PuLP/XtraPuLP : Partitioning Tools for Extreme-Scale Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slota, George M; Rajamanickam, Sivasankaran; Madduri, Kamesh
2017-09-21
PuLP/XtraPulp is software for partitioning graphs from several real-world problems. Graphs occur in several places in real world from road networks, social networks and scientific simulations. For efficient parallel processing these graphs have to be partitioned (split) with respect to metrics such as computation and communication costs. Our software allows such partitioning for massive graphs.
Spectral partitioning in equitable graphs.
Barucca, Paolo
2017-06-01
Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e., random graphs with a block-regular structure, is studied, for which analytical results can be obtained. In particular, the spectral density of this ensemble is computed exactly for a modular and bipartite structure. Kesten-McKay's law for random regular graphs is found analytically to apply also for modular and bipartite structures when blocks are homogeneous. An exact solution to graph partitioning for two equal-sized communities is proposed and verified numerically, and a conjecture on the absence of an efficient recovery detectability transition in equitable graphs is suggested. A final discussion summarizes results and outlines their relevance for the solution of graph partitioning problems in other graph ensembles, in particular for the study of detectability thresholds and resolution limits in stochastic block models.
Spectral partitioning in equitable graphs
NASA Astrophysics Data System (ADS)
Barucca, Paolo
2017-06-01
Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e., random graphs with a block-regular structure, is studied, for which analytical results can be obtained. In particular, the spectral density of this ensemble is computed exactly for a modular and bipartite structure. Kesten-McKay's law for random regular graphs is found analytically to apply also for modular and bipartite structures when blocks are homogeneous. An exact solution to graph partitioning for two equal-sized communities is proposed and verified numerically, and a conjecture on the absence of an efficient recovery detectability transition in equitable graphs is suggested. A final discussion summarizes results and outlines their relevance for the solution of graph partitioning problems in other graph ensembles, in particular for the study of detectability thresholds and resolution limits in stochastic block models.
Fully Decomposable Split Graphs
NASA Astrophysics Data System (ADS)
Broersma, Hajo; Kratsch, Dieter; Woeginger, Gerhard J.
We discuss various questions around partitioning a split graph into connected parts. Our main result is a polynomial time algorithm that decides whether a given split graph is fully decomposable, i.e., whether it can be partitioned into connected parts of order α 1,α 2,...,α k for every α 1,α 2,...,α k summing up to the order of the graph. In contrast, we show that the decision problem whether a given split graph can be partitioned into connected parts of order α 1,α 2,...,α k for a given partition α 1,α 2,...,α k of the order of the graph, is NP-hard.
Graph Partitioning for Parallel Applications in Heterogeneous Grid Environments
NASA Technical Reports Server (NTRS)
Bisws, Rupak; Kumar, Shailendra; Das, Sajal K.; Biegel, Bryan (Technical Monitor)
2002-01-01
The problem of partitioning irregular graphs and meshes for parallel computations on homogeneous systems has been extensively studied. However, these partitioning schemes fail when the target system architecture exhibits heterogeneity in resource characteristics. With the emergence of technologies such as the Grid, it is imperative to study the partitioning problem taking into consideration the differing capabilities of such distributed heterogeneous systems. In our model, the heterogeneous system consists of processors with varying processing power and an underlying non-uniform communication network. We present in this paper a novel multilevel partitioning scheme for irregular graphs and meshes, that takes into account issues pertinent to Grid computing environments. Our partitioning algorithm, called MiniMax, generates and maps partitions onto a heterogeneous system with the objective of minimizing the maximum execution time of the parallel distributed application. For experimental performance study, we have considered both a realistic mesh problem from NASA as well as synthetic workloads. Simulation results demonstrate that MiniMax generates high quality partitions for various classes of applications targeted for parallel execution in a distributed heterogeneous environment.
A Novel Coarsening Method for Scalable and Efficient Mesh Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, A; Hysom, D; Gunney, B
2010-12-02
In this paper, we propose a novel mesh coarsening method called brick coarsening method. The proposed method can be used in conjunction with any graph partitioners and scales to very large meshes. This method reduces problem space by decomposing the original mesh into fixed-size blocks of nodes called bricks, layered in a similar way to conventional brick laying, and then assigning each node of the original mesh to appropriate brick. Our experiments indicate that the proposed method scales to very large meshes while allowing simple RCB partitioner to produce higher-quality partitions with significantly less edge cuts. Our results further indicatemore » that the proposed brick-coarsening method allows more complicated partitioners like PT-Scotch to scale to very large problem size while still maintaining good partitioning performance with relatively good edge-cut metric. Graph partitioning is an important problem that has many scientific and engineering applications in such areas as VLSI design, scientific computing, and resource management. Given a graph G = (V,E), where V is the set of vertices and E is the set of edges, (k-way) graph partitioning problem is to partition the vertices of the graph (V) into k disjoint groups such that each group contains roughly equal number of vertices and the number of edges connecting vertices in different groups is minimized. Graph partitioning plays a key role in large scientific computing, especially in mesh-based computations, as it is used as a tool to minimize the volume of communication and to ensure well-balanced load across computing nodes. The impact of graph partitioning on the reduction of communication can be easily seen, for example, in different iterative methods to solve a sparse system of linear equation. Here, a graph partitioning technique is applied to the matrix, which is basically a graph in which each edge is a non-zero entry in the matrix, to allocate groups of vertices to processors in such a way that many of matrix-vector multiplication can be performed locally on each processor and hence to minimize communication. Furthermore, a good graph partitioning scheme ensures the equal amount of computation performed on each processor. Graph partitioning is a well known NP-complete problem, and thus the most commonly used graph partitioning algorithms employ some forms of heuristics. These algorithms vary in terms of their complexity, partition generation time, and the quality of partitions, and they tend to trade off these factors. A significant challenge we are currently facing at the Lawrence Livermore National Laboratory is how to partition very large meshes on massive-size distributed memory machines like IBM BlueGene/P, where scalability becomes a big issue. For example, we have found that the ParMetis, a very popular graph partitioning tool, can only scale to 16K processors. An ideal graph partitioning method on such an environment should be fast and scale to very large meshes, while producing high quality partitions. This is an extremely challenging task, as to scale to that level, the partitioning algorithm should be simple and be able to produce partitions that minimize inter-processor communications and balance the load imposed on the processors. Our goals in this work are two-fold: (1) To develop a new scalable graph partitioning method with good load balancing and communication reduction capability. (2) To study the performance of the proposed partitioning method on very large parallel machines using actual data sets and compare the performance to that of existing methods. The proposed method achieves the desired scalability by reducing the mesh size. For this, it coarsens an input mesh into a smaller size mesh by coalescing the vertices and edges of the original mesh into a set of mega-vertices and mega-edges. A new coarsening method called brick algorithm is developed in this research. In the brick algorithm, the zones in a given mesh are first grouped into fixed size blocks called bricks. These brick are then laid in a way similar to conventional brick laying technique, which reduces the number of neighboring blocks each block needs to communicate. Contributions of this research are as follows: (1) We have developed a novel method that scales to a really large problem size while producing high quality mesh partitions; (2) We measured the performance and scalability of the proposed method on a machine of massive size using a set of actual large complex data sets, where we have scaled to a mesh with 110 million zones using our method. To the best of our knowledge, this is the largest complex mesh that a partitioning method is successfully applied to; and (3) We have shown that proposed method can reduce the number of edge cuts by as much as 65%.« less
Optimal Clustering in Graphs with Weighted Edges: A Unified Approach to the Threshold Problem.
ERIC Educational Resources Information Center
Goetschel, Roy; Voxman, William
1987-01-01
Relations on a finite set V are viewed as weighted graphs. Using the language of graph theory, two methods of partitioning V are examined: selecting threshold values and applying them to a maximal weighted spanning forest, and using a parametric linear program to obtain a most adhesive partition. (Author/EM)
Minimum nonuniform graph partitioning with unrelated weights
NASA Astrophysics Data System (ADS)
Makarychev, K. S.; Makarychev, Yu S.
2017-12-01
We give a bi-criteria approximation algorithm for the Minimum Nonuniform Graph Partitioning problem, recently introduced by Krauthgamer, Naor, Schwartz and Talwar. In this problem, we are given a graph G=(V,E) and k numbers ρ_1,\\dots, ρ_k. The goal is to partition V into k disjoint sets (bins) P_1,\\dots, P_k satisfying \\vert P_i\\vert≤ ρi \\vert V\\vert for all i, so as to minimize the number of edges cut by the partition. Our bi-criteria algorithm gives an O(\\sqrt{log \\vert V\\vert log k}) approximation for the objective function in general graphs and an O(1) approximation in graphs excluding a fixed minor. The approximate solution satisfies the relaxed capacity constraints \\vert P_i\\vert ≤ (5+ \\varepsilon)ρi \\vert V\\vert. This algorithm is an improvement upon the O(log \\vert V\\vert)-approximation algorithm by Krauthgamer, Naor, Schwartz and Talwar. We extend our results to the case of 'unrelated weights' and to the case of 'unrelated d-dimensional weights'. A preliminary version of this work was presented at the 41st International Colloquium on Automata, Languages and Programming (ICALP 2014). Bibliography: 7 titles.
NASA Astrophysics Data System (ADS)
Murni, Bustamam, A.; Ernastuti, Handhika, T.; Kerami, D.
2017-07-01
Calculation of the matrix-vector multiplication in the real-world problems often involves large matrix with arbitrary size. Therefore, parallelization is needed to speed up the calculation process that usually takes a long time. Graph partitioning techniques that have been discussed in the previous studies cannot be used to complete the parallelized calculation of matrix-vector multiplication with arbitrary size. This is due to the assumption of graph partitioning techniques that can only solve the square and symmetric matrix. Hypergraph partitioning techniques will overcome the shortcomings of the graph partitioning technique. This paper addresses the efficient parallelization of matrix-vector multiplication through hypergraph partitioning techniques using CUDA GPU-based parallel computing. CUDA (compute unified device architecture) is a parallel computing platform and programming model that was created by NVIDIA and implemented by the GPU (graphics processing unit).
Yan, Bo; Pan, Chongle; Olman, Victor N; Hettich, Robert L; Xu, Ying
2004-01-01
Mass spectrometry is one of the most popular analytical techniques for identification of individual proteins in a protein mixture, one of the basic problems in proteomics. It identifies a protein through identifying its unique mass spectral pattern. While the problem is theoretically solvable, it remains a challenging problem computationally. One of the key challenges comes from the difficulty in distinguishing the N- and C-terminus ions, mostly b- and y-ions respectively. In this paper, we present a graph algorithm for solving the problem of separating bfrom y-ions in a set of mass spectra. We represent each spectral peak as a node and consider two types of edges: a type-1 edge connects two peaks possibly of the same ion types and a type-2 edge connects two peaks possibly of different ion types, predicted based on local information. The ion-separation problem is then formulated and solved as a graph partition problem, which is to partition the graph into three subgraphs, namely b-, y-ions and others respectively, so to maximize the total weight of type-1 edges while minimizing the total weight of type-2 edges within each subgraph. We have developed a dynamic programming algorithm for rigorously solving this graph partition problem and implemented it as a computer program PRIME. We have tested PRIME on 18 data sets of high accurate FT-ICR tandem mass spectra and found that it achieved ~90% accuracy for separation of b- and y- ions.
NASA Astrophysics Data System (ADS)
Gutin, Gregory; Kim, Eun Jung; Soleimanfallah, Arezou; Szeider, Stefan; Yeo, Anders
The NP-hard general factor problem asks, given a graph and for each vertex a list of integers, whether the graph has a spanning subgraph where each vertex has a degree that belongs to its assigned list. The problem remains NP-hard even if the given graph is bipartite with partition U ⊎ V, and each vertex in U is assigned the list {1}; this subproblem appears in the context of constraint programming as the consistency problem for the extended global cardinality constraint. We show that this subproblem is fixed-parameter tractable when parameterized by the size of the second partite set V. More generally, we show that the general factor problem for bipartite graphs, parameterized by |V |, is fixed-parameter tractable as long as all vertices in U are assigned lists of length 1, but becomes W[1]-hard if vertices in U are assigned lists of length at most 2. We establish fixed-parameter tractability by reducing the problem instance to a bounded number of acyclic instances, each of which can be solved in polynomial time by dynamic programming.
Sun, Peng; Guo, Jiong; Baumbach, Jan
2012-07-17
The explosion of biological data has largely influenced the focus of today’s biology research. Integrating and analysing large quantity of data to provide meaningful insights has become the main challenge to biologists and bioinformaticians. One major problem is the combined data analysis of data from different types, such as phenotypes and genotypes. This data is modelled as bi-partite graphs where nodes correspond to the different data points, mutations and diseases for instance, and weighted edges relate to associations between them. Bi-clustering is a special case of clustering designed for partitioning two different types of data simultaneously. We present a bi-clustering approach that solves the NP-hard weighted bi-cluster editing problem by transforming a given bi-partite graph into a disjoint union of bi-cliques. Here we contribute with an exact algorithm that is based on fixed-parameter tractability. We evaluated its performance on artificial graphs first. Afterwards we exemplarily applied our Java implementation to data of genome-wide association studies (GWAS) data aiming for discovering new, previously unobserved geno-to-pheno associations. We believe that our results will serve as guidelines for further wet lab investigations. Generally our software can be applied to any kind of data that can be modelled as bi-partite graphs. To our knowledge it is the fastest exact method for weighted bi-cluster editing problem.
Sun, Peng; Guo, Jiong; Baumbach, Jan
2012-06-01
The explosion of biological data has largely influenced the focus of today's biology research. Integrating and analysing large quantity of data to provide meaningful insights has become the main challenge to biologists and bioinformaticians. One major problem is the combined data analysis of data from different types, such as phenotypes and genotypes. This data is modelled as bi-partite graphs where nodes correspond to the different data points, mutations and diseases for instance, and weighted edges relate to associations between them. Bi-clustering is a special case of clustering designed for partitioning two different types of data simultaneously. We present a bi-clustering approach that solves the NP-hard weighted bi-cluster editing problem by transforming a given bi-partite graph into a disjoint union of bi-cliques. Here we contribute with an exact algorithm that is based on fixed-parameter tractability. We evaluated its performance on artificial graphs first. Afterwards we exemplarily applied our Java implementation to data of genome-wide association studies (GWAS) data aiming for discovering new, previously unobserved geno-to-pheno associations. We believe that our results will serve as guidelines for further wet lab investigations. Generally our software can be applied to any kind of data that can be modelled as bi-partite graphs. To our knowledge it is the fastest exact method for weighted bi-cluster editing problem.
ERIC Educational Resources Information Center
Brusco, Michael; Steinley, Douglas
2010-01-01
Structural balance theory (SBT) has maintained a venerable status in the psychological literature for more than 5 decades. One important problem pertaining to SBT is the approximation of structural or generalized balance via the partitioning of the vertices of a signed graph into "K" clusters. This "K"-balance partitioning problem also has more…
High performance genetic algorithm for VLSI circuit partitioning
NASA Astrophysics Data System (ADS)
Dinu, Simona
2016-12-01
Partitioning is one of the biggest challenges in computer-aided design for VLSI circuits (very large-scale integrated circuits). This work address the min-cut balanced circuit partitioning problem- dividing the graph that models the circuit into almost equal sized k sub-graphs while minimizing the number of edges cut i.e. minimizing the number of edges connecting the sub-graphs. The problem may be formulated as a combinatorial optimization problem. Experimental studies in the literature have shown the problem to be NP-hard and thus it is important to design an efficient heuristic algorithm to solve it. The approach proposed in this study is a parallel implementation of a genetic algorithm, namely an island model. The information exchange between the evolving subpopulations is modeled using a fuzzy controller, which determines an optimal balance between exploration and exploitation of the solution space. The results of simulations show that the proposed algorithm outperforms the standard sequential genetic algorithm both in terms of solution quality and convergence speed. As a direction for future study, this research can be further extended to incorporate local search operators which should include problem-specific knowledge. In addition, the adaptive configuration of mutation and crossover rates is another guidance for future research.
Applying Graph Theory to Problems in Air Traffic Management
NASA Technical Reports Server (NTRS)
Farrahi, Amir Hossein; Goldbert, Alan; Bagasol, Leonard Neil; Jung, Jaewoo
2017-01-01
Graph theory is used to investigate three different problems arising in air traffic management. First, using a polynomial reduction from a graph partitioning problem, it is shown that both the airspace sectorization problem and its incremental counterpart, the sector combination problem are NP-hard, in general, under several simple workload models. Second, using a polynomial time reduction from maximum independent set in graphs, it is shown that for any fixed e, the problem of finding a solution to the minimum delay scheduling problem in traffic flow management that is guaranteed to be within n1-e of the optimal, where n is the number of aircraft in the problem instance, is NP-hard. Finally, a problem arising in precision arrival scheduling is formulated and solved using graph reachability. These results demonstrate that graph theory provides a powerful framework for modeling, reasoning about, and devising algorithmic solutions to diverse problems arising in air traffic management.
Applying Graph Theory to Problems in Air Traffic Management
NASA Technical Reports Server (NTRS)
Farrahi, Amir H.; Goldberg, Alan T.; Bagasol, Leonard N.; Jung, Jaewoo
2017-01-01
Graph theory is used to investigate three different problems arising in air traffic management. First, using a polynomial reduction from a graph partitioning problem, it isshown that both the airspace sectorization problem and its incremental counterpart, the sector combination problem are NP-hard, in general, under several simple workload models. Second, using a polynomial time reduction from maximum independent set in graphs, it is shown that for any fixed e, the problem of finding a solution to the minimum delay scheduling problem in traffic flow management that is guaranteed to be within n1-e of the optimal, where n is the number of aircraft in the problem instance, is NP-hard. Finally, a problem arising in precision arrival scheduling is formulated and solved using graph reachability. These results demonstrate that graph theory provides a powerful framework for modeling, reasoning about, and devising algorithmic solutions to diverse problems arising in air traffic management.
Applying graph partitioning methods in measurement-based dynamic load balancing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatele, Abhinav; Fourestier, Sebastien; Menon, Harshitha
Load imbalance leads to an increasing waste of resources as an application is scaled to more and more processors. Achieving the best parallel efficiency for a program requires optimal load balancing which is a NP-hard problem. However, finding near-optimal solutions to this problem for complex computational science and engineering applications is becoming increasingly important. Charm++, a migratable objects based programming model, provides a measurement-based dynamic load balancing framework. This framework instruments and then migrates over-decomposed objects to balance computational load and communication at runtime. This paper explores the use of graph partitioning algorithms, traditionally used for partitioning physical domains/meshes, formore » measurement-based dynamic load balancing of parallel applications. In particular, we present repartitioning methods developed in a graph partitioning toolbox called SCOTCH that consider the previous mapping to minimize migration costs. We also discuss a new imbalance reduction algorithm for graphs with irregular load distributions. We compare several load balancing algorithms using microbenchmarks on Intrepid and Ranger and evaluate the effect of communication, number of cores and number of objects on the benefit achieved from load balancing. New algorithms developed in SCOTCH lead to better performance compared to the METIS partitioners for several cases, both in terms of the application execution time and fewer number of objects migrated.« less
An Efficient Algorithm for Partitioning and Authenticating Problem-Solutions of eLeaming Contents
ERIC Educational Resources Information Center
Dewan, Jahangir; Chowdhury, Morshed; Batten, Lynn
2013-01-01
Content authenticity and correctness is one of the important challenges in eLearning as there can be many solutions to one specific problem in cyber space. Therefore, the authors feel it is necessary to map problems to solutions using graph partition and weighted bipartite matching. This article proposes an efficient algorithm to partition…
Monkey search algorithm for ECE components partitioning
NASA Astrophysics Data System (ADS)
Kuliev, Elmar; Kureichik, Vladimir; Kureichik, Vladimir, Jr.
