Dynamics on Networks of Manifolds
NASA Astrophysics Data System (ADS)
DeVille, Lee; Lerman, Eugene
2015-03-01
We propose a precise definition of a continuous time dynamical system made up of interacting open subsystems. The interconnections of subsystems are coded by directed graphs. We prove that the appropriate maps of graphs called graph fibrations give rise to maps of dynamical systems. Consequently surjective graph fibrations give rise to invariant subsystems and injective graph fibrations give rise to projections of dynamical systems.
Dynamic graph of an oxy-fuel combustion system using autocatalytic set model
NASA Astrophysics Data System (ADS)
Harish, Noor Ainy; Bakar, Sumarni Abu
2017-08-01
Evaporation process is one of the main processes besides combustion process in an oxy-combustion boiler system. An Autocatalytic Set (ASC) Model has successfully applied in developing graphical representation of the chemical reactions that occurs in the evaporation process in the system. Seventeen variables identified in the process are represented as nodes and the catalytic relationships are represented as edges in the graph. In addition, in this paper graph dynamics of ACS is further investigated. By using Dynamic Autocatalytic Set Graph Algorithm (DAGA), the adjacency matrix for each of the graphs and its relations to Perron-Frobenius Theorem is investigated. The dynamic graph obtained is further investigated where the connection of the graph to fuzzy graph Type 1 is established.
Graph determined symbolic dynamics and hybrid systems
NASA Astrophysics Data System (ADS)
Ayers, Kimberly Danielle
In this paper we explore the concept of symbolic dynamical systems whose structure is determined by a directed graph, and then discrete-continuous hybrid systems that arise from such dynamical systems. Typically, symbolic dynamics involve the study of a left shift of a bi-infinite sequence. We examine the case when the bi-infinite system is dictated by a graph; that is, the sequence is a bi-infinite path of a directed graph. We then use the concept to study a system of dynamical systems all on the same compact space M, where "switching" between the systems occurs as given by the bi-infinite sequence in question. The concepts of limit sets, chain recurrent sets, chaos, and Morse sets for these systems are explored.
NASA Astrophysics Data System (ADS)
Holme, Petter; Saramäki, Jari
2012-10-01
A great variety of systems in nature, society and technology-from the web of sexual contacts to the Internet, from the nervous system to power grids-can be modeled as graphs of vertices coupled by edges. The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems. In many cases, however, the edges are not continuously active. As an example, in networks of communication via e-mail, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts. In some cases, edges are active for non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward. Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network. In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems. In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself. Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks. The study of temporal networks is very interdisciplinary in nature. Reflecting this, even the object of study has many names-temporal graphs, evolving graphs, time-varying graphs, time-aggregated graphs, time-stamped graphs, dynamic networks, dynamic graphs, dynamical graphs, and so on. This review covers different fields where temporal graphs are considered, but does not attempt to unify related terminology-rather, we want to make papers readable across disciplines.
NASA Astrophysics Data System (ADS)
Xie, Huimin
The following sections are included: * Definition of Dynamical Languages * Distinct Excluded Blocks * Definition and Properties * L and L″ in Chomsky Hierarchy * A Natural Equivalence Relation * Symbolic Flows * Symbolic Flows and Dynamical Languages * Subshifts of Finite Type * Sofic Systems * Graphs and Dynamical Languages * Graphs and Shannon-Graphs * Transitive Languages * Topological Entropy
Global dynamics for switching systems and their extensions by linear differential equations
NASA Astrophysics Data System (ADS)
Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin
2018-03-01
Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.
Global dynamics for switching systems and their extensions by linear differential equations.
Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin
2018-03-15
Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.
Stability and dynamical properties of material flow systems on random networks
NASA Astrophysics Data System (ADS)
Anand, K.; Galla, T.
2009-04-01
The theory of complex networks and of disordered systems is used to study the stability and dynamical properties of a simple model of material flow networks defined on random graphs. In particular we address instabilities that are characteristic of flow networks in economic, ecological and biological systems. Based on results from random matrix theory, we work out the phase diagram of such systems defined on extensively connected random graphs, and study in detail how the choice of control policies and the network structure affects stability. We also present results for more complex topologies of the underlying graph, focussing on finitely connected Erdös-Réyni graphs, Small-World Networks and Barabási-Albert scale-free networks. Results indicate that variability of input-output matrix elements, and random structures of the underlying graph tend to make the system less stable, while fast price dynamics or strong responsiveness to stock accumulation promote stability.
Percolator: Scalable Pattern Discovery in Dynamic Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Sutanay; Purohit, Sumit; Lin, Peng
We demonstrate Percolator, a distributed system for graph pattern discovery in dynamic graphs. In contrast to conventional mining systems, Percolator advocates efficient pattern mining schemes that (1) support pattern detection with keywords; (2) integrate incremental and parallel pattern mining; and (3) support analytical queries such as trend analysis. The core idea of Percolator is to dynamically decide and verify a small fraction of patterns and their in- stances that must be inspected in response to buffered updates in dynamic graphs, with a total mining cost independent of graph size. We demonstrate a) the feasibility of incremental pattern mining by walkingmore » through each component of Percolator, b) the efficiency and scalability of Percolator over the sheer size of real-world dynamic graphs, and c) how the user-friendly GUI of Percolator inter- acts with users to support keyword-based queries that detect, browse and inspect trending patterns. We also demonstrate two user cases of Percolator, in social media trend analysis and academic collaboration analysis, respectively.« less
Visibility graph analysis on heartbeat dynamics of meditation training
NASA Astrophysics Data System (ADS)
Jiang, Sen; Bian, Chunhua; Ning, Xinbao; Ma, Qianli D. Y.
2013-06-01
We apply the visibility graph analysis to human heartbeat dynamics by constructing the complex networks of heartbeat interval time series and investigating the statistical properties of the network before and during chi and yoga meditation. The experiment results show that visibility graph analysis can reveal the dynamical changes caused by meditation training manifested as regular heartbeat, which is closely related to the adjustment of autonomous neural system, and visibility graph analysis is effective to evaluate the effect of meditation.
Dynamic graph system for a semantic database
Mizell, David
2016-04-12
A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.
Dynamic graph system for a semantic database
Mizell, David
2015-01-27
A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.
Bond graph modelling of multibody dynamics and its symbolic scheme
NASA Astrophysics Data System (ADS)
Kawase, Takehiko; Yoshimura, Hiroaki
A bond graph method of modeling multibody dynamics is demonstrated. Specifically, a symbolic generation scheme which fully utilizes the bond graph information is presented. It is also demonstrated that structural understanding and representation in bond graph theory is quite powerful for the modeling of such large scale systems, and that the nonenergic multiport of junction structure, which is a multiport expression of the system structure, plays an important role, as first suggested by Paynter. The principal part of the proposed symbolic scheme, that is, the elimination of excess variables, is done through tearing and interconnection in the sense of Kron using newly defined causal and causal coefficient arrays.
NASA Astrophysics Data System (ADS)
Kohler, Sophie; Far, Aïcha Beya; Hirsch, Ernest
2007-01-01
This paper presents an original approach for the optimal 3D reconstruction of manufactured workpieces based on a priori planification of the task, enhanced on-line through dynamic adjustment of the lighting conditions, and built around a cognitive intelligent sensory system using so-called Situation Graph Trees. The system takes explicitely structural knowledge related to image acquisition conditions, type of illumination sources, contents of the scene (e. g., CAD models and tolerance information), etc. into account. The principle of the approach relies on two steps. First, a socalled initialization phase, leading to the a priori task plan, collects this structural knowledge. This knowledge is conveniently encoded, as a sub-part, in the Situation Graph Tree building the backbone of the planning system specifying exhaustively the behavior of the application. Second, the image is iteratively evaluated under the control of this Situation Graph Tree. The information describing the quality of the piece to analyze is thus extracted and further exploited for, e. g., inspection tasks. Lastly, the approach enables dynamic adjustment of the Situation Graph Tree, enabling the system to adjust itself to the actual application run-time conditions, thus providing the system with a self-learning capability.
Dynamic extension of the Simulation Problem Analysis Kernel (SPANK)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, E.F.; Buhl, W.F.
1988-07-15
The Simulation Problem Analysis Kernel (SPANK) is an object-oriented simulation environment for general simulation purposes. Among its unique features is use of the directed graph as the primary data structure, rather than the matrix. This allows straightforward use of graph algorithms for matching variables and equations, and reducing the problem graph for efficient numerical solution. The original prototype implementation demonstrated the principles for systems of algebraic equations, allowing simulation of steady-state, nonlinear systems (Sowell 1986). This paper describes how the same principles can be extended to include dynamic objects, allowing simulation of general dynamic systems. The theory is developed andmore » an implementation is described. An example is taken from the field of building energy system simulation. 2 refs., 9 figs.« less
Multiplex visibility graphs to investigate recurrent neural network dynamics
NASA Astrophysics Data System (ADS)
Bianchi, Filippo Maria; Livi, Lorenzo; Alippi, Cesare; Jenssen, Robert
2017-03-01
A recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs). We design principled unsupervised methods to derive hyperparameters configurations yielding maximal ESN performance, expressed in terms of prediction error and memory capacity. In particular, we propose to model time series generated by each neuron activations with a horizontal visibility graph, whose topological properties have been shown to be related to the underlying system dynamics. Successively, horizontal visibility graphs associated with all neurons become layers of a larger structure called a multiplex. We show that topological properties of such a multiplex reflect important features of ESN dynamics that can be used to guide the tuning of its hyperparamers. Results obtained on several benchmarks and a real-world dataset of telephone call data records show the effectiveness of the proposed methods.
Multiplex visibility graphs to investigate recurrent neural network dynamics
Bianchi, Filippo Maria; Livi, Lorenzo; Alippi, Cesare; Jenssen, Robert
2017-01-01
A recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs). We design principled unsupervised methods to derive hyperparameters configurations yielding maximal ESN performance, expressed in terms of prediction error and memory capacity. In particular, we propose to model time series generated by each neuron activations with a horizontal visibility graph, whose topological properties have been shown to be related to the underlying system dynamics. Successively, horizontal visibility graphs associated with all neurons become layers of a larger structure called a multiplex. We show that topological properties of such a multiplex reflect important features of ESN dynamics that can be used to guide the tuning of its hyperparamers. Results obtained on several benchmarks and a real-world dataset of telephone call data records show the effectiveness of the proposed methods. PMID:28281563
Interacting particle systems on graphs
NASA Astrophysics Data System (ADS)
Sood, Vishal
In this dissertation, the dynamics of socially or biologically interacting populations are investigated. The individual members of the population are treated as particles that interact via links on a social or biological network represented as a graph. The effect of the structure of the graph on the properties of the interacting particle system is studied using statistical physics techniques. In the first chapter, the central concepts of graph theory and social and biological networks are presented. Next, interacting particle systems that are drawn from physics, mathematics and biology are discussed in the second chapter. In the third chapter, the random walk on a graph is studied. The mean time for a random walk to traverse between two arbitrary sites of a random graph is evaluated. Using an effective medium approximation it is found that the mean first-passage time between pairs of sites, as well as all moments of this first-passage time, are insensitive to the density of links in the graph. The inverse of the mean-first passage time varies non-monotonically with the density of links near the percolation transition of the random graph. Much of the behavior can be understood by simple heuristic arguments. Evolutionary dynamics, by which mutants overspread an otherwise uniform population on heterogeneous graphs, are studied in the fourth chapter. Such a process underlies' epidemic propagation, emergence of fads, social cooperation or invasion of an ecological niche by a new species. The first part of this chapter is devoted to neutral dynamics, in which the mutant genotype does not have a selective advantage over the resident genotype. The time to extinction of one of the two genotypes is derived. In the second part of this chapter, selective advantage or fitness is introduced such that the mutant genotype has a higher birth rate or a lower death rate. This selective advantage leads to a dynamical competition in which selection dominates for large populations, while for small populations the dynamics are similar to the neutral case. The likelihood for the fitter mutants to drive the resident genotype to extinction is calculated.
Meyer-Bäse, Anke; Roberts, Rodney G.; Illan, Ignacio A.; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja
2017-01-01
Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary conditions for (1) area aggregation and time-scale modeling in brain networks and for (2) pinning observability of nodes in dynamic graph networks. Simulation examples are given to illustrate the theoretical concepts. PMID:29051730
Meyer-Bäse, Anke; Roberts, Rodney G; Illan, Ignacio A; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja
2017-01-01
Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary conditions for (1) area aggregation and time-scale modeling in brain networks and for (2) pinning observability of nodes in dynamic graph networks. Simulation examples are given to illustrate the theoretical concepts.
Phase-Space Detection of Cyber Events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez Jimenez, Jarilyn M; Ferber, Aaron E; Prowell, Stacy J
Energy Delivery Systems (EDS) are a network of processes that produce, transfer and distribute energy. EDS are increasingly dependent on networked computing assets, as are many Industrial Control Systems. Consequently, cyber-attacks pose a real and pertinent threat, as evidenced by Stuxnet, Shamoon and Dragonfly. Hence, there is a critical need for novel methods to detect, prevent, and mitigate effects of such attacks. To detect cyber-attacks in EDS, we developed a framework for gathering and analyzing timing data that involves establishing a baseline execution profile and then capturing the effect of perturbations in the state from injecting various malware. The datamore » analysis was based on nonlinear dynamics and graph theory to improve detection of anomalous events in cyber applications. The goal was the extraction of changing dynamics or anomalous activity in the underlying computer system. Takens' theorem in nonlinear dynamics allows reconstruction of topologically invariant, time-delay-embedding states from the computer data in a sufficiently high-dimensional space. The resultant dynamical states were nodes, and the state-to-state transitions were links in a mathematical graph. Alternatively, sequential tabulation of executing instructions provides the nodes with corresponding instruction-to-instruction links. Graph theorems guarantee graph-invariant measures to quantify the dynamical changes in the running applications. Results showed a successful detection of cyber events.« less
Graph Theoretic Foundations of Multibody Dynamics Part I: Structural Properties
Jain, Abhinandan
2011-01-01
This is the first part of two papers that use concepts from graph theory to obtain a deeper understanding of the mathematical foundations of multibody dynamics. The key contribution is the development of a unifying framework that shows that key analytical results and computational algorithms in multibody dynamics are a direct consequence of structural properties and require minimal assumptions about the specific nature of the underlying multibody system. This first part focuses on identifying the abstract graph theoretic structural properties of spatial operator techniques in multibody dynamics. The second part paper exploits these structural properties to develop a broad spectrum of analytical results and computational algorithms. Towards this, we begin with the notion of graph adjacency matrices and generalize it to define block-weighted adjacency (BWA) matrices and their 1-resolvents. Previously developed spatial operators are shown to be special cases of such BWA matrices and their 1-resolvents. These properties are shown to hold broadly for serial and tree topology multibody systems. Specializations of the BWA and 1-resolvent matrices are referred to as spatial kernel operators (SKO) and spatial propagation operators (SPO). These operators and their special properties provide the foundation for the analytical and algorithmic techniques developed in the companion paper. We also use the graph theory concepts to study the topology induced sparsity structure of these operators and the system mass matrix. Similarity transformations of these operators are also studied. While the detailed development is done for the case of rigid-link multibody systems, the extension of these techniques to a broader class of systems (e.g. deformable links) are illustrated. PMID:22102790
GDSCalc: A Web-Based Application for Evaluating Discrete Graph Dynamical Systems
Elmeligy Abdelhamid, Sherif H.; Kuhlman, Chris J.; Marathe, Madhav V.; Mortveit, Henning S.; Ravi, S. S.
2015-01-01
Discrete dynamical systems are used to model various realistic systems in network science, from social unrest in human populations to regulation in biological networks. A common approach is to model the agents of a system as vertices of a graph, and the pairwise interactions between agents as edges. Agents are in one of a finite set of states at each discrete time step and are assigned functions that describe how their states change based on neighborhood relations. Full characterization of state transitions of one system can give insights into fundamental behaviors of other dynamical systems. In this paper, we describe a discrete graph dynamical systems (GDSs) application called GDSCalc for computing and characterizing system dynamics. It is an open access system that is used through a web interface. We provide an overview of GDS theory. This theory is the basis of the web application; i.e., an understanding of GDS provides an understanding of the software features, while abstracting away implementation details. We present a set of illustrative examples to demonstrate its use in education and research. Finally, we compare GDSCalc with other discrete dynamical system software tools. Our perspective is that no single software tool will perform all computations that may be required by all users; tools typically have particular features that are more suitable for some tasks. We situate GDSCalc within this space of software tools. PMID:26263006
GDSCalc: A Web-Based Application for Evaluating Discrete Graph Dynamical Systems.
Elmeligy Abdelhamid, Sherif H; Kuhlman, Chris J; Marathe, Madhav V; Mortveit, Henning S; Ravi, S S
2015-01-01
Discrete dynamical systems are used to model various realistic systems in network science, from social unrest in human populations to regulation in biological networks. A common approach is to model the agents of a system as vertices of a graph, and the pairwise interactions between agents as edges. Agents are in one of a finite set of states at each discrete time step and are assigned functions that describe how their states change based on neighborhood relations. Full characterization of state transitions of one system can give insights into fundamental behaviors of other dynamical systems. In this paper, we describe a discrete graph dynamical systems (GDSs) application called GDSCalc for computing and characterizing system dynamics. It is an open access system that is used through a web interface. We provide an overview of GDS theory. This theory is the basis of the web application; i.e., an understanding of GDS provides an understanding of the software features, while abstracting away implementation details. We present a set of illustrative examples to demonstrate its use in education and research. Finally, we compare GDSCalc with other discrete dynamical system software tools. Our perspective is that no single software tool will perform all computations that may be required by all users; tools typically have particular features that are more suitable for some tasks. We situate GDSCalc within this space of software tools.
Solution to the SLAM problem in low dynamic environments using a pose graph and an RGB-D sensor.
Lee, Donghwa; Myung, Hyun
2014-07-11
In this study, we propose a solution to the simultaneous localization and mapping (SLAM) problem in low dynamic environments by using a pose graph and an RGB-D (red-green-blue depth) sensor. The low dynamic environments refer to situations in which the positions of objects change over long intervals. Therefore, in the low dynamic environments, robots have difficulty recognizing the repositioning of objects unlike in highly dynamic environments in which relatively fast-moving objects can be detected using a variety of moving object detection algorithms. The changes in the environments then cause groups of false loop closing when the same moved objects are observed for a while, which means that conventional SLAM algorithms produce incorrect results. To address this problem, we propose a novel SLAM method that handles low dynamic environments. The proposed method uses a pose graph structure and an RGB-D sensor. First, to prune the falsely grouped constraints efficiently, nodes of the graph, that represent robot poses, are grouped according to the grouping rules with noise covariances. Next, false constraints of the pose graph are pruned according to an error metric based on the grouped nodes. The pose graph structure is reoptimized after eliminating the false information, and the corrected localization and mapping results are obtained. The performance of the method was validated in real experiments using a mobile robot system.
Chaotic Traversal (CHAT): Very Large Graphs Traversal Using Chaotic Dynamics
NASA Astrophysics Data System (ADS)
Changaival, Boonyarit; Rosalie, Martin; Danoy, Grégoire; Lavangnananda, Kittichai; Bouvry, Pascal
2017-12-01
Graph Traversal algorithms can find their applications in various fields such as routing problems, natural language processing or even database querying. The exploration can be considered as a first stepping stone into knowledge extraction from the graph which is now a popular topic. Classical solutions such as Breadth First Search (BFS) and Depth First Search (DFS) require huge amounts of memory for exploring very large graphs. In this research, we present a novel memoryless graph traversal algorithm, Chaotic Traversal (CHAT) which integrates chaotic dynamics to traverse large unknown graphs via the Lozi map and the Rössler system. To compare various dynamics effects on our algorithm, we present an original way to perform the exploration of a parameter space using a bifurcation diagram with respect to the topological structure of attractors. The resulting algorithm is an efficient and nonresource demanding algorithm, and is therefore very suitable for partial traversal of very large and/or unknown environment graphs. CHAT performance using Lozi map is proven superior than the, commonly known, Random Walk, in terms of number of nodes visited (coverage percentage) and computation time where the environment is unknown and memory usage is restricted.
Graph Theory Roots of Spatial Operators for Kinematics and Dynamics
NASA Technical Reports Server (NTRS)
Jain, Abhinandan
2011-01-01
Spatial operators have been used to analyze the dynamics of robotic multibody systems and to develop novel computational dynamics algorithms. Mass matrix factorization, inversion, diagonalization, and linearization are among several new insights obtained using such operators. While initially developed for serial rigid body manipulators, the spatial operators and the related mathematical analysis have been shown to extend very broadly including to tree and closed topology systems, to systems with flexible joints, links, etc. This work uses concepts from graph theory to explore the mathematical foundations of spatial operators. The goal is to study and characterize the properties of the spatial operators at an abstract level so that they can be applied to a broader range of dynamics problems. The rich mathematical properties of the kinematics and dynamics of robotic multibody systems has been an area of strong research interest for several decades. These properties are important to understand the inherent physical behavior of systems, for stability and control analysis, for the development of computational algorithms, and for model development of faithful models. Recurring patterns in spatial operators leads one to ask the more abstract question about the properties and characteristics of spatial operators that make them so broadly applicable. The idea is to step back from the specific application systems, and understand more deeply the generic requirements and properties of spatial operators, so that the insights and techniques are readily available across different kinematics and dynamics problems. In this work, techniques from graph theory were used to explore the abstract basis for the spatial operators. The close relationship between the mathematical properties of adjacency matrices for graphs and those of spatial operators and their kernels were established. The connections hold across very basic requirements on the system topology, the nature of the component bodies, the indexing schemes, etc. The relationship of the underlying structure is intimately connected with efficient, recursive computational algorithms. The results provide the foundational groundwork for a much broader look at the key problems in kinematics and dynamics. The properties of general graphs and trees of nodes and edge were examined, as well as the properties of adjacency matrices that are used to describe graph connectivity. The nilpotency property of such matrices for directed trees was reviewed, and the adjacency matrices were generalized to the notion of block weighted adjacency matrices that support block matrix elements. This leads us to the development of the notion of Spatial Kernel Operator SKO kernels. These kernels provide the basis for the development of SKO resolvent operators.
Local Difference Measures between Complex Networks for Dynamical System Model Evaluation
Lange, Stefan; Donges, Jonathan F.; Volkholz, Jan; Kurths, Jürgen
2015-01-01
A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation. Building on a recent study by Feldhoff et al. [1] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system. Three types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node-weighted graphs are discussed. PMID:25856374
Local difference measures between complex networks for dynamical system model evaluation.
Lange, Stefan; Donges, Jonathan F; Volkholz, Jan; Kurths, Jürgen
2015-01-01
A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation.Building on a recent study by Feldhoff et al. [8] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system [corrected]. types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node-weighted graphs are discussed.
NOUS: Construction and Querying of Dynamic Knowledge Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Sutanay; Agarwal, Khushbu; Purohit, Sumit
The ability to construct domain specific knowledge graphs (KG) and perform question-answering or hypothesis generation is a trans- formative capability. Despite their value, automated construction of knowledge graphs remains an expensive technical challenge that is beyond the reach for most enterprises and academic institutions. We propose an end-to-end framework for developing custom knowl- edge graph driven analytics for arbitrary application domains. The uniqueness of our system lies A) in its combination of curated KGs along with knowledge extracted from unstructured text, B) support for advanced trending and explanatory questions on a dynamic KG, and C) the ability to answer queriesmore » where the answer is embedded across multiple data sources.« less
NASA Technical Reports Server (NTRS)
Nguyen, Louis H.; Ramakrishnan, Jayant; Granda, Jose J.
2006-01-01
The assembly and operation of the International Space Station (ISS) require extensive testing and engineering analysis to verify that the Space Station system of systems would work together without any adverse interactions. Since the dynamic behavior of an entire Space Station cannot be tested on earth, math models of the Space Station structures and mechanical systems have to be built and integrated in computer simulations and analysis tools to analyze and predict what will happen in space. The ISS Centrifuge Rotor (CR) is one of many mechanical systems that need to be modeled and analyzed to verify the ISS integrated system performance on-orbit. This study investigates using Bond Graph modeling techniques as quick and simplified ways to generate models of the ISS Centrifuge Rotor. This paper outlines the steps used to generate simple and more complex models of the CR using Bond Graph Computer Aided Modeling Program with Graphical Input (CAMP-G). Comparisons of the Bond Graph CR models with those derived from Euler-Lagrange equations in MATLAB and those developed using multibody dynamic simulation at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are presented to demonstrate the usefulness of the Bond Graph modeling approach for aeronautics and space applications.
Graph-based linear scaling electronic structure theory.
Niklasson, Anders M N; Mniszewski, Susan M; Negre, Christian F A; Cawkwell, Marc J; Swart, Pieter J; Mohd-Yusof, Jamal; Germann, Timothy C; Wall, Michael E; Bock, Nicolas; Rubensson, Emanuel H; Djidjev, Hristo
2016-06-21
We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.
Graph-based linear scaling electronic structure theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niklasson, Anders M. N., E-mail: amn@lanl.gov; Negre, Christian F. A.; Cawkwell, Marc J.
2016-06-21
We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.
The Mathlet Toolkit: Creating Dynamic Applets for Differential Equations and Dynamical Systems
ERIC Educational Resources Information Center
Decker, Robert
2011-01-01
Dynamic/interactive graphing applets can be used to supplement standard computer algebra systems such as Maple, Mathematica, Derive, or TI calculators, in courses such as Calculus, Differential Equations, and Dynamical Systems. The addition of this type of software can lead to discovery learning, with students developing their own conjectures, and…
Graph distance for complex networks
NASA Astrophysics Data System (ADS)
Shimada, Yutaka; Hirata, Yoshito; Ikeguchi, Tohru; Aihara, Kazuyuki
2016-10-01
Networks are widely used as a tool for describing diverse real complex systems and have been successfully applied to many fields. The distance between networks is one of the most fundamental concepts for properly classifying real networks, detecting temporal changes in network structures, and effectively predicting their temporal evolution. However, this distance has rarely been discussed in the theory of complex networks. Here, we propose a graph distance between networks based on a Laplacian matrix that reflects the structural and dynamical properties of networked dynamical systems. Our results indicate that the Laplacian-based graph distance effectively quantifies the structural difference between complex networks. We further show that our approach successfully elucidates the temporal properties underlying temporal networks observed in the context of face-to-face human interactions.
NASA Astrophysics Data System (ADS)
Tahmassebi, Amirhessam; Pinker-Domenig, Katja; Wengert, Georg; Lobbes, Marc; Stadlbauer, Andreas; Romero, Francisco J.; Morales, Diego P.; Castillo, Encarnacion; Garcia, Antonio; Botella, Guillermo; Meyer-Bäse, Anke
2017-05-01
Graph network models in dementia have become an important computational technique in neuroscience to study fundamental organizational principles of brain structure and function of neurodegenerative diseases such as dementia. The graph connectivity is reflected in the connectome, the complete set of structural and functional connections of the graph network, which is mostly based on simple Pearson correlation links. In contrast to simple Pearson correlation networks, the partial correlations (PC) only identify direct correlations while indirect associations are eliminated. In addition to this, the state-of-the-art techniques in brain research are based on static graph theory, which is unable to capture the dynamic behavior of the brain connectivity, as it alters with disease evolution. We propose a new research avenue in neuroimaging connectomics based on combining dynamic graph network theory and modeling strategies at different time scales. We present the theoretical framework for area aggregation and time-scale modeling in brain networks as they pertain to disease evolution in dementia. This novel paradigm is extremely powerful, since we can derive both static parameters pertaining to node and area parameters, as well as dynamic parameters, such as system's eigenvalues. By implementing and analyzing dynamically both disease driven PC-networks and regular concentration networks, we reveal differences in the structure of these network that play an important role in the temporal evolution of this disease. The described research is key to advance biomedical research on novel disease prediction trajectories and dementia therapies.
Interference graph-based dynamic frequency reuse in optical attocell networks
NASA Astrophysics Data System (ADS)
Liu, Huanlin; Xia, Peijie; Chen, Yong; Wu, Lan
2017-11-01
Indoor optical attocell network may achieve higher capacity than radio frequency (RF) or Infrared (IR)-based wireless systems. It is proposed as a special type of visible light communication (VLC) system using Light Emitting Diodes (LEDs). However, the system spectral efficiency may be severely degraded owing to the inter-cell interference (ICI), particularly for dense deployment scenarios. To address these issues, we construct the spectral interference graph for indoor optical attocell network, and propose the Dynamic Frequency Reuse (DFR) and Weighted Dynamic Frequency Reuse (W-DFR) algorithms to decrease ICI and improve the spectral efficiency performance. The interference graph makes LEDs can transmit data without interference and select the minimum sub-bands needed for frequency reuse. Then, DFR algorithm reuses the system frequency equally across service-providing cells to mitigate spectrum interference. While W-DFR algorithm can reuse the system frequency by using the bandwidth weight (BW), which is defined based on the number of service users. Numerical results show that both of the proposed schemes can effectively improve the average spectral efficiency (ASE) of the system. Additionally, improvement of the user data rate is also obtained by analyzing its cumulative distribution function (CDF).
What does the structure of its visibility graph tell us about the nature of the time series?
NASA Astrophysics Data System (ADS)
Franke, Jasper G.; Donner, Reik V.
2017-04-01
Visibility graphs are a recently introduced method to construct complex network representations based upon univariate time series in order to study their dynamical characteristics [1]. In the last years, this approach has been successfully applied to studying a considerable variety of geoscientific research questions and data sets, including non-trivial temporal patterns in complex earthquake catalogs [2] or time-reversibility in climate time series [3]. It has been shown that several characteristic features of the thus constructed networks differ between stochastic and deterministic (possibly chaotic) processes, which is, however, relatively hard to exploit in the case of real-world applications. In this study, we propose studying two new measures related with the network complexity of visibility graphs constructed from time series, one being a special type of network entropy [4] and the other a recently introduced measure of the heterogeneity of the network's degree distribution [5]. For paradigmatic model systems exhibiting bifurcation sequences between regular and chaotic dynamics, both properties clearly trace the transitions between both types of regimes and exhibit marked quantitative differences for regular and chaotic dynamics. Moreover, for dynamical systems with a small amount of additive noise, the considered properties demonstrate gradual changes prior to the bifurcation point. This finding appears closely related to the subsequent loss of stability of the current state known to lead to a critical slowing down as the transition point is approaches. In this spirit, both considered visibility graph characteristics provide alternative tracers of dynamical early warning signals consistent with classical indicators. Our results demonstrate that measures of visibility graph complexity (i) provide a potentially useful means to tracing changes in the dynamical patterns encoded in a univariate time series that originate from increasing autocorrelation and (ii) allow to systematically distinguish regular from deterministic-chaotic dynamics. We demonstrate the application of our method for different model systems as well as selected paleoclimate time series from the North Atlantic region. Notably, visibility graph based methods are particularly suited for studying the latter type of geoscientific data, since they do not impose intrinsic restrictions or assumptions on the nature of the time series under investigation in terms of noise process, linearity and sampling homogeneity. [1] Lacasa, Lucas, et al. "From time series to complex networks: The visibility graph." Proceedings of the National Academy of Sciences 105.13 (2008): 4972-4975. [2] Telesca, Luciano, and Michele Lovallo. "Analysis of seismic sequences by using the method of visibility graph." EPL (Europhysics Letters) 97.5 (2012): 50002. [3] Donges, Jonathan F., Reik V. Donner, and Jürgen Kurths. "Testing time series irreversibility using complex network methods." EPL (Europhysics Letters) 102.1 (2013): 10004. [4] Small, Michael. "Complex networks from time series: capturing dynamics." 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), Beijing (2013): 2509-2512. [5] Jacob, Rinku, K.P. Harikrishnan, Ranjeev Misra, and G. Ambika. "Measure for degree heterogeneity in complex networks and its application to recurrence network analysis." arXiv preprint 1605.06607 (2016).
Application of dynamic uncertain causality graph in spacecraft fault diagnosis: Logic cycle
NASA Astrophysics Data System (ADS)
Yao, Quanying; Zhang, Qin; Liu, Peng; Yang, Ping; Zhu, Ma; Wang, Xiaochen
2017-04-01
Intelligent diagnosis system are applied to fault diagnosis in spacecraft. Dynamic Uncertain Causality Graph (DUCG) is a new probability graphic model with many advantages. In the knowledge expression of spacecraft fault diagnosis, feedback among variables is frequently encountered, which may cause directed cyclic graphs (DCGs). Probabilistic graphical models (PGMs) such as bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning, but BN does not allow DCGs. In this paper, DUGG is applied to fault diagnosis in spacecraft: introducing the inference algorithm for the DUCG to deal with feedback. Now, DUCG has been tested in 16 typical faults with 100% diagnosis accuracy.
NASA Astrophysics Data System (ADS)
Ivankovic, D.; Dadic, V.
2009-04-01
Some of oceanographic parameters have to be manually inserted into database; some (for example data from CTD probe) are inserted from various files. All this parameters requires visualization, validation and manipulation from research vessel or scientific institution, and also public presentation. For these purposes is developed web based system, containing dynamic sql procedures and java applets. Technology background is Oracle 10g relational database, and Oracle application server. Web interfaces are developed using PL/SQL stored database procedures (mod PL/SQL). Additional parts for data visualization include use of Java applets and JavaScript. Mapping tool is Google maps API (javascript) and as alternative java applet. Graph is realized as dynamically generated web page containing java applet. Mapping tool and graph are georeferenced. That means that click on some part of graph, automatically initiate zoom or marker onto location where parameter was measured. This feature is very useful for data validation. Code for data manipulation and visualization are partially realized with dynamic SQL and that allow as to separate data definition and code for data manipulation. Adding new parameter in system requires only data definition and description without programming interface for this kind of data.
Lee, Jae H.; Yao, Yushu; Shrestha, Uttam; Gullberg, Grant T.; Seo, Youngho
2014-01-01
The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting. PMID:27081299
Lee, Jae H; Yao, Yushu; Shrestha, Uttam; Gullberg, Grant T; Seo, Youngho
2014-11-01
The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting.
Fingerprint recognition system by use of graph matching
NASA Astrophysics Data System (ADS)
Shen, Wei; Shen, Jun; Zheng, Huicheng
2001-09-01
Fingerprint recognition is an important subject in biometrics to identify or verify persons by physiological characteristics, and has found wide applications in different domains. In the present paper, we present a finger recognition system that combines singular points and structures. The principal steps of processing in our system are: preprocessing and ridge segmentation, singular point extraction and selection, graph representation, and finger recognition by graphs matching. Our fingerprint recognition system is implemented and tested for many fingerprint images and the experimental result are satisfactory. Different techniques are used in our system, such as fast calculation of orientation field, local fuzzy dynamical thresholding, algebraic analysis of connections and fingerprints representation and matching by graphs. Wed find that for fingerprint database that is not very large, the recognition rate is very high even without using a prior coarse category classification. This system works well for both one-to-few and one-to-many problems.
Remote Symbolic Computation of Loci
ERIC Educational Resources Information Center
Abanades, Miguel A.; Escribano, Jesus; Botana, Francisco
2010-01-01
This article presents a web-based tool designed to compute certified equations and graphs of geometric loci specified using standard Dynamic Geometry Systems (DGS). Complementing the graphing abilities of the considered DGS, the equations of the loci produced by the application are remotely computed using symbolic algebraic techniques from the…
Fibonacci Identities, Matrices, and Graphs
ERIC Educational Resources Information Center
Huang, Danrun
2005-01-01
General strategies used to help discover, prove, and generalize identities for Fibonacci numbers are described along with some properties about the determinants of square matrices. A matrix proof for identity (2) that has received immense attention from many branches of mathematics, like linear algebra, dynamical systems, graph theory and others…
Laplacian Estrada and normalized Laplacian Estrada indices of evolving graphs.
Shang, Yilun
2015-01-01
Large-scale time-evolving networks have been generated by many natural and technological applications, posing challenges for computation and modeling. Thus, it is of theoretical and practical significance to probe mathematical tools tailored for evolving networks. In this paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index and the dynamic normalized Laplacian Estrada index of evolving graphs. Using linear algebra techniques, we established general upper and lower bounds for these graph-spectrum-based invariants through a couple of intuitive graph-theoretic measures, including the number of vertices or edges. Synthetic random evolving small-world networks are employed to show the relevance of the proposed dynamic Estrada indices. It is found that neither the static snapshot graphs nor the aggregated graph can approximate the evolving graph itself, indicating the fundamental difference between the static and dynamic Estrada indices.
Mathematics of Web science: structure, dynamics and incentives.
Chayes, Jennifer
2013-03-28
Dr Chayes' talk described how, to a discrete mathematician, 'all the world's a graph, and all the people and domains merely vertices'. A graph is represented as a set of vertices V and a set of edges E, so that, for instance, in the World Wide Web, V is the set of pages and E the directed hyperlinks; in a social network, V is the people and E the set of relationships; and in the autonomous system Internet, V is the set of autonomous systems (such as AOL, Yahoo! and MSN) and E the set of connections. This means that mathematics can be used to study the Web (and other large graphs in the online world) in the following way: first, we can model online networks as large finite graphs; second, we can sample pieces of these graphs; third, we can understand and then control processes on these graphs; and fourth, we can develop algorithms for these graphs and apply them to improve the online experience.
Overlapping community detection based on link graph using distance dynamics
NASA Astrophysics Data System (ADS)
Chen, Lei; Zhang, Jing; Cai, Li-Jun
2018-01-01
The distance dynamics model was recently proposed to detect the disjoint community of a complex network. To identify the overlapping structure of a network using the distance dynamics model, an overlapping community detection algorithm, called L-Attractor, is proposed in this paper. The process of L-Attractor mainly consists of three phases. In the first phase, L-Attractor transforms the original graph to a link graph (a new edge graph) to assure that one node has multiple distances. In the second phase, using the improved distance dynamics model, a dynamic interaction process is introduced to simulate the distance dynamics (shrink or stretch). Through the dynamic interaction process, all distances converge, and the disjoint community structure of the link graph naturally manifests itself. In the third phase, a recovery method is designed to convert the disjoint community structure of the link graph to the overlapping community structure of the original graph. Extensive experiments are conducted on the LFR benchmark networks as well as real-world networks. Based on the results, our algorithm demonstrates higher accuracy and quality than other state-of-the-art algorithms.
EvoGraph: On-The-Fly Efficient Mining of Evolving Graphs on GPU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Song, Shuaiwen
With the prevalence of the World Wide Web and social networks, there has been a growing interest in high performance analytics for constantly-evolving dynamic graphs. Modern GPUs provide massive AQ1 amount of parallelism for efficient graph processing, but the challenges remain due to their lack of support for the near real-time streaming nature of dynamic graphs. Specifically, due to the current high volume and velocity of graph data combined with the complexity of user queries, traditional processing methods by first storing the updates and then repeatedly running static graph analytics on a sequence of versions or snapshots are deemed undesirablemore » and computational infeasible on GPU. We present EvoGraph, a highly efficient and scalable GPU- based dynamic graph analytics framework.« less
A GRAPH PARTITIONING APPROACH TO PREDICTING PATTERNS IN LATERAL INHIBITION SYSTEMS
RUFINO FERREIRA, ANA S.; ARCAK, MURAT
2017-01-01
We analyze spatial patterns on networks of cells where adjacent cells inhibit each other through contact signaling. We represent the network as a graph where each vertex represents the dynamics of identical individual cells and where graph edges represent cell-to-cell signaling. To predict steady-state patterns we find equitable partitions of the graph vertices and assign them into disjoint classes. We then use results from monotone systems theory to prove the existence of patterns that are structured in such a way that all the cells in the same class have the same final fate. To study the stability properties of these patterns, we rely on the graph partition to perform a block decomposition of the system. Then, to guarantee stability, we provide a small-gain type criterion that depends on the input-output properties of each cell in the reduced system. Finally, we discuss pattern formation in stochastic models. With the help of a modal decomposition we show that noise can enhance the parameter region where patterning occurs. PMID:29225552
NASA Astrophysics Data System (ADS)
Lacasa, Lucas
2014-09-01
Dynamical processes can be transformed into graphs through a family of mappings called visibility algorithms, enabling the possibility of (i) making empirical time series analysis and signal processing and (ii) characterizing classes of dynamical systems and stochastic processes using the tools of graph theory. Recent works show that the degree distribution of these graphs encapsulates much information on the signals' variability, and therefore constitutes a fundamental feature for statistical learning purposes. However, exact solutions for the degree distributions are only known in a few cases, such as for uncorrelated random processes. Here we analytically explore these distributions in a list of situations. We present a diagrammatic formalism which computes for all degrees their corresponding probability as a series expansion in a coupling constant which is the number of hidden variables. We offer a constructive solution for general Markovian stochastic processes and deterministic maps. As case tests we focus on Ornstein-Uhlenbeck processes, fully chaotic and quasiperiodic maps. Whereas only for certain degree probabilities can all diagrams be summed exactly, in the general case we show that the perturbation theory converges. In a second part, we make use of a variational technique to predict the complete degree distribution for special classes of Markovian dynamics with fast-decaying correlations. In every case we compare the theory with numerical experiments.
PathFinder: reconstruction and dynamic visualization of metabolic pathways.
Goesmann, Alexander; Haubrock, Martin; Meyer, Folker; Kalinowski, Jörn; Giegerich, Robert
2002-01-01
Beyond methods for a gene-wise annotation and analysis of sequenced genomes new automated methods for functional analysis on a higher level are needed. The identification of realized metabolic pathways provides valuable information on gene expression and regulation. Detection of incomplete pathways helps to improve a constantly evolving genome annotation or discover alternative biochemical pathways. To utilize automated genome analysis on the level of metabolic pathways new methods for the dynamic representation and visualization of pathways are needed. PathFinder is a tool for the dynamic visualization of metabolic pathways based on annotation data. Pathways are represented as directed acyclic graphs, graph layout algorithms accomplish the dynamic drawing and visualization of the metabolic maps. A more detailed analysis of the input data on the level of biochemical pathways helps to identify genes and detect improper parts of annotations. As an Relational Database Management System (RDBMS) based internet application PathFinder reads a list of EC-numbers or a given annotation in EMBL- or Genbank-format and dynamically generates pathway graphs.
Graph-based analysis of kinetics on multidimensional potential-energy surfaces.
Okushima, T; Niiyama, T; Ikeda, K S; Shimizu, Y
2009-09-01
The aim of this paper is twofold: one is to give a detailed description of an alternative graph-based analysis method, which we call saddle connectivity graph, for analyzing the global topography and the dynamical properties of many-dimensional potential-energy landscapes and the other is to give examples of applications of this method in the analysis of the kinetics of realistic systems. A Dijkstra-type shortest path algorithm is proposed to extract dynamically dominant transition pathways by kinetically defining transition costs. The applicability of this approach is first confirmed by an illustrative example of a low-dimensional random potential. We then show that a coarse-graining procedure tailored for saddle connectivity graphs can be used to obtain the kinetic properties of 13- and 38-atom Lennard-Jones clusters. The coarse-graining method not only reduces the complexity of the graphs, but also, with iterative use, reveals a self-similar hierarchical structure in these clusters. We also propose that the self-similarity is common to many-atom Lennard-Jones clusters.
Dynamic Visualization of Co-expression in Systems Genetics Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
New, Joshua Ryan; Huang, Jian; Chesler, Elissa J
2008-01-01
Biologists hope to address grand scientific challenges by exploring the abundance of data made available through modern microarray technology and other high-throughput techniques. The impact of this data, however, is limited unless researchers can effectively assimilate such complex information and integrate it into their daily research; interactive visualization tools are called for to support the effort. Specifically, typical studies of gene co-expression require novel visualization tools that enable the dynamic formulation and fine-tuning of hypotheses to aid the process of evaluating sensitivity of key parameters. These tools should allow biologists to develop an intuitive understanding of the structure of biologicalmore » networks and discover genes which reside in critical positions in networks and pathways. By using a graph as a universal data representation of correlation in gene expression data, our novel visualization tool employs several techniques that when used in an integrated manner provide innovative analytical capabilities. Our tool for interacting with gene co-expression data integrates techniques such as: graph layout, qualitative subgraph extraction through a novel 2D user interface, quantitative subgraph extraction using graph-theoretic algorithms or by querying an optimized b-tree, dynamic level-of-detail graph abstraction, and template-based fuzzy classification using neural networks. We demonstrate our system using a real-world workflow from a large-scale, systems genetics study of mammalian gene co-expression.« less
Optimizing spread dynamics on graphs by message passing
NASA Astrophysics Data System (ADS)
Altarelli, F.; Braunstein, A.; Dall'Asta, L.; Zecchina, R.
2013-09-01
Cascade processes are responsible for many important phenomena in natural and social sciences. Simple models of irreversible dynamics on graphs, in which nodes activate depending on the state of their neighbors, have been successfully applied to describe cascades in a large variety of contexts. Over the past decades, much effort has been devoted to understanding the typical behavior of the cascades arising from initial conditions extracted at random from some given ensemble. However, the problem of optimizing the trajectory of the system, i.e. of identifying appropriate initial conditions to maximize (or minimize) the final number of active nodes, is still considered to be practically intractable, with the only exception being models that satisfy a sort of diminishing returns property called submodularity. Submodular models can be approximately solved by means of greedy strategies, but by definition they lack cooperative characteristics which are fundamental in many real systems. Here we introduce an efficient algorithm based on statistical physics for the optimization of trajectories in cascade processes on graphs. We show that for a wide class of irreversible dynamics, even in the absence of submodularity, the spread optimization problem can be solved efficiently on large networks. Analytic and algorithmic results on random graphs are complemented by the solution of the spread maximization problem on a real-world network (the Epinions consumer reviews network).
Distributed MPC based consensus for single-integrator multi-agent systems.
Cheng, Zhaomeng; Fan, Ming-Can; Zhang, Hai-Tao
2015-09-01
This paper addresses model predictive control schemes for consensus in multi-agent systems (MASs) with discrete-time single-integrator dynamics under switching directed interaction graphs. The control horizon is extended to be greater than one which endows the closed-loop system with extra degree of freedom. We derive sufficient conditions on the sampling period and the interaction graph to achieve consensus by using the property of infinite products of stochastic matrices. Consensus can be achieved asymptotically if the sampling period is selected such that the interaction graph among agents has a directed spanning tree jointly. Significantly, if the interaction graph always has a spanning tree, one can select an arbitrary large sampling period to guarantee consensus. Finally, several simulations are conducted to illustrate the effectiveness of the theoretical results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
All-Optical Implementation of the Ant Colony Optimization Algorithm
Hu, Wenchao; Wu, Kan; Shum, Perry Ping; Zheludev, Nikolay I.; Soci, Cesare
2016-01-01
We report all-optical implementation of the optimization algorithm for the famous “ant colony” problem. Ant colonies progressively optimize pathway to food discovered by one of the ants through identifying the discovered route with volatile chemicals (pheromones) secreted on the way back from the food deposit. Mathematically this is an important example of graph optimization problem with dynamically changing parameters. Using an optical network with nonlinear waveguides to represent the graph and a feedback loop, we experimentally show that photons traveling through the network behave like ants that dynamically modify the environment to find the shortest pathway to any chosen point in the graph. This proof-of-principle demonstration illustrates how transient nonlinearity in the optical system can be exploited to tackle complex optimization problems directly, on the hardware level, which may be used for self-routing of optical signals in transparent communication networks and energy flow in photonic systems. PMID:27222098
Yu, Qingbao; Erhardt, Erik B.; Sui, Jing; Du, Yuhui; He, Hao; Hjelm, Devon; Cetin, Mustafa S.; Rachakonda, Srinivas; Miller, Robyn L.; Pearlson, Godfrey; Calhoun, Vince D.
2014-01-01
Graph theory-based analysis has been widely employed in brain imaging studies, and altered topological properties of brain connectivity have emerged as important features of mental diseases such as schizophrenia. However, most previous studies have focused on graph metrics of stationary brain graphs, ignoring that brain connectivity exhibits fluctuations over time. Here we develop a new framework for accessing dynamic graph properties of time-varying functional brain connectivity in resting state fMRI data and apply it to healthy controls (HCs) and patients with schizophrenia (SZs). Specifically, nodes of brain graphs are defined by intrinsic connectivity networks (ICNs) identified by group independent component analysis (ICA). Dynamic graph metrics of the time-varying brain connectivity estimated by the correlation of sliding time-windowed ICA time courses of ICNs are calculated. First- and second-level connectivity states are detected based on the correlation of nodal connectivity strength between time-varying brain graphs. Our results indicate that SZs show decreased variance in the dynamic graph metrics. Consistent with prior stationary functional brain connectivity works, graph measures of identified first-level connectivity states show lower values in SZs. In addition, more first-level connectivity states are disassociated with the second-level connectivity state which resembles the stationary connectivity pattern computed by the entire scan. Collectively, the findings provide new evidence about altered dynamic brain graphs in schizophrenia which may underscore the abnormal brain performance in this mental illness. PMID:25514514
Dynamic airspace configuration algorithms for next generation air transportation system
NASA Astrophysics Data System (ADS)
Wei, Jian
The National Airspace System (NAS) is under great pressure to safely and efficiently handle the record-high air traffic volume nowadays, and will face even greater challenge to keep pace with the steady increase of future air travel demand, since the air travel demand is projected to increase to two to three times the current level by 2025. The inefficiency of traffic flow management initiatives causes severe airspace congestion and frequent flight delays, which cost billions of economic losses every year. To address the increasingly severe airspace congestion and delays, the Next Generation Air Transportation System (NextGen) is proposed to transform the current static and rigid radar based system to a dynamic and flexible satellite based system. New operational concepts such as Dynamic Airspace Configuration (DAC) have been under development to allow more flexibility required to mitigate the demand-capacity imbalances in order to increase the throughput of the entire NAS. In this dissertation, we address the DAC problem in the en route and terminal airspace under the framework of NextGen. We develop a series of algorithms to facilitate the implementation of innovative concepts relevant with DAC in both the en route and terminal airspace. We also develop a performance evaluation framework for comprehensive benefit analyses on different aspects of future sector design algorithms. First, we complete a graph based sectorization algorithm for DAC in the en route airspace, which models the underlying air route network with a weighted graph, converts the sectorization problem into the graph partition problem, partitions the weighted graph with an iterative spectral bipartition method, and constructs the sectors from the partitioned graph. The algorithm uses a graph model to accurately capture the complex traffic patterns of the real flights, and generates sectors with high efficiency while evenly distributing the workload among the generated sectors. We further improve the robustness and efficiency of the graph based DAC algorithm by incorporating the Multilevel Graph Partitioning (MGP) method into the graph model, and develop a MGP based sectorization algorithm for DAC in the en route airspace. In a comprehensive benefit analysis, the performance of the proposed algorithms are tested in numerical simulations with Enhanced Traffic Management System (ETMS) data. Simulation results demonstrate that the algorithmically generated sectorizations outperform the current sectorizations in different sectors for different time periods. Secondly, based on our experience with DAC in the en route airspace, we further study the sectorization problem for DAC in the terminal airspace. The differences between the en route and terminal airspace are identified, and their influence on the terminal sectorization is analyzed. After adjusting the graph model to better capture the unique characteristics of the terminal airspace and the requirements of terminal sectorization, we develop a graph based geometric sectorization algorithm for DAC in the terminal airspace. Moreover, the graph based model is combined with the region based sector design method to better handle the complicated geometric and operational constraints in the terminal sectorization problem. In the benefit analysis, we identify the contributing factors to terminal controller workload, define evaluation metrics, and develop a bebefit analysis framework for terminal sectorization evaluation. With the evaluation framework developed, we demonstrate the improvements on the current sectorizations with real traffic data collected from several major international airports in the U.S., and conduct a detailed analysis on the potential benefits of dynamic reconfiguration in the terminal airspace. Finally, in addition to the research on the macroscopic behavior of a large number of aircraft, we also study the dynamical behavior of individual aircraft from the perspective of traffic flow management. We formulate the mode-confusion problem as hybrid estimation problem, and develop a state estimation algorithm for the linear hybrid system with continuous-state-dependent transitions based on sparse observations. We also develop an estimated time of arrival prediction algorithm based on the state-dependent transition hybrid estimation algorithm, whose performance is demonstrated with simulations on the landing procedure following the Continuous Descend Approach (CDA) profile.
Evolution of worldwide stock markets, correlation structure, and correlation-based graphs
NASA Astrophysics Data System (ADS)
Song, Dong-Ming; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N.
2011-08-01
We investigate the daily correlation present among market indices of stock exchanges located all over the world in the time period January 1996 to July 2009. We discover that the correlation among market indices presents both a fast and a slow dynamics. The slow dynamics reflects the development and consolidation of globalization. The fast dynamics is associated with critical events that originate in a specific country or region of the world and rapidly affect the global system. We provide evidence that the short term time scale of correlation among market indices is less than 3 trading months (about 60 trading days). The average values of the nondiagonal elements of the correlation matrix, correlation-based graphs, and the spectral properties of the largest eigenvalues and eigenvectors of the correlation matrix are carrying information about the fast and slow dynamics of the correlation of market indices. We introduce a measure of mutual information based on link co-occurrence in networks in order to detect the fast dynamics of successive changes of correlation-based graphs in a quantitative way.
Graph fibrations and symmetries of network dynamics
NASA Astrophysics Data System (ADS)
Nijholt, Eddie; Rink, Bob; Sanders, Jan
2016-11-01
Dynamical systems with a network structure can display remarkable phenomena such as synchronisation and anomalous synchrony breaking. A methodology for classifying patterns of synchrony in networks was developed by Golubitsky and Stewart. They showed that the robustly synchronous dynamics of a network is determined by its quotient networks. This result was recently reformulated by DeVille and Lerman, who pointed out that the reduction from a network to a quotient is an example of a graph fibration. The current paper exploits this observation and demonstrates the importance of self-fibrations of network graphs. Self-fibrations give rise to symmetries in the dynamics of a network. We show that every network admits a lift with a semigroup or semigroupoid of self-fibrations. The resulting symmetries impact the global dynamics of the network and can therefore be used to explain and predict generic scenarios for synchrony breaking. Also, when the network has a trivial symmetry groupoid, then every robust synchrony in the lift is determined by symmetry. We finish this paper with a discussion of networks with interior symmetries and nonhomogeneous networks.
Jooya, Hossein Z.; Reihani, Kamran; Chu, Shih-I
2016-11-21
We propose a graph-theoretical formalism to study generic circuit quantum electrodynamics systems consisting of a two level qubit coupled with a single-mode resonator in arbitrary coupling strength regimes beyond rotating-wave approximation. We define colored-weighted graphs, and introduce different products between them to investigate the dynamics of superconducting qubits in transverse, longitudinal, and bidirectional coupling schemes. In conclusion, the intuitive and predictive picture provided by this method, and the simplicity of the mathematical construction, are demonstrated with some numerical studies of the multiphoton resonance processes and quantum interference phenomena for the superconducting qubit systems driven by intense ac fields.
Dynamic Load Balancing for Adaptive Computations on Distributed-Memory Machines
NASA Technical Reports Server (NTRS)
1999-01-01
Dynamic load balancing is central to adaptive mesh-based computations on large-scale parallel computers. The principal investigator has investigated various issues on the dynamic load balancing problem under NASA JOVE and JAG rants. The major accomplishments of the project are two graph partitioning algorithms and a load balancing framework. The S-HARP dynamic graph partitioner is known to be the fastest among the known dynamic graph partitioners to date. It can partition a graph of over 100,000 vertices in 0.25 seconds on a 64- processor Cray T3E distributed-memory multiprocessor while maintaining the scalability of over 16-fold speedup. Other known and widely used dynamic graph partitioners take over a second or two while giving low scalability of a few fold speedup on 64 processors. These results have been published in journals and peer-reviewed flagship conferences.
Zhao, Jian; Glueck, Michael; Breslav, Simon; Chevalier, Fanny; Khan, Azam
2017-01-01
User-authored annotations of data can support analysts in the activity of hypothesis generation and sensemaking, where it is not only critical to document key observations, but also to communicate insights between analysts. We present annotation graphs, a dynamic graph visualization that enables meta-analysis of data based on user-authored annotations. The annotation graph topology encodes annotation semantics, which describe the content of and relations between data selections, comments, and tags. We present a mixed-initiative approach to graph layout that integrates an analyst's manual manipulations with an automatic method based on similarity inferred from the annotation semantics. Various visual graph layout styles reveal different perspectives on the annotation semantics. Annotation graphs are implemented within C8, a system that supports authoring annotations during exploratory analysis of a dataset. We apply principles of Exploratory Sequential Data Analysis (ESDA) in designing C8, and further link these to an existing task typology in the visualization literature. We develop and evaluate the system through an iterative user-centered design process with three experts, situated in the domain of analyzing HCI experiment data. The results suggest that annotation graphs are effective as a method of visually extending user-authored annotations to data meta-analysis for discovery and organization of ideas.
Dynamic graph cuts for efficient inference in Markov Random Fields.
Kohli, Pushmeet; Torr, Philip H S
2007-12-01
Abstract-In this paper we present a fast new fully dynamic algorithm for the st-mincut/max-flow problem. We show how this algorithm can be used to efficiently compute MAP solutions for certain dynamically changing MRF models in computer vision such as image segmentation. Specifically, given the solution of the max-flow problem on a graph, the dynamic algorithm efficiently computes the maximum flow in a modified version of the graph. The time taken by it is roughly proportional to the total amount of change in the edge weights of the graph. Our experiments show that, when the number of changes in the graph is small, the dynamic algorithm is significantly faster than the best known static graph cut algorithm. We test the performance of our algorithm on one particular problem: the object-background segmentation problem for video. It should be noted that the application of our algorithm is not limited to the above problem, the algorithm is generic and can be used to yield similar improvements in many other cases that involve dynamic change.
