Informed by Studies of Race Specificity.

    PubMed

    Feechan, Angela; Kocsis, Marianna; Riaz, Summaira; Zhang, Wei; Gadoury, David M; Walker, M Andrew; Dry, Ian B; Reisch, Bruce; Cadle-Davidson, Lance

    2015-08-01

    The Toll/interleukin-1 receptor nucleotide-binding site leucine-rich repeat gene, "resistance to Uncinula necator 1" (RUN1), from Vitis rotundifolia was recently identified and confirmed to confer resistance to the grapevine powdery mildew fungus Erysiphe necator (syn. U. necator) in transgenic V. vinifera cultivars. However, sporulating powdery mildew colonies and cleistothecia of the heterothallic pathogen have been found on introgression lines containing the RUN1 locus growing in New York (NY). Two E. necator isolates collected from RUN1 vines were designated NY1-131 and NY1-137 and were used in this study to inform a strategy for durable RUN1 deployment. In order to achieve this, fitness parameters of NY1-131 and NY1-137 were quantified relative to powdery mildew isolates collected from V. rotundifolia and V. vinifera on vines containing alleles of the powdery mildew resistance genes RUN1, RUN2, or REN2. The results clearly demonstrate the race specificity of RUN1, RUN2, and REN2 resistance alleles, all of which exhibit programmed cell death (PCD)-mediated resistance. The NY1 isolates investigated were found to have an intermediate virulence on RUN1 vines, although this may be allele specific, while the Musc4 isolate collected from V. rotundifolia was virulent on all RUN1 vines. Another powdery mildew resistance locus, RUN2, was previously mapped in different V. rotundifolia genotypes, and two alleles (RUN2.1 and RUN2.2) were identified. The RUN2.1 allele was found to provide PCD-mediated resistance to both an NY1 isolate and Musc4. Importantly, REN2 vines were resistant to the NY1 isolates and RUN1REN2 vines combining both genes displayed additional resistance. Based on these results, RUN1-mediated resistance in grapevine may be enhanced by pyramiding with RUN2.1 or REN2; however, naturally occurring isolates in North America display some virulence on vines with these resistance genes. The characterization of additional resistance sources is needed to identify

  10. Mesocarp localization of a bi-functional resveratrol/hydroxycinnamic acid glucosyltransferase of Concord grape (Vitis labrusca).

    PubMed

    Hall, Dawn; De Luca, Vincenzo

    2007-02-01

    Resveratrol is a stilbene with well-known health-promoting effects in humans that is produced constitutively or accumulates as a phytoalexin in several plant species including grape (Vitis sp.). Grape berries accumulate stilbenes in the exocarp as cis- and trans-isomers of resveratrol, together with their respective 3-O-monoglucosides. An enzyme glucosylating cis- and trans-resveratrol was purified to apparent homogeneity from Concord (Vitis labrusca) grape berries, and peptide sequencing associated it to an uncharacterized Vitis vinifera full-length clone (TC38971, tigr database). A corresponding gene from Vitis labrusca (VLRSgt) had 98% sequence identity to clone TC38971 and 92% sequence identity to a Vitis viniferap-hydroxybenzoic acid glucosyltransferase that produces glucose esters. The recombinant enzyme was active over a broad pH range (5.5-10), producing glucosides of stilbenes, flavonoids and coumarins at higher pH and glucose esters of several hydroxybenzoic and hydroxycinnamic acids at low pH. Vitis labrusca grape berries accumulated both stilbene glucosides and hydroxycinnamic acid glucose esters, consistent with the bi-functional role of VLRSgt in stilbene and hydroxycinnamic acid modification. While phylogenetic analysis of VLRSgt and other functionally characterized glucosyltransferases places it with other glucose ester-producing enzymes, the present results indicate broader biochemical activities for this class of enzymes.