2018-05-01
The paper considers one of the important design problems – a partitioning of electronic computer equipment (ECE) components (blocks). It belongs to the NP-hard class of problems and has a combinatorial and logic nature. In the paper, a partitioning problem formulation can be found as a partition of graph into parts. To solve the given problem, the authors suggest using a bioinspired approach based on a monkey search algorithm. Based on the developed software, computational experiments were carried out that show the algorithm efficiency, as well as its recommended settings for obtaining more effective solutions in comparison with a genetic algorithm.
Multidimensional spectral load balancing
Hendrickson, Bruce A.; Leland, Robert W.
1996-12-24
A method of and apparatus for graph partitioning involving the use of a plurality of eigenvectors of the Laplacian matrix of the graph of the problem for which load balancing is desired. The invention is particularly useful for optimizing parallel computer processing of a problem and for minimizing total pathway lengths of integrated circuits in the design stage.
Partitioning Rectangular and Structurally Nonsymmetric Sparse Matrices for Parallel Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
B. Hendrickson; T.G. Kolda
1998-09-01
A common operation in scientific computing is the multiplication of a sparse, rectangular or structurally nonsymmetric matrix and a vector. In many applications the matrix- transpose-vector product is also required. This paper addresses the efficient parallelization of these operations. We show that the problem can be expressed in terms of partitioning bipartite graphs. We then introduce several algorithms for this partitioning problem and compare their performance on a set of test matrices.
Convergence Analysis of the Graph Allen-Cahn Scheme
2016-02-01
CONVERGENCE ANALYSIS OF THE GRAPH ALLEN-CAHN SCHEME ∗ XIYANG LUO† AND ANDREA L. BERTOZZI† Abstract. Graph partitioning problems have a wide range of...optimization, convergence and monotonicity are shown for a class of schemes under a graph-independent timestep restriction. We also analyze the effects of...spectral truncation, a common technique used to save computational cost. Convergence of the scheme with spectral truncation is also proved under a
Venous tree separation in the liver: graph partitioning using a non-ising model.
O'Donnell, Thomas; Kaftan, Jens N; Schuh, Andreas; Tietjen, Christian; Soza, Grzegorz; Aach, Til
2011-01-01
Entangled tree-like vascular systems are commonly found in the body (e.g., in the peripheries and lungs). Separation of these systems in medical images may be formulated as a graph partitioning problem given an imperfect segmentation and specification of the tree roots. In this work, we show that the ubiquitous Ising-model approaches (e.g., Graph Cuts, Random Walker) are not appropriate for tackling this problem and propose a novel method based on recursive minimal paths for doing so. To motivate our method, we focus on the intertwined portal and hepatic venous systems in the liver. Separation of these systems is critical for liver intervention planning, in particular when resection is involved. We apply our method to 34 clinical datasets, each containing well over a hundred vessel branches, demonstrating its effectiveness.
A local search for a graph clustering problem
NASA Astrophysics Data System (ADS)
Navrotskaya, Anna; Il'ev, Victor
2016-10-01
In the clustering problems one has to partition a given set of objects (a data set) into some subsets (called clusters) taking into consideration only similarity of the objects. One of most visual formalizations of clustering is graph clustering, that is grouping the vertices of a graph into clusters taking into consideration the edge structure of the graph whose vertices are objects and edges represent similarities between the objects. In the graph k-clustering problem the number of clusters does not exceed k and the goal is to minimize the number of edges between clusters and the number of missing edges within clusters. This problem is NP-hard for any k ≥ 2. We propose a polynomial time (2k-1)-approximation algorithm for graph k-clustering. Then we apply a local search procedure to the feasible solution found by this algorithm and hold experimental research of obtained heuristics.
ERIC Educational Resources Information Center
Brusco, Michael J.; Kohn, Hans-Friedrich
2009-01-01
The clique partitioning problem (CPP) requires the establishment of an equivalence relation for the vertices of a graph such that the sum of the edge costs associated with the relation is minimized. The CPP has important applications for the social sciences because it provides a framework for clustering objects measured on a collection of nominal…
Enhancing data locality by using terminal propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickson, B.; Leland, R.; Van Driessche, R.
1995-12-31
Terminal propagation is a method developed in the circuit placement community for adding constraints to graph partitioning problems. This paper adapts and expands this idea, and applies it to the problem of partitioning data structures among the processors of a parallel computer. We show how the constraints in terminal propagation can be used to encourage partitions in which messages are communicated only between architecturally near processors. We then show how these constraints can be handled in two important partitioning algorithms, spectral bisection and multilevel-KL. We compare the quality of partitions generated by these algorithms to each other and to Partitionsmore » generated by more familiar techniques.« less
Dynamic Load Balancing for Adaptive Computations on Distributed-Memory Machines
NASA Technical Reports Server (NTRS)
1999-01-01
Dynamic load balancing is central to adaptive mesh-based computations on large-scale parallel computers. The principal investigator has investigated various issues on the dynamic load balancing problem under NASA JOVE and JAG rants. The major accomplishments of the project are two graph partitioning algorithms and a load balancing framework. The S-HARP dynamic graph partitioner is known to be the fastest among the known dynamic graph partitioners to date. It can partition a graph of over 100,000 vertices in 0.25 seconds on a 64- processor Cray T3E distributed-memory multiprocessor while maintaining the scalability of over 16-fold speedup. Other known and widely used dynamic graph partitioners take over a second or two while giving low scalability of a few fold speedup on 64 processors. These results have been published in journals and peer-reviewed flagship conferences.
On the partition dimension of comb product of path and complete graph
NASA Astrophysics Data System (ADS)
Darmaji, Alfarisi, Ridho
2017-08-01
For a vertex v of a connected graph G(V, E) with vertex set V(G), edge set E(G) and S ⊆ V(G). Given an ordered partition Π = {S1, S2, S3, …, Sk} of the vertex set V of G, the representation of a vertex v ∈ V with respect to Π is the vector r(v|Π) = (d(v, S1), d(v, S2), …, d(v, Sk)), where d(v, Sk) represents the distance between the vertex v and the set Sk and d(v, Sk) = min{d(v, x)|x ∈ Sk}. A partition Π of V(G) is a resolving partition if different vertices of G have distinct representations, i.e., for every pair of vertices u, v ∈ V(G), r(u|Π) ≠ r(v|Π). The minimum k of Π resolving partition is a partition dimension of G, denoted by pd(G). Finding the partition dimension of G is classified to be a NP-Hard problem. In this paper, we will show that the partition dimension of comb product of path and complete graph. The results show that comb product of complete grapph Km and path Pn namely p d (Km⊳Pn)=m where m ≥ 3 and n ≥ 2 and p d (Pn⊳Km)=m where m ≥ 3, n ≥ 2 and m ≥ n.
Chen, Wenbin; Hendrix, William; Samatova, Nagiza F
2017-12-01
The problem of aligning multiple metabolic pathways is one of very challenging problems in computational biology. A metabolic pathway consists of three types of entities: reactions, compounds, and enzymes. Based on similarities between enzymes, Tohsato et al. gave an algorithm for aligning multiple metabolic pathways. However, the algorithm given by Tohsato et al. neglects the similarities among reactions, compounds, enzymes, and pathway topology. How to design algorithms for the alignment problem of multiple metabolic pathways based on the similarity of reactions, compounds, and enzymes? It is a difficult computational problem. In this article, we propose an algorithm for the problem of aligning multiple metabolic pathways based on the similarities among reactions, compounds, enzymes, and pathway topology. First, we compute a weight between each pair of like entities in different input pathways based on the entities' similarity score and topological structure using Ay et al.'s methods. We then construct a weighted k-partite graph for the reactions, compounds, and enzymes. We extract a mapping between these entities by solving the maximum-weighted k-partite matching problem by applying a novel heuristic algorithm. By analyzing the alignment results of multiple pathways in different organisms, we show that the alignments found by our algorithm correctly identify common subnetworks among multiple pathways.
Fast Decentralized Averaging via Multi-scale Gossip
NASA Astrophysics Data System (ADS)
Tsianos, Konstantinos I.; Rabbat, Michael G.
We are interested in the problem of computing the average consensus in a distributed fashion on random geometric graphs. We describe a new algorithm called Multi-scale Gossip which employs a hierarchical decomposition of the graph to partition the computation into tractable sub-problems. Using only pairwise messages of fixed size that travel at most O(n^{1/3}) hops, our algorithm is robust and has communication cost of O(n loglogn logɛ - 1) transmissions, which is order-optimal up to the logarithmic factor in n. Simulated experiments verify the good expected performance on graphs of many thousands of nodes.
On the star partition dimension of comb product of cycle and complete graph
NASA Astrophysics Data System (ADS)
Alfarisi, Ridho; Darmaji; Dafik
2017-06-01
Let G = (V, E) be a connected graphs with vertex set V (G), edge set E(G) and S ⊆ V (G). For an ordered partition Π = {S 1, S 2, S 3, …, Sk } of V (G), the representation of a vertex v ∈ V (G) with respect to Π is the k-vectors r(v|Π) = (d(v, S 1), d(v, S 2), …, d(v, Sk )), where d(v, Sk ) represents the distance between the vertex v and the set Sk , defined by d(v, Sk ) = min{d(v, x)|x ∈ Sk}. The partition Π of V (G) is a resolving partition if the k-vektors r(v|Π), v ∈ V (G) are distinct. The minimum resolving partition Π is a partition dimension of G, denoted by pd(G). The resolving partition Π = {S 1, S 2, S 3, …, Sk} is called a star resolving partition for G if it is a resolving partition and each subgraph induced by Si , 1 ≤ i ≤ k, is a star. The minimum k for which there exists a star resolving partition of V (G) is the star partition dimension of G, denoted by spd(G). Finding a star partition dimension of G is classified to be a NP-Hard problem. Furthermore, the comb product between G and H, denoted by G ⊲ H, is a graph obtained by taking one copy of G and |V (G)| copies of H and grafting the i-th copy of H at the vertex o to the i-th vertex of G. By definition of comb product, we can say that V (G ⊲ H) = {(a, u)|a ∈ V (G), u ∈ V (H)} and (a, u)(b, v) ∈ E(G ⊲ H) whenever a = b and uv ∈ E(H), or ab ∈ E(G) and u = v = o. In this paper, we will study the star partition dimension of comb product of cycle and complete graph, namely Cn ⊲ Km and Km ⊲ Cn for n ≥ 3 and m ≥ 3.
Reducing vertices in property graphs
Pąk, Karol
2018-01-01
Graph databases are constantly growing, and, at the same time, some of their data is the same or similar. Our experience with the management of the existing databases, especially the bigger ones, shows that certain vertices are particularly replicated there numerous times. Eliminating repetitive or even very similar data speeds up the access to database resources. We present a modification of this approach, where similarly we group together vertices of identical properties, but then additionally we join together groups of data that are located in distant parts of a graph. The second part of our approach is non-trivial. We show that the search for a partition of a given graph where each member of the partition has only pairwise distant vertices is NP-hard. We indicate a group of heuristics that try to solve our difficult computational problems and then we apply them to check the the effectiveness of our approach. PMID:29444127
A Random Walk Approach to Query Informative Constraints for Clustering.
Abin, Ahmad Ali
2017-08-09
This paper presents a random walk approach to the problem of querying informative constraints for clustering. The proposed method is based on the properties of the commute time, that is the expected time taken for a random walk to travel between two nodes and return, on the adjacency graph of data. Commute time has the nice property of that, the more short paths connect two given nodes in a graph, the more similar those nodes are. Since computing the commute time takes the Laplacian eigenspectrum into account, we use this property in a recursive fashion to query informative constraints for clustering. At each recursion, the proposed method constructs the adjacency graph of data and utilizes the spectral properties of the commute time matrix to bipartition the adjacency graph. Thereafter, the proposed method benefits from the commute times distance on graph to query informative constraints between partitions. This process iterates for each partition until the stop condition becomes true. Experiments on real-world data show the efficiency of the proposed method for constraints selection.
Multi-A Graph Patrolling and Partitioning
NASA Astrophysics Data System (ADS)
Elor, Y.; Bruckstein, A. M.
2012-12-01
We introduce a novel multi agent patrolling algorithm inspired by the behavior of gas filled balloons. Very low capability ant-like agents are considered with the task of patrolling an unknown area modeled as a graph. While executing the proposed algorithm, the agents dynamically partition the graph between them using simple local interactions, every agent assuming the responsibility for patrolling his subgraph. Balanced graph partition is an emergent behavior due to the local interactions between the agents in the swarm. Extensive simulations on various graphs (environments) showed that the average time to reach a balanced partition is linear with the graph size. The simulations yielded a convincing argument for conjecturing that if the graph being patrolled contains a balanced partition, the agents will find it. However, we could not prove this. Nevertheless, we have proved that if a balanced partition is reached, the maximum time lag between two successive visits to any vertex using the proposed strategy is at most twice the optimal so the patrol quality is at least half the optimal. In case of weighted graphs the patrol quality is at least (1)/(2){lmin}/{lmax} of the optimal where lmax (lmin) is the longest (shortest) edge in the graph.
Eigenvector synchronization, graph rigidity and the molecule problemR
Cucuringu, Mihai; Singer, Amit; Cowburn, David
2013-01-01
The graph realization problem has received a great deal of attention in recent years, due to its importance in applications such as wireless sensor networks and structural biology. In this paper, we extend the previous work and propose the 3D-As-Synchronized-As-Possible (3D-ASAP) algorithm, for the graph realization problem in ℝ3, given a sparse and noisy set of distance measurements. 3D-ASAP is a divide and conquer, non-incremental and non-iterative algorithm, which integrates local distance information into a global structure determination. Our approach starts with identifying, for every node, a subgraph of its 1-hop neighborhood graph, which can be accurately embedded in its own coordinate system. In the noise-free case, the computed coordinates of the sensors in each patch must agree with their global positioning up to some unknown rigid motion, that is, up to translation, rotation and possibly reflection. In other words, to every patch, there corresponds an element of the Euclidean group, Euc(3), of rigid transformations in ℝ3, and the goal was to estimate the group elements that will properly align all the patches in a globally consistent way. Furthermore, 3D-ASAP successfully incorporates information specific to the molecule problem in structural biology, in particular information on known substructures and their orientation. In addition, we also propose 3D-spectral-partitioning (SP)-ASAP, a faster version of 3D-ASAP, which uses a spectral partitioning algorithm as a pre-processing step for dividing the initial graph into smaller subgraphs. Our extensive numerical simulations show that 3D-ASAP and 3D-SP-ASAP are very robust to high levels of noise in the measured distances and to sparse connectivity in the measurement graph, and compare favorably with similar state-of-the-art localization algorithms. PMID:24432187
Elmetwaly, Shereef; Schlick, Tamar
2014-01-01
Graph representations have been widely used to analyze and design various economic, social, military, political, and biological networks. In systems biology, networks of cells and organs are useful for understanding disease and medical treatments and, in structural biology, structures of molecules can be described, including RNA structures. In our RNA-As-Graphs (RAG) framework, we represent RNA structures as tree graphs by translating unpaired regions into vertices and helices into edges. Here we explore the modularity of RNA structures by applying graph partitioning known in graph theory to divide an RNA graph into subgraphs. To our knowledge, this is the first application of graph partitioning to biology, and the results suggest a systematic approach for modular design in general. The graph partitioning algorithms utilize mathematical properties of the Laplacian eigenvector (µ2) corresponding to the second eigenvalues (λ2) associated with the topology matrix defining the graph: λ2 describes the overall topology, and the sum of µ2′s components is zero. The three types of algorithms, termed median, sign, and gap cuts, divide a graph by determining nodes of cut by median, zero, and largest gap of µ2′s components, respectively. We apply these algorithms to 45 graphs corresponding to all solved RNA structures up through 11 vertices (∼220 nucleotides). While we observe that the median cut divides a graph into two similar-sized subgraphs, the sign and gap cuts partition a graph into two topologically-distinct subgraphs. We find that the gap cut produces the best biologically-relevant partitioning for RNA because it divides RNAs at less stable connections while maintaining junctions intact. The iterative gap cuts suggest basic modules and assembly protocols to design large RNA structures. Our graph substructuring thus suggests a systematic approach to explore the modularity of biological networks. In our applications to RNA structures, subgraphs also suggest design strategies for novel RNA motifs. PMID:25188578
Overlapping clusters for distributed computation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirrokni, Vahab; Andersen, Reid; Gleich, David F.
2010-11-01
Scalable, distributed algorithms must address communication problems. We investigate overlapping clusters, or vertex partitions that intersect, for graph computations. This setup stores more of the graph than required but then affords the ease of implementation of vertex partitioned algorithms. Our hope is that this technique allows us to reduce communication in a computation on a distributed graph. The motivation above draws on recent work in communication avoiding algorithms. Mohiyuddin et al. (SC09) design a matrix-powers kernel that gives rise to an overlapping partition. Fritzsche et al. (CSC2009) develop an overlapping clustering for a Schwarz method. Both techniques extend an initialmore » partitioning with overlap. Our procedure generates overlap directly. Indeed, Schwarz methods are commonly used to capitalize on overlap. Elsewhere, overlapping communities (Ahn et al, Nature 2009; Mishra et al. WAW2007) are now a popular model of structure in social networks. These have long been studied in statistics (Cole and Wishart, CompJ 1970). We present two types of results: (i) an estimated swapping probability {rho}{infinity}; and (ii) the communication volume of a parallel PageRank solution (link-following {alpha} = 0.85) using an additive Schwarz method. The volume ratio is the amount of extra storage for the overlap (2 means we store the graph twice). Below, as the ratio increases, the swapping probability and PageRank communication volume decreases.« less
HARP: A Dynamic Inertial Spectral Partitioner
NASA Technical Reports Server (NTRS)
Simon, Horst D.; Sohn, Andrew; Biswas, Rupak
1997-01-01
Partitioning unstructured graphs is central to the parallel solution of computational science and engineering problems. Spectral partitioners, such recursive spectral bisection (RSB), have proven effecfive in generating high-quality partitions of realistically-sized meshes. The major problem which hindered their wide-spread use was their long execution times. This paper presents a new inertial spectral partitioner, called HARP. The main objective of the proposed approach is to quickly partition the meshes at runtime in a manner that works efficiently for real applications in the context of distributed-memory machines. The underlying principle of HARP is to find the eigenvectors of the unpartitioned vertices and then project them onto the eigerivectors of the original mesh. Results for various meshes ranging in size from 1000 to 100,000 vertices indicate that HARP can indeed partition meshes rapidly at runtime. Experimental results show that our largest mesh can be partitioned sequentially in only a few seconds on an SP2 which is several times faster than other spectral partitioners while maintaining the solution quality of the proven RSB method. A parallel WI version of HARP has also been implemented on IBM SP2 and Cray T3E. Parallel HARP, running on 64 processors SP2 and T3E, can partition a mesh containing more than 100,000 vertices into 64 subgrids in about half a second. These results indicate that graph partitioning can now be truly embedded in dynamically-changing real-world applications.