Spectral analysis and slow spreading dynamics on complex networks.
Odor, Géza
2013-09-01
The susceptible-infected-susceptible (SIS) model is one of the simplest memoryless systems for describing information or epidemic spreading phenomena with competing creation and spontaneous annihilation reactions. The effect of quenched disorder on the dynamical behavior has recently been compared to quenched mean-field (QMF) approximations in scale-free networks. QMF can take into account topological heterogeneity and clustering effects of the activity in the steady state by spectral decomposition analysis of the adjacency matrix. Therefore, it can provide predictions on possible rare-region effects, thus on the occurrence of slow dynamics. I compare QMF results of SIS with simulations on various large dimensional graphs. In particular, I show that for Erdős-Rényi graphs this method predicts correctly the occurrence of rare-region effects. It also provides a good estimate for the epidemic threshold in case of percolating graphs. Griffiths Phases emerge if the graph is fragmented or if we apply a strong, exponentially suppressing weighting scheme on the edges. The latter model describes the connection time distributions in the face-to-face experiments. In case of a generalized Barabási-Albert type of network with aging connections, strong rare-region effects and numerical evidence for Griffiths Phase dynamics are shown. The dynamical simulation results agree well with the predictions of the spectral analysis applied for the weighted adjacency matrices.
Quantum Bose-Hubbard model with an evolving graph as a toy model for emergent spacetime
NASA Astrophysics Data System (ADS)
Hamma, Alioscia; Markopoulou, Fotini; Lloyd, Seth; Caravelli, Francesco; Severini, Simone; Markström, Klas
2010-05-01
We present a toy model for interacting matter and geometry that explores quantum dynamics in a spin system as a precursor to a quantum theory of gravity. The model has no a priori geometric properties; instead, locality is inferred from the more fundamental notion of interaction between the matter degrees of freedom. The interaction terms are themselves quantum degrees of freedom so that the structure of interactions and hence the resulting local and causal structures are dynamical. The system is a Hubbard model where the graph of the interactions is a set of quantum evolving variables. We show entanglement between spatial and matter degrees of freedom. We study numerically the quantum system and analyze its entanglement dynamics. We analyze the asymptotic behavior of the classical model. Finally, we discuss analogues of trapped surfaces and gravitational attraction in this simple model.
Visibility graphs and symbolic dynamics
NASA Astrophysics Data System (ADS)
Lacasa, Lucas; Just, Wolfram
2018-07-01
Visibility algorithms are a family of geometric and ordering criteria by which a real-valued time series of N data is mapped into a graph of N nodes. This graph has been shown to often inherit in its topology nontrivial properties of the series structure, and can thus be seen as a combinatorial representation of a dynamical system. Here we explore in some detail the relation between visibility graphs and symbolic dynamics. To do that, we consider the degree sequence of horizontal visibility graphs generated by the one-parameter logistic map, for a range of values of the parameter for which the map shows chaotic behaviour. Numerically, we observe that in the chaotic region the block entropies of these sequences systematically converge to the Lyapunov exponent of the time series. Hence, Pesin's identity suggests that these block entropies are converging to the Kolmogorov-Sinai entropy of the physical measure, which ultimately suggests that the algorithm is implicitly and adaptively constructing phase space partitions which might have the generating property. To give analytical insight, we explore the relation k(x) , x ∈ [ 0 , 1 ] that, for a given datum with value x, assigns in graph space a node with degree k. In the case of the out-degree sequence, such relation is indeed a piece-wise constant function. By making use of explicit methods and tools from symbolic dynamics we are able to analytically show that the algorithm indeed performs an effective partition of the phase space and that such partition is naturally expressed as a countable union of subintervals, where the endpoints of each subinterval are related to the fixed point structure of the iterates of the map and the subinterval enumeration is associated with particular ordering structures that we called motifs.
The many faces of graph dynamics
NASA Astrophysics Data System (ADS)
Pignolet, Yvonne Anne; Roy, Matthieu; Schmid, Stefan; Tredan, Gilles
2017-06-01
The topological structure of complex networks has fascinated researchers for several decades, resulting in the discovery of many universal properties and reoccurring characteristics of different kinds of networks. However, much less is known today about the network dynamics: indeed, complex networks in reality are not static, but rather dynamically evolve over time. Our paper is motivated by the empirical observation that network evolution patterns seem far from random, but exhibit structure. Moreover, the specific patterns appear to depend on the network type, contradicting the existence of a ‘one fits it all’ model. However, we still lack observables to quantify these intuitions, as well as metrics to compare graph evolutions. Such observables and metrics are needed for extrapolating or predicting evolutions, as well as for interpolating graph evolutions. To explore the many faces of graph dynamics and to quantify temporal changes, this paper suggests to build upon the concept of centrality, a measure of node importance in a network. In particular, we introduce the notion of centrality distance, a natural similarity measure for two graphs which depends on a given centrality, characterizing the graph type. Intuitively, centrality distances reflect the extent to which (non-anonymous) node roles are different or, in case of dynamic graphs, have changed over time, between two graphs. We evaluate the centrality distance approach for five evolutionary models and seven real-world social and physical networks. Our results empirically show the usefulness of centrality distances for characterizing graph dynamics compared to a null-model of random evolution, and highlight the differences between the considered scenarios. Interestingly, our approach allows us to compare the dynamics of very different networks, in terms of scale and evolution speed.
NASA Astrophysics Data System (ADS)
Thovex, Christophe; Trichet, Francky
The objective of our work is to extend static and dynamic models of Social Networks Analysis (SNA), by taking conceptual aspects of enterprises and institutions social graph into account. The originality of our multidisciplinary work is to introduce abstract notions of electro-physic to define new measures in SNA, for new decision-making functions dedicated to Human Resource Management (HRM). This paper introduces a multidimensional system and new measures: (1) a tension measure for social network analysis, (2) an electrodynamic, predictive and semantic system for recommendations on social graphs evolutions and (3) a reactance measure used to evaluate the individual stress at work of the members of a social network.
A signal-flow-graph approach to on-line gradient calculation.
Campolucci, P; Uncini, A; Piazza, F
2000-08-01
A large class of nonlinear dynamic adaptive systems such as dynamic recurrent neural networks can be effectively represented by signal flow graphs (SFGs). By this method, complex systems are described as a general connection of many simple components, each of them implementing a simple one-input, one-output transformation, as in an electrical circuit. Even if graph representations are popular in the neural network community, they are often used for qualitative description rather than for rigorous representation and computational purposes. In this article, a method for both on-line and batch-backward gradient computation of a system output or cost function with respect to system parameters is derived by the SFG representation theory and its known properties. The system can be any causal, in general nonlinear and time-variant, dynamic system represented by an SFG, in particular any feedforward, time-delay, or recurrent neural network. In this work, we use discrete-time notation, but the same theory holds for the continuous-time case. The gradient is obtained in a straightforward way by the analysis of two SFGs, the original one and its adjoint (obtained from the first by simple transformations), without the complex chain rule expansions of derivatives usually employed. This method can be used for sensitivity analysis and for learning both off-line and on-line. On-line learning is particularly important since it is required by many real applications, such as digital signal processing, system identification and control, channel equalization, and predistortion.
A Graph-Algorithmic Approach for the Study of Metastability in Markov Chains
NASA Astrophysics Data System (ADS)
Gan, Tingyue; Cameron, Maria
2017-06-01
Large continuous-time Markov chains with exponentially small transition rates arise in modeling complex systems in physics, chemistry, and biology. We propose a constructive graph-algorithmic approach to determine the sequence of critical timescales at which the qualitative behavior of a given Markov chain changes, and give an effective description of the dynamics on each of them. This approach is valid for both time-reversible and time-irreversible Markov processes, with or without symmetry. Central to this approach are two graph algorithms, Algorithm 1 and Algorithm 2, for obtaining the sequences of the critical timescales and the hierarchies of Typical Transition Graphs or T-graphs indicating the most likely transitions in the system without and with symmetry, respectively. The sequence of critical timescales includes the subsequence of the reciprocals of the real parts of eigenvalues. Under a certain assumption, we prove sharp asymptotic estimates for eigenvalues (including pre-factors) and show how one can extract them from the output of Algorithm 1. We discuss the relationship between Algorithms 1 and 2 and explain how one needs to interpret the output of Algorithm 1 if it is applied in the case with symmetry instead of Algorithm 2. Finally, we analyze an example motivated by R. D. Astumian's model of the dynamics of kinesin, a molecular motor, by means of Algorithm 2.
State Tracking and Fault Diagnosis for Dynamic Systems Using Labeled Uncertainty Graph.
Zhou, Gan; Feng, Wenquan; Zhao, Qi; Zhao, Hongbo
2015-11-05
Cyber-physical systems such as autonomous spacecraft, power plants and automotive systems become more vulnerable to unanticipated failures as their complexity increases. Accurate tracking of system dynamics and fault diagnosis are essential. This paper presents an efficient state estimation method for dynamic systems modeled as concurrent probabilistic automata. First, the Labeled Uncertainty Graph (LUG) method in the planning domain is introduced to describe the state tracking and fault diagnosis processes. Because the system model is probabilistic, the Monte Carlo technique is employed to sample the probability distribution of belief states. In addition, to address the sample impoverishment problem, an innovative look-ahead technique is proposed to recursively generate most likely belief states without exhaustively checking all possible successor modes. The overall algorithms incorporate two major steps: a roll-forward process that estimates system state and identifies faults, and a roll-backward process that analyzes possible system trajectories once the faults have been detected. We demonstrate the effectiveness of this approach by applying it to a real world domain: the power supply control unit of a spacecraft.
Consensus-Based Formation Control of a Class of Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Joshi, Suresh; Gonzalez, Oscar R.
2014-01-01
This paper presents a consensus-based formation control scheme for autonomous multi-agent systems represented by double integrator dynamics. Assuming that the information graph topology consists of an undirected connected graph, a leader-based consensus-type control law is presented and shown to provide asymptotic formation stability when subjected to piecewise constant formation velocity commands. It is also shown that global asymptotic stability is preserved in the presence of (0, infinity)- sector monotonic non-decreasing actuator nonlinearities.
Concordant Chemical Reaction Networks and the Species-Reaction Graph
Shinar, Guy; Feinberg, Martin
2015-01-01
In a recent paper it was shown that, for chemical reaction networks possessing a subtle structural property called concordance, dynamical behavior of a very circumscribed (and largely stable) kind is enforced, so long as the kinetics lies within the very broad and natural weakly monotonic class. In particular, multiple equilibria are precluded, as are degenerate positive equilibria. Moreover, under certain circumstances, also related to concordance, all real eigenvalues associated with a positive equilibrium are negative. Although concordance of a reaction network can be decided by readily available computational means, we show here that, when a nondegenerate network’s Species-Reaction Graph satisfies certain mild conditions, concordance and its dynamical consequences are ensured. These conditions are weaker than earlier ones invoked to establish kinetic system injectivity, which, in turn, is just one ramification of network concordance. Because the Species-Reaction Graph resembles pathway depictions often drawn by biochemists, results here expand the possibility of inferring significant dynamical information directly from standard biochemical reaction diagrams. PMID:22940368
Efficient dynamic graph construction for inductive semi-supervised learning.
Dornaika, F; Dahbi, R; Bosaghzadeh, A; Ruichek, Y
2017-10-01
Most of graph construction techniques assume a transductive setting in which the whole data collection is available at construction time. Addressing graph construction for inductive setting, in which data are coming sequentially, has received much less attention. For inductive settings, constructing the graph from scratch can be very time consuming. This paper introduces a generic framework that is able to make any graph construction method incremental. This framework yields an efficient and dynamic graph construction method that adds new samples (labeled or unlabeled) to a previously constructed graph. As a case study, we use the recently proposed Two Phase Weighted Regularized Least Square (TPWRLS) graph construction method. The paper has two main contributions. First, we use the TPWRLS coding scheme to represent new sample(s) with respect to an existing database. The representative coefficients are then used to update the graph affinity matrix. The proposed method not only appends the new samples to the graph but also updates the whole graph structure by discovering which nodes are affected by the introduction of new samples and by updating their edge weights. The second contribution of the article is the application of the proposed framework to the problem of graph-based label propagation using multiple observations for vision-based recognition tasks. Experiments on several image databases show that, without any significant loss in the accuracy of the final classification, the proposed dynamic graph construction is more efficient than the batch graph construction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hierarchical graphs for rule-based modeling of biochemical systems
2011-01-01
Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal) of an edge represents a class of association (dissociation) reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR) complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for specifying rule-based models, such as the BioNetGen language (BNGL). Thus, the proposed use of hierarchical graphs should promote clarity and better understanding of rule-based models. PMID:21288338
NASA Astrophysics Data System (ADS)
Kase, Sue E.; Vanni, Michelle; Knight, Joanne A.; Su, Yu; Yan, Xifeng
2016-05-01
Within operational environments decisions must be made quickly based on the information available. Identifying an appropriate knowledge base and accurately formulating a search query are critical tasks for decision-making effectiveness in dynamic situations. The spreading of graph data management tools to access large graph databases is a rapidly emerging research area of potential benefit to the intelligence community. A graph representation provides a natural way of modeling data in a wide variety of domains. Graph structures use nodes, edges, and properties to represent and store data. This research investigates the advantages of information search by graph query initiated by the analyst and interactively refined within the contextual dimensions of the answer space toward a solution. The paper introduces SLQ, a user-friendly graph querying system enabling the visual formulation of schemaless and structureless graph queries. SLQ is demonstrated with an intelligence analyst information search scenario focused on identifying individuals responsible for manufacturing a mosquito-hosted deadly virus. The scenario highlights the interactive construction of graph queries without prior training in complex query languages or graph databases, intuitive navigation through the problem space, and visualization of results in graphical format.
Volatility behavior of visibility graph EMD financial time series from Ising interacting system
NASA Astrophysics Data System (ADS)
Zhang, Bo; Wang, Jun; Fang, Wen
2015-08-01
A financial market dynamics model is developed and investigated by stochastic Ising system, where the Ising model is the most popular ferromagnetic model in statistical physics systems. Applying two graph based analysis and multiscale entropy method, we investigate and compare the statistical volatility behavior of return time series and the corresponding IMF series derived from the empirical mode decomposition (EMD) method. And the real stock market indices are considered to be comparatively studied with the simulation data of the proposed model. Further, we find that the degree distribution of visibility graph for the simulation series has the power law tails, and the assortative network exhibits the mixing pattern property. All these features are in agreement with the real market data, the research confirms that the financial model established by the Ising system is reasonable.
Analysis Tools for Interconnected Boolean Networks With Biological Applications.
Chaves, Madalena; Tournier, Laurent
2018-01-01
Boolean networks with asynchronous updates are a class of logical models particularly well adapted to describe the dynamics of biological networks with uncertain measures. The state space of these models can be described by an asynchronous state transition graph, which represents all the possible exits from every single state, and gives a global image of all the possible trajectories of the system. In addition, the asynchronous state transition graph can be associated with an absorbing Markov chain, further providing a semi-quantitative framework where it becomes possible to compute probabilities for the different trajectories. For large networks, however, such direct analyses become computationally untractable, given the exponential dimension of the graph. Exploiting the general modularity of biological systems, we have introduced the novel concept of asymptotic graph , computed as an interconnection of several asynchronous transition graphs and recovering all asymptotic behaviors of a large interconnected system from the behavior of its smaller modules. From a modeling point of view, the interconnection of networks is very useful to address for instance the interplay between known biological modules and to test different hypotheses on the nature of their mutual regulatory links. This paper develops two new features of this general methodology: a quantitative dimension is added to the asymptotic graph, through the computation of relative probabilities for each final attractor and a companion cross-graph is introduced to complement the method on a theoretical point of view.
Classification of Domain Movements in Proteins Using Dynamic Contact Graphs
Taylor, Daniel; Cawley, Gavin; Hayward, Steven
2013-01-01
A new method for the classification of domain movements in proteins is described and applied to 1822 pairs of structures from the Protein Data Bank that represent a domain movement in two-domain proteins. The method is based on changes in contacts between residues from the two domains in moving from one conformation to the other. We argue that there are five types of elemental contact changes and that these relate to five model domain movements called: “free”, “open-closed”, “anchored”, “sliding-twist”, and “see-saw.” A directed graph is introduced called the “Dynamic Contact Graph” which represents the contact changes in a domain movement. In many cases a graph, or part of a graph, provides a clear visual metaphor for the movement it represents and is a motif that can be easily recognised. The Dynamic Contact Graphs are often comprised of disconnected subgraphs indicating independent regions which may play different roles in the domain movement. The Dynamic Contact Graph for each domain movement is decomposed into elemental Dynamic Contact Graphs, those that represent elemental contact changes, allowing us to count the number of instances of each type of elemental contact change in the domain movement. This naturally leads to sixteen classes into which the 1822 domain movements are classified. PMID:24260562
A complex network description on traditional Chinese medicine system
NASA Astrophysics Data System (ADS)
Sun, Anzheng; Zhang, Peipei; He, Yue; Su, Beibei; He, Da-Ren
2004-03-01
Chinese traditional philosophy believes that a healthy body can adjust itself to reach a dynamic equilibrium with the environment. At an ill state the equilibrium is lost. Any single medicine can only attack one problem and cannot recover the whole equilibrium. A prescription formulation (PF) usually contains an "emperor" or principal medicine, several "minister" or assistant medicines, some accessorial medicines, and one or two inducting or harmonizing edicines. Therefore different traditional Chinese medicine (TCM) appears in different number of PFs. The whole TCM system may be viewed as a network set composed of many complete graphs (PFs). The TCMs, which have the highest node degrees in the network, serve as the "bridges" between the complete graphs for forming the network. While the TCMs, which have lowest node degrees in the network, serve as the "emperors" in each complete graph. According to this idea we have performed a manual statistical investigation on approximately 1000 PFs and computed 8 different tatistical properties of the network. The results show that TCM system is a scale-free one and has a nice clustering structure. We are suggesting a dynamical model to describe the development of TCM system.
Coevolution of Glauber-like Ising dynamics and topology
NASA Astrophysics Data System (ADS)
Mandrà, Salvatore; Fortunato, Santo; Castellano, Claudio
2009-11-01
We study the coevolution of a generalized Glauber dynamics for Ising spins with tunable threshold and of the graph topology where the dynamics takes place. This simple coevolution dynamics generates a rich phase diagram in the space of the two parameters of the model, the threshold and the rewiring probability. The diagram displays phase transitions of different types: spin ordering, percolation, and connectedness. At variance with traditional coevolution models, in which all spins of each connected component of the graph have equal value in the stationary state, we find that, for suitable choices of the parameters, the system may converge to a state in which spins of opposite sign coexist in the same component organized in compact clusters of like-signed spins. Mean field calculations enable one to estimate some features of the phase diagram.
Threshold-based epidemic dynamics in systems with memory
NASA Astrophysics Data System (ADS)
Bodych, Marcin; Ganguly, Niloy; Krueger, Tyll; Mukherjee, Animesh; Siegmund-Schultze, Rainer; Sikdar, Sandipan
2016-11-01
In this article we analyze an epidemic dynamics model (SI) where we assume that there are k susceptible states, that is a node would require multiple (k) contacts before it gets infected. In specific, we provide a theoretical framework for studying diffusion rate in complete graphs and d-regular trees with extensions to dense random graphs. We observe that irrespective of the topology, the diffusion process could be divided into two distinct phases: i) the initial phase, where the diffusion process is slow, followed by ii) the residual phase where the diffusion rate increases manifold. In fact, the initial phase acts as an indicator for the total diffusion time in dense graphs. The most remarkable lesson from this investigation is that such a diffusion process could be controlled and even contained if acted upon within its initial phase.
Benchmarking Measures of Network Controllability on Canonical Graph Models
NASA Astrophysics Data System (ADS)
Wu-Yan, Elena; Betzel, Richard F.; Tang, Evelyn; Gu, Shi; Pasqualetti, Fabio; Bassett, Danielle S.
2018-03-01
The control of networked dynamical systems opens the possibility for new discoveries and therapies in systems biology and neuroscience. Recent theoretical advances provide candidate mechanisms by which a system can be driven from one pre-specified state to another, and computational approaches provide tools to test those mechanisms in real-world systems. Despite already having been applied to study network systems in biology and neuroscience, the practical performance of these tools and associated measures on simple networks with pre-specified structure has yet to be assessed. Here, we study the behavior of four control metrics (global, average, modal, and boundary controllability) on eight canonical graphs (including Erdős-Rényi, regular, small-world, random geometric, Barábasi-Albert preferential attachment, and several modular networks) with different edge weighting schemes (Gaussian, power-law, and two nonparametric distributions from brain networks, as examples of real-world systems). We observe that differences in global controllability across graph models are more salient when edge weight distributions are heavy-tailed as opposed to normal. In contrast, differences in average, modal, and boundary controllability across graph models (as well as across nodes in the graph) are more salient when edge weight distributions are less heavy-tailed. Across graph models and edge weighting schemes, average and modal controllability are negatively correlated with one another across nodes; yet, across graph instances, the relation between average and modal controllability can be positive, negative, or nonsignificant. Collectively, these findings demonstrate that controllability statistics (and their relations) differ across graphs with different topologies and that these differences can be muted or accentuated by differences in the edge weight distributions. More generally, our numerical studies motivate future analytical efforts to better understand the mathematical underpinnings of the relationship between graph topology and control, as well as efforts to design networks with specific control profiles.
Cross over of recurrence networks to random graphs and random geometric graphs
NASA Astrophysics Data System (ADS)
Jacob, Rinku; Harikrishnan, K. P.; Misra, R.; Ambika, G.
2017-02-01
Recurrence networks are complex networks constructed from the time series of chaotic dynamical systems where the connection between two nodes is limited by the recurrence threshold. This condition makes the topology of every recurrence network unique with the degree distribution determined by the probability density variations of the representative attractor from which it is constructed. Here we numerically investigate the properties of recurrence networks from standard low-dimensional chaotic attractors using some basic network measures and show how the recurrence networks are different from random and scale-free networks. In particular, we show that all recurrence networks can cross over to random geometric graphs by adding sufficient amount of noise to the time series and into the classical random graphs by increasing the range of interaction to the system size. We also highlight the effectiveness of a combined plot of characteristic path length and clustering coefficient in capturing the small changes in the network characteristics.
NASA Technical Reports Server (NTRS)
Cellier, Francois E.
1991-01-01
A comprehensive and systematic introduction is presented for the concepts associated with 'modeling', involving the transition from a physical system down to an abstract description of that system in the form of a set of differential and/or difference equations, and basing its treatment of modeling on the mathematics of dynamical systems. Attention is given to the principles of passive electrical circuit modeling, planar mechanical systems modeling, hierarchical modular modeling of continuous systems, and bond-graph modeling. Also discussed are modeling in equilibrium thermodynamics, population dynamics, and system dynamics, inductive reasoning, artificial neural networks, and automated model synthesis.
Bipartite graphs in systems biology and medicine: a survey of methods and applications.
Pavlopoulos, Georgios A; Kontou, Panagiota I; Pavlopoulou, Athanasia; Bouyioukos, Costas; Markou, Evripides; Bagos, Pantelis G
2018-04-01
The latest advances in high-throughput techniques during the past decade allowed the systems biology field to expand significantly. Today, the focus of biologists has shifted from the study of individual biological components to the study of complex biological systems and their dynamics at a larger scale. Through the discovery of novel bioentity relationships, researchers reveal new information about biological functions and processes. Graphs are widely used to represent bioentities such as proteins, genes, small molecules, ligands, and others such as nodes and their connections as edges within a network. In this review, special focus is given to the usability of bipartite graphs and their impact on the field of network biology and medicine. Furthermore, their topological properties and how these can be applied to certain biological case studies are discussed. Finally, available methodologies and software are presented, and useful insights on how bipartite graphs can shape the path toward the solution of challenging biological problems are provided.
NASA Technical Reports Server (NTRS)
Ferris, Alice T.; White, William C.
1988-01-01
Balance dynamic display unit (BDDU) is compact system conditioning six dynamic analog signals so they are monitored simultaneously in real time on single-trace oscilloscope. Typical BDDU oscilloscope display in scan mode shows each channel occupying one-sixth of total trace. System features two display modes usable with conventional, single-channel oscilloscope: multiplexed six-channel "bar-graph" format and single-channel display. Two-stage visual and audible limit alarm provided for each channel.
Several classes of graphs and their r-dynamic chromatic numbers
NASA Astrophysics Data System (ADS)
Dafik; Meganingtyas, D. E. W.; Dwidja Purnomo, K.; Dicky Tarmidzi, M.; Hesti Agustin, Ika
2017-06-01
Let G be a simple, connected and undirected graph. Let r, k be natural numbers. By a proper k-coloring of a graph G, we mean a map c : V (G) → S, where |S| = k, such that any two adjacent vertices receive different colors. An r-dynamic k-coloring is a proper k-coloring c of G such that |c(N(v))| ≥ min{r, d(v)} for each vertex v in V (G), where N(v) is the neighborhood of v and c(S) = {c(v) : v ∈ S} for a vertex subset S. The r-dynamic chromatic number, written as χ r (G), is the minimum k such that G has an r-dynamic k-coloring. By simple observation it is easy to see that χ r (G) ≤ χ r+1(G), however χ r+1(G) - χ r (G) does not always show a small difference for any r. Thus, finding an exact value of χ r (G) is significantly useful. In this paper, we will study some of them especially when G are prism graph, three-cyclical ladder graph, joint graph and circulant graph.
Bipartite graphs as models of population structures in evolutionary multiplayer games.
Peña, Jorge; Rochat, Yannick
2012-01-01
By combining evolutionary game theory and graph theory, "games on graphs" study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner's dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner's dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures.
On the r-dynamic chromatic number of the corronation by complete graph
NASA Astrophysics Data System (ADS)
Indah Kristiana, Arika; Imam Utoyo, M.; Dafik
2018-04-01
In this paper we will study the r-dynamic chromatic number of the coronation by complete graph. A proper k-coloring of graph G such that the neighbors of any vertex v receive at least min{r, d(v)} different colors. The r-dynamic chromatic number, χ r (G) is the minimum k such that graph G has an r-dynamic k-coloring. We will obtain lower bound of the r-dynamic chromatic number of {χ }r({K}nȯ H), and {χ }r(Hȯ {K}m) We also study the exact value of the r-dynamic chromatic number of {χ }r({K}nȯ {S}m),{χ }r({K}nȯ {F}m),{χ }r({S}nȯ {K}m),{χ }r({F}nȯ {K}m) and {χ }r({K}nȯ {K}m) for m, n > 3.
Random Evolution of Idiotypic Networks: Dynamics and Architecture
NASA Astrophysics Data System (ADS)
Brede, Markus; Behn, Ulrich
The paper deals with modelling a subsystem of the immune system, the so-called idiotypic network (INW). INWs, conceived by N.K. Jerne in 1974, are functional networks of interacting antibodies and B cells. In principle, Jernes' framework provides solutions to many issues in immunology, such as immunological memory, mechanisms for antigen recognition and self/non-self discrimination. Explaining the interconnection between the elementary components, local dynamics, network formation and architecture, and possible modes of global system function appears to be an ideal playground of statistical mechanics. We present a simple cellular automaton model, based on a graph representation of the system. From a simplified description of idiotypic interactions, rules for the random evolution of networks of occupied and empty sites on these graphs are derived. In certain biologically relevant parameter ranges the resultant dynamics leads to stationary states. A stationary state is found to correspond to a specific pattern of network organization. It turns out that even these very simple rules give rise to a multitude of different kinds of patterns. We characterize these networks by classifying `static' and `dynamic' network-patterns. A type of `dynamic' network is found to display many features of real INWs.
Mei, Jie; Ren, Wei; Li, Bing; Ma, Guangfu
2015-09-01
In this paper, we consider the distributed containment control problem for multiagent systems with unknown nonlinear dynamics. More specifically, we focus on multiple second-order nonlinear systems and networked Lagrangian systems. We first study the distributed containment control problem for multiple second-order nonlinear systems with multiple dynamic leaders in the presence of unknown nonlinearities and external disturbances under a general directed graph that characterizes the interaction among the leaders and the followers. A distributed adaptive control algorithm with an adaptive gain design based on the approximation capability of neural networks is proposed. We present a necessary and sufficient condition on the directed graph such that the containment error can be reduced as small as desired. As a byproduct, the leaderless consensus problem is solved with asymptotical convergence. Because relative velocity measurements between neighbors are generally more difficult to obtain than relative position measurements, we then propose a distributed containment control algorithm without using neighbors' velocity information. A two-step Lyapunov-based method is used to study the convergence of the closed-loop system. Next, we apply the ideas to deal with the containment control problem for networked unknown Lagrangian systems under a general directed graph. All the proposed algorithms are distributed and can be implemented using only local measurements in the absence of communication. Finally, simulation examples are provided to show the effectiveness of the proposed control algorithms.
Hierarchical graphs for better annotations of rule-based models of biochemical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Bin; Hlavacek, William
2009-01-01
In the graph-based formalism of the BioNetGen language (BNGL), graphs are used to represent molecules, with a colored vertex representing a component of a molecule, a vertex label representing the internal state of a component, and an edge representing a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions, with a rule that specifies addition (removal) of an edge representing a class of association (dissociation) reactions and with a rule that specifies a change of vertex label representing a class of reactions that affect the internal state of amore » molecular component. A set of rules comprises a mathematical/computational model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Here, for purposes of model annotation, we propose an extension of BNGL that involves the use of hierarchical graphs to represent (1) relationships among components and subcomponents of molecules and (2) relationships among classes of reactions defined by rules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR)/CD3 complex. Likewise, we illustrate how hierarchical graphs can be used to document the similarity of two related rules for kinase-catalyzed phosphorylation of a protein substrate. We also demonstrate how a hierarchical graph representing a protein can be encoded in an XML-based format.« less
Gomez-Pilar, Javier; Poza, Jesús; Bachiller, Alejandro; Gómez, Carlos; Núñez, Pablo; Lubeiro, Alba; Molina, Vicente; Hornero, Roberto
2018-02-01
The aim of this study was to introduce a novel global measure of graph complexity: Shannon graph complexity (SGC). This measure was specifically developed for weighted graphs, but it can also be applied to binary graphs. The proposed complexity measure was designed to capture the interplay between two properties of a system: the 'information' (calculated by means of Shannon entropy) and the 'order' of the system (estimated by means of a disequilibrium measure). SGC is based on the concept that complex graphs should maintain an equilibrium between the aforementioned two properties, which can be measured by means of the edge weight distribution. In this study, SGC was assessed using four synthetic graph datasets and a real dataset, formed by electroencephalographic (EEG) recordings from controls and schizophrenia patients. SGC was compared with graph density (GD), a classical measure used to evaluate graph complexity. Our results showed that SGC is invariant with respect to GD and independent of node degree distribution. Furthermore, its variation with graph size [Formula: see text] is close to zero for [Formula: see text]. Results from the real dataset showed an increment in the weight distribution balance during the cognitive processing for both controls and schizophrenia patients, although these changes are more relevant for controls. Our findings revealed that SGC does not need a comparison with null-hypothesis networks constructed by a surrogate process. In addition, SGC results on the real dataset suggest that schizophrenia is associated with a deficit in the brain dynamic reorganization related to secondary pathways of the brain network.
Dynamic Allocation of SPM Based on Time-Slotted Cache Conflict Graph for System Optimization
NASA Astrophysics Data System (ADS)
Wu, Jianping; Ling, Ming; Zhang, Yang; Mei, Chen; Wang, Huan
This paper proposes a novel dynamic Scratch-pad Memory allocation strategy to optimize the energy consumption of the memory sub-system. Firstly, the whole program execution process is sliced into several time slots according to the temporal dimension; thereafter, a Time-Slotted Cache Conflict Graph (TSCCG) is introduced to model the behavior of Data Cache (D-Cache) conflicts within each time slot. Then, Integer Nonlinear Programming (INP) is implemented, which can avoid time-consuming linearization process, to select the most profitable data pages. Virtual Memory System (VMS) is adopted to remap those data pages, which will cause severe Cache conflicts within a time slot, to SPM. In order to minimize the swapping overhead of dynamic SPM allocation, a novel SPM controller with a tightly coupled DMA is introduced to issue the swapping operations without CPU's intervention. Last but not the least, this paper discusses the fluctuation of system energy profit based on different MMU page size as well as the Time Slot duration quantitatively. According to our design space exploration, the proposed method can optimize all of the data segments, including global data, heap and stack data in general, and reduce the total energy consumption by 27.28% on average, up to 55.22% with a marginal performance promotion. And comparing to the conventional static CCG (Cache Conflicts Graph), our approach can obtain 24.7% energy profit on average, up to 30.5% with a sight boost in performance.
Large fluctuations in anti-coordination games on scale-free graphs
NASA Astrophysics Data System (ADS)
Sabsovich, Daniel; Mobilia, Mauro; Assaf, Michael
2017-05-01
We study the influence of the complex topology of scale-free graphs on the dynamics of anti-coordination games (e.g. snowdrift games). These reference models are characterized by the coexistence (evolutionary stable mixed strategy) of two competing species, say ‘cooperators’ and ‘defectors’, and, in finite systems, by metastability and large-fluctuation-driven fixation. In this work, we use extensive computer simulations and an effective diffusion approximation (in the weak selection limit) to determine under which circumstances, depending on the individual-based update rules, the topology drastically affects the long-time behavior of anti-coordination games. In particular, we compute the variance of the number of cooperators in the metastable state and the mean fixation time when the dynamics is implemented according to the voter model (death-first/birth-second process) and the link dynamics (birth/death or death/birth at random). For the voter update rule, we show that the scale-free topology effectively renormalizes the population size and as a result the statistics of observables depend on the network’s degree distribution. In contrast, such a renormalization does not occur with the link dynamics update rule and we recover the same behavior as on complete graphs.
He, Chenlong; Feng, Zuren; Ren, Zhigang
2018-01-01
In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared.
Feng, Zuren; Ren, Zhigang
2018-01-01
In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared. PMID:29462217
NASA Astrophysics Data System (ADS)
Zhang, Yongping; Shang, Pengjian; Xiong, Hui; Xia, Jianan
Time irreversibility is an important property of nonequilibrium dynamic systems. A visibility graph approach was recently proposed, and this approach is generally effective to measure time irreversibility of time series. However, its result may be unreliable when dealing with high-dimensional systems. In this work, we consider the joint concept of time irreversibility and adopt the phase-space reconstruction technique to improve this visibility graph approach. Compared with the previous approach, the improved approach gives a more accurate estimate for the irreversibility of time series, and is more effective to distinguish irreversible and reversible stochastic processes. We also use this approach to extract the multiscale irreversibility to account for the multiple inherent dynamics of time series. Finally, we apply the approach to detect the multiscale irreversibility of financial time series, and succeed to distinguish the time of financial crisis and the plateau. In addition, Asian stock indexes away from other indexes are clearly visible in higher time scales. Simulations and real data support the effectiveness of the improved approach when detecting time irreversibility.
Distributed Synchronization Control of Multiagent Systems With Unknown Nonlinearities.
Su, Shize; Lin, Zongli; Garcia, Alfredo
2016-01-01
This paper revisits the distributed adaptive control problem for synchronization of multiagent systems where the dynamics of the agents are nonlinear, nonidentical, unknown, and subject to external disturbances. Two communication topologies, represented, respectively, by a fixed strongly-connected directed graph and by a switching connected undirected graph, are considered. Under both of these communication topologies, we use distributed neural networks to approximate the uncertain dynamics. Decentralized adaptive control protocols are then constructed to solve the cooperative tracker problem, the problem of synchronization of all follower agents to a leader agent. In particular, we show that, under the proposed decentralized control protocols, the synchronization errors are ultimately bounded, and their ultimate bounds can be reduced arbitrarily by choosing the control parameter appropriately. Simulation study verifies the effectiveness of our proposed protocols.
Collective dynamics of 'small-world' networks.
Watts, D J; Strogatz, S H
1998-06-04
Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.
Zhang, Qin
2015-07-01
Probabilistic graphical models (PGMs) such as Bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning. Dynamic uncertain causality graph (DUCG) is a newly presented model of PGMs, which can be applied to fault diagnosis of large and complex industrial systems, disease diagnosis, and so on. The basic methodology of DUCG has been previously presented, in which only the directed acyclic graph (DAG) was addressed. However, the mathematical meaning of DUCG was not discussed. In this paper, the DUCG with directed cyclic graphs (DCGs) is addressed. In contrast, BN does not allow DCGs, as otherwise the conditional independence will not be satisfied. The inference algorithm for the DUCG with DCGs is presented, which not only extends the capabilities of DUCG from DAGs to DCGs but also enables users to decompose a large and complex DUCG into a set of small, simple sub-DUCGs, so that a large and complex knowledge base can be easily constructed, understood, and maintained. The basic mathematical definition of a complete DUCG with or without DCGs is proved to be a joint probability distribution (JPD) over a set of random variables. The incomplete DUCG as a part of a complete DUCG may represent a part of JPD. Examples are provided to illustrate the methodology.
Proximity Networks and Epidemics
NASA Astrophysics Data System (ADS)
Guclu, Hasan; Toroczkai, Zoltán
2007-03-01
We presented the basis of a framework to account for the dynamics of contacts in epidemic processes, through the notion of dynamic proximity graphs. By varying the integration time-parameter T, which is the period of infectivity one can give a simple account for some of the differences in the observed contact networks for different diseases, such as smallpox, or AIDS. Our simplistic model also seems to shed some light on the shape of the degree distribution of the measured people-people contact network from the EPISIM data. We certainly do not claim that the simplistic graph integration model above is a good model for dynamic contact graphs. It only contains the essential ingredients for such processes to produce a qualitative agreement with some observations. We expect that further refinements and extensions to this picture, in particular deriving the link-probabilities in the dynamic proximity graph from more realistic contact dynamics should improve the agreement between models and data.
Vulnerability of dynamic systems
NASA Technical Reports Server (NTRS)
Siljak, D. D.
1976-01-01
Directed graphs are associated with dynamic systems in order to determine in any given system if each state can be reached by at least one input (input reachability), or can each state reach at least one output (output reachability). Then, the structural perturbations of a dynamic system are identified as lines or points removals from the corresponding digraph, and a system is considered vulnerable at those lines or points of the digraph whose removal destroys its input or output reachability. A suitable framework is formulated for resolving the problems of reachability and vulnerability which applies to both linear and nonlinear systems alike.
Discretization chaos - Feedback control and transition to chaos
NASA Technical Reports Server (NTRS)
Grantham, Walter J.; Athalye, Amit M.
1990-01-01
Problems in the design of feedback controllers for chaotic dynamical systems are considered theoretically, focusing on two cases where chaos arises only when a nonchaotic continuous-time system is discretized into a simpler discrete-time systems (exponential discretization and pseudo-Euler integration applied to Lotka-Volterra competition and prey-predator systems). Numerical simulation results are presented in extensive graphs and discussed in detail. It is concluded that care must be taken in applying standard dynamical-systems methods to control systems that may be discontinuous or nondifferentiable.
Optimal perturbations for nonlinear systems using graph-based optimal transport
NASA Astrophysics Data System (ADS)
Grover, Piyush; Elamvazhuthi, Karthik
2018-06-01
We formulate and solve a class of finite-time transport and mixing problems in the set-oriented framework. The aim is to obtain optimal discrete-time perturbations in nonlinear dynamical systems to transport a specified initial measure on the phase space to a final measure in finite time. The measure is propagated under system dynamics in between the perturbations via the associated transfer operator. Each perturbation is described by a deterministic map in the measure space that implements a version of Monge-Kantorovich optimal transport with quadratic cost. Hence, the optimal solution minimizes a sum of quadratic costs on phase space transport due to the perturbations applied at specified times. The action of the transport map is approximated by a continuous pseudo-time flow on a graph, resulting in a tractable convex optimization problem. This problem is solved via state-of-the-art solvers to global optimality. We apply this algorithm to a problem of transport between measures supported on two disjoint almost-invariant sets in a chaotic fluid system, and to a finite-time optimal mixing problem by choosing the final measure to be uniform. In both cases, the optimal perturbations are found to exploit the phase space structures, such as lobe dynamics, leading to efficient global transport. As the time-horizon of the problem is increased, the optimal perturbations become increasingly localized. Hence, by combining the transfer operator approach with ideas from the theory of optimal mass transportation, we obtain a discrete-time graph-based algorithm for optimal transport and mixing in nonlinear systems.
NASA Astrophysics Data System (ADS)
Camilo, Ana E. F.; Grégio, André; Santos, Rafael D. C.
2016-05-01
Malware detection may be accomplished through the analysis of their infection behavior. To do so, dynamic analysis systems run malware samples and extract their operating system activities and network traffic. This traffic may represent malware accessing external systems, either to steal sensitive data from victims or to fetch other malicious artifacts (configuration files, additional modules, commands). In this work, we propose the use of visualization as a tool to identify compromised systems based on correlating malware communications in the form of graphs and finding isomorphisms between them. We produced graphs from over 6 thousand distinct network traffic files captured during malware execution and analyzed the existing relationships among malware samples and IP addresses.
Quantum walks of two interacting particles on percolation graphs
NASA Astrophysics Data System (ADS)
Siloi, Ilaria; Benedetti, Claudia; Piccinini, Enrico; Paris, Matteo G. A.; Bordone, Paolo
2017-10-01
We address the dynamics of two indistinguishable interacting particles moving on a dynamical percolation graph, i.e., a graph where the edges are independent random telegraph processes whose values jump between 0 and 1, thus mimicking percolation. The interplay between the particle interaction strength, initial state and the percolation rate determine different dynamical regimes for the walkers. We show that, whenever the walkers are initially localised within the interaction range, fast noise enhances the particle spread compared to the noiseless case.
Small-world bias of correlation networks: From brain to climate
NASA Astrophysics Data System (ADS)
Hlinka, Jaroslav; Hartman, David; Jajcay, Nikola; Tomeček, David; Tintěra, Jaroslav; Paluš, Milan
2017-03-01
Complex systems are commonly characterized by the properties of their graph representation. Dynamical complex systems are then typically represented by a graph of temporal dependencies between time series of state variables of their subunits. It has been shown recently that graphs constructed in this way tend to have relatively clustered structure, potentially leading to spurious detection of small-world properties even in the case of systems with no or randomly distributed true interactions. However, the strength of this bias depends heavily on a range of parameters and its relevance for real-world data has not yet been established. In this work, we assess the relevance of the bias using two examples of multivariate time series recorded in natural complex systems. The first is the time series of local brain activity as measured by functional magnetic resonance imaging in resting healthy human subjects, and the second is the time series of average monthly surface air temperature coming from a large reanalysis of climatological data over the period 1948-2012. In both cases, the clustering in the thresholded correlation graph is substantially higher compared with a realization of a density-matched random graph, while the shortest paths are relatively short, showing thus distinguishing features of small-world structure. However, comparable or even stronger small-world properties were reproduced in correlation graphs of model processes with randomly scrambled interconnections. This suggests that the small-world properties of the correlation matrices of these real-world systems indeed do not reflect genuinely the properties of the underlying interaction structure, but rather result from the inherent properties of correlation matrix.
Small-world bias of correlation networks: From brain to climate.
Hlinka, Jaroslav; Hartman, David; Jajcay, Nikola; Tomeček, David; Tintěra, Jaroslav; Paluš, Milan
2017-03-01
Complex systems are commonly characterized by the properties of their graph representation. Dynamical complex systems are then typically represented by a graph of temporal dependencies between time series of state variables of their subunits. It has been shown recently that graphs constructed in this way tend to have relatively clustered structure, potentially leading to spurious detection of small-world properties even in the case of systems with no or randomly distributed true interactions. However, the strength of this bias depends heavily on a range of parameters and its relevance for real-world data has not yet been established. In this work, we assess the relevance of the bias using two examples of multivariate time series recorded in natural complex systems. The first is the time series of local brain activity as measured by functional magnetic resonance imaging in resting healthy human subjects, and the second is the time series of average monthly surface air temperature coming from a large reanalysis of climatological data over the period 1948-2012. In both cases, the clustering in the thresholded correlation graph is substantially higher compared with a realization of a density-matched random graph, while the shortest paths are relatively short, showing thus distinguishing features of small-world structure. However, comparable or even stronger small-world properties were reproduced in correlation graphs of model processes with randomly scrambled interconnections. This suggests that the small-world properties of the correlation matrices of these real-world systems indeed do not reflect genuinely the properties of the underlying interaction structure, but rather result from the inherent properties of correlation matrix.
Feedback topology and XOR-dynamics in Boolean networks with varying input structure
NASA Astrophysics Data System (ADS)
Ciandrini, L.; Maffi, C.; Motta, A.; Bassetti, B.; Cosentino Lagomarsino, M.
2009-08-01
We analyze a model of fixed in-degree random Boolean networks in which the fraction of input-receiving nodes is controlled by the parameter γ . We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control and as rich as the one of general Boolean networks. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying γ , this graph ensemble shows a phase transition that separates a treelike graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact, we provide analytical estimates of the maximum period starting from topological considerations.
Feedback topology and XOR-dynamics in Boolean networks with varying input structure.
Ciandrini, L; Maffi, C; Motta, A; Bassetti, B; Cosentino Lagomarsino, M
2009-08-01
We analyze a model of fixed in-degree random Boolean networks in which the fraction of input-receiving nodes is controlled by the parameter gamma. We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control and as rich as the one of general Boolean networks. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying gamma , this graph ensemble shows a phase transition that separates a treelike graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact, we provide analytical estimates of the maximum period starting from topological considerations.
An image understanding system using attributed symbolic representation and inexact graph-matching
NASA Astrophysics Data System (ADS)
Eshera, M. A.; Fu, K.-S.
1986-09-01
A powerful image understanding system using a semantic-syntactic representation scheme consisting of attributed relational graphs (ARGs) is proposed for the analysis of the global information content of images. A multilayer graph transducer scheme performs the extraction of ARG representations from images, with ARG nodes representing the global image features, and the relations between features represented by the attributed branches between corresponding nodes. An efficient dynamic programming technique is employed to derive the distance between two ARGs and the inexact matching of their respective components. Noise, distortion and ambiguity in real-world images are handled through modeling in the transducer mapping rules and through the appropriate cost of error-transformation for the inexact matching of the representation. The system is demonstrated for the case of locating objects in a scene composed of complex overlapped objects, and the case of target detection in noisy and distorted synthetic aperture radar image.
Emergent 1d Ising Behavior in AN Elementary Cellular Automaton Model
NASA Astrophysics Data System (ADS)
Kassebaum, Paul G.; Iannacchione, Germano S.
The fundamental nature of an evolving one-dimensional (1D) Ising model is investigated with an elementary cellular automaton (CA) simulation. The emergent CA simulation employs an ensemble of cells in one spatial dimension, each cell capable of two microstates interacting with simple nearest-neighbor rules and incorporating an external field. The behavior of the CA model provides insight into the dynamics of coupled two-state systems not expressible by exact analytical solutions. For instance, state progression graphs show the causal dynamics of a system through time in relation to the system's entropy. Unique graphical analysis techniques are introduced through difference patterns, diffusion patterns, and state progression graphs of the 1D ensemble visualizing the evolution. All analyses are consistent with the known behavior of the 1D Ising system. The CA simulation and new pattern recognition techniques are scalable (in both dimension, complexity, and size) and have many potential applications such as complex design of materials, control of agent systems, and evolutionary mechanism design.
Comparing Internet Probing Methodologies Through an Analysis of Large Dynamic Graphs
2014-06-01
comparable Internet topologies in less time. We compare these by modeling union of traceroute outputs as graphs, and using standard graph theoretical...topologies in less time. We compare these by modeling union of traceroute outputs as graphs, and using standard graph theoretical measurements as well...We compare these by modeling union of traceroute outputs as graphs, and study the graphs by using vertex and edge count, average vertex degree
Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games
Peña, Jorge; Rochat, Yannick
2012-01-01
By combining evolutionary game theory and graph theory, “games on graphs” study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner’s dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner’s dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures. PMID:22970237
Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata
Chen, Yangzhou; Guo, Yuqi; Wang, Ying
2017-01-01
In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research. PMID:28353664
Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata.
Chen, Yangzhou; Guo, Yuqi; Wang, Ying
2017-03-29
In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research.
A graph-based approach for designing extensible pipelines
2012-01-01
Background In bioinformatics, it is important to build extensible and low-maintenance systems that are able to deal with the new tools and data formats that are constantly being developed. The traditional and simplest implementation of pipelines involves hardcoding the execution steps into programs or scripts. This approach can lead to problems when a pipeline is expanding because the incorporation of new tools is often error prone and time consuming. Current approaches to pipeline development such as workflow management systems focus on analysis tasks that are systematically repeated without significant changes in their course of execution, such as genome annotation. However, more dynamism on the pipeline composition is necessary when each execution requires a different combination of steps. Results We propose a graph-based approach to implement extensible and low-maintenance pipelines that is suitable for pipeline applications with multiple functionalities that require different combinations of steps in each execution. Here pipelines are composed automatically by compiling a specialised set of tools on demand, depending on the functionality required, instead of specifying every sequence of tools in advance. We represent the connectivity of pipeline components with a directed graph in which components are the graph edges, their inputs and outputs are the graph nodes, and the paths through the graph are pipelines. To that end, we developed special data structures and a pipeline system algorithm. We demonstrate the applicability of our approach by implementing a format conversion pipeline for the fields of population genetics and genetic epidemiology, but our approach is also helpful in other fields where the use of multiple software is necessary to perform comprehensive analyses, such as gene expression and proteomics analyses. The project code, documentation and the Java executables are available under an open source license at http://code.google.com/p/dynamic-pipeline. The system has been tested on Linux and Windows platforms. Conclusions Our graph-based approach enables the automatic creation of pipelines by compiling a specialised set of tools on demand, depending on the functionality required. It also allows the implementation of extensible and low-maintenance pipelines and contributes towards consolidating openness and collaboration in bioinformatics systems. It is targeted at pipeline developers and is suited for implementing applications with sequential execution steps and combined functionalities. In the format conversion application, the automatic combination of conversion tools increased both the number of possible conversions available to the user and the extensibility of the system to allow for future updates with new file formats. PMID:22788675
An adaptive critic-based scheme for consensus control of nonlinear multi-agent systems
NASA Astrophysics Data System (ADS)
Heydari, Ali; Balakrishnan, S. N.
2014-12-01
The problem of decentralised consensus control of a network of heterogeneous nonlinear systems is formulated as an optimal tracking problem and a solution is proposed using an approximate dynamic programming based neurocontroller. The neurocontroller training comprises an initial offline training phase and an online re-optimisation phase to account for the fact that the reference signal subject to tracking is not fully known and available ahead of time, i.e., during the offline training phase. As long as the dynamics of the agents are controllable, and the communication graph has a directed spanning tree, this scheme guarantees the synchronisation/consensus even under switching communication topology and directed communication graph. Finally, an aerospace application is selected for the evaluation of the performance of the method. Simulation results demonstrate the potential of the scheme.
Evolutionary dynamics on graphs: Efficient method for weak selection
NASA Astrophysics Data System (ADS)
Fu, Feng; Wang, Long; Nowak, Martin A.; Hauert, Christoph
2009-04-01
Investigating the evolutionary dynamics of game theoretical interactions in populations where individuals are arranged on a graph can be challenging in terms of computation time. Here, we propose an efficient method to study any type of game on arbitrary graph structures for weak selection. In this limit, evolutionary game dynamics represents a first-order correction to neutral evolution. Spatial correlations can be empirically determined under neutral evolution and provide the basis for formulating the game dynamics as a discrete Markov process by incorporating a detailed description of the microscopic dynamics based on the neutral correlations. This framework is then applied to one of the most intriguing questions in evolutionary biology: the evolution of cooperation. We demonstrate that the degree heterogeneity of a graph impedes cooperation and that the success of tit for tat depends not only on the number of rounds but also on the degree of the graph. Moreover, considering the mutation-selection equilibrium shows that the symmetry of the stationary distribution of states under weak selection is skewed in favor of defectors for larger selection strengths. In particular, degree heterogeneity—a prominent feature of scale-free networks—generally results in a more pronounced increase in the critical benefit-to-cost ratio required for evolution to favor cooperation as compared to regular graphs. This conclusion is corroborated by an analysis of the effects of population structures on the fixation probabilities of strategies in general 2×2 games for different types of graphs. Computer simulations confirm the predictive power of our method and illustrate the improved accuracy as compared to previous studies.
Predicting and Detecting Emerging Cyberattack Patterns Using StreamWorks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, George; Choudhury, Sutanay; Feo, John T.
2014-06-30
The number and sophistication of cyberattacks on industries and governments have dramatically grown in recent years. To counter this movement, new advanced tools and techniques are needed to detect cyberattacks in their early stages such that defensive actions may be taken to avert or mitigate potential damage. From a cybersecurity analysis perspective, detecting cyberattacks may be cast as a problem of identifying patterns in computer network traffic. Logically and intuitively, these patterns may take on the form of a directed graph that conveys how an attack or intrusion propagates through the computers of a network. Such cyberattack graphs could providemore » cybersecurity analysts with powerful conceptual representations that are natural to express and analyze. We have been researching and developing graph-centric approaches and algorithms for dynamic cyberattack detection. The advanced dynamic graph algorithms we are developing will be packaged into a streaming network analysis framework known as StreamWorks. With StreamWorks, a scientist or analyst may detect and identify precursor events and patterns as they emerge in complex networks. This analysis framework is intended to be used in a dynamic environment where network data is streamed in and is appended to a large-scale dynamic graph. Specific graphical query patterns are decomposed and collected into a graph query library. The individual decomposed subpatterns in the library are continuously and efficiently matched against the dynamic graph as it evolves to identify and detect early, partial subgraph patterns. The scalable emerging subgraph pattern algorithms will match on both structural and semantic network properties.« less
Durand, Patrick; Labarre, Laurent; Meil, Alain; Divo, Jean-Louis; Vandenbrouck, Yves; Viari, Alain; Wojcik, Jérôme
2006-01-17
A large variety of biological data can be represented by graphs. These graphs can be constructed from heterogeneous data coming from genomic and post-genomic technologies, but there is still need for tools aiming at exploring and analysing such graphs. This paper describes GenoLink, a software platform for the graphical querying and exploration of graphs. GenoLink provides a generic framework for representing and querying data graphs. This framework provides a graph data structure, a graph query engine, allowing to retrieve sub-graphs from the entire data graph, and several graphical interfaces to express such queries and to further explore their results. A query consists in a graph pattern with constraints attached to the vertices and edges. A query result is the set of all sub-graphs of the entire data graph that are isomorphic to the pattern and satisfy the constraints. The graph data structure does not rely upon any particular data model but can dynamically accommodate for any user-supplied data model. However, for genomic and post-genomic applications, we provide a default data model and several parsers for the most popular data sources. GenoLink does not require any programming skill since all operations on graphs and the analysis of the results can be carried out graphically through several dedicated graphical interfaces. GenoLink is a generic and interactive tool allowing biologists to graphically explore various sources of information. GenoLink is distributed either as a standalone application or as a component of the Genostar/Iogma platform. Both distributions are free for academic research and teaching purposes and can be requested at academy@genostar.com. A commercial licence form can be obtained for profit company at info@genostar.com. See also http://www.genostar.org.
Durand, Patrick; Labarre, Laurent; Meil, Alain; Divo1, Jean-Louis; Vandenbrouck, Yves; Viari, Alain; Wojcik, Jérôme
2006-01-01
Background A large variety of biological data can be represented by graphs. These graphs can be constructed from heterogeneous data coming from genomic and post-genomic technologies, but there is still need for tools aiming at exploring and analysing such graphs. This paper describes GenoLink, a software platform for the graphical querying and exploration of graphs. Results GenoLink provides a generic framework for representing and querying data graphs. This framework provides a graph data structure, a graph query engine, allowing to retrieve sub-graphs from the entire data graph, and several graphical interfaces to express such queries and to further explore their results. A query consists in a graph pattern with constraints attached to the vertices and edges. A query result is the set of all sub-graphs of the entire data graph that are isomorphic to the pattern and satisfy the constraints. The graph data structure does not rely upon any particular data model but can dynamically accommodate for any user-supplied data model. However, for genomic and post-genomic applications, we provide a default data model and several parsers for the most popular data sources. GenoLink does not require any programming skill since all operations on graphs and the analysis of the results can be carried out graphically through several dedicated graphical interfaces. Conclusion GenoLink is a generic and interactive tool allowing biologists to graphically explore various sources of information. GenoLink is distributed either as a standalone application or as a component of the Genostar/Iogma platform. Both distributions are free for academic research and teaching purposes and can be requested at academy@genostar.com. A commercial licence form can be obtained for profit company at info@genostar.com. See also . PMID:16417636
Evolutionary dynamics on graphs
NASA Astrophysics Data System (ADS)
Lieberman, Erez; Hauert, Christoph; Nowak, Martin A.
2005-01-01
Evolutionary dynamics have been traditionally studied in the context of homogeneous or spatially extended populations. Here we generalize population structure by arranging individuals on a graph. Each vertex represents an individual. The weighted edges denote reproductive rates which govern how often individuals place offspring into adjacent vertices. The homogeneous population, described by the Moran process, is the special case of a fully connected graph with evenly weighted edges. Spatial structures are described by graphs where vertices are connected with their nearest neighbours. We also explore evolution on random and scale-free networks. We determine the fixation probability of mutants, and characterize those graphs for which fixation behaviour is identical to that of a homogeneous population. Furthermore, some graphs act as suppressors and others as amplifiers of selection. It is even possible to find graphs that guarantee the fixation of any advantageous mutant. We also study frequency-dependent selection and show that the outcome of evolutionary games can depend entirely on the structure of the underlying graph. Evolutionary graph theory has many fascinating applications ranging from ecology to multi-cellular organization and economics.