  11. The grapevine VvWRKY2 gene enhances salt and osmotic stress tolerance in transgenic Nicotiana tabacum.

    PubMed

    Mzid, Rim; Zorrig, Walid; Ben Ayed, Rayda; Ben Hamed, Karim; Ayadi, Mariem; Damak, Yosra; Lauvergeat, Virginie; Hanana, Mohsen

    2018-06-01

    Our study aims to assess the implication of WRKY transcription factor in the molecular mechanisms of grapevine adaptation to salt and water stresses. In this respect, a full-length VvWRKY2 cDNA, isolated from a Vitis vinifera grape berry cDNA library, was constitutively over-expressed in Nicotiana tabacum seedlings. Our results showed that transgenic tobacco plants exhibited higher seed germination rates and better growth, under both salt and osmotic stress treatments, when compared to wild type plants. Furthermore, our analyses demonstrated that, under stress conditions, transgenic plants accumulated more osmolytes, such as soluble sugars and free proline, while no changes were observed regarding electrolyte leakage, H 2 O 2 , and malondialdehyde contents. The improvement of osmotic adjustment may be an important mechanism underlying the role of VvWRKY 2 in promoting tolerance and adaptation to abiotic stresses. Principal component analysis of our results highlighted a clear partition of plant response to stress. On the other hand, we observed a significant adaptation behaviour response for transgenic lines under stress. Taken together, all our findings suggest that over-expression of VvWRKY2 gene has a compelling role in abiotic stress tolerance and, therefore, would provide a useful strategy to promote abiotic stress tolerance in grape via molecular-assisted breeding and/or new biotechnology tools.

  12. Stabilization of erythrocytes against oxidative and hypotonic stress by tannins isolated from sumac leaves (Rhus typhina L.) and grape seeds (Vitis vinifera L.).

    PubMed

    Olchowik, Ewa; Lotkowski, Karol; Mavlyanov, Saidmukhtar; Abdullajanova, Nodira; Ionov, Maksim; Bryszewska, Maria; Zamaraeva, Maria

    2012-09-01

    Erythrocytes are constantly exposed to ROS due to their function in the organism. High tension of oxygen, presence of hemoglobin iron and high concentration of polyunsaturated fatty acids in membrane make erythrocytes especially susceptible to oxidative stress. A comparison of the antioxidant activities of polyphenol-rich plant extracts containing hydrolysable tannins from sumac leaves (Rhus typhina L.) and condensed tannins from grape seeds (Vitis vinifera L.) showed that at the 5-50 μg/ml concentration range they reduced to the same extent hemolysis and glutathione, lipid and hemoglobin oxidation induced by erythrocyte treatment with 400 μM ONOO(-) or 1 mM HClO. However, extract (condensed tannins) from grape seeds in comparison with extract (hydrolysable tannins) from sumac leaves stabilized erythrocytes in hypotonic NaCl solutions weakly. Our data indicate that both hydrolysable and condensed tannins significantly decrease the fluidity of the surface of erythrocyte membranes but the effect of hydrolysable ones was more profound. In conclusion, our results indicate that extracts from sumac leaves (hydrolysable tannins) and grape seeds (condensed tannins) are very effective protectors against oxidative damage in erythrocytes.

  13. Multiple loss-of-function 5-O-Glucosyltransferase alleles revealed in Vitis vinifera, but not in other Vitis species

    USDA-ARS?s Scientific Manuscript database

    Anthocyanins in red grapes (Vitis genus) are important components of wine and beneficial to human health. These antioxidant compounds are present in two glycosylation states: monoglucoside (3-O-glucoside) and diglucoside (3, 5-di-O-glucoside). While monoglucoside anthocyanins are present in all pigm...

  14. Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3.