An asynchronous traversal engine for graph-based rich metadata management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Dong; Carns, Philip; Ross, Robert B.
Rich metadata in high-performance computing (HPC) systems contains extended information about users, jobs, data files, and their relationships. Property graphs are a promising data model to represent heterogeneous rich metadata flexibly. Specifically, a property graph can use vertices to represent different entities and edges to record the relationships between vertices with unique annotations. The high-volume HPC use case, with millions of entities and relationships, naturally requires an out-of-core distributed property graph database, which must support live updates (to ingest production information in real time), low-latency point queries (for frequent metadata operations such as permission checking), and large-scale traversals (for provenancemore » data mining). Among these needs, large-scale property graph traversals are particularly challenging for distributed graph storage systems. Most existing graph systems implement a "level synchronous" breadth-first search algorithm that relies on global synchronization in each traversal step. This performs well in many problem domains; but a rich metadata management system is characterized by imbalanced graphs, long traversal lengths, and concurrent workloads, each of which has the potential to introduce or exacerbate stragglers (i.e., abnormally slow steps or servers in a graph traversal) that lead to low overall throughput for synchronous traversal algorithms. Previous research indicated that the straggler problem can be mitigated by using asynchronous traversal algorithms, and many graph-processing frameworks have successfully demonstrated this approach. Such systems require the graph to be loaded into a separate batch-processing framework instead of being iteratively accessed, however. In this work, we investigate a general asynchronous graph traversal engine that can operate atop a rich metadata graph in its native format. We outline a traversal-aware query language and key optimizations (traversal-affiliate caching and execution merging) necessary for efficient performance. We further explore the effect of different graph partitioning strategies on the traversal performance for both synchronous and asynchronous traversal engines. Our experiments show that the asynchronous graph traversal engine is more efficient than its synchronous counterpart in the case of HPC rich metadata processing, where more servers are involved and larger traversals are needed. Furthermore, the asynchronous traversal engine is more adaptive to different graph partitioning strategies.« less
An asynchronous traversal engine for graph-based rich metadata management
Dai, Dong; Carns, Philip; Ross, Robert B.; ...
2016-06-23
Rich metadata in high-performance computing (HPC) systems contains extended information about users, jobs, data files, and their relationships. Property graphs are a promising data model to represent heterogeneous rich metadata flexibly. Specifically, a property graph can use vertices to represent different entities and edges to record the relationships between vertices with unique annotations. The high-volume HPC use case, with millions of entities and relationships, naturally requires an out-of-core distributed property graph database, which must support live updates (to ingest production information in real time), low-latency point queries (for frequent metadata operations such as permission checking), and large-scale traversals (for provenancemore » data mining). Among these needs, large-scale property graph traversals are particularly challenging for distributed graph storage systems. Most existing graph systems implement a "level synchronous" breadth-first search algorithm that relies on global synchronization in each traversal step. This performs well in many problem domains; but a rich metadata management system is characterized by imbalanced graphs, long traversal lengths, and concurrent workloads, each of which has the potential to introduce or exacerbate stragglers (i.e., abnormally slow steps or servers in a graph traversal) that lead to low overall throughput for synchronous traversal algorithms. Previous research indicated that the straggler problem can be mitigated by using asynchronous traversal algorithms, and many graph-processing frameworks have successfully demonstrated this approach. Such systems require the graph to be loaded into a separate batch-processing framework instead of being iteratively accessed, however. In this work, we investigate a general asynchronous graph traversal engine that can operate atop a rich metadata graph in its native format. We outline a traversal-aware query language and key optimizations (traversal-affiliate caching and execution merging) necessary for efficient performance. We further explore the effect of different graph partitioning strategies on the traversal performance for both synchronous and asynchronous traversal engines. Our experiments show that the asynchronous graph traversal engine is more efficient than its synchronous counterpart in the case of HPC rich metadata processing, where more servers are involved and larger traversals are needed. Furthermore, the asynchronous traversal engine is more adaptive to different graph partitioning strategies.« less
Nonlinear optimization simplified by hypersurface deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillinger, F.H.; Weber, T.A.
1988-09-01
A general strategy is advanced for simplifying nonlinear optimization problems, the ant-lion method. This approach exploits shape modifications of the cost-function hypersurface which distend basins surrounding low-lying minima (including global minima). By intertwining hypersurface deformations with steepest-descent displacements, the search is concentrated on a small relevant subset of all minima. Specific calculations demonstrating the value of this method are reported for the partitioning of two classes of irregular but nonrandom graphs, the prime-factor graphs and the pi graphs. We also indicate how this approach can be applied to the traveling salesman problem and to design layout optimization, and that itmore » may be useful in combination with simulated annealing strategies.« less
Dynamic airspace configuration algorithms for next generation air transportation system
NASA Astrophysics Data System (ADS)
Wei, Jian
The National Airspace System (NAS) is under great pressure to safely and efficiently handle the record-high air traffic volume nowadays, and will face even greater challenge to keep pace with the steady increase of future air travel demand, since the air travel demand is projected to increase to two to three times the current level by 2025. The inefficiency of traffic flow management initiatives causes severe airspace congestion and frequent flight delays, which cost billions of economic losses every year. To address the increasingly severe airspace congestion and delays, the Next Generation Air Transportation System (NextGen) is proposed to transform the current static and rigid radar based system to a dynamic and flexible satellite based system. New operational concepts such as Dynamic Airspace Configuration (DAC) have been under development to allow more flexibility required to mitigate the demand-capacity imbalances in order to increase the throughput of the entire NAS. In this dissertation, we address the DAC problem in the en route and terminal airspace under the framework of NextGen. We develop a series of algorithms to facilitate the implementation of innovative concepts relevant with DAC in both the en route and terminal airspace. We also develop a performance evaluation framework for comprehensive benefit analyses on different aspects of future sector design algorithms. First, we complete a graph based sectorization algorithm for DAC in the en route airspace, which models the underlying air route network with a weighted graph, converts the sectorization problem into the graph partition problem, partitions the weighted graph with an iterative spectral bipartition method, and constructs the sectors from the partitioned graph. The algorithm uses a graph model to accurately capture the complex traffic patterns of the real flights, and generates sectors with high efficiency while evenly distributing the workload among the generated sectors. We further improve the robustness and efficiency of the graph based DAC algorithm by incorporating the Multilevel Graph Partitioning (MGP) method into the graph model, and develop a MGP based sectorization algorithm for DAC in the en route airspace. In a comprehensive benefit analysis, the performance of the proposed algorithms are tested in numerical simulations with Enhanced Traffic Management System (ETMS) data. Simulation results demonstrate that the algorithmically generated sectorizations outperform the current sectorizations in different sectors for different time periods. Secondly, based on our experience with DAC in the en route airspace, we further study the sectorization problem for DAC in the terminal airspace. The differences between the en route and terminal airspace are identified, and their influence on the terminal sectorization is analyzed. After adjusting the graph model to better capture the unique characteristics of the terminal airspace and the requirements of terminal sectorization, we develop a graph based geometric sectorization algorithm for DAC in the terminal airspace. Moreover, the graph based model is combined with the region based sector design method to better handle the complicated geometric and operational constraints in the terminal sectorization problem. In the benefit analysis, we identify the contributing factors to terminal controller workload, define evaluation metrics, and develop a bebefit analysis framework for terminal sectorization evaluation. With the evaluation framework developed, we demonstrate the improvements on the current sectorizations with real traffic data collected from several major international airports in the U.S., and conduct a detailed analysis on the potential benefits of dynamic reconfiguration in the terminal airspace. Finally, in addition to the research on the macroscopic behavior of a large number of aircraft, we also study the dynamical behavior of individual aircraft from the perspective of traffic flow management. We formulate the mode-confusion problem as hybrid estimation problem, and develop a state estimation algorithm for the linear hybrid system with continuous-state-dependent transitions based on sparse observations. We also develop an estimated time of arrival prediction algorithm based on the state-dependent transition hybrid estimation algorithm, whose performance is demonstrated with simulations on the landing procedure following the Continuous Descend Approach (CDA) profile.
Memoryless cooperative graph search based on the simulated annealing algorithm
NASA Astrophysics Data System (ADS)
Hou, Jian; Yan, Gang-Feng; Fan, Zhen
2011-04-01
We have studied the problem of reaching a globally optimal segment for a graph-like environment with a single or a group of autonomous mobile agents. Firstly, two efficient simulated-annealing-like algorithms are given for a single agent to solve the problem in a partially known environment and an unknown environment, respectively. It shows that under both proposed control strategies, the agent will eventually converge to a globally optimal segment with probability 1. Secondly, we use multi-agent searching to simultaneously reduce the computation complexity and accelerate convergence based on the algorithms we have given for a single agent. By exploiting graph partition, a gossip-consensus method based scheme is presented to update the key parameter—radius of the graph, ensuring that the agents spend much less time finding a globally optimal segment.
Partitioning Algorithms for Simultaneously Balancing Iterative and Direct Methods
2004-03-03
is defined as 57698&:&;=<$>?8A@B8 DC E & /F <G8H IJ0 K L 012 1NM? which is the ratio of the highest partition weight over the average...OQPSR , 57698T:;=<$>U8T@B8 DC E & /VXWZYK[\\O , and E :^] E_CU`4ab /V is minimized. The load imbalance is the constraint we have to satisfy, and...that the initial partitioning can be improved [16, 19, 20]. 3 Problem Definition and Challenges Consider a graph )c2 with d e f vertices
Spectral Upscaling for Graph Laplacian Problems with Application to Reservoir Simulation
Barker, Andrew T.; Lee, Chak S.; Vassilevski, Panayot S.
2017-10-26
Here, we consider coarsening procedures for graph Laplacian problems written in a mixed saddle-point form. In that form, in addition to the original (vertex) degrees of freedom (dofs), we also have edge degrees of freedom. We extend previously developed aggregation-based coarsening procedures applied to both sets of dofs to now allow more than one coarse vertex dof per aggregate. Those dofs are selected as certain eigenvectors of local graph Laplacians associated with each aggregate. Additionally, we coarsen the edge dofs by using traces of the discrete gradients of the already constructed coarse vertex dofs. These traces are defined on themore » interface edges that connect any two adjacent aggregates. The overall procedure is a modification of the spectral upscaling procedure developed in for the mixed finite element discretization of diffusion type PDEs which has the important property of maintaining inf-sup stability on coarse levels and having provable approximation properties. We consider applications to partitioning a general graph and to a finite volume discretization interpreted as a graph Laplacian, developing consistent and accurate coarse-scale models of a fine-scale problem.« less
A Partitioning Algorithm for Block-Diagonal Matrices With Overlap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guy Antoine Atenekeng Kahou; Laura Grigori; Masha Sosonkina
2008-02-02
We present a graph partitioning algorithm that aims at partitioning a sparse matrix into a block-diagonal form, such that any two consecutive blocks overlap. We denote this form of the matrix as the overlapped block-diagonal matrix. The partitioned matrix is suitable for applying the explicit formulation of Multiplicative Schwarz preconditioner (EFMS) described in [3]. The graph partitioning algorithm partitions the graph of the input matrix into K partitions, such that every partition {Omega}{sub i} has at most two neighbors {Omega}{sub i-1} and {Omega}{sub i+1}. First, an ordering algorithm, such as the reverse Cuthill-McKee algorithm, that reduces the matrix profile ismore » performed. An initial overlapped block-diagonal partition is obtained from the profile of the matrix. An iterative strategy is then used to further refine the partitioning by allowing nodes to be transferred between neighboring partitions. Experiments are performed on matrices arising from real-world applications to show the feasibility and usefulness of this approach.« less
P-HARP: A parallel dynamic spectral partitioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohn, A.; Biswas, R.; Simon, H.D.
1997-05-01
Partitioning unstructured graphs is central to the parallel solution of problems in computational science and engineering. The authors have introduced earlier the sequential version of an inertial spectral partitioner called HARP which maintains the quality of recursive spectral bisection (RSB) while forming the partitions an order of magnitude faster than RSB. The serial HARP is known to be the fastest spectral partitioner to date, three to four times faster than similar partitioners on a variety of meshes. This paper presents a parallel version of HARP, called P-HARP. Two types of parallelism have been exploited: loop level parallelism and recursive parallelism.more » P-HARP has been implemented in MPI on the SGI/Cray T3E and the IBM SP2. Experimental results demonstrate that P-HARP can partition a mesh of over 100,000 vertices into 256 partitions in 0.25 seconds on a 64-processor T3E. Experimental results further show that P-HARP can give nearly a 20-fold speedup on 64 processors. These results indicate that graph partitioning is no longer a major bottleneck that hinders the advancement of computational science and engineering for dynamically-changing real-world applications.« less
The partition dimension of cycle books graph
NASA Astrophysics Data System (ADS)
Santoso, Jaya; Darmaji
2018-03-01
Let G be a nontrivial and connected graph with vertex set V(G), edge set E(G) and S ⊆ V(G) with v ∈ V(G), the distance between v and S is d(v,S) = min{d(v,x)|x ∈ S}. For an ordered partition ∏ = {S 1, S 2, S 3,…, Sk } of V(G), the representation of v with respect to ∏ is defined by r(v|∏) = (d(v, S 1), d(v, S 2),…, d(v, Sk )). The partition ∏ is called a resolving partition of G if all representations of vertices are distinct. The partition dimension pd(G) is the smallest integer k such that G has a resolving partition set with k members. In this research, we will determine the partition dimension of Cycle Books {B}{Cr,m}. Cycle books graph {B}{Cr,m} is a graph consisting of m copies cycle Cr with the common path P 2. It is shown that the partition dimension of cycle books graph, pd({B}{C3,m}) is 3 for m = 2, 3, and m for m ≥ 4. pd({B}{C4,m}) is 3 + 2k for m = 3k + 2, 4 + 2(k ‑ 1) for m = 3k + 1, and 3 + 2(k ‑ 1) for m = 3k. pd({B}{C5,m}) is m + 1.
Protein and gene model inference based on statistical modeling in k-partite graphs.
Gerster, Sarah; Qeli, Ermir; Ahrens, Christian H; Bühlmann, Peter
2010-07-06
One of the major goals of proteomics is the comprehensive and accurate description of a proteome. Shotgun proteomics, the method of choice for the analysis of complex protein mixtures, requires that experimentally observed peptides are mapped back to the proteins they were derived from. This process is also known as protein inference. We present Markovian Inference of Proteins and Gene Models (MIPGEM), a statistical model based on clearly stated assumptions to address the problem of protein and gene model inference for shotgun proteomics data. In particular, we are dealing with dependencies among peptides and proteins using a Markovian assumption on k-partite graphs. We are also addressing the problems of shared peptides and ambiguous proteins by scoring the encoding gene models. Empirical results on two control datasets with synthetic mixtures of proteins and on complex protein samples of Saccharomyces cerevisiae, Drosophila melanogaster, and Arabidopsis thaliana suggest that the results with MIPGEM are competitive with existing tools for protein inference.
Communication-Efficient Arbitration Models for Low-Resolution Data Flow Computing
1988-12-01
phase can be formally described as follows: Graph Partitioning Problem NP-complete: (Garey & Johnson) Given graph G = (V, E), weights w (v) for each v e V...Technical Report, MIT/LCS/TR-218, Cambridge, Mass. Agerwala, Tilak, February 1982, "Data Flow Systems", Computer, pp. 10-13. Babb, Robert G ., July 1984...34Parallel Processing with Large-Grain Data Flow Techniques," IEEE Computer 17, 7, pp. 55-61. Babb, Robert G ., II, Lise Storc, and William C. Ragsdale
The partition dimension of subdivision of a graph
NASA Astrophysics Data System (ADS)
Amrullah, Baskoro, Edy Tri; Uttunggadewa, Saladin; Simanjuntak, Rinovia
2016-02-01
Let G = (V,E) be a connected graph, u,v ∈ V (G), e = uv ∈ E(G) and k be a positive integer. A k-subdivision of an edge e is a replacement of e = uv with a path u, x1, x2, x ..., xk, v. A graph G with a k-subdivided edge is denoted with S(G(e; k)). Let p be a positive integer and Π = {L1, L2, L3, …, Lp} be a p-partition of V (G). The representation of a vertex v with respect to Π, r(v|Π), is the vector (d(v, L1), d(v, L2), d(v, L3),…, d(v, Lp)) where d(v, Li) for i ∈ [1, p] is the minimum distance between v and the vertices of Li. The partition Π is called a resolving partition of G if r(w|Π) ≠ r(v|Π) for all w ≠ v ∈ V (G). The partition dimension, pd(G), of G is the smallest integer p such that G has a resolving p-partition. In this paper, we present sharp upper and lower bounds of the partition dimension of S(G(e; k)) for any graph G.
Experimental quantum annealing: case study involving the graph isomorphism problem.
Zick, Kenneth M; Shehab, Omar; French, Matthew
2015-06-08
Quantum annealing is a proposed combinatorial optimization technique meant to exploit quantum mechanical effects such as tunneling and entanglement. Real-world quantum annealing-based solvers require a combination of annealing and classical pre- and post-processing; at this early stage, little is known about how to partition and optimize the processing. This article presents an experimental case study of quantum annealing and some of the factors involved in real-world solvers, using a 504-qubit D-Wave Two machine and the graph isomorphism problem. To illustrate the role of classical pre-processing, a compact Hamiltonian is presented that enables a reduced Ising model for each problem instance. On random N-vertex graphs, the median number of variables is reduced from N(2) to fewer than N log2 N and solvable graph sizes increase from N = 5 to N = 13. Additionally, error correction via classical post-processing majority voting is evaluated. While the solution times are not competitive with classical approaches to graph isomorphism, the enhanced solver ultimately classified correctly every problem that was mapped to the processor and demonstrated clear advantages over the baseline approach. The results shed some light on the nature of real-world quantum annealing and the associated hybrid classical-quantum solvers.
Experimental quantum annealing: case study involving the graph isomorphism problem
Zick, Kenneth M.; Shehab, Omar; French, Matthew
2015-01-01
Quantum annealing is a proposed combinatorial optimization technique meant to exploit quantum mechanical effects such as tunneling and entanglement. Real-world quantum annealing-based solvers require a combination of annealing and classical pre- and post-processing; at this early stage, little is known about how to partition and optimize the processing. This article presents an experimental case study of quantum annealing and some of the factors involved in real-world solvers, using a 504-qubit D-Wave Two machine and the graph isomorphism problem. To illustrate the role of classical pre-processing, a compact Hamiltonian is presented that enables a reduced Ising model for each problem instance. On random N-vertex graphs, the median number of variables is reduced from N2 to fewer than N log2 N and solvable graph sizes increase from N = 5 to N = 13. Additionally, error correction via classical post-processing majority voting is evaluated. While the solution times are not competitive with classical approaches to graph isomorphism, the enhanced solver ultimately classified correctly every problem that was mapped to the processor and demonstrated clear advantages over the baseline approach. The results shed some light on the nature of real-world quantum annealing and the associated hybrid classical-quantum solvers. PMID:26053973
On k-ary n-cubes: Theory and applications
NASA Technical Reports Server (NTRS)
Mao, Weizhen; Nicol, David M.
1994-01-01
Many parallel processing networks can be viewed as graphs called k-ary n-cubes, whose special cases include rings, hypercubes and toruses. In this paper, combinatorial properties of k-ary n-cubes are explored. In particular, the problem of characterizing the subgraph of a given number of nodes with the maximum edge count is studied. These theoretical results are then used to compute a lower bounding function in branch-and-bound partitioning algorithms and to establish the optimality of some irregular partitions.