Output Feedback Distributed Containment Control for High-Order Nonlinear Multiagent Systems.
Li, Yafeng; Hua, Changchun; Wu, Shuangshuang; Guan, Xinping
2017-01-31
In this paper, we study the problem of output feedback distributed containment control for a class of high-order nonlinear multiagent systems under a fixed undirected graph and a fixed directed graph, respectively. Only the output signals of the systems can be measured. The novel reduced order dynamic gain observer is constructed to estimate the unmeasured state variables of the system with the less conservative condition on nonlinear terms than traditional Lipschitz one. Via the backstepping method, output feedback distributed nonlinear controllers for the followers are designed. By means of the novel first virtual controllers, we separate the estimated state variables of different agents from each other. Consequently, the designed controllers show independence on the estimated state variables of neighbors except outputs information, and the dynamics of each agent can be greatly different, which make the design method have a wider class of applications. Finally, a numerical simulation is presented to illustrate the effectiveness of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Minghai; Duan, Mojie; Fan, Jue
The thermodynamics and kinetics of protein folding and protein conformational changes are governed by the underlying free energy landscape. However, the multidimensional nature of the free energy landscape makes it difficult to describe. We propose to use a weighted-graph approach to depict the free energy landscape with the nodes on the graph representing the conformational states and the edge weights reflecting the free energy barriers between the states. Our graph is constructed from a molecular dynamics trajectory and does not involve projecting the multi-dimensional free energy landscape onto a low-dimensional space defined by a few order parameters. The calculation ofmore » free energy barriers was based on transition-path theory using the MSMBuilder2 package. We compare our graph with the widely used transition disconnectivity graph (TRDG) which is constructed from the same trajectory and show that our approach gives more accurate description of the free energy landscape than the TRDG approach even though the latter can be organized into a simple tree representation. The weighted-graph is a general approach and can be used on any complex system.« less
Complex dynamics of memristive circuits: Analytical results and universal slow relaxation
NASA Astrophysics Data System (ADS)
Caravelli, F.; Traversa, F. L.; Di Ventra, M.
2017-02-01
Networks with memristive elements (resistors with memory) are being explored for a variety of applications ranging from unconventional computing to models of the brain. However, analytical results that highlight the role of the graph connectivity on the memory dynamics are still few, thus limiting our understanding of these important dynamical systems. In this paper, we derive an exact matrix equation of motion that takes into account all the network constraints of a purely memristive circuit, and we employ it to derive analytical results regarding its relaxation properties. We are able to describe the memory evolution in terms of orthogonal projection operators onto the subspace of fundamental loop space of the underlying circuit. This orthogonal projection explicitly reveals the coupling between the spatial and temporal sectors of the memristive circuits and compactly describes the circuit topology. For the case of disordered graphs, we are able to explain the emergence of a power-law relaxation as a superposition of exponential relaxation times with a broad range of scales using random matrices. This power law is also universal, namely independent of the topology of the underlying graph but dependent only on the density of loops. In the case of circuits subject to alternating voltage instead, we are able to obtain an approximate solution of the dynamics, which is tested against a specific network topology. These results suggest a much richer dynamics of memristive networks than previously considered.
A Security Assessment Mechanism for Software-Defined Networking-Based Mobile Networks.
Luo, Shibo; Dong, Mianxiong; Ota, Kaoru; Wu, Jun; Li, Jianhua
2015-12-17
Software-Defined Networking-based Mobile Networks (SDN-MNs) are considered the future of 5G mobile network architecture. With the evolving cyber-attack threat, security assessments need to be performed in the network management. Due to the distinctive features of SDN-MNs, such as their dynamic nature and complexity, traditional network security assessment methodologies cannot be applied directly to SDN-MNs, and a novel security assessment methodology is needed. In this paper, an effective security assessment mechanism based on attack graphs and an Analytic Hierarchy Process (AHP) is proposed for SDN-MNs. Firstly, this paper discusses the security assessment problem of SDN-MNs and proposes a methodology using attack graphs and AHP. Secondly, to address the diversity and complexity of SDN-MNs, a novel attack graph definition and attack graph generation algorithm are proposed. In order to quantify security levels, the Node Minimal Effort (NME) is defined to quantify attack cost and derive system security levels based on NME. Thirdly, to calculate the NME of an attack graph that takes the dynamic factors of SDN-MN into consideration, we use AHP integrated with the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) as the methodology. Finally, we offer a case study to validate the proposed methodology. The case study and evaluation show the advantages of the proposed security assessment mechanism.
A Security Assessment Mechanism for Software-Defined Networking-Based Mobile Networks
Luo, Shibo; Dong, Mianxiong; Ota, Kaoru; Wu, Jun; Li, Jianhua
2015-01-01
Software-Defined Networking-based Mobile Networks (SDN-MNs) are considered the future of 5G mobile network architecture. With the evolving cyber-attack threat, security assessments need to be performed in the network management. Due to the distinctive features of SDN-MNs, such as their dynamic nature and complexity, traditional network security assessment methodologies cannot be applied directly to SDN-MNs, and a novel security assessment methodology is needed. In this paper, an effective security assessment mechanism based on attack graphs and an Analytic Hierarchy Process (AHP) is proposed for SDN-MNs. Firstly, this paper discusses the security assessment problem of SDN-MNs and proposes a methodology using attack graphs and AHP. Secondly, to address the diversity and complexity of SDN-MNs, a novel attack graph definition and attack graph generation algorithm are proposed. In order to quantify security levels, the Node Minimal Effort (NME) is defined to quantify attack cost and derive system security levels based on NME. Thirdly, to calculate the NME of an attack graph that takes the dynamic factors of SDN-MN into consideration, we use AHP integrated with the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) as the methodology. Finally, we offer a case study to validate the proposed methodology. The case study and evaluation show the advantages of the proposed security assessment mechanism. PMID:26694409
Sequential visibility-graph motifs
NASA Astrophysics Data System (ADS)
Iacovacci, Jacopo; Lacasa, Lucas
2016-04-01
Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of sequential visibility-graph motifs, smaller substructures of n consecutive nodes that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated with general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable of distinguishing among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification and description of physical, biological, and financial time series.
Graph partitions and cluster synchronization in networks of oscillators
Schaub, Michael T.; O’Clery, Neave; Billeh, Yazan N.; Delvenne, Jean-Charles; Lambiotte, Renaud; Barahona, Mauricio
2017-01-01
Synchronization over networks depends strongly on the structure of the coupling between the oscillators. When the coupling presents certain regularities, the dynamics can be coarse-grained into clusters by means of External Equitable Partitions of the network graph and their associated quotient graphs. We exploit this graph-theoretical concept to study the phenomenon of cluster synchronization, in which different groups of nodes converge to distinct behaviors. We derive conditions and properties of networks in which such clustered behavior emerges, and show that the ensuing dynamics is the result of the localization of the eigenvectors of the associated graph Laplacians linked to the existence of invariant subspaces. The framework is applied to both linear and non-linear models, first for the standard case of networks with positive edges, before being generalized to the case of signed networks with both positive and negative interactions. We illustrate our results with examples of both signed and unsigned graphs for consensus dynamics and for partial synchronization of oscillator networks under the master stability function as well as Kuramoto oscillators. PMID:27781454
Zhang, Qin; Yao, Quanying
2018-05-01
The dynamic uncertain causality graph (DUCG) is a newly presented framework for uncertain causality representation and probabilistic reasoning. It has been successfully applied to online fault diagnoses of large, complex industrial systems, and decease diagnoses. This paper extends the DUCG to model more complex cases than what could be previously modeled, e.g., the case in which statistical data are in different groups with or without overlap, and some domain knowledge and actions (new variables with uncertain causalities) are introduced. In other words, this paper proposes to use -mode, -mode, and -mode of the DUCG to model such complex cases and then transform them into either the standard -mode or the standard -mode. In the former situation, if no directed cyclic graph is involved, the transformed result is simply a Bayesian network (BN), and existing inference methods for BNs can be applied. In the latter situation, an inference method based on the DUCG is proposed. Examples are provided to illustrate the methodology.
Integrating multiple data sources for malware classification
Anderson, Blake Harrell; Storlie, Curtis B; Lane, Terran
2015-04-28
Disclosed herein are representative embodiments of tools and techniques for classifying programs. According to one exemplary technique, at least one graph representation of at least one dynamic data source of at least one program is generated. Also, at least one graph representation of at least one static data source of the at least one program is generated. Additionally, at least using the at least one graph representation of the at least one dynamic data source and the at least one graph representation of the at least one static data source, the at least one program is classified.
Automated Modeling and Simulation Using the Bond Graph Method for the Aerospace Industry
NASA Technical Reports Server (NTRS)
Granda, Jose J.; Montgomery, Raymond C.
2003-01-01
Bond graph modeling was originally developed in the late 1950s by the late Prof. Henry M. Paynter of M.I.T. Prof. Paynter acted well before his time as the main advantage of his creation, other than the modeling insight that it provides and the ability of effectively dealing with Mechatronics, came into fruition only with the recent advent of modern computer technology and the tools derived as a result of it, including symbolic manipulation, MATLAB, and SIMULINK and the Computer Aided Modeling Program (CAMPG). Thus, only recently have these tools been available allowing one to fully utilize the advantages that the bond graph method has to offer. The purpose of this paper is to help fill the knowledge void concerning its use of bond graphs in the aerospace industry. The paper first presents simple examples to serve as a tutorial on bond graphs for those not familiar with the technique. The reader is given the basic understanding needed to appreciate the applications that follow. After that, several aerospace applications are developed such as modeling of an arresting system for aircraft carrier landings, suspension models used for landing gears and multibody dynamics. The paper presents also an update on NASA's progress in modeling the International Space Station (ISS) using bond graph techniques, and an advanced actuation system utilizing shape memory alloys. The later covers the Mechatronics advantages of the bond graph method, applications that simultaneously involves mechanical, hydraulic, thermal, and electrical subsystem modeling.
A graph based algorithm for adaptable dynamic airspace configuration for NextGen
NASA Astrophysics Data System (ADS)
Savai, Mehernaz P.
The National Airspace System (NAS) is a complicated large-scale aviation network, consisting of many static sectors wherein each sector is controlled by one or more controllers. The main purpose of the NAS is to enable safe and prompt air travel in the U.S. However, such static configuration of sectors will not be able to handle the continued growth of air travel which is projected to be more than double the current traffic by 2025. Under the initiative of the Next Generation of Air Transportation system (NextGen), the main objective of Adaptable Dynamic Airspace Configuration (ADAC) is that the sectors should change to the changing traffic so as to reduce the controller workload variance with time while increasing the throughput. Change in the resectorization should be such that there is a minimal increase in exchange of air traffic among controllers. The benefit of a new design (improvement in workload balance, etc.) should sufficiently exceed the transition cost, in order to deserve a change. This leads to the analysis of the concept of transition workload which is the cost associated with a transition from one sectorization to another. Given two airspace configurations, a transition workload metric which considers the air traffic as well as the geometry of the airspace is proposed. A solution to reduce this transition workload is also discussed. The algorithm is specifically designed to be implemented for the Dynamic Airspace Configuration (DAC) Algorithm. A graph model which accurately represents the air route structure and air traffic in the NAS is used to formulate the airspace configuration problem. In addition, a multilevel graph partitioning algorithm is developed for Dynamic Airspace Configuration which partitions the graph model of airspace with given user defined constraints and hence provides the user more flexibility and control over various partitions. In terms of air traffic management, vertices represent airports and waypoints. Some of the major (busy) airports need to be given more importance and hence treated separately. Thus the algorithm takes into account the air route structure while finding a balance between sector workloads. The performance of the proposed algorithms and performance metrics is validated with the Enhanced Traffic Management System (ETMS) air traffic data.
Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions.
Choi, Jun-Ho; Lee, Hochan; Choi, Hyung Ran; Cho, Minhaeng
2018-04-20
In molecular and cellular biology, dissolved ions and molecules have decisive effects on chemical and biological reactions, conformational stabilities, and functions of small to large biomolecules. Despite major efforts, the current state of understanding of the effects of specific ions, osmolytes, and bioprotecting sugars on the structure and dynamics of water H-bonding networks and proteins is not yet satisfactory. Recently, to gain deeper insight into this subject, we studied various aggregation processes of ions and molecules in high-concentration salt, osmolyte, and sugar solutions with time-resolved vibrational spectroscopy and molecular dynamics simulation methods. It turns out that ions (or solute molecules) have a strong propensity to self-assemble into large and polydisperse aggregates that affect both local and long-range water H-bonding structures. In particular, we have shown that graph-theoretical approaches can be used to elucidate morphological characteristics of large aggregates in various aqueous salt, osmolyte, and sugar solutions. When ion and molecular aggregates in such aqueous solutions are treated as graphs, a variety of graph-theoretical properties, such as graph spectrum, degree distribution, clustering coefficient, minimum path length, and graph entropy, can be directly calculated by considering an ensemble of configurations taken from molecular dynamics trajectories. Here we show percolating behavior exhibited by ion and molecular aggregates upon increase in solute concentration in high solute concentrations and discuss compelling evidence of the isomorphic relation between percolation transitions of ion and molecular aggregates and water H-bonding networks. We anticipate that the combination of graph theory and molecular dynamics simulation methods will be of exceptional use in achieving a deeper understanding of the fundamental physical chemistry of dissolution and in describing the interplay between the self-aggregation of solute molecules and the structure and dynamics of water.
Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions
NASA Astrophysics Data System (ADS)
Choi, Jun-Ho; Lee, Hochan; Choi, Hyung Ran; Cho, Minhaeng
2018-04-01
In molecular and cellular biology, dissolved ions and molecules have decisive effects on chemical and biological reactions, conformational stabilities, and functions of small to large biomolecules. Despite major efforts, the current state of understanding of the effects of specific ions, osmolytes, and bioprotecting sugars on the structure and dynamics of water H-bonding networks and proteins is not yet satisfactory. Recently, to gain deeper insight into this subject, we studied various aggregation processes of ions and molecules in high-concentration salt, osmolyte, and sugar solutions with time-resolved vibrational spectroscopy and molecular dynamics simulation methods. It turns out that ions (or solute molecules) have a strong propensity to self-assemble into large and polydisperse aggregates that affect both local and long-range water H-bonding structures. In particular, we have shown that graph-theoretical approaches can be used to elucidate morphological characteristics of large aggregates in various aqueous salt, osmolyte, and sugar solutions. When ion and molecular aggregates in such aqueous solutions are treated as graphs, a variety of graph-theoretical properties, such as graph spectrum, degree distribution, clustering coefficient, minimum path length, and graph entropy, can be directly calculated by considering an ensemble of configurations taken from molecular dynamics trajectories. Here we show percolating behavior exhibited by ion and molecular aggregates upon increase in solute concentration in high solute concentrations and discuss compelling evidence of the isomorphic relation between percolation transitions of ion and molecular aggregates and water H-bonding networks. We anticipate that the combination of graph theory and molecular dynamics simulation methods will be of exceptional use in achieving a deeper understanding of the fundamental physical chemistry of dissolution and in describing the interplay between the self-aggregation of solute molecules and the structure and dynamics of water.
Karkokli, R; McConville, K M Valter
2006-01-01
This paper portrays the design and instrumentation of a low cost plantar pressure analysis system, suitable for clinical podiatry. The system measures plantar pressure between the foot and shoe during dynamic movement in real-time, which can be used in clinical gait analysis. It contains a pressure sensing insole which the patient can insert in his/her shoe, and user-friendly software to graph and analyze the data. Applications include occupational health and safety, research and private practice.
Tune the topology to create or destroy patterns
NASA Astrophysics Data System (ADS)
Asllani, Malbor; Carletti, Timoteo; Fanelli, Duccio
2016-12-01
We consider the dynamics of a reaction-diffusion system on a multigraph. The species share the same set of nodes but can access different links to explore the embedding spatial support. By acting on the topology of the networks we can control the ability of the system to self-organise in macroscopic patterns, emerging as a symmetry breaking instability of an homogeneous fixed point. Two different cases study are considered: on the one side, we produce a global modification of the networks, starting from the limiting setting where species are hosted on the same graph. On the other, we consider the effect of inserting just one additional single link to differentiate the two graphs. In both cases, patterns can be generated or destroyed, as follows the imposed, small, topological perturbation. Approximate analytical formulae allow to grasp the essence of the phenomenon and can potentially inspire innovative control strategies to shape the macroscopic dynamics on multigraph networks.
Geographical influences of an emerging network of gang rivalries
NASA Astrophysics Data System (ADS)
Hegemann, Rachel A.; Smith, Laura M.; Barbaro, Alethea B. T.; Bertozzi, Andrea L.; Reid, Shannon E.; Tita, George E.
2011-10-01
We propose an agent-based model to simulate the creation of street gang rivalries. The movement dynamics of agents are coupled to an evolving network of gang rivalries, which is determined by previous interactions among agents in the system. Basic gang data, geographic information, and behavioral dynamics suggested by the criminology literature are integrated into the model. The major highways, rivers, and the locations of gangs’ centers of activity influence the agents’ motion. We use a policing division of the Los Angeles Police Department as a case study to test our model. We apply common metrics from graph theory to analyze our model, comparing networks produced by our simulations and an instance of a Geographical Threshold Graph to the existing network from the criminology literature.
Improved segmentation of abnormal cervical nuclei using a graph-search based approach
NASA Astrophysics Data System (ADS)
Zhang, Ling; Liu, Shaoxiong; Wang, Tianfu; Chen, Siping; Sonka, Milan
2015-03-01
Reliable segmentation of abnormal nuclei in cervical cytology is of paramount importance in automation-assisted screening techniques. This paper presents a general method for improving the segmentation of abnormal nuclei using a graph-search based approach. More specifically, the proposed method focuses on the improvement of coarse (initial) segmentation. The improvement relies on a transform that maps round-like border in the Cartesian coordinate system into lines in the polar coordinate system. The costs consisting of nucleus-specific edge and region information are assigned to the nodes. The globally optimal path in the constructed graph is then identified by dynamic programming. We have tested the proposed method on abnormal nuclei from two cervical cell image datasets, Herlev and H and E stained liquid-based cytology (HELBC), and the comparative experiments with recent state-of-the-art approaches demonstrate the superior performance of the proposed method.
Disease management research using event graphs.
Allore, H G; Schruben, L W
2000-08-01
Event Graphs, conditional representations of stochastic relationships between discrete events, simulate disease dynamics. In this paper, we demonstrate how Event Graphs, at an appropriate abstraction level, also extend and organize scientific knowledge about diseases. They can identify promising treatment strategies and directions for further research and provide enough detail for testing combinations of new medicines and interventions. Event Graphs can be enriched to incorporate and validate data and test new theories to reflect an expanding dynamic scientific knowledge base and establish performance criteria for the economic viability of new treatments. To illustrate, an Event Graph is developed for mastitis, a costly dairy cattle disease, for which extensive scientific literature exists. With only a modest amount of imagination, the methodology presented here can be seen to apply modeling to any disease, human, plant, or animal. The Event Graph simulation presented here is currently being used in research and in a new veterinary epidemiology course. Copyright 2000 Academic Press.
A conceptual model for quantifying connectivity using graph theory and cellular (per-pixel) approach
NASA Astrophysics Data System (ADS)
Singh, Manudeo; Sinha, Rajiv; Tandon, Sampat K.
2016-04-01
The concept of connectivity is being increasingly used for understanding hydro-geomorphic processes at all spatio-temporal scales. Connectivity is defined as the potential for energy and material flux (water, sediments, nutrients, heat, etc.) to navigate within or between the landscape systems and has two components, structural connectivity and dynamic connectivity. Structural connectivity is defined by the spatially connected features (physical linkages) through which energy and materials flow. Dynamic connectivity is a process defined connectivity component. These two connectivity components also interact with each other by forming a feedback system. This study attempts to explore a method to quantify structural and dynamic connectivity. In fluvial transport systems, sediment and water can flow in either a diffused manner or in a channelized way. At all the scales, hydrological and sediment fluxes can be tracked using a cellular (per-pixel) approach and can be quantified using graphical approach. The material flux, slope and LULC (Land Use Land Cover) weightage factors of a pixel together determine if it will contribute towards connectivity of the landscape/system. In a graphical approach, all the contributing pixels will form a node at their centroid and this node will be connected to the next 'down-node' via a directed edge with 'least cost path'. The length of the edge will depend on the desired spatial scale and its path direction will depend on the traversed pixel's slope and the LULC (weightage) factors. The weightage factors will lie in-between 0 to 1. This value approaches 1 for the LULC factors which promote connectivity. For example, in terms of sediment connectivity, the weightage could be RUSLE (Revised Universal Soil Loss Equation) C-factors with bare unconsolidated surfaces having values close to 1. This method is best suited for areas with low slopes, where LULC can be a deciding as well as dominating factor. The degree of connectivity and its pathways will show changes under different LULC conditions even if the slope remains the same. The graphical approach provides the statistics of connected and disconnected graph elements (edges, nodes) and graph components, thereby allowing the quantification of structural connectivity. This approach also quantifies the dynamic connectivity by allowing the measurement of the fluxes (e.g. via hydrographs or sedimentographs) at any node as well as at any system outlet. The contribution of any sub-system can be understood by removing the remaining sub-systems which can be conveniently achieved by masking associated graph elements.
NASA Astrophysics Data System (ADS)
Cui, Bing; Zhao, Chunhui; Ma, Tiedong; Feng, Chi
2017-02-01
In this paper, the cooperative adaptive consensus tracking problem for heterogeneous nonlinear multi-agent systems on directed graph is addressed. Each follower is modelled as a general nonlinear system with the unknown and nonidentical nonlinear dynamics, disturbances and actuator failures. Cooperative fault tolerant neural network tracking controllers with online adaptive learning features are proposed to guarantee that all agents synchronise to the trajectory of one leader with bounded adjustable synchronisation errors. With the help of linear quadratic regulator-based optimal design, a graph-dependent Lyapunov proof provides error bounds that depend on the graph topology, one virtual matrix and some design parameters. Of particular interest is that if the control gain is selected appropriately, the proposed control scheme can be implemented in a unified framework no matter whether there are faults or not. Furthermore, the fault detection and isolation are not needed to implement. Finally, a simulation is given to verify the effectiveness of the proposed method.
Automated Root Tracking with "Root System Analyzer"
NASA Astrophysics Data System (ADS)
Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel
2015-04-01
Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent identification number, the distance between branching point to the parent root base, the root length, the root radius and the nodes that belong to each individual root path. This information is relevant for the analysis of dynamic root system development as well as the parameterisation of root architecture models. Here, we show results of Root System Analyzer applied to analyse the root systems of wheat plants grown in rhizotrons. Different treatments with respect to soil moisture and apatite concentrations were used to test the effects of those conditions on root system development. Photographs of the root systems were taken at high spatial and temporal resolution and root systems are automatically tracked.
Horizontal visibility graphs generated by type-I intermittency
NASA Astrophysics Data System (ADS)
Núñez, Ángel M.; Luque, Bartolo; Lacasa, Lucas; Gómez, Jose Patricio; Robledo, Alberto
2013-05-01
The type-I intermittency route to (or out of) chaos is investigated within the horizontal visibility (HV) graph theory. For that purpose, we address the trajectories generated by unimodal maps close to an inverse tangent bifurcation and construct their associated HV graphs. We show how the alternation of laminar episodes and chaotic bursts imprints a fingerprint in the resulting graph structure. Accordingly, we derive a phenomenological theory that predicts quantitative values for several network parameters. In particular, we predict that the characteristic power-law scaling of the mean length of laminar trend sizes is fully inherited by the variance of the graph degree distribution, in good agreement with the numerics. We also report numerical evidence on how the characteristic power-law scaling of the Lyapunov exponent as a function of the distance to the tangent bifurcation is inherited in the graph by an analogous scaling of block entropy functionals defined on the graph. Furthermore, we are able to recast the full set of HV graphs generated by intermittent dynamics into a renormalization-group framework, where the fixed points of its graph-theoretical renormalization-group flow account for the different types of dynamics. We also establish that the nontrivial fixed point of this flow coincides with the tangency condition and that the corresponding invariant graph exhibits extremal entropic properties.
Fretter, Christoph; Lesne, Annick; Hilgetag, Claus C.; Hütt, Marc-Thorsten
2017-01-01
Simple models of excitable dynamics on graphs are an efficient framework for studying the interplay between network topology and dynamics. This topic is of practical relevance to diverse fields, ranging from neuroscience to engineering. Here we analyze how a single excitation propagates through a random network as a function of the excitation threshold, that is, the relative amount of activity in the neighborhood required for the excitation of a node. We observe that two sharp transitions delineate a region of sustained activity. Using analytical considerations and numerical simulation, we show that these transitions originate from the presence of barriers to propagation and the excitation of topological cycles, respectively, and can be predicted from the network topology. Our findings are interpreted in the context of network reverberations and self-sustained activity in neural systems, which is a question of long-standing interest in computational neuroscience. PMID:28186182
Fretter, Christoph; Lesne, Annick; Hilgetag, Claus C; Hütt, Marc-Thorsten
2017-02-10
Simple models of excitable dynamics on graphs are an efficient framework for studying the interplay between network topology and dynamics. This topic is of practical relevance to diverse fields, ranging from neuroscience to engineering. Here we analyze how a single excitation propagates through a random network as a function of the excitation threshold, that is, the relative amount of activity in the neighborhood required for the excitation of a node. We observe that two sharp transitions delineate a region of sustained activity. Using analytical considerations and numerical simulation, we show that these transitions originate from the presence of barriers to propagation and the excitation of topological cycles, respectively, and can be predicted from the network topology. Our findings are interpreted in the context of network reverberations and self-sustained activity in neural systems, which is a question of long-standing interest in computational neuroscience.
NASA Astrophysics Data System (ADS)
Fretter, Christoph; Lesne, Annick; Hilgetag, Claus C.; Hütt, Marc-Thorsten
2017-02-01
Simple models of excitable dynamics on graphs are an efficient framework for studying the interplay between network topology and dynamics. This topic is of practical relevance to diverse fields, ranging from neuroscience to engineering. Here we analyze how a single excitation propagates through a random network as a function of the excitation threshold, that is, the relative amount of activity in the neighborhood required for the excitation of a node. We observe that two sharp transitions delineate a region of sustained activity. Using analytical considerations and numerical simulation, we show that these transitions originate from the presence of barriers to propagation and the excitation of topological cycles, respectively, and can be predicted from the network topology. Our findings are interpreted in the context of network reverberations and self-sustained activity in neural systems, which is a question of long-standing interest in computational neuroscience.
Combinatorial-topological framework for the analysis of global dynamics.
Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł
2012-12-01
We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.
Combinatorial-topological framework for the analysis of global dynamics
NASA Astrophysics Data System (ADS)
Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł
2012-12-01
We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.
Integrated Network Decompositions and Dynamic Programming for Graph Optimization (INDDGO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
The INDDGO software package offers a set of tools for finding exact solutions to graph optimization problems via tree decompositions and dynamic programming algorithms. Currently the framework offers serial and parallel (distributed memory) algorithms for finding tree decompositions and solving the maximum weighted independent set problem. The parallel dynamic programming algorithm is implemented on top of the MADNESS task-based runtime.
Dynamical modeling and analysis of large cellular regulatory networks
NASA Astrophysics Data System (ADS)
Bérenguier, D.; Chaouiya, C.; Monteiro, P. T.; Naldi, A.; Remy, E.; Thieffry, D.; Tichit, L.
2013-06-01
The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Allan Ray
1987-05-01
Increases in high speed hardware have mandated studies in software techniques to exploit the parallel capabilities. This thesis examines the effects a run-time scheduler has on a multiprocessor. The model consists of directed, acyclic graphs, generated from serial FORTRAN benchmark programs by the parallel compiler Parafrase. A multitasked, multiprogrammed environment is created. Dependencies are generated by the compiler. Tasks are bidimensional, i.e., they may specify both time and processor requests. Processor requests may be folded into execution time by the scheduler. The graphs may arrive at arbitrary time intervals. The general case is NP-hard, thus, a variety of heuristics aremore » examined by a simulator. Multiprogramming demonstrates a greater need for a run-time scheduler than does monoprogramming for a variety of reasons, e.g., greater stress on the processors, a larger number of independent control paths, more variety in the task parameters, etc. The dynamic critical path series of algorithms perform well. Dynamic critical volume did not add much. Unfortunately, dynamic critical path maximizes turnaround time as well as throughput. Two schedulers are presented which balance throughput and turnaround time. The first requires classification of jobs by type; the second requires selection of a ratio value which is dependent upon system parameters. 45 refs., 19 figs., 20 tabs.« less
Quantum walks of interacting fermions on a cycle graph
Melnikov, Alexey A.; Fedichkin, Leonid E.
2016-01-01
Quantum walks have been employed widely to develop new tools for quantum information processing recently. A natural quantum walk dynamics of interacting particles can be used to implement efficiently the universal quantum computation. In this work quantum walks of electrons on a graph are studied. The graph is composed of semiconductor quantum dots arranged in a circle. Electrons can tunnel between adjacent dots and interact via Coulomb repulsion, which leads to entanglement. Fermionic entanglement dynamics is obtained and evaluated. PMID:27681057
NASA Astrophysics Data System (ADS)
Tejedor, A.; Longjas, A.; Foufoula-Georgiou, E.
2017-12-01
Previous work [e.g. Tejedor et al., 2016 - GRL] has demonstrated the potential of using graph theory to study key properties of the structure and dynamics of river delta channel networks. Although the distribution of fluxes in river deltas is mostly driven by the connectivity of its channel network a significant part of the fluxes might also arise from connectivity between the channels and islands due to overland flow and seepage. This channel-island-subsurface interaction creates connectivity pathways which facilitate or inhibit transport depending on their degree of coupling. The question we pose here is how to collectively study system connectivity that emerges from the aggregated action of different processes (different in nature, intensity and time scales). Single-layer graphs as those introduced for delta channel networks are inadequate as they lack the ability to represent coupled processes, and neglecting across-process interactions can lead to mis-representation of the overall system dynamics. We present here a framework that generalizes the traditional representation of networks (single-layer graphs) to the so-called multi-layer networks or multiplex. A multi-layer network conceptualizes the overall connectivity arising from different processes as distinct graphs (layers), while allowing at the same time to represent interactions between layers by introducing interlayer links (across process interactions). We illustrate this framework using a study of the joint connectivity that arises from the coupling of the confined flow on the channel network and the overland flow on islands, on a prototype delta. We show the potential of the multi-layer framework to answer quantitatively questions related to the characteristic time scales to steady-state transport in the system as a whole when different levels of channel-island coupling are modulated by different magnitudes of discharge rates.
Theory of rumour spreading in complex social networks
NASA Astrophysics Data System (ADS)
Nekovee, M.; Moreno, Y.; Bianconi, G.; Marsili, M.
2007-01-01
We introduce a general stochastic model for the spread of rumours, and derive mean-field equations that describe the dynamics of the model on complex social networks (in particular, those mediated by the Internet). We use analytical and numerical solutions of these equations to examine the threshold behaviour and dynamics of the model on several models of such networks: random graphs, uncorrelated scale-free networks and scale-free networks with assortative degree correlations. We show that in both homogeneous networks and random graphs the model exhibits a critical threshold in the rumour spreading rate below which a rumour cannot propagate in the system. In the case of scale-free networks, on the other hand, this threshold becomes vanishingly small in the limit of infinite system size. We find that the initial rate at which a rumour spreads is much higher in scale-free networks than in random graphs, and that the rate at which the spreading proceeds on scale-free networks is further increased when assortative degree correlations are introduced. The impact of degree correlations on the final fraction of nodes that ever hears a rumour, however, depends on the interplay between network topology and the rumour spreading rate. Our results show that scale-free social networks are prone to the spreading of rumours, just as they are to the spreading of infections. They are relevant to the spreading dynamics of chain emails, viral advertising and large-scale information dissemination algorithms on the Internet.
Time-dependence of graph theory metrics in functional connectivity analysis
Chiang, Sharon; Cassese, Alberto; Guindani, Michele; Vannucci, Marina; Yeh, Hsiang J.; Haneef, Zulfi; Stern, John M.
2016-01-01
Brain graphs provide a useful way to computationally model the network structure of the connectome, and this has led to increasing interest in the use of graph theory to quantitate and investigate the topological characteristics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we investigate the stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach that estimates the dynamic structure of graph theoretical measures of whole-brain functional connectivity. In addition to extracting the stationary distribution and transition probabilities of commonly employed graph theory measures, we propose two estimators of temporal stationarity: the S-index and N-index. These indexes can be used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method and proposed estimators to resting-state functional MRI data from healthy controls and patients with temporal lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal stationarity of network topology may increase discriminatory power in discriminating between disease states. Our results confirm and extend findings from other studies regarding the dynamic nature of functional connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency across investigations. PMID:26518632
Time-dependence of graph theory metrics in functional connectivity analysis.
Chiang, Sharon; Cassese, Alberto; Guindani, Michele; Vannucci, Marina; Yeh, Hsiang J; Haneef, Zulfi; Stern, John M
2016-01-15
Brain graphs provide a useful way to computationally model the network structure of the connectome, and this has led to increasing interest in the use of graph theory to quantitate and investigate the topological characteristics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we investigate the stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach that estimates the dynamic structure of graph theoretical measures of whole-brain functional connectivity. In addition to extracting the stationary distribution and transition probabilities of commonly employed graph theory measures, we propose two estimators of temporal stationarity: the S-index and N-index. These indexes can be used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method and proposed estimators to resting-state functional MRI data from healthy controls and patients with temporal lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal stationarity of network topology may increase discriminatory power in discriminating between disease states. Our results confirm and extend findings from other studies regarding the dynamic nature of functional connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency across investigations. Copyright © 2015 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Angotti, Robin
2017-01-01
This article describes Gapminder, a dynamic time-series graph that can be found at http://www.gapminder.org. Gapminder was created by a team of developers (Rosling, Ronnlund, and Rosling 2005) to create beautiful, interactive graphs of otherwise lifeless numbers. Their goal is increased use and understanding of statistics and data that…
Inference of Spatio-Temporal Functions Over Graphs via Multikernel Kriged Kalman Filtering
NASA Astrophysics Data System (ADS)
Ioannidis, Vassilis N.; Romero, Daniel; Giannakis, Georgios B.
2018-06-01
Inference of space-time varying signals on graphs emerges naturally in a plethora of network science related applications. A frequently encountered challenge pertains to reconstructing such dynamic processes, given their values over a subset of vertices and time instants. The present paper develops a graph-aware kernel-based kriged Kalman filter that accounts for the spatio-temporal variations, and offers efficient online reconstruction, even for dynamically evolving network topologies. The kernel-based learning framework bypasses the need for statistical information by capitalizing on the smoothness that graph signals exhibit with respect to the underlying graph. To address the challenge of selecting the appropriate kernel, the proposed filter is combined with a multi-kernel selection module. Such a data-driven method selects a kernel attuned to the signal dynamics on-the-fly within the linear span of a pre-selected dictionary. The novel multi-kernel learning algorithm exploits the eigenstructure of Laplacian kernel matrices to reduce computational complexity. Numerical tests with synthetic and real data demonstrate the superior reconstruction performance of the novel approach relative to state-of-the-art alternatives.
Spectral mapping of brain functional connectivity from diffusion imaging.
Becker, Cassiano O; Pequito, Sérgio; Pappas, George J; Miller, Michael B; Grafton, Scott T; Bassett, Danielle S; Preciado, Victor M
2018-01-23
Understanding the relationship between the dynamics of neural processes and the anatomical substrate of the brain is a central question in neuroscience. On the one hand, modern neuroimaging technologies, such as diffusion tensor imaging, can be used to construct structural graphs representing the architecture of white matter streamlines linking cortical and subcortical structures. On the other hand, temporal patterns of neural activity can be used to construct functional graphs representing temporal correlations between brain regions. Although some studies provide evidence that whole-brain functional connectivity is shaped by the underlying anatomy, the observed relationship between function and structure is weak, and the rules by which anatomy constrains brain dynamics remain elusive. In this article, we introduce a methodology to map the functional connectivity of a subject at rest from his or her structural graph. Using our methodology, we are able to systematically account for the role of structural walks in the formation of functional correlations. Furthermore, in our empirical evaluations, we observe that the eigenmodes of the mapped functional connectivity are associated with activity patterns associated with different cognitive systems.
Movement Forms: A Graph-Dynamic Perspective
Saltzman, Elliot; Holt, Ken
2014-01-01
The focus of this paper is on characterizing the physical movement forms (e.g., walk, crawl, roll, etc.) that can be used to actualize abstract, functionally-specified behavioral goals (e.g., locomotion). Emphasis is placed on how such forms are distinguished from one another, in part, by the set of topological patterns of physical contact between agent and environment (i.e., the set of physical graphs associated with each form) and the transitions among these patterns displayed over the course of performance (i.e., the form’s physical graph dynamics). Crucial in this regard is the creation and dissolution of loops in these graphs, which can be related to the distinction between open and closed kinematic chains. Formal similarities are described within the theoretical framework of task-dynamics between physically-closed kinematic chains (physical loops) that are created during various movement forms and functionally-closed kinematic chains (functional loops) that are associated with task-space control of end-effectors; it is argued that both types of loop must be flexibly incorporated into the coordinative structures that govern skilled action. Final speculation is focused on the role of graphs and their dynamics, not only in processes of coordination and control for individual agents, but also in processes of inter-agent coordination and the coupling of agents with (non-sentient) environmental objects. PMID:24910507
Movement Forms: A Graph-Dynamic Perspective.
Saltzman, Elliot; Holt, Ken
2014-01-01
The focus of this paper is on characterizing the physical movement forms (e.g., walk, crawl, roll, etc.) that can be used to actualize abstract, functionally-specified behavioral goals (e.g., locomotion). Emphasis is placed on how such forms are distinguished from one another, in part, by the set of topological patterns of physical contact between agent and environment (i.e., the set of physical graphs associated with each form) and the transitions among these patterns displayed over the course of performance (i.e., the form's physical graph dynamics ). Crucial in this regard is the creation and dissolution of loops in these graphs, which can be related to the distinction between open and closed kinematic chains. Formal similarities are described within the theoretical framework of task-dynamics between physically-closed kinematic chains (physical loops) that are created during various movement forms and functionally-closed kinematic chains (functional loops) that are associated with task-space control of end-effectors; it is argued that both types of loop must be flexibly incorporated into the coordinative structures that govern skilled action. Final speculation is focused on the role of graphs and their dynamics, not only in processes of coordination and control for individual agents, but also in processes of inter-agent coordination and the coupling of agents with (non-sentient) environmental objects.
Hindersin, Laura; Traulsen, Arne
2015-11-01
We analyze evolutionary dynamics on graphs, where the nodes represent individuals of a population. The links of a node describe which other individuals can be displaced by the offspring of the individual on that node. Amplifiers of selection are graphs for which the fixation probability is increased for advantageous mutants and decreased for disadvantageous mutants. A few examples of such amplifiers have been developed, but so far it is unclear how many such structures exist and how to construct them. Here, we show that almost any undirected random graph is an amplifier of selection for Birth-death updating, where an individual is selected to reproduce with probability proportional to its fitness and one of its neighbors is replaced by that offspring at random. If we instead focus on death-Birth updating, in which a random individual is removed and its neighbors compete for the empty spot, then the same ensemble of graphs consists of almost only suppressors of selection for which the fixation probability is decreased for advantageous mutants and increased for disadvantageous mutants. Thus, the impact of population structure on evolutionary dynamics is a subtle issue that will depend on seemingly minor details of the underlying evolutionary process.
Visualizing risks in cancer communication: A systematic review of computer-supported visual aids.
Stellamanns, Jan; Ruetters, Dana; Dahal, Keshav; Schillmoeller, Zita; Huebner, Jutta
2017-08-01
Health websites are becoming important sources for cancer information. Lay users, patients and carers seek support for critical decisions, but they are prone to common biases when quantitative information is presented. Graphical representations of risk data can facilitate comprehension, and interactive visualizations are popular. This review summarizes the evidence on computer-supported graphs that present risk data and their effects on various measures. The systematic literature search was conducted in several databases, including MEDLINE, EMBASE and CINAHL. Only studies with a controlled design were included. Relevant publications were carefully selected and critically appraised by two reviewers. Thirteen studies were included. Ten studies evaluated static graphs and three dynamic formats. Most decision scenarios were hypothetical. Static graphs could improve accuracy, comprehension, and behavioural intention. But the results were heterogeneous and inconsistent among the studies. Dynamic formats were not superior or even impaired performance compared to static formats. Static graphs show promising but inconsistent results, while research on dynamic visualizations is scarce and must be interpreted cautiously due to methodical limitations. Well-designed and context-specific static graphs can support web-based cancer risk communication in particular populations. The application of dynamic formats cannot be recommended and needs further research. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McGibbney, L. J.; Jiang, Y.; Burgess, A. B.
2017-12-01
Big Earth observation data have been produced, archived and made available online, but discovering the right data in a manner that precisely and efficiently satisfies user needs presents a significant challenge to the Earth Science (ES) community. An emerging trend in information retrieval community is to utilize knowledge graphs to assist users in quickly finding desired information from across knowledge sources. This is particularly prevalent within the fields of social media and complex multimodal information processing to name but a few, however building a domain-specific knowledge graph is labour-intensive and hard to keep up-to-date. In this work, we update our progress on the Earth Science Knowledge Graph (ESKG) project; an ESIP-funded testbed project which provides an automatic approach to building a dynamic knowledge graph for ES to improve interdisciplinary data discovery by leveraging implicit, latent existing knowledge present within across several U.S Federal Agencies e.g. NASA, NOAA and USGS. ESKG strengthens ties between observations and user communities by: 1) developing a knowledge graph derived from various sources e.g. Web pages, Web Services, etc. via natural language processing and knowledge extraction techniques; 2) allowing users to traverse, explore, query, reason and navigate ES data via knowledge graph interaction. ESKG has the potential to revolutionize the way in which ES communities interact with ES data in the open world through the entity, spatial and temporal linkages and characteristics that make it up. This project enables the advancement of ESIP collaboration areas including both Discovery and Semantic Technologies by putting graph information right at our fingertips in an interactive, modern manner and reducing the efforts to constructing ontology. To demonstrate the ESKG concept, we will demonstrate use of our framework across NASA JPL's PO.DAAC, NOAA's Earth Observation Requirements Evaluation System (EORES) and various USGS systems.
Image processing meta-algorithm development via genetic manipulation of existing algorithm graphs
NASA Astrophysics Data System (ADS)
Schalkoff, Robert J.; Shaaban, Khaled M.
1999-07-01
Automatic algorithm generation for image processing applications is not a new idea, however previous work is either restricted to morphological operates or impractical. In this paper, we show recent research result in the development and use of meta-algorithms, i.e. algorithms which lead to new algorithms. Although the concept is generally applicable, the application domain in this work is restricted to image processing. The meta-algorithm concept described in this paper is based upon out work in dynamic algorithm. The paper first present the concept of dynamic algorithms which, on the basis of training and archived algorithmic experience embedded in an algorithm graph (AG), dynamically adjust the sequence of operations applied to the input image data. Each node in the tree-based representation of a dynamic algorithm with out degree greater than 2 is a decision node. At these nodes, the algorithm examines the input data and determines which path will most likely achieve the desired results. This is currently done using nearest-neighbor classification. The details of this implementation are shown. The constrained perturbation of existing algorithm graphs, coupled with a suitable search strategy, is one mechanism to achieve meta-algorithm an doffers rich potential for the discovery of new algorithms. In our work, a meta-algorithm autonomously generates new dynamic algorithm graphs via genetic recombination of existing algorithm graphs. The AG representation is well suited to this genetic-like perturbation, using a commonly- employed technique in artificial neural network synthesis, namely the blueprint representation of graphs. A number of exam. One of the principal limitations of our current approach is the need for significant human input in the learning phase. Efforts to overcome this limitation are discussed. Future research directions are indicated.
Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam
2017-07-01
In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Fuzzy Edge Connectivity of Graphical Fuzzy State Space Model in Multi-connected System
NASA Astrophysics Data System (ADS)
Harish, Noor Ainy; Ismail, Razidah; Ahmad, Tahir
2010-11-01
Structured networks of interacting components illustrate complex structure in a direct or intuitive way. Graph theory provides a mathematical modeling for studying interconnection among elements in natural and man-made systems. On the other hand, directed graph is useful to define and interpret the interconnection structure underlying the dynamics of the interacting subsystem. Fuzzy theory provides important tools in dealing various aspects of complexity, imprecision and fuzziness of the network structure of a multi-connected system. Initial development for systems of Fuzzy State Space Model (FSSM) and a fuzzy algorithm approach were introduced with the purpose of solving the inverse problems in multivariable system. In this paper, fuzzy algorithm is adapted in order to determine the fuzzy edge connectivity between subsystems, in particular interconnected system of Graphical Representation of FSSM. This new approach will simplify the schematic diagram of interconnection of subsystems in a multi-connected system.
Search Problems in Mission Planning and Navigation of Autonomous Aircraft. M.S. Thesis
NASA Technical Reports Server (NTRS)
Krozel, James A.
1988-01-01
An architecture for the control of an autonomous aircraft is presented. The architecture is a hierarchical system representing an anthropomorphic breakdown of the control problem into planner, navigator, and pilot systems. The planner system determines high level global plans from overall mission objectives. This abstract mission planning is investigated by focusing on the Traveling Salesman Problem with variations on local and global constraints. Tree search techniques are applied including the breadth first, depth first, and best first algorithms. The minimum-column and row entries for the Traveling Salesman Problem cost matrix provides a powerful heuristic to guide these search techniques. Mission planning subgoals are directed from the planner to the navigator for planning routes in mountainous terrain with threats. Terrain/threat information is abstracted into a graph of possible paths for which graph searches are performed. It is shown that paths can be well represented by a search graph based on the Voronoi diagram of points representing the vertices of mountain boundaries. A comparison of Dijkstra's dynamic programming algorithm and the A* graph search algorithm from artificial intelligence/operations research is performed for several navigation path planning examples. These examples illustrate paths that minimize a combination of distance and exposure to threats. Finally, the pilot system synthesizes the flight trajectory by creating the control commands to fly the aircraft.
NASA Astrophysics Data System (ADS)
Rodrigues, A. C.; Machado, B. S.; Florence, G.; Hamad, A. P.; Sakamoto, A. C.; Fujita, A.; Baccalá, L. A.; Amaro, E.; Sameshima, K.
2014-12-01
Here we propose and evaluate a new approach to analyse multichannel mesial temporal lobe epilepsy EEG data from eight patients through complex network and synchronization theories. The method employs a Granger causality test to infer the directed connectivity graphs and a wavelet transform based phase synchronization measure whose characteristics allow studying dynamical transitions during epileptic seizures. We present a new combined graph measure that quantifies the level of network hub formation, called network hub out-degree, which closely reflects the level of synchronization observed during the ictus.
Entropy, complexity, and Markov diagrams for random walk cancer models.
Newton, Paul K; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter
2014-12-19
The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.
Entropy, complexity, and Markov diagrams for random walk cancer models
NASA Astrophysics Data System (ADS)
Newton, Paul K.; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter
2014-12-01
The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.
Fault-tolerant dynamic task graph scheduling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt, Mehmet C.; Krishnamoorthy, Sriram; Agrawal, Kunal
2014-11-16
In this paper, we present an approach to fault tolerant execution of dynamic task graphs scheduled using work stealing. In particular, we focus on selective and localized recovery of tasks in the presence of soft faults. We elicit from the user the basic task graph structure in terms of successor and predecessor relationships. The work stealing-based algorithm to schedule such a task graph is augmented to enable recovery when the data and meta-data associated with a task get corrupted. We use this redundancy, and the knowledge of the task graph structure, to selectively recover from faults with low space andmore » time overheads. We show that the fault tolerant design retains the essential properties of the underlying work stealing-based task scheduling algorithm, and that the fault tolerant execution is asymptotically optimal when task re-execution is taken into account. Experimental evaluation demonstrates the low cost of recovery under various fault scenarios.« less
Orbital motion (3rd revised and enlarged edition)
NASA Astrophysics Data System (ADS)
Roy, A. E.
The fundamental principles of celestial mechanics are discussed in an introduction for students of astronomy, aerospace engineering, and geography. Chapters are devoted to the dynamic structure of the universe, coordinate and timekeeping systems, the reduction of observational data, the two-body problem, the many-body problem, general and special perturbations, and the stability and evolution of the solar system. Consideration is given to lunar theory, artificial satellites, rocket dynamics and transfer orbits, interplanetary and lunar trajectories, orbit determination and interplanetary navigation, binaries and other few-body systems, and many-body systems of stars. Diagrams, graphs, tables, and problems with solutions are provided.
Graph Curvature for Differentiating Cancer Networks
Sandhu, Romeil; Georgiou, Tryphon; Reznik, Ed; Zhu, Liangjia; Kolesov, Ivan; Senbabaoglu, Yasin; Tannenbaum, Allen
2015-01-01
Cellular interactions can be modeled as complex dynamical systems represented by weighted graphs. The functionality of such networks, including measures of robustness, reliability, performance, and efficiency, are intrinsically tied to the topology and geometry of the underlying graph. Utilizing recently proposed geometric notions of curvature on weighted graphs, we investigate the features of gene co-expression networks derived from large-scale genomic studies of cancer. We find that the curvature of these networks reliably distinguishes between cancer and normal samples, with cancer networks exhibiting higher curvature than their normal counterparts. We establish a quantitative relationship between our findings and prior investigations of network entropy. Furthermore, we demonstrate how our approach yields additional, non-trivial pair-wise (i.e. gene-gene) interactions which may be disrupted in cancer samples. The mathematical formulation of our approach yields an exact solution to calculating pair-wise changes in curvature which was computationally infeasible using prior methods. As such, our findings lay the foundation for an analytical approach to studying complex biological networks. PMID:26169480
NASA Technical Reports Server (NTRS)
Burleigh, Scott C.
2011-01-01
Contact Graph Routing (CGR) is a dynamic routing system that computes routes through a time-varying topology of scheduled communication contacts in a network based on the DTN (Delay-Tolerant Networking) architecture. It is designed to enable dynamic selection of data transmission routes in a space network based on DTN. This dynamic responsiveness in route computation should be significantly more effective and less expensive than static routing, increasing total data return while at the same time reducing mission operations cost and risk. The basic strategy of CGR is to take advantage of the fact that, since flight mission communication operations are planned in detail, the communication routes between any pair of bundle agents in a population of nodes that have all been informed of one another's plans can be inferred from those plans rather than discovered via dialogue (which is impractical over long one-way-light-time space links). Messages that convey this planning information are used to construct contact graphs (time-varying models of network connectivity) from which CGR automatically computes efficient routes for bundles. Automatic route selection increases the flexibility and resilience of the space network, simplifying cross-support and reducing mission management costs. Note that there are no routing tables in Contact Graph Routing. The best route for a bundle destined for a given node may routinely be different from the best route for a different bundle destined for the same node, depending on bundle priority, bundle expiration time, and changes in the current lengths of transmission queues for neighboring nodes; routes must be computed individually for each bundle, from the Bundle Protocol agent's current network connectivity model for the bundle s destination node (the contact graph). Clearly this places a premium on optimizing the implementation of the route computation algorithm. The scalability of CGR to very large networks remains a research topic. The information carried by CGR contact plan messages is useful not only for dynamic route computation, but also for the implementation of rate control, congestion forecasting, transmission episode initiation and termination, timeout interval computation, and retransmission timer suspension and resumption.
A Diffusive Strategic Dynamics for Social Systems
NASA Astrophysics Data System (ADS)
Agliari, Elena; Burioni, Raffaella; Contucci, Pierluigi
2010-05-01
We propose a model for the dynamics of a social system, which includes diffusive effects and a biased rule for spin-flips, reproducing the effect of strategic choices. This model is able to mimic some phenomena taking place during marketing or political campaigns. Using a cost function based on the Ising model defined on the typical quenched interaction environments for social systems (Erdös-Renyi graph, small-world and scale-free networks), we find, by numerical simulations, that a stable stationary state is reached, and we compare the final state to the one obtained with standard dynamics, by means of total magnetization and magnetic susceptibility. Our results show that the diffusive strategic dynamics features a critical interaction parameter strictly lower than the standard one. We discuss the relevance of our findings in social systems.
A graph grammar approach to artificial life.
Kniemeyer, Ole; Buck-Sorlin, Gerhard H; Kurth, Winfried
2004-01-01
We present the high-level language of relational growth grammars (RGGs) as a formalism designed for the specification of ALife models. RGGs can be seen as an extension of the well-known parametric Lindenmayer systems and contain rule-based, procedural, and object-oriented features. They are defined as rewriting systems operating on graphs with the edges coming from a set of user-defined relations, whereas the nodes can be associated with objects. We demonstrate their ability to represent genes, regulatory networks of metabolites, and morphologically structured organisms, as well as developmental aspects of these entities, in a common formal framework. Mutation, crossing over, selection, and the dynamics of a network of gene regulation can all be represented with simple graph rewriting rules. This is demonstrated in some detail on the classical example of Dawkins' biomorphs and the ABC model of flower morphogenesis: other applications are briefly sketched. An interactive program was implemented, enabling the execution of the formalism and the visualization of the results.
Friston, Karl J.; Li, Baojuan; Daunizeau, Jean; Stephan, Klaas E.
2011-01-01
This paper is about inferring or discovering the functional architecture of distributed systems using Dynamic Causal Modelling (DCM). We describe a scheme that recovers the (dynamic) Bayesian dependency graph (connections in a network) using observed network activity. This network discovery uses Bayesian model selection to identify the sparsity structure (absence of edges or connections) in a graph that best explains observed time-series. The implicit adjacency matrix specifies the form of the network (e.g., cyclic or acyclic) and its graph-theoretical attributes (e.g., degree distribution). The scheme is illustrated using functional magnetic resonance imaging (fMRI) time series to discover functional brain networks. Crucially, it can be applied to experimentally evoked responses (activation studies) or endogenous activity in task-free (resting state) fMRI studies. Unlike conventional approaches to network discovery, DCM permits the analysis of directed and cyclic graphs. Furthermore, it eschews (implausible) Markovian assumptions about the serial independence of random fluctuations. The scheme furnishes a network description of distributed activity in the brain that is optimal in the sense of having the greatest conditional probability, relative to other networks. The networks are characterised in terms of their connectivity or adjacency matrices and conditional distributions over the directed (and reciprocal) effective connectivity between connected nodes or regions. We envisage that this approach will provide a useful complement to current analyses of functional connectivity for both activation and resting-state studies. PMID:21182971
Li, Chaojie; Yu, Xinghuo; Huang, Tingwen; He, Xing; Chaojie Li; Xinghuo Yu; Tingwen Huang; Xing He; Li, Chaojie; Huang, Tingwen; He, Xing; Yu, Xinghuo
2018-06-01
The resource allocation problem is studied and reformulated by a distributed interior point method via a -logarithmic barrier. By the facilitation of the graph Laplacian, a fully distributed continuous-time multiagent system is developed for solving the problem. Specifically, to avoid high singularity of the -logarithmic barrier at boundary, an adaptive parameter switching strategy is introduced into this dynamical multiagent system. The convergence rate of the distributed algorithm is obtained. Moreover, a novel distributed primal-dual dynamical multiagent system is designed in a smart grid scenario to seek the saddle point of dynamical economic dispatch, which coincides with the optimal solution. The dual decomposition technique is applied to transform the optimization problem into easily solvable resource allocation subproblems with local inequality constraints. The good performance of the new dynamical systems is, respectively, verified by a numerical example and the IEEE six-bus test system-based simulations.
Novo, Leonardo; Chakraborty, Shantanav; Mohseni, Masoud; Neven, Hartmut; Omar, Yasser
2015-01-01
Continuous time quantum walks provide an important framework for designing new algorithms and modelling quantum transport and state transfer problems. Often, the graph representing the structure of a problem contains certain symmetries that confine the dynamics to a smaller subspace of the full Hilbert space. In this work, we use invariant subspace methods, that can be computed systematically using the Lanczos algorithm, to obtain the reduced set of states that encompass the dynamics of the problem at hand without the specific knowledge of underlying symmetries. First, we apply this method to obtain new instances of graphs where the spatial quantum search algorithm is optimal: complete graphs with broken links and complete bipartite graphs, in particular, the star graph. These examples show that regularity and high-connectivity are not needed to achieve optimal spatial search. We also show that this method considerably simplifies the calculation of quantum transport efficiencies. Furthermore, we observe improved efficiencies by removing a few links from highly symmetric graphs. Finally, we show that this reduction method also allows us to obtain an upper bound for the fidelity of a single qubit transfer on an XY spin network. PMID:26330082
ERIC Educational Resources Information Center
Matsumoto, Paul S.
2014-01-01
The article describes the use of Mathematica, a computer algebra system (CAS), in a high school chemistry course. Mathematica was used to generate a graph, where a slider controls the value of parameter(s) in the equation; thus, students can visualize the effect of the parameter(s) on the behavior of the system. Also, Mathematica can show the…
Dynamical systems approach to the study of a sociophysics agent-based model
NASA Astrophysics Data System (ADS)
Timpanaro, André M.; Prado, Carmen P. C.