    PubMed

    Li, Hai-Yan; Yang, Guo-Dong; Shu, Huai-Rui; Yang, Yu-Tao; Ye, Bao-Xing; Nishida, Ikuo; Zheng, Cheng-Chao

    2006-01-01

    Inoculation of the grapevine (Vitis amurensis Rupr.) with the arbuscular mycorrhizal (AM) fungus Glomus versiforme significantly increased resistance against the root-knot nematode (RKN) Meloidogyne incognita. Studies using relative quantitative reverse transcription-PCR (RQRT-PCR) analysis of grapevine root inoculation with the AM fungus revealed an up-regulation of VCH3 transcripts. This increase was greater than that observed following infection with RKN. However, inoculation of the mycorrhizal grapevine roots with RKN was able to enhance VCH3 transcript expression further. Moreover, the increase in VCH3 transcripts appeared to result in a higher level of resistance against subsequent RKN infection. Constitutive expression of VCH3 cDNA in transgenic tobacco under the control of the cauliflower mosaic virus 35S promoter also conferred resistance against RKN, but had no significant effect on the growth of the AM fungus. We analyzed beta-glucuronidase (GUS) activity directed by a 1,216 bp VCH3 promoter in transgenic tobacco following inoculation with both the AM fungus and RKN. GUS activity was negligible in the root tissues before inoculation, and was more effectively induced after inoculation with the AM fungus than with RKN. Moreover, GUS staining in the mycorrhizal transgenic tobacco roots was enhanced by subsequent RKN infection, and was found ubiquitously throughout the whole root tissue. Together, these results suggest that AM fungus induced a defense response against RKN in the mycorrhizal grapevine roots, which appeared to involve transcriptional control of VCH3 expression throughout the whole root tissue.

  15. 3D volumetric modeling of grapevine biomass using Tripod LiDAR

    USGS Publications Warehouse

    Keightley, K.E.; Bawden, G.W.

    2010-01-01

    Tripod mounted laser scanning provides the means to generate high-resolution volumetric measures of vegetation structure and perennial woody tissue for the calculation of standing biomass in agronomic and natural ecosystems. Other than costly destructive harvest methods, no technique exists to rapidly and accurately measure above-ground perennial tissue for woody plants such as Vitis vinifera (common grape vine). Data collected from grapevine trunks and cordons were used to study the accuracy of wood volume derived from laser scanning as compared with volume derived from analog measurements. A set of 10 laser scan datasets were collected for each of 36 vines from which volume was calculated using combinations of two, three, four, six and 10 scans. Likewise, analog volume measurements were made by submerging the vine trunks and cordons in water and capturing the displaced water. A regression analysis examined the relationship between digital and non-digital techniques among the 36 vines and found that the standard error drops rapidly as additional scans are added to the volume calculation process and stabilizes at the four-view geometry with an average Pearson's product moment correlation coefficient of 0.93. Estimates of digital volumes are systematically greater than those of analog volumes and can be explained by the manner in which each technique interacts with the vine tissue. This laser scanning technique yields a highly linear relationship between vine volume and tissue mass revealing a new, rapid and non-destructive method to remotely measure standing biomass. This application shows promise for use in other ecosystems such as orchards and forests. ?? 2010 Elsevier B.V.

  16. Gibberellin application at pre-bloom in grapevines down-regulates the expressions of VvIAA9 and VvARF7, negative regulators of fruit set initiation, during parthenocarpic fruit development.

    PubMed

    Jung, Chan Jin; Hur, Youn Young; Yu, Hee-Ju; Noh, Jung-Ho; Park, Kyo-Sun; Lee, Hee Jae

    2014-01-01

    Fruit set is initiated only after fertilization and is tightly regulated primarily by gibberellins (GAs) and auxins. The application of either of these hormones induces parthenocarpy, fruit set without fertilization, but the molecular mechanism underlying this induction is poorly understood. In the present study, we have shown that the parthenocarpic fruits induced by GA application at pre-bloom result from the interaction of GA with auxin signaling. The transcriptional levels of the putative negative regulators of fruit set initiation, including Vitis auxin/indole-3-acetic acid transcription factor 9 (VvIAA9), Vitis auxin response factor 7 (VvARF7), and VvARF8 were monitored during inflorescence development in seeded diploid 'Tamnara' grapevines with or without GA application. Without GA application, VvIAA9, VvARF7, and VvARF8 were expressed at a relatively high level before full bloom, but decreased thereafter following pollination. After GA application at 14 days before full bloom (DBF); however, the expression levels of VvIAA9 and VvARF7 declined at 5 DBF prior to pollination. The effects of GA application on auxin levels or auxin signaling were also analyzed by monitoring the expression patterns of auxin biosynthesis genes and auxin-responsive genes with or without GA application. Transcription levels of the auxin biosynthesis genes Vitis anthranilate synthase β subunit (VvASB1-like), Vitis YUCCA2 (VvYUC2), and VvYUC6 were not significantly changed by GA application. However, the expressions of Vitis Gretchen Hagen3.2 (VvGH3.2) and VvGH3.3, auxin-responsive genes, were up-regulated from 2 DBF to full bloom with GA application. Furthermore, the Vitis GA signaling gene, VvDELLA was up-regulated by GA application during 12 DBF to 7 DBF, prior to down-regulation of VvIAA9 and VvARF7. These results suggest that VvIAA9 and VvARF7 are negative regulators of fruit set initiation in grapevines, and GA signaling is integrated with auxin signaling via VvDELLA during