Efficient Extraction of High Centrality Vertices in Distributed Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumbhare, Alok; Frincu, Marc; Raghavendra, Cauligi S.
2014-09-09
Betweenness centrality (BC) is an important measure for identifying high value or critical vertices in graphs, in variety of domains such as communication networks, road networks, and social graphs. However, calculating betweenness values is prohibitively expensive and, more often, domain experts are interested only in the vertices with the highest centrality values. In this paper, we first propose a partition-centric algorithm (MS-BC) to calculate BC for a large distributed graph that optimizes resource utilization and improves overall performance. Further, we extend the notion of approximate BC by pruning the graph and removing a subset of edges and vertices that contributemore » the least to the betweenness values of other vertices (MSL-BC), which further improves the runtime performance. We evaluate the proposed algorithms using a mix of real-world and synthetic graphs on an HPC cluster and analyze its strengths and weaknesses. The experimental results show an improvement in performance of upto 12x for large sparse graphs as compared to the state-of-the-art, and at the same time highlights the need for better partitioning methods to enable a balanced workload across partitions for unbalanced graphs such as small-world or power-law graphs.« less
An integer programming formulation of the parsimonious loss of heterozygosity problem.
Catanzaro, Daniele; Labbé, Martine; Halldórsson, Bjarni V
2013-01-01
A loss of heterozygosity (LOH) event occurs when, by the laws of Mendelian inheritance, an individual should be heterozygote at a given site but, due to a deletion polymorphism, is not. Deletions play an important role in human disease and their detection could provide fundamental insights for the development of new diagnostics and treatments. In this paper, we investigate the parsimonious loss of heterozygosity problem (PLOHP), i.e., the problem of partitioning suspected polymorphisms from a set of individuals into a minimum number of deletion areas. Specifically, we generalize Halldórsson et al.'s work by providing a more general formulation of the PLOHP and by showing how one can incorporate different recombination rates and prior knowledge about the locations of deletions. Moreover, we show that the PLOHP can be formulated as a specific version of the clique partition problem in a particular class of graphs called undirected catch-point interval graphs and we prove its general $({\\cal NP})$-hardness. Finally, we provide a state-of-the-art integer programming (IP) formulation and strengthening valid inequalities to exactly solve real instances of the PLOHP containing up to 9,000 individuals and 3,000 SNPs. Our results give perspectives on the mathematics of the PLOHP and suggest new directions on the development of future efficient exact solution approaches.
FPFH-based graph matching for 3D point cloud registration
NASA Astrophysics Data System (ADS)
Zhao, Jiapeng; Li, Chen; Tian, Lihua; Zhu, Jihua
2018-04-01
Correspondence detection is a vital step in point cloud registration and it can help getting a reliable initial alignment. In this paper, we put forward an advanced point feature-based graph matching algorithm to solve the initial alignment problem of rigid 3D point cloud registration with partial overlap. Specifically, Fast Point Feature Histograms are used to determine the initial possible correspondences firstly. Next, a new objective function is provided to make the graph matching more suitable for partially overlapping point cloud. The objective function is optimized by the simulated annealing algorithm for final group of correct correspondences. Finally, we present a novel set partitioning method which can transform the NP-hard optimization problem into a O(n3)-solvable one. Experiments on the Stanford and UWA public data sets indicates that our method can obtain better result in terms of both accuracy and time cost compared with other point cloud registration methods.
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.; Crockett, Thomas W.; Nicol, David M.
1993-01-01
Binary dissection is widely used to partition non-uniform domains over parallel computers. This algorithm does not consider the perimeter, surface area, or aspect ratio of the regions being generated and can yield decompositions that have poor communication to computation ratio. Parametric Binary Dissection (PBD) is a new algorithm in which each cut is chosen to minimize load + lambda x(shape). In a 2 (or 3) dimensional problem, load is the amount of computation to be performed in a subregion and shape could refer to the perimeter (respectively surface) of that subregion. Shape is a measure of communication overhead and the parameter permits us to trade off load imbalance against communication overhead. When A is zero, the algorithm reduces to plain binary dissection. This algorithm can be used to partition graphs embedded in 2 or 3-d. Load is the number of nodes in a subregion, shape the number of edges that leave that subregion, and lambda the ratio of time to communicate over an edge to the time to compute at a node. An algorithm is presented that finds the depth d parametric dissection of an embedded graph with n vertices and e edges in O(max(n log n, de)) time, which is an improvement over the O(dn log n) time of plain binary dissection. Parallel versions of this algorithm are also presented; the best of these requires O((n/p) log(sup 3)p) time on a p processor hypercube, assuming graphs of bounded degree. How PBD is applied to 3-d unstructured meshes and yields partitions that are better than those obtained by plain dissection is described. Its application to the color image quantization problem is also discussed, in which samples in a high-resolution color space are mapped onto a lower resolution space in a way that minimizes the color error.
Weights and topology: a study of the effects of graph construction on 3D image segmentation.
Grady, Leo; Jolly, Marie-Pierre
2008-01-01
Graph-based algorithms have become increasingly popular for medical image segmentation. The fundamental process for each of these algorithms is to use the image content to generate a set of weights for the graph and then set conditions for an optimal partition of the graph with respect to these weights. To date, the heuristics used for generating the weighted graphs from image intensities have largely been ignored, while the primary focus of attention has been on the details of providing the partitioning conditions. In this paper we empirically study the effects of graph connectivity and weighting function on the quality of the segmentation results. To control for algorithm-specific effects, we employ both the Graph Cuts and Random Walker algorithms in our experiments.
a Super Voxel-Based Riemannian Graph for Multi Scale Segmentation of LIDAR Point Clouds
NASA Astrophysics Data System (ADS)
Li, Minglei
2018-04-01
Automatically segmenting LiDAR points into respective independent partitions has become a topic of great importance in photogrammetry, remote sensing and computer vision. In this paper, we cast the problem of point cloud segmentation as a graph optimization problem by constructing a Riemannian graph. The scale space of the observed scene is explored by an octree-based over-segmentation with different depths. The over-segmentation produces many super voxels which restrict the structure of the scene and will be used as nodes of the graph. The Kruskal coordinates are used to compute edge weights that are proportional to the geodesic distance between nodes. Then we compute the edge-weight matrix in which the elements reflect the sectional curvatures associated with the geodesic paths between super voxel nodes on the scene surface. The final segmentation results are generated by clustering similar super voxels and cutting off the weak edges in the graph. The performance of this method was evaluated on LiDAR point clouds for both indoor and outdoor scenes. Additionally, extensive comparisons to state of the art techniques show that our algorithm outperforms on many metrics.
K-Partite RNA Secondary Structures
NASA Astrophysics Data System (ADS)
Jiang, Minghui; Tejada, Pedro J.; Lasisi, Ramoni O.; Cheng, Shanhong; Fechser, D. Scott
RNA secondary structure prediction is a fundamental problem in structural bioinformatics. The prediction problem is difficult because RNA secondary structures may contain pseudoknots formed by crossing base pairs. We introduce k-partite secondary structures as a simple classification of RNA secondary structures with pseudoknots. An RNA secondary structure is k-partite if it is the union of k pseudoknot-free sub-structures. Most known RNA secondary structures are either bipartite or tripartite. We show that there exists a constant number k such that any secondary structure can be modified into a k-partite secondary structure with approximately the same free energy. This offers a partial explanation of the prevalence of k-partite secondary structures with small k. We give a complete characterization of the computational complexities of recognizing k-partite secondary structures for all k ≥ 2, and show that this recognition problem is essentially the same as the k-colorability problem on circle graphs. We present two simple heuristics, iterated peeling and first-fit packing, for finding k-partite RNA secondary structures. For maximizing the number of base pair stackings, our iterated peeling heuristic achieves a constant approximation ratio of at most k for 2 ≤ k ≤ 5, and at most frac6{1-(1-6/k)^k} le frac6{1-e^{-6}} < 6.01491 for k ≥ 6. Experiment on sequences from PseudoBase shows that our first-fit packing heuristic outperforms the leading method HotKnots in predicting RNA secondary structures with pseudoknots. Source code, data set, and experimental results are available at
A GRAPH PARTITIONING APPROACH TO PREDICTING PATTERNS IN LATERAL INHIBITION SYSTEMS
RUFINO FERREIRA, ANA S.; ARCAK, MURAT
2017-01-01
We analyze spatial patterns on networks of cells where adjacent cells inhibit each other through contact signaling. We represent the network as a graph where each vertex represents the dynamics of identical individual cells and where graph edges represent cell-to-cell signaling. To predict steady-state patterns we find equitable partitions of the graph vertices and assign them into disjoint classes. We then use results from monotone systems theory to prove the existence of patterns that are structured in such a way that all the cells in the same class have the same final fate. To study the stability properties of these patterns, we rely on the graph partition to perform a block decomposition of the system. Then, to guarantee stability, we provide a small-gain type criterion that depends on the input-output properties of each cell in the reduced system. Finally, we discuss pattern formation in stochastic models. With the help of a modal decomposition we show that noise can enhance the parameter region where patterning occurs. PMID:29225552
Some trees with partition dimension three
NASA Astrophysics Data System (ADS)
Fredlina, Ketut Queena; Baskoro, Edy Tri
2016-02-01
The concept of partition dimension of a graph was introduced by Chartrand, E. Salehi and P. Zhang (1998) [2]. Let G(V, E) be a connected graph. For S ⊆ V (G) and v ∈ V (G), define the distance d(v, S) from v to S is min{d(v, x)|x ∈ S}. Let Π be an ordered partition of V (G) and Π = {S1, S2, ..., Sk }. The representation r(v|Π) of vertex v with respect to Π is (d(v, S1), d(v, S2), ..., d(v, Sk)). If the representations of all vertices are distinct, then the partition Π is called a resolving partition of G. The partition dimension of G is the minimum k such that G has a resolving partition with k partition classes. In this paper, we characterize some classes of trees with partition dimension three, namely olive trees, weeds, and centipedes.
Tracking Multiple People Online and in Real Time
2015-12-21
NO. 0704-0188 3. DATES COVERED (From - To) - UU UU UU UU 21-12-2015 Approved for public release; distribution is unlimited. Tracking multiple people ...online and in real time We cast the problem of tracking several people as a graph partitioning problem that takes the form of an NP-hard binary...PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Duke University 2200 West Main Street Suite 710 Durham, NC 27705 -4010 ABSTRACT Tracking multiple
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boman, Erik G.; Catalyurek, Umit V.; Chevalier, Cedric
2015-01-16
This final progress report summarizes the work accomplished at the Combinatorial Scientific Computing and Petascale Simulations Institute. We developed Zoltan, a parallel mesh partitioning library that made use of accurate hypergraph models to provide load balancing in mesh-based computations. We developed several graph coloring algorithms for computing Jacobian and Hessian matrices and organized them into a software package called ColPack. We developed parallel algorithms for graph coloring and graph matching problems, and also designed multi-scale graph algorithms. Three PhD students graduated, six more are continuing their PhD studies, and four postdoctoral scholars were advised. Six of these students and Fellowsmore » have joined DOE Labs (Sandia, Berkeley), as staff scientists or as postdoctoral scientists. We also organized the SIAM Workshop on Combinatorial Scientific Computing (CSC) in 2007, 2009, and 2011 to continue to foster the CSC community.« less
Tensor Spectral Clustering for Partitioning Higher-order Network Structures.
Benson, Austin R; Gleich, David F; Leskovec, Jure
2015-01-01
Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms.
Tensor Spectral Clustering for Partitioning Higher-order Network Structures
Benson, Austin R.; Gleich, David F.; Leskovec, Jure
2016-01-01
Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms. PMID:27812399
Solving Multi-variate Polynomial Equations in a Finite Field
2013-06-01
Algebraic Background In this section, some algebraic definitions and basics are discussed as they pertain to this re- search. For a more detailed...definitions and basics are discussed as they pertain to this research. For a more detailed treatment, consult a graph theory text such as [10]. A graph G...graph if V(G) can be partitioned into k subsets V1,V2, ...,Vk such that uv is only an edge of G if u and v belong to different partite sets. If, in
Architecture Aware Partitioning Algorithms
2006-01-19
follows: Given a graph G = (V, E ), where V is the set of vertices, n = |V | is the number of vertices, and E is the set of edges in the graph, partition the...communication link l(pi, pj) is associated with a graph edge weight e ∗(pi, pj) that represents the communication cost per unit of communication between...one that is local for each one. For our model we assume that communication in either direction across a given link is the same, therefore e ∗(pi, pj
Controlling bi-partite entanglement in multi-qubit systems
NASA Astrophysics Data System (ADS)
Plesch, Martin; Novotný, Jaroslav; Dzuráková, Zuzana; Buzek, Vladimír
2004-02-01
Bi-partite entanglement in multi-qubit systems cannot be shared freely. The rules of quantum mechanics impose bounds on how multi-qubit systems can be correlated. In this paper, we utilize a concept of entangled graphs with weighted edges in order to analyse pure quantum states of multi-qubit systems. Here qubits are represented by vertexes of the graph, while the presence of bi-partite entanglement is represented by an edge between corresponding vertexes. The weight of each edge is defined to be the entanglement between the two qubits connected by the edge, as measured by the concurrence. We prove that each entangled graph with entanglement bounded by a specific value of the concurrence can be represented by a pure multi-qubit state. In addition, we present a logic network with O(N2) elementary gates that can be used for preparation of the weighted entangled graphs of N qubits.
Guturu, Parthasarathy; Dantu, Ram
2008-06-01
Many graph- and set-theoretic problems, because of their tremendous application potential and theoretical appeal, have been well investigated by the researchers in complexity theory and were found to be NP-hard. Since the combinatorial complexity of these problems does not permit exhaustive searches for optimal solutions, only near-optimal solutions can be explored using either various problem-specific heuristic strategies or metaheuristic global-optimization methods, such as simulated annealing, genetic algorithms, etc. In this paper, we propose a unified evolutionary algorithm (EA) to the problems of maximum clique finding, maximum independent set, minimum vertex cover, subgraph and double subgraph isomorphism, set packing, set partitioning, and set cover. In the proposed approach, we first map these problems onto the maximum clique-finding problem (MCP), which is later solved using an evolutionary strategy. The proposed impatient EA with probabilistic tabu search (IEA-PTS) for the MCP integrates the best features of earlier successful approaches with a number of new heuristics that we developed to yield a performance that advances the state of the art in EAs for the exploration of the maximum cliques in a graph. Results of experimentation with the 37 DIMACS benchmark graphs and comparative analyses with six state-of-the-art algorithms, including two from the smaller EA community and four from the larger metaheuristics community, indicate that the IEA-PTS outperforms the EAs with respect to a Pareto-lexicographic ranking criterion and offers competitive performance on some graph instances when individually compared to the other heuristic algorithms. It has also successfully set a new benchmark on one graph instance. On another benchmark suite called Benchmarks with Hidden Optimal Solutions, IEA-PTS ranks second, after a very recent algorithm called COVER, among its peers that have experimented with this suite.
A genetic graph-based approach for partitional clustering.
Menéndez, Héctor D; Barrero, David F; Camacho, David
2014-05-01
Clustering is one of the most versatile tools for data analysis. In the recent years, clustering that seeks the continuity of data (in opposition to classical centroid-based approaches) has attracted an increasing research interest. It is a challenging problem with a remarkable practical interest. The most popular continuity clustering method is the spectral clustering (SC) algorithm, which is based on graph cut: It initially generates a similarity graph using a distance measure and then studies its graph spectrum to find the best cut. This approach is sensitive to the parameters of the metric, and a correct parameter choice is critical to the quality of the cluster. This work proposes a new algorithm, inspired by SC, that reduces the parameter dependency while maintaining the quality of the solution. The new algorithm, named genetic graph-based clustering (GGC), takes an evolutionary approach introducing a genetic algorithm (GA) to cluster the similarity graph. The experimental validation shows that GGC increases robustness of SC and has competitive performance in comparison with classical clustering methods, at least, in the synthetic and real dataset used in the experiments.
NASA Astrophysics Data System (ADS)
Kruglov, V. E.; Malyshev, D. S.; Pochinka, O. V.
2018-01-01
Studying the dynamics of a flow on surfaces by partitioning the phase space into cells with the same limit behaviour of trajectories within a cell goes back to the classical papers of Andronov, Pontryagin, Leontovich and Maier. The types of cells (the number of which is finite) and how the cells adjoin one another completely determine the topological equivalence class of a flow with finitely many special trajectories. If one trajectory is chosen in every cell of a rough flow without periodic orbits, then the cells are partitioned into so-called triangular regions of the same type. A combinatorial description of such a partition gives rise to the three-colour Oshemkov-Sharko graph, the vertices of which correspond to the triangular regions, and the edges to separatrices connecting them. Oshemkov and Sharko proved that such flows are topologically equivalent if and only if the three-colour graphs of the flows are isomorphic, and described an algorithm of distinguishing three-colour graphs. But their algorithm is not efficient with respect to graph theory. In the present paper, we describe the dynamics of Ω-stable flows without periodic trajectories on surfaces in the language of four-colour graphs, present an efficient algorithm for distinguishing such graphs, and develop a realization of a flow from some abstract graph. Bibliography: 17 titles.
Significant Scales in Community Structure
NASA Astrophysics Data System (ADS)
Traag, V. A.; Krings, G.; van Dooren, P.
2013-10-01
Many complex networks show signs of modular structure, uncovered by community detection. Although many methods succeed in revealing various partitions, it remains difficult to detect at what scale some partition is significant. This problem shows foremost in multi-resolution methods. We here introduce an efficient method for scanning for resolutions in one such method. Additionally, we introduce the notion of ``significance'' of a partition, based on subgraph probabilities. Significance is independent of the exact method used, so could also be applied in other methods, and can be interpreted as the gain in encoding a graph by making use of a partition. Using significance, we can determine ``good'' resolution parameters, which we demonstrate on benchmark networks. Moreover, optimizing significance itself also shows excellent performance. We demonstrate our method on voting data from the European Parliament. Our analysis suggests the European Parliament has become increasingly ideologically divided and that nationality plays no role.
Li, Qu; Yao, Min; Yang, Jianhua; Xu, Ning
2014-01-01
Online friend recommendation is a fast developing topic in web mining. In this paper, we used SVD matrix factorization to model user and item feature vector and used stochastic gradient descent to amend parameter and improve accuracy. To tackle cold start problem and data sparsity, we used KNN model to influence user feature vector. At the same time, we used graph theory to partition communities with fairly low time and space complexity. What is more, matrix factorization can combine online and offline recommendation. Experiments showed that the hybrid recommendation algorithm is able to recommend online friends with good accuracy.
Weighted graph cuts without eigenvectors a multilevel approach.