2011-03-01
The Sznajd model is a Potts-like model that has been studied in the context of sociophysics [1,2] (where spins are interpreted as opinions). In a recent work [3], we generalized the Sznajd model to include assymetric interactions between the spins (interpreted as biases towards opinions) and used dynamical systems techniques to tackle its mean-field version, given by the flow: ησ = ∑ σ' = 1Mησησ'(ησρσ'→σ-σ'ρσ→σ'). Where hs is the proportion of agents with opinion (spin) σ', M is the number of opinions and σ'→σ' is the probability weight for an agent with opinion σ being convinced by another agent with opinion σ'. We made Monte Carlo simulations of the model in a complex network (using Barabási-Albert networks [4]) and they displayed the same attractors than the mean-field. Using linear stability analysis, we were able to determine the mean-field attractor structure analytically and to show that it has connections with well known graph theory problems (maximal independent sets and positive fluxes in directed graphs). Our dynamical systems approach is quite simple and can be used also in other models, like the voter model.
Dynamical systems approach to the study of a sociophysics agent-based model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timpanaro, Andre M.; Prado, Carmen P. C.
2011-03-24
The Sznajd model is a Potts-like model that has been studied in the context of sociophysics [1,2](where spins are interpreted as opinions). In a recent work [3], we generalized the Sznajd model to include assymetric interactions between the spins (interpreted as biases towards opinions) and used dynamical systems techniques to tackle its mean-field version, given by the flow: {eta}{sub {sigma}} = {Sigma}{sub {sigma}}'{sup M} = 1{eta}{sub {sigma}}{eta}{sigma}'({eta}{sub {sigma}}{rho}{sigma}'{yields}{sigma}-{sigma}'{rho}{sigma}{yields}{sigma}').Where hs is the proportion of agents with opinion (spin){sigma}', M is the number of opinions and {sigma}'{yields}{sigma}' is the probability weight for an agent with opinion {sigma} being convinced by another agentmore » with opinion {sigma}'. We made Monte Carlo simulations of the model in a complex network (using Barabasi-Albert networks [4]) and they displayed the same attractors than the mean-field. Using linear stability analysis, we were able to determine the mean-field attractor structure analytically and to show that it has connections with well known graph theory problems (maximal independent sets and positive fluxes in directed graphs). Our dynamical systems approach is quite simple and can be used also in other models, like the voter model.« less
Continuous-time quantum walk on an extended star graph: Trapping and superradiance transition
NASA Astrophysics Data System (ADS)
Yalouz, Saad; Pouthier, Vincent
2018-02-01
A tight-binding model is introduced for describing the dynamics of an exciton on an extended star graph whose central node is occupied by a trap. On this graph, the exciton dynamics is governed by two kinds of eigenstates: many eigenstates are associated with degenerate real eigenvalues insensitive to the trap, whereas three decaying eigenstates characterized by complex energies contribute to the trapping process. It is shown that the excitonic population absorbed by the trap depends on the size of the graph, only. By contrast, both the size parameters and the absorption rate control the dynamics of the trapping. When these parameters are judiciously chosen, the efficiency of the transfer is optimized resulting in the minimization of the absorption time. Analysis of the eigenstates reveals that such a feature arises around the superradiance transition. Moreover, depending on the size of the network, two situations are highlighted where the transport efficiency is either superoptimized or suboptimized.
Structural self-assembly and avalanchelike dynamics in locally adaptive networks
NASA Astrophysics Data System (ADS)
Gräwer, Johannes; Modes, Carl D.; Magnasco, Marcelo O.; Katifori, Eleni
2015-07-01
Transport networks play a key role across four realms of eukaryotic life: slime molds, fungi, plants, and animals. In addition to the developmental algorithms that build them, many also employ adaptive strategies to respond to stimuli, damage, and other environmental changes. We model these adapting network architectures using a generic dynamical system on weighted graphs and find in simulation that these networks ultimately develop a hierarchical organization of the final weighted architecture accompanied by the formation of a system-spanning backbone. In addition, we find that the long term equilibration dynamics exhibit behavior reminiscent of glassy systems characterized by long periods of slow changes punctuated by bursts of reorganization events.
Diffusion-based recommendation with trust relations on tripartite graphs
NASA Astrophysics Data System (ADS)
Wang, Ximeng; Liu, Yun; Zhang, Guangquan; Xiong, Fei; Lu, Jie
2017-08-01
The diffusion-based recommendation approach is a vital branch in recommender systems, which successfully applies physical dynamics to make recommendations for users on bipartite or tripartite graphs. Trust links indicate users’ social relations and can provide the benefit of reducing data sparsity. However, traditional diffusion-based algorithms only consider rating links when making recommendations. In this paper, the complementarity of users’ implicit and explicit trust is exploited, and a novel resource-allocation strategy is proposed, which integrates these two kinds of trust relations on tripartite graphs. Through empirical studies on three benchmark datasets, our proposed method obtains better performance than most of the benchmark algorithms in terms of accuracy, diversity and novelty. According to the experimental results, our method is an effective and reasonable way to integrate additional features into the diffusion-based recommendation approach.
Design tools for complex dynamic security systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrne, Raymond Harry; Rigdon, James Brian; Rohrer, Brandon Robinson
2007-01-01
The development of tools for complex dynamic security systems is not a straight forward engineering task but, rather, a scientific task where discovery of new scientific principles and math is necessary. For years, scientists have observed complex behavior but have had difficulty understanding it. Prominent examples include: insect colony organization, the stock market, molecular interactions, fractals, and emergent behavior. Engineering such systems will be an even greater challenge. This report explores four tools for engineered complex dynamic security systems: Partially Observable Markov Decision Process, Percolation Theory, Graph Theory, and Exergy/Entropy Theory. Additionally, enabling hardware technology for next generation security systemsmore » are described: a 100 node wireless sensor network, unmanned ground vehicle and unmanned aerial vehicle.« less
A financial network perspective of financial institutions' systemic risk contributions
NASA Astrophysics Data System (ADS)
Huang, Wei-Qiang; Zhuang, Xin-Tian; Yao, Shuang; Uryasev, Stan
2016-08-01
This study considers the effects of the financial institutions' local topology structure in the financial network on their systemic risk contribution using data from the Chinese stock market. We first measure the systemic risk contribution with the Conditional Value-at-Risk (CoVaR) which is estimated by applying dynamic conditional correlation multivariate GARCH model (DCC-MVGARCH). Financial networks are constructed from dynamic conditional correlations (DCC) with graph filtering method of minimum spanning trees (MSTs). Then we investigate dynamics of systemic risk contributions of financial institution. Also we study dynamics of financial institution's local topology structure in the financial network. Finally, we analyze the quantitative relationships between the local topology structure and systemic risk contribution with panel data regression analysis. We find that financial institutions with greater node strength, larger node betweenness centrality, larger node closeness centrality and larger node clustering coefficient tend to be associated with larger systemic risk contributions.
Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study
Yu, Qingbao; Wu, Lei; Bridwell, David A.; Erhardt, Erik B.; Du, Yuhui; He, Hao; Chen, Jiayu; Liu, Peng; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D.
2016-01-01
The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics. PMID:27733821
ERIC Educational Resources Information Center
Thomas, Ryan Vail
2016-01-01
The goal of this study is to explore and characterize the effects of using a dynamic graphing utility (DGU) on conceptual understanding and attitudes toward mathematics, measured by the responses of college algebra students to an attitude survey and concepts assessment. Two sections of college algebra taught by the primary researcher are included…
ERIC Educational Resources Information Center
Font, Vicenc; Bolite, Janete; Acevedo, Jorge
2010-01-01
This article presents an analysis of a phenomenon that was observed within the dynamic processes of teaching and learning to read and elaborate Cartesian graphs for functions at high-school level. Two questions were considered during this investigation: What types of metaphors does the teacher use to explain the graphic representation of functions…
User-Assisted Store Recycling for Dynamic Task Graph Schedulers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt, Mehmet Can; Krishnamoorthy, Sriram; Agrawal, Gagan
The emergence of the multi-core era has led to increased interest in designing effective yet practical parallel programming models. Models based on task graphs that operate on single-assignment data are attractive in several ways: they can support dynamic applications and precisely represent the available concurrency. However, they also require nuanced algorithms for scheduling and memory management for efficient execution. In this paper, we consider memory-efficient dynamic scheduling of task graphs. Specifically, we present a novel approach for dynamically recycling the memory locations assigned to data items as they are produced by tasks. We develop algorithms to identify memory-efficient store recyclingmore » functions by systematically evaluating the validity of a set of (user-provided or automatically generated) alternatives. Because recycling function can be input data-dependent, we have also developed support for continued correct execution of a task graph in the presence of a potentially incorrect store recycling function. Experimental evaluation demonstrates that our approach to automatic store recycling incurs little to no overheads, achieves memory usage comparable to the best manually derived solutions, often produces recycling functions valid across problem sizes and input parameters, and efficiently recovers from an incorrect choice of store recycling functions.« less
Evaluation of Graph Pattern Matching Workloads in Graph Analysis Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Seokyong; Lee, Sangkeun; Lim, Seung-Hwan
2016-01-01
Graph analysis has emerged as a powerful method for data scientists to represent, integrate, query, and explore heterogeneous data sources. As a result, graph data management and mining became a popular area of research, and led to the development of plethora of systems in recent years. Unfortunately, the number of emerging graph analysis systems and the wide range of applications, coupled with a lack of apples-to-apples comparisons, make it difficult to understand the trade-offs between different systems and the graph operations for which they are designed. A fair comparison of these systems is a challenging task for the following reasons:more » multiple data models, non-standardized serialization formats, various query interfaces to users, and diverse environments they operate in. To address these key challenges, in this paper we present a new benchmark suite by extending the Lehigh University Benchmark (LUBM) to cover the most common capabilities of various graph analysis systems. We provide the design process of the benchmark, which generalizes the workflow for data scientists to conduct the desired graph analysis on different graph analysis systems. Equipped with this extended benchmark suite, we present performance comparison for nine subgraph pattern retrieval operations over six graph analysis systems, namely NetworkX, Neo4j, Jena, Titan, GraphX, and uRiKA. Through the proposed benchmark suite, this study reveals both quantitative and qualitative findings in (1) implications in loading data into each system; (2) challenges in describing graph patterns for each query interface; and (3) different sensitivity of each system to query selectivity. We envision that this study will pave the road for: (i) data scientists to select the suitable graph analysis systems, and (ii) data management system designers to advance graph analysis systems.« less
Visibility graph analysis on quarterly macroeconomic series of China based on complex network theory
NASA Astrophysics Data System (ADS)
Wang, Na; Li, Dong; Wang, Qiwen
2012-12-01
The visibility graph approach and complex network theory provide a new insight into time series analysis. The inheritance of the visibility graph from the original time series was further explored in the paper. We found that degree distributions of visibility graphs extracted from Pseudo Brownian Motion series obtained by the Frequency Domain algorithm exhibit exponential behaviors, in which the exponential exponent is a binomial function of the Hurst index inherited in the time series. Our simulations presented that the quantitative relations between the Hurst indexes and the exponents of degree distribution function are different for different series and the visibility graph inherits some important features of the original time series. Further, we convert some quarterly macroeconomic series including the growth rates of value-added of three industry series and the growth rates of Gross Domestic Product series of China to graphs by the visibility algorithm and explore the topological properties of graphs associated from the four macroeconomic series, namely, the degree distribution and correlations, the clustering coefficient, the average path length, and community structure. Based on complex network analysis we find degree distributions of associated networks from the growth rates of value-added of three industry series are almost exponential and the degree distributions of associated networks from the growth rates of GDP series are scale free. We also discussed the assortativity and disassortativity of the four associated networks as they are related to the evolutionary process of the original macroeconomic series. All the constructed networks have “small-world” features. The community structures of associated networks suggest dynamic changes of the original macroeconomic series. We also detected the relationship among government policy changes, community structures of associated networks and macroeconomic dynamics. We find great influences of government policies in China on the changes of dynamics of GDP and the three industries adjustment. The work in our paper provides a new way to understand the dynamics of economic development.
Decompositions of large-scale biological systems based on dynamical properties.
Soranzo, Nicola; Ramezani, Fahimeh; Iacono, Giovanni; Altafini, Claudio
2012-01-01
Given a large-scale biological network represented as an influence graph, in this article we investigate possible decompositions of the network aimed at highlighting specific dynamical properties. The first decomposition we study consists in finding a maximal directed acyclic subgraph of the network, which dynamically corresponds to searching for a maximal open-loop subsystem of the given system. Another dynamical property investigated is strong monotonicity. We propose two methods to deal with this property, both aimed at decomposing the system into strongly monotone subsystems, but with different structural characteristics: one method tends to produce a single large strongly monotone component, while the other typically generates a set of smaller disjoint strongly monotone subsystems. Original heuristics for the methods investigated are described in the article. altafini@sissa.it
NASA Astrophysics Data System (ADS)
Kruglov, V. E.; Malyshev, D. S.; Pochinka, O. V.
2018-01-01
Studying the dynamics of a flow on surfaces by partitioning the phase space into cells with the same limit behaviour of trajectories within a cell goes back to the classical papers of Andronov, Pontryagin, Leontovich and Maier. The types of cells (the number of which is finite) and how the cells adjoin one another completely determine the topological equivalence class of a flow with finitely many special trajectories. If one trajectory is chosen in every cell of a rough flow without periodic orbits, then the cells are partitioned into so-called triangular regions of the same type. A combinatorial description of such a partition gives rise to the three-colour Oshemkov-Sharko graph, the vertices of which correspond to the triangular regions, and the edges to separatrices connecting them. Oshemkov and Sharko proved that such flows are topologically equivalent if and only if the three-colour graphs of the flows are isomorphic, and described an algorithm of distinguishing three-colour graphs. But their algorithm is not efficient with respect to graph theory. In the present paper, we describe the dynamics of Ω-stable flows without periodic trajectories on surfaces in the language of four-colour graphs, present an efficient algorithm for distinguishing such graphs, and develop a realization of a flow from some abstract graph. Bibliography: 17 titles.
Bars, Lines, & Pies: A Graphing Skills Program. Expect the Unexpected with Math[R
ERIC Educational Resources Information Center
Actuarial Foundation, 2013
2013-01-01
"Bars, Lines, & Pies" is a dynamic math program designed to build graphing skills in students, while also showing them the relevance of math in their lives. Developed by The Actuarial Foundation along with Scholastic, the graphing lessons and activities involve engaging, real-world examples about the environment and recycling. In these lessons,…
Khaouch, Zakaria; Zekraoui, Mustapha; Bengourram, Jamaa; Kouider, Nourreeddine; Mabrouki, Mustapha
2016-11-01
In this paper, we would like to focus on modeling main parts of the wind turbines (blades, gearbox, tower, generator and pitching system) from a mechatronics viewpoint using the Bond-Graph Approach (BGA). Then, these parts are combined together in order to simulate the complete system. Moreover, the real dynamic behavior of the wind turbine is taken into account and with the new model; final load simulation is more realistic offering benefits and reliable system performance. This model can be used to develop control algorithms to reduce fatigue loads and enhance power production. Different simulations are carried-out in order to validate the proposed wind turbine model, using real data provided in the open literature (blade profile and gearbox parameters for a 750 kW wind turbine). Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
A network dynamics approach to chemical reaction networks
NASA Astrophysics Data System (ADS)
van der Schaft, A. J.; Rao, S.; Jayawardhana, B.
2016-04-01
A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff's matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.
Entropy, complexity, and Markov diagrams for random walk cancer models
Newton, Paul K.; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter
2014-01-01
The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential. PMID:25523357
Finite-time consensus for controlled dynamical systems in network
NASA Astrophysics Data System (ADS)
Zoghlami, Naim; Mlayeh, Rhouma; Beji, Lotfi; Abichou, Azgal
2018-04-01
The key challenges in networked dynamical systems are the component heterogeneities, nonlinearities, and the high dimension of the formulated vector of state variables. In this paper, the emphasise is put on two classes of systems in network include most controlled driftless systems as well as systems with drift. For each model structure that defines homogeneous and heterogeneous multi-system behaviour, we derive protocols leading to finite-time consensus. For each model evolving in networks forming a homogeneous or heterogeneous multi-system, protocols integrating sufficient conditions are derived leading to finite-time consensus. Likewise, for the networking topology, we make use of fixed directed and undirected graphs. To prove our approaches, finite-time stability theory and Lyapunov methods are considered. As illustrative examples, the homogeneous multi-unicycle kinematics and the homogeneous/heterogeneous multi-second order dynamics in networks are studied.
Unsupervised Spatial Event Detection in Targeted Domains with Applications to Civil Unrest Modeling
Zhao, Liang; Chen, Feng; Dai, Jing; Hua, Ting; Lu, Chang-Tien; Ramakrishnan, Naren
2014-01-01
Twitter has become a popular data source as a surrogate for monitoring and detecting events. Targeted domains such as crime, election, and social unrest require the creation of algorithms capable of detecting events pertinent to these domains. Due to the unstructured language, short-length messages, dynamics, and heterogeneity typical of Twitter data streams, it is technically difficult and labor-intensive to develop and maintain supervised learning systems. We present a novel unsupervised approach for detecting spatial events in targeted domains and illustrate this approach using one specific domain, viz. civil unrest modeling. Given a targeted domain, we propose a dynamic query expansion algorithm to iteratively expand domain-related terms, and generate a tweet homogeneous graph. An anomaly identification method is utilized to detect spatial events over this graph by jointly maximizing local modularity and spatial scan statistics. Extensive experiments conducted in 10 Latin American countries demonstrate the effectiveness of the proposed approach. PMID:25350136
Mabu, Shingo; Hirasawa, Kotaro; Hu, Jinglu
2007-01-01
This paper proposes a graph-based evolutionary algorithm called Genetic Network Programming (GNP). Our goal is to develop GNP, which can deal with dynamic environments efficiently and effectively, based on the distinguished expression ability of the graph (network) structure. The characteristics of GNP are as follows. 1) GNP programs are composed of a number of nodes which execute simple judgment/processing, and these nodes are connected by directed links to each other. 2) The graph structure enables GNP to re-use nodes, thus the structure can be very compact. 3) The node transition of GNP is executed according to its node connections without any terminal nodes, thus the past history of the node transition affects the current node to be used and this characteristic works as an implicit memory function. These structural characteristics are useful for dealing with dynamic environments. Furthermore, we propose an extended algorithm, "GNP with Reinforcement Learning (GNPRL)" which combines evolution and reinforcement learning in order to create effective graph structures and obtain better results in dynamic environments. In this paper, we applied GNP to the problem of determining agents' behavior to evaluate its effectiveness. Tileworld was used as the simulation environment. The results show some advantages for GNP over conventional methods.
Edge length dynamics on graphs with applications to p-adic AdS/CFT
Gubser, Steven S.; Heydeman, Matthew; Jepsen, Christian; ...
2017-06-30
We formulate a Euclidean theory of edge length dynamics based on a notion of Ricci curvature on graphs with variable edge lengths. In order to write an explicit form for the discrete analog of the Einstein-Hilbert action, we require that the graph should either be a tree or that all its cycles should be sufficiently long. The infinite regular tree with all edge lengths equal is an example of a graph with constant negative curvature, providing a connection with p-adic AdS/CFT, where such a tree takes the place of anti-de Sitter space. Here, we compute simple correlators of the operatormore » holographically dual to edge length fluctuations. This operator has dimension equal to the dimension of the boundary, and it has some features in common with the stress tensor.« less
Edge length dynamics on graphs with applications to p-adic AdS/CFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubser, Steven S.; Heydeman, Matthew; Jepsen, Christian
We formulate a Euclidean theory of edge length dynamics based on a notion of Ricci curvature on graphs with variable edge lengths. In order to write an explicit form for the discrete analog of the Einstein-Hilbert action, we require that the graph should either be a tree or that all its cycles should be sufficiently long. The infinite regular tree with all edge lengths equal is an example of a graph with constant negative curvature, providing a connection with p-adic AdS/CFT, where such a tree takes the place of anti-de Sitter space. Here, we compute simple correlators of the operatormore » holographically dual to edge length fluctuations. This operator has dimension equal to the dimension of the boundary, and it has some features in common with the stress tensor.« less
Improved visibility graph fractality with application for the diagnosis of Autism Spectrum Disorder
NASA Astrophysics Data System (ADS)
Ahmadlou, Mehran; Adeli, Hojjat; Adeli, Amir
2012-10-01
Recently, the visibility graph (VG) algorithm was proposed for mapping a time series to a graph to study complexity and fractality of the time series through investigation of the complexity of its graph. The visibility graph algorithm converts a fractal time series to a scale-free graph. VG has been used for the investigation of fractality in the dynamic behavior of both artificial and natural complex systems. However, robustness and performance of the power of scale-freeness of VG (PSVG) as an effective method for measuring fractality has not been investigated. Since noise is unavoidable in real life time series, the robustness of a fractality measure is of paramount importance. To improve the accuracy and robustness of PSVG to noise for measurement of fractality of time series in biological time-series, an improved PSVG is presented in this paper. The proposed method is evaluated using two examples: a synthetic benchmark time series and a complicated real life Electroencephalograms (EEG)-based diagnostic problem, that is distinguishing autistic children from non-autistic children. It is shown that the proposed improved PSVG is less sensitive to noise and therefore more robust compared with PSVG. Further, it is shown that using improved PSVG in the wavelet-chaos neural network model of Adeli and c-workers in place of the Katz fractality dimension results in a more accurate diagnosis of autism, a complicated neurological and psychiatric disorder.
Chaotic dynamics of large-scale double-diffusive convection in a porous medium
NASA Astrophysics Data System (ADS)
Kondo, Shutaro; Gotoda, Hiroshi; Miyano, Takaya; Tokuda, Isao T.
2018-02-01
We have studied chaotic dynamics of large-scale double-diffusive convection of a viscoelastic fluid in a porous medium from the viewpoint of dynamical systems theory. A fifth-order nonlinear dynamical system modeling the double-diffusive convection is theoretically obtained by incorporating the Darcy-Brinkman equation into transport equations through a physical dimensionless parameter representing porosity. We clearly show that the chaotic convective motion becomes much more complicated with increasing porosity. The degree of dynamic instability during chaotic convective motion is quantified by two important measures: the network entropy of the degree distribution in the horizontal visibility graph and the Kaplan-Yorke dimension in terms of Lyapunov exponents. We also present an interesting on-off intermittent phenomenon in the probability distribution of time intervals exhibiting nearly complete synchronization.
Graph Theory-Based Pinning Synchronization of Stochastic Complex Dynamical Networks.
Li, Xiao-Jian; Yang, Guang-Hong
2017-02-01
This paper is concerned with the adaptive pinning synchronization problem of stochastic complex dynamical networks (CDNs). Based on algebraic graph theory and Lyapunov theory, pinning controller design conditions are derived, and the rigorous convergence analysis of synchronization errors in the probability sense is also conducted. Compared with the existing results, the topology structures of stochastic CDN are allowed to be unknown due to the use of graph theory. In particular, it is shown that the selection of nodes for pinning depends on the unknown lower bounds of coupling strengths. Finally, an example on a Chua's circuit network is given to validate the effectiveness of the theoretical results.
SING: Subgraph search In Non-homogeneous Graphs
2010-01-01
Background Finding the subgraphs of a graph database that are isomorphic to a given query graph has practical applications in several fields, from cheminformatics to image understanding. Since subgraph isomorphism is a computationally hard problem, indexing techniques have been intensively exploited to speed up the process. Such systems filter out those graphs which cannot contain the query, and apply a subgraph isomorphism algorithm to each residual candidate graph. The applicability of such systems is limited to databases of small graphs, because their filtering power degrades on large graphs. Results In this paper, SING (Subgraph search In Non-homogeneous Graphs), a novel indexing system able to cope with large graphs, is presented. The method uses the notion of feature, which can be a small subgraph, subtree or path. Each graph in the database is annotated with the set of all its features. The key point is to make use of feature locality information. This idea is used to both improve the filtering performance and speed up the subgraph isomorphism task. Conclusions Extensive tests on chemical compounds, biological networks and synthetic graphs show that the proposed system outperforms the most popular systems in query time over databases of medium and large graphs. Other specific tests show that the proposed system is effective for single large graphs. PMID:20170516
Exciton-phonon system on a star graph: A perturbative approach.
Yalouz, Saad; Pouthier, Vincent
2016-05-01
Based on the operatorial formulation of the perturbation theory, the properties of an exciton coupled with optical phonons on a star graph are investigated. Within this method, the dynamics is governed by an effective Hamiltonian, which accounts for exciton-phonon entanglement. The exciton is dressed by a virtual phonon cloud whereas the phonons are clothed by virtual excitonic transitions. In spite of the coupling with the phonons, it is shown that the energy spectrum of the dressed exciton resembles that of a bare exciton. The only differences originate in a polaronic mechanism that favors an energy shift and a decay of the exciton hopping constant. By contrast, the motion of the exciton allows the phonons to propagate over the graph so that the dressed normal modes drastically differ from the localized modes associated to bare phonons. They define extended vibrations whose properties depend on the state occupied by the exciton that accompanies the phonons. It is shown that the phonon frequencies, either red shifted or blue shifted, are very sensitive to the model parameter in general, and to the size of the graph in particular.
Building dynamic population graph for accurate correspondence detection.
Du, Shaoyi; Guo, Yanrong; Sanroma, Gerard; Ni, Dong; Wu, Guorong; Shen, Dinggang
2015-12-01
In medical imaging studies, there is an increasing trend for discovering the intrinsic anatomical difference across individual subjects in a dataset, such as hand images for skeletal bone age estimation. Pair-wise matching is often used to detect correspondences between each individual subject and a pre-selected model image with manually-placed landmarks. However, the large anatomical variability across individual subjects can easily compromise such pair-wise matching step. In this paper, we present a new framework to simultaneously detect correspondences among a population of individual subjects, by propagating all manually-placed landmarks from a small set of model images through a dynamically constructed image graph. Specifically, we first establish graph links between models and individual subjects according to pair-wise shape similarity (called as forward step). Next, we detect correspondences for the individual subjects with direct links to any of model images, which is achieved by a new multi-model correspondence detection approach based on our recently-published sparse point matching method. To correct those inaccurate correspondences, we further apply an error detection mechanism to automatically detect wrong correspondences and then update the image graph accordingly (called as backward step). After that, all subject images with detected correspondences are included into the set of model images, and the above two steps of graph expansion and error correction are repeated until accurate correspondences for all subject images are established. Evaluations on real hand X-ray images demonstrate that our proposed method using a dynamic graph construction approach can achieve much higher accuracy and robustness, when compared with the state-of-the-art pair-wise correspondence detection methods as well as a similar method but using static population graph. Copyright © 2015 Elsevier B.V. All rights reserved.
Fast and asymptotic computation of the fixation probability for Moran processes on graphs.
Alcalde Cuesta, F; González Sequeiros, P; Lozano Rojo, Á
2015-03-01
Evolutionary dynamics has been classically studied for homogeneous populations, but now there is a growing interest in the non-homogeneous case. One of the most important models has been proposed in Lieberman et al. (2005), adapting to a weighted directed graph the process described in Moran (1958). The Markov chain associated with the graph can be modified by erasing all non-trivial loops in its state space, obtaining the so-called Embedded Markov chain (EMC). The fixation probability remains unchanged, but the expected time to absorption (fixation or extinction) is reduced. In this paper, we shall use this idea to compute asymptotically the average fixation probability for complete bipartite graphs K(n,m). To this end, we firstly review some recent results on evolutionary dynamics on graphs trying to clarify some points. We also revisit the 'Star Theorem' proved in Lieberman et al. (2005) for the star graphs K(1,m). Theoretically, EMC techniques allow fast computation of the fixation probability, but in practice this is not always true. Thus, in the last part of the paper, we compare this algorithm with the standard Monte Carlo method for some kind of complex networks. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Parallel program debugging with flowback analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jongdeok.
1989-01-01
This thesis describes the design and implementation of an integrated debugging system for parallel programs running on shared memory multi-processors. The goal of the debugging system is to present to the programmer a graphical view of the dynamic program dependences while keeping the execution-time overhead low. The author first describes the use of flowback analysis to provide information on causal relationship between events in a programs' execution without re-executing the program for debugging. Execution time overhead is kept low by recording only a small amount of trace during a program's execution. He uses semantic analysis and a technique called incrementalmore » tracing to keep the time and space overhead low. As part of the semantic analysis, he uses a static program dependence graph structure that reduces the amount of work done at compile time and takes advantage of the dynamic information produced during execution time. The cornerstone of the incremental tracing concept is to generate a coarse trace during execution and fill incrementally, during the interactive portion of the debugging session, the gap between the information gathered in the coarse trace and the information needed to do the flowback analysis using the coarse trace. Then, he describes how to extend the flowback analysis to parallel programs. The flowback analysis can span process boundaries; i.e., the most recent modification to a shared variable might be traced to a different process than the one that contains the current reference. The static and dynamic program dependence graphs of the individual processes are tied together with synchronization and data dependence information to form complete graphs that represent the entire program.« less
Design of virtual display and testing system for moving mass electromechanical actuator
NASA Astrophysics Data System (ADS)
Gao, Zhigang; Geng, Keda; Zhou, Jun; Li, Peng
2015-12-01
Aiming at the problem of control, measurement and movement virtual display of moving mass electromechanical actuator(MMEA), the virtual testing system of MMEA was developed based on the PC-DAQ architecture and the software platform of LabVIEW, and the comprehensive test task such as drive control of MMEA, tests of kinematic parameter, measurement of centroid position and virtual display of movement could be accomplished. The system could solve the alignment for acquisition time between multiple measurement channels in different DAQ cards, then on this basis, the researches were focused on the dynamic 3D virtual display by the LabVIEW, and the virtual display of MMEA were realized by the method of calling DLL and the method of 3D graph drawing controls. Considering the collaboration with the virtual testing system, including the hardware drive, the measurement software of data acquisition, and the 3D graph drawing controls method was selected, which could obtained the synchronization measurement, control and display. The system can measure dynamic centroid position and kinematic position of movable mass block while controlling the MMEA, and the interface of 3D virtual display has realistic effect and motion smooth, which can solve the problem of display and playback about MMEA in the closed shell.
Transport in Dynamical Astronomy and Multibody Problems
NASA Astrophysics Data System (ADS)
Dellnitz, Michael; Junge, Oliver; Koon, Wang Sang; Lekien, Francois; Lo, Martin W.; Marsden, Jerrold E.; Padberg, Kathrin; Preis, Robert; Ross, Shane D.; Thiere, Bianca
We combine the techniques of almost invariant sets (using tree structured box elimination and graph partitioning algorithms) with invariant manifold and lobe dynamics techniques. The result is a new computational technique for computing key dynamical features, including almost invariant sets, resonance regions as well as transport rates and bottlenecks between regions in dynamical systems. This methodology can be applied to a variety of multibody problems, including those in molecular modeling, chemical reaction rates and dynamical astronomy. In this paper we focus on problems in dynamical astronomy to illustrate the power of the combination of these different numerical tools and their applicability. In particular, we compute transport rates between two resonance regions for the three-body system consisting of the Sun, Jupiter and a third body (such as an asteroid). These resonance regions are appropriate for certain comets and asteroids.
Dynamic graphs, community detection, and Riemannian geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakker, Craig; Halappanavar, Mahantesh; Visweswara Sathanur, Arun
A community is a subset of a wider network where the members of that subset are more strongly connected to each other than they are to the rest of the network. In this paper, we consider the problem of identifying and tracking communities in graphs that change over time {dynamic community detection} and present a framework based on Riemannian geometry to aid in this task. Our framework currently supports several important operations such as interpolating between and averaging over graph snapshots. We compare these Riemannian methods with entry-wise linear interpolation and that the Riemannian methods are generally better suited tomore » dynamic community detection. Next steps with the Riemannian framework include developing higher-order interpolation methods (e.g. the analogues of polynomial and spline interpolation) and a Riemannian least-squares regression method for working with noisy data.« less
Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes
NASA Astrophysics Data System (ADS)
Ianni, Giovambattista; Krennwallner, Thomas; Martello, Alessandra; Polleres, Axel
RDF Schema (RDFS) as a lightweight ontology language is gaining popularity and, consequently, tools for scalable RDFS inference and querying are needed. SPARQL has become recently a W3C standard for querying RDF data, but it mostly provides means for querying simple RDF graphs only, whereas querying with respect to RDFS or other entailment regimes is left outside the current specification. In this paper, we show that SPARQL faces certain unwanted ramifications when querying ontologies in conjunction with RDF datasets that comprise multiple named graphs, and we provide an extension for SPARQL that remedies these effects. Moreover, since RDFS inference has a close relationship with logic rules, we generalize our approach to select a custom ruleset for specifying inferences to be taken into account in a SPARQL query. We show that our extensions are technically feasible by providing benchmark results for RDFS querying in our prototype system GiaBATA, which uses Datalog coupled with a persistent Relational Database as a back-end for implementing SPARQL with dynamic rule-based inference. By employing different optimization techniques like magic set rewriting our system remains competitive with state-of-the-art RDFS querying systems.
Spontaneous emergence of cataclysmic networks in spatially extended systems
NASA Astrophysics Data System (ADS)
Manrubia, Susanna C.; Poyatos, Juan F.; Pérez-Mercader, Juan
2002-11-01
A system of interacting chemical species able to catalyse each others' production is studied. We consider a two-dimensional surface where single molecules attach, diffuse, catalytically interact, and decay. The population of species molecules and the network of interactions among them are dynamical entities. After a short transient time, robust catalytic cycles emerge and a "stationary" state of high diversity and large population numbers settles down. Population dynamics and physical space select among possible graphs of catalytic interactions. The organization of the system is robust: parasitic invaders are short-lived, their populations are kept at low levels, and are unable to sweep away the emerging catalytic cycles.
Dynamics of Opinion Forming in Structurally Balanced Social Networks
Altafini, Claudio
2012-01-01
A structurally balanced social network is a social community that splits into two antagonistic factions (typical example being a two-party political system). The process of opinion forming on such a community is most often highly predictable, with polarized opinions reflecting the bipartition of the network. The aim of this paper is to suggest a class of dynamical systems, called monotone systems, as natural models for the dynamics of opinion forming on structurally balanced social networks. The high predictability of the outcome of a decision process is explained in terms of the order-preserving character of the solutions of this class of dynamical systems. If we represent a social network as a signed graph in which individuals are the nodes and the signs of the edges represent friendly or hostile relationships, then the property of structural balance corresponds to the social community being splittable into two antagonistic factions, each containing only friends. PMID:22761667
Pheromone Static Routing Strategy for Complex Networks
NASA Astrophysics Data System (ADS)
Hu, Mao-Bin; Henry, Y. K. Lau; Ling, Xiang; Jiang, Rui
2012-12-01
We adopt the concept of using pheromones to generate a set of static paths that can reach the performance of global dynamic routing strategy [Phys. Rev. E 81 (2010) 016113]. The path generation method consists of two stages. In the first stage, a pheromone is dropped to the nodes by packets forwarded according to the global dynamic routing strategy. In the second stage, pheromone static paths are generated according to the pheromone density. The output paths can greatly improve traffic systems' overall capacity on different network structures, including scale-free networks, small-world networks and random graphs. Because the paths are static, the system needs much less computational resources than the global dynamic routing strategy.
Detecting black bear source–sink dynamics using individual-based genetic graphs
Draheim, Hope M.; Moore, Jennifer A.; Etter, Dwayne; Winterstein, Scott R.; Scribner, Kim T.
2016-01-01
Source–sink dynamics affects population connectivity, spatial genetic structure and population viability for many species. We introduce a novel approach that uses individual-based genetic graphs to identify source–sink areas within a continuously distributed population of black bears (Ursus americanus) in the northern lower peninsula (NLP) of Michigan, USA. Black bear harvest samples (n = 569, from 2002, 2006 and 2010) were genotyped at 12 microsatellite loci and locations were compared across years to identify areas of consistent occupancy over time. We compared graph metrics estimated for a genetic model with metrics from 10 ecological models to identify ecological factors that were associated with sources and sinks. We identified 62 source nodes, 16 of which represent important source areas (net flux > 0.7) and 79 sink nodes. Source strength was significantly correlated with bear local harvest density (a proxy for bear density) and habitat suitability. Additionally, resampling simulations showed our approach is robust to potential sampling bias from uneven sample dispersion. Findings demonstrate black bears in the NLP exhibit asymmetric gene flow, and individual-based genetic graphs can characterize source–sink dynamics in continuously distributed species in the absence of discrete habitat patches. Our findings warrant consideration of undetected source–sink dynamics and their implications on harvest management of game species. PMID:27440668
Detecting black bear source-sink dynamics using individual-based genetic graphs.
Draheim, Hope M; Moore, Jennifer A; Etter, Dwayne; Winterstein, Scott R; Scribner, Kim T
2016-07-27
Source-sink dynamics affects population connectivity, spatial genetic structure and population viability for many species. We introduce a novel approach that uses individual-based genetic graphs to identify source-sink areas within a continuously distributed population of black bears (Ursus americanus) in the northern lower peninsula (NLP) of Michigan, USA. Black bear harvest samples (n = 569, from 2002, 2006 and 2010) were genotyped at 12 microsatellite loci and locations were compared across years to identify areas of consistent occupancy over time. We compared graph metrics estimated for a genetic model with metrics from 10 ecological models to identify ecological factors that were associated with sources and sinks. We identified 62 source nodes, 16 of which represent important source areas (net flux > 0.7) and 79 sink nodes. Source strength was significantly correlated with bear local harvest density (a proxy for bear density) and habitat suitability. Additionally, resampling simulations showed our approach is robust to potential sampling bias from uneven sample dispersion. Findings demonstrate black bears in the NLP exhibit asymmetric gene flow, and individual-based genetic graphs can characterize source-sink dynamics in continuously distributed species in the absence of discrete habitat patches. Our findings warrant consideration of undetected source-sink dynamics and their implications on harvest management of game species. © 2016 The Author(s).
Propagation, cascades, and agreement dynamics in complex communication and social networks
NASA Astrophysics Data System (ADS)
Lu, Qiming
Many modern and important technological, social, information and infrastructure systems can be viewed as complex systems with a large number of interacting components. Models of complex networks and dynamical interactions, as well as their applications are of fundamental interests in many aspects. Here, several stylized models of multiplex propagation and opinion dynamics are investigated on complex and empirical social networks. We first investigate cascade dynamics in threshold-controlled (multiplex) propagation on random geometric networks. We find that such local dynamics can serve as an efficient, robust, and reliable prototypical activation protocol in sensor networks in responding to various alarm scenarios. We also consider the same dynamics on a modified network by adding a few long-range communication links, resulting in a small-world network. We find that such construction can further enhance and optimize the speed of the network's response, while keeping energy consumption at a manageable level. We also investigate a prototypical agent-based model, the Naming Game, on two-dimensional random geometric networks. The Naming Game [A. Baronchelli et al., J. Stat. Mech.: Theory Exp. (2006) P06014.] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the Naming Games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially-embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long-range communication links are added on top of the random geometric graph, resulting in a "small-world"-like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size scaling analysis for the agreement times in this case. When applying the model of Naming Game on empirical social networks, this stylized agent-based model captures essential features of agreement dynamics in a network of autonomous agents, corresponding to the development of shared classification schemes in a network of artificial agents or opinion spreading and social dynamics in social networks. Our study focuses on the impact that communities in the underlying social graphs have on the outcome of the agreement process. We find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the Naming Game in these networks maintains clusters of coexisting opinions indefinitely. Further, we investigate agent-based network strategies to facilitate convergence to global consensus.
Dunn-Walters, Deborah K.; Belelovsky, Alex; Edelman, Hanna; Banerjee, Monica; Mehr, Ramit
2002-01-01
We have developed a rigorous graph-theoretical algorithm for quantifying the shape properties of mutational lineage trees. We show that information about the dynamics of hypermutation and antigen-driven clonal selection during the humoral immune response is contained in the shape of mutational lineage trees deduced from the responding clones. Age and tissue related differences in the selection process can be studied using this method. Thus, tree shape analysis can be used as a means of elucidating humoral immune response dynamics in various situations. PMID:15144020
Cascades in the Threshold Model for varying system sizes
NASA Astrophysics Data System (ADS)
Karampourniotis, Panagiotis; Sreenivasan, Sameet; Szymanski, Boleslaw; Korniss, Gyorgy
2015-03-01
A classical model in opinion dynamics is the Threshold Model (TM) aiming to model the spread of a new opinion based on the social drive of peer pressure. Under the TM a node adopts a new opinion only when the fraction of its first neighbors possessing that opinion exceeds a pre-assigned threshold. Cascades in the TM depend on multiple parameters, such as the number and selection strategy of the initially active nodes (initiators), and the threshold distribution of the nodes. For a uniform threshold in the network there is a critical fraction of initiators for which a transition from small to large cascades occurs, which for ER graphs is largerly independent of the system size. Here, we study the spread contribution of each newly assigned initiator under the TM for different initiator selection strategies for synthetic graphs of various sizes. We observe that for ER graphs when large cascades occur, the spread contribution of the added initiator on the transition point is independent of the system size, while the contribution of the rest of the initiators converges to zero at infinite system size. This property is used for the identification of large transitions for various threshold distributions. Supported in part by ARL NS-CTA, ARO, ONR, and DARPA.
A General Architecture for Intelligent Tutoring of Diagnostic Classification Problem Solving
Crowley, Rebecca S.; Medvedeva, Olga
2003-01-01
We report on a general architecture for creating knowledge-based medical training systems to teach diagnostic classification problem solving. The approach is informed by our previous work describing the development of expertise in classification problem solving in Pathology. The architecture envelops the traditional Intelligent Tutoring System design within the Unified Problem-solving Method description Language (UPML) architecture, supporting component modularity and reuse. Based on the domain ontology, domain task ontology and case data, the abstract problem-solving methods of the expert model create a dynamic solution graph. Student interaction with the solution graph is filtered through an instructional layer, which is created by a second set of abstract problem-solving methods and pedagogic ontologies, in response to the current state of the student model. We outline the advantages and limitations of this general approach, and describe it’s implementation in SlideTutor–a developing Intelligent Tutoring System in Dermatopathology. PMID:14728159
LQR-Based Optimal Distributed Cooperative Design for Linear Discrete-Time Multiagent Systems.
Zhang, Huaguang; Feng, Tao; Liang, Hongjing; Luo, Yanhong
2017-03-01
In this paper, a novel linear quadratic regulator (LQR)-based optimal distributed cooperative design method is developed for synchronization control of general linear discrete-time multiagent systems on a fixed, directed graph. Sufficient conditions are derived for synchronization, which restrict the graph eigenvalues into a bounded circular region in the complex plane. The synchronizing speed issue is also considered, and it turns out that the synchronizing region reduces as the synchronizing speed becomes faster. To obtain more desirable synchronizing capacity, the weighting matrices are selected by sufficiently utilizing the guaranteed gain margin of the optimal regulators. Based on the developed LQR-based cooperative design framework, an approximate dynamic programming technique is successfully introduced to overcome the (partially or completely) model-free cooperative design for linear multiagent systems. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design methods.
Robust consensus control with guaranteed rate of convergence using second-order Hurwitz polynomials
NASA Astrophysics Data System (ADS)
Fruhnert, Michael; Corless, Martin
2017-10-01
This paper considers homogeneous networks of general, linear time-invariant, second-order systems. We consider linear feedback controllers and require that the directed graph associated with the network contains a spanning tree and systems are stabilisable. We show that consensus with a guaranteed rate of convergence can always be achieved using linear state feedback. To achieve this, we provide a new and simple derivation of the conditions for a second-order polynomial with complex coefficients to be Hurwitz. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. Based on the conditions found, methods to compute feedback gains are proposed. We show that gains can be chosen such that consensus is achieved robustly over a variety of communication structures and system dynamics. We also consider the use of static output feedback.
Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.
Jovanović, Stojan; Rotter, Stefan
2016-06-01
The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology-random networks of Erdős-Rényi type and networks with highly interconnected hubs-we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.
Cavity master equation for the continuous time dynamics of discrete-spin models.
Aurell, E; Del Ferraro, G; Domínguez, E; Mulet, R
2017-05-01
We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.
Cavity master equation for the continuous time dynamics of discrete-spin models
NASA Astrophysics Data System (ADS)
Aurell, E.; Del Ferraro, G.; Domínguez, E.; Mulet, R.
2017-05-01
We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.
INDDGO: Integrated Network Decomposition & Dynamic programming for Graph Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groer, Christopher S; Sullivan, Blair D; Weerapurage, Dinesh P
2012-10-01
It is well-known that dynamic programming algorithms can utilize tree decompositions to provide a way to solve some \\emph{NP}-hard problems on graphs where the complexity is polynomial in the number of nodes and edges in the graph, but exponential in the width of the underlying tree decomposition. However, there has been relatively little computational work done to determine the practical utility of such dynamic programming algorithms. We have developed software to construct tree decompositions using various heuristics and have created a fast, memory-efficient dynamic programming implementation for solving maximum weighted independent set. We describe our software and the algorithms wemore » have implemented, focusing on memory saving techniques for the dynamic programming. We compare the running time and memory usage of our implementation with other techniques for solving maximum weighted independent set, including a commercial integer programming solver and a semi-definite programming solver. Our results indicate that it is possible to solve some instances where the underlying decomposition has width much larger than suggested by the literature. For certain types of problems, our dynamic programming code runs several times faster than these other methods.« less
DTS: Building custom, intelligent schedulers
NASA Technical Reports Server (NTRS)
Hansson, Othar; Mayer, Andrew
1994-01-01
DTS is a decision-theoretic scheduler, built on top of a flexible toolkit -- this paper focuses on how the toolkit might be reused in future NASA mission schedulers. The toolkit includes a user-customizable scheduling interface, and a 'Just-For-You' optimization engine. The customizable interface is built on two metaphors: objects and dynamic graphs. Objects help to structure problem specifications and related data, while dynamic graphs simplify the specification of graphical schedule editors (such as Gantt charts). The interface can be used with any 'back-end' scheduler, through dynamically-loaded code, interprocess communication, or a shared database. The 'Just-For-You' optimization engine includes user-specific utility functions, automatically compiled heuristic evaluations, and a postprocessing facility for enforcing scheduling policies. The optimization engine is based on BPS, the Bayesian Problem-Solver (1,2), which introduced a similar approach to solving single-agent and adversarial graph search problems.
Visualization of system dynamics using phasegrams
Herbst, Christian T.; Herzel, Hanspeter; Švec, Jan G.; Wyman, Megan T.; Fitch, W. Tecumseh
2013-01-01
A new tool for visualization and analysis of system dynamics is introduced: the phasegram. Its application is illustrated with both classical nonlinear systems (logistic map and Lorenz system) and with biological voice signals. Phasegrams combine the advantages of sliding-window analysis (such as the spectrogram) with well-established visualization techniques from the domain of nonlinear dynamics. In a phasegram, time is mapped onto the x-axis, and various vibratory regimes, such as periodic oscillation, subharmonics or chaos, are identified within the generated graph by the number and stability of horizontal lines. A phasegram can be interpreted as a bifurcation diagram in time. In contrast to other analysis techniques, it can be automatically constructed from time-series data alone: no additional system parameter needs to be known. Phasegrams show great potential for signal classification and can act as the quantitative basis for further analysis of oscillating systems in many scientific fields, such as physics (particularly acoustics), biology or medicine. PMID:23697715
Improving Machining Accuracy of CNC Machines with Innovative Design Methods
NASA Astrophysics Data System (ADS)
Yemelyanov, N. V.; Yemelyanova, I. V.; Zubenko, V. L.
2018-03-01
The article considers achieving the machining accuracy of CNC machines by applying innovative methods in modelling and design of machining systems, drives and machine processes. The topological method of analysis involves visualizing the system as matrices of block graphs with a varying degree of detail between the upper and lower hierarchy levels. This approach combines the advantages of graph theory and the efficiency of decomposition methods, it also has visual clarity, which is inherent in both topological models and structural matrices, as well as the resiliency of linear algebra as part of the matrix-based research. The focus of the study is on the design of automated machine workstations, systems, machines and units, which can be broken into interrelated parts and presented as algebraic, topological and set-theoretical models. Every model can be transformed into a model of another type, and, as a result, can be interpreted as a system of linear and non-linear equations which solutions determine the system parameters. This paper analyses the dynamic parameters of the 1716PF4 machine at the stages of design and exploitation. Having researched the impact of the system dynamics on the component quality, the authors have developed a range of practical recommendations which have enabled one to reduce considerably the amplitude of relative motion, exclude some resonance zones within the spindle speed range of 0...6000 min-1 and improve machining accuracy.
Stability of Boolean multilevel networks.
Cozzo, Emanuele; Arenas, Alex; Moreno, Yamir
2012-09-01
The study of the interplay between the structure and dynamics of complex multilevel systems is a pressing challenge nowadays. In this paper, we use a semiannealed approximation to study the stability properties of random Boolean networks in multiplex (multilayered) graphs. Our main finding is that the multilevel structure provides a mechanism for the stabilization of the dynamics of the whole system even when individual layers work on the chaotic regime, therefore identifying new ways of feedback between the structure and the dynamics of these systems. Our results point out the need for a conceptual transition from the physics of single-layered networks to the physics of multiplex networks. Finally, the fact that the coupling modifies the phase diagram and the critical conditions of the isolated layers suggests that interdependency can be used as a control mechanism.
Chen, Gang; Song, Yongduan; Guan, Yanfeng
2018-03-01
This brief investigates the finite-time consensus tracking control problem for networked uncertain mechanical systems on digraphs. A new terminal sliding-mode-based cooperative control scheme is developed to guarantee that the tracking errors converge to an arbitrarily small bound around zero in finite time. All the networked systems can have different dynamics and all the dynamics are unknown. A neural network is used at each node to approximate the local unknown dynamics. The control schemes are implemented in a fully distributed manner. The proposed control method eliminates some limitations in the existing terminal sliding-mode-based consensus control methods and extends the existing analysis methods to the case of directed graphs. Simulation results on networked robot manipulators are provided to show the effectiveness of the proposed control algorithms.
Adaptive random walks on the class of Web graphs
NASA Astrophysics Data System (ADS)
Tadić, B.
2001-09-01
We study random walk with adaptive move strategies on a class of directed graphs with variable wiring diagram. The graphs are grown from the evolution rules compatible with the dynamics of the world-wide Web [B. Tadić, Physica A 293, 273 (2001)], and are characterized by a pair of power-law distributions of out- and in-degree for each value of the parameter β, which measures the degree of rewiring in the graph. The walker adapts its move strategy according to locally available information both on out-degree of the visited node and in-degree of target node. A standard random walk, on the other hand, uses the out-degree only. We compute the distribution of connected subgraphs visited by an ensemble of walkers, the average access time and survival probability of the walks. We discuss these properties of the walk dynamics relative to the changes in the global graph structure when the control parameter β is varied. For β≥ 3, corresponding to the world-wide Web, the access time of the walk to a given level of hierarchy on the graph is much shorter compared to the standard random walk on the same graph. By reducing the amount of rewiring towards rigidity limit β↦βc≲ 0.1, corresponding to the range of naturally occurring biochemical networks, the survival probability of adaptive and standard random walk become increasingly similar. The adaptive random walk can be used as an efficient message-passing algorithm on this class of graphs for large degree of rewiring.
ERIC Educational Resources Information Center
Trujillo, Caleb; Cooper, Melanie M.; Klymkowsky, Michael W.
2012-01-01
Biological systems, from the molecular to the ecological, involve dynamic interaction networks. To examine student thinking about networks we used graphical responses, since they are easier to evaluate for implied, but unarticulated assumptions. Senior college level molecular biology students were presented with simple molecular level scenarios;…
NASA Astrophysics Data System (ADS)
Ibănescu, R.; Ibănescu, M.
2016-11-01
The present paper presents a mechanical device for the assessment of the fundamental parameters of a shock absorber: the spring stiffness and the viscous friction coefficient, without disassembling the absorber. The device produces an oscillatory motion of the shock absorber and can measure its amplitude and angular velocities. The dynamic model of the system, consisting of the mechanical device and the shock absorber, is performed by using the bond- graph method. Based on this model, the motion equations are obtained, which by integration lead to the motion law. The two previously mentioned parameters are determined by using this law and the measured values of two amplitudes and of their corresponding angular velocities. They result as solutions of a system of two non-linear algebraic equations.
Constructing graph models for software system development and analysis
NASA Astrophysics Data System (ADS)
Pogrebnoy, Andrey V.
2017-01-01
We propose a concept for creating the instrumentation for functional and structural decisions rationale during the software system (SS) development. We propose to develop SS simultaneously on two models - functional (FM) and structural (SM). FM is a source code of the SS. Adequate representation of the FM in the form of a graph model (GM) is made automatically and called SM. The problem of creating and visualizing GM is considered from the point of applying it as a uniform platform for the adequate representation of the SS source code. We propose three levels of GM detailing: GM1 - for visual analysis of the source code and for SS version control, GM2 - for resources optimization and analysis of connections between SS components, GM3 - for analysis of the SS functioning in dynamics. The paper includes examples of constructing all levels of GM.
Lukasczyk, Jonas; Weber, Gunther; Maciejewski, Ross; ...
2017-06-01
Tracking graphs are a well established tool in topological analysis to visualize the evolution of components and their properties over time, i.e., when components appear, disappear, merge, and split. However, tracking graphs are limited to a single level threshold and the graphs may vary substantially even under small changes to the threshold. To examine the evolution of features for varying levels, users have to compare multiple tracking graphs without a direct visual link between them. We propose a novel, interactive, nested graph visualization based on the fact that the tracked superlevel set components for different levels are related to eachmore » other through their nesting hierarchy. This approach allows us to set multiple tracking graphs in context to each other and enables users to effectively follow the evolution of components for different levels simultaneously. We show the effectiveness of our approach on datasets from finite pointset methods, computational fluid dynamics, and cosmology simulations.« less
Fixation probability on clique-based graphs
NASA Astrophysics Data System (ADS)
Choi, Jeong-Ok; Yu, Unjong
2018-02-01
The fixation probability of a mutant in the evolutionary dynamics of Moran process is calculated by the Monte-Carlo method on a few families of clique-based graphs. It is shown that the complete suppression of fixation can be realized with the generalized clique-wheel graph in the limit of small wheel-clique ratio and infinite size. The family of clique-star is an amplifier, and clique-arms graph changes from amplifier to suppressor as the fitness of the mutant increases. We demonstrate that the overall structure of a graph can be more important to determine the fixation probability than the degree or the heat heterogeneity. The dependence of the fixation probability on the position of the first mutant is discussed.
Chattopadhyay, Aditya; Zheng, Min; Waller, Mark Paul; Priyakumar, U Deva
2018-05-23
Knowledge of the structure and dynamics of biomolecules is essential for elucidating the underlying mechanisms of biological processes. Given the stochastic nature of many biological processes, like protein unfolding, it's almost impossible that two independent simulations will generate the exact same sequence of events, which makes direct analysis of simulations difficult. Statistical models like Markov Chains, transition networks etc. help in shedding some light on the mechanistic nature of such processes by predicting long-time dynamics of these systems from short simulations. However, such methods fall short in analyzing trajectories with partial or no temporal information, for example, replica exchange molecular dynamics or Monte Carlo simulations. In this work we propose a probabilistic algorithm, borrowing concepts from graph theory and machine learning, to extract reactive pathways from molecular trajectories in the absence of temporal data. A suitable vector representation was chosen to represent each frame in the macromolecular trajectory (as a series of interaction and conformational energies) and dimensionality reduction was performed using principal component analysis (PCA). The trajectory was then clustered using a density-based clustering algorithm, where each cluster represents a metastable state on the potential energy surface (PES) of the biomolecule under study. A graph was created with these clusters as nodes with the edges learnt using an iterative expectation maximization algorithm. The most reactive path is conceived as the widest path along this graph. We have tested our method on RNA hairpin unfolding trajectory in aqueous urea solution. Our method makes the understanding of the mechanism of unfolding in RNA hairpin molecule more tractable. As this method doesn't rely on temporal data it can be used to analyze trajectories from Monte Carlo sampling techniques and replica exchange molecular dynamics (REMD).
Consensus Algorithms for Networks of Systems with Second- and Higher-Order Dynamics
NASA Astrophysics Data System (ADS)
Fruhnert, Michael
This thesis considers homogeneous networks of linear systems. We consider linear feedback controllers and require that the directed graph associated with the network contains a spanning tree and systems are stabilizable. We show that, in continuous-time, consensus with a guaranteed rate of convergence can always be achieved using linear state feedback. For networks of continuous-time second-order systems, we provide a new and simple derivation of the conditions for a second-order polynomials with complex coefficients to be Hurwitz. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. Based on the conditions found, methods to compute feedback gains are proposed. We show that gains can be chosen such that consensus is achieved robustly over a variety of communication structures and system dynamics. We also consider the use of static output feedback. For networks of discrete-time second-order systems, we provide a new and simple derivation of the conditions for a second-order polynomials with complex coefficients to be Schur. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. We show that consensus can always be achieved for marginally stable systems and discretized systems. Simple conditions for consensus achieving controllers are obtained when the Laplacian eigenvalues are all real. For networks of continuous-time time-variant higher-order systems, we show that uniform consensus can always be achieved if systems are quadratically stabilizable. In this case, we provide a simple condition to obtain a linear feedback control. For networks of discrete-time higher-order systems, we show that constant gains can be chosen such that consensus is achieved for a variety of network topologies. First, we develop simple results for networks of time-invariant systems and networks of time-variant systems that are given in controllable canonical form. Second, we formulate the problem in terms of Linear Matrix Inequalities (LMIs). The condition found simplifies the design process and avoids the parallel solution of multiple LMIs. The result yields a modified Algebraic Riccati Equation (ARE) for which we present an equivalent LMI condition.