  17. Influence of vineyard altitude on Glera grape ripening (Vitis vinifera L.): effects on aroma evolution and wine sensory profile.

    PubMed

    Alessandrini, Massimiliano; Gaiotti, Federica; Belfiore, Nicola; Matarese, Fabiola; D'Onofrio, Claudio; Tomasi, Diego

    2017-07-01

    Environmental factors have been acknowledged to greatly influence grape and wine aromas. Among them, the effect of altitude on grape aroma compounds has scarcely been debated in literature available to date. In the present study, we investigated the influence of altitude on grape composition and aroma evolution during ripening of Vitis vinifera L. cultivar Glera grown in Conegliano-Valdobbiadene DOCG area (Italy). The site at highest altitude (380 m above sea level) was warmer than the lowest site (200 m above sea level) and, even with differences in temperature in the range 1.5-2 °C, the impact of the cultivation site on grape ripening and aroma accumulation and preservation was significant. The lowest site demonstrated slower grape ripening, and grapes at harvest accumulated lower amounts of all of the main classes of aroma compounds typical of the Glera variety. Wines produced from the highest site were preferred in tasting trials for their more patent floral notes and elegance. Altitude strongly influences grape ripening evolution and flavour accumulation in the Glera grape, and this result accounts for the different styles in the sparkling wines subsequently produced. Moreover, the present study shows that aroma compound biosynthesis, particularly that of benzenoides, starts before véraison in Glera. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Investigation of Phenolic Acids in Suspension Cultures of Vitis vinifera Stimulated with Indanoyl-Isoleucine, N-Linolenoyl-L-Glutamine, Malonyl Coenzyme A and Insect Saliva

    PubMed Central

    Riedel, Heidi; Akumo, Divine N.; Saw, Nay Min Min Thaw; Smetanska, Iryna; Neubauer, Peter

    2012-01-01

    Vitis vinifera c.v. Muscat de Frontignan (grape) contains various high valuable bioactive phenolic compounds with pharmaceutical properties and industrial interest which are not fully exploited. The focus of this investigation consists in testing the effects of various biological elicitors on a non-morphogenic callus suspension culture of V. vinifera. The investigated elicitors: Indanoyl-isoleucine (IN), N-linolenoyl-L-glutamine (LG), insect saliva (IS) and malonyl coenzyme A (MCoA) were aimed at mimicking the influence of environmental pathogens on plants in their natural habitats and at provoking exogenous induction of the phenylpropanoid pathway. The elicitors’ indanoyl-isoleucine (IN), N-linolenoyl-L-glutamine (LG) and insect saliva (IS), as well as malonyl coenzyme A (MCoA), were independently inoculated to stimulate the synthesis of phenylpropanoids. All of the enhancers positively increased the concentration of phenolic compounds in grape cells. The highest concentration of phenolic acids was detected after 2 h for MCoA, after 48 h for IN and after 24 h for LG and IS respectively. At the maximum production time, treated grape cells had a 3.5-fold (MCoA), 1.6-fold (IN) and 1.5-fold (IS) higher phenolic acid content compared to the corresponding control samples. The HPLC results of grape cells showed two major resveratrol derivatives: 3-O-Glucosyl-resveratrol and 4-(3,5-dihydroxyphenyl)-phenol. Their influences of the different elicitors, time of harvest and biomass concentration (p < 0.0001) were statistically significant on the synthesis of phenolic compounds. The induction with MCoA was found to demonstrate the highest statistical effect corresponding to the strongest stress response within the phenylpropanoid pathway in grape cells. PMID:24957372

  19. Analysis of the grape (Vitis vinifera L.) thaumatin-like protein (TLP) gene family and demonstration that TLP29 contributes to disease resistance.