Dhillon, Inderjit S; Guan, Yuqiang; Kulis, Brian
2007-11-01
A variety of clustering algorithms have recently been proposed to handle data that is not linearly separable; spectral clustering and kernel k-means are two of the main methods. In this paper, we discuss an equivalence between the objective functions used in these seemingly different methods--in particular, a general weighted kernel k-means objective is mathematically equivalent to a weighted graph clustering objective. We exploit this equivalence to develop a fast, high-quality multilevel algorithm that directly optimizes various weighted graph clustering objectives, such as the popular ratio cut, normalized cut, and ratio association criteria. This eliminates the need for any eigenvector computation for graph clustering problems, which can be prohibitive for very large graphs. Previous multilevel graph partitioning methods, such as Metis, have suffered from the restriction of equal-sized clusters; our multilevel algorithm removes this restriction by using kernel k-means to optimize weighted graph cuts. Experimental results show that our multilevel algorithm outperforms a state-of-the-art spectral clustering algorithm in terms of speed, memory usage, and quality. We demonstrate that our algorithm is applicable to large-scale clustering tasks such as image segmentation, social network analysis and gene network analysis.
Finding minimum-quotient cuts in planar graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.K.; Phillips, C.A.
Given a graph G = (V, E) where each vertex v {element_of} V is assigned a weight w(v) and each edge e {element_of} E is assigned a cost c(e), the quotient of a cut partitioning the vertices of V into sets S and {bar S} is c(S, {bar S})/min{l_brace}w(S), w(S){r_brace}, where c(S, {bar S}) is the sum of the costs of the edges crossing the cut and w(S) and w({bar S}) are the sum of the weights of the vertices in S and {bar S}, respectively. The problem of finding a cut whose quotient is minimum for a graph hasmore » in recent years attracted considerable attention, due in large part to the work of Rao and Leighton and Rao. They have shown that an algorithm (exact or approximation) for the minimum-quotient-cut problem can be used to obtain an approximation algorithm for the more famous minimumb-balanced-cut problem, which requires finding a cut (S,{bar S}) minimizing c(S,{bar S}) subject to the constraint bW {le} w(S) {le} (1 {minus} b)W, where W is the total vertex weight and b is some fixed balance in the range 0 < b {le} {1/2}. Unfortunately, the minimum-quotient-cut problem is strongly NP-hard for general graphs, and the best polynomial-time approximation algorithm known for the general problem guarantees only a cut whose quotient is at mostO(lg n) times optimal, where n is the size of the graph. However, for planar graphs, the minimum-quotient-cut problem appears more tractable, as Rao has developed several efficient approximation algorithms for the planar version of the problem capable of finding a cut whose quotient is at most some constant times optimal. In this paper, we improve Rao`s algorithms, both in terms of accuracy and speed. As our first result, we present two pseudopolynomial-time exact algorithms for the planar minimum-quotient-cut problem. As Rao`s most accurate approximation algorithm for the problem -- also a pseudopolynomial-time algorithm -- guarantees only a 1.5-times-optimal cut, our algorithms represent a significant advance.« less
Finding minimum-quotient cuts in planar graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.K.; Phillips, C.A.
Given a graph G = (V, E) where each vertex v [element of] V is assigned a weight w(v) and each edge e [element of] E is assigned a cost c(e), the quotient of a cut partitioning the vertices of V into sets S and [bar S] is c(S, [bar S])/min[l brace]w(S), w(S)[r brace], where c(S, [bar S]) is the sum of the costs of the edges crossing the cut and w(S) and w([bar S]) are the sum of the weights of the vertices in S and [bar S], respectively. The problem of finding a cut whose quotient is minimummore » for a graph has in recent years attracted considerable attention, due in large part to the work of Rao and Leighton and Rao. They have shown that an algorithm (exact or approximation) for the minimum-quotient-cut problem can be used to obtain an approximation algorithm for the more famous minimumb-balanced-cut problem, which requires finding a cut (S,[bar S]) minimizing c(S,[bar S]) subject to the constraint bW [le] w(S) [le] (1 [minus] b)W, where W is the total vertex weight and b is some fixed balance in the range 0 < b [le] [1/2]. Unfortunately, the minimum-quotient-cut problem is strongly NP-hard for general graphs, and the best polynomial-time approximation algorithm known for the general problem guarantees only a cut whose quotient is at mostO(lg n) times optimal, where n is the size of the graph. However, for planar graphs, the minimum-quotient-cut problem appears more tractable, as Rao has developed several efficient approximation algorithms for the planar version of the problem capable of finding a cut whose quotient is at most some constant times optimal. In this paper, we improve Rao's algorithms, both in terms of accuracy and speed. As our first result, we present two pseudopolynomial-time exact algorithms for the planar minimum-quotient-cut problem. As Rao's most accurate approximation algorithm for the problem -- also a pseudopolynomial-time algorithm -- guarantees only a 1.5-times-optimal cut, our algorithms represent a significant advance.« less
Partitioning sparse matrices with eigenvectors of graphs
NASA Technical Reports Server (NTRS)
Pothen, Alex; Simon, Horst D.; Liou, Kang-Pu
1990-01-01
The problem of computing a small vertex separator in a graph arises in the context of computing a good ordering for the parallel factorization of sparse, symmetric matrices. An algebraic approach for computing vertex separators is considered in this paper. It is shown that lower bounds on separator sizes can be obtained in terms of the eigenvalues of the Laplacian matrix associated with a graph. The Laplacian eigenvectors of grid graphs can be computed from Kronecker products involving the eigenvectors of path graphs, and these eigenvectors can be used to compute good separators in grid graphs. A heuristic algorithm is designed to compute a vertex separator in a general graph by first computing an edge separator in the graph from an eigenvector of the Laplacian matrix, and then using a maximum matching in a subgraph to compute the vertex separator. Results on the quality of the separators computed by the spectral algorithm are presented, and these are compared with separators obtained from other algorithms for computing separators. Finally, the time required to compute the Laplacian eigenvector is reported, and the accuracy with which the eigenvector must be computed to obtain good separators is considered. The spectral algorithm has the advantage that it can be implemented on a medium-size multiprocessor in a straightforward manner.
Frog: Asynchronous Graph Processing on GPU with Hybrid Coloring Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xuanhua; Luo, Xuan; Liang, Junling
GPUs have been increasingly used to accelerate graph processing for complicated computational problems regarding graph theory. Many parallel graph algorithms adopt the asynchronous computing model to accelerate the iterative convergence. Unfortunately, the consistent asynchronous computing requires locking or atomic operations, leading to significant penalties/overheads when implemented on GPUs. As such, coloring algorithm is adopted to separate the vertices with potential updating conflicts, guaranteeing the consistency/correctness of the parallel processing. Common coloring algorithms, however, may suffer from low parallelism because of a large number of colors generally required for processing a large-scale graph with billions of vertices. We propose a light-weightmore » asynchronous processing framework called Frog with a preprocessing/hybrid coloring model. The fundamental idea is based on Pareto principle (or 80-20 rule) about coloring algorithms as we observed through masses of realworld graph coloring cases. We find that a majority of vertices (about 80%) are colored with only a few colors, such that they can be read and updated in a very high degree of parallelism without violating the sequential consistency. Accordingly, our solution separates the processing of the vertices based on the distribution of colors. In this work, we mainly answer three questions: (1) how to partition the vertices in a sparse graph with maximized parallelism, (2) how to process large-scale graphs that cannot fit into GPU memory, and (3) how to reduce the overhead of data transfers on PCIe while processing each partition. We conduct experiments on real-world data (Amazon, DBLP, YouTube, RoadNet-CA, WikiTalk and Twitter) to evaluate our approach and make comparisons with well-known non-preprocessed (such as Totem, Medusa, MapGraph and Gunrock) and preprocessed (Cusha) approaches, by testing four classical algorithms (BFS, PageRank, SSSP and CC). On all the tested applications and datasets, Frog is able to significantly outperform existing GPU-based graph processing systems except Gunrock and MapGraph. MapGraph gets better performance than Frog when running BFS on RoadNet-CA. The comparison between Gunrock and Frog is inconclusive. Frog can outperform Gunrock more than 1.04X when running PageRank and SSSP, while the advantage of Frog is not obvious when running BFS and CC on some datasets especially for RoadNet-CA.« less
Equal Graph Partitioning on Estimated Infection Network as an Effective Epidemic Mitigation Measure
Hadidjojo, Jeremy; Cheong, Siew Ann
2011-01-01
Controlling severe outbreaks remains the most important problem in infectious disease area. With time, this problem will only become more severe as population density in urban centers grows. Social interactions play a very important role in determining how infectious diseases spread, and organization of people along social lines gives rise to non-spatial networks in which the infections spread. Infection networks are different for diseases with different transmission modes, but are likely to be identical or highly similar for diseases that spread the same way. Hence, infection networks estimated from common infections can be useful to contain epidemics of a more severe disease with the same transmission mode. Here we present a proof-of-concept study demonstrating the effectiveness of epidemic mitigation based on such estimated infection networks. We first generate artificial social networks of different sizes and average degrees, but with roughly the same clustering characteristic. We then start SIR epidemics on these networks, censor the simulated incidences, and use them to reconstruct the infection network. We then efficiently fragment the estimated network by removing the smallest number of nodes identified by a graph partitioning algorithm. Finally, we demonstrate the effectiveness of this targeted strategy, by comparing it against traditional untargeted strategies, in slowing down and reducing the size of advancing epidemics. PMID:21799777
Persona, Marek; Kutarov, Vladimir V; Kats, Boris M; Persona, Andrzej; Marczewska, Barbara
2007-01-01
The paper describes the new prediction method of octanol-water partition coefficient, which is based on molecular graph theory. The results obtained using the new method are well correlated with experimental values. These results were compared with the ones obtained by use of ten other structure correlated methods. The comparison shows that graph theory can be very useful in structure correlation research.
Harnessing the Bethe free energy†
Bapst, Victor
2016-01-01
ABSTRACT A wide class of problems in combinatorics, computer science and physics can be described along the following lines. There are a large number of variables ranging over a finite domain that interact through constraints that each bind a few variables and either encourage or discourage certain value combinations. Examples include the k‐SAT problem or the Ising model. Such models naturally induce a Gibbs measure on the set of assignments, which is characterised by its partition function. The present paper deals with the partition function of problems where the interactions between variables and constraints are induced by a sparse random (hyper)graph. According to physics predictions, a generic recipe called the “replica symmetric cavity method” yields the correct value of the partition function if the underlying model enjoys certain properties [Krzkala et al., PNAS (2007) 10318–10323]. Guided by this conjecture, we prove general sufficient conditions for the success of the cavity method. The proofs are based on a “regularity lemma” for probability measures on sets of the form Ωn for a finite Ω and a large n that may be of independent interest. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 49, 694–741, 2016 PMID:28035178
Task-specific image partitioning.
Kim, Sungwoong; Nowozin, Sebastian; Kohli, Pushmeet; Yoo, Chang D
2013-02-01
Image partitioning is an important preprocessing step for many of the state-of-the-art algorithms used for performing high-level computer vision tasks. Typically, partitioning is conducted without regard to the task in hand. We propose a task-specific image partitioning framework to produce a region-based image representation that will lead to a higher task performance than that reached using any task-oblivious partitioning framework and existing supervised partitioning framework, albeit few in number. The proposed method partitions the image by means of correlation clustering, maximizing a linear discriminant function defined over a superpixel graph. The parameters of the discriminant function that define task-specific similarity/dissimilarity among superpixels are estimated based on structured support vector machine (S-SVM) using task-specific training data. The S-SVM learning leads to a better generalization ability while the construction of the superpixel graph used to define the discriminant function allows a rich set of features to be incorporated to improve discriminability and robustness. We evaluate the learned task-aware partitioning algorithms on three benchmark datasets. Results show that task-aware partitioning leads to better labeling performance than the partitioning computed by the state-of-the-art general-purpose and supervised partitioning algorithms. We believe that the task-specific image partitioning paradigm is widely applicable to improving performance in high-level image understanding tasks.
Design of a Recommendation System for Adding Support in the Treatment of Chronic Patients.
Torkar, Simon; Benedik, Peter; Rajkovič, Uroš; Šušteršič, Olga; Rajkovič, Vladislav
2016-01-01
Rapid growth of chronic disease cases around the world is adding pressure on healthcare providers to ensure a structured patent follow-up during chronic disease management process. In response to the increasing demand for better chronic disease management and improved health care efficiency, nursing roles have been specialized or enhanced in the primary health care setting. Nurses become key players in chronic disease management process. Study describes a system to help nurses manage the care process of patient with chronic disease. It supports focusing nurse's attention on those resources/solutions that are likely to be most relevant to their particular situation/problem in nursing domain. System is based on multi-relational property graph representing a flexible modeling construct. Graph allows modeling a nursing ontology and the indices that partition domain into an efficient, searchable space where the solution to a problem is seen as abstractly defined traversals through its vertices and edges.
Song, Youyi; Zhang, Ling; Chen, Siping; Ni, Dong; Lei, Baiying; Wang, Tianfu
2015-10-01
In this paper, a multiscale convolutional network (MSCN) and graph-partitioning-based method is proposed for accurate segmentation of cervical cytoplasm and nuclei. Specifically, deep learning via the MSCN is explored to extract scale invariant features, and then, segment regions centered at each pixel. The coarse segmentation is refined by an automated graph partitioning method based on the pretrained feature. The texture, shape, and contextual information of the target objects are learned to localize the appearance of distinctive boundary, which is also explored to generate markers to split the touching nuclei. For further refinement of the segmentation, a coarse-to-fine nucleus segmentation framework is developed. The computational complexity of the segmentation is reduced by using superpixel instead of raw pixels. Extensive experimental results demonstrate that the proposed cervical nucleus cell segmentation delivers promising results and outperforms existing methods.
Repartitioning Strategies for Massively Parallel Simulation of Reacting Flow
NASA Astrophysics Data System (ADS)
Pisciuneri, Patrick; Zheng, Angen; Givi, Peyman; Labrinidis, Alexandros; Chrysanthis, Panos
2015-11-01
The majority of parallel CFD simulators partition the domain into equal regions and assign the calculations for a particular region to a unique processor. This type of domain decomposition is vital to the efficiency of the solver. However, as the simulation develops, the workload among the partitions often become uneven (e.g. by adaptive mesh refinement, or chemically reacting regions) and a new partition should be considered. The process of repartitioning adjusts the current partition to evenly distribute the load again. We compare two repartitioning tools: Zoltan, an architecture-agnostic graph repartitioner developed at the Sandia National Laboratories; and Paragon, an architecture-aware graph repartitioner developed at the University of Pittsburgh. The comparative assessment is conducted via simulation of the Taylor-Green vortex flow with chemical reaction.
On the locating-chromatic number for graphs with two homogenous components
NASA Astrophysics Data System (ADS)
Welyyanti, Des; Baskoro, Edy Tri; Simajuntak, Rinovia; Uttunggadewa, Saladin
2017-10-01
The locating-chromatic number of a graph was introduced by Chartrand et al. in 2002. The concept of the locating-chromatic number is a marriage between graph coloring and the notion of graph partition dimension. This concept is only for connected graphs. In [8], we extended this concept also for disconnected graphs. In this paper, we determine the locating- chromatic number of a graph with two components. In particular, we determine such values if the components are homogeneous and each component has locating-chromatic number 3.
Complete graph model for community detection
NASA Astrophysics Data System (ADS)
Sun, Peng Gang; Sun, Xiya
2017-04-01
Community detection brings plenty of considerable problems, which has attracted more attention for many years. This paper develops a new framework, which tries to measure the interior and the exterior of a community based on a same metric, complete graph model. In particular, the exterior is modeled as a complete bipartite. We partition a network into subnetworks by maximizing the difference between the interior and the exterior of the subnetworks. In addition, we compare our approach with some state of the art methods on computer-generated networks based on the LFR benchmark as well as real-world networks. The experimental results indicate that our approach obtains better results for community detection, is capable of splitting irregular networks and achieves perfect results on the karate network and the dolphin network.
S-HARP: A parallel dynamic spectral partitioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohn, A.; Simon, H.
1998-01-01
Computational science problems with adaptive meshes involve dynamic load balancing when implemented on parallel machines. This dynamic load balancing requires fast partitioning of computational meshes at run time. The authors present in this report a fast parallel dynamic partitioner, called S-HARP. The underlying principles of S-HARP are the fast feature of inertial partitioning and the quality feature of spectral partitioning. S-HARP partitions a graph from scratch, requiring no partition information from previous iterations. Two types of parallelism have been exploited in S-HARP, fine grain loop level parallelism and coarse grain recursive parallelism. The parallel partitioner has been implemented in Messagemore » Passing Interface on Cray T3E and IBM SP2 for portability. Experimental results indicate that S-HARP can partition a mesh of over 100,000 vertices into 256 partitions in 0.2 seconds on a 64 processor Cray T3E. S-HARP is much more scalable than other dynamic partitioners, giving over 15 fold speedup on 64 processors while ParaMeTiS1.0 gives a few fold speedup. Experimental results demonstrate that S-HARP is three to 10 times faster than the dynamic partitioners ParaMeTiS and Jostle on six computational meshes of size over 100,000 vertices.« less
Graph partitions and cluster synchronization in networks of oscillators
Schaub, Michael T.; O’Clery, Neave; Billeh, Yazan N.; Delvenne, Jean-Charles; Lambiotte, Renaud; Barahona, Mauricio
2017-01-01
Synchronization over networks depends strongly on the structure of the coupling between the oscillators. When the coupling presents certain regularities, the dynamics can be coarse-grained into clusters by means of External Equitable Partitions of the network graph and their associated quotient graphs. We exploit this graph-theoretical concept to study the phenomenon of cluster synchronization, in which different groups of nodes converge to distinct behaviors. We derive conditions and properties of networks in which such clustered behavior emerges, and show that the ensuing dynamics is the result of the localization of the eigenvectors of the associated graph Laplacians linked to the existence of invariant subspaces. The framework is applied to both linear and non-linear models, first for the standard case of networks with positive edges, before being generalized to the case of signed networks with both positive and negative interactions. We illustrate our results with examples of both signed and unsigned graphs for consensus dynamics and for partial synchronization of oscillator networks under the master stability function as well as Kuramoto oscillators. PMID:27781454
Evolving bipartite authentication graph partitions
Pope, Aaron Scott; Tauritz, Daniel Remy; Kent, Alexander D.
2017-01-16
As large scale enterprise computer networks become more ubiquitous, finding the appropriate balance between user convenience and user access control is an increasingly challenging proposition. Suboptimal partitioning of users’ access and available services contributes to the vulnerability of enterprise networks. Previous edge-cut partitioning methods unduly restrict users’ access to network resources. This paper introduces a novel method of network partitioning superior to the current state-of-the-art which minimizes user impact by providing alternate avenues for access that reduce vulnerability. Networks are modeled as bipartite authentication access graphs and a multi-objective evolutionary algorithm is used to simultaneously minimize the size of largemore » connected components while minimizing overall restrictions on network users. Lastly, results are presented on a real world data set that demonstrate the effectiveness of the introduced method compared to previous naive methods.« less
Evolving bipartite authentication graph partitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, Aaron Scott; Tauritz, Daniel Remy; Kent, Alexander D.