Adaptation of pancreatic islet cyto-architecture during development
NASA Astrophysics Data System (ADS)
Striegel, Deborah A.; Hara, Manami; Periwal, Vipul
2016-04-01
Plasma glucose in mammals is regulated by hormones secreted by the islets of Langerhans embedded in the exocrine pancreas. Islets consist of endocrine cells, primarily α, β, and δ cells, which secrete glucagon, insulin, and somatostatin, respectively. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Varying demands and available nutrients during development produce changes in the local connectivity of β cells in an islet. We showed in earlier work that graph theory provides a framework for the quantification of the seemingly stochastic cyto-architecture of β cells in an islet. To quantify the dynamics of endocrine connectivity during development requires a framework for characterizing changes in the probability distribution on the space of possible graphs, essentially a Fokker-Planck formalism on graphs. With large-scale imaging data for hundreds of thousands of islets containing millions of cells from human specimens, we show that this dynamics can be determined quantitatively. Requiring that rearrangement and cell addition processes match the observed dynamic developmental changes in quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that there is a transient shift in preferred connectivity for β cells between 1-35 weeks and 12-24 months.
Dimitriadis, S I; Laskaris, N A; Tzelepi, A; Economou, G
2012-05-01
There is growing interest in studying the association of functional connectivity patterns with particular cognitive tasks. The ability of graphs to encapsulate relational data has been exploited in many related studies, where functional networks (sketched by different neural synchrony estimators) are characterized by a rich repertoire of graph-related metrics. We introduce commute times (CTs) as an alternative way to capture the true interplay between the nodes of a functional connectivity graph (FCG). CT is a measure of the time taken for a random walk to setout and return between a pair of nodes on a graph. Its computation is considered here as a robust and accurate integration, over the FCG, of the individual pairwise measurements of functional coupling. To demonstrate the benefits from our approach, we attempted the characterization of time evolving connectivity patterns derived from EEG signals recorded while the subject was engaged in an eye-movement task. With respect to standard ways, which are currently employed to characterize connectivity, an improved detection of event-related dynamical changes is noticeable. CTs appear to be a promising technique for deriving temporal fingerprints of the brain's dynamic functional organization.
Temporal dynamics and impact of event interactions in cyber-social populations
NASA Astrophysics Data System (ADS)
Zhang, Yi-Qing; Li, Xiang
2013-03-01
The advance of information technologies provides powerful measures to digitize social interactions and facilitate quantitative investigations. To explore large-scale indoor interactions of a social population, we analyze 18 715 users' Wi-Fi access logs recorded in a Chinese university campus during 3 months, and define event interaction (EI) to characterize the concurrent interactions of multiple users inferred by their geographic coincidences—co-locating in the same small region at the same time. We propose three rules to construct a transmission graph, which depicts the topological and temporal features of event interactions. The vertex dynamics of transmission graph tells that the active durations of EIs fall into the truncated power-law distributions, which is independent on the number of involved individuals. The edge dynamics of transmission graph reports that the transmission durations present a truncated power-law pattern independent on the daily and weekly periodicities. Besides, in the aggregated transmission graph, low-degree vertices previously neglected in the aggregated static networks may participate in the large-degree EIs, which is verified by three data sets covering different sizes of social populations with various rendezvouses. This work highlights the temporal significance of event interactions in cyber-social populations.
NASA Astrophysics Data System (ADS)
Yalouz, S.; Falvo, C.; Pouthier, V.
2017-06-01
Based on the operatorial formulation of perturbation theory, the dynamical properties of a Frenkel exciton coupled with a thermal phonon bath on a star graph are studied. Within this method, the dynamics is governed by an effective Hamiltonian which accounts for exciton-phonon entanglement. The exciton is dressed by a virtual phonon cloud, whereas the phonons are dressed by virtual excitonic transitions. Special attention is paid to the description of the coherence of a qubit state initially located on the central node of the graph. Within the nonadiabatic weak coupling limit, it is shown that several timescales govern the coherence dynamics. In the short time limit, the coherence behaves as if the exciton was insensitive to the phonon bath. Then, quantum decoherence takes place, this decoherence being enhanced by the size of the graph and by temperature. However, the coherence does not vanish in the long time limit. Instead, it exhibits incomplete revivals that occur periodically at specific revival times and it shows almost exact recurrences that take place at particular super-revival times, a singular behavior that has been corroborated by performing exact quantum calculations.
GrouseFlocks: steerable exploration of graph hierarchy space.
Archambault, Daniel; Munzner, Tamara; Auber, David
2008-01-01
Several previous systems allow users to interactively explore a large input graph through cuts of a superimposed hierarchy. This hierarchy is often created using clustering algorithms or topological features present in the graph. However, many graphs have domain-specific attributes associated with the nodes and edges, which could be used to create many possible hierarchies providing unique views of the input graph. GrouseFlocks is a system for the exploration of this graph hierarchy space. By allowing users to see several different possible hierarchies on the same graph, the system helps users investigate graph hierarchy space instead of a single fixed hierarchy. GrouseFlocks provides a simple set of operations so that users can create and modify their graph hierarchies based on selections. These selections can be made manually or based on patterns in the attribute data provided with the graph. It provides feedback to the user within seconds, allowing interactive exploration of this space.
Evolutionary graph theory: breaking the symmetry between interaction and replacement
Ohtsuki, Hisashi; Pacheco, Jorge M.; Nowak, Martin A.
2008-01-01
We study evolutionary dynamics in a population whose structure is given by two graphs: the interaction graph determines who plays with whom in an evolutionary game; the replacement graph specifies the geometry of evolutionary competition and updating. First, we calculate the fixation probabilities of frequency dependent selection between two strategies or phenotypes. We consider three different update mechanisms: birth-death, death-birth and imitation. Then, as a particular example, we explore the evolution of cooperation. Suppose the interaction graph is a regular graph of degree h, the replacement graph is a regular graph of degree g and the overlap between the two graphs is a regular graph of degree l. We show that cooperation is favored by natural selection if b/c > hg/l. Here, b and c denote the benefit and cost of the altruistic act. This result holds for death-birth updating, weak selection and large population size. Note that the optimum population structure for cooperators is given by maximum overlap between the interaction and the replacement graph (g = h = l), which means that the two graphs are identical. We also prove that a modified replicator equation can describe how the expected values of the frequencies of an arbitrary number of strategies change on replacement and interaction graphs: the two graphs induce a transformation of the payoff matrix. PMID:17350049
Enabling Graph Mining in RDF Triplestores using SPARQL for Holistic In-situ Graph Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangkeun; Sukumar, Sreenivas R; Hong, Seokyong
The graph analysis is now considered as a promising technique to discover useful knowledge in data with a new perspective. We envi- sion that there are two dimensions of graph analysis: OnLine Graph Analytic Processing (OLGAP) and Graph Mining (GM) where each respectively focuses on subgraph pattern matching and automatic knowledge discovery in graph. Moreover, as these two dimensions aim to complementarily solve complex problems, holistic in-situ graph analysis which covers both OLGAP and GM in a single system is critical for minimizing the burdens of operating multiple graph systems and transferring intermediate result-sets between those systems. Nevertheless, most existingmore » graph analysis systems are only capable of one dimension of graph analysis. In this work, we take an approach to enabling GM capabilities (e.g., PageRank, connected-component analysis, node eccentricity, etc.) in RDF triplestores, which are originally developed to store RDF datasets and provide OLGAP capability. More specifically, to achieve our goal, we implemented six representative graph mining algorithms using SPARQL. The approach allows a wide range of available RDF data sets directly applicable for holistic graph analysis within a system. For validation of our approach, we evaluate performance of our implementations with nine real-world datasets and three different computing environments - a laptop computer, an Amazon EC2 instance, and a shared-memory Cray XMT2 URIKA-GD graph-processing appliance. The experimen- tal results show that our implementation can provide promising and scalable performance for real world graph analysis in all tested environments. The developed software is publicly available in an open-source project that we initiated.« less
Enabling Graph Mining in RDF Triplestores using SPARQL for Holistic In-situ Graph Analysis
Lee, Sangkeun; Sukumar, Sreenivas R; Hong, Seokyong; ...
2016-01-01
The graph analysis is now considered as a promising technique to discover useful knowledge in data with a new perspective. We envi- sion that there are two dimensions of graph analysis: OnLine Graph Analytic Processing (OLGAP) and Graph Mining (GM) where each respectively focuses on subgraph pattern matching and automatic knowledge discovery in graph. Moreover, as these two dimensions aim to complementarily solve complex problems, holistic in-situ graph analysis which covers both OLGAP and GM in a single system is critical for minimizing the burdens of operating multiple graph systems and transferring intermediate result-sets between those systems. Nevertheless, most existingmore » graph analysis systems are only capable of one dimension of graph analysis. In this work, we take an approach to enabling GM capabilities (e.g., PageRank, connected-component analysis, node eccentricity, etc.) in RDF triplestores, which are originally developed to store RDF datasets and provide OLGAP capability. More specifically, to achieve our goal, we implemented six representative graph mining algorithms using SPARQL. The approach allows a wide range of available RDF data sets directly applicable for holistic graph analysis within a system. For validation of our approach, we evaluate performance of our implementations with nine real-world datasets and three different computing environments - a laptop computer, an Amazon EC2 instance, and a shared-memory Cray XMT2 URIKA-GD graph-processing appliance. The experimen- tal results show that our implementation can provide promising and scalable performance for real world graph analysis in all tested environments. The developed software is publicly available in an open-source project that we initiated.« less
Dynamic effective connectivity in cortically embedded systems of recurrently coupled synfire chains.
Trengove, Chris; Diesmann, Markus; van Leeuwen, Cees
2016-02-01
As a candidate mechanism of neural representation, large numbers of synfire chains can efficiently be embedded in a balanced recurrent cortical network model. Here we study a model in which multiple synfire chains of variable strength are randomly coupled together to form a recurrent system. The system can be implemented both as a large-scale network of integrate-and-fire neurons and as a reduced model. The latter has binary-state pools as basic units but is otherwise isomorphic to the large-scale model, and provides an efficient tool for studying its behavior. Both the large-scale system and its reduced counterpart are able to sustain ongoing endogenous activity in the form of synfire waves, the proliferation of which is regulated by negative feedback caused by collateral noise. Within this equilibrium, diverse repertoires of ongoing activity are observed, including meta-stability and multiple steady states. These states arise in concert with an effective connectivity structure (ECS). The ECS admits a family of effective connectivity graphs (ECGs), parametrized by the mean global activity level. Of these graphs, the strongly connected components and their associated out-components account to a large extent for the observed steady states of the system. These results imply a notion of dynamic effective connectivity as governing neural computation with synfire chains, and related forms of cortical circuitry with complex topologies.
Clustering execution in a processing system to increase power savings
Bose, Pradip; Buyuktosunoglu, Alper; Jacobson, Hans M.; Vega, Augusto J.
2018-03-20
Embodiments relate to clustering execution in a processing system. An aspect includes accessing a control flow graph that defines a data dependency and an execution sequence of a plurality of tasks of an application that executes on a plurality of system components. The execution sequence of the tasks in the control flow graph is modified as a clustered control flow graph that clusters active and idle phases of a system component while maintaining the data dependency. The clustered control flow graph is sent to an operating system, where the operating system utilizes the clustered control flow graph for scheduling the tasks.
NASA Astrophysics Data System (ADS)
Zhang, Yali; Wang, Jun
2017-09-01
In an attempt to investigate the nonlinear complex evolution of financial dynamics, a new financial price model - the multitype range-intensity contact (MRIC) financial model, is developed based on the multitype range-intensity interacting contact system, in which the interaction and transmission of different types of investment attitudes in a stock market are simulated by viruses spreading. Two new random visibility graph (VG) based analyses and Lempel-Ziv complexity (LZC) are applied to study the complex behaviors of return time series and the corresponding random sorted series. The VG method is the complex network theory, and the LZC is a non-parametric measure of complexity reflecting the rate of new pattern generation of a series. In this work, the real stock market indices are considered to be comparatively studied with the simulation data of the proposed model. Further, the numerical empirical study shows the similar complexity behaviors between the model and the real markets, the research confirms that the financial model is reasonable to some extent.
NASA Astrophysics Data System (ADS)
Mashayekhi, Mohammad Jalali; Behdinan, Kamran
2017-10-01
The increasing demand to minimize undesired vibration and noise levels in several high-tech industries has generated a renewed interest in vibration transfer path analysis. Analyzing vibration transfer paths within a system is of crucial importance in designing an effective vibration isolation strategy. Most of the existing vibration transfer path analysis techniques are empirical which are suitable for diagnosis and troubleshooting purpose. The lack of an analytical transfer path analysis to be used in the design stage is the main motivation behind this research. In this paper an analytical transfer path analysis based on the four-pole theory is proposed for multi-energy-domain systems. Bond graph modeling technique which is an effective approach to model multi-energy-domain systems is used to develop the system model. In this paper an electro-mechanical system is used as a benchmark example to elucidate the effectiveness of the proposed technique. An algorithm to obtain the equivalent four-pole representation of a dynamical systems based on the corresponding bond graph model is also presented in this paper.
Risk Assessment for Mobile Systems Through a Multilayered Hierarchical Bayesian Network.
Li, Shancang; Tryfonas, Theo; Russell, Gordon; Andriotis, Panagiotis
2016-08-01
Mobile systems are facing a number of application vulnerabilities that can be combined together and utilized to penetrate systems with devastating impact. When assessing the overall security of a mobile system, it is important to assess the security risks posed by each mobile applications (apps), thus gaining a stronger understanding of any vulnerabilities present. This paper aims at developing a three-layer framework that assesses the potential risks which apps introduce within the Android mobile systems. A Bayesian risk graphical model is proposed to evaluate risk propagation in a layered risk architecture. By integrating static analysis, dynamic analysis, and behavior analysis in a hierarchical framework, the risks and their propagation through each layer are well modeled by the Bayesian risk graph, which can quantitatively analyze risks faced to both apps and mobile systems. The proposed hierarchical Bayesian risk graph model offers a novel way to investigate the security risks in mobile environment and enables users and administrators to evaluate the potential risks. This strategy allows to strengthen both app security as well as the security of the entire system.
Time-dependent limited penetrable visibility graph analysis of nonstationary time series
NASA Astrophysics Data System (ADS)
Gao, Zhong-Ke; Cai, Qing; Yang, Yu-Xuan; Dang, Wei-Dong
2017-06-01
Recent years have witnessed the development of visibility graph theory, which allows us to analyze a time series from the perspective of complex network. We in this paper develop a novel time-dependent limited penetrable visibility graph (TDLPVG). Two examples using nonstationary time series from RR intervals and gas-liquid flows are provided to demonstrate the effectiveness of our approach. The results of the first example suggest that our TDLPVG method allows characterizing the time-varying behaviors and classifying heart states of healthy, congestive heart failure and atrial fibrillation from RR interval time series. For the second example, we infer TDLPVGs from gas-liquid flow signals and interestingly find that the deviation of node degree of TDLPVGs enables to effectively uncover the time-varying dynamical flow behaviors of gas-liquid slug and bubble flow patterns. All these results render our TDLPVG method particularly powerful for characterizing the time-varying features underlying realistic complex systems from time series.
System analysis through bond graph modeling
NASA Astrophysics Data System (ADS)
McBride, Robert Thomas
2005-07-01
Modeling and simulation form an integral role in the engineering design process. An accurate mathematical description of a system provides the design engineer the flexibility to perform trade studies quickly and accurately to expedite the design process. Most often, the mathematical model of the system contains components of different engineering disciplines. A modeling methodology that can handle these types of systems might be used in an indirect fashion to extract added information from the model. This research examines the ability of a modeling methodology to provide added insight into system analysis and design. The modeling methodology used is bond graph modeling. An investigation into the creation of a bond graph model using the Lagrangian of the system is provided. Upon creation of the bond graph, system analysis is performed. To aid in the system analysis, an object-oriented approach to bond graph modeling is introduced. A framework is provided to simulate the bond graph directly. Through object-oriented simulation of a bond graph, the information contained within the bond graph can be exploited to create a measurement of system efficiency. A definition of system efficiency is given. This measurement of efficiency is used in the design of different controllers of varying architectures. Optimal control of a missile autopilot is discussed within the framework of the calculated system efficiency.
The geometry of chaotic dynamics — a complex network perspective
NASA Astrophysics Data System (ADS)
Donner, R. V.; Heitzig, J.; Donges, J. F.; Zou, Y.; Marwan, N.; Kurths, J.
2011-12-01
Recently, several complex network approaches to time series analysis have been developed and applied to study a wide range of model systems as well as real-world data, e.g., geophysical or financial time series. Among these techniques, recurrence-based concepts and prominently ɛ-recurrence networks, most faithfully represent the geometrical fine structure of the attractors underlying chaotic (and less interestingly non-chaotic) time series. In this paper we demonstrate that the well known graph theoretical properties local clustering coefficient and global (network) transitivity can meaningfully be exploited to define two new local and two new global measures of dimension in phase space: local upper and lower clustering dimension as well as global upper and lower transitivity dimension. Rigorous analytical as well as numerical results for self-similar sets and simple chaotic model systems suggest that these measures are well-behaved in most non-pathological situations and that they can be estimated reasonably well using ɛ-recurrence networks constructed from relatively short time series. Moreover, we study the relationship between clustering and transitivity dimensions on the one hand, and traditional measures like pointwise dimension or local Lyapunov dimension on the other hand. We also provide further evidence that the local clustering coefficients, or equivalently the local clustering dimensions, are useful for identifying unstable periodic orbits and other dynamically invariant objects from time series. Our results demonstrate that ɛ-recurrence networks exhibit an important link between dynamical systems and graph theory.
Building occupancy simulation and data assimilation using a graph-based agent-oriented model
NASA Astrophysics Data System (ADS)
Rai, Sanish; Hu, Xiaolin
2018-07-01
Building occupancy simulation and estimation simulates the dynamics of occupants and estimates their real-time spatial distribution in a building. It requires a simulation model and an algorithm for data assimilation that assimilates real-time sensor data into the simulation model. Existing building occupancy simulation models include agent-based models and graph-based models. The agent-based models suffer high computation cost for simulating large numbers of occupants, and graph-based models overlook the heterogeneity and detailed behaviors of individuals. Recognizing the limitations of existing models, this paper presents a new graph-based agent-oriented model which can efficiently simulate large numbers of occupants in various kinds of building structures. To support real-time occupancy dynamics estimation, a data assimilation framework based on Sequential Monte Carlo Methods is also developed and applied to the graph-based agent-oriented model to assimilate real-time sensor data. Experimental results show the effectiveness of the developed model and the data assimilation framework. The major contributions of this work are to provide an efficient model for building occupancy simulation that can accommodate large numbers of occupants and an effective data assimilation framework that can provide real-time estimations of building occupancy from sensor data.
DynamicRoots: A Software Platform for the Reconstruction and Analysis of Growing Plant Roots.
Symonova, Olga; Topp, Christopher N; Edelsbrunner, Herbert
2015-01-01
We present a software platform for reconstructing and analyzing the growth of a plant root system from a time-series of 3D voxelized shapes. It aligns the shapes with each other, constructs a geometric graph representation together with the function that records the time of growth, and organizes the branches into a hierarchy that reflects the order of creation. The software includes the automatic computation of structural and dynamic traits for each root in the system enabling the quantification of growth on fine-scale. These are important advances in plant phenotyping with applications to the study of genetic and environmental influences on growth.
Huang, Xiaoke; Zhao, Ye; Yang, Jing; Zhang, Chong; Ma, Chao; Ye, Xinyue
2016-01-01
We propose TrajGraph, a new visual analytics method, for studying urban mobility patterns by integrating graph modeling and visual analysis with taxi trajectory data. A special graph is created to store and manifest real traffic information recorded by taxi trajectories over city streets. It conveys urban transportation dynamics which can be discovered by applying graph analysis algorithms. To support interactive, multiscale visual analytics, a graph partitioning algorithm is applied to create region-level graphs which have smaller size than the original street-level graph. Graph centralities, including Pagerank and betweenness, are computed to characterize the time-varying importance of different urban regions. The centralities are visualized by three coordinated views including a node-link graph view, a map view and a temporal information view. Users can interactively examine the importance of streets to discover and assess city traffic patterns. We have implemented a fully working prototype of this approach and evaluated it using massive taxi trajectories of Shenzhen, China. TrajGraph's capability in revealing the importance of city streets was evaluated by comparing the calculated centralities with the subjective evaluations from a group of drivers in Shenzhen. Feedback from a domain expert was collected. The effectiveness of the visual interface was evaluated through a formal user study. We also present several examples and a case study to demonstrate the usefulness of TrajGraph in urban transportation analysis.
Finite-size scaling of clique percolation on two-dimensional Moore lattices
NASA Astrophysics Data System (ADS)
Dong, Jia-Qi; Shen, Zhou; Zhang, Yongwen; Huang, Zi-Gang; Huang, Liang; Chen, Xiaosong
2018-05-01
Clique percolation has attracted much attention due to its significance in understanding topological overlap among communities and dynamical instability of structured systems. Rich critical behavior has been observed in clique percolation on Erdős-Rényi (ER) random graphs, but few works have discussed clique percolation on finite dimensional systems. In this paper, we have defined a series of characteristic events, i.e., the historically largest size jumps of the clusters, in the percolating process of adding bonds and developed a new finite-size scaling scheme based on the interval of the characteristic events. Through the finite-size scaling analysis, we have found, interestingly, that, in contrast to the clique percolation on an ER graph where the critical exponents are parameter dependent, the two-dimensional (2D) clique percolation simply shares the same critical exponents with traditional site or bond percolation, independent of the clique percolation parameters. This has been corroborated by bridging two special types of clique percolation to site percolation on 2D lattices. Mechanisms for the difference of the critical behaviors between clique percolation on ER graphs and on 2D lattices are also discussed.
Efficient Generation of Dancing Animation Synchronizing with Music Based on Meta Motion Graphs
NASA Astrophysics Data System (ADS)
Xu, Jianfeng; Takagi, Koichi; Sakazawa, Shigeyuki
This paper presents a system for automatic generation of dancing animation that is synchronized with a piece of music by re-using motion capture data. Basically, the dancing motion is synthesized according to the rhythm and intensity features of music. For this purpose, we propose a novel meta motion graph structure to embed the necessary features including both rhythm and intensity, which is constructed on the motion capture database beforehand. In this paper, we consider two scenarios for non-streaming music and streaming music, where global search and local search are required respectively. In the case of the former, once a piece of music is input, the efficient dynamic programming algorithm can be employed to globally search a best path in the meta motion graph, where an objective function is properly designed by measuring the quality of beat synchronization, intensity matching, and motion smoothness. In the case of the latter, the input music is stored in a buffer in a streaming mode, then an efficient search method is presented for a certain amount of music data (called a segment) in the buffer with the same objective function, resulting in a segment-based search approach. For streaming applications, we define an additional property in the above meta motion graph to deal with the unpredictable future music, which guarantees that there is some motion to match the unknown remaining music. A user study with totally 60 subjects demonstrates that our system outperforms the stat-of-the-art techniques in both scenarios. Furthermore, our system improves the synthesis speed greatly (maximal speedup is more than 500 times), which is essential for mobile applications. We have implemented our system on commercially available smart phones and confirmed that it works well on these mobile phones.
Lifted worm algorithm for the Ising model
NASA Astrophysics Data System (ADS)
Elçi, Eren Metin; Grimm, Jens; Ding, Lijie; Nasrawi, Abrahim; Garoni, Timothy M.; Deng, Youjin
2018-04-01
We design an irreversible worm algorithm for the zero-field ferromagnetic Ising model by using the lifting technique. We study the dynamic critical behavior of an energylike observable on both the complete graph and toroidal grids, and compare our findings with reversible algorithms such as the Prokof'ev-Svistunov worm algorithm. Our results show that the lifted worm algorithm improves the dynamic exponent of the energylike observable on the complete graph and leads to a significant constant improvement on toroidal grids.
Constructing compact and effective graphs for recommender systems via node and edge aggregations
Lee, Sangkeun; Kahng, Minsuk; Lee, Sang-goo
2014-12-10
Exploiting graphs for recommender systems has great potential to flexibly incorporate heterogeneous information for producing better recommendation results. As our baseline approach, we first introduce a naive graph-based recommendation method, which operates with a heterogeneous log-metadata graph constructed from user log and content metadata databases. Although the na ve graph-based recommendation method is simple, it allows us to take advantages of heterogeneous information and shows promising flexibility and recommendation accuracy. However, it often leads to extensive processing time due to the sheer size of the graphs constructed from entire user log and content metadata databases. In this paper, we proposemore » node and edge aggregation approaches to constructing compact and e ective graphs called Factor-Item bipartite graphs by aggregating nodes and edges of a log-metadata graph. Furthermore, experimental results using real world datasets indicate that our approach can significantly reduce the size of graphs exploited for recommender systems without sacrificing the recommendation quality.« less
Dynamic damping of vibrations of technical object with two degrees of freedom
NASA Astrophysics Data System (ADS)
Khomenko, A. P.; Eliseev, S. V.; Artyunin, A. I.
2017-10-01
Approach to the solution of problems of dynamic damping for the technical object with two degrees of freedom on the elastic supports is developed. Such tasks are typical for the dynamics of technological vibrating machines, machining machine tools and vehicles. The purpose of the study is to justify the possibility of obtaining regimes of simultaneous dynamic damping of oscillations in two coordinates. The achievement of the goal is based on the use of special devices for the transformation of motion, introduced parallel to the elastic element. The dynamic effect is provided by the possibility of changing the relationships between the reduced masses of devices for transforming motion. The method of structural mathematical modeling is used, in which the mechanical oscillatory system is compared, taking into account the principle of dynamic analogies, the dynamically equivalent structural diagram of the automatic control system. The concept of transfer functions of systems interpartial relations and generalized ideas about the partial frequencies and frequencies dynamic damping is applied. The concept of a frequency diagram that determines the mutual distribution of graphs of frequency characteristics in the interaction of the elements of the system is introduced.
Communication: Analysing kinetic transition networks for rare events.
Stevenson, Jacob D; Wales, David J
2014-07-28
The graph transformation approach is a recently proposed method for computing mean first passage times, rates, and committor probabilities for kinetic transition networks. Here we compare the performance to existing linear algebra methods, focusing on large, sparse networks. We show that graph transformation provides a much more robust framework, succeeding when numerical precision issues cause the other methods to fail completely. These are precisely the situations that correspond to rare event dynamics for which the graph transformation was introduced.
A graph-based approach to detect spatiotemporal dynamics in satellite image time series
NASA Astrophysics Data System (ADS)
Guttler, Fabio; Ienco, Dino; Nin, Jordi; Teisseire, Maguelonne; Poncelet, Pascal
2017-08-01
Enhancing the frequency of satellite acquisitions represents a key issue for Earth Observation community nowadays. Repeated observations are crucial for monitoring purposes, particularly when intra-annual process should be taken into account. Time series of images constitute a valuable source of information in these cases. The goal of this paper is to propose a new methodological framework to automatically detect and extract spatiotemporal information from satellite image time series (SITS). Existing methods dealing with such kind of data are usually classification-oriented and cannot provide information about evolutions and temporal behaviors. In this paper we propose a graph-based strategy that combines object-based image analysis (OBIA) with data mining techniques. Image objects computed at each individual timestamp are connected across the time series and generates a set of evolution graphs. Each evolution graph is associated to a particular area within the study site and stores information about its temporal evolution. Such information can be deeply explored at the evolution graph scale or used to compare the graphs and supply a general picture at the study site scale. We validated our framework on two study sites located in the South of France and involving different types of natural, semi-natural and agricultural areas. The results obtained from a Landsat SITS support the quality of the methodological approach and illustrate how the framework can be employed to extract and characterize spatiotemporal dynamics.
Dynamics of Nearest-Neighbour Competitions on Graphs
NASA Astrophysics Data System (ADS)
Rador, Tonguç
2017-10-01
Considering a collection of agents representing the vertices of a graph endowed with integer points, we study the asymptotic dynamics of the rate of the increase of their points according to a very simple rule: we randomly pick an an edge from the graph which unambiguously defines two agents we give a point the the agent with larger point with probability p and to the lagger with probability q such that p+q=1. The model we present is the most general version of the nearest-neighbour competition model introduced by Ben-Naim, Vazquez and Redner. We show that the model combines aspects of hyperbolic partial differential equations—as that of a conservation law—graph colouring and hyperplane arrangements. We discuss the properties of the model for general graphs but we confine in depth study to d-dimensional tori. We present a detailed study for the ring graph, which includes a chemical potential approximation to calculate all its statistics that gives rather accurate results. The two-dimensional torus, not studied in depth as the ring, is shown to possess critical behaviour in that the asymptotic speeds arrange themselves in two-coloured islands separated by borders of three other colours and the size of the islands obey power law distribution. We also show that in the large d limit the d-dimensional torus shows inverse sine law for the distribution of asymptotic speeds.
Nuclear power plant digital system PRA pilot study with the dynamic flow-graph methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yau, M.; Motamed, M.; Guarro, S.
2006-07-01
Current Probabilistic Risk Assessment (PRA) methodology is well established in analyzing hardware and some of the key human interactions. However processes for analyzing the software functions of digital systems within a plant PRA framework, and accounting for the digital system contribution to the overall risk are not generally available nor are they well understood and established. A recent study reviewed a number of methodologies that have potential applicability to modeling and analyzing digital systems within a PRA framework. This study identified the Dynamic Flow-graph Methodology (DFM) and the Markov Methodology as the most promising tools. As a result of thismore » study, a task was defined under the framework of a collaborative agreement between the U.S. Nuclear Regulatory Commission (NRC) and the Ohio State Univ. (OSU). The objective of this task is to set up benchmark systems representative of digital systems used in nuclear power plants and to evaluate DFM and the Markov methodology with these benchmark systems. The first benchmark system is a typical Pressurized Water Reactor (PWR) Steam Generator (SG) Feedwater System (FWS) level control system based on an earlier ASCA work with the U.S. NRC 2, upgraded with modern control laws. ASCA, Inc. is currently under contract to OSU to apply DFM to this benchmark system. The goal is to investigate the feasibility of using DFM to analyze and quantify digital system risk, and to integrate the DFM analytical results back into the plant event tree/fault tree PRA model. (authors)« less
Clustering execution in a processing system to increase power savings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, Pradip; Buyuktosunoglu, Alper; Jacobson, Hans M.
Embodiments relate to clustering execution in a processing system. An aspect includes accessing a control flow graph that defines a data dependency and an execution sequence of a plurality of tasks of an application that executes on a plurality of system components. The execution sequence of the tasks in the control flow graph is modified as a clustered control flow graph that clusters active and idle phases of a system component while maintaining the data dependency. The clustered control flow graph is sent to an operating system, where the operating system utilizes the clustered control flow graph for scheduling themore » tasks.« less
Managing complexity in simulations of land surface and near-surface processes
Coon, Ethan T.; Moulton, J. David; Painter, Scott L.
2016-01-12
Increasing computing power and the growing role of simulation in Earth systems science have led to an increase in the number and complexity of processes in modern simulators. We present a multiphysics framework that specifies interfaces for coupled processes and automates weak and strong coupling strategies to manage this complexity. Process management is enabled by viewing the system of equations as a tree, where individual equations are associated with leaf nodes and coupling strategies with internal nodes. A dynamically generated dependency graph connects a variable to its dependencies, streamlining and automating model evaluation, easing model development, and ensuring models aremore » modular and flexible. Additionally, the dependency graph is used to ensure that data requirements are consistent between all processes in a given simulation. Here we discuss the design and implementation of these concepts within the Arcos framework, and demonstrate their use for verification testing and hypothesis evaluation in numerical experiments.« less
Improving activity recognition using temporal coherence.
Ataya, Abbas; Jallon, Pierre; Bianchi, Pascal; Doron, Maeva
2013-01-01
Assessment of daily physical activity using data from wearable sensors has recently become a prominent research area in the biomedical engineering field and a substantial application for pattern recognition. In this paper, we present an accelerometer-based activity recognition scheme on the basis of a hierarchical structured classifier. A first step consists of distinguishing static activities from dynamic ones in order to extract relevant features for each activity type. Next, a separate classifier is applied to detect more specific activities of the same type. On top of our activity recognition system, we introduce a novel approach to take into account the temporal coherence of activities. Inter-activity transition information is modeled by a directed graph Markov chain. Confidence measures in activity classes are then evaluated from conventional classifier's outputs and coupled with the graph to reinforce activity estimation. Accurate results and significant improvement of activity detection are obtained when applying our system for the recognition of 9 activities for 48 subjects.
Survey of Approaches to Generate Realistic Synthetic Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Seung-Hwan; Lee, Sangkeun; Powers, Sarah S
A graph is a flexible data structure that can represent relationships between entities. As with other data analysis tasks, the use of realistic graphs is critical to obtaining valid research results. Unfortunately, using the actual ("real-world") graphs for research and new algorithm development is difficult due to the presence of sensitive information in the data or due to the scale of data. This results in practitioners developing algorithms and systems that employ synthetic graphs instead of real-world graphs. Generating realistic synthetic graphs that provide reliable statistical confidence to algorithmic analysis and system evaluation involves addressing technical hurdles in a broadmore » set of areas. This report surveys the state of the art in approaches to generate realistic graphs that are derived from fitted graph models on real-world graphs.« less
Chaos of radiative heat-loss-induced flame front instability.
Kinugawa, Hikaru; Ueda, Kazuhiro; Gotoda, Hiroshi
2016-03-01
We are intensively studying the chaos via the period-doubling bifurcation cascade in radiative heat-loss-induced flame front instability by analytical methods based on dynamical systems theory and complex networks. Significant changes in flame front dynamics in the chaotic region, which cannot be seen in the bifurcation diagrams, were successfully extracted from recurrence quantification analysis and nonlinear forecasting and from the network entropy. The temporal dynamics of the fuel concentration in the well-developed chaotic region is much more complicated than that of the flame front temperature. It exhibits self-affinity as a result of the scale-free structure in the constructed visibility graph.
Label-based routing for a family of small-world Farey graphs.
Zhai, Yinhu; Wang, Yinhe
2016-05-11
We introduce an informative labelling method for vertices in a family of Farey graphs, and deduce a routing algorithm on all the shortest paths between any two vertices in Farey graphs. The label of a vertex is composed of the precise locating position in graphs and the exact time linking to graphs. All the shortest paths routing between any pair of vertices, which number is exactly the product of two Fibonacci numbers, are determined only by their labels, and the time complexity of the algorithm is O(n). It is the first algorithm to figure out all the shortest paths between any pair of vertices in a kind of deterministic graphs. For Farey networks, the existence of an efficient routing protocol is of interest to design practical communication algorithms in relation to dynamical processes (including synchronization and structural controllability) and also to understand the underlying mechanisms that have shaped their particular structure.
Label-based routing for a family of small-world Farey graphs
NASA Astrophysics Data System (ADS)
Zhai, Yinhu; Wang, Yinhe
2016-05-01
We introduce an informative labelling method for vertices in a family of Farey graphs, and deduce a routing algorithm on all the shortest paths between any two vertices in Farey graphs. The label of a vertex is composed of the precise locating position in graphs and the exact time linking to graphs. All the shortest paths routing between any pair of vertices, which number is exactly the product of two Fibonacci numbers, are determined only by their labels, and the time complexity of the algorithm is O(n). It is the first algorithm to figure out all the shortest paths between any pair of vertices in a kind of deterministic graphs. For Farey networks, the existence of an efficient routing protocol is of interest to design practical communication algorithms in relation to dynamical processes (including synchronization and structural controllability) and also to understand the underlying mechanisms that have shaped their particular structure.
Applying graph partitioning methods in measurement-based dynamic load balancing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatele, Abhinav; Fourestier, Sebastien; Menon, Harshitha
Load imbalance leads to an increasing waste of resources as an application is scaled to more and more processors. Achieving the best parallel efficiency for a program requires optimal load balancing which is a NP-hard problem. However, finding near-optimal solutions to this problem for complex computational science and engineering applications is becoming increasingly important. Charm++, a migratable objects based programming model, provides a measurement-based dynamic load balancing framework. This framework instruments and then migrates over-decomposed objects to balance computational load and communication at runtime. This paper explores the use of graph partitioning algorithms, traditionally used for partitioning physical domains/meshes, formore » measurement-based dynamic load balancing of parallel applications. In particular, we present repartitioning methods developed in a graph partitioning toolbox called SCOTCH that consider the previous mapping to minimize migration costs. We also discuss a new imbalance reduction algorithm for graphs with irregular load distributions. We compare several load balancing algorithms using microbenchmarks on Intrepid and Ranger and evaluate the effect of communication, number of cores and number of objects on the benefit achieved from load balancing. New algorithms developed in SCOTCH lead to better performance compared to the METIS partitioners for several cases, both in terms of the application execution time and fewer number of objects migrated.« less
Framework based on communicability and flow to analyze complex network dynamics
NASA Astrophysics Data System (ADS)
Gilson, M.; Kouvaris, N. E.; Deco, G.; Zamora-López, G.
2018-05-01
Graph theory constitutes a widely used and established field providing powerful tools for the characterization of complex networks. The intricate topology of networks can also be investigated by means of the collective dynamics observed in the interactions of self-sustained oscillations (synchronization patterns) or propagationlike processes such as random walks. However, networks are often inferred from real-data-forming dynamic systems, which are different from those employed to reveal their topological characteristics. This stresses the necessity for a theoretical framework dedicated to the mutual relationship between the structure and dynamics in complex networks, as the two sides of the same coin. Here we propose a rigorous framework based on the network response over time (i.e., Green function) to study interactions between nodes across time. For this purpose we define the flow that describes the interplay between the network connectivity and external inputs. This multivariate measure relates to the concepts of graph communicability and the map equation. We illustrate our theory using the multivariate Ornstein-Uhlenbeck process, which describes stable and non-conservative dynamics, but the formalism can be adapted to other local dynamics for which the Green function is known. We provide applications to classical network examples, such as small-world ring and hierarchical networks. Our theory defines a comprehensive framework that is canonically related to directed and weighted networks, thus paving a way to revise the standards for network analysis, from the pairwise interactions between nodes to the global properties of networks including community detection.
Causal discovery in the geosciences-Using synthetic data to learn how to interpret results
NASA Astrophysics Data System (ADS)
Ebert-Uphoff, Imme; Deng, Yi
2017-02-01
Causal discovery algorithms based on probabilistic graphical models have recently emerged in geoscience applications for the identification and visualization of dynamical processes. The key idea is to learn the structure of a graphical model from observed spatio-temporal data, thus finding pathways of interactions in the observed physical system. Studying those pathways allows geoscientists to learn subtle details about the underlying dynamical mechanisms governing our planet. Initial studies using this approach on real-world atmospheric data have shown great potential for scientific discovery. However, in these initial studies no ground truth was available, so that the resulting graphs have been evaluated only by whether a domain expert thinks they seemed physically plausible. The lack of ground truth is a typical problem when using causal discovery in the geosciences. Furthermore, while most of the connections found by this method match domain knowledge, we encountered one type of connection for which no explanation was found. To address both of these issues we developed a simulation framework that generates synthetic data of typical atmospheric processes (advection and diffusion). Applying the causal discovery algorithm to the synthetic data allowed us (1) to develop a better understanding of how these physical processes appear in the resulting connectivity graphs, and thus how to better interpret such connectivity graphs when obtained from real-world data; (2) to solve the mystery of the previously unexplained connections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar, Sreenivas R.; Hong, Seokyong; Lee, Sangkeun
2016-06-01
GraphBench is a benchmark suite for graph pattern mining and graph analysis systems. The benchmark suite is a significant addition to conducting apples-apples comparison of graph analysis software (databases, in-memory tools, triple stores, etc.)
Navigability of Random Geometric Graphs in the Universe and Other Spacetimes.
Cunningham, William; Zuev, Konstantin; Krioukov, Dmitri
2017-08-18
Random geometric graphs in hyperbolic spaces explain many common structural and dynamical properties of real networks, yet they fail to predict the correct values of the exponents of power-law degree distributions observed in real networks. In that respect, random geometric graphs in asymptotically de Sitter spacetimes, such as the Lorentzian spacetime of our accelerating universe, are more attractive as their predictions are more consistent with observations in real networks. Yet another important property of hyperbolic graphs is their navigability, and it remains unclear if de Sitter graphs are as navigable as hyperbolic ones. Here we study the navigability of random geometric graphs in three Lorentzian manifolds corresponding to universes filled only with dark energy (de Sitter spacetime), only with matter, and with a mixture of dark energy and matter. We find these graphs are navigable only in the manifolds with dark energy. This result implies that, in terms of navigability, random geometric graphs in asymptotically de Sitter spacetimes are as good as random hyperbolic graphs. It also establishes a connection between the presence of dark energy and navigability of the discretized causal structure of spacetime, which provides a basis for a different approach to the dark energy problem in cosmology.
Multi-A Graph Patrolling and Partitioning
NASA Astrophysics Data System (ADS)
Elor, Y.; Bruckstein, A. M.
2012-12-01
We introduce a novel multi agent patrolling algorithm inspired by the behavior of gas filled balloons. Very low capability ant-like agents are considered with the task of patrolling an unknown area modeled as a graph. While executing the proposed algorithm, the agents dynamically partition the graph between them using simple local interactions, every agent assuming the responsibility for patrolling his subgraph. Balanced graph partition is an emergent behavior due to the local interactions between the agents in the swarm. Extensive simulations on various graphs (environments) showed that the average time to reach a balanced partition is linear with the graph size. The simulations yielded a convincing argument for conjecturing that if the graph being patrolled contains a balanced partition, the agents will find it. However, we could not prove this. Nevertheless, we have proved that if a balanced partition is reached, the maximum time lag between two successive visits to any vertex using the proposed strategy is at most twice the optimal so the patrol quality is at least half the optimal. In case of weighted graphs the patrol quality is at least (1)/(2){lmin}/{lmax} of the optimal where lmax (lmin) is the longest (shortest) edge in the graph.
Designing an architectural style for Pervasive Healthcare systems.
Rafe, Vahid; Hajvali, Masoumeh
2013-04-01
Nowadays, the Pervasive Healthcare (PH) systems are considered as an important research area. These systems have a dynamic structure and configuration. Therefore, an appropriate method for designing such systems is necessary. The Publish/Subscribe Architecture (pub/sub) is one of the convenient architectures to support such systems. PH systems are safety critical; hence, errors can bring disastrous results. To prevent such problems, a powerful analytical tool is required. So using a proper formal language like graph transformation systems for developing of these systems seems necessary. But even if software engineers use such high level methodologies, errors may occur in the system under design. Hence, it should be investigated automatically and formally that whether this model of system satisfies all their requirements or not. In this paper, a dynamic architectural style for developing PH systems is presented. Then, the behavior of these systems is modeled and evaluated using GROOVE toolset. The results of the analysis show its high reliability.
Apostolopoulos, Yorghos; Lemke, Michael K; Barry, Adam E; Lich, Kristen Hassmiller
2018-02-01
Given the complexity of factors contributing to alcohol misuse, appropriate epistemologies and methodologies are needed to understand and intervene meaningfully. We aimed to (1) provide an overview of computational modeling methodologies, with an emphasis on system dynamics modeling; (2) explain how community-based system dynamics modeling can forge new directions in alcohol prevention research; and (3) present a primer on how to build alcohol misuse simulation models using system dynamics modeling, with an emphasis on stakeholder involvement, data sources and model validation. Throughout, we use alcohol misuse among college students in the United States as a heuristic example for demonstrating these methodologies. System dynamics modeling employs a top-down aggregate approach to understanding dynamically complex problems. Its three foundational properties-stocks, flows and feedbacks-capture non-linearity, time-delayed effects and other system characteristics. As a methodological choice, system dynamics modeling is amenable to participatory approaches; in particular, community-based system dynamics modeling has been used to build impactful models for addressing dynamically complex problems. The process of community-based system dynamics modeling consists of numerous stages: (1) creating model boundary charts, behavior-over-time-graphs and preliminary system dynamics models using group model-building techniques; (2) model formulation; (3) model calibration; (4) model testing and validation; and (5) model simulation using learning-laboratory techniques. Community-based system dynamics modeling can provide powerful tools for policy and intervention decisions that can result ultimately in sustainable changes in research and action in alcohol misuse prevention. © 2017 Society for the Study of Addiction.
Ringo: Interactive Graph Analytics on Big-Memory Machines
Perez, Yonathan; Sosič, Rok; Banerjee, Arijit; Puttagunta, Rohan; Raison, Martin; Shah, Pararth; Leskovec, Jure
2016-01-01
We present Ringo, a system for analysis of large graphs. Graphs provide a way to represent and analyze systems of interacting objects (people, proteins, webpages) with edges between the objects denoting interactions (friendships, physical interactions, links). Mining graphs provides valuable insights about individual objects as well as the relationships among them. In building Ringo, we take advantage of the fact that machines with large memory and many cores are widely available and also relatively affordable. This allows us to build an easy-to-use interactive high-performance graph analytics system. Graphs also need to be built from input data, which often resides in the form of relational tables. Thus, Ringo provides rich functionality for manipulating raw input data tables into various kinds of graphs. Furthermore, Ringo also provides over 200 graph analytics functions that can then be applied to constructed graphs. We show that a single big-memory machine provides a very attractive platform for performing analytics on all but the largest graphs as it offers excellent performance and ease of use as compared to alternative approaches. With Ringo, we also demonstrate how to integrate graph analytics with an iterative process of trial-and-error data exploration and rapid experimentation, common in data mining workloads. PMID:27081215
Ringo: Interactive Graph Analytics on Big-Memory Machines.
Perez, Yonathan; Sosič, Rok; Banerjee, Arijit; Puttagunta, Rohan; Raison, Martin; Shah, Pararth; Leskovec, Jure
2015-01-01
We present Ringo, a system for analysis of large graphs. Graphs provide a way to represent and analyze systems of interacting objects (people, proteins, webpages) with edges between the objects denoting interactions (friendships, physical interactions, links). Mining graphs provides valuable insights about individual objects as well as the relationships among them. In building Ringo, we take advantage of the fact that machines with large memory and many cores are widely available and also relatively affordable. This allows us to build an easy-to-use interactive high-performance graph analytics system. Graphs also need to be built from input data, which often resides in the form of relational tables. Thus, Ringo provides rich functionality for manipulating raw input data tables into various kinds of graphs. Furthermore, Ringo also provides over 200 graph analytics functions that can then be applied to constructed graphs. We show that a single big-memory machine provides a very attractive platform for performing analytics on all but the largest graphs as it offers excellent performance and ease of use as compared to alternative approaches. With Ringo, we also demonstrate how to integrate graph analytics with an iterative process of trial-and-error data exploration and rapid experimentation, common in data mining workloads.
Functional network organization of the human brain
Power, Jonathan D; Cohen, Alexander L; Nelson, Steven M; Wig, Gagan S; Barnes, Kelly Anne; Church, Jessica A; Vogel, Alecia C; Laumann, Timothy O; Miezin, Fran M; Schlaggar, Bradley L; Petersen, Steven E
2011-01-01
Summary Real-world complex systems may be mathematically modeled as graphs, revealing properties of the system. Here we study graphs of functional brain organization in healthy adults using resting state functional connectivity MRI. We propose two novel brain-wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships. These graphs contain many subgraphs in good agreement with known functional brain systems. Other subgraphs lack established functional identities; we suggest possible functional characteristics for these subgraphs. Further, graph measures of the areal network indicate that the default mode subgraph shares network properties with sensory and motor subgraphs: it is internally integrated but isolated from other subgraphs, much like a “processing” system. The modified voxelwise graph also reveals spatial motifs in the patterning of systems across the cortex. PMID:22099467
An asynchronous traversal engine for graph-based rich metadata management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Dong; Carns, Philip; Ross, Robert B.
Rich metadata in high-performance computing (HPC) systems contains extended information about users, jobs, data files, and their relationships. Property graphs are a promising data model to represent heterogeneous rich metadata flexibly. Specifically, a property graph can use vertices to represent different entities and edges to record the relationships between vertices with unique annotations. The high-volume HPC use case, with millions of entities and relationships, naturally requires an out-of-core distributed property graph database, which must support live updates (to ingest production information in real time), low-latency point queries (for frequent metadata operations such as permission checking), and large-scale traversals (for provenancemore » data mining). Among these needs, large-scale property graph traversals are particularly challenging for distributed graph storage systems. Most existing graph systems implement a "level synchronous" breadth-first search algorithm that relies on global synchronization in each traversal step. This performs well in many problem domains; but a rich metadata management system is characterized by imbalanced graphs, long traversal lengths, and concurrent workloads, each of which has the potential to introduce or exacerbate stragglers (i.e., abnormally slow steps or servers in a graph traversal) that lead to low overall throughput for synchronous traversal algorithms. Previous research indicated that the straggler problem can be mitigated by using asynchronous traversal algorithms, and many graph-processing frameworks have successfully demonstrated this approach. Such systems require the graph to be loaded into a separate batch-processing framework instead of being iteratively accessed, however. In this work, we investigate a general asynchronous graph traversal engine that can operate atop a rich metadata graph in its native format. We outline a traversal-aware query language and key optimizations (traversal-affiliate caching and execution merging) necessary for efficient performance. We further explore the effect of different graph partitioning strategies on the traversal performance for both synchronous and asynchronous traversal engines. Our experiments show that the asynchronous graph traversal engine is more efficient than its synchronous counterpart in the case of HPC rich metadata processing, where more servers are involved and larger traversals are needed. Furthermore, the asynchronous traversal engine is more adaptive to different graph partitioning strategies.« less
An asynchronous traversal engine for graph-based rich metadata management
Dai, Dong; Carns, Philip; Ross, Robert B.; ...
2016-06-23
Rich metadata in high-performance computing (HPC) systems contains extended information about users, jobs, data files, and their relationships. Property graphs are a promising data model to represent heterogeneous rich metadata flexibly. Specifically, a property graph can use vertices to represent different entities and edges to record the relationships between vertices with unique annotations. The high-volume HPC use case, with millions of entities and relationships, naturally requires an out-of-core distributed property graph database, which must support live updates (to ingest production information in real time), low-latency point queries (for frequent metadata operations such as permission checking), and large-scale traversals (for provenancemore » data mining). Among these needs, large-scale property graph traversals are particularly challenging for distributed graph storage systems. Most existing graph systems implement a "level synchronous" breadth-first search algorithm that relies on global synchronization in each traversal step. This performs well in many problem domains; but a rich metadata management system is characterized by imbalanced graphs, long traversal lengths, and concurrent workloads, each of which has the potential to introduce or exacerbate stragglers (i.e., abnormally slow steps or servers in a graph traversal) that lead to low overall throughput for synchronous traversal algorithms. Previous research indicated that the straggler problem can be mitigated by using asynchronous traversal algorithms, and many graph-processing frameworks have successfully demonstrated this approach. Such systems require the graph to be loaded into a separate batch-processing framework instead of being iteratively accessed, however. In this work, we investigate a general asynchronous graph traversal engine that can operate atop a rich metadata graph in its native format. We outline a traversal-aware query language and key optimizations (traversal-affiliate caching and execution merging) necessary for efficient performance. We further explore the effect of different graph partitioning strategies on the traversal performance for both synchronous and asynchronous traversal engines. Our experiments show that the asynchronous graph traversal engine is more efficient than its synchronous counterpart in the case of HPC rich metadata processing, where more servers are involved and larger traversals are needed. Furthermore, the asynchronous traversal engine is more adaptive to different graph partitioning strategies.« less
Graphical Language for Data Processing
NASA Technical Reports Server (NTRS)
Alphonso, Keith
2011-01-01
A graphical language for processing data allows processing elements to be connected with virtual wires that represent data flows between processing modules. The processing of complex data, such as lidar data, requires many different algorithms to be applied. The purpose of this innovation is to automate the processing of complex data, such as LIDAR, without the need for complex scripting and programming languages. The system consists of a set of user-interface components that allow the user to drag and drop various algorithmic and processing components onto a process graph. By working graphically, the user can completely visualize the process flow and create complex diagrams. This innovation supports the nesting of graphs, such that a graph can be included in another graph as a single step for processing. In addition to the user interface components, the system includes a set of .NET classes that represent the graph internally. These classes provide the internal system representation of the graphical user interface. The system includes a graph execution component that reads the internal representation of the graph (as described above) and executes that graph. The execution of the graph follows the interpreted model of execution in that each node is traversed and executed from the original internal representation. In addition, there are components that allow external code elements, such as algorithms, to be easily integrated into the system, thus making the system infinitely expandable.
Enhancements and Algorithms for Avionic Information Processing System Design Methodology.
1982-06-16
programming algorithm is enhanced by incorporating task precedence constraints and hardware failures. Stochastic network methods are used to analyze...allocations in the presence of random fluctuations. Graph theoretic methods are used to analyze hardware designs, and new designs are constructed with...There, spatial dynamic programming (SDP) was used to solve a static, deterministic software allocation problem. Under the current contract the SDP
Phase Shadows: An Enhanced Representation of Nonlinear Dynamic Systems
NASA Astrophysics Data System (ADS)
Luque, Amalia; Barbancho, Julio; Cañete, Javier Fernández; Córdoba, Antonio
2017-12-01
Many nonlinear dynamic systems have a rotating behavior where an angle defining its state may extend to more than 360∘. In these cases the use of the phase portrait does not properly depict the system’s evolution. Normalized phase portraits or cylindrical phase portraits have been extensively used to overcome the original phase portrait’s disadvantages. In this research a new graphic representation is introduced: the phase shadow. Its use clearly reveals the system behavior while overcoming the drawback of the existing plots. Through the paper the method to obtain the graphic is stated. Additionally, to show the phase shadow’s expressiveness, a rotating pendulum is considered. The work exposes that the new graph is an enhanced representational tool for systems having equilibrium points, limit cycles, chaotic attractors and/or bifurcations.
Phase transitions in Ising models on directed networks
NASA Astrophysics Data System (ADS)
Lipowski, Adam; Ferreira, António Luis; Lipowska, Dorota; Gontarek, Krzysztof
2015-11-01
We examine Ising models with heat-bath dynamics on directed networks. Our simulations show that Ising models on directed triangular and simple cubic lattices undergo a phase transition that most likely belongs to the Ising universality class. On the directed square lattice the model remains paramagnetic at any positive temperature as already reported in some previous studies. We also examine random directed graphs and show that contrary to undirected ones, percolation of directed bonds does not guarantee ferromagnetic ordering. Only above a certain threshold can a random directed graph support finite-temperature ferromagnetic ordering. Such behavior is found also for out-homogeneous random graphs, but in this case the analysis of magnetic and percolative properties can be done exactly. Directed random graphs also differ from undirected ones with respect to zero-temperature freezing. Only at low connectivity do they remain trapped in a disordered configuration. Above a certain threshold, however, the zero-temperature dynamics quickly drives the model toward a broken symmetry (magnetized) state. Only above this threshold, which is almost twice as large as the percolation threshold, do we expect the Ising model to have a positive critical temperature. With a very good accuracy, the behavior on directed random graphs is reproduced within a certain approximate scheme.
Incremental k-core decomposition: Algorithms and evaluation
Sariyuce, Ahmet Erdem; Gedik, Bugra; Jacques-SIlva, Gabriela; ...
2016-02-01
A k-core of a graph is a maximal connected subgraph in which every vertex is connected to at least k vertices in the subgraph. k-core decomposition is often used in large-scale network analysis, such as community detection, protein function prediction, visualization, and solving NP-hard problems on real networks efficiently, like maximal clique finding. In many real-world applications, networks change over time. As a result, it is essential to develop efficient incremental algorithms for dynamic graph data. In this paper, we propose a suite of incremental k-core decomposition algorithms for dynamic graph data. These algorithms locate a small subgraph that ismore » guaranteed to contain the list of vertices whose maximum k-core values have changed and efficiently process this subgraph to update the k-core decomposition. We present incremental algorithms for both insertion and deletion operations, and propose auxiliary vertex state maintenance techniques that can further accelerate these operations. Our results show a significant reduction in runtime compared to non-incremental alternatives. We illustrate the efficiency of our algorithms on different types of real and synthetic graphs, at varying scales. Furthermore, for a graph of 16 million vertices, we observe relative throughputs reaching a million times, relative to the non-incremental algorithms.« less
Scaling Semantic Graph Databases in Size and Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morari, Alessandro; Castellana, Vito G.; Villa, Oreste
In this paper we present SGEM, a full software system for accelerating large-scale semantic graph databases on commodity clusters. Unlike current approaches, SGEM addresses semantic graph databases by only employing graph methods at all the levels of the stack. On one hand, this allows exploiting the space efficiency of graph data structures and the inherent parallelism of graph algorithms. These features adapt well to the increasing system memory and core counts of modern commodity clusters. On the other hand, however, these systems are optimized for regular computation and batched data transfers, while graph methods usually are irregular and generate fine-grainedmore » data accesses with poor spatial and temporal locality. Our framework comprises a SPARQL to data parallel C compiler, a library of parallel graph methods and a custom, multithreaded runtime system. We introduce our stack, motivate its advantages with respect to other solutions and show how we solved the challenges posed by irregular behaviors. We present the result of our software stack on the Berlin SPARQL benchmarks with datasets up to 10 billion triples (a triple corresponds to a graph edge), demonstrating scaling in dataset size and in performance as more nodes are added to the cluster.« less
Using Network Dynamical Influence to Drive Consensus
NASA Astrophysics Data System (ADS)
Punzo, Giuliano; Young, George F.; MacDonald, Malcolm; Leonard, Naomi E.