    PubMed

    Yan, Xiaoxiao; Qiao, Hengbo; Zhang, Xiuming; Guo, Chunlei; Wang, Mengnan; Wang, Yuejin; Wang, Xiping

    2017-06-27

    Thaumatin-like protein (TLP) is present as a large family in plants, and individual members play different roles in various responses to biotic and abiotic stresses. Here we studied the role of 33 putative grape (Vitis vinifera L.) TLP genes (VvTLP) in grape disease resistance. Heat maps analysis compared the expression profiles of 33 genes in disease resistant and susceptible grape species infected with anthracnose (Elsinoe ampelina), powdery mildew (Erysiphe necator) or Botrytis cinerea. Among these 33 genes, the expression level of TLP29 increased following the three pathogens inoculations, and its homolog from the disease resistant Chinese wild grape V. quinquangularis cv. 'Shang-24', was focused for functional studies. Over-expression of TLP29 from grape 'Shang-24' (VqTLP29) in Arabidopsis thaliana enhanced its resistance to powdery mildew and the bacterium Pseudomonas syringae pv. tomato DC3000, but decreased resistance to B. cinerea. Moreover, the stomatal closure immunity response to pathogen associated molecular patterns was strengthened in the transgenic lines. A comparison of the expression profiles of various resistance-related genes after infection with different pathogens indicated that VqTLP29 may be involved in the salicylic acid and jasmonic acid/ethylene signaling pathways.

  20. Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses.

    PubMed

    Carbonell-Bejerano, Pablo; Diago, Maria-Paz; Martínez-Abaigar, Javier; Martínez-Zapater, José M; Tardáguila, Javier; Núñez-Olivera, Encarnación

    2014-07-09

    Ultraviolet (UV) radiation modulates secondary metabolism in the skin of Vitis vinifera L. berries, which affects the final composition of both grapes and wines. The expression of several phenylpropanoid biosynthesis-related genes is regulated by UV radiation in grape berries. However, the complete portion of transcriptome and ripening processes influenced by solar UV radiation in grapes remains unknown. Whole genome arrays were used to identify the berry skin transcriptome modulated by the UV radiation received naturally in a mid-altitude Tempranillo vineyard. UV radiation-blocking and transmitting filters were used to generate the experimental conditions. The expression of 121 genes was significantly altered by solar UV radiation. Functional enrichment analysis of altered transcripts mainly pointed out that secondary metabolism-related transcripts were induced by UV radiation including VvFLS1, VvGT5 and VvGT6 flavonol biosynthetic genes and monoterpenoid biosynthetic genes. Berry skin phenolic composition was also analysed to search for correlation with gene expression changes and UV-increased flavonols accumulation was the most evident impact. Among regulatory genes, novel UV radiation-responsive transcription factors including VvMYB24 and three bHLH, together with known grapevine UV-responsive genes such as VvMYBF1, were identified. A transcriptomic meta-analysis revealed that genes up-regulated by UV radiation in the berry skin were also enriched in homologs of Arabidopsis UVR8 UV-B photoreceptor-dependent UV-B -responsive genes. Indeed, a search of the grapevine reference genomic sequence identified UV-B signalling pathway homologs and among them, VvHY5-1, VvHY5-2 and VvRUP were up-regulated by UV radiation in the berry skin. Results suggest that the UV-B radiation-specific signalling pathway is activated in the skin of grapes grown at mid-altitudes. The biosynthesis and accumulation of secondary metabolites, which are appreciated in winemaking and