As large scale enterprise computer networks become more ubiquitous, finding the appropriate balance between user convenience and user access control is an increasingly challenging proposition. Suboptimal partitioning of users’ access and available services contributes to the vulnerability of enterprise networks. Previous edge-cut partitioning methods unduly restrict users’ access to network resources. This paper introduces a novel method of network partitioning superior to the current state-of-the-art which minimizes user impact by providing alternate avenues for access that reduce vulnerability. Networks are modeled as bipartite authentication access graphs and a multi-objective evolutionary algorithm is used to simultaneously minimize the size of largemore » connected components while minimizing overall restrictions on network users. Lastly, results are presented on a real world data set that demonstrate the effectiveness of the introduced method compared to previous naive methods.« less
On the star partition dimension of comb product of cycle and path
NASA Astrophysics Data System (ADS)
Alfarisi, Ridho; Darmaji
2017-08-01
Let G = (V, E) be a connected graphs with vertex set V(G), edge set E(G) and S ⊆ V(G). Given an ordered partition Π = {S1, S2, S3, …, Sk} of the vertex set V of G, the representation of a vertex v ∈ V with respect to Π is the vector r(v|Π) = (d(v, S1), d(v, S2), …, d(v, Sk)), where d(v, Sk) represents the distance between the vertex v and the set Sk and d(v, Sk) = min{d(v, x)|x ∈ Sk }. A partition Π of V(G) is a resolving partition if different vertices of G have distinct representations, i.e., for every pair of vertices u, v ∈ V(G), r(u|Π) ≠ r(v|Π). The minimum k of Π resolving partition is a partition dimension of G, denoted by pd(G). The resolving partition Π = {S1, S2, S3, …, Sk } is called a star resolving partition for G if it is a resolving partition and each subgraph induced by Si, 1 ≤ i ≤ k, is a star. The minimum k for which there exists a star resolving partition of V(G) is the star partition dimension of G, denoted by spd(G). Finding the star partition dimension of G is classified to be a NP-Hard problem. In this paper, we will show that the partition dimension of comb product of cycle and path namely Cm⊳Pn and Pn⊳Cm for n ≥ 2 and m ≥ 3.
Liu, Yuangang; Guo, Qingsheng; Sun, Yageng; Ma, Xiaoya
2014-01-01
Scale reduction from source to target maps inevitably leads to conflicts of map symbols in cartography and geographic information systems (GIS). Displacement is one of the most important map generalization operators and it can be used to resolve the problems that arise from conflict among two or more map objects. In this paper, we propose a combined approach based on constraint Delaunay triangulation (CDT) skeleton and improved elastic beam algorithm for automated building displacement. In this approach, map data sets are first partitioned. Then the displacement operation is conducted in each partition as a cyclic and iterative process of conflict detection and resolution. In the iteration, the skeleton of the gap spaces is extracted using CDT. It then serves as an enhanced data model to detect conflicts and construct the proximity graph. Then, the proximity graph is adjusted using local grouping information. Under the action of forces derived from the detected conflicts, the proximity graph is deformed using the improved elastic beam algorithm. In this way, buildings are displaced to find an optimal compromise between related cartographic constraints. To validate this approach, two topographic map data sets (i.e., urban and suburban areas) were tested. The results were reasonable with respect to each constraint when the density of the map was not extremely high. In summary, the improvements include (1) an automated parameter-setting method for elastic beams, (2) explicit enforcement regarding the positional accuracy constraint, added by introducing drag forces, (3) preservation of local building groups through displacement over an adjusted proximity graph, and (4) an iterative strategy that is more likely to resolve the proximity conflicts than the one used in the existing elastic beam algorithm. PMID:25470727
A graph based algorithm for adaptable dynamic airspace configuration for NextGen
NASA Astrophysics Data System (ADS)
Savai, Mehernaz P.
The National Airspace System (NAS) is a complicated large-scale aviation network, consisting of many static sectors wherein each sector is controlled by one or more controllers. The main purpose of the NAS is to enable safe and prompt air travel in the U.S. However, such static configuration of sectors will not be able to handle the continued growth of air travel which is projected to be more than double the current traffic by 2025. Under the initiative of the Next Generation of Air Transportation system (NextGen), the main objective of Adaptable Dynamic Airspace Configuration (ADAC) is that the sectors should change to the changing traffic so as to reduce the controller workload variance with time while increasing the throughput. Change in the resectorization should be such that there is a minimal increase in exchange of air traffic among controllers. The benefit of a new design (improvement in workload balance, etc.) should sufficiently exceed the transition cost, in order to deserve a change. This leads to the analysis of the concept of transition workload which is the cost associated with a transition from one sectorization to another. Given two airspace configurations, a transition workload metric which considers the air traffic as well as the geometry of the airspace is proposed. A solution to reduce this transition workload is also discussed. The algorithm is specifically designed to be implemented for the Dynamic Airspace Configuration (DAC) Algorithm. A graph model which accurately represents the air route structure and air traffic in the NAS is used to formulate the airspace configuration problem. In addition, a multilevel graph partitioning algorithm is developed for Dynamic Airspace Configuration which partitions the graph model of airspace with given user defined constraints and hence provides the user more flexibility and control over various partitions. In terms of air traffic management, vertices represent airports and waypoints. Some of the major (busy) airports need to be given more importance and hence treated separately. Thus the algorithm takes into account the air route structure while finding a balance between sector workloads. The performance of the proposed algorithms and performance metrics is validated with the Enhanced Traffic Management System (ETMS) air traffic data.
Correspondence between spanning trees and the Ising model on a square lattice
NASA Astrophysics Data System (ADS)
Viswanathan, G. M.
2017-06-01
An important problem in statistical physics concerns the fascinating connections between partition functions of lattice models studied in equilibrium statistical mechanics on the one hand and graph theoretical enumeration problems on the other hand. We investigate the nature of the relationship between the number of spanning trees and the partition function of the Ising model on the square lattice. The spanning tree generating function T (z ) gives the spanning tree constant when evaluated at z =1 , while giving the lattice green function when differentiated. It is known that for the infinite square lattice the partition function Z (K ) of the Ising model evaluated at the critical temperature K =Kc is related to T (1 ) . Here we show that this idea in fact generalizes to all real temperatures. We prove that [Z(K ) s e c h 2 K ] 2=k exp[T (k )] , where k =2 tanh(2 K )s e c h (2 K ) . The identical Mahler measure connects the two seemingly disparate quantities T (z ) and Z (K ) . In turn, the Mahler measure is determined by the random walk structure function. Finally, we show that the the above correspondence does not generalize in a straightforward manner to nonplanar lattices.
NASA Astrophysics Data System (ADS)
Arévalo, Germán. V.; Hincapié, Roberto C.; Sierra, Javier E.
2015-09-01
UDWDM PON is a leading technology oriented to provide ultra-high bandwidth to final users while profiting the physical channels' capability. One of the main drawbacks of UDWDM technique is the fact that the nonlinear effects, like FWM, become stronger due to the close spectral proximity among channels. This work proposes a model for the optimal deployment of this type of networks taking into account the fiber length limitations imposed by physical restrictions related with the fiber's data transmission as well as the users' asymmetric distribution in a provided region. The proposed model employs the data transmission related effects in UDWDM PON as restrictions in the optimization problem and also considers the user's asymmetric clustering and the subdivision of the users region though a Voronoi geometric partition technique. Here it is considered de Voronoi dual graph, it is the Delaunay Triangulation, as the planar graph for resolving the problem related with the minimum weight of the fiber links.
Study on probability distributions for evolution in modified extremal optimization
NASA Astrophysics Data System (ADS)
Zeng, Guo-Qiang; Lu, Yong-Zai; Mao, Wei-Jie; Chu, Jian
2010-05-01
It is widely believed that the power-law is a proper probability distribution being effectively applied for evolution in τ-EO (extremal optimization), a general-purpose stochastic local-search approach inspired by self-organized criticality, and its applications in some NP-hard problems, e.g., graph partitioning, graph coloring, spin glass, etc. In this study, we discover that the exponential distributions or hybrid ones (e.g., power-laws with exponential cutoff) being popularly used in the research of network sciences may replace the original power-laws in a modified τ-EO method called self-organized algorithm (SOA), and provide better performances than other statistical physics oriented methods, such as simulated annealing, τ-EO and SOA etc., from the experimental results on random Euclidean traveling salesman problems (TSP) and non-uniform instances. From the perspective of optimization, our results appear to demonstrate that the power-law is not the only proper probability distribution for evolution in EO-similar methods at least for TSP, the exponential and hybrid distributions may be other choices.
Ghita, Ovidiu; Dietlmeier, Julia; Whelan, Paul F
2014-10-01
In this paper, we investigate the segmentation of closed contours in subcellular data using a framework that primarily combines the pairwise affinity grouping principles with a graph partitioning contour searching approach. One salient problem that precluded the application of these methods to large scale segmentation problems is the onerous computational complexity required to generate comprehensive representations that include all pairwise relationships between all pixels in the input data. To compensate for this problem, a practical solution is to reduce the complexity of the input data by applying an over-segmentation technique prior to the application of the computationally demanding strands of the segmentation process. This approach opens the opportunity to build specific shape and intensity models that can be successfully employed to extract the salient structures in the input image which are further processed to identify the cycles in an undirected graph. The proposed framework has been applied to the segmentation of mitochondria membranes in electron microscopy data which are characterized by low contrast and low signal-to-noise ratio. The algorithm has been quantitatively evaluated using two datasets where the segmentation results have been compared with the corresponding manual annotations. The performance of the proposed algorithm has been measured using standard metrics, such as precision and recall, and the experimental results indicate a high level of segmentation accuracy.
Auction dynamics: A volume constrained MBO scheme
NASA Astrophysics Data System (ADS)
Jacobs, Matt; Merkurjev, Ekaterina; Esedoǧlu, Selim
2018-02-01
We show how auction algorithms, originally developed for the assignment problem, can be utilized in Merriman, Bence, and Osher's threshold dynamics scheme to simulate multi-phase motion by mean curvature in the presence of equality and inequality volume constraints on the individual phases. The resulting algorithms are highly efficient and robust, and can be used in simulations ranging from minimal partition problems in Euclidean space to semi-supervised machine learning via clustering on graphs. In the case of the latter application, numerous experimental results on benchmark machine learning datasets show that our approach exceeds the performance of current state-of-the-art methods, while requiring a fraction of the computation time.
Automated problem scheduling and reduction of synchronization delay effects
NASA Technical Reports Server (NTRS)
Saltz, Joel H.
1987-01-01
It is anticipated that in order to make effective use of many future high performance architectures, programs will have to exhibit at least a medium grained parallelism. A framework is presented for partitioning very sparse triangular systems of linear equations that is designed to produce favorable preformance results in a wide variety of parallel architectures. Efficient methods for solving these systems are of interest because: (1) they provide a useful model problem for use in exploring heuristics for the aggregation, mapping and scheduling of relatively fine grained computations whose data dependencies are specified by directed acrylic graphs, and (2) because such efficient methods can find direct application in the development of parallel algorithms for scientific computation. Simple expressions are derived that describe how to schedule computational work with varying degrees of granularity. The Encore Multimax was used as a hardware simulator to investigate the performance effects of using the partitioning techniques presented in shared memory architectures with varying relative synchronization costs.
Zhang, Pan; Moore, Cristopher
2014-01-01
Modularity is a popular measure of community structure. However, maximizing the modularity can lead to many competing partitions, with almost the same modularity, that are poorly correlated with each other. It can also produce illusory ‘‘communities’’ in random graphs where none exist. We address this problem by using the modularity as a Hamiltonian at finite temperature and using an efficient belief propagation algorithm to obtain the consensus of many partitions with high modularity, rather than looking for a single partition that maximizes it. We show analytically and numerically that the proposed algorithm works all of the way down to the detectability transition in networks generated by the stochastic block model. It also performs well on real-world networks, revealing large communities in some networks where previous work has claimed no communities exist. Finally we show that by applying our algorithm recursively, subdividing communities until no statistically significant subcommunities can be found, we can detect hierarchical structure in real-world networks more efficiently than previous methods. PMID:25489096
Visibility graphs and symbolic dynamics
NASA Astrophysics Data System (ADS)
Lacasa, Lucas; Just, Wolfram
2018-07-01
Visibility algorithms are a family of geometric and ordering criteria by which a real-valued time series of N data is mapped into a graph of N nodes. This graph has been shown to often inherit in its topology nontrivial properties of the series structure, and can thus be seen as a combinatorial representation of a dynamical system. Here we explore in some detail the relation between visibility graphs and symbolic dynamics. To do that, we consider the degree sequence of horizontal visibility graphs generated by the one-parameter logistic map, for a range of values of the parameter for which the map shows chaotic behaviour. Numerically, we observe that in the chaotic region the block entropies of these sequences systematically converge to the Lyapunov exponent of the time series. Hence, Pesin's identity suggests that these block entropies are converging to the Kolmogorov-Sinai entropy of the physical measure, which ultimately suggests that the algorithm is implicitly and adaptively constructing phase space partitions which might have the generating property. To give analytical insight, we explore the relation k(x) , x ∈ [ 0 , 1 ] that, for a given datum with value x, assigns in graph space a node with degree k. In the case of the out-degree sequence, such relation is indeed a piece-wise constant function. By making use of explicit methods and tools from symbolic dynamics we are able to analytically show that the algorithm indeed performs an effective partition of the phase space and that such partition is naturally expressed as a countable union of subintervals, where the endpoints of each subinterval are related to the fixed point structure of the iterates of the map and the subinterval enumeration is associated with particular ordering structures that we called motifs.
Weakly supervised image semantic segmentation based on clustering superpixels
NASA Astrophysics Data System (ADS)
Yan, Xiong; Liu, Xiaohua
2018-04-01
In this paper, we propose an image semantic segmentation model which is trained from image-level labeled images. The proposed model starts with superpixel segmenting, and features of the superpixels are extracted by trained CNN. We introduce a superpixel-based graph followed by applying the graph partition method to group correlated superpixels into clusters. For the acquisition of inter-label correlations between the image-level labels in dataset, we not only utilize label co-occurrence statistics but also exploit visual contextual cues simultaneously. At last, we formulate the task of mapping appropriate image-level labels to the detected clusters as a problem of convex minimization. Experimental results on MSRC-21 dataset and LableMe dataset show that the proposed method has a better performance than most of the weakly supervised methods and is even comparable to fully supervised methods.
Discrete geometric analysis of message passing algorithm on graphs
NASA Astrophysics Data System (ADS)
Watanabe, Yusuke
2010-04-01
We often encounter probability distributions given as unnormalized products of non-negative functions. The factorization structures are represented by hypergraphs called factor graphs. Such distributions appear in various fields, including statistics, artificial intelligence, statistical physics, error correcting codes, etc. Given such a distribution, computations of marginal distributions and the normalization constant are often required. However, they are computationally intractable because of their computational costs. One successful approximation method is Loopy Belief Propagation (LBP) algorithm. The focus of this thesis is an analysis of the LBP algorithm. If the factor graph is a tree, i.e. having no cycle, the algorithm gives the exact quantities. If the factor graph has cycles, however, the LBP algorithm does not give exact results and possibly exhibits oscillatory and non-convergent behaviors. The thematic question of this thesis is "How the behaviors of the LBP algorithm are affected by the discrete geometry of the factor graph?" The primary contribution of this thesis is the discovery of a formula that establishes the relation between the LBP, the Bethe free energy and the graph zeta function. This formula provides new techniques for analysis of the LBP algorithm, connecting properties of the graph and of the LBP and the Bethe free energy. We demonstrate applications of the techniques to several problems including (non) convexity of the Bethe free energy, the uniqueness and stability of the LBP fixed point. We also discuss the loop series initiated by Chertkov and Chernyak. The loop series is a subgraph expansion of the normalization constant, or partition function, and reflects the graph geometry. We investigate theoretical natures of the series. Moreover, we show a partial connection between the loop series and the graph zeta function.
Hajnal, A.
1971-01-01
If the continuum hypothesis is assumed, there is a graph G whose vertices form an ordered set of type ω12; G does not contain triangles or complete even graphs of form [[unk]0,[unk]0], and there is no independent subset of vertices of type ω12. PMID:16591893
Acceleration of Binding Site Comparisons by Graph Partitioning.
Krotzky, Timo; Klebe, Gerhard
2015-08-01
The comparison of protein binding sites is a prominent task in computational chemistry and has been studied in many different ways. For the automatic detection and comparison of putative binding cavities the Cavbase system has been developed which uses a coarse-grained set of pseudocenters to represent the physicochemical properties of a binding site and employs a graph-based procedure to calculate similarities between two binding sites. However, the comparison of two graphs is computationally quite demanding which makes large-scale studies such as the rapid screening of entire databases hardly feasible. In a recent work, we proposed the method Local Cliques (LC) for the efficient comparison of Cavbase binding sites. It employs a clique heuristic to detect the maximum common subgraph of two binding sites and an extended graph model to additionally compare the shape of individual surface patches. In this study, we present an alternative to further accelerate the LC method by partitioning the binding-site graphs into disjoint components prior to their comparisons. The pseudocenter sets are split with regard to their assigned phyiscochemical type, which leads to seven much smaller graphs than the original one. Applying this approach on the same test scenarios as in the former comprehensive way results in a significant speed-up without sacrificing accuracy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Collins, Oliver (Inventor); Dolinar, Jr., Samuel J. (Inventor); Hus, In-Shek (Inventor); Bozzola, Fabrizio P. (Inventor); Olson, Erlend M. (Inventor); Statman, Joseph I. (Inventor); Zimmerman, George A. (Inventor)
1991-01-01
A method of formulating and packaging decision-making elements into a long constraint length Viterbi decoder which involves formulating the decision-making processors as individual Viterbi butterfly processors that are interconnected in a deBruijn graph configuration. A fully distributed architecture, which achieves high decoding speeds, is made feasible by novel wiring and partitioning of the state diagram. This partitioning defines universal modules, which can be used to build any size decoder, such that a large number of wires is contained inside each module, and a small number of wires is needed to connect modules. The total system is modular and hierarchical, and it implements a large proportion of the required wiring internally within modules and may include some external wiring to fully complete the deBruijn graph. pg,14.
Wang, Yang; Wu, Lin
2018-07-01
Low-Rank Representation (LRR) is arguably one of the most powerful paradigms for Multi-view spectral clustering, which elegantly encodes the multi-view local graph/manifold structures into an intrinsic low-rank self-expressive data similarity embedded in high-dimensional space, to yield a better graph partition than their single-view counterparts. In this paper we revisit it with a fundamentally different perspective by discovering LRR as essentially a latent clustered orthogonal projection based representation winged with an optimized local graph structure for spectral clustering; each column of the representation is fundamentally a cluster basis orthogonal to others to indicate its members, which intuitively projects the view-specific feature representation to be the one spanned by all orthogonal basis to characterize the cluster structures. Upon this finding, we propose our technique with the following: (1) We decompose LRR into latent clustered orthogonal representation via low-rank matrix factorization, to encode the more flexible cluster structures than LRR over primal data objects; (2) We convert the problem of LRR into that of simultaneously learning orthogonal clustered representation and optimized local graph structure for each view; (3) The learned orthogonal clustered representations and local graph structures enjoy the same magnitude for multi-view, so that the ideal multi-view consensus can be readily achieved. The experiments over multi-view datasets validate its superiority, especially over recent state-of-the-art LRR models. Copyright © 2018 Elsevier Ltd. All rights reserved.
Santitissadeekorn, N; Bollt, E M
2007-06-01
In this paper, we present an approach to approximate the Frobenius-Perron transfer operator from a sequence of time-ordered images, that is, a movie dataset. Unlike time-series data, successive images do not provide a direct access to a trajectory of a point in a phase space; more precisely, a pixel in an image plane. Therefore, we reconstruct the velocity field from image sequences based on the infinitesimal generator of the Frobenius-Perron operator. Moreover, we relate this problem to the well-known optical flow problem from the computer vision community and we validate the continuity equation derived from the infinitesimal operator as a constraint equation for the optical flow problem. Once the vector field and then a discrete transfer operator are found, then, in addition, we present a graph modularity method as a tool to discover basin structure in the phase space. Together with a tool to reconstruct a velocity field, this graph-based partition method provides us with a way to study transport behavior and other ergodic properties of measurable dynamical systems captured only through image sequences.