2016-05-01
Consensus and decision-making are often analysed in the context of networks, with many studies focusing attention on ranking the nodes of a network depending on their relative importance to information routing. Dynamical influence ranks the nodes with respect to their ability to influence the evolution of the associated network dynamical system. In this study it is shown that dynamical influence not only ranks the nodes, but also provides a naturally optimised distribution of effort to steer a network from one state to another. An example is provided where the “steering” refers to the physical change in velocity of self-propelled agents interacting through a network. Distinct from other works on this subject, this study looks at directed and hence more general graphs. The findings are presented with a theoretical angle, without targeting particular applications or networked systems; however, the framework and results offer parallels with biological flocks and swarms and opportunities for design of technological networks.
Evolutionary dynamics of social dilemmas in structured heterogeneous populations.
Santos, F C; Pacheco, J M; Lenaerts, Tom
2006-02-28
Real populations have been shown to be heterogeneous, in which some individuals have many more contacts than others. This fact contrasts with the traditional homogeneous setting used in studies of evolutionary game dynamics. We incorporate heterogeneity in the population by studying games on graphs, in which the variability in connectivity ranges from single-scale graphs, for which heterogeneity is small and associated degree distributions exhibit a Gaussian tale, to scale-free graphs, for which heterogeneity is large with degree distributions exhibiting a power-law behavior. We study the evolution of cooperation, modeled in terms of the most popular dilemmas of cooperation. We show that, for all dilemmas, increasing heterogeneity favors the emergence of cooperation, such that long-term cooperative behavior easily resists short-term noncooperative behavior. Moreover, we show how cooperation depends on the intricate ties between individuals in scale-free populations.
Causality, mediation and time: a dynamic viewpoint
Aalen, Odd O; Røysland, Kjetil; Gran, Jon Michael; Ledergerber, Bruno
2012-01-01
Summary. Time dynamics are often ignored in causal modelling. Clearly, causality must operate in time and we show how this corresponds to a mechanistic, or system, understanding of causality. The established counterfactual definitions of direct and indirect effects depend on an ability to manipulate the mediator which may not hold in practice, and we argue that a mechanistic view may be better. Graphical representations based on local independence graphs and dynamic path analysis are used to facilitate communication as well as providing an overview of the dynamic relations ‘at a glance’. The relationship between causality as understood in a mechanistic and in an interventionist sense is discussed. An example using data from the Swiss HIV Cohort Study is presented. PMID:23193356
Inferring Structure and Forecasting Dynamics on Evolving Networks
2016-01-05
Graphs ........................................................................................................................ 23 7. Sacred Values...5) Team Formation; (6) Games of Graphs; (7) Sacred Values and Legitimacy in Network Interactions; (8) Network processes in Geo-Social Context. 1...Authority, Cooperation and Competition in Religious Networks Key Papers: McBride 2015a [72] and McBride 2015b [73] McBride (2015a) examines
Kerepesi, Csaba; Varga, Bálint; Szalkai, Balázs; Grolmusz, Vince
2018-04-23
In the applications of the graph theory, it is unusual that one considers numerous, pairwise different graphs on the very same set of vertices. In the case of human braingraphs or connectomes, however, this is the standard situation: the nodes correspond to anatomically identified cerebral regions, and two vertices are connected by an edge if a diffusion MRI-based workflow identifies a fiber of axons, running between the two regions, corresponding to the two vertices. Therefore, if we examine the braingraphs of n subjects, then we have n graphs on the very same, anatomically identified vertex set. It is a natural idea to describe the k-frequently appearing edges in these graphs: the edges that are present between the same two vertices in at least k out of the n graphs. Based on the NIH-funded large Human Connectome Project's public data release, we have reported the construction of the Budapest Reference Connectome Server http://www.connectome.pitgroup.org that generates and visualizes these k-frequently appearing edges. We call the graphs of the k-frequently appearing edges "k-consensus connectomes" since an edge could be included only if it is present in at least k graphs out of n. Considering the whole human brain, we have reported a surprising property of these consensus connectomes earlier. In the present work we are focusing on the frontal lobe of the brain, and we report here a similarly surprising dynamical property of the consensus connectomes when k is gradually changed from k = n to k = 1: the connections between the nodes of the frontal lobe are seemingly emanating from those nodes that were connected to sub-cortical structures of the dorsal striatum: the caudate nucleus, and the putamen. We hypothesize that this dynamic behavior copies the axonal fiber development of the frontal lobe. An animation of the phenomenon is presented at https://youtu.be/wBciB2eW6_8. Copyright © 2018 Elsevier B.V. All rights reserved.
A graph algebra for scalable visual analytics.
Shaverdian, Anna A; Zhou, Hao; Michailidis, George; Jagadish, Hosagrahar V
2012-01-01
Visual analytics (VA), which combines analytical techniques with advanced visualization features, is fast becoming a standard tool for extracting information from graph data. Researchers have developed many tools for this purpose, suggesting a need for formal methods to guide these tools' creation. Increased data demands on computing requires redesigning VA tools to consider performance and reliability in the context of analysis of exascale datasets. Furthermore, visual analysts need a way to document their analyses for reuse and results justification. A VA graph framework encapsulated in a graph algebra helps address these needs. Its atomic operators include selection and aggregation. The framework employs a visual operator and supports dynamic attributes of data to enable scalable visual exploration of data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weerakkody, Sean; Liu, Xiaofei; Sinopoli, Bruno
We consider the design and analysis of robust distributed control systems (DCSs) to ensure the detection of integrity attacks. DCSs are often managed by independent agents and are implemented using a diverse set of sensors and controllers. However, the heterogeneous nature of DCSs along with their scale leave such systems vulnerable to adversarial behavior. To mitigate this reality, we provide tools that allow operators to prevent zero dynamics attacks when as many as p agents and sensors are corrupted. Such a design ensures attack detectability in deterministic systems while removing the threat of a class of stealthy attacks in stochasticmore » systems. To achieve this goal, we use graph theory to obtain necessary and sufficient conditions for the presence of zero dynamics attacks in terms of the structural interactions between agents and sensors. We then formulate and solve optimization problems which minimize communication networks while also ensuring a resource limited adversary cannot perform a zero dynamics attacks. Polynomial time algorithms for design and analysis are provided.« less
NASA Astrophysics Data System (ADS)
Hadi, M. Z.; Djatna, T.; Sugiarto
2018-04-01
This paper develops a dynamic storage assignment model to solve storage assignment problem (SAP) for beverages order picking in a drive-in rack warehousing system to determine the appropriate storage location and space for each beverage products dynamically so that the performance of the system can be improved. This study constructs a graph model to represent drive-in rack storage position then combine association rules mining, class-based storage policies and an arrangement rule algorithm to determine an appropriate storage location and arrangement of the product according to dynamic orders from customers. The performance of the proposed model is measured as rule adjacency accuracy, travel distance (for picking process) and probability a product become expiry using Last Come First Serve (LCFS) queue approach. Finally, the proposed model is implemented through computer simulation and compare the performance for different storage assignment methods as well. The result indicates that the proposed model outperforms other storage assignment methods.
Scale-free networks as an epiphenomenon of memory
NASA Astrophysics Data System (ADS)
Caravelli, F.; Hamma, A.; Di Ventra, M.
2015-01-01
Many realistic networks are scale free, with small characteristic path lengths, high clustering, and power law in their degree distribution. They can be obtained by dynamical networks in which a preferential attachment process takes place. However, this mechanism is non-local, in the sense that it requires knowledge of the whole graph in order for the graph to be updated. Instead, if preferential attachment and realistic networks occur in physical systems, these features need to emerge from a local model. In this paper, we propose a local model and show that a possible ingredient (which is often underrated) for obtaining scale-free networks with local rules is memory. Such a model can be realised in solid-state circuits, using non-linear passive elements with memory such as memristors, and thus can be tested experimentally.
An Approach to Model Based Testing of Multiagent Systems
Nadeem, Aamer
2015-01-01
Autonomous agents perform on behalf of the user to achieve defined goals or objectives. They are situated in dynamic environment and are able to operate autonomously to achieve their goals. In a multiagent system, agents cooperate with each other to achieve a common goal. Testing of multiagent systems is a challenging task due to the autonomous and proactive behavior of agents. However, testing is required to build confidence into the working of a multiagent system. Prometheus methodology is a commonly used approach to design multiagents systems. Systematic and thorough testing of each interaction is necessary. This paper proposes a novel approach to testing of multiagent systems based on Prometheus design artifacts. In the proposed approach, different interactions between the agent and actors are considered to test the multiagent system. These interactions include percepts and actions along with messages between the agents which can be modeled in a protocol diagram. The protocol diagram is converted into a protocol graph, on which different coverage criteria are applied to generate test paths that cover interactions between the agents. A prototype tool has been developed to generate test paths from protocol graph according to the specified coverage criterion. PMID:25874263
Expert systems for automated maintenance of a Mars oxygen production system
NASA Astrophysics Data System (ADS)
Huang, Jen-Kuang; Ho, Ming-Tsang; Ash, Robert L.
1992-08-01
Application of expert system concepts to a breadboard Mars oxygen processor unit have been studied and tested. The research was directed toward developing the methodology required to enable autonomous operation and control of these simple chemical processors at Mars. Failure detection and isolation was the key area of concern, and schemes using forward chaining, backward chaining, knowledge-based expert systems, and rule-based expert systems were examined. Tests and simulations were conducted that investigated self-health checkout, emergency shutdown, and fault detection, in addition to normal control activities. A dynamic system model was developed using the Bond-Graph technique. The dynamic model agreed well with tests involving sudden reductions in throughput. However, nonlinear effects were observed during tests that incorporated step function increases in flow variables. Computer simulations and experiments have demonstrated the feasibility of expert systems utilizing rule-based diagnosis and decision-making algorithms.
Graph Theory Approach for Studying Food Webs
NASA Astrophysics Data System (ADS)
Longjas, A.; Tejedor, A.; Foufoula-Georgiou, E.
2017-12-01
Food webs are complex networks of feeding interactions among species in ecological communities. Metrics describing food web structure have been proposed to compare and classify food webs ranging from food chain length, connectance, degree distribution, centrality measures, to the presence of motifs (distinct compartments), among others. However, formal methodologies for studying both food web topology and the dynamic processes operating on them are still lacking. Here, we utilize a quantitative framework using graph theory within which a food web is represented by a directed graph, i.e., a collection of vertices (species or trophic species defined as sets of species sharing the same predators and prey) and directed edges (predation links). This framework allows us to identify apex (environmental "source" node) to outlet (top predators) subnetworks and compute the steady-state flux (e.g., carbon, nutrients, energy etc.) in the food web. We use this framework to (1) construct vulnerability maps that quantify the relative change of flux delivery to the top predators in response to perturbations in prey species (2) identify keystone species, whose loss would precipitate further species extinction, and (3) introduce a suite of graph-theoretic metrics to quantify the topologic (imposed by food web connectivity) and dynamic (dictated by the flux partitioning and distribution) components of a food web's complexity. By projecting food webs into a 2D Topodynamic Complexity Space whose coordinates are given by Number of alternative paths (topologic) and Leakage Index (dynamic), we show that this space provides a basis for food web comparison and provide physical insights into their dynamic behavior.
Cloud computing method for dynamically scaling a process across physical machine boundaries
Gillen, Robert E.; Patton, Robert M.; Potok, Thomas E.; Rojas, Carlos C.
2014-09-02
A cloud computing platform includes first device having a graph or tree structure with a node which receives data. The data is processed by the node or communicated to a child node for processing. A first node in the graph or tree structure determines the reconfiguration of a portion of the graph or tree structure on a second device. The reconfiguration may include moving a second node and some or all of its descendant nodes. The second and descendant nodes may be copied to the second device.
Emergence of a spectral gap in a class of random matrices associated with split graphs
NASA Astrophysics Data System (ADS)
Bassler, Kevin E.; Zia, R. K. P.
2018-01-01
Motivated by the intriguing behavior displayed in a dynamic network that models a population of extreme introverts and extroverts (XIE), we consider the spectral properties of ensembles of random split graph adjacency matrices. We discover that, in general, a gap emerges in the bulk spectrum between -1 and 0 that contains a single eigenvalue. An analytic expression for the bulk distribution is derived and verified with numerical analysis. We also examine their relation to chiral ensembles, which are associated with bipartite graphs.
ERIC Educational Resources Information Center
Lawes, Jonathan F.
2013-01-01
Graphing polar curves typically involves a combination of three traditional techniques, all of which can be time-consuming and tedious. However, an alternative method--graphing the polar function on a rectangular plane--simplifies graphing, increases student understanding of the polar coordinate system, and reinforces graphing techniques learned…
Exact sampling of graphs with prescribed degree correlations
NASA Astrophysics Data System (ADS)
Bassler, Kevin E.; Del Genio, Charo I.; Erdős, Péter L.; Miklós, István; Toroczkai, Zoltán
2015-08-01
Many real-world networks exhibit correlations between the node degrees. For instance, in social networks nodes tend to connect to nodes of similar degree and conversely, in biological and technological networks, high-degree nodes tend to be linked with low-degree nodes. Degree correlations also affect the dynamics of processes supported by a network structure, such as the spread of opinions or epidemics. The proper modelling of these systems, i.e., without uncontrolled biases, requires the sampling of networks with a specified set of constraints. We present a solution to the sampling problem when the constraints imposed are the degree correlations. In particular, we develop an exact method to construct and sample graphs with a specified joint-degree matrix, which is a matrix providing the number of edges between all the sets of nodes of a given degree, for all degrees, thus completely specifying all pairwise degree correlations, and additionally, the degree sequence itself. Our algorithm always produces independent samples without backtracking. The complexity of the graph construction algorithm is {O}({NM}) where N is the number of nodes and M is the number of edges.
Using Behavior Over Time Graphs to Spur Systems Thinking Among Public Health Practitioners.
Calancie, Larissa; Anderson, Seri; Branscomb, Jane; Apostolico, Alexsandra A; Lich, Kristen Hassmiller
2018-02-01
Public health practitioners can use Behavior Over Time (BOT) graphs to spur discussion and systems thinking around complex challenges. Multiple large systems, such as health care, the economy, and education, affect chronic disease rates in the United States. System thinking tools can build public health practitioners' capacity to understand these systems and collaborate within and across sectors to improve population health. BOT graphs show a variable, or variables (y axis) over time (x axis). Although analyzing trends is not new to public health, drawing BOT graphs, annotating the events and systemic forces that are likely to influence the depicted trends, and then discussing the graphs in a diverse group provides an opportunity for public health practitioners to hear each other's perspectives and creates a more holistic understanding of the key factors that contribute to a trend. We describe how BOT graphs are used in public health, how they can be used to generate group discussion, and how this process can advance systems-level thinking. Then we describe how BOT graphs were used with groups of maternal and child health (MCH) practitioners and partners (N = 101) during a training session to advance their thinking about MCH challenges. Eighty-six percent of the 84 participants who completed an evaluation agreed or strongly agreed that they would use this BOT graph process to engage stakeholders in their home states and jurisdictions. The BOT graph process we describe can be applied to a variety of public health issues and used by practitioners, stakeholders, and researchers.
DSGRN: Examining the Dynamics of Families of Logical Models.
Cummins, Bree; Gedeon, Tomas; Harker, Shaun; Mischaikow, Konstantin
2018-01-01
We present a computational tool DSGRN for exploring the dynamics of a network by computing summaries of the dynamics of switching models compatible with the network across all parameters. The network can arise directly from a biological problem, or indirectly as the interaction graph of a Boolean model. This tool computes a finite decomposition of parameter space such that for each region, the state transition graph that describes the coarse dynamical behavior of a network is the same. Each of these parameter regions corresponds to a different logical description of the network dynamics. The comparison of dynamics across parameters with experimental data allows the rejection of parameter regimes or entire networks as viable models for representing the underlying regulatory mechanisms. This in turn allows a search through the space of perturbations of a given network for networks that robustly fit the data. These are the first steps toward discovering a network that optimally matches the observed dynamics by searching through the space of networks.
The Effects of Sacred Value Networks Within an Evolutionary, Adversarial Game
NASA Astrophysics Data System (ADS)
McCalla, Scott G.; Short, Martin B.; Brantingham, P. Jeffrey
2013-05-01
The effects of personal relationships and shared ideologies on levels of crime and the formation of criminal coalitions are studied within the context of an adversarial, evolutionary game first introduced in Short et al. (Phys. Rev. E 82:066114, 2010). Here, we interpret these relationships as connections on a graph of N players. These connections are then used in a variety of ways to define each player's "sacred value network"—groups of individuals that are subject to special consideration or treatment by that player. We explore the effects on the dynamics of the system that these networks introduce, through various forms of protection from both victimization and punishment. Under local protection, these networks introduce a new fixed point within the game dynamics, which we find through a continuum approximation of the discrete game. Under more complicated, extended protection, we numerically observe the emergence of criminal coalitions, or "gangs". We also find that a high-crime steady state is much more frequent in the context of extended protection networks, in both the case of Erdős-Rényi and small world random graphs.
Zheng, Qiang; Warner, Steven; Tasian, Gregory; Fan, Yong
2018-02-12
Automatic segmentation of kidneys in ultrasound (US) images remains a challenging task because of high speckle noise, low contrast, and large appearance variations of kidneys in US images. Because texture features may improve the US image segmentation performance, we propose a novel graph cuts method to segment kidney in US images by integrating image intensity information and texture feature maps. We develop a new graph cuts-based method to segment kidney US images by integrating original image intensity information and texture feature maps extracted using Gabor filters. To handle large appearance variation within kidney images and improve computational efficiency, we build a graph of image pixels close to kidney boundary instead of building a graph of the whole image. To make the kidney segmentation robust to weak boundaries, we adopt localized regional information to measure similarity between image pixels for computing edge weights to build the graph of image pixels. The localized graph is dynamically updated and the graph cuts-based segmentation iteratively progresses until convergence. Our method has been evaluated based on kidney US images of 85 subjects. The imaging data of 20 randomly selected subjects were used as training data to tune parameters of the image segmentation method, and the remaining data were used as testing data for validation. Experiment results demonstrated that the proposed method obtained promising segmentation results for bilateral kidneys (average Dice index = 0.9446, average mean distance = 2.2551, average specificity = 0.9971, average accuracy = 0.9919), better than other methods under comparison (P < .05, paired Wilcoxon rank sum tests). The proposed method achieved promising performance for segmenting kidneys in two-dimensional US images, better than segmentation methods built on any single channel of image information. This method will facilitate extraction of kidney characteristics that may predict important clinical outcomes such as progression of chronic kidney disease. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
A multispin algorithm for the Kob-Andersen stochastic dynamics on regular lattices
NASA Astrophysics Data System (ADS)
Boccagna, Roberto
2017-07-01
The aim of the paper is to propose an algorithm based on the Multispin Coding technique for the Kob-Andersen glassy dynamics. We first give motivations to speed up the numerical simulation in the context of spin glass models [M. Mezard, G. Parisi, M. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987)]; after defining the Markovian dynamics as in [W. Kob, H.C. Andersen, Phys. Rev. E 48, 4364 (1993)] as well as the related interesting observables, we extend it to the more general framework of random regular graphs, listing at the same time some known analytical results [C. Toninelli, G. Biroli, D.S. Fisher, J. Stat. Phys. 120, 167 (2005)]. The purpose of this work is a dual one; firstly, we describe how bitwise operators can be used to build up the algorithm by carefully exploiting the way data are stored on a computer. Since it was first introduced [M. Creutz, L. Jacobs, C. Rebbi, Phys. Rev. D 20, 1915 (1979); C. Rebbi, R.H. Swendsen, Phys. Rev. D 21, 4094 (1980)], this technique has been widely used to perform Monte Carlo simulations for Ising and Potts spin systems; however, it can be successfully adapted to more complex systems in which microscopic parameters may assume boolean values. Secondly, we introduce a random graph in which a characteristic parameter allows to tune the possible transition point. A consistent part is devoted to listing the numerical results obtained by running numerical simulations.
Recurrence plot for parameters analysing of internal combustion engine
NASA Astrophysics Data System (ADS)
Alexa, O.; Ilie, C. O.; Marinescu, M.; Vilau, R.; Grosu, D.
2015-11-01
In many technical disciplines modem data analysis techniques has been successfully applied to understand the complexity of the system. The growing volume of theoretical knowledge about systems dynamic's offered researchers the opportunity to look for non-linear dynamics in data whose evolution linear models are unable to explain in a satisfactory manner. One approach in this respect is Recurrence Analysis - RA which is a graphical method designed to locate hidden recurring patterns, nonstationarity and structural changes. RA approach arose in natural sciences like physics and biology but quickly was adopted in economics and engineering. Meanwhile. The fast development of computer resources has provided powerful tools to perform this new and complex model. One free software which was used to perform our analysis is Visual Recurrence Analysis - VRA developed by Eugene Kononov. As is presented in this paper, the recurrence plot investigation for the analyzing of the internal combustion engine shows some of the RPA capabilities in this domain. We chose two specific engine parameters measured in two different tests to perform the RPA. These parameters are injection impulse width and engine angular speed and the tests are I11n and I51n. There were computed graphs for each of them. Graphs were analyzed and compared to obtain a conclusion. This work is an incipient research, being one of the first attempts of using recurrence plot for analyzing automotive dynamics. It opens a wide field of action for future research programs.
On the dynamical stability of the space 'monorail'
NASA Astrophysics Data System (ADS)
Bergamaschi, S.; Manni, D.
The dynamical stability of 'monorail' tethered-satellite/elevator configurations being studied for the Space Station is investigated analytically, treating the end platforms and elevator as point masses, neglecting tether elasticity, and taking the Coriolis force and the complex gravitational field into account in analyzing the orbital-plane motion of the system. A mathematical model is constructed; the equations of motion are derived; and results obtained by numerical integration for platform masses 100,000 and 10,000 kg, elevator mass 5000 kg, and a 10-km-long 6-mm-diameter 4070-kg-mass tether are presented in graphs and briefly characterized.
Entraining the topology and the dynamics of a network of phase oscillators
NASA Astrophysics Data System (ADS)
Sendiña-Nadal, I.; Leyva, I.; Buldú, J. M.; Almendral, J. A.; Boccaletti, S.
2009-04-01
We show that the topology and dynamics of a network of unsynchronized Kuramoto oscillators can be simultaneously controlled by means of a forcing mechanism which yields a phase locking of the oscillators to that of an external pacemaker in connection with the reshaping of the network’s degree distribution. The entrainment mechanism is based on the addition, at regular time intervals, of unidirectional links from oscillators that follow the dynamics of a pacemaker to oscillators in the pristine graph whose phases hold a prescribed phase relationship. Such a dynamically based rule in the attachment process leads to the emergence of a power-law shape in the final degree distribution of the graph whenever the network is entrained to the dynamics of the pacemaker. We show that the arousal of a scale-free distribution in connection with the success of the entrainment process is a robust feature, characterizing different networks’ initial configurations and parameters.
Application of a minicomputer-based system in measuring intraocular fluid dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronzino, J.D.; D'Amato, D.P.; O'Rourke, J.
A complete, computerized system has been developed to automate and display radionuclide clearance studies in an ophthalmology clinical laboratory. The system is based on a PDP-8E computer with a 16-k core memory and includes a dual-drive Decassette system and an interactive display terminal. The software controls the acquisition of data from an NIM scaler, times the procedures, and analyzes and simultaneously displays logarithmically converted data on a fully annotated graph. Animal studies and clinical experiments are presented to illustrate the nature of these displays and the results obtained using this automated eye physiometer.
Active influence in dynamical models of structural balance in social networks
NASA Astrophysics Data System (ADS)
Summers, Tyler H.; Shames, Iman
2013-07-01
We consider a nonlinear dynamical system on a signed graph, which can be interpreted as a mathematical model of social networks in which the links can have both positive and negative connotations. In accordance with a concept from social psychology called structural balance, the negative links play a key role in both the structure and dynamics of the network. Recent research has shown that in a nonlinear dynamical system modeling the time evolution of “friendliness levels” in the network, two opposing factions emerge from almost any initial condition. Here we study active external influence in this dynamical model and show that any agent in the network can achieve any desired structurally balanced state from any initial condition by perturbing its own local friendliness levels. Based on this result, we also introduce a new network centrality measure for signed networks. The results are illustrated in an international-relations network using United Nations voting record data from 1946 to 2008 to estimate friendliness levels amongst various countries.
A Visual Analytics Paradigm Enabling Trillion-Edge Graph Exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Pak C.; Haglin, David J.; Gillen, David S.
We present a visual analytics paradigm and a system prototype for exploring web-scale graphs. A web-scale graph is described as a graph with ~one trillion edges and ~50 billion vertices. While there is an aggressive R&D effort in processing and exploring web-scale graphs among internet vendors such as Facebook and Google, visualizing a graph of that scale still remains an underexplored R&D area. The paper describes a nontraditional peek-and-filter strategy that facilitates the exploration of a graph database of unprecedented size for visualization and analytics. We demonstrate that our system prototype can 1) preprocess a graph with ~25 billion edgesmore » in less than two hours and 2) support database query and visualization on the processed graph database afterward. Based on our computational performance results, we argue that we most likely will achieve the one trillion edge mark (a computational performance improvement of 40 times) for graph visual analytics in the near future.« less
Cooperative Search by UAV Teams: A Model Predictive Approach Using Dynamic Graphs
2011-10-01
decentralized processing and control architecture. SLAMEM asset models accurately represent the Unicorn UAV platforms and other standard military platforms in...IMPLEMENTATION The CGBMPS algorithm has been successfully field-tested using both Unicorn [27] and Raven [20] UAV platforms. This section describes...the hardware-software system setup and implementation used for testing with Unicorns , Toyon’s UAV test platform. We also present some results from the
ERIC Educational Resources Information Center
Smith, David Arthur
2010-01-01
Much recent work in natural language processing treats linguistic analysis as an inference problem over graphs. This development opens up useful connections between machine learning, graph theory, and linguistics. The first part of this dissertation formulates syntactic dependency parsing as a dynamic Markov random field with the novel…
Fusion And Inference From Multiple And Massive Disparate Distributed Dynamic Data Sets
2017-07-01
principled methodology for two-sample graph testing; designed a provably almost-surely perfect vertex clustering algorithm for block model graphs; proved...3.7 Semi-Supervised Clustering Methodology ...................................................................... 9 3.8 Robust Hypothesis Testing...dimensional Euclidean space – allows the full arsenal of statistical and machine learning methodology for multivariate Euclidean data to be deployed for
Queues on a Dynamically Evolving Graph
NASA Astrophysics Data System (ADS)
Mandjes, Michel; Starreveld, Nicos J.; Bekker, René
2018-04-01
This paper considers a population process on a dynamically evolving graph, which can be alternatively interpreted as a queueing network. The queues are of infinite-server type, entailing that at each node all customers present are served in parallel. The links that connect the queues have the special feature that they are unreliable, in the sense that their status alternates between `up' and `down'. If a link between two nodes is down, with a fixed probability each of the clients attempting to use that link is lost; otherwise the client remains at the origin node and reattempts using the link (and jumps to the destination node when it finds the link restored). For these networks we present the following results: (a) a system of coupled partial differential equations that describes the joint probability generating function corresponding to the queues' time-dependent behavior (and a system of ordinary differential equations for its stationary counterpart), (b) an algorithm to evaluate the (time-dependent and stationary) moments, and procedures to compute user-perceived performance measures which facilitate the quantification of the impact of the links' outages, (c) a diffusion limit for the joint queue length process. We include explicit results for a series relevant special cases, such as tandem networks and symmetric fully connected networks.
Ensembles of physical states and random quantum circuits on graphs
NASA Astrophysics Data System (ADS)
Hamma, Alioscia; Santra, Siddhartha; Zanardi, Paolo
2012-11-01
In this paper we continue and extend the investigations of the ensembles of random physical states introduced in Hamma [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.040502 109, 040502 (2012)]. These ensembles are constructed by finite-length random quantum circuits (RQC) acting on the (hyper)edges of an underlying (hyper)graph structure. The latter encodes for the locality structure associated with finite-time quantum evolutions generated by physical, i.e., local, Hamiltonians. Our goal is to analyze physical properties of typical states in these ensembles; in particular here we focus on proxies of quantum entanglement as purity and α-Renyi entropies. The problem is formulated in terms of matrix elements of superoperators which depend on the graph structure, choice of probability measure over the local unitaries, and circuit length. In the α=2 case these superoperators act on a restricted multiqubit space generated by permutation operators associated to the subsets of vertices of the graph. For permutationally invariant interactions the dynamics can be further restricted to an exponentially smaller subspace. We consider different families of RQCs and study their typical entanglement properties for finite time as well as their asymptotic behavior. We find that area law holds in average and that the volume law is a typical property (that is, it holds in average and the fluctuations around the average are vanishing for the large system) of physical states. The area law arises when the evolution time is O(1) with respect to the size L of the system, while the volume law arises as is typical when the evolution time scales like O(L).
NASA Astrophysics Data System (ADS)
Chen, Liang-Ming; Lv, Yue-Yong; Li, Chuan-Jiang; Ma, Guang-Fu
2016-12-01
In this paper, we investigate cooperatively surrounding control (CSC) of multi-agent systems modeled by Euler-Lagrange (EL) equations under a directed graph. With the consideration of the uncertain dynamics in an EL system, a backstepping CSC algorithm combined with neural-networks is proposed first such that the agents can move cooperatively to surround the stationary target. Then, a command filtered backstepping CSC algorithm is further proposed to deal with the constraints on control input and the absence of neighbors’ velocity information. Numerical examples of eight satellites surrounding one space target illustrate the effectiveness of the theoretical results. Project supported by the National Basic Research Program of China (Grant No. 2012CB720000) and the National Natural Science Foundation of China (Grant Nos. 61304005 and 61403103).
A Graph-Based Impact Metric for Mitigating Lateral Movement Cyber Attacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purvine, Emilie AH; Johnson, John R.; Lo, Chaomei
Most cyber network attacks begin with an adversary gain- ing a foothold within the network and proceed with lateral movement until a desired goal is achieved. The mechanism by which lateral movement occurs varies but the basic signa- ture of hopping between hosts by exploiting vulnerabilities is the same. Because of the nature of the vulnerabilities typ- ically exploited, lateral movement is very difficult to detect and defend against. In this paper we define a dynamic reach- ability graph model of the network to discover possible paths that an adversary could take using different vulnerabilities, and how those paths evolvemore » over time. We use this reacha- bility graph to develop dynamic machine-level and network- level impact scores. Lateral movement mitigation strategies which make use of our impact scores are also discussed, and we detail an example using a freely available data set.« less
Dragicevic, Arnaud; Boulanger, Vincent; Bruciamacchie, Max; Chauchard, Sandrine; Dupouey, Jean-Luc; Stenger, Anne
2017-04-21
In order to unveil the value of network connectivity, we formalize the construction of ecological networks in forest environments as an optimal control dynamic graph-theoretic problem. The network is based on a set of bioreserves and patches linked by ecological corridors. The node dynamics, built upon the consensus protocol, form a time evolutive Mahalanobis distance weighted by the opportunity costs of timber production. We consider a case of complete graph, where the ecological network is fully connected, and a case of incomplete graph, where the ecological network is partially connected. The results show that the network equilibrium depends on the size of the reception zone, while the network connectivity depends on the environmental compatibility between the ecological areas. Through shadow prices, we find that securing connectivity in partially connected networks is more expensive than in fully connected networks, but should be undertaken when the opportunity costs are significant. Copyright © 2017 Elsevier Ltd. All rights reserved.
Function plot response: A scalable system for teaching kinematics graphs
NASA Astrophysics Data System (ADS)
Laverty, James; Kortemeyer, Gerd
2012-08-01
Understanding and interpreting graphs are essential skills in all sciences. While students are mostly proficient in plotting given functions and reading values off graphs, they frequently lack the ability to construct and interpret graphs in a meaningful way. Students can use graphs as representations of value pairs, but often fail to interpret them as the representation of functions, and mostly fail to use them as representations of physical reality. Working with graphs in classroom settings has been shown to improve student abilities with graphs, particularly when the students can interact with them. We introduce a novel problem type in an online homework system, which requires students to construct the graphs themselves in free form, and requires no hand-grading by instructors. Initial experiences using the new problem type in an introductory physics course are reported.
Information visualisation based on graph models
NASA Astrophysics Data System (ADS)
Kasyanov, V. N.; Kasyanova, E. V.
2013-05-01
Information visualisation is a key component of support tools for many applications in science and engineering. A graph is an abstract structure that is widely used to model information for its visualisation. In this paper, we consider practical and general graph formalism called hierarchical graphs and present the Higres and Visual Graph systems aimed at supporting information visualisation on the base of hierarchical graph models.
Efficient Synthesis of Graph Methods: a Dynamically Scheduled Architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minutoli, Marco; Castellana, Vito G.; Tumeo, Antonino
RDF databases naturally map to a graph representation and employ languages, such as SPARQL, that implements queries as graph pattern matching routines. Graph methods exhibit an irregular behavior: they present unpredictable, fine-grained data accesses, and are synchronization inten- sive. Graph data structures expose large amounts of dy- namic parallelism, but are difficult to partition without gen- erating load unbalance. In this paper, we present a novel ar- chitecture to improve the synthesis of graph methods. Our design addresses the issues of these algorithms with two com- ponents: a Dynamic Task Scheduler (DTS), which reduces load unbalance and maximize resource utilization,more » and a Hi- erarchical Memory Interface controller (HMI), which pro- vides support for concurrent memory operations on multi- ported/multi-banked shared memories. We evaluate our ap- proach by generating the accelerators for a set of SPARQL queries from the Lehigh University Benchmark (LUBM). We first analyze the load unbalance of these queries, showing that execution time among tasks can differ even of order of magnitudes. We then synthesize the queries and com- pare the performance of the resulting accelerators against the current state of the art. Experimental results show that our solution provides a speedup over the serial implementa- tion close to the theoretical maximum and a speedup up to 3.45 over a baseline parallel implementation. We conclude our study by exploring the design space to achieve maximum memory channels utilization. The best design used at least three of the four memory channels for more than 90% of the execution time.« less
Dynamic programming and graph algorithms in computer vision.
Felzenszwalb, Pedro F; Zabih, Ramin
2011-04-01
Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting since, by carefully exploiting problem structure, they often provide nontrivial guarantees concerning solution quality. In this paper, we review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo, the mid-level problem of interactive object segmentation, and the high-level problem of model-based recognition.
A distributed query execution engine of big attributed graphs.
Batarfi, Omar; Elshawi, Radwa; Fayoumi, Ayman; Barnawi, Ahmed; Sakr, Sherif
2016-01-01
A graph is a popular data model that has become pervasively used for modeling structural relationships between objects. In practice, in many real-world graphs, the graph vertices and edges need to be associated with descriptive attributes. Such type of graphs are referred to as attributed graphs. G-SPARQL has been proposed as an expressive language, with a centralized execution engine, for querying attributed graphs. G-SPARQL supports various types of graph querying operations including reachability, pattern matching and shortest path where any G-SPARQL query may include value-based predicates on the descriptive information (attributes) of the graph edges/vertices in addition to the structural predicates. In general, a main limitation of centralized systems is that their vertical scalability is always restricted by the physical limits of computer systems. This article describes the design, implementation in addition to the performance evaluation of DG-SPARQL, a distributed, hybrid and adaptive parallel execution engine of G-SPARQL queries. In this engine, the topology of the graph is distributed over the main memory of the underlying nodes while the graph data are maintained in a relational store which is replicated on the disk of each of the underlying nodes. DG-SPARQL evaluates parts of the query plan via SQL queries which are pushed to the underlying relational stores while other parts of the query plan, as necessary, are evaluated via indexless memory-based graph traversal algorithms. Our experimental evaluation shows the efficiency and the scalability of DG-SPARQL on querying massive attributed graph datasets in addition to its ability to outperform the performance of Apache Giraph, a popular distributed graph processing system, by orders of magnitudes.
Implementation of a dynamic data entry system for the PHENIX gas system
NASA Astrophysics Data System (ADS)
Hagiwara, Masako
2003-10-01
The PHENIX detector at the BNL RHIC facility uses multiple detector technologies that require a precise gas delivery system, including flammable gases that require additional monitoring. During operation of the detector, it is crucial to maintain stable and safe operating conditions by carefully monitoring flows, pressures, and various other gas properties. These systems are monitored during running periods on a continuous basis. For the most part, these records were kept by hand, filling out a paper logsheet every four hours. A dynamic data entry system was needed to replace the paper logsheets. The solution created was to use a PDA or laptop computer with a wireless connection to enter the data directly into a MySQL database. The system uses PHP to dynamically create and update the data entry pages. The data entered can be viewed in graphs as well as tables. As a result, the data recorded will be easily accessible during PHENIX's next running period. It also allows for long term archiving, making the data available during the analysis phase, providing knowledge of the operating conditions of the gas system.
Trujillo, Caleb; Cooper, Melanie M; Klymkowsky, Michael W
2012-01-01
Biological systems, from the molecular to the ecological, involve dynamic interaction networks. To examine student thinking about networks we used graphical responses, since they are easier to evaluate for implied, but unarticulated assumptions. Senior college level molecular biology students were presented with simple molecular level scenarios; surprisingly, most students failed to articulate the basic assumptions needed to generate reasonable graphical representations; their graphs often contradicted their explicit assumptions. We then developed a tiered Socratic tutorial based on leading questions designed to provoke metacognitive reflection. The activity is characterized by leading questions (prompts) designed to provoke meta-cognitive reflection. When applied in a group or individual setting, there was clear improvement in targeted areas. Our results highlight the promise of using graphical responses and Socratic prompts in a tutorial context as both a formative assessment for students and an informative feedback system for instructors, in part because graphical responses are relatively easy to evaluate for implied, but unarticulated assumptions. Copyright © 2011 Wiley Periodicals, Inc.
Towards the map of quantum gravity
NASA Astrophysics Data System (ADS)
Mielczarek, Jakub; Trześniewski, Tomasz
2018-06-01
In this paper we point out some possible links between different approaches to quantum gravity and theories of the Planck scale physics. In particular, connections between loop quantum gravity, causal dynamical triangulations, Hořava-Lifshitz gravity, asymptotic safety scenario, Quantum Graphity, deformations of relativistic symmetries and nonlinear phase space models are discussed. The main focus is on quantum deformations of the Hypersurface Deformations Algebra and Poincaré algebra, nonlinear structure of phase space, the running dimension of spacetime and nontrivial phase diagram of quantum gravity. We present an attempt to arrange the observed relations in the form of a graph, highlighting different aspects of quantum gravity. The analysis is performed in the spirit of a mind map, which represents the architectural approach to the studied theory, being a natural way to describe the properties of a complex system. We hope that the constructed graphs (maps) will turn out to be helpful in uncovering the global picture of quantum gravity as a particular complex system and serve as a useful guide for the researchers.
A nonrecursive 'Order N' preconditioned conjugate gradient/range space formulation of MDOF dynamics
NASA Technical Reports Server (NTRS)
Kurdila, A. J.; Menon, R.; Sunkel, John
1991-01-01
This paper addresses the requirements of present-day mechanical system simulations of algorithms that induce parallelism on a fine scale and of transient simulation methods which must be automatically load balancing for a wide collection of system topologies and hardware configurations. To this end, a combination range space/preconditioned conjugage gradient formulation of multidegree-of-freedon dynamics is developed, which, by employing regular ordering of the system connectivity graph, makes it possible to derive an extremely efficient preconditioner from the range space metric (as opposed to the system coefficient matrix). Because of the effectiveness of the preconditioner, the method can achieve performance rates that depend linearly on the number of substructures. The method, termed 'Order N' does not require the assembly of system mass or stiffness matrices, and is therefore amenable to implementation on work stations. Using this method, a 13-substructure model of the Space Station was constructed.
ERIC Educational Resources Information Center
Yoon, Susan A.
2011-01-01
This study extends previous research that explores how visualization affordances that computational tools provide and social network analyses that account for individual- and group-level dynamic processes can work in conjunction to improve learning outcomes. The study's main hypothesis is that when social network graphs are used in instruction,…
The Roles of Visualization and Symbolism in the Potential and Actual Infinity of the Limit Process
ERIC Educational Resources Information Center
Kidron, Ivy; Tall, David
2015-01-01
A teaching experiment-using Mathematica to investigate the convergence of sequence of functions visually as a sequence of objects (graphs) converging onto a fixed object (the graph of the limit function)-is here used to analyze how the approach can support the dynamic blending of visual and symbolic representations that has the potential to lead…
Large-scale DCMs for resting-state fMRI.
Razi, Adeel; Seghier, Mohamed L; Zhou, Yuan; McColgan, Peter; Zeidman, Peter; Park, Hae-Jeong; Sporns, Olaf; Rees, Geraint; Friston, Karl J
2017-01-01
This paper considers the identification of large directed graphs for resting-state brain networks based on biophysical models of distributed neuronal activity, that is, effective connectivity . This identification can be contrasted with functional connectivity methods based on symmetric correlations that are ubiquitous in resting-state functional MRI (fMRI). We use spectral dynamic causal modeling (DCM) to invert large graphs comprising dozens of nodes or regions. The ensuing graphs are directed and weighted, hence providing a neurobiologically plausible characterization of connectivity in terms of excitatory and inhibitory coupling. Furthermore, we show that the use of to discover the most likely sparse graph (or model) from a parent (e.g., fully connected) graph eschews the arbitrary thresholding often applied to large symmetric (functional connectivity) graphs. Using empirical fMRI data, we show that spectral DCM furnishes connectivity estimates on large graphs that correlate strongly with the estimates provided by stochastic DCM. Furthermore, we increase the efficiency of model inversion using functional connectivity modes to place prior constraints on effective connectivity. In other words, we use a small number of modes to finesse the potentially redundant parameterization of large DCMs. We show that spectral DCM-with functional connectivity priors-is ideally suited for directed graph theoretic analyses of resting-state fMRI. We envision that directed graphs will prove useful in understanding the psychopathology and pathophysiology of neurodegenerative and neurodevelopmental disorders. We will demonstrate the utility of large directed graphs in clinical populations in subsequent reports, using the procedures described in this paper.
Control of complex networks requires both structure and dynamics
NASA Astrophysics Data System (ADS)
Gates, Alexander J.; Rocha, Luis M.
2016-04-01
The study of network structure has uncovered signatures of the organization of complex systems. However, there is also a need to understand how to control them; for example, identifying strategies to revert a diseased cell to a healthy state, or a mature cell to a pluripotent state. Two recent methodologies suggest that the controllability of complex systems can be predicted solely from the graph of interactions between variables, without considering their dynamics: structural controllability and minimum dominating sets. We demonstrate that such structure-only methods fail to characterize controllability when dynamics are introduced. We study Boolean network ensembles of network motifs as well as three models of biochemical regulation: the segment polarity network in Drosophila melanogaster, the cell cycle of budding yeast Saccharomyces cerevisiae, and the floral organ arrangement in Arabidopsis thaliana. We demonstrate that structure-only methods both undershoot and overshoot the number and which sets of critical variables best control the dynamics of these models, highlighting the importance of the actual system dynamics in determining control. Our analysis further shows that the logic of automata transition functions, namely how canalizing they are, plays an important role in the extent to which structure predicts dynamics.
The Dynamics of Flowing Waters.
ERIC Educational Resources Information Center
Mattingly, Rosanna L.
1987-01-01
Describes a series of activities designed to help students understand the dynamics of flowing water. Includes investigations into determining water discharge, calculating variable velocities, utilizing flood formulas, graphing stream profiles, and learning about the water cycle. (TW)
Automatic Generation of Supervisory Control System Software Using Graph Composition
NASA Astrophysics Data System (ADS)
Nakata, Hideo; Sano, Tatsuro; Kojima, Taizo; Seo, Kazuo; Uchida, Tomoyuki; Nakamura, Yasuaki
This paper describes the automatic generation of system descriptions for SCADA (Supervisory Control And Data Acquisition) systems. The proposed method produces various types of data and programs for SCADA systems from equipment definitions using conversion rules. At first, this method makes directed graphs, which represent connections between the equipment, from equipment definitions. System descriptions are generated using the conversion rules, by analyzing these directed graphs, and finding the groups of equipment that involve similar operations. This method can make the conversion rules multi levels by using the composition of graphs, and can reduce the number of rules. The developer can define and manage these rules efficiently.
Constrained dynamics approach for motion synchronization and consensus
NASA Astrophysics Data System (ADS)
Bhatia, Divya
In this research we propose to develop constrained dynamical systems based stable attitude synchronization, consensus and tracking (SCT) control laws for the formation of rigid bodies. The generalized constrained dynamics Equations of Motion (EOM) are developed utilizing constraint potential energy functions that enforce communication constraints. Euler-Lagrange equations are employed to develop the non-linear constrained dynamics of multiple vehicle systems. The constraint potential energy is synthesized based on a graph theoretic formulation of the vehicle-vehicle communication. Constraint stabilization is achieved via Baumgarte's method. The performance of these constrained dynamics based formations is evaluated for bounded control authority. The above method has been applied to various cases and the results have been obtained using MATLAB simulations showing stability, synchronization, consensus and tracking of formations. The first case corresponds to an N-pendulum formation without external disturbances, in which the springs and the dampers connected between the pendulums act as the communication constraints. The damper helps in stabilizing the system by damping the motion whereas the spring acts as a communication link relaying relative position information between two connected pendulums. Lyapunov stabilization (energy based stabilization) technique is employed to depict the attitude stabilization and boundedness. Various scenarios involving different values of springs and dampers are simulated and studied. Motivated by the first case study, we study the formation of N 2-link robotic manipulators. The governing EOM for this system is derived using Euler-Lagrange equations. A generalized set of communication constraints are developed for this system using graph theory. The constraints are stabilized using Baumgarte's techniques. The attitude SCT is established for this system and the results are shown for the special case of three 2-link robotic manipulators. These methods are then applied to the formation of N-spacecraft. Modified Rodrigues Parameters (MRP) are used for attitude representation of the spacecraft because of their advantage of being a minimum parameter representation. Constrained non-linear equations of motion for this system are developed and stabilized using a Proportional-Derivative (PD) controller derived based on Baumgarte's method. A system of 3 spacecraft is simulated and the results for SCT are shown and analyzed. Another problem studied in this research is that of maintaining SCT under unknown external disturbances. We use an adaptive control algorithm to derive control laws for the actuator torques and develop an estimation law for the unknown disturbance parameters to achieve SCT. The estimate of the disturbance is added as a feed forward term in the actual control law to obtain the stabilization of a 3-spacecraft formation. The disturbance estimates are generated via a Lyapunov analysis of the closed loop system. In summary, the constrained dynamics method shows a lot of potential in formation control, achieving stabilization, synchronization, consensus and tracking of a set of dynamical systems.
The Replicator Equation on Graphs
Ohtsuki, Hisashi; Nowak, Martin A.
2008-01-01
We study evolutionary games on graphs. Each player is represented by a vertex of the graph. The edges denote who meets whom. A player can use any one of n strategies. Players obtain a payoff from interaction with all their immediate neighbors. We consider three different update rules, called ‘birth-death’, ‘death-birth’ and ‘imitation’. A fourth update rule, ‘pairwise comparison’, is shown to be equivalent to birth-death updating in our model. We use pair-approximation to describe the evolutionary game dynamics on regular graphs of degree k. In the limit of weak selection, we can derive a differential equation which describes how the average frequency of each strategy on the graph changes over time. Remarkably, this equation is a replicator equation with a transformed payoff matrix. Therefore, moving a game from a well-mixed population (the complete graph) onto a regular graph simply results in a transformation of the payoff matrix. The new payoff matrix is the sum of the original payoff matrix plus another matrix, which describes the local competition of strategies. We discuss the application of our theory to four particular examples, the Prisoner’s Dilemma, the Snow-Drift game, a coordination game and the Rock-Scissors-Paper game. PMID:16860343
Computing Information Value from RDF Graph Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
al-Saffar, Sinan; Heileman, Gregory
2010-11-08
Information value has been implicitly utilized and mostly non-subjectively computed in information retrieval (IR) systems. We explicitly define and compute the value of an information piece as a function of two parameters, the first is the potential semantic impact the target information can subjectively have on its recipient's world-knowledge, and the second parameter is trust in the information source. We model these two parameters as properties of RDF graphs. Two graphs are constructed, a target graph representing the semantics of the target body of information and a context graph representing the context of the consumer of that information. We computemore » information value subjectively as a function of both potential change to the context graph (impact) and the overlap between the two graphs (trust). Graph change is computed as a graph edit distance measuring the dissimilarity between the context graph before and after the learning of the target graph. A particular application of this subjective information valuation is in the construction of a personalized ranking component in Web search engines. Based on our method, we construct a Web re-ranking system that personalizes the information experience for the information-consumer.« less
Graph cuts via l1 norm minimization.
Bhusnurmath, Arvind; Taylor, Camillo J
2008-10-01
Graph cuts have become an increasingly important tool for solving a number of energy minimization problems in computer vision and other fields. In this paper, the graph cut problem is reformulated as an unconstrained l1 norm minimization that can be solved effectively using interior point methods. This reformulation exposes connections between the graph cuts and other related continuous optimization problems. Eventually the problem is reduced to solving a sequence of sparse linear systems involving the Laplacian of the underlying graph. The proposed procedure exploits the structure of these linear systems in a manner that is easily amenable to parallel implementations. Experimental results obtained by applying the procedure to graphs derived from image processing problems are provided.
The web graph of a tourism system
NASA Astrophysics Data System (ADS)
Baggio, Rodolfo
2007-06-01
The website network of a tourism destination is examined. Network theoretic metrics are used to gauge the static and dynamic characteristics of the webspace. The topology of the network is found partly similar to the one exhibited by similar systems. However, some differences are found, mainly due to the relatively poor connectivity and clusterisation of the network. These results are interpreted by considering the formation mechanisms and the connotation of the linkages between websites. Clustering and assortativity coefficients are proposed as quantitative estimations of the degree of collaboration and cooperation among destination stakeholders.
2010-12-02
Motzkin, T. and Straus, E. (1965). Maxima for graphs and a new proof of a theorem of Turan . Canad. J. Math. 17 533–540. [33] Rendl, F. and Sotirov, R...Convex Graph Invariants Venkat Chandrasekaran, Pablo A . Parrilo, and Alan S. Willsky ∗ Laboratory for Information and Decision Systems Department of...this paper we study convex graph invariants, which are graph invariants that are convex functions of the adjacency matrix of a graph. Some examples
NASA Astrophysics Data System (ADS)
Tokarczyk, Jarosław
2016-12-01
Method for identification the effects of dynamic overload affecting the people, which may occur in the emergency state of suspended monorail is presented in the paper. The braking curve using MBS (Multi-Body System) simulation was determined. For this purpose a computational model (MBS) of suspended monorail was developed and two different variants of numerical calculations were carried out. An algorithm of conducting numerical simulations to assess the effects of dynamic overload acting on the suspended monorails' users is also posted in the paper. An example of computational model FEM (Finite Element Method) composed of technical mean and the anthropometrical model ATB (Articulated Total Body) is shown. The simulation results are presented: graph of HIC (Head Injury Criterion) parameter and successive phases of dislocation of ATB model. Generator of computational models for safety criterion, which enables preparation of input data and remote starting the simulation, is proposed.
Exact numerical calculation of fixation probability and time on graphs.
Hindersin, Laura; Möller, Marius; Traulsen, Arne; Bauer, Benedikt
2016-12-01
The Moran process on graphs is a popular model to study the dynamics of evolution in a spatially structured population. Exact analytical solutions for the fixation probability and time of a new mutant have been found for only a few classes of graphs so far. Simulations are time-expensive and many realizations are necessary, as the variance of the fixation times is high. We present an algorithm that numerically computes these quantities for arbitrary small graphs by an approach based on the transition matrix. The advantage over simulations is that the calculation has to be executed only once. Building the transition matrix is automated by our algorithm. This enables a fast and interactive study of different graph structures and their effect on fixation probability and time. We provide a fast implementation in C with this note (Hindersin et al., 2016). Our code is very flexible, as it can handle two different update mechanisms (Birth-death or death-Birth), as well as arbitrary directed or undirected graphs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Khakzad, Nima; Landucci, Gabriele; Reniers, Genserik
2017-09-01
In the present study, we have introduced a methodology based on graph theory and multicriteria decision analysis for cost-effective fire protection of chemical plants subject to fire-induced domino effects. By modeling domino effects in chemical plants as a directed graph, the graph centrality measures such as out-closeness and betweenness scores can be used to identify the installations playing a key role in initiating and propagating potential domino effects. It is demonstrated that active fire protection of installations with the highest out-closeness score and passive fire protection of installations with the highest betweenness score are the most effective strategies for reducing the vulnerability of chemical plants to fire-induced domino effects. We have employed a dynamic graph analysis to investigate the impact of both the availability and the degradation of fire protection measures over time on the vulnerability of chemical plants. The results obtained from the graph analysis can further be prioritized using multicriteria decision analysis techniques such as the method of reference point to find the most cost-effective fire protection strategy. © 2016 Society for Risk Analysis.
Structure and Growth of the Leeward Kohala Field System: An Analysis with Directed Graphs
Dye, Thomas S.
2014-01-01
This study illustrates how the theory of directed graphs can be used to investigate the structure and growth of the leeward Kohala field system, a traditional Hawaiian archaeological site that presents an unparalleled opportunity to investigate relative chronology. The relative chronological relationships of agricultural walls and trails in two detailed study areas are represented as directed graphs and then investigated using graph theoretic concepts including cycle, level, and connectedness. The structural properties of the directed graphs reveal structure in the field system at several spatial scales. A process of deduction yields a history of construction in each detailed study area that is different than the history produced by an earlier investigation. These results indicate that it is now possible to study the structure and growth of the entire field system remnant using computer software implementations of graph theoretic concepts applied to observations of agricultural wall and trail intersections made on aerial imagery and/or during fieldwork. A relative chronology of field system development with a resolution of one generation is a possible result. PMID:25058167
JavaGenes: Evolving Graphs with Crossover
NASA Technical Reports Server (NTRS)
Globus, Al; Atsatt, Sean; Lawton, John; Wipke, Todd
2000-01-01
Genetic algorithms usually use string or tree representations. We have developed a novel crossover operator for a directed and undirected graph representation, and used this operator to evolve molecules and circuits. Unlike strings or trees, a single point in the representation cannot divide every possible graph into two parts, because graphs may contain cycles. Thus, the crossover operator is non-trivial. A steady-state, tournament selection genetic algorithm code (JavaGenes) was written to implement and test the graph crossover operator. All runs were executed by cycle-scavagging on networked workstations using the Condor batch processing system. The JavaGenes code has evolved pharmaceutical drug molecules and simple digital circuits. Results to date suggest that JavaGenes can evolve moderate sized drug molecules and very small circuits in reasonable time. The algorithm has greater difficulty with somewhat larger circuits, suggesting that directed graphs (circuits) are more difficult to evolve than undirected graphs (molecules), although necessary differences in the crossover operator may also explain the results. In principle, JavaGenes should be able to evolve other graph-representable systems, such as transportation networks, metabolic pathways, and computer networks. However, large graphs evolve significantly slower than smaller graphs, presumably because the space-of-all-graphs explodes combinatorially with graph size. Since the representation strongly affects genetic algorithm performance, adding graphs to the evolutionary programmer's bag-of-tricks should be beneficial. Also, since graph evolution operates directly on the phenotype, the genotype-phenotype translation step, common in genetic algorithm work, is eliminated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Yubin; Shankar, Mallikarjun; Park, Byung H.
Designing a database system for both efficient data management and data services has been one of the enduring challenges in the healthcare domain. In many healthcare systems, data services and data management are often viewed as two orthogonal tasks; data services refer to retrieval and analytic queries such as search, joins, statistical data extraction, and simple data mining algorithms, while data management refers to building error-tolerant and non-redundant database systems. The gap between service and management has resulted in rigid database systems and schemas that do not support effective analytics. We compose a rich graph structure from an abstracted healthcaremore » RDBMS to illustrate how we can fill this gap in practice. We show how a healthcare graph can be automatically constructed from a normalized relational database using the proposed 3NF Equivalent Graph (3EG) transformation.We discuss a set of real world graph queries such as finding self-referrals, shared providers, and collaborative filtering, and evaluate their performance over a relational database and its 3EG-transformed graph. Experimental results show that the graph representation serves as multiple de-normalized tables, thus reducing complexity in a database and enhancing data accessibility of users. Based on this finding, we propose an ensemble framework of databases for healthcare applications.« less
NASA Astrophysics Data System (ADS)
Gudder, Stanley
2008-07-01
A new approach to quantum Markov chains is presented. We first define a transition operation matrix (TOM) as a matrix whose entries are completely positive maps whose column sums form a quantum operation. A quantum Markov chain is defined to be a pair (G,E) where G is a directed graph and E =[Eij] is a TOM whose entry Eij labels the edge from vertex j to vertex i. We think of the vertices of G as sites that a quantum system can occupy and Eij is the transition operation from site j to site i in one time step. The discrete dynamics of the system is obtained by iterating the TOM E. We next consider a special type of TOM called a transition effect matrix. In this case, there are two types of dynamics, a state dynamics and an operator dynamics. Although these two types are not identical, they are statistically equivalent. We next give examples that illustrate various properties of quantum Markov chains. We conclude by showing that our formalism generalizes the usual framework for quantum random walks.
NASA Astrophysics Data System (ADS)
Margitus, Michael R.; Tagliaferri, William A., Jr.; Sudit, Moises; LaMonica, Peter M.
2012-06-01
Understanding the structure and dynamics of networks are of vital importance to winning the global war on terror. To fully comprehend the network environment, analysts must be able to investigate interconnected relationships of many diverse network types simultaneously as they evolve both spatially and temporally. To remove the burden from the analyst of making mental correlations of observations and conclusions from multiple domains, we introduce the Dynamic Graph Analytic Framework (DYGRAF). DYGRAF provides the infrastructure which facilitates a layered multi-modal network analysis (LMMNA) approach that enables analysts to assemble previously disconnected, yet related, networks in a common battle space picture. In doing so, DYGRAF provides the analyst with timely situation awareness, understanding and anticipation of threats, and support for effective decision-making in diverse environments.
Dynamic Programming and Graph Algorithms in Computer Vision*
Felzenszwalb, Pedro F.; Zabih, Ramin
2013-01-01
Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting, since by carefully exploiting problem structure they often provide non-trivial guarantees concerning solution quality. In this paper we briefly review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo; the mid-level problem of interactive object segmentation; and the high-level problem of model-based recognition. PMID:20660950
Bioconvection in Second Grade Nanofluid Flow Containing Nanoparticles and Gyrotactic Microorganisms
NASA Astrophysics Data System (ADS)
Khan, Noor Saeed
2018-04-01
The bioconvection in steady second grade nanofluid thin film flow containing nanoparticles and gyrotactic microorganisms is considered using passively controlled nanofluid model boundary conditions. A real-life system evolves under the flow and various taxis. The study is initially proposed in the context of gyrotactic system, which is used as a key element for the description of complex bioconvection patterns and dynamics in such systems. The governing partial differential equations are transformed into a system of ordinary ones through the similarity variables and solved analytically via homotopy analysis method (HAM). The solution is expressed through graphs and illustrated which show the influences of all the parameters.
Bioconvection in Second Grade Nanofluid Flow Containing Nanoparticles and Gyrotactic Microorganisms
NASA Astrophysics Data System (ADS)
Khan, Noor Saeed
2018-06-01
The bioconvection in steady second grade nanofluid thin film flow containing nanoparticles and gyrotactic microorganisms is considered using passively controlled nanofluid model boundary conditions. A real-life system evolves under the flow and various taxis. The study is initially proposed in the context of gyrotactic system, which is used as a key element for the description of complex bioconvection patterns and dynamics in such systems. The governing partial differential equations are transformed into a system of ordinary ones through the similarity variables and solved analytically via homotopy analysis method (HAM). The solution is expressed through graphs and illustrated which show the influences of all the parameters.
Optimal Learning Paths in Information Networks
Rodi, G. C.; Loreto, V.; Servedio, V. D. P.; Tria, F.
2015-01-01
Each sphere of knowledge and information could be depicted as a complex mesh of correlated items. By properly exploiting these connections, innovative and more efficient navigation strategies could be defined, possibly leading to a faster learning process and an enduring retention of information. In this work we investigate how the topological structure embedding the items to be learned can affect the efficiency of the learning dynamics. To this end we introduce a general class of algorithms that simulate the exploration of knowledge/information networks standing on well-established findings on educational scheduling, namely the spacing and lag effects. While constructing their learning schedules, individuals move along connections, periodically revisiting some concepts, and sometimes jumping on very distant ones. In order to investigate the effect of networked information structures on the proposed learning dynamics we focused both on synthetic and real-world graphs such as subsections of Wikipedia and word-association graphs. We highlight the existence of optimal topological structures for the simulated learning dynamics whose efficiency is affected by the balance between hubs and the least connected items. Interestingly, the real-world graphs we considered lead naturally to almost optimal learning performances. PMID:26030508
Scheidel, Jennifer; Lindauer, Klaus; Ackermann, Jörg; Koch, Ina
2015-12-17
The insulin-dependent activation and recycling of the insulin receptor play an essential role in the regulation of the energy metabolism, leading to a special interest for pharmaceutical applications. Thus, the recycling of the insulin receptor has been intensively investigated, experimentally as well as theoretically. We developed a time-resolved, discrete model to describe stochastic dynamics and study the approximation of non-linear dynamics in the context of timed Petri nets. Additionally, using a graph-theoretical approach, we analyzed the structure of the regulatory system and demonstrated the close interrelation of structural network properties with the kinetic behavior. The transition invariants decomposed the model into overlapping subnetworks of various sizes, which represent basic functional modules. Moreover, we computed the quasi-steady states of these subnetworks and demonstrated that they are fundamental to understand the dynamic behavior of the system. The Petri net approach confirms the experimental results of insulin-stimulated degradation of the insulin receptor, which represents a common feature of insulin-resistant, hyperinsulinaemic states.
Duong, D V; Reilly, K D
1995-10-01
This sociological simulation uses the ideas of semiotics and symbolic interactionism to demonstrate how an appropriately developed associative memory in the minds of individuals on the microlevel can self-organize into macrolevel dissipative structures of societies such as racial cultural/economic classes, status symbols and fads. The associative memory used is based on an extension of the IAC neural network (the Interactive Activation and Competition network). Several IAC networks act together to form a society by virtue of their human-like properties of intuition and creativity. These properties give them the ability to create and understand signs, which lead to the macrolevel structures of society. This system is implemented in hierarchical object oriented container classes which facilitate change in deep structure. Graphs of general trends and an historical account of a simulation run of this dynamical system are presented.
NASA Technical Reports Server (NTRS)
Menon, R. G.; Kurdila, A. J.
1992-01-01
This paper presents a concurrent methodology to simulate the dynamics of flexible multibody systems with a large number of degrees of freedom. A general class of open-loop structures is treated and a redundant coordinate formulation is adopted. A range space method is used in which the constraint forces are calculated using a preconditioned conjugate gradient method. By using a preconditioner motivated by the regular ordering of the directed graph of the structures, it is shown that the method is order N in the total number of coordinates of the system. The overall formulation has the advantage that it permits fine parallelization and does not rely on system topology to induce concurrency. It can be efficiently implemented on the present generation of parallel computers with a large number of processors. Validation of the method is presented via numerical simulations of space structures incorporating large number of flexible degrees of freedom.
Can We Recognize an Innovation? Perspective from an Evolving Network Model
NASA Astrophysics Data System (ADS)
Jain, Sanjay; Krishna, Sandeep
"Innovations" are central to the evolution of societies and the evolution of life. But what constitutes an innovation? We can often agree after the event, when its consequences and impact over a long term are known, whether something was an innovation, and whether it was a "big" innovation or a "minor" one. But can we recognize an innovation "on the fly" as it appears? Successful entrepreneurs often can. Is it possible to formalize that intuition? We discuss this question in the setting of a mathematical model of evolving networks. The model exhibits self-organization , growth, stasis, and collapse of a complex system with many interacting components, reminiscent of real-world phenomena. A notion of "innovation" is formulated in terms of graph-theoretic constructs and other dynamical variables of the model. A new node in the graph gives rise to an innovation, provided it links up "appropriately" with existing nodes; in this view innovation necessarily depends upon the existing context. We show that innovations, as defined by us, play a major role in the birth, growth, and destruction of organizational structures. Furthermore, innovations can be categorized in terms of their graph-theoretic structure as they appear. Different structural classes of innovation have potentially different qualitative consequences for the future evolution of the system, some minor and some major. Possible general lessons from this specific model are briefly discussed.
NASA Astrophysics Data System (ADS)
Doganca Kucuk, Zerrin; Saysel, Ali Kerem
2017-03-01
A systems-based classroom intervention on environmental education was designed for seventh grade students; the results were evaluated to see its impact on the development of systems thinking skills and standard science achievement and whether the systems approach is a more effective way to teach environmental issues that are dynamic and complex. A quasi-experimental methodology was used to compare performances of the participants in various dimensions, including systems thinking skills, competence in dynamic environmental problem solving and success in science achievement tests. The same pre-, post- and delayed tests were used with both the comparison and experimental groups in the same public middle school in Istanbul. Classroom activities designed for the comparison group (N = 20) followed the directives of the Science and Technology Curriculum, while the experimental group (N = 22) covered the same subject matter through activities benefiting from systems tools and representations such as behaviour over time graphs, causal loop diagrams, stock-flow structures and hands-on dynamic modelling. After a one-month systems-based instruction, the experimental group demonstrated significantly better systems thinking and dynamic environmental problem solving skills. Achievement in dynamic problem solving was found to be relatively stable over time. However, standard science achievement did not improve at all. This paper focuses on the quantitative analysis of the results, the weaknesses of the curriculum and educational implications.
NASA Astrophysics Data System (ADS)
Sur, Chiranjib; Shukla, Anupam
2018-03-01
Bacteria Foraging Optimisation Algorithm is a collective behaviour-based meta-heuristics searching depending on the social influence of the bacteria co-agents in the search space of the problem. The algorithm faces tremendous hindrance in terms of its application for discrete problems and graph-based problems due to biased mathematical modelling and dynamic structure of the algorithm. This had been the key factor to revive and introduce the discrete form called Discrete Bacteria Foraging Optimisation (DBFO) Algorithm for discrete problems which exceeds the number of continuous domain problems represented by mathematical and numerical equations in real life. In this work, we have mainly simulated a graph-based road multi-objective optimisation problem and have discussed the prospect of its utilisation in other similar optimisation problems and graph-based problems. The various solution representations that can be handled by this DBFO has also been discussed. The implications and dynamics of the various parameters used in the DBFO are illustrated from the point view of the problems and has been a combination of both exploration and exploitation. The result of DBFO has been compared with Ant Colony Optimisation and Intelligent Water Drops Algorithms. Important features of DBFO are that the bacteria agents do not depend on the local heuristic information but estimates new exploration schemes depending upon the previous experience and covered path analysis. This makes the algorithm better in combination generation for graph-based problems and combination generation for NP hard problems.
Graph Drawing Aesthetics-Created by Users, Not Algorithms.
Purchase, H C; Pilcher, C; Plimmer, B
2012-01-01
Prior empirical work on layout aesthetics for graph drawing algorithms has concentrated on the interpretation of existing graph drawings. We report on experiments which focus on the creation and layout of graph drawings: participants were asked to draw graphs based on adjacency lists, and to lay them out "nicely." Two interaction methods were used for creating the drawings: a sketch interface which allows for easy, natural hand movements, and a formal point-and-click interface similar to a typical graph editing system. We find, in common with many other studies, that removing edge crossings is the most significant aesthetic, but also discover that aligning nodes and edges to an underlying grid is important. We observe that the aesthetics favored by participants during creation of a graph drawing are often not evident in the final product and that the participants did not make a clear distinction between the processes of creation and layout. Our results suggest that graph drawing systems should integrate automatic layout with the user's manual editing process, and provide facilities to support grid-based graph creation.
GraphReduce: Processing Large-Scale Graphs on Accelerator-Based Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Song, Shuaiwen; Agarwal, Kapil
2015-11-15
Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the host andmore » device.« less
A framework for graph-based synthesis, analysis, and visualization of HPC cluster job data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayo, Jackson R.; Kegelmeyer, W. Philip, Jr.; Wong, Matthew H.
The monitoring and system analysis of high performance computing (HPC) clusters is of increasing importance to the HPC community. Analysis of HPC job data can be used to characterize system usage and diagnose and examine failure modes and their effects. This analysis is not straightforward, however, due to the complex relationships that exist between jobs. These relationships are based on a number of factors, including shared compute nodes between jobs, proximity of jobs in time, etc. Graph-based techniques represent an approach that is particularly well suited to this problem, and provide an effective technique for discovering important relationships in jobmore » queuing and execution data. The efficacy of these techniques is rooted in the use of a semantic graph as a knowledge representation tool. In a semantic graph job data, represented in a combination of numerical and textual forms, can be flexibly processed into edges, with corresponding weights, expressing relationships between jobs, nodes, users, and other relevant entities. This graph-based representation permits formal manipulation by a number of analysis algorithms. This report presents a methodology and software implementation that leverages semantic graph-based techniques for the system-level monitoring and analysis of HPC clusters based on job queuing and execution data. Ontology development and graph synthesis is discussed with respect to the domain of HPC job data. The framework developed automates the synthesis of graphs from a database of job information. It also provides a front end, enabling visualization of the synthesized graphs. Additionally, an analysis engine is incorporated that provides performance analysis, graph-based clustering, and failure prediction capabilities for HPC systems.« less
On Bipartite Graphs Trees and Their Partial Vertex Covers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caskurlu, Bugra; Mkrtchyan, Vahan; Parekh, Ojas D.
2015-03-01
Graphs can be used to model risk management in various systems. Particularly, Caskurlu et al. in [7] have considered a system, which has threats, vulnerabilities and assets, and which essentially represents a tripartite graph. The goal in this model is to reduce the risk in the system below a predefined risk threshold level. One can either restricting the permissions of the users, or encapsulating the system assets. The pointed out two strategies correspond to deleting minimum number of elements corresponding to vulnerabilities and assets, such that the flow between threats and assets is reduced below the predefined threshold level. Itmore » can be shown that the main goal in this risk management system can be formulated as a Partial Vertex Cover problem on bipartite graphs. It is well-known that the Vertex Cover problem is in P on bipartite graphs, however; the computational complexity of the Partial Vertex Cover problem on bipartite graphs has remained open. In this paper, we establish that the Partial Vertex Cover problem is NP-hard on bipartite graphs, which was also recently independently demonstrated [N. Apollonio and B. Simeone, Discrete Appl. Math., 165 (2014), pp. 37–48; G. Joret and A. Vetta, preprint, arXiv:1211.4853v1 [cs.DS], 2012]. We then identify interesting special cases of bipartite graphs, for which the Partial Vertex Cover problem, the closely related Budgeted Maximum Coverage problem, and their weighted extensions can be solved in polynomial time. We also present an 8/9-approximation algorithm for the Budgeted Maximum Coverage problem in the class of bipartite graphs. We show that this matches and resolves the integrality gap of the natural LP relaxation of the problem and improves upon a recent 4/5-approximation.« less
Controllability of multi-agent systems with time-delay in state and switching topology
NASA Astrophysics Data System (ADS)
Ji, Zhijian; Wang, Zidong; Lin, Hai; Wang, Zhen
2010-02-01
In this article, the controllability issue is addressed for an interconnected system of multiple agents. The network associated with the system is of the leader-follower structure with some agents taking leader role and others being followers interconnected via the neighbour-based rule. Sufficient conditions are derived for the controllability of multi-agent systems with time-delay in state, as well as a graph-based uncontrollability topology structure is revealed. Both single and double integrator dynamics are considered. For switching topology, two algebraic necessary and sufficient conditions are derived for the controllability of multi-agent systems. Several examples are also presented to illustrate how to control the system to shape into the desired configurations.
Aligning Biomolecular Networks Using Modular Graph Kernels
NASA Astrophysics Data System (ADS)
Towfic, Fadi; Greenlee, M. Heather West; Honavar, Vasant
Comparative analysis of biomolecular networks constructed using measurements from different conditions, tissues, and organisms offer a powerful approach to understanding the structure, function, dynamics, and evolution of complex biological systems. We explore a class of algorithms for aligning large biomolecular networks by breaking down such networks into subgraphs and computing the alignment of the networks based on the alignment of their subgraphs. The resulting subnetworks are compared using graph kernels as scoring functions. We provide implementations of the resulting algorithms as part of BiNA, an open source biomolecular network alignment toolkit. Our experiments using Drosophila melanogaster, Saccharomyces cerevisiae, Mus musculus and Homo sapiens protein-protein interaction networks extracted from the DIP repository of protein-protein interaction data demonstrate that the performance of the proposed algorithms (as measured by % GO term enrichment of subnetworks identified by the alignment) is competitive with some of the state-of-the-art algorithms for pair-wise alignment of large protein-protein interaction networks. Our results also show that the inter-species similarity scores computed based on graph kernels can be used to cluster the species into a species tree that is consistent with the known phylogenetic relationships among the species.
Semantic graphs and associative memories
NASA Astrophysics Data System (ADS)
Pomi, Andrés; Mizraji, Eduardo
2004-12-01
Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.
Solving Graph Laplacian Systems Through Recursive Bisections and Two-Grid Preconditioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponce, Colin; Vassilevski, Panayot S.
2016-02-18
We present a parallelizable direct method for computing the solution to graph Laplacian-based linear systems derived from graphs that can be hierarchically bipartitioned with small edge cuts. For a graph of size n with constant-size edge cuts, our method decomposes a graph Laplacian in time O(n log n), and then uses that decomposition to perform a linear solve in time O(n log n). We then use the developed technique to design a preconditioner for graph Laplacians that do not have this property. Finally, we augment this preconditioner with a two-grid method that accounts for much of the preconditioner's weaknesses. Wemore » present an analysis of this method, as well as a general theorem for the condition number of a general class of two-grid support graph-based preconditioners. Numerical experiments illustrate the performance of the studied methods.« less
Time reversibility from visibility graphs of nonstationary processes
NASA Astrophysics Data System (ADS)
Lacasa, Lucas; Flanagan, Ryan
2015-08-01
Visibility algorithms are a family of methods to map time series into networks, with the aim of describing the structure of time series and their underlying dynamical properties in graph-theoretical terms. Here we explore some properties of both natural and horizontal visibility graphs associated to several nonstationary processes, and we pay particular attention to their capacity to assess time irreversibility. Nonstationary signals are (infinitely) irreversible by definition (independently of whether the process is Markovian or producing entropy at a positive rate), and thus the link between entropy production and time series irreversibility has only been explored in nonequilibrium stationary states. Here we show that the visibility formalism naturally induces a new working definition of time irreversibility, which allows us to quantify several degrees of irreversibility for stationary and nonstationary series, yielding finite values that can be used to efficiently assess the presence of memory and off-equilibrium dynamics in nonstationary processes without the need to differentiate or detrend them. We provide rigorous results complemented by extensive numerical simulations on several classes of stochastic processes.
Critical space-time networks and geometric phase transitions from frustrated edge antiferromagnetism
NASA Astrophysics Data System (ADS)
Trugenberger, Carlo A.
2015-12-01
Recently I proposed a simple dynamical network model for discrete space-time that self-organizes as a graph with Hausdorff dimension dH=4 . The model has a geometric quantum phase transition with disorder parameter (dH-ds) , where ds is the spectral dimension of the dynamical graph. Self-organization in this network model is based on a competition between a ferromagnetic Ising model for vertices and an antiferromagnetic Ising model for edges. In this paper I solve a toy version of this model defined on a bipartite graph in the mean-field approximation. I show that the geometric phase transition corresponds exactly to the antiferromagnetic transition for edges, the dimensional disorder parameter of the former being mapped to the staggered magnetization order parameter of the latter. The model has a critical point with long-range correlations between edges, where a continuum random geometry can be defined, exactly as in Kazakov's famed 2D random lattice Ising model but now in any number of dimensions.
NASA Astrophysics Data System (ADS)
Li, Xiuming; Sun, Mei; Gao, Cuixia; Han, Dun; Wang, Minggang
2018-02-01
This paper presents the parametric modified limited penetrable visibility graph (PMLPVG) algorithm for constructing complex networks from time series. We modify the penetrable visibility criterion of limited penetrable visibility graph (LPVG) in order to improve the rationality of the original penetrable visibility and preserve the dynamic characteristics of the time series. The addition of view angle provides a new approach to characterize the dynamic structure of the time series that is invisible in the previous algorithm. The reliability of the PMLPVG algorithm is verified by applying it to three types of artificial data as well as the actual data of natural gas prices in different regions. The empirical results indicate that PMLPVG algorithm can distinguish the different time series from each other. Meanwhile, the analysis results of natural gas prices data using PMLPVG are consistent with the detrended fluctuation analysis (DFA). The results imply that the PMLPVG algorithm may be a reasonable and significant tool for identifying various time series in different fields.
Method and graphs for the evaluation of air-induction systems
NASA Technical Reports Server (NTRS)
Brajnikoff, George B
1953-01-01
Graphs have been developed for rapid evaluation of air-induction systems from considerations of their aerodynamic-performance parameters in combination with power-plant characteristics. The graphs cover the range of supersonic Mach numbers to 3.0. Examples are presented for an air-induction system and engine combination of two Mach numbers and two altitudes in order to illustrate the method and application of the graphs. The examples show that jet-engine characteristics impose restrictions on the use of fixed inlets if the maximum net thrusts are to be realized at all flight conditions. (author)
Orbital evolution studies of planet-crossing asteroids
NASA Astrophysics Data System (ADS)
Hahn, Gerhard; Lagerkvist, Claes-Ingvar
The orbits of 26 planet-crossing Aten-Apollo-Amor asteroids are predicted on the basis of numerical integrations covering 33,000 or 100,000 yrs; the values reported supplement the preliminary findings of Hahn and Lagerkvist (1987). A solar-system dynamics model accounting for the effects of all planets from Venus to Neptune is employed, along with the 15th-order integration algorithm RADAU (Everhart, 1985). The results are presented in extensive tables and graphs and discussed in detail.
NASA Technical Reports Server (NTRS)
Mielke, Roland V. (Inventor); Stoughton, John W. (Inventor)
1990-01-01
Computationally complex primitive operations of an algorithm are executed concurrently in a plurality of functional units under the control of an assignment manager. The algorithm is preferably defined as a computationally marked graph contianing data status edges (paths) corresponding to each of the data flow edges. The assignment manager assigns primitive operations to the functional units and monitors completion of the primitive operations to determine data availability using the computational marked graph of the algorithm. All data accessing of the primitive operations is performed by the functional units independently of the assignment manager.
Torres-Knoop, Ariana; Kryven, Ivan; Schamboeck, Verena; Iedema, Piet D
2018-05-02
In the printing, coating and ink industries, photocurable systems are becoming increasingly popular and multi-functional acrylates are one of the most commonly used monomers due to their high reactivity (fast curing). In this paper, we use molecular dynamics and graph theory tools to investigate the thermo-mechanical properties and topology of hexanediol diacrylate (HDDA) polymer networks. The gel point was determined as the point where a giant component was formed. For the conditions of our simulations, we found the gel point to be around 0.18 bond conversion. A detailed analysis of the network topology showed, unexpectedly, that the flexibility of the HDDA molecules plays an important role in increasing the conversion of double bonds, while delaying the gel point. This is due to a back-biting type of reaction mechanism that promotes the formation of small cycles. The glass transition temperature for several degrees of curing was obtained from the change in the thermal expansion coefficient. For a bond conversion close to experimental values we obtained a glass transition temperature around 400 K. For the same bond conversion we estimate a Young's modulus of 3 GPa. Both of these values are in good agreement with experiments.
Criticality in conserved dynamical systems: experimental observation vs. exact properties.
Marković, Dimitrije; Gros, Claudius; Schuelein, André
2013-03-01
Conserved dynamical systems are generally considered to be critical. We study a class of critical routing models, equivalent to random maps, which can be solved rigorously in the thermodynamic limit. The information flow is conserved for these routing models and governed by cyclic attractors. We consider two classes of information flow, Markovian routing without memory and vertex routing involving a one-step routing memory. Investigating the respective cycle length distributions for complete graphs, we find log corrections to power-law scaling for the mean cycle length, as a function of the number of vertices, and a sub-polynomial growth for the overall number of cycles. When observing experimentally a real-world dynamical system one normally samples stochastically its phase space. The number and the length of the attractors are then weighted by the size of their respective basins of attraction. This situation is equivalent, for theory studies, to "on the fly" generation of the dynamical transition probabilities. For the case of vertex routing models, we find in this case power law scaling for the weighted average length of attractors, for both conserved routing models. These results show that the critical dynamical systems are generically not scale-invariant but may show power-law scaling when sampled stochastically. It is hence important to distinguish between intrinsic properties of a critical dynamical system and its behavior that one would observe when randomly probing its phase space.
NASA Astrophysics Data System (ADS)
Gotoda, Hiroshi; Kinugawa, Hikaru; Tsujimoto, Ryosuke; Domen, Shohei; Okuno, Yuta
2017-04-01
Complex-network theory has attracted considerable attention for nearly a decade, and it enables us to encompass our understanding of nonlinear dynamics in complex systems in a wide range of fields, including applied physics and mechanical, chemical, and electrical engineering. We conduct an experimental study using a pragmatic online detection methodology based on complex-network theory to prevent a limiting unstable state such as blowout in a confined turbulent combustion system. This study introduces a modified version of the natural visibility algorithm based on the idea of a visibility limit to serve as a pragmatic online detector. The average degree of the modified version of the natural visibility graph allows us to detect the onset of blowout, resulting in online prevention.
Dynamic Routing for Delay-Tolerant Networking in Space Flight Operations
NASA Technical Reports Server (NTRS)
Burleigh, Scott C.
2008-01-01
Contact Graph Routing (CGR) is a dynamic routing system that computes routes through a time-varying topology composed of scheduled, bounded communication contacts in a network built on the Delay-Tolerant Networking (DTN) architecture. It is designed to support operations in a space network based on DTN, but it also could be used in terrestrial applications where operation according to a predefined schedule is preferable to opportunistic communication, as in a low-power sensor network. This paper will describe the operation of the CGR system and explain how it can enable data delivery over scheduled transmission opportunities, fully utilizing the available transmission capacity, without knowing the current state of any bundle protocol node (other than the local node itself) and without exhausting processing resources at any bundle router.
Modeling the Car Crash Crisis Management System Using HiLA
NASA Astrophysics Data System (ADS)
Hölzl, Matthias; Knapp, Alexander; Zhang, Gefei
An aspect-oriented modeling approach to the Car Crash Crisis Management System (CCCMS) using the High-Level Aspect (HiLA) language is described. HiLA is a language for expressing aspects for UML static structures and UML state machines. In particular, HiLA supports both a static graph transformational and a dynamic approach of applying aspects. Furthermore, it facilitates methodologically turning use case descriptions into state machines: for each main success scenario, a base state machine is developed; all extensions to this main success scenario are covered by aspects. Overall, the static structure of the CCCMS is modeled in 43 classes, the main success scenarios in 13 base machines, the use case extensions in 47 static and 31 dynamic aspects, most of which are instantiations of simple aspect templates.
X-Graphs: Language and Algorithms for Heterogeneous Graph Streams
2017-09-01
INTRODUCTION 1 3 METHODS , ASUMPTIONS, AND PROCEDURES 2 Software Abstractions for Graph Analytic Applications 2 High performance Platforms for Graph Processing...data is stored in a distributed file system. 3 METHODS , ASUMPTIONS, AND PROCEDURES Software Abstractions for Graph Analytic Applications To...implementations of novel methods for networks analysis: several methods for detection of overlapping communities, personalized PageRank, node embeddings into a d
Self-organizing maps for learning the edit costs in graph matching.
Neuhaus, Michel; Bunke, Horst
2005-06-01
Although graph matching and graph edit distance computation have become areas of intensive research recently, the automatic inference of the cost of edit operations has remained an open problem. In the present paper, we address the issue of learning graph edit distance cost functions for numerically labeled graphs from a corpus of sample graphs. We propose a system of self-organizing maps (SOMs) that represent the distance measuring spaces of node and edge labels. Our learning process is based on the concept of self-organization. It adapts the edit costs in such a way that the similarity of graphs from the same class is increased, whereas the similarity of graphs from different classes decreases. The learning procedure is demonstrated on two different applications involving line drawing graphs and graphs representing diatoms, respectively.
Web-Based Model Visualization Tools to Aid in Model Optimization and Uncertainty Analysis
NASA Astrophysics Data System (ADS)
Alder, J.; van Griensven, A.; Meixner, T.
2003-12-01
Individuals applying hydrologic models have a need for a quick easy to use visualization tools to permit them to assess and understand model performance. We present here the Interactive Hydrologic Modeling (IHM) visualization toolbox. The IHM utilizes high-speed Internet access, the portability of the web and the increasing power of modern computers to provide an online toolbox for quick and easy model result visualization. This visualization interface allows for the interpretation and analysis of Monte-Carlo and batch model simulation results. Often times a given project will generate several thousands or even hundreds of thousands simulations. This large number of simulations creates a challenge for post-simulation analysis. IHM's goal is to try to solve this problem by loading all of the data into a database with a web interface that can dynamically generate graphs for the user according to their needs. IHM currently supports: a global samples statistics table (e.g. sum of squares error, sum of absolute differences etc.), top ten simulations table and graphs, graphs of an individual simulation using time step data, objective based dotty plots, threshold based parameter cumulative density function graphs (as used in the regional sensitivity analysis of Spear and Hornberger) and 2D error surface graphs of the parameter space. IHM is ideal for the simplest bucket model to the largest set of Monte-Carlo model simulations with a multi-dimensional parameter and model output space. By using a web interface, IHM offers the user complete flexibility in the sense that they can be anywhere in the world using any operating system. IHM can be a time saving and money saving alternative to spending time producing graphs or conducting analysis that may not be informative or being forced to purchase or use expensive and proprietary software. IHM is a simple, free, method of interpreting and analyzing batch model results, and is suitable for novice to expert hydrologic modelers.
NASA Astrophysics Data System (ADS)
Mali, P.; Mukhopadhyay, A.; Manna, S. K.; Haldar, P. K.; Singh, G.
2017-03-01
Horizontal visibility graphs (HVGs) and the sandbox (SB) algorithm usually applied for multifractal characterization of complex network systems that are converted from time series measurements, are used to characterize the fluctuations in pseudorapidity densities of singly charged particles produced in high-energy nucleus-nucleus collisions. Besides obtaining the degree distribution associated with event-wise pseudorapidity distributions, the common set of observables, typical of any multifractality measurement, are studied in 16O-Ag/Br and 32S-Ag/Br interactions, each at an incident laboratory energy of 200 GeV/nucleon. For a better understanding, we systematically compare the experiment with a Monte Carlo model simulation based on the Ultra-relativistic Quantum Molecular Dynamics (UrQMD). Our results suggest that the HVG-SB technique is an efficient tool that can characterize multifractality in multiparticle emission data, and in some cases, it is even superior to other methods more commonly used in this regard.
Replicator equations, maximal cliques, and graph isomorphism.
Pelillo, M
1999-11-15
We present a new energy-minimization framework for the graph isomorphism problem that is based on an equivalent maximum clique formulation. The approach is centered around a fundamental result proved by Motzkin and Straus in the mid-1960s, and recently expanded in various ways, which allows us to formulate the maximum clique problem in terms of a standard quadratic program. The attractive feature of this formulation is that a clear one-to-one correspondence exists between the solutions of the quadratic program and those in the original, combinatorial problem. To solve the program we use the so-called replicator equations--a class of straightforward continuous- and discrete-time dynamical systems developed in various branches of theoretical biology. We show how, despite their inherent inability to escape from local solutions, they nevertheless provide experimental results that are competitive with those obtained using more elaborate mean-field annealing heuristics.
eHUGS: Enhanced Hierarchical Unbiased Graph Shrinkage for Efficient Groupwise Registration
Wu, Guorong; Peng, Xuewei; Ying, Shihui; Wang, Qian; Yap, Pew-Thian; Shen, Dan; Shen, Dinggang
2016-01-01
Effective and efficient spatial normalization of a large population of brain images is critical for many clinical and research studies, but it is technically very challenging. A commonly used approach is to choose a certain image as the template and then align all other images in the population to this template by applying pairwise registration. To avoid the potential bias induced by the inappropriate template selection, groupwise registration methods have been proposed to simultaneously register all images to a latent common space. However, current groupwise registration methods do not make full use of image distribution information for more accurate registration. In this paper, we present a novel groupwise registration method that harnesses the image distribution information by capturing the image distribution manifold using a hierarchical graph with its nodes representing the individual images. More specifically, a low-level graph describes the image distribution in each subgroup, and a high-level graph encodes the relationship between representative images of subgroups. Given the graph representation, we can register all images to the common space by dynamically shrinking the graph on the image manifold. The topology of the entire image distribution is always maintained during graph shrinkage. Evaluations on two datasets, one for 80 elderly individuals and one for 285 infants, indicate that our method can yield promising results. PMID:26800361
Taking Advantage of Automated Assessment of Student-Constructed Graphs in Science
ERIC Educational Resources Information Center
Vitale, Jonathan M.; Lai, Kevin; Linn, Marcia C.
2015-01-01
We present a new system for automated scoring of graph construction items that address complex science concepts, feature qualitative prompts, and support a range of possible solutions. This system utilizes analysis of spatial features (e.g., slope of a line) to evaluate potential student ideas represented within graphs. Student ideas are then…
GraphStore: A Distributed Graph Storage System for Big Data Networks
ERIC Educational Resources Information Center
Martha, VenkataSwamy
2013-01-01
Networks, such as social networks, are a universal solution for modeling complex problems in real time, especially in the Big Data community. While previous studies have attempted to enhance network processing algorithms, none have paved a path for the development of a persistent storage system. The proposed solution, GraphStore, provides an…
Advanced Cyber Attack Modeling Analysis and Visualization
2010-03-01
Graph Analysis Network Web Logs Netflow Data TCP Dump Data System Logs Detect Protect Security Management What-If Figure 8. TVA attack graphs for...Clustered Graphs,” in Proceedings of the Symposium on Graph Drawing, September 1996. [25] K. Lakkaraju, W. Yurcik, A. Lee, “NVisionIP: NetFlow
Mining and Indexing Graph Databases
ERIC Educational Resources Information Center
Yuan, Dayu
2013-01-01
Graphs are widely used to model structures and relationships of objects in various scientific and commercial fields. Chemical molecules, proteins, malware system-call dependencies and three-dimensional mechanical parts are all modeled as graphs. In this dissertation, we propose to mine and index those graph data to enable fast and scalable search.…
Information Dynamics in Networks: Models and Algorithms
2016-09-13
Twitter ; we investigated how to detect spam accounts on Facebook and other social networks by graph analytics; and finally we investigated how to design...networks. We investigated the appropriateness of existing mathematical models for explaining the structure of retweet cascades on Twitter ; we investigated...Received Paper 1.00 2.00 3.00 . A Note on Modeling Retweet Cascades on Twitter , Workshop on Algorithms and Models for the Web Graph. 09-DEC-15
Parallel Algorithms for Switching Edges in Heterogeneous Graphs.
Bhuiyan, Hasanuzzaman; Khan, Maleq; Chen, Jiangzhuo; Marathe, Madhav
2017-06-01
An edge switch is an operation on a graph (or network) where two edges are selected randomly and one of their end vertices are swapped with each other. Edge switch operations have important applications in graph theory and network analysis, such as in generating random networks with a given degree sequence, modeling and analyzing dynamic networks, and in studying various dynamic phenomena over a network. The recent growth of real-world networks motivates the need for efficient parallel algorithms. The dependencies among successive edge switch operations and the requirement to keep the graph simple (i.e., no self-loops or parallel edges) as the edges are switched lead to significant challenges in designing a parallel algorithm. Addressing these challenges requires complex synchronization and communication among the processors leading to difficulties in achieving a good speedup by parallelization. In this paper, we present distributed memory parallel algorithms for switching edges in massive networks. These algorithms provide good speedup and scale well to a large number of processors. A harmonic mean speedup of 73.25 is achieved on eight different networks with 1024 processors. One of the steps in our edge switch algorithms requires the computation of multinomial random variables in parallel. This paper presents the first non-trivial parallel algorithm for the problem, achieving a speedup of 925 using 1024 processors.
GraphReduce: Large-Scale Graph Analytics on Accelerator-Based HPC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Agarwal, Kapil; Song, Shuaiwen
2015-09-30
Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of both edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the hostmore » and the device.« less
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Tian, Rui; Yu, Xiaosong; Zhang, Jiawei; Zhang, Jie
2017-03-01
A proper traffic grooming strategy in dynamic optical networks can improve the utilization of bandwidth resources. An auxiliary graph (AG) is designed to solve the traffic grooming problem under a dynamic traffic scenario in spatial division multiplexing enabled elastic optical networks (SDM-EON) with multi-core fibers. Five traffic grooming policies achieved by adjusting the edge weights of an AG are proposed and evaluated through simulation: maximal electrical grooming (MEG), maximal optical grooming (MOG), maximal SDM grooming (MSG), minimize virtual hops (MVH), and minimize physical hops (MPH). Numeric results show that each traffic grooming policy has its own features. Among different traffic grooming policies, an MPH policy can achieve the lowest bandwidth blocking ratio, MEG can save the most transponders, and MSG can obtain the fewest cores for each request.
NASA Astrophysics Data System (ADS)
Wang, Jiang; Yang, Chen; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing
2016-10-01
In this paper, EEG series are applied to construct functional connections with the correlation between different regions in order to investigate the nonlinear characteristic and the cognitive function of the brain with Alzheimer's disease (AD). First, limited penetrable visibility graph (LPVG) and phase space method map single EEG series into networks, and investigate the underlying chaotic system dynamics of AD brain. Topological properties of the networks are extracted, such as average path length and clustering coefficient. It is found that the network topology of AD in several local brain regions are different from that of the control group with no statistically significant difference existing all over the brain. Furthermore, in order to detect the abnormality of AD brain as a whole, functional connections among different brain regions are reconstructed based on similarity of clustering coefficient sequence (CCSS) of EEG series in the four frequency bands (delta, theta, alpha, and beta), which exhibit obvious small-world properties. Graph analysis demonstrates that for both methodologies, the functional connections between regions of AD brain decrease, particularly in the alpha frequency band. AD causes the graph index complexity of the functional network decreased, the small-world properties weakened, and the vulnerability increased. The obtained results show that the brain functional network constructed by LPVG and phase space method might be more effective to distinguish AD from the normal control than the analysis of single series, which is helpful for revealing the underlying pathological mechanism of the disease.
Massive Scale Cyber Traffic Analysis: A Driver for Graph Database Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joslyn, Cliff A.; Choudhury, S.; Haglin, David J.
2013-06-19
We describe the significance and prominence of network traffic analysis (TA) as a graph- and network-theoretical domain for advancing research in graph database systems. TA involves observing and analyzing the connections between clients, servers, hosts, and actors within IP networks, both at particular times and as extended over times. Towards that end, NetFlow (or more generically, IPFLOW) data are available from routers and servers which summarize coherent groups of IP packets flowing through the network. IPFLOW databases are routinely interrogated statistically and visualized for suspicious patterns. But the ability to cast IPFLOW data as a massive graph and query itmore » interactively, in order to e.g.\\ identify connectivity patterns, is less well advanced, due to a number of factors including scaling, and their hybrid nature combining graph connectivity and quantitative attributes. In this paper, we outline requirements and opportunities for graph-structured IPFLOW analytics based on our experience with real IPFLOW databases. Specifically, we describe real use cases from the security domain, cast them as graph patterns, show how to express them in two graph-oriented query languages SPARQL and Datalog, and use these examples to motivate a new class of "hybrid" graph-relational systems.« less
Automatic system for detecting pornographic images
NASA Astrophysics Data System (ADS)
Ho, Kevin I. C.; Chen, Tung-Shou; Ho, Jun-Der
2002-09-01
Due to the dramatic growth of network and multimedia technology, people can more easily get variant information by using Internet. Unfortunately, it also makes the diffusion of illegal and harmful content much easier. So, it becomes an important topic for the Internet society to protect and safeguard Internet users from these content that may be encountered while surfing on the Net, especially children. Among these content, porno graphs cause more serious harm. Therefore, in this study, we propose an automatic system to detect still colour porno graphs. Starting from this result, we plan to develop an automatic system to search porno graphs or to filter porno graphs. Almost all the porno graphs possess one common characteristic that is the ratio of the size of skin region and non-skin region is high. Based on this characteristic, our system first converts the colour space from RGB colour space to HSV colour space so as to segment all the possible skin-colour regions from scene background. We also apply the texture analysis on the selected skin-colour regions to separate the skin regions from non-skin regions. Then, we try to group the adjacent pixels located in skin regions. If the ratio is over a given threshold, we can tell if the given image is a possible porno graph. Based on our experiment, less than 10% of non-porno graphs are classified as pornography, and over 80% of the most harmful porno graphs are classified correctly.
Modeling and numerical simulations of the influenced Sznajd model
NASA Astrophysics Data System (ADS)
Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep
2017-08-01
This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.
Modeling and numerical simulations of the influenced Sznajd model.
Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep
2017-08-01
This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.
A Risk Assessment System with Automatic Extraction of Event Types
NASA Astrophysics Data System (ADS)
Capet, Philippe; Delavallade, Thomas; Nakamura, Takuya; Sandor, Agnes; Tarsitano, Cedric; Voyatzi, Stavroula
In this article we describe the joint effort of experts in linguistics, information extraction and risk assessment to integrate EventSpotter, an automatic event extraction engine, into ADAC, an automated early warning system. By detecting as early as possible weak signals of emerging risks ADAC provides a dynamic synthetic picture of situations involving risk. The ADAC system calculates risk on the basis of fuzzy logic rules operated on a template graph whose leaves are event types. EventSpotter is based on a general purpose natural language dependency parser, XIP, enhanced with domain-specific lexical resources (Lexicon-Grammar). Its role is to automatically feed the leaves with input data.
Distribution of diameters for Erdős-Rényi random graphs.
Hartmann, A K; Mézard, M
2018-03-01
We study the distribution of diameters d of Erdős-Rényi random graphs with average connectivity c. The diameter d is the maximum among all the shortest distances between pairs of nodes in a graph and an important quantity for all dynamic processes taking place on graphs. Here we study the distribution P(d) numerically for various values of c, in the nonpercolating and percolating regimes. Using large-deviation techniques, we are able to reach small probabilities like 10^{-100} which allow us to obtain the distribution over basically the full range of the support, for graphs up to N=1000 nodes. For values c<1, our results are in good agreement with analytical results, proving the reliability of our numerical approach. For c>1 the distribution is more complex and no complete analytical results are available. For this parameter range, P(d) exhibits an inflection point, which we found to be related to a structural change of the graphs. For all values of c, we determined the finite-size rate function Φ(d/N) and were able to extrapolate numerically to N→∞, indicating that the large-deviation principle holds.
Distribution of diameters for Erdős-Rényi random graphs
NASA Astrophysics Data System (ADS)
Hartmann, A. K.; Mézard, M.
2018-03-01
We study the distribution of diameters d of Erdős-Rényi random graphs with average connectivity c . The diameter d is the maximum among all the shortest distances between pairs of nodes in a graph and an important quantity for all dynamic processes taking place on graphs. Here we study the distribution P (d ) numerically for various values of c , in the nonpercolating and percolating regimes. Using large-deviation techniques, we are able to reach small probabilities like 10-100 which allow us to obtain the distribution over basically the full range of the support, for graphs up to N =1000 nodes. For values c <1 , our results are in good agreement with analytical results, proving the reliability of our numerical approach. For c >1 the distribution is more complex and no complete analytical results are available. For this parameter range, P (d ) exhibits an inflection point, which we found to be related to a structural change of the graphs. For all values of c , we determined the finite-size rate function Φ (d /N ) and were able to extrapolate numerically to N →∞ , indicating that the large-deviation principle holds.
Understanding Conic Sections Using Alternate Graph Paper
ERIC Educational Resources Information Center
Brown, Elizabeth M.; Jones, Elizabeth
2006-01-01
This article describes two alternative coordinate systems and their use in graphing conic sections. This alternative graph paper helps students explore the idea of eccentricity using the definitions of the conic sections.
Summing Feynman graphs by Monte Carlo: Planar ϕ3-theory and dynamically triangulated random surfaces
NASA Astrophysics Data System (ADS)
Boulatov, D. V.; Kazakov, V. A.
1988-12-01
New combinatorial identities are suggested relating the ratio of (n - 1)th and nth orders of (planar) perturbation expansion for any quantity to some average over the ensemble of all planar graphs of the nth order. These identities are used for Monte Carlo calculation of critical exponents γstr (string susceptibility) in planar ϕ3-theory and in the dynamically triangulated random surface (DTRS) model near the convergence circle for various dimensions. In the solvable case D = 1 the exact critical properties of the theory are reproduced numerically. After August 3, 1988 the address will be: Cybernetics Council, Academy of Science, ul. Vavilova 40, 117333 Moscow, USSR.
Graphs in Kinematics--A Need for Adherence to Principles of Algebraic Functions
ERIC Educational Resources Information Center
Sokolowski, Andrzej
2017-01-01
Graphs in physics are central to the analysis of phenomena and to learning about a system's behavior. The ways students handle graphs are frequently researched. Students' misconceptions are highlighted, and methods of improvement suggested. While kinematics graphs are to represent a real motion, they are also algebraic entities that must satisfy…
Dynamical analysis of a cubic Liénard system with global parameters
NASA Astrophysics Data System (ADS)
Chen, Hebai; Chen, Xingwu
2015-10-01
In this paper we investigate the dynamical behaviour of a cubic Liénard system with global parameters. After analysing the qualitative properties of all the equilibria and judging the existences of limit cycles and homoclinic loops for the whole parameter plane, we give the bifurcation diagram and phase portraits. Phase portraits are global if there exist limit cycles and local otherwise. We prove that parameters lie in a connected region, not just on a curve, usually in the parameter plane when the system has one homoclinic loop. Moreover, for global parameters we give a positive answer to conjecture 3.2 of (1998 Nonlinearity 11 1505-19) in the case of exactly two equilibria about the existence of some function whose graph is exactly the surface of double limit cycles. Supported by NSFC 11471228, 11172246 and the Fundamental Research Funds for the Central Universities.
Emerging hierarchies in dynamically adapting webs
NASA Astrophysics Data System (ADS)
Katifori, Eleni; Graewer, Johannes; Magnasco, Marcelo; Modes, Carl
Transport networks play a key role across four realms of eukaryotic life: slime molds, fungi, plants, and animals. In addition to the developmental algorithms that build them, many also employ adaptive strategies to respond to stimuli, damage, and other environmental changes. We model these adapting network architectures using a generic dynamical system on weighted graphs and find in simulation that these networks ultimately develop a hierarchical organization of the final weighted architecture accompanied by the formation of a system-spanning backbone. We quantify the hierarchical organization of the networks by developing an algorithm that decomposes the architecture to multiple scales and analyzes how the organization in each scale relates to that of the scale above and below it. The methodologies developed in this work are applicable to a wide range of systems including the slime mold physarum polycephalum, human microvasculature, and force chains in granular media.
Emergence of structural patterns out of synchronization in networks with competitive interactions
NASA Astrophysics Data System (ADS)
Assenza, Salvatore; Gutiérrez, Ricardo; Gómez-Gardeñes, Jesús; Latora, Vito; Boccaletti, Stefano
2011-09-01
Synchronization is a collective phenomenon occurring in systems of interacting units, and is ubiquitous in nature, society and technology. Recent studies have enlightened the important role played by the interaction topology on the emergence of synchronized states. However, most of these studies neglect that real world systems change their interaction patterns in time. Here, we analyze synchronization features in networks in which structural and dynamical features co-evolve. The feedback of the node dynamics on the interaction pattern is ruled by the competition of two mechanisms: homophily (reinforcing those interactions with other correlated units in the graph) and homeostasis (preserving the value of the input strength received by each unit). The competition between these two adaptive principles leads to the emergence of key structural properties observed in real world networks, such as modular and scale-free structures, together with a striking enhancement of local synchronization in systems with no global order.
Cluster analysis in systems of magnetic spheres and cubes
NASA Astrophysics Data System (ADS)
Pyanzina, E. S.; Gudkova, A. V.; Donaldson, J. G.; Kantorovich, S. S.
2017-06-01
In the present work we use molecular dynamics simulations and graph-theory based cluster analysis to compare self-assembly in systems of magnetic spheres, and cubes where the dipole moment is oriented along the side of the cube in the [001] crystallographic direction. We show that under the same conditions cubes aggregate far less than their spherical counterparts. This difference can be explained in terms of the volume of phase space in which the formation of the bond is thermodynamically advantageous. It follows that this volume is much larger for a dipolar sphere than for a dipolar cube.
2018-03-30
information : Francisco L. Loaiza-Lemos, Project Leader floaiza@ida.org, 703-845-687 Margaret E. Myers, Director, Information Technology and Systems...analysis is aligned with the goals and objectives of the Department of Defense (DoD) as expressed in its Global Force Management Data Initiative...the previous phases of the analysis and how can they help inform the decision process for determining the optimal mix needed to implement the planned
Random Matrix Theory Approach to Chaotic Coherent Perfect Absorbers
NASA Astrophysics Data System (ADS)
Li, Huanan; Suwunnarat, Suwun; Fleischmann, Ragnar; Schanz, Holger; Kottos, Tsampikos
2017-01-01
We employ random matrix theory in order to investigate coherent perfect absorption (CPA) in lossy systems with complex internal dynamics. The loss strength γCPA and energy ECPA, for which a CPA occurs, are expressed in terms of the eigenmodes of the isolated cavity—thus carrying over the information about the chaotic nature of the target—and their coupling to a finite number of scattering channels. Our results are tested against numerical calculations using complex networks of resonators and chaotic graphs as CPA cavities.
A linear framework for time-scale separation in nonlinear biochemical systems.
Gunawardena, Jeremy
2012-01-01
Cellular physiology is implemented by formidably complex biochemical systems with highly nonlinear dynamics, presenting a challenge for both experiment and theory. Time-scale separation has been one of the few theoretical methods for distilling general principles from such complexity. It has provided essential insights in areas such as enzyme kinetics, allosteric enzymes, G-protein coupled receptors, ion channels, gene regulation and post-translational modification. In each case, internal molecular complexity has been eliminated, leading to rational algebraic expressions among the remaining components. This has yielded familiar formulas such as those of Michaelis-Menten in enzyme kinetics, Monod-Wyman-Changeux in allostery and Ackers-Johnson-Shea in gene regulation. Here we show that these calculations are all instances of a single graph-theoretic framework. Despite the biochemical nonlinearity to which it is applied, this framework is entirely linear, yet requires no approximation. We show that elimination of internal complexity is feasible when the relevant graph is strongly connected. The framework provides a new methodology with the potential to subdue combinatorial explosion at the molecular level.
Next Generation Extended Lagrangian Quantum-based Molecular Dynamics
NASA Astrophysics Data System (ADS)
Negre, Christian
2017-06-01
A new framework for extended Lagrangian first-principles molecular dynamics simulations is presented, which overcomes shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while maintaining important advantages of the unified extended Lagrangian formulation of density functional theory pioneered by Car and Parrinello three decades ago. The new framework allows, for the first time, energy conserving, linear-scaling Born-Oppenheimer molecular dynamics simulations, which is necessary to study larger and more realistic systems over longer simulation times than previously possible. Expensive, self-consinstent-field optimizations are avoided and normal integration time steps of regular, direct Born-Oppenheimer molecular dynamics can be used. Linear scaling electronic structure theory is presented using a graph-based approach that is ideal for parallel calculations on hybrid computer platforms. For the first time, quantum based Born-Oppenheimer molecular dynamics simulation is becoming a practically feasible approach in simulations of +100,000 atoms-representing a competitive alternative to classical polarizable force field methods. In collaboration with: Anders Niklasson, Los Alamos National Laboratory.
The Virtual Brain: Modeling Biological Correlates of Recovery after Chronic Stroke
Falcon, Maria Inez; Riley, Jeffrey D.; Jirsa, Viktor; McIntosh, Anthony R.; Shereen, Ahmed D.; Chen, E. Elinor; Solodkin, Ana
2015-01-01
There currently remains considerable variability in stroke survivor recovery. To address this, developing individualized treatment has become an important goal in stroke treatment. As a first step, it is necessary to determine brain dynamics associated with stroke and recovery. While recent methods have made strides in this direction, we still lack physiological biomarkers. The Virtual Brain (TVB) is a novel application for modeling brain dynamics that simulates an individual’s brain activity by integrating their own neuroimaging data with local biophysical models. Here, we give a detailed description of the TVB modeling process and explore model parameters associated with stroke. In order to establish a parallel between this new type of modeling and those currently in use, in this work we establish an association between a specific TVB parameter (long-range coupling) that increases after stroke with metrics derived from graph analysis. We used TVB to simulate the individual BOLD signals for 20 patients with stroke and 10 healthy controls. We performed graph analysis on their structural connectivity matrices calculating degree centrality, betweenness centrality, and global efficiency. Linear regression analysis demonstrated that long-range coupling is negatively correlated with global efficiency (P = 0.038), but is not correlated with degree centrality or betweenness centrality. Our results suggest that the larger influence of local dynamics seen through the long-range coupling parameter is closely associated with a decreased efficiency of the system. We thus propose that the increase in the long-range parameter in TVB (indicating a bias toward local over global dynamics) is deleterious because it reduces communication as suggested by the decrease in efficiency. The new model platform TVB hence provides a novel perspective to understanding biophysical parameters responsible for global brain dynamics after stroke, allowing the design of focused therapeutic interventions. PMID:26579071
Graphical Understanding of Simple Feedback Systems.
ERIC Educational Resources Information Center
Janvier, Claude; Garancon, Maurice
1989-01-01
Shows that graphs can reveal much about feedback systems that formula conceal, especially as microcomputers can provide complex graphs presented as animations and allow students to interact easily with them. Describes feedback systems, evolution of the system, and phase diagram. (YP)
Role of Graph Architecture in Controlling Dynamical Networks with Applications to Neural Systems.
Kim, Jason Z; Soffer, Jonathan M; Kahn, Ari E; Vettel, Jean M; Pasqualetti, Fabio; Bassett, Danielle S
2018-01-01
Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviors such as synchronization. While descriptions of these behaviors are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behavior. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behavior in its network architecture, and directly inspire new directions in network analysis and design via distributed control.
Role of graph architecture in controlling dynamical networks with applications to neural systems
NASA Astrophysics Data System (ADS)
Kim, Jason Z.; Soffer, Jonathan M.; Kahn, Ari E.; Vettel, Jean M.; Pasqualetti, Fabio; Bassett, Danielle S.
2018-01-01
Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviours such as synchronization. Although descriptions of these behaviours are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behaviour. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behaviour in its network architecture, and directly inspire new directions in network analysis and design via distributed control.
A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems
Song, Fengguang; Dongarra, Jack
2014-10-01
Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid CPU-GPU systems to solve dense linear algebra problems, in this paper we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and transfers data between compute nodes automatically. The runtime system uses a new distributed task assignment protocol to solve data dependencies between tasksmore » without any coordination between processing units. By overlapping computation and communication through dynamic scheduling, we are able to attain scalable performance for the double-precision Cholesky factorization and QR factorization. Finally, our approach demonstrates a performance comparable to Intel MKL on shared-memory multicore systems and better performance than both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments: heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared-memory systems with multiple GPUs.« less
A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Fengguang; Dongarra, Jack
Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid CPU-GPU systems to solve dense linear algebra problems, in this paper we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and transfers data between compute nodes automatically. The runtime system uses a new distributed task assignment protocol to solve data dependencies between tasksmore » without any coordination between processing units. By overlapping computation and communication through dynamic scheduling, we are able to attain scalable performance for the double-precision Cholesky factorization and QR factorization. Finally, our approach demonstrates a performance comparable to Intel MKL on shared-memory multicore systems and better performance than both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments: heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared-memory systems with multiple GPUs.« less
Learning molecular energies using localized graph kernels.
Ferré, Grégoire; Haut, Terry; Barros, Kipton
2017-03-21
Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.
Learning molecular energies using localized graph kernels
NASA Astrophysics Data System (ADS)
Ferré, Grégoire; Haut, Terry; Barros, Kipton
2017-03-01
Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.
Spectral partitioning in equitable graphs.
Barucca, Paolo
2017-06-01
Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e., random graphs with a block-regular structure, is studied, for which analytical results can be obtained. In particular, the spectral density of this ensemble is computed exactly for a modular and bipartite structure. Kesten-McKay's law for random regular graphs is found analytically to apply also for modular and bipartite structures when blocks are homogeneous. An exact solution to graph partitioning for two equal-sized communities is proposed and verified numerically, and a conjecture on the absence of an efficient recovery detectability transition in equitable graphs is suggested. A final discussion summarizes results and outlines their relevance for the solution of graph partitioning problems in other graph ensembles, in particular for the study of detectability thresholds and resolution limits in stochastic block models.
Spectral partitioning in equitable graphs
NASA Astrophysics Data System (ADS)
Barucca, Paolo
2017-06-01
Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e., random graphs with a block-regular structure, is studied, for which analytical results can be obtained. In particular, the spectral density of this ensemble is computed exactly for a modular and bipartite structure. Kesten-McKay's law for random regular graphs is found analytically to apply also for modular and bipartite structures when blocks are homogeneous. An exact solution to graph partitioning for two equal-sized communities is proposed and verified numerically, and a conjecture on the absence of an efficient recovery detectability transition in equitable graphs is suggested. A final discussion summarizes results and outlines their relevance for the solution of graph partitioning problems in other graph ensembles, in particular for the study of detectability thresholds and resolution limits in stochastic block models.
Siri, Benoît; Berry, Hugues; Cessac, Bruno; Delord, Bruno; Quoy, Mathias
2008-12-01
We present a mathematical analysis of the effects of Hebbian learning in random recurrent neural networks, with a generic Hebbian learning rule, including passive forgetting and different timescales, for neuronal activity and learning dynamics. Previous numerical work has reported that Hebbian learning drives the system from chaos to a steady state through a sequence of bifurcations. Here, we interpret these results mathematically and show that these effects, involving a complex coupling between neuronal dynamics and synaptic graph structure, can be analyzed using Jacobian matrices, which introduce both a structural and a dynamical point of view on neural network evolution. Furthermore, we show that sensitivity to a learned pattern is maximal when the largest Lyapunov exponent is close to 0. We discuss how neural networks may take advantage of this regime of high functional interest.
Graph-based structural change detection for rotating machinery monitoring
NASA Astrophysics Data System (ADS)
Lu, Guoliang; Liu, Jie; Yan, Peng
2018-01-01
Detection of structural changes is critically important in operational monitoring of a rotating machine. This paper presents a novel framework for this purpose, where a graph model for data modeling is adopted to represent/capture statistical dynamics in machine operations. Meanwhile we develop a numerical method for computing temporal anomalies in the constructed graphs. The martingale-test method is employed for the change detection when making decisions on possible structural changes, where excellent performance is demonstrated outperforming exciting results such as the autoregressive-integrated-moving average (ARIMA) model. Comprehensive experimental results indicate good potentials of the proposed algorithm in various engineering applications. This work is an extension of a recent result (Lu et al., 2017).