BiCluE - Exact and heuristic algorithms for weighted bi-cluster editing of biomedical data
2013-01-01
Background The explosion of biological data has dramatically reformed today's biology research. The biggest challenge to biologists and bioinformaticians is the integration and analysis of large quantity of data to provide meaningful insights. One major problem is the combined analysis of data from different types. Bi-cluster editing, as a special case of clustering, which partitions two different types of data simultaneously, might be used for several biomedical scenarios. However, the underlying algorithmic problem is NP-hard. Results Here we contribute with BiCluE, a software package designed to solve the weighted bi-cluster editing problem. It implements (1) an exact algorithm based on fixed-parameter tractability and (2) a polynomial-time greedy heuristics based on solving the hardest part, edge deletions, first. We evaluated its performance on artificial graphs. Afterwards we exemplarily applied our implementation on real world biomedical data, GWAS data in this case. BiCluE generally works on any kind of data types that can be modeled as (weighted or unweighted) bipartite graphs. Conclusions To our knowledge, this is the first software package solving the weighted bi-cluster editing problem. BiCluE as well as the supplementary results are available online at http://biclue.mpi-inf.mpg.de. PMID:24565035
Feynman graphs and the large dimensional limit of multipartite entanglement
NASA Astrophysics Data System (ADS)
Di Martino, Sara; Facchi, Paolo; Florio, Giuseppe
2018-01-01
In this paper, we extend the analysis of multipartite entanglement, based on techniques from classical statistical mechanics, to a system composed of n d-level parties (qudits). We introduce a suitable partition function at a fictitious temperature with the average local purity of the system as Hamiltonian. In particular, we analyze the high-temperature expansion of this partition function, prove the convergence of the series, and study its asymptotic behavior as d → ∞. We make use of a diagrammatic technique, classify the graphs, and study their degeneracy. We are thus able to evaluate their contributions and estimate the moments of the distribution of the local purity.
Superpixel Cut for Figure-Ground Image Segmentation
NASA Astrophysics Data System (ADS)
Yang, Michael Ying; Rosenhahn, Bodo
2016-06-01
Figure-ground image segmentation has been a challenging problem in computer vision. Apart from the difficulties in establishing an effective framework to divide the image pixels into meaningful groups, the notions of figure and ground often need to be properly defined by providing either user inputs or object models. In this paper, we propose a novel graph-based segmentation framework, called superpixel cut. The key idea is to formulate foreground segmentation as finding a subset of superpixels that partitions a graph over superpixels. The problem is formulated as Min-Cut. Therefore, we propose a novel cost function that simultaneously minimizes the inter-class similarity while maximizing the intra-class similarity. This cost function is optimized using parametric programming. After a small learning step, our approach is fully automatic and fully bottom-up, which requires no high-level knowledge such as shape priors and scene content. It recovers coherent components of images, providing a set of multiscale hypotheses for high-level reasoning. We evaluate our proposed framework by comparing it to other generic figure-ground segmentation approaches. Our method achieves improved performance on state-of-the-art benchmark databases.
Optimal steering for kinematic vehicles with applications to spatially distributed agents
NASA Astrophysics Data System (ADS)
Brown, Scott; Praeger, Cheryl E.; Giudici, Michael
While there is no universal method to address control problems involving networks of autonomous vehicles, there exist a few promising schemes that apply to different specific classes of problems, which have attracted the attention of many researchers from different fields. In particular, one way to extend techniques that address problems involving a single autonomous vehicle to those involving teams of autonomous vehicles is to use the concept of Voronoi diagram. The Voronoi diagram provides a spatial partition of the environment the team of vehicles operate in, where each element of this partition is associated with a unique vehicle from the team. The partition induces a graph abstraction of the operating space that is in an one-to-one correspondence with the network abstraction of the team of autonomous vehicles; a fact that can provide both conceptual and analytical advantages during mission planning and execution. In this dissertation, we propose the use of a new class of Voronoi-like partitioning schemes with respect to state-dependent proximity (pseudo-) metrics rather than the Euclidean distance or other generalized distance functions, which are typically used in the literature. An important nuance here is that, in contrast to the Euclidean distance, state-dependent metrics can succinctly capture system theoretic features of each vehicle from the team (e.g., vehicle kinematics), as well as the environment-vehicle interactions, which are induced, for example, by local winds/currents. We subsequently illustrate how the proposed concept of state-dependent Voronoi-like partition can induce local control schemes for problems involving networks of spatially distributed autonomous vehicles by examining a sequential pursuit problem of a maneuvering target by a group of pursuers distributed in the plane. The construction of generalized Voronoi diagrams with respect to state-dependent metrics poses some significant challenges. First, the generalized distance metric may be a function of the direction of motion of the vehicle (anisotropic pseudo-distance function) and/or may not be expressible in closed form. Second, such problems fall under the general class of partitioning problems for which the vehicles' dynamics must be taken into account. The topology of the vehicle's configuration space may be non-Euclidean, for example, it may be a manifold embedded in a Euclidean space. In other words, these problems may not be reducible to generalized Voronoi diagram problems for which efficient construction schemes, analytical and/or computational, exist in the literature. This research effort pursues three main objectives. First, we present the complete solution of different steering problems involving a single vehicle in the presence of motion constraints imposed by the maneuverability envelope of the vehicle and/or the presence of a drift field induced by winds/currents in its vicinity. The analysis of each steering problem involving a single vehicle provides us with a state-dependent generalized metric, such as the minimum time-to-go/come. We subsequently use these state-dependent generalized distance functions as the proximity metrics in the formulation of generalized Voronoi-like partitioning problems. The characterization of the solutions of these state-dependent Voronoi-like partitioning problems using either analytical or computational techniques constitutes the second main objective of this dissertation. The third objective of this research effort is to illustrate the use of the proposed concept of state-dependent Voronoi-like partition as a means for passing from control techniques that apply to problems involving a single vehicle to problems involving networks of spatially distributed autonomous vehicles. To this aim, we formulate the problem of sequential/relay pursuit of a maneuvering target by a group of spatially distributed pursuers and subsequently propose a distributed group pursuit strategy that directly derives from the solution of a state-dependent Voronoi-like partitioning problem. (Abstract shortened by UMI.)
Constructing Temporally Extended Actions through Incremental Community Detection
Li, Ge
2018-01-01
Hierarchical reinforcement learning works on temporally extended actions or skills to facilitate learning. How to automatically form such abstraction is challenging, and many efforts tackle this issue in the options framework. While various approaches exist to construct options from different perspectives, few of them concentrate on options' adaptability during learning. This paper presents an algorithm to create options and enhance their quality online. Both aspects operate on detected communities of the learning environment's state transition graph. We first construct options from initial samples as the basis of online learning. Then a rule-based community revision algorithm is proposed to update graph partitions, based on which existing options can be continuously tuned. Experimental results in two problems indicate that options from initial samples may perform poorly in more complex environments, and our presented strategy can effectively improve options and get better results compared with flat reinforcement learning. PMID:29849543
Accelerating semantic graph databases on commodity clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morari, Alessandro; Castellana, Vito G.; Haglin, David J.
We are developing a full software system for accelerating semantic graph databases on commodity cluster that scales to hundreds of nodes while maintaining constant query throughput. Our framework comprises a SPARQL to C++ compiler, a library of parallel graph methods and a custom multithreaded runtime layer, which provides a Partitioned Global Address Space (PGAS) programming model with fork/join parallelism and automatic load balancing over a commodity clusters. We present preliminary results for the compiler and for the runtime.
Path similarity skeleton graph matching.
Bai, Xiang; Latecki, Longin Jan
2008-07-01
This paper presents a novel framework to for shape recognition based on object silhouettes. The main idea is to match skeleton graphs by comparing the shortest paths between skeleton endpoints. In contrast to typical tree or graph matching methods, we completely ignore the topological graph structure. Our approach is motivated by the fact that visually similar skeleton graphs may have completely different topological structures. The proposed comparison of shortest paths between endpoints of skeleton graphs yields correct matching results in such cases. The skeletons are pruned by contour partitioning with Discrete Curve Evolution, which implies that the endpoints of skeleton branches correspond to visual parts of the objects. The experimental results demonstrate that our method is able to produce correct results in the presence of articulations, stretching, and occlusion.
Independence polynomial and matching polynomial of the Koch network
NASA Astrophysics Data System (ADS)
Liao, Yunhua; Xie, Xiaoliang
2015-11-01
The lattice gas model and the monomer-dimer model are two classical models in statistical mechanics. It is well known that the partition functions of these two models are associated with the independence polynomial and the matching polynomial in graph theory, respectively. Both polynomials have been shown to belong to the “#P-complete” class, which indicate the problems are computationally “intractable”. We consider these two polynomials of the Koch networks which are scale-free with small-world effects. Explicit recurrences are derived, and explicit formulae are presented for the number of independent sets of a certain type.
Hierarchical image feature extraction by an irregular pyramid of polygonal partitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skurikhin, Alexei N
2008-01-01
We present an algorithmic framework for hierarchical image segmentation and feature extraction. We build a successive fine-to-coarse hierarchy of irregular polygonal partitions of the original image. This multiscale hierarchy forms the basis for object-oriented image analysis. The framework incorporates the Gestalt principles of visual perception, such as proximity and closure, and exploits spectral and textural similarities of polygonal partitions, while iteratively grouping them until dissimilarity criteria are exceeded. Seed polygons are built upon a triangular mesh composed of irregular sized triangles, whose spatial arrangement is adapted to the image content. This is achieved by building the triangular mesh on themore » top of detected spectral discontinuities (such as edges), which form a network of constraints for the Delaunay triangulation. The image is then represented as a spatial network in the form of a graph with vertices corresponding to the polygonal partitions and edges reflecting their relations. The iterative agglomeration of partitions into object-oriented segments is formulated as Minimum Spanning Tree (MST) construction. An important characteristic of the approach is that the agglomeration of polygonal partitions is constrained by the detected edges; thus the shapes of agglomerated partitions are more likely to correspond to the outlines of real-world objects. The constructed partitions and their spatial relations are characterized using spectral, textural and structural features based on proximity graphs. The framework allows searching for object-oriented features of interest across multiple levels of details of the built hierarchy and can be generalized to the multi-criteria MST to account for multiple criteria important for an application.« less
A brief history of partitions of numbers, partition functions and their modern applications
NASA Astrophysics Data System (ADS)
Debnath, Lokenath
2016-04-01
A Multi-Objective Partition Method for Marine Sensor Networks Based on Degree of Event Correlation.
Huang, Dongmei; Xu, Chenyixuan; Zhao, Danfeng; Song, Wei; He, Qi
2017-09-21
Existing marine sensor networks acquire data from sea areas that are geographically divided, and store the data independently in their affiliated sea area data centers. In the case of marine events across multiple sea areas, the current network structure needs to retrieve data from multiple data centers, and thus severely affects real-time decision making. In this study, in order to provide a fast data retrieval service for a marine sensor network, we use all the marine sensors as the vertices, establish the edge based on marine events, and abstract the marine sensor network as a graph. Then, we construct a multi-objective balanced partition method to partition the abstract graph into multiple regions and store them in the cloud computing platform. This method effectively increases the correlation of the sensors and decreases the retrieval cost. On this basis, an incremental optimization strategy is designed to dynamically optimize existing partitions when new sensors are added into the network. Experimental results show that the proposed method can achieve the optimal layout for distributed storage in the process of disaster data retrieval in the China Sea area, and effectively optimize the result of partitions when new buoys are deployed, which eventually will provide efficient data access service for marine events.
Co-Clustering by Bipartite Spectral Graph Partitioning for Out-of-Tutor Prediction
ERIC Educational Resources Information Center
Trivedi, Shubhendu; Pardos, Zachary A.; Sarkozy, Gabor N.; Heffernan, Neil T.
2012-01-01
Learning a more distributed representation of the input feature space is a powerful method to boost the performance of a given predictor. Often this is accomplished by partitioning the data into homogeneous groups by clustering so that separate models could be trained on each cluster. Intuitively each such predictor is a better representative of…
Semi-supervised clustering for parcellating brain regions based on resting state fMRI data
NASA Astrophysics Data System (ADS)
Cheng, Hewei; Fan, Yong
2014-03-01
Many unsupervised clustering techniques have been adopted for parcellating brain regions of interest into functionally homogeneous subregions based on resting state fMRI data. However, the unsupervised clustering techniques are not able to take advantage of exiting knowledge of the functional neuroanatomy readily available from studies of cytoarchitectonic parcellation or meta-analysis of the literature. In this study, we propose a semi-supervised clustering method for parcellating amygdala into functionally homogeneous subregions based on resting state fMRI data. Particularly, the semi-supervised clustering is implemented under the framework of graph partitioning, and adopts prior information and spatial consistent constraints to obtain a spatially contiguous parcellation result. The graph partitioning problem is solved using an efficient algorithm similar to the well-known weighted kernel k-means algorithm. Our method has been validated for parcellating amygdala into 3 subregions based on resting state fMRI data of 28 subjects. The experiment results have demonstrated that the proposed method is more robust than unsupervised clustering and able to parcellate amygdala into centromedial, laterobasal, and superficial parts with improved functionally homogeneity compared with the cytoarchitectonic parcellation result. The validity of the parcellation results is also supported by distinctive functional and structural connectivity patterns of the subregions and high consistency between coactivation patterns derived from a meta-analysis and functional connectivity patterns of corresponding subregions.
Extremal Optimization: Methods Derived from Co-Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boettcher, S.; Percus, A.G.
1999-07-13
We describe a general-purpose method for finding high-quality solutions to hard optimization problems, inspired by self-organized critical models of co-evolution such as the Bak-Sneppen model. The method, called Extremal Optimization, successively eliminates extremely undesirable components of sub-optimal solutions, rather than ''breeding'' better components. In contrast to Genetic Algorithms which operate on an entire ''gene-pool'' of possible solutions, Extremal Optimization improves on a single candidate solution by treating each of its components as species co-evolving according to Darwinian principles. Unlike Simulated Annealing, its non-equilibrium approach effects an algorithm requiring few parameters to tune. With only one adjustable parameter, its performance provesmore » competitive with, and often superior to, more elaborate stochastic optimization procedures. We demonstrate it here on two classic hard optimization problems: graph partitioning and the traveling salesman problem.« less
Transport in Dynamical Astronomy and Multibody Problems
NASA Astrophysics Data System (ADS)
Dellnitz, Michael; Junge, Oliver; Koon, Wang Sang; Lekien, Francois; Lo, Martin W.; Marsden, Jerrold E.; Padberg, Kathrin; Preis, Robert; Ross, Shane D.; Thiere, Bianca
We combine the techniques of almost invariant sets (using tree structured box elimination and graph partitioning algorithms) with invariant manifold and lobe dynamics techniques. The result is a new computational technique for computing key dynamical features, including almost invariant sets, resonance regions as well as transport rates and bottlenecks between regions in dynamical systems. This methodology can be applied to a variety of multibody problems, including those in molecular modeling, chemical reaction rates and dynamical astronomy. In this paper we focus on problems in dynamical astronomy to illustrate the power of the combination of these different numerical tools and their applicability. In particular, we compute transport rates between two resonance regions for the three-body system consisting of the Sun, Jupiter and a third body (such as an asteroid). These resonance regions are appropriate for certain comets and asteroids.
Multiple Semantic Matching on Augmented N-partite Graph for Object Co-segmentation.
Wang, Chuan; Zhang, Hua; Yang, Liang; Cao, Xiaochun; Xiong, Hongkai
2017-09-08
Recent methods for object co-segmentation focus on discovering single co-occurring relation of candidate regions representing the foreground of multiple images. However, region extraction based only on low and middle level information often occupies a large area of background without the help of semantic context. In addition, seeking single matching solution very likely leads to discover local parts of common objects. To cope with these deficiencies, we present a new object cosegmentation framework, which takes advantages of semantic information and globally explores multiple co-occurring matching cliques based on an N-partite graph structure. To this end, we first propose to incorporate candidate generation with semantic context. Based on the regions extracted from semantic segmentation of each image, we design a merging mechanism to hierarchically generate candidates with high semantic responses. Secondly, all candidates are taken into consideration to globally formulate multiple maximum weighted matching cliques, which complements the discovery of part of the common objects induced by a single clique. To facilitate the discovery of multiple matching cliques, an N-partite graph, which inherently excludes intralinks between candidates from the same image, is constructed to separate multiple cliques without additional constraints. Further, we augment the graph with an additional virtual node in each part to handle irrelevant matches when the similarity between two candidates is too small. Finally, with the explored multiple cliques, we statistically compute pixel-wise co-occurrence map for each image. Experimental results on two benchmark datasets, i.e., iCoseg and MSRC datasets, achieve desirable performance and demonstrate the effectiveness of our proposed framework.
Hearing the shape of the Ising model with a programmable superconducting-flux annealer.
Vinci, Walter; Markström, Klas; Boixo, Sergio; Roy, Aidan; Spedalieri, Federico M; Warburton, Paul A; Severini, Simone
2014-07-16
Two objects can be distinguished if they have different measurable properties. Thus, distinguishability depends on the Physics of the objects. In considering graphs, we revisit the Ising model as a framework to define physically meaningful spectral invariants. In this context, we introduce a family of refinements of the classical spectrum and consider the quantum partition function. We demonstrate that the energy spectrum of the quantum Ising Hamiltonian is a stronger invariant than the classical one without refinements. For the purpose of implementing the related physical systems, we perform experiments on a programmable annealer with superconducting flux technology. Departing from the paradigm of adiabatic computation, we take advantage of a noisy evolution of the device to generate statistics of low energy states. The graphs considered in the experiments have the same classical partition functions, but different quantum spectra. The data obtained from the annealer distinguish non-isomorphic graphs via information contained in the classical refinements of the functions but not via the differences in the quantum spectra.
Improving Unstructured Mesh Partitions for Multiple Criteria Using Mesh Adjacencies
Smith, Cameron W.; Rasquin, Michel; Ibanez, Dan; ...
2018-02-13
The scalability of unstructured mesh based applications depends on partitioning methods that quickly balance the computational work while reducing communication costs. Zhou et al. [SIAM J. Sci. Comput., 32 (2010), pp. 3201{3227; J. Supercomput., 59 (2012), pp. 1218{1228] demonstrated the combination of (hyper)graph methods with vertex and element partition improvement for PHASTA CFD scaling to hundreds of thousands of processes. Our work generalizes partition improvement to support balancing combinations of all the mesh entity dimensions (vertices, edges, faces, regions) in partitions with imbalances exceeding 70%. Improvement results are then presented for multiple entity dimensions on up to one million processesmore » on meshes with over 12 billion tetrahedral elements.« less
Improving Unstructured Mesh Partitions for Multiple Criteria Using Mesh Adjacencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Cameron W.; Rasquin, Michel; Ibanez, Dan
The scalability of unstructured mesh based applications depends on partitioning methods that quickly balance the computational work while reducing communication costs. Zhou et al. [SIAM J. Sci. Comput., 32 (2010), pp. 3201{3227; J. Supercomput., 59 (2012), pp. 1218{1228] demonstrated the combination of (hyper)graph methods with vertex and element partition improvement for PHASTA CFD scaling to hundreds of thousands of processes. Our work generalizes partition improvement to support balancing combinations of all the mesh entity dimensions (vertices, edges, faces, regions) in partitions with imbalances exceeding 70%. Improvement results are then presented for multiple entity dimensions on up to one million processesmore » on meshes with over 12 billion tetrahedral elements.« less
Improving Design Efficiency for Large-Scale Heterogeneous Circuits
NASA Astrophysics Data System (ADS)
Gregerson, Anthony
Despite increases in logic density, many Big Data applications must still be partitioned across multiple computing devices in order to meet their strict performance requirements. Among the most demanding of these applications is high-energy physics (HEP), which uses complex computing systems consisting of thousands of FPGAs and ASICs to process the sensor data created by experiments at particles accelerators such as the Large Hadron Collider (LHC). Designing such computing systems is challenging due to the scale of the systems, the exceptionally high-throughput and low-latency performance constraints that necessitate application-specific hardware implementations, the requirement that algorithms are efficiently partitioned across many devices, and the possible need to update the implemented algorithms during the lifetime of the system. In this work, we describe our research to develop flexible architectures for implementing such large-scale circuits on FPGAs. In particular, this work is motivated by (but not limited in scope to) high-energy physics algorithms for the Compact Muon Solenoid (CMS) experiment at the LHC. To make efficient use of logic resources in multi-FPGA systems, we introduce Multi-Personality Partitioning, a novel form of the graph partitioning problem, and present partitioning algorithms that can significantly improve resource utilization on heterogeneous devices while also reducing inter-chip connections. To reduce the high communication costs of Big Data applications, we also introduce Information-Aware Partitioning, a partitioning method that analyzes the data content of application-specific circuits, characterizes their entropy, and selects circuit partitions that enable efficient compression of data between chips. We employ our information-aware partitioning method to improve the performance of the hardware validation platform for evaluating new algorithms for the CMS experiment. Together, these research efforts help to improve the efficiency and decrease the cost of the developing large-scale, heterogeneous circuits needed to enable large-scale application in high-energy physics and other important areas.
Parameterizing by the Number of Numbers
NASA Astrophysics Data System (ADS)
Fellows, Michael R.; Gaspers, Serge; Rosamond, Frances A.
The usefulness of parameterized algorithmics has often depended on what Niedermeier has called "the art of problem parameterization". In this paper we introduce and explore a novel but general form of parameterization: the number of numbers. Several classic numerical problems, such as Subset Sum, Partition, 3-Partition, Numerical 3-Dimensional Matching, and Numerical Matching with Target Sums, have multisets of integers as input. We initiate the study of parameterizing these problems by the number of distinct integers in the input. We rely on an FPT result for Integer Linear Programming Feasibility to show that all the above-mentioned problems are fixed-parameter tractable when parameterized in this way. In various applied settings, problem inputs often consist in part of multisets of integers or multisets of weighted objects (such as edges in a graph, or jobs to be scheduled). Such number-of-numbers parameterized problems often reduce to subproblems about transition systems of various kinds, parameterized by the size of the system description. We consider several core problems of this kind relevant to number-of-numbers parameterization. Our main hardness result considers the problem: given a non-deterministic Mealy machine M (a finite state automaton outputting a letter on each transition), an input word x, and a census requirement c for the output word specifying how many times each letter of the output alphabet should be written, decide whether there exists a computation of M reading x that outputs a word y that meets the requirement c. We show that this problem is hard for W[1]. If the question is whether there exists an input word x such that a computation of M on x outputs a word that meets c, the problem becomes fixed-parameter tractable.
COLA: Optimizing Stream Processing Applications via Graph Partitioning
NASA Astrophysics Data System (ADS)
Khandekar, Rohit; Hildrum, Kirsten; Parekh, Sujay; Rajan, Deepak; Wolf, Joel; Wu, Kun-Lung; Andrade, Henrique; Gedik, Buğra
In this paper, we describe an optimization scheme for fusing compile-time operators into reasonably-sized run-time software units called processing elements (PEs). Such PEs are the basic deployable units in System S, a highly scalable distributed stream processing middleware system. Finding a high quality fusion significantly benefits the performance of streaming jobs. In order to maximize throughput, our solution approach attempts to minimize the processing cost associated with inter-PE stream traffic while simultaneously balancing load across the processing hosts. Our algorithm computes a hierarchical partitioning of the operator graph based on a minimum-ratio cut subroutine. We also incorporate several fusion constraints in order to support real-world System S jobs. We experimentally compare our algorithm with several other reasonable alternative schemes, highlighting the effectiveness of our approach.
Normalized Cut Algorithm for Automated Assignment of Protein Domains
NASA Technical Reports Server (NTRS)
Samanta, M. P.; Liang, S.; Zha, H.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
We present a novel computational method for automatic assignment of protein domains from structural data. At the core of our algorithm lies a recently proposed clustering technique that has been very successful for image-partitioning applications. This grap.,l-theory based clustering method uses the notion of a normalized cut to partition. an undirected graph into its strongly-connected components. Computer implementation of our method tested on the standard comparison set of proteins from the literature shows a high success rate (84%), better than most existing alternative In addition, several other features of our algorithm, such as reliance on few adjustable parameters, linear run-time with respect to the size of the protein and reduced complexity compared to other graph-theory based algorithms, would make it an attractive tool for structural biologists.
Distributed state-space generation of discrete-state stochastic models
NASA Technical Reports Server (NTRS)
Ciardo, Gianfranco; Gluckman, Joshua; Nicol, David
1995-01-01
High-level formalisms such as stochastic Petri nets can be used to model complex systems. Analysis of logical and numerical properties of these models of ten requires the generation and storage of the entire underlying state space. This imposes practical limitations on the types of systems which can be modeled. Because of the vast amount of memory consumed, we investigate distributed algorithms for the generation of state space graphs. The distributed construction allows us to take advantage of the combined memory readily available on a network of workstations. The key technical problem is to find effective methods for on-the-fly partitioning, so that the state space is evenly distributed among processors. In this paper we report on the implementation of a distributed state-space generator that may be linked to a number of existing system modeling tools. We discuss partitioning strategies in the context of Petri net models, and report on performance observed on a network of workstations, as well as on a distributed memory multi-computer.
Spatial-temporal causal modeling: a data centric approach to climate change attribution (Invited)
NASA Astrophysics Data System (ADS)
Lozano, A. C.
2010-12-01
Attribution of climate change has been predominantly based on simulations using physical climate models. These approaches rely heavily on the employed models and are thus subject to their shortcomings. Given the physical models’ limitations in describing the complex system of climate, we propose an alternative approach to climate change attribution that is data centric in the sense that it relies on actual measurements of climate variables and human and natural forcing factors. We present a novel class of methods to infer causality from spatial-temporal data, as well as a procedure to incorporate extreme value modeling into our methodology in order to address the attribution of extreme climate events. We develop a collection of causal modeling methods using spatio-temporal data that combine graphical modeling techniques with the notion of Granger causality. “Granger causality” is an operational definition of causality from econometrics, which is based on the premise that if a variable causally affects another, then the past values of the former should be helpful in predicting the future values of the latter. In its basic version, our methodology makes use of the spatial relationship between the various data points, but treats each location as being identically distributed and builds a unique causal graph that is common to all locations. A more flexible framework is then proposed that is less restrictive than having a single causal graph common to all locations, while avoiding the brittleness due to data scarcity that might arise if one were to independently learn a different graph for each location. The solution we propose can be viewed as finding a middle ground by partitioning the locations into subsets that share the same causal structures and pooling the observations from all the time series belonging to the same subset in order to learn more robust causal graphs. More precisely, we make use of relationships between locations (e.g. neighboring relationship) by defining a relational graph in which related locations are connected (note that this relational graph, which represents relationships among the different locations, is distinct from the causal graph, which represents causal relationships among the individual variables - e.g. temperature, pressure- within a multivariate time series). We then define a hidden Markov Random Field (hMRF), assigning a hidden state to each node (location), with the state assignment guided by the prior information encoded in the relational graph. Nodes that share the same state in the hMRF model will have the same causal graph. State assignment can thus shed light on unknown relations among locations (e.g. teleconnection). While the model has been described in terms of hard location partitioning to facilitate its exposition, in fact a soft partitioning is maintained throughout learning. This leads to a form of transfer learning, which makes our model applicable even in situations where partitioning the locations might not seem appropriate. We first validate the effectiveness of our methodology on synthetic datasets, and then apply it to actual climate measurement data. The experimental results show that our approach offers a useful alternative to the simulation-based approach for climate modeling and attribution, and has the capability to provide valuable scientific insights from a new perspective.
A path following algorithm for the graph matching problem.
Zaslavskiy, Mikhail; Bach, Francis; Vert, Jean-Philippe
2009-12-01
We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art.
Leveraging unsupervised training sets for multi-scale compartmentalization in renal pathology
NASA Astrophysics Data System (ADS)
Lutnick, Brendon; Tomaszewski, John E.; Sarder, Pinaki
2017-03-01
Clinical pathology relies on manual compartmentalization and quantification of biological structures, which is time consuming and often error-prone. Application of computer vision segmentation algorithms to histopathological image analysis, in contrast, can offer fast, reproducible, and accurate quantitative analysis to aid pathologists. Algorithms tunable to different biologically relevant structures can allow accurate, precise, and reproducible estimates of disease states. In this direction, we have developed a fast, unsupervised computational method for simultaneously separating all biologically relevant structures from histopathological images in multi-scale. Segmentation is achieved by solving an energy optimization problem. Representing the image as a graph, nodes (pixels) are grouped by minimizing a Potts model Hamiltonian, adopted from theoretical physics, modeling interacting electron spins. Pixel relationships (modeled as edges) are used to update the energy of the partitioned graph. By iteratively improving the clustering, the optimal number of segments is revealed. To reduce computational time, the graph is simplified using a Cantor pairing function to intelligently reduce the number of included nodes. The classified nodes are then used to train a multiclass support vector machine to apply the segmentation over the full image. Accurate segmentations of images with as many as 106 pixels can be completed only in 5 sec, allowing for attainable multi-scale visualization. To establish clinical potential, we employed our method in renal biopsies to quantitatively visualize for the first time scale variant compartments of heterogeneous intra- and extraglomerular structures simultaneously. Implications of the utility of our method extend to fields such as oncology, genomics, and non-biological problems.
Yoink: An interaction-based partitioning API.
Zheng, Min; Waller, Mark P
2018-05-15
Herein, we describe the implementation details of our interaction-based partitioning API (application programming interface) called Yoink for QM/MM modeling and fragment-based quantum chemistry studies. Interactions are detected by computing density descriptors such as reduced density gradient, density overlap regions indicator, and single exponential decay detector. Only molecules having an interaction with a user-definable QM core are added to the QM region of a hybrid QM/MM calculation. Moreover, a set of molecule pairs having density-based interactions within a molecular system can be computed in Yoink, and an interaction graph can then be constructed. Standard graph clustering methods can then be applied to construct fragments for further quantum chemical calculations. The Yoink API is licensed under Apache 2.0 and can be accessed via yoink.wallerlab.org. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Comparison and Enumeration of Chemical Graphs
Akutsu, Tatsuya; Nagamochi, Hiroshi
2013-01-01
Chemical compounds are usually represented as graph structured data in computers. In this review article, we overview several graph classes relevant to chemical compounds and the computational complexities of several fundamental problems for these graph classes. In particular, we consider the following problems: determining whether two chemical graphs are identical, determining whether one input chemical graph is a part of the other input chemical graph, finding a maximum common part of two input graphs, finding a reaction atom mapping, enumerating possible chemical graphs, and enumerating stereoisomers. We also discuss the relationship between the fifth problem and kernel functions for chemical compounds. PMID:24688697
Traxl, Dominik; Boers, Niklas; Kurths, Jürgen
2016-06-01
Network theory has proven to be a powerful tool in describing and analyzing systems by modelling the relations between their constituent objects. Particularly in recent years, a great progress has been made by augmenting "traditional" network theory in order to account for the multiplex nature of many networks, multiple types of connections between objects, the time-evolution of networks, networks of networks and other intricacies. However, existing network representations still lack crucial features in order to serve as a general data analysis tool. These include, most importantly, an explicit association of information with possibly heterogeneous types of objects and relations, and a conclusive representation of the properties of groups of nodes as well as the interactions between such groups on different scales. In this paper, we introduce a collection of definitions resulting in a framework that, on the one hand, entails and unifies existing network representations (e.g., network of networks and multilayer networks), and on the other hand, generalizes and extends them by incorporating the above features. To implement these features, we first specify the nodes and edges of a finite graph as sets of properties (which are permitted to be arbitrary mathematical objects). Second, the mathematical concept of partition lattices is transferred to the network theory in order to demonstrate how partitioning the node and edge set of a graph into supernodes and superedges allows us to aggregate, compute, and allocate information on and between arbitrary groups of nodes. The derived partition lattice of a graph, which we denote by deep graph, constitutes a concise, yet comprehensive representation that enables the expression and analysis of heterogeneous properties, relations, and interactions on all scales of a complex system in a self-contained manner. Furthermore, to be able to utilize existing network-based methods and models, we derive different representations of multilayer networks from our framework and demonstrate the advantages of our representation. On the basis of the formal framework described here, we provide a rich, fully scalable (and self-explanatory) software package that integrates into the PyData ecosystem and offers interfaces to popular network packages, making it a powerful, general-purpose data analysis toolkit. We exemplify an application of deep graphs using a real world dataset, comprising 16 years of satellite-derived global precipitation measurements. We deduce a deep graph representation of these measurements in order to track and investigate local formations of spatio-temporal clusters of extreme precipitation events.
Huang, Xiaoke; Zhao, Ye; Yang, Jing; Zhang, Chong; Ma, Chao; Ye, Xinyue
2016-01-01
We propose TrajGraph, a new visual analytics method, for studying urban mobility patterns by integrating graph modeling and visual analysis with taxi trajectory data. A special graph is created to store and manifest real traffic information recorded by taxi trajectories over city streets. It conveys urban transportation dynamics which can be discovered by applying graph analysis algorithms. To support interactive, multiscale visual analytics, a graph partitioning algorithm is applied to create region-level graphs which have smaller size than the original street-level graph. Graph centralities, including Pagerank and betweenness, are computed to characterize the time-varying importance of different urban regions. The centralities are visualized by three coordinated views including a node-link graph view, a map view and a temporal information view. Users can interactively examine the importance of streets to discover and assess city traffic patterns. We have implemented a fully working prototype of this approach and evaluated it using massive taxi trajectories of Shenzhen, China. TrajGraph's capability in revealing the importance of city streets was evaluated by comparing the calculated centralities with the subjective evaluations from a group of drivers in Shenzhen. Feedback from a domain expert was collected. The effectiveness of the visual interface was evaluated through a formal user study. We also present several examples and a case study to demonstrate the usefulness of TrajGraph in urban transportation analysis.
Graph traversals, genes, and matroids: An efficient case of the travelling salesman problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gusfield, D.; Stelling, P.; Wang, Lusheng
1996-12-31
In this paper the authors consider graph traversal problems that arise from a particular technology for DNA sequencing - sequencing by hybridization (SBH). They first explain the connection of the graph problems to SBH and then focus on the traversal problems. They describe a practical polynomial time solution to the Travelling Salesman Problem in a rich class of directed graphs (including edge weighted binary de Bruijn graphs), and provide a bounded-error approximation algorithm for the maximum weight TSP in a superset of those directed graphs. The authors also establish the existence of a matroid structure defined on the set ofmore » Euler and Hamilton paths in the restricted class of graphs. 8 refs., 5 figs.« less
Dimer geometry, amoebae and a vortex dimer model
NASA Astrophysics Data System (ADS)
Nash, Charles; O'Connor, Denjoe
2017-09-01
We present a geometrical approach and introduce a connection for dimer problems on bipartite and non-bipartite graphs. In the bipartite case the connection is flat but has non-trivial {Z}2 holonomy round certain curves. This holonomy has the universality property that it does not change as the number of vertices in the fundamental domain of the graph is increased. It is argued that the K-theory of the torus, with or without punctures, is the appropriate underlying invariant. In the non-bipartite case the connection has non-zero curvature as well as non-zero Chern number. The curvature does not require the introduction of a magnetic field. The phase diagram of these models is captured by what is known as an amoeba. We introduce a dimer model with negative edge weights which correspond to vortices. The amoebae for various models are studied with particular emphasis on the case of negative edge weights. Vortices give rise to new kinds of amoebae with certain singular structures which we investigate. On the amoeba of the vortex full hexagonal lattice we find the partition function corresponds to that of a massless Dirac doublet.
Expanding our understanding of students' use of graphs for learning physics
NASA Astrophysics Data System (ADS)
Laverty, James T.
It is generally agreed that the ability to visualize functional dependencies or physical relationships as graphs is an important step in modeling and learning. However, several studies in Physics Education Research (PER) have shown that many students in fact do not master this form of representation and even have misconceptions about the meaning of graphs that impede learning physics concepts. Working with graphs in classroom settings has been shown to improve student abilities with graphs, particularly when the students can interact with them. We introduce a novel problem type in an online homework system, which requires students to construct the graphs themselves in free form, and requires no hand-grading by instructors. A study of pre/post-test data using the Test of Understanding Graphs in Kinematics (TUG-K) over several semesters indicates that students learn significantly more from these graph construction problems than from the usual graph interpretation problems, and that graph interpretation alone may not have any significant effect. The interpretation of graphs, as well as the representation translation between textual, mathematical, and graphical representations of physics scenarios, are frequently listed among the higher order thinking skills we wish to convey in an undergraduate course. But to what degree do we succeed? Do students indeed employ higher order thinking skills when working through graphing exercises? We investigate students working through a variety of graph problems, and, using a think-aloud protocol, aim to reconstruct the cognitive processes that the students go through. We find that to a certain degree, these problems become commoditized and do not trigger the desired higher order thinking processes; simply translating ``textbook-like'' problems into the graphical realm will not achieve any additional educational goals. Whether the students have to interpret or construct a graph makes very little difference in the methods used by the students. We will also look at the results of using graph problems in an online learning environment. We will show evidence that construction problems lead to a higher degree of difficulty and degree of discrimination than other graph problems and discuss the influence the course has on these variables.
Interactions of information transfer along separable causal paths
NASA Astrophysics Data System (ADS)
Jiang, Peishi; Kumar, Praveen
2018-04-01
Complex systems arise as a result of interdependences between multiple variables, whose causal interactions can be visualized in a time-series graph. Transfer entropy and information partitioning approaches have been used to characterize such dependences. However, these approaches capture net information transfer occurring through a multitude of pathways involved in the interaction and as a result mask our ability to discern the causal interaction within a subgraph of interest through specific pathways. We build on recent developments of momentary information transfer along causal paths proposed by Runge [Phys. Rev. E 92, 062829 (2015), 10.1103/PhysRevE.92.062829] to develop a framework for quantifying information partitioning along separable causal paths. Momentary information transfer along causal paths captures the amount of information transfer between any two variables lagged at two specific points in time. Our approach expands this concept to characterize the causal interaction in terms of synergistic, unique, and redundant information transfer through separable causal paths. Through a graphical model, we analyze the impact of the separable and nonseparable causal paths and the causality structure embedded