System-level power optimization for real-time distributed embedded systems
NASA Astrophysics Data System (ADS)
Luo, Jiong
Power optimization is one of the crucial design considerations for modern electronic systems. In this thesis, we present several system-level power optimization techniques for real-time distributed embedded systems, based on dynamic voltage scaling, dynamic power management, and management of peak power and variance of the power profile. Dynamic voltage scaling has been widely acknowledged as an important and powerful technique to trade off dynamic power consumption and delay. Efficient dynamic voltage scaling requires effective variable-voltage scheduling mechanisms that can adjust voltages and clock frequencies adaptively based on workloads and timing constraints. For this purpose, we propose static variable-voltage scheduling algorithms utilizing criticalpath driven timing analysis for the case when tasks are assumed to have uniform switching activities, as well as energy-gradient driven slack allocation for a more general scenario. The proposed techniques can achieve closeto-optimal power savings with very low computational complexity, without violating any real-time constraints. We also present algorithms for power-efficient joint scheduling of multi-rate periodic task graphs along with soft aperiodic tasks. The power issue is addressed through both dynamic voltage scaling and power management. Periodic task graphs are scheduled statically. Flexibility is introduced into the static schedule to allow the on-line scheduler to make local changes to PE schedules through resource reclaiming and slack stealing, without interfering with the validity of the global schedule. We provide a unified framework in which the response times of aperiodic tasks and power consumption are dynamically optimized simultaneously. Interconnection network fabrics point to a new generation of power-efficient and scalable interconnection architectures for distributed embedded systems. As the system bandwidth continues to increase, interconnection networks become power/energy limited as well. Variable-frequency links have been designed by circuit designers for both parallel and serial links, which can adaptively regulate the supply voltage of transceivers to a desired link frequency, to exploit the variations in bandwidth requirement for power savings. We propose solutions for simultaneous dynamic voltage scaling of processors and links. The proposed solution considers real-time scheduling, flow control, and packet routing jointly. It can trade off the power consumption on processors and communication links via efficient slack allocation, and lead to more power savings than dynamic voltage scaling on processors alone. For battery-operated systems, the battery lifespan is an important concern. Due to the effects of discharge rate and battery recovery, the discharge pattern of batteries has an impact on the battery lifespan. Battery models indicate that even under the same average power consumption, reducing peak power current and variance in the power profile can increase the battery efficiency and thereby prolong battery lifetime. To take advantage of these effects, we propose battery-driven scheduling techniques for embedded applications, to reduce the peak power and the variance in the power profile of the overall system under real-time constraints. The proposed scheduling algorithms are also beneficial in addressing reliability and signal integrity concerns by effectively controlling peak power and variance of the power profile.
Mutual proximity graphs for improved reachability in music recommendation.
Flexer, Arthur; Stevens, Jeff
2018-01-01
This paper is concerned with the impact of hubness, a general problem of machine learning in high-dimensional spaces, on a real-world music recommendation system based on visualisation of a k-nearest neighbour (knn) graph. Due to a problem of measuring distances in high dimensions, hub objects are recommended over and over again while anti-hubs are nonexistent in recommendation lists, resulting in poor reachability of the music catalogue. We present mutual proximity graphs, which are an alternative to knn and mutual knn graphs, and are able to avoid hub vertices having abnormally high connectivity. We show that mutual proximity graphs yield much better graph connectivity resulting in improved reachability compared to knn graphs, mutual knn graphs and mutual knn graphs enhanced with minimum spanning trees, while simultaneously reducing the negative effects of hubness.
Mutual proximity graphs for improved reachability in music recommendation
Flexer, Arthur; Stevens, Jeff
2018-01-01
This paper is concerned with the impact of hubness, a general problem of machine learning in high-dimensional spaces, on a real-world music recommendation system based on visualisation of a k-nearest neighbour (knn) graph. Due to a problem of measuring distances in high dimensions, hub objects are recommended over and over again while anti-hubs are nonexistent in recommendation lists, resulting in poor reachability of the music catalogue. We present mutual proximity graphs, which are an alternative to knn and mutual knn graphs, and are able to avoid hub vertices having abnormally high connectivity. We show that mutual proximity graphs yield much better graph connectivity resulting in improved reachability compared to knn graphs, mutual knn graphs and mutual knn graphs enhanced with minimum spanning trees, while simultaneously reducing the negative effects of hubness. PMID:29348779
Program for Generating Graphs and Charts
NASA Technical Reports Server (NTRS)
Ackerson, C. T.
1986-01-01
Office Automation Pilot (OAP) Graphics Database system offers IBM personal computer user assistance in producing wide variety of graphs and charts and convenient data-base system, called chart base, for creating and maintaining data associated with graphs and charts. Thirteen different graphics packages available. Access graphics capabilities obtained in similar manner. User chooses creation, revision, or chartbase-maintenance options from initial menu; Enters or modifies data displayed on graphic chart. OAP graphics data-base system written in Microsoft PASCAL.
A Wave Chaotic Study of Quantum Graphs with Microwave Networks
NASA Astrophysics Data System (ADS)
Fu, Ziyuan
Quantum graphs provide a setting to test the hypothesis that all ray-chaotic systems show universal wave chaotic properties. I study the quantum graphs with a wave chaotic approach. Here, an experimental setup consisting of a microwave coaxial cable network is used to simulate quantum graphs. Some basic features and the distributions of impedance statistics are analyzed from experimental data on an ensemble of tetrahedral networks. The random coupling model (RCM) is applied in an attempt to uncover the universal statistical properties of the system. Deviations from RCM predictions have been observed in that the statistics of diagonal and off-diagonal impedance elements are different. Waves trapped due to multiple reflections on bonds between nodes in the graph most likely cause the deviations from universal behavior in the finite-size realization of a quantum graph. In addition, I have done some investigations on the Random Coupling Model, which are useful for further research.
A system for routing arbitrary directed graphs on SIMD architectures
NASA Technical Reports Server (NTRS)
Tomboulian, Sherryl
1987-01-01
There are many problems which can be described in terms of directed graphs that contain a large number of vertices where simple computations occur using data from connecting vertices. A method is given for parallelizing such problems on an SIMD machine model that is bit-serial and uses only nearest neighbor connections for communication. Each vertex of the graph will be assigned to a processor in the machine. Algorithms are given that will be used to implement movement of data along the arcs of the graph. This architecture and algorithms define a system that is relatively simple to build and can do graph processing. All arcs can be transversed in parallel in time O(T), where T is empirically proportional to the diameter of the interconnection network times the average degree of the graph. Modifying or adding a new arc takes the same time as parallel traversal.
NASA Astrophysics Data System (ADS)
Gutin, Gregory; Kim, Eun Jung; Soleimanfallah, Arezou; Szeider, Stefan; Yeo, Anders
The NP-hard general factor problem asks, given a graph and for each vertex a list of integers, whether the graph has a spanning subgraph where each vertex has a degree that belongs to its assigned list. The problem remains NP-hard even if the given graph is bipartite with partition U ⊎ V, and each vertex in U is assigned the list {1}; this subproblem appears in the context of constraint programming as the consistency problem for the extended global cardinality constraint. We show that this subproblem is fixed-parameter tractable when parameterized by the size of the second partite set V. More generally, we show that the general factor problem for bipartite graphs, parameterized by |V |, is fixed-parameter tractable as long as all vertices in U are assigned lists of length 1, but becomes W[1]-hard if vertices in U are assigned lists of length at most 2. We establish fixed-parameter tractability by reducing the problem instance to a bounded number of acyclic instances, each of which can be solved in polynomial time by dynamic programming.
Decentralized Estimation and Control for Preserving the Strong Connectivity of Directed Graphs.
Sabattini, Lorenzo; Secchi, Cristian; Chopra, Nikhil
2015-10-01
In order to accomplish cooperative tasks, decentralized systems are required to communicate among each other. Thus, maintaining the connectivity of the communication graph is a fundamental issue. Connectivity maintenance has been extensively studied in the last few years, but generally considering undirected communication graphs. In this paper, we introduce a decentralized control and estimation strategy to maintain the strong connectivity property of directed communication graphs. In particular, we introduce a hierarchical estimation procedure that implements power iteration in a decentralized manner, exploiting an algorithm for balancing strongly connected directed graphs. The output of the estimation system is then utilized for guaranteeing preservation of the strong connectivity property. The control strategy is validated by means of analytical proofs and simulation results.
Dynamics for a 2-vertex quantum gravity model
NASA Astrophysics Data System (ADS)
Borja, Enrique F.; Díaz-Polo, Jacobo; Garay, Iñaki; Livine, Etera R.
2010-12-01
We use the recently introduced U(N) framework for loop quantum gravity to study the dynamics of spin network states on the simplest class of graphs: two vertices linked with an arbitrary number N of edges. Such graphs represent two regions, in and out, separated by a boundary surface. We study the algebraic structure of the Hilbert space of spin networks from the U(N) perspective. In particular, we describe the algebra of operators acting on that space and discuss their relation to the standard holonomy operator of loop quantum gravity. Furthermore, we show that it is possible to make the restriction to the isotropic/homogeneous sector of the model by imposing the invariance under a global U(N) symmetry. We then propose a U(N)-invariant Hamiltonian operator and study the induced dynamics. Finally, we explore the analogies between this model and loop quantum cosmology and sketch some possible generalizations of it.
Real-time path planning in dynamic virtual environments using multiagent navigation graphs.
Sud, Avneesh; Andersen, Erik; Curtis, Sean; Lin, Ming C; Manocha, Dinesh
2008-01-01
We present a novel approach for efficient path planning and navigation of multiple virtual agents in complex dynamic scenes. We introduce a new data structure, Multi-agent Navigation Graph (MaNG), which is constructed using first- and second-order Voronoi diagrams. The MaNG is used to perform route planning and proximity computations for each agent in real time. Moreover, we use the path information and proximity relationships for local dynamics computation of each agent by extending a social force model [Helbing05]. We compute the MaNG using graphics hardware and present culling techniques to accelerate the computation. We also address undersampling issues and present techniques to improve the accuracy of our algorithm. Our algorithm is used for real-time multi-agent planning in pursuit-evasion, terrain exploration and crowd simulation scenarios consisting of hundreds of moving agents, each with a distinct goal.
Bond Graph Modeling of Chemiosmotic Biomolecular Energy Transduction.
Gawthrop, Peter J
2017-04-01
Engineering systems modeling and analysis based on the bond graph approach has been applied to biomolecular systems. In this context, the notion of a Faraday-equivalent chemical potential is introduced which allows chemical potential to be expressed in an analogous manner to electrical volts thus allowing engineering intuition to be applied to biomolecular systems. Redox reactions, and their representation by half-reactions, are key components of biological systems which involve both electrical and chemical domains. A bond graph interpretation of redox reactions is given which combines bond graphs with the Faraday-equivalent chemical potential. This approach is particularly relevant when the biomolecular system implements chemoelectrical transduction - for example chemiosmosis within the key metabolic pathway of mitochondria: oxidative phosphorylation. An alternative way of implementing computational modularity using bond graphs is introduced and used to give a physically based model of the mitochondrial electron transport chain To illustrate the overall approach, this model is analyzed using the Faraday-equivalent chemical potential approach and engineering intuition is used to guide affinity equalisation: a energy based analysis of the mitochondrial electron transport chain.
GraQL: A Query Language for High-Performance Attributed Graph Databases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavarría-Miranda, Daniel; Castellana, Vito G.; Morari, Alessandro
Graph databases have gained increasing interest in the last few years due to the emergence of data sources which are not easily analyzable in traditional relational models or for which a graph data model is the natural representation. In order to understand the design and implementation choices for an attributed graph database backend and query language, we have started to design our infrastructure for attributed graph databases. In this paper, we describe the design considerations of our in-memory attributed graph database system with a particular focus on the data definition and query language components.
Using graph approach for managing connectivity in integrative landscape modelling
NASA Astrophysics Data System (ADS)
Rabotin, Michael; Fabre, Jean-Christophe; Libres, Aline; Lagacherie, Philippe; Crevoisier, David; Moussa, Roger
2013-04-01
In cultivated landscapes, a lot of landscape elements such as field boundaries, ditches or banks strongly impact water flows, mass and energy fluxes. At the watershed scale, these impacts are strongly conditionned by the connectivity of these landscape elements. An accurate representation of these elements and of their complex spatial arrangements is therefore of great importance for modelling and predicting these impacts.We developped in the framework of the OpenFLUID platform (Software Environment for Modelling Fluxes in Landscapes) a digital landscape representation that takes into account the spatial variabilities and connectivities of diverse landscape elements through the application of the graph theory concepts. The proposed landscape representation consider spatial units connected together to represent the flux exchanges or any other information exchanges. Each spatial unit of the landscape is represented as a node of a graph and relations between units as graph connections. The connections are of two types - parent-child connection and up/downstream connection - which allows OpenFLUID to handle hierarchical graphs. Connections can also carry informations and graph evolution during simulation is possible (connections or elements modifications). This graph approach allows a better genericity on landscape representation, a management of complex connections and facilitate development of new landscape representation algorithms. Graph management is fully operational in OpenFLUID for developers or modelers ; and several graph tools are available such as graph traversal algorithms or graph displays. Graph representation can be managed i) manually by the user (for example in simple catchments) through XML-based files in easily editable and readable format or ii) by using methods of the OpenFLUID-landr library which is an OpenFLUID library relying on common open-source spatial libraries (ogr vector, geos topologic vector and gdal raster libraries). OpenFLUID-landr library has been developed in order i) to be used with no GIS expert skills needed (common gis formats can be read and simplified spatial management is provided), ii) to easily develop adapted rules of landscape discretization and graph creation to follow spatialized model requirements and iii) to allow model developers to manage dynamic and complex spatial topology. Graph management in OpenFLUID are shown with i) examples of hydrological modelizations on complex farmed landscapes and ii) the new implementation of Geo-MHYDAS tool based on the OpenFLUID-landr library, which allows to discretize a landscape and create graph structure for the MHYDAS model requirements.
Graph processing platforms at scale: practices and experiences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Seung-Hwan; Lee, Sangkeun; Brown, Tyler C
2015-01-01
Graph analysis unveils hidden associations of data in many phenomena and artifacts, such as road network, social networks, genomic information, and scientific collaboration. Unfortunately, a wide diversity in the characteristics of graphs and graph operations make it challenging to find a right combination of tools and implementation of algorithms to discover desired knowledge from the target data set. This study presents an extensive empirical study of three representative graph processing platforms: Pegasus, GraphX, and Urika. Each system represents a combination of options in data model, processing paradigm, and infrastructure. We benchmarked each platform using three popular graph operations, degree distribution,more » connected components, and PageRank over a variety of real-world graphs. Our experiments show that each graph processing platform shows different strength, depending the type of graph operations. While Urika performs the best in non-iterative operations like degree distribution, GraphX outputforms iterative operations like connected components and PageRank. In addition, we discuss challenges to optimize the performance of each platform over large scale real world graphs.« less
Mean Curvature, Threshold Dynamics, and Phase Field Theory on Finite Graphs
2013-06-28
of the graph in a low dimensional space . Of course, the various definitions of curvature in the ... with a velocity depending on the mean curvature of the front. Recently, there has been an increasing interest in using ideas from continuum PDEs...functions V → R and E the space of all skew-symmetric4 functions E → R. Again to simplify notation, we extend each ϕ ∈ E to a function ϕ : V 2 → R
Epicenters of dynamic connectivity in the adaptation of the ventral visual system.
Prčkovska, Vesna; Huijbers, Willem; Schultz, Aaron; Ortiz-Teran, Laura; Peña-Gomez, Cleofe; Villoslada, Pablo; Johnson, Keith; Sperling, Reisa; Sepulcre, Jorge
2017-04-01
Neuronal responses adapt to familiar and repeated sensory stimuli. Enhanced synchrony across wide brain systems has been postulated as a potential mechanism for this adaptation phenomenon. Here, we used recently developed graph theory methods to investigate hidden connectivity features of dynamic synchrony changes during a visual repetition paradigm. Particularly, we focused on strength connectivity changes occurring at local and distant brain neighborhoods. We found that connectivity reorganization in visual modal cortex-such as local suppressed connectivity in primary visual areas and distant suppressed connectivity in fusiform areas-is accompanied by enhanced local and distant connectivity in higher cognitive processing areas in multimodal and association cortex. Moreover, we found a shift of the dynamic functional connections from primary-visual-fusiform to primary-multimodal/association cortex. These findings suggest that repetition-suppression is made possible by reorganization of functional connectivity that enables communication between low- and high-order areas. Hum Brain Mapp 38:1965-1976, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
A Dynamic Approach to Rebalancing Bike-Sharing Systems
2018-01-01
Bike-sharing services are flourishing in Smart Cities worldwide. They provide a low-cost and environment-friendly transportation alternative and help reduce traffic congestion. However, these new services are still under development, and several challenges need to be solved. A major problem is the management of rebalancing trucks in order to ensure that bikes and stalls in the docking stations are always available when needed, despite the fluctuations in the service demand. In this work, we propose a dynamic rebalancing strategy that exploits historical data to predict the network conditions and promptly act in case of necessity. We use Birth-Death Processes to model the stations’ occupancy and decide when to redistribute bikes, and graph theory to select the rebalancing path and the stations involved. We validate the proposed framework on the data provided by New York City’s bike-sharing system. The numerical simulations show that a dynamic strategy able to adapt to the fluctuating nature of the network outperforms rebalancing schemes based on a static schedule. PMID:29419771
Fried, Yael; Kessler, David A.; Shnerb, Nadav M.
2016-01-01
High-diversity species assemblages are very common in nature, and yet the factors allowing for the maintenance of biodiversity remain obscure. The competitive exclusion principle and May’s complexity-diversity puzzle both suggest that a community can support only a small number of species, turning the spotlight on the dynamics of local patches or islands, where stable and uninvadable (SU) subsets of species play a crucial role. Here we map the question of the number of different possible SUs a community can support to the geometric problem of finding maximal cliques of the corresponding graph. This enables us to solve for the number of SUs as a function of the species richness in the regional pool, N, showing that the growth of this number is subexponential in N, contrary to long-standing wisdom. To understand the dynamics under noise we examine the relaxation time to an SU. Symmetric systems relax rapidly, whereas in asymmetric systems the relaxation time grows much faster with N, suggesting an excitable dynamics under noise. PMID:27759102
Scalable Adaptive Architectures for Maritime Operations Center Command and Control
2011-05-06
the project to investigate the possibility of using earlier work on the validation and verification of rule bases in addressing the dynamically ...support the organization. To address the dynamically changing rules of engagement of a maritime force as it crosses different geographical areas, GMU... dynamic analysis, makes use of an Occurrence Graph that corresponds to the dynamics (or execution) of the Petri Net, to capture properties
Enumerating Substituted Benzene Isomers of Tree-Like Chemical Graphs.
Li, Jinghui; Nagamochi, Hiroshi; Akutsu, Tatsuya
2018-01-01
Enumeration of chemical structures is useful for drug design, which is one of the main targets of computational biology and bioinformatics. A chemical graph with no other cycles than benzene rings is called tree-like, and becomes a tree possibly with multiple edges if we contract each benzene ring into a single virtual atom of valence 6. All tree-like chemical graphs with a given tree representation are called the substituted benzene isomers of . When we replace each virtual atom in with a benzene ring to obtain a substituted benzene isomer, distinct isomers of are caused by the difference in arrangements of atom groups around a benzene ring. In this paper, we propose an efficient algorithm that enumerates all substituted benzene isomers of a given tree representation . Our algorithm first counts the number of all the isomers of the tree representation by a dynamic programming method. To enumerate all the isomers, for each , our algorithm then generates the th isomer by backtracking the counting phase of the dynamic programming. We also implemented our algorithm for computational experiments.
Rapid Prototyping of High Performance Signal Processing Applications
NASA Astrophysics Data System (ADS)
Sane, Nimish
Advances in embedded systems for digital signal processing (DSP) are enabling many scientific projects and commercial applications. At the same time, these applications are key to driving advances in many important kinds of computing platforms. In this region of high performance DSP, rapid prototyping is critical for faster time-to-market (e.g., in the wireless communications industry) or time-to-science (e.g., in radio astronomy). DSP system architectures have evolved from being based on application specific integrated circuits (ASICs) to incorporate reconfigurable off-the-shelf field programmable gate arrays (FPGAs), the latest multiprocessors such as graphics processing units (GPUs), or heterogeneous combinations of such devices. We, thus, have a vast design space to explore based on performance trade-offs, and expanded by the multitude of possibilities for target platforms. In order to allow systematic design space exploration, and develop scalable and portable prototypes, model based design tools are increasingly used in design and implementation of embedded systems. These tools allow scalable high-level representations, model based semantics for analysis and optimization, and portable implementations that can be verified at higher levels of abstractions and targeted toward multiple platforms for implementation. The designer can experiment using such tools at an early stage in the design cycle, and employ the latest hardware at later stages. In this thesis, we have focused on dataflow-based approaches for rapid DSP system prototyping. This thesis contributes to various aspects of dataflow-based design flows and tools as follows: 1. We have introduced the concept of topological patterns, which exploits commonly found repetitive patterns in DSP algorithms to allow scalable, concise, and parameterizable representations of large scale dataflow graphs in high-level languages. We have shown how an underlying design tool can systematically exploit a high-level application specification consisting of topological patterns in various aspects of the design flow. 2. We have formulated the core functional dataflow (CFDF) model of computation, which can be used to model a wide variety of deterministic dynamic dataflow behaviors. We have also presented key features of the CFDF model and tools based on these features. These tools provide support for heterogeneous dataflow behaviors, an intuitive and common framework for functional specification, support for functional simulation, portability from several existing dataflow models to CFDF, integrated emphasis on minimally-restricted specification of actor functionality, and support for efficient static, quasi-static, and dynamic scheduling techniques. 3. We have developed a generalized scheduling technique for CFDF graphs based on decomposition of a CFDF graph into static graphs that interact at run-time. Furthermore, we have refined this generalized scheduling technique using a new notion of "mode grouping," which better exposes the underlying static behavior. We have also developed a scheduling technique for a class of dynamic applications that generates parameterized looped schedules (PLSs), which can handle dynamic dataflow behavior without major limitations on compile-time predictability. 4. We have demonstrated the use of dataflow-based approaches for design and implementation of radio astronomy DSP systems using an application example of a tunable digital downconverter (TDD) for spectrometers. Design and implementation of this module has been an integral part of this thesis work. This thesis demonstrates a design flow that consists of a high-level software prototype, analysis, and simulation using the dataflow interchange format (DIF) tool, and integration of this design with the existing tool flow for the target implementation on an FPGA platform, called interconnect break-out board (IBOB). We have also explored the trade-off between low hardware cost for fixed configurations of digital downconverters and flexibility offered by TDD designs. 5. This thesis has contributed significantly to the development and release of the latest version of a graph package oriented toward models of computation (MoCGraph). Our enhancements to this package include support for tree data structures, and generalized schedule trees (GSTs), which provide a useful data structure for a wide variety of schedule representations. Our extensions to the MoCGraph package provided key support for the CFDF model, and functional simulation capabilities in the DIF package.
Automatic determination of fault effects on aircraft functionality
NASA Technical Reports Server (NTRS)
Feyock, Stefan
1989-01-01
The problem of determining the behavior of physical systems subsequent to the occurrence of malfunctions is discussed. It is established that while it was reasonable to assume that the most important fault behavior modes of primitive components and simple subsystems could be known and predicted, interactions within composite systems reached levels of complexity that precluded the use of traditional rule-based expert system techniques. Reasoning from first principles, i.e., on the basis of causal models of the physical system, was required. The first question that arises is, of course, how the causal information required for such reasoning should be represented. The bond graphs presented here occupy a position intermediate between qualitative and quantitative models, allowing the automatic derivation of Kuipers-like qualitative constraint models as well as state equations. Their most salient feature, however, is that entities corresponding to components and interactions in the physical system are explicitly represented in the bond graph model, thus permitting systematic model updates to reflect malfunctions. Researchers show how this is done, as well as presenting a number of techniques for obtaining qualitative information from the state equations derivable from bond graph models. One insight is the fact that one of the most important advantages of the bond graph ontology is the highly systematic approach to model construction it imposes on the modeler, who is forced to classify the relevant physical entities into a small number of categories, and to look for two highly specific types of interactions among them. The systematic nature of bond graph model construction facilitates the process to the point where the guidelines are sufficiently specific to be followed by modelers who are not domain experts. As a result, models of a given system constructed by different modelers will have extensive similarities. Researchers conclude by pointing out that the ease of updating bond graph models to reflect malfunctions is a manifestation of the systematic nature of bond graph construction, and the regularity of the relationship between bond graph models and physical reality.
NASA Technical Reports Server (NTRS)
1991-01-01
The Engineering Scripting Language (ESL) is a language designed to allow nonprogramming users to write Higher Order Language (HOL) programs by drawing directed graphs to represent the program and having the system generate the corresponding program in HOL. The ESL system supports user generation of HOL programs through the manipulation of directed graphs. The components of this graphs (nodes, ports, and connectors) are objects each of which has its own properties and property values. The purpose of the ESL graphical editor is to allow the user to create or edit graph objects which represent programs.
NOUS: A Knowledge Graph Management System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knowledge graphs represent information as entities and relationships between them. For tasks such as natural language question answering or automated analysis of text, a knowledge graph provides valuable context to establish the specific type of entities being discussed. It allow us to derive better context about newly arriving information and leads to intelligent reasoning capabilities. We address two primary needs: A) Automated construction of knowledge graphs is a technically challenging, expensive process; and B) The ability to synthesize new information by monitoring newly emerging knowledge is a transformational capability that does not exist in state of the art systems.
A new intrusion prevention model using planning knowledge graph
NASA Astrophysics Data System (ADS)
Cai, Zengyu; Feng, Yuan; Liu, Shuru; Gan, Yong
2013-03-01
Intelligent plan is a very important research in artificial intelligence, which has applied in network security. This paper proposes a new intrusion prevention model base on planning knowledge graph and discuses the system architecture and characteristics of this model. The Intrusion Prevention based on plan knowledge graph is completed by plan recognition based on planning knowledge graph, and the Intrusion response strategies and actions are completed by the hierarchical task network (HTN) planner in this paper. Intrusion prevention system has the advantages of intelligent planning, which has the advantage of the knowledge-sharing, the response focused, learning autonomy and protective ability.
Chiu, Stephanie J; Toth, Cynthia A; Bowes Rickman, Catherine; Izatt, Joseph A; Farsiu, Sina
2012-05-01
This paper presents a generalized framework for segmenting closed-contour anatomical and pathological features using graph theory and dynamic programming (GTDP). More specifically, the GTDP method previously developed for quantifying retinal and corneal layer thicknesses is extended to segment objects such as cells and cysts. The presented technique relies on a transform that maps closed-contour features in the Cartesian domain into lines in the quasi-polar domain. The features of interest are then segmented as layers via GTDP. Application of this method to segment closed-contour features in several ophthalmic image types is shown. Quantitative validation experiments for retinal pigmented epithelium cell segmentation in confocal fluorescence microscopy images attests to the accuracy of the presented technique.
Effective centrality and explosive synchronization in complex networks
NASA Astrophysics Data System (ADS)
Navas, A.; Villacorta-Atienza, J. A.; Leyva, I.; Almendral, J. A.; Sendiña-Nadal, I.; Boccaletti, S.
2015-12-01
Synchronization of networked oscillators is known to depend fundamentally on the interplay between the dynamics of the graph's units and the microscopic arrangement of the network's structure. We here propose an effective network whose topological properties reflect the interplay between the topology and dynamics of the original network. On that basis, we are able to introduce the effective centrality, a measure that quantifies the role and importance of each network's node in the synchronization process. In particular, in the context of explosive synchronization, we use such a measure to assess the propensity of a graph to sustain an irreversible transition to synchronization. We furthermore discuss a strategy to induce the explosive behavior in a generic network, by acting only upon a fraction of its nodes.
Chiu, Stephanie J.; Toth, Cynthia A.; Bowes Rickman, Catherine; Izatt, Joseph A.; Farsiu, Sina
2012-01-01
This paper presents a generalized framework for segmenting closed-contour anatomical and pathological features using graph theory and dynamic programming (GTDP). More specifically, the GTDP method previously developed for quantifying retinal and corneal layer thicknesses is extended to segment objects such as cells and cysts. The presented technique relies on a transform that maps closed-contour features in the Cartesian domain into lines in the quasi-polar domain. The features of interest are then segmented as layers via GTDP. Application of this method to segment closed-contour features in several ophthalmic image types is shown. Quantitative validation experiments for retinal pigmented epithelium cell segmentation in confocal fluorescence microscopy images attests to the accuracy of the presented technique. PMID:22567602
NASA Astrophysics Data System (ADS)
Varlataya, S. K.; Evdokimov, V. E.; Urzov, A. Y.
2017-11-01
This article describes a process of calculating a certain complex information security system (CISS) reliability using the example of the technospheric security management model as well as ability to determine the frequency of its maintenance using the system reliability parameter which allows one to assess man-made risks and to forecast natural and man-made emergencies. The relevance of this article is explained by the fact the CISS reliability is closely related to information security (IS) risks. Since reliability (or resiliency) is a probabilistic characteristic of the system showing the possibility of its failure (and as a consequence - threats to the protected information assets emergence), it is seen as a component of the overall IS risk in the system. As it is known, there is a certain acceptable level of IS risk assigned by experts for a particular information system; in case of reliability being a risk-forming factor maintaining an acceptable risk level should be carried out by the routine analysis of the condition of CISS and its elements and their timely service. The article presents a reliability parameter calculation for the CISS with a mixed type of element connection, a formula of the dynamics of such system reliability is written. The chart of CISS reliability change is a S-shaped curve which can be divided into 3 periods: almost invariable high level of reliability, uniform reliability reduction, almost invariable low level of reliability. Setting the minimum acceptable level of reliability, the graph (or formula) can be used to determine the period of time during which the system would meet requirements. Ideally, this period should not be longer than the first period of the graph. Thus, the proposed method of calculating the CISS maintenance frequency helps to solve a voluminous and critical task of the information assets risk management.
Data based identification and prediction of nonlinear and complex dynamical systems
NASA Astrophysics Data System (ADS)
Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso
2016-07-01
The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The "inverse" problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear dynamical systems theories with tools from statistical physics, optimization, engineering control, applied mathematics, and scientific computing enables the development of a number of paradigms to address the problem of nonlinear and complex systems reconstruction. In this Review, we describe the recent advances in this forefront and rapidly evolving field, with a focus on compressive sensing based methods. In particular, compressive sensing is a paradigm developed in recent years in applied mathematics, electrical engineering, and nonlinear physics to reconstruct sparse signals using only limited data. It has broad applications ranging from image compression/reconstruction to the analysis of large-scale sensor networks, and it has become a powerful technique to obtain high-fidelity signals for applications where sufficient observations are not available. We will describe in detail how compressive sensing can be exploited to address a diverse array of problems in data based reconstruction of nonlinear and complex networked systems. The problems include identification of chaotic systems and prediction of catastrophic bifurcations, forecasting future attractors of time-varying nonlinear systems, reconstruction of complex networks with oscillatory and evolutionary game dynamics, detection of hidden nodes, identification of chaotic elements in neuronal networks, reconstruction of complex geospatial networks and nodal positioning, and reconstruction of complex spreading networks with binary data.. A number of alternative methods, such as those based on system response to external driving, synchronization, and noise-induced dynamical correlation, will also be discussed. Due to the high relevance of network reconstruction to biological sciences, a special section is devoted to a brief survey of the current methods to infer biological networks. Finally, a number of open problems including control and controllability of complex nonlinear dynamical networks are discussed. The methods outlined in this Review are principled on various concepts in complexity science and engineering such as phase transitions, bifurcations, stabilities, and robustness. The methodologies have the potential to significantly improve our ability to understand a variety of complex dynamical systems ranging from gene regulatory systems to social networks toward the ultimate goal of controlling such systems.
simBio: a Java package for the development of detailed cell models.
Sarai, Nobuaki; Matsuoka, Satoshi; Noma, Akinori
2006-01-01
Quantitative dynamic computer models, which integrate a variety of molecular functions into a cell model, provide a powerful tool to create and test working hypotheses. We have developed a new modeling tool, the simBio package (freely available from ), which can be used for constructing cell models, such as cardiac cells (the Kyoto model from Matsuoka et al., 2003, 2004 a, b, the LRd model from Faber and Rudy, 2000, and the Noble 98 model from Noble et al., 1998), epithelial cells (Strieter et al., 1990) and pancreatic beta cells (Magnus and Keizer, 1998). The simBio package is written in Java, uses XML and can solve ordinary differential equations. In an attempt to mimic biological functional structures, a cell model is, in simBio, composed of independent functional modules called Reactors, such as ion channels and the sarcoplasmic reticulum, and dynamic variables called Nodes, such as ion concentrations. The interactions between Reactors and Nodes are described by the graph theory and the resulting graph represents a blueprint of an intricate cellular system. Reactors are prepared in a hierarchical order, in analogy to the biological classification. Each Reactor can be composed or improved independently, and can easily be reused for different models. This way of building models, through the combination of various modules, is enabled through the use of object-oriented programming concepts. Thus, simBio is a straightforward system for the creation of a variety of cell models on a common database of functional modules.
Enabling Graph Appliance for Genome Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Rina; Graves, Jeffrey A; Lee, Sangkeun
2015-01-01
In recent years, there has been a huge growth in the amount of genomic data available as reads generated from various genome sequencers. The number of reads generated can be huge, ranging from hundreds to billions of nucleotide, each varying in size. Assembling such large amounts of data is one of the challenging computational problems for both biomedical and data scientists. Most of the genome assemblers developed have used de Bruijn graph techniques. A de Bruijn graph represents a collection of read sequences by billions of vertices and edges, which require large amounts of memory and computational power to storemore » and process. This is the major drawback to de Bruijn graph assembly. Massively parallel, multi-threaded, shared memory systems can be leveraged to overcome some of these issues. The objective of our research is to investigate the feasibility and scalability issues of de Bruijn graph assembly on Cray s Urika-GD system; Urika-GD is a high performance graph appliance with a large shared memory and massively multithreaded custom processor designed for executing SPARQL queries over large-scale RDF data sets. However, to the best of our knowledge, there is no research on representing a de Bruijn graph as an RDF graph or finding Eulerian paths in RDF graphs using SPARQL for potential genome discovery. In this paper, we address the issues involved in representing a de Bruin graphs as RDF graphs and propose an iterative querying approach for finding Eulerian paths in large RDF graphs. We evaluate the performance of our implementation on real world ebola genome datasets and illustrate how genome assembly can be accomplished with Urika-GD using iterative SPARQL queries.« less
Charge transport network dynamics in molecular aggregates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Nicholas E.; Chen, Lin X.; Ratner, Mark A.
2016-07-20
Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, bBDT(TDPP)2. Simulations reveal the relevant timescale for local transfer integral decorrelation to be ~100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive withmore » charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed.« less
A nonlinear merging protocol for consensus in multi-agent systems on signed and weighted graphs
NASA Astrophysics Data System (ADS)
Feng, Shasha; Wang, Li; Li, Yijia; Sun, Shiwen; Xia, Chengyi
2018-01-01
In this paper, we investigate the multi-agent consensus for networks with undirected graphs which are not connected, especially for the signed graph in which some edge weights are positive and some edges have negative weights, and the negative-weight graph whose edge weights are negative. We propose a novel nonlinear merging consensus protocol to drive the states of all agents to converge to the same state zero which is not dependent upon the initial states of agents. If the undirected graph whose edge weights are positive is connected, then the states of all agents converge to the same state more quickly when compared to most other protocols. While the undirected graph whose edge weights might be positive or negative is unconnected, the states of all agents can still converge to the same state zero under the premise that the undirected graph can be divided into several connected subgraphs with more than one node. Furthermore, we also discuss the impact of parameter r presented in our protocol. Current results can further deepen the understanding of consensus processes for multi-agent systems.
Netgram: Visualizing Communities in Evolving Networks
Mall, Raghvendra; Langone, Rocco; Suykens, Johan A. K.
2015-01-01
Real-world complex networks are dynamic in nature and change over time. The change is usually observed in the interactions within the network over time. Complex networks exhibit community like structures. A key feature of the dynamics of complex networks is the evolution of communities over time. Several methods have been proposed to detect and track the evolution of these groups over time. However, there is no generic tool which visualizes all the aspects of group evolution in dynamic networks including birth, death, splitting, merging, expansion, shrinkage and continuation of groups. In this paper, we propose Netgram: a tool for visualizing evolution of communities in time-evolving graphs. Netgram maintains evolution of communities over 2 consecutive time-stamps in tables which are used to create a query database using the sql outer-join operation. It uses a line-based visualization technique which adheres to certain design principles and aesthetic guidelines. Netgram uses a greedy solution to order the initial community information provided by the evolutionary clustering technique such that we have fewer line cross-overs in the visualization. This makes it easier to track the progress of individual communities in time evolving graphs. Netgram is a generic toolkit which can be used with any evolutionary community detection algorithm as illustrated in our experiments. We use Netgram for visualization of topic evolution in the NIPS conference over a period of 11 years and observe the emergence and merging of several disciplines in the field of information processing systems. PMID:26356538
NASA Astrophysics Data System (ADS)
Arosio, Marcello; Martina, Mario L. V.
2017-04-01
In the last years, the relations and interactions between multi-hazards, vulnerability, exposure and resilience spheres are assuming more and more attention and the scientific community recognized that they are very dynamic, complex and interconnected. The traditional approaches define risk as the potential economic, social and environmental consequences due to a hazardous phenomenon in a specific period. Although there have been major improvements in recent years, there are still some limitation in term of a holistic approach that is able to include the emergent value hidden in the relation and interaction between the different spheres. Furthermore, the emergent behaviour of a society makes the collective risk greater than the sum of the parts and this requires a holistic, systematic and integrated approach. For this reason, it is important to consider the connections between elements to assess properly the vulnerability of systems. In a system (e.g. road, hospital and ecological network, etc.), or in a System of System (e.g. socio-technical urban service), there are critical elements that, beyond the intrinsic vulnerability, can be characterize by greater or lower vulnerability because of their physical, geographical, cyber or logical connections. To understand the system response to a perturbation, and therefore its resilience, is necessary not only to represent but also to quantify the relative importance of the elements and their interconnections. To this aim, we propose an innovative approach in the field of natural risk assessment based on the properties of graph G=(N,L). A graph consists of two sets N (nodes) and L (links): the nodes represent the single exposed elements (physical, social, environmental, etc.) to a hazard, while the links (or connections) represent the interaction between the elements. This approach encourages the risk assessment to a new prospective: from reductionist to holistic. The final goal is to provide insight in understanding how to quantify integrated collective vulnerability, resilience and risk.
Using graph theory to quantify coarse sediment connectivity in alpine geosystems
NASA Astrophysics Data System (ADS)
Heckmann, Tobias; Thiel, Markus; Schwanghart, Wolfgang; Haas, Florian; Becht, Michael
2010-05-01
Networks are a common object of study in various disciplines. Among others, informatics, sociology, transportation science, economics and ecology frequently deal with objects which are linked with other objects to form a network. Despite this wide thematic range, a coherent formal basis to represent, measure and model the relational structure of models exists. The mathematical model for networks of all kinds is a graph which can be analysed using the tools of mathematical graph theory. In a graph model of a generic system, system components are represented by graph nodes, and the linkages between them are formed by graph edges. The latter may represent all kinds of linkages, from matter or energy fluxes to functional relations. To some extent, graph theory has been used in geosciences and related disciplines; in hydrology and fluvial geomorphology, for example, river networks have been modeled and analysed as graphs. An important issue in hydrology is the hydrological connectivity which determines if runoff generated on some area reaches the channel network. In ecology, a number of graph-theoretical indices is applicable to describing the influence of habitat distribution and landscape fragmentation on population structure and species mobility. In these examples, the mobility of matter (water, sediment, animals) through a system is an important consequence of system structure, i.e. the location and topology of its components as well as of properties of linkages between them. In geomorphology, sediment connectivity relates to the potential of sediment particles to move through the catchment. As a system property, connectivity depends, for example, on the degree to which hillslopes within a catchment are coupled to the channel system (lateral coupling), and to which channel reaches are coupled to each other (longitudinal coupling). In the present study, numerical GIS-based models are used to investigate the coupling of geomorphic process units by delineating the process domains of important geomorphic processes in a high-mountain environment (rockfall, slope-type debris flows, slope aquatic and fluvial processes). The results are validated by field mapping; they show that only small parts of a catchment are actually coupled to its outlet with respect to coarse (bedload) sediment. The models not only generate maps of the spatial extent and geomorphic activity of the aforementioned processes, they also output so-called edge lists that can be converted to adjacency matrices and graphs. Graph theory is then employed to explore ‘local' (i.e. referring to single nodes or edges) and ‘global' (i.e. system-wide, referring to the whole graph) measures that can be used to quantify coarse sediment connectivity. Such a quantification will complement the mainly qualitative appraisal of coupling and connectivity; the effect of connectivity on catchment properties such as specific sediment yield and catchment sensitivity will then be studied on the basis of quantitative measures.
Han, Liang-Feng; Plummer, Niel; Aggarwal, Pradeep
2012-01-01
A graphical method is described for identifying geochemical reactions needed in the interpretation of radiocarbon age in groundwater systems. Graphs are constructed by plotting the measured 14C, δ13C, and concentration of dissolved inorganic carbon and are interpreted according to specific criteria to recognize water samples that are consistent with a wide range of processes, including geochemical reactions, carbon isotopic exchange, 14C decay, and mixing of waters. The graphs are used to provide a qualitative estimate of radiocarbon age, to deduce the hydrochemical complexity of a groundwater system, and to compare samples from different groundwater systems. Graphs of chemical and isotopic data from a series of previously-published groundwater studies are used to demonstrate the utility of the approach. Ultimately, the information derived from the graphs is used to improve geochemical models for adjustment of radiocarbon ages in groundwater systems.
A graph-based system for network-vulnerability analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swiler, L.P.; Phillips, C.
1998-06-01
This paper presents a graph-based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The graph-based tool can identify the set of attack paths that have a high probability of success (or a low effort cost) for the attacker. The system could be used to test the effectiveness of making configuration changes, implementing an intrusion detection system, etc. The analysis system requires as input a database of common attacks,more » broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example the class of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level-of-effort for the attacker, various graph algorithms such as shortest-path algorithms can identify the attack paths with the highest probability of success.« less
Growth and structure of the World Wide Web: Towards realistic modeling
NASA Astrophysics Data System (ADS)
Tadić, Bosiljka
2002-08-01
We simulate evolution of the World Wide Web from the dynamic rules incorporating growth, bias attachment, and rewiring. We show that the emergent double-hierarchical structure with distinct distributions of out- and in-links is comparable with the observed empirical data when the control parameter (average graph flexibility β) is kept in the range β=3-4. We then explore the Web graph by simulating (a) Web crawling to determine size and depth of connected components, and (b) a random walker that discovers the structure of connected subgraphs with dominant attractor and promoter nodes. A random walker that adapts its move strategy to mimic local node linking preferences is shown to have a short access time to "important" nodes on the Web graph.
Expert systems for automated maintenance of a Mars oxygen production system
NASA Technical Reports Server (NTRS)
Ash, Robert L.; Huang, Jen-Kuang; Ho, Ming-Tsang
1989-01-01
A prototype expert system was developed for maintaining autonomous operation of a Mars oxygen production system. Normal operation conditions and failure modes according to certain desired criteria are tested and identified. Several schemes for failure detection and isolation using forward chaining, backward chaining, knowledge-based and rule-based are devised to perform several housekeeping functions. These functions include self-health checkout, an emergency shut down program, fault detection and conventional control activities. An effort was made to derive the dynamic model of the system using Bond-Graph technique in order to develop the model-based failure detection and isolation scheme by estimation method. Finally, computer simulations and experimental results demonstrated the feasibility of the expert system and a preliminary reliability analysis for the oxygen production system is also provided.
The Container Problem in Bubble-Sort Graphs
NASA Astrophysics Data System (ADS)
Suzuki, Yasuto; Kaneko, Keiichi
Bubble-sort graphs are variants of Cayley graphs. A bubble-sort graph is suitable as a topology for massively parallel systems because of its simple and regular structure. Therefore, in this study, we focus on n-bubble-sort graphs and propose an algorithm to obtain n-1 disjoint paths between two arbitrary nodes in time bounded by a polynomial in n, the degree of the graph plus one. We estimate the time complexity of the algorithm and the sum of the path lengths after proving the correctness of the algorithm. In addition, we report the results of computer experiments evaluating the average performance of the algorithm.
Trend Motif: A Graph Mining Approach for Analysis of Dynamic Complex Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, R; McCallen, S; Almaas, E
2007-05-28
Complex networks have been used successfully in scientific disciplines ranging from sociology to microbiology to describe systems of interacting units. Until recently, studies of complex networks have mainly focused on their network topology. However, in many real world applications, the edges and vertices have associated attributes that are frequently represented as vertex or edge weights. Furthermore, these weights are often not static, instead changing with time and forming a time series. Hence, to fully understand the dynamics of the complex network, we have to consider both network topology and related time series data. In this work, we propose a motifmore » mining approach to identify trend motifs for such purposes. Simply stated, a trend motif describes a recurring subgraph where each of its vertices or edges displays similar dynamics over a userdefined period. Given this, each trend motif occurrence can help reveal significant events in a complex system; frequent trend motifs may aid in uncovering dynamic rules of change for the system, and the distribution of trend motifs may characterize the global dynamics of the system. Here, we have developed efficient mining algorithms to extract trend motifs. Our experimental validation using three disparate empirical datasets, ranging from the stock market, world trade, to a protein interaction network, has demonstrated the efficiency and effectiveness of our approach.« less
Ren, Hongwei; Deng, Feiqi
2017-11-01
This paper investigates the mean square consensus problem of dynamical networks of leader-following multi-agent systems with measurement noises and time-varying delays. We consider that the fixed undirected communication topologies are connected. A neighbor-based tracking algorithm together with distributed estimators are presented. Using tools of algebraic graph theory and the Gronwall-Bellman-Halanay type inequality, we establish sufficient conditions to reach consensus in mean square sense via the proposed consensus protocols. Finally, a numerical simulation is provided to demonstrate the effectiveness of the obtained theoretical result. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Modeling of multi-rotor torsional vibrations in rotating machinery using substructuring
NASA Technical Reports Server (NTRS)
Soares, Fola R.
1986-01-01
The application of FEM modeling techniques to the analysis of torsional vibrations in complex rotating systems is described and demonstrated, summarizing results reported by Soares (1985). A substructuring approach is used for determination of torsional natural frequencies and resonant-mode shapes, steady-state frequency-sweep analysis, identification of dynamically unstable speed ranges, and characterization of transient linear and nonlinear systems. Results for several sample problems are presented in diagrams, graphs, and tables. STORV, a computer code based on this approach, is in use as a preliminary design tool for drive-train torsional analysis in the High Altitude Wind Tunnel at NASA Lewis.
Erem, B; Hyde, D E; Peters, J M; Duffy, F H; Brooks, D H; Warfield, S K
2015-04-01
The dynamical structure of the brain's electrical signals contains valuable information about its physiology. Here we combine techniques for nonlinear dynamical analysis and manifold identification to reveal complex and recurrent dynamics in interictal epileptiform discharges (IEDs). Our results suggest that recurrent IEDs exhibit some consistent dynamics, which may only last briefly, and so individual IED dynamics may need to be considered in order to understand their genesis. This could potentially serve to constrain the dynamics of the inverse source localization problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, Adam
2007-05-22
MpiGraph consists of an MPI application called mpiGraph written in C to measure message bandwidth and an associated crunch_mpiGraph script written in Perl to process the application output into an HTMO report. The mpiGraph application is designed to inspect the health and scalability of a high-performance interconnect while under heavy load. This is useful to detect hardware and software problems in a system, such as slow nodes, links, switches, or contention in switch routing. It is also useful to characterize how interconnect performance changes with different settings or how one interconnect type compares to another.
Unsupervised Metric Fusion Over Multiview Data by Graph Random Walk-Based Cross-View Diffusion.
Wang, Yang; Zhang, Wenjie; Wu, Lin; Lin, Xuemin; Zhao, Xiang
2017-01-01
Learning an ideal metric is crucial to many tasks in computer vision. Diverse feature representations may combat this problem from different aspects; as visual data objects described by multiple features can be decomposed into multiple views, thus often provide complementary information. In this paper, we propose a cross-view fusion algorithm that leads to a similarity metric for multiview data by systematically fusing multiple similarity measures. Unlike existing paradigms, we focus on learning distance measure by exploiting a graph structure of data samples, where an input similarity matrix can be improved through a propagation of graph random walk. In particular, we construct multiple graphs with each one corresponding to an individual view, and a cross-view fusion approach based on graph random walk is presented to derive an optimal distance measure by fusing multiple metrics. Our method is scalable to a large amount of data by enforcing sparsity through an anchor graph representation. To adaptively control the effects of different views, we dynamically learn view-specific coefficients, which are leveraged into graph random walk to balance multiviews. However, such a strategy may lead to an over-smooth similarity metric where affinities between dissimilar samples may be enlarged by excessively conducting cross-view fusion. Thus, we figure out a heuristic approach to controlling the iteration number in the fusion process in order to avoid over smoothness. Extensive experiments conducted on real-world data sets validate the effectiveness and efficiency of our approach.
A formation control strategy with coupling weights for the multi-robot system
NASA Astrophysics Data System (ADS)
Liang, Xudong; Wang, Siming; Li, Weijie
2017-12-01
The distributed formation problem of the multi-robot system with general linear dynamic characteristics and directed communication topology is discussed. In order to avoid that the multi-robot system can not maintain the desired formation in the complex communication environment, the distributed cooperative algorithm with coupling weights based on zipf distribution is designed. The asymptotic stability condition for the formation of the multi-robot system is given, and the theory of the graph and the Lyapunov theory are used to prove that the formation can converge to the desired geometry formation and the desired motion rules of the virtual leader under this condition. Nontrivial simulations are performed to validate the effectiveness of the distributed cooperative algorithm with coupling weights.
Counting the number of Feynman graphs in QCD
NASA Astrophysics Data System (ADS)
Kaneko, T.
2018-05-01
Information about the number of Feynman graphs for a given physical process in a given field theory is especially useful for confirming the result of a Feynman graph generator used in an automatic system of perturbative calculations. A method of counting the number of Feynman graphs with weight of symmetry factor was established based on zero-dimensional field theory, and was used in scalar theories and QED. In this article this method is generalized to more complicated models by direct calculation of generating functions on a computer algebra system. This method is applied to QCD with and without counter terms, where many higher order are being calculated automatically.
A Set of Handwriting Features for Use in Automated Writer Identification.
Miller, John J; Patterson, Robert Bradley; Gantz, Donald T; Saunders, Christopher P; Walch, Mark A; Buscaglia, JoAnn
2017-05-01
A writer's biometric identity can be characterized through the distribution of physical feature measurements ("writer's profile"); a graph-based system that facilitates the quantification of these features is described. To accomplish this quantification, handwriting is segmented into basic graphical forms ("graphemes"), which are "skeletonized" to yield the graphical topology of the handwritten segment. The graph-based matching algorithm compares the graphemes first by their graphical topology and then by their geometric features. Graphs derived from known writers can be compared against graphs extracted from unknown writings. The process is computationally intensive and relies heavily upon statistical pattern recognition algorithms. This article focuses on the quantification of these physical features and the construction of the associated pattern recognition methods for using the features to discriminate among writers. The graph-based system described in this article has been implemented in a highly accurate and approximately language-independent biometric recognition system of writers of cursive documents. © 2017 American Academy of Forensic Sciences.
Mathematical formula recognition using graph grammar
NASA Astrophysics Data System (ADS)
Lavirotte, Stephane; Pottier, Loic
1998-04-01
This paper describes current results of Ofr, a system for extracting and understanding mathematical expressions in documents. Such a tool could be really useful to be able to re-use knowledge in scientific books which are not available in electronic form. We currently also study use of this system for direct input of formulas with a graphical tablet for computer algebra system softwares. Existing solutions for mathematical recognition have problems to analyze 2D expressions like vectors and matrices. This is because they often try to use extended classical grammar to analyze formulas, relatively to baseline. But a lot of mathematical notations do not respect rules for such a parsing and that is the reason why they fail to extend text parsing technic. We investigate graph grammar and graph rewriting as a solution to recognize 2D mathematical notations. Graph grammar provide a powerful formalism to describe structural manipulations of multi-dimensional data. The main two problems to solve are ambiguities between rules of grammar and construction of graph.
Exploring the Epileptic Brain Network Using Time-Variant Effective Connectivity and Graph Theory.
Storti, Silvia Francesca; Galazzo, Ilaria Boscolo; Khan, Sehresh; Manganotti, Paolo; Menegaz, Gloria
2017-09-01
The application of time-varying measures of causality between source time series can be very informative to elucidate the direction of communication among the regions of an epileptic brain. The aim of the study was to identify the dynamic patterns of epileptic networks in focal epilepsy by applying multivariate adaptive directed transfer function (ADTF) analysis and graph theory to high-density electroencephalographic recordings. The cortical network was modeled after source reconstruction and topology modulations were detected during interictal spikes. First a distributed linear inverse solution, constrained to the individual grey matter, was applied to the averaged spikes and the mean source activity over 112 regions, as identified by the Harvard-Oxford Atlas, was calculated. Then, the ADTF, a dynamic measure of causality, was used to quantify the connectivity strength between pairs of regions acting as nodes in the graph, and the measure of node centrality was derived. The proposed analysis was effective in detecting the focal regions as well as in characterizing the dynamics of the spike propagation, providing evidence of the fact that the node centrality is a reliable feature for the identification of the epileptogenic zones. Validation was performed by multimodal analysis as well as from surgical outcomes. In conclusion, the time-variant connectivity analysis applied to the epileptic patients can distinguish the generator of the abnormal activity from the propagation spread and identify the connectivity pattern over time.
2D-dynamic representation of DNA sequences as a graphical tool in bioinformatics
NASA Astrophysics Data System (ADS)
Bielińska-Wa̧Ż, D.; Wa̧Ż, P.
2016-10-01
2D-dynamic representation of DNA sequences is briefly reviewed. Some new examples of 2D-dynamic graphs which are the graphical tool of the method are shown. Using the examples of the complete genome sequences of the Zika virus it is shown that the present method can be applied for the study of the evolution of viral genomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Homer; Ashok Varikuti; Xinming Ou
Various tools exist to analyze enterprise network systems and to produce attack graphs detailing how attackers might penetrate into the system. These attack graphs, however, are often complex and difficult to comprehend fully, and a human user may find it problematic to reach appropriate configuration decisions. This paper presents methodologies that can 1) automatically identify portions of an attack graph that do not help a user to understand the core security problems and so can be trimmed, and 2) automatically group similar attack steps as virtual nodes in a model of the network topology, to immediately increase the understandability ofmore » the data. We believe both methods are important steps toward improving visualization of attack graphs to make them more useful in configuration management for large enterprise networks. We implemented our methods using one of the existing attack-graph toolkits. Initial experimentation shows that the proposed approaches can 1) significantly reduce the complexity of attack graphs by trimming a large portion of the graph that is not needed for a user to understand the security problem, and 2) significantly increase the accessibility and understandability of the data presented in the attack graph by clearly showing, within a generated visualization of the network topology, the number and type of potential attacks to which each host is exposed.« less
PDA: A coupling of knowledge and memory for case-based reasoning
NASA Technical Reports Server (NTRS)
Bharwani, S.; Walls, J.; Blevins, E.
1988-01-01
Problem solving in most domains requires reference to past knowledge and experience whether such knowledge is represented as rules, decision trees, networks or any variant of attributed graphs. Regardless of the representational form employed, designers of expert systems rarely make a distinction between the static and dynamic aspects of the system's knowledge base. The current paper clearly distinguishes between knowledge-based and memory-based reasoning where the former in its most pure sense is characterized by a static knowledge based resulting in a relatively brittle expert system while the latter is dynamic and analogous to the functions of human memory which learns from experience. The paper discusses the design of an advisory system which combines a knowledge base consisting of domain vocabulary and default dependencies between concepts with a dynamic conceptual memory which stores experimental knowledge in the form of cases. The case memory organizes past experience in the form of MOPs (memory organization packets) and sub-MOPs. Each MOP consists of a context frame and a set of indices. The context frame contains information about the features (norms) common to all the events and sub-MOPs indexed under it.
Keerativittayayut, Ruedeerat; Aoki, Ryuta; Sarabi, Mitra Taghizadeh; Jimura, Koji; Nakahara, Kiyoshi
2018-06-18
Although activation/deactivation of specific brain regions have been shown to be predictive of successful memory encoding, the relationship between time-varying large-scale brain networks and fluctuations of memory encoding performance remains unclear. Here we investigated time-varying functional connectivity patterns across the human brain in periods of 30-40 s, which have recently been implicated in various cognitive functions. During functional magnetic resonance imaging, participants performed a memory encoding task, and their performance was assessed with a subsequent surprise memory test. A graph analysis of functional connectivity patterns revealed that increased integration of the subcortical, default-mode, salience, and visual subnetworks with other subnetworks is a hallmark of successful memory encoding. Moreover, multivariate analysis using the graph metrics of integration reliably classified the brain network states into the period of high (vs. low) memory encoding performance. Our findings suggest that a diverse set of brain systems dynamically interact to support successful memory encoding. © 2018, Keerativittayayut et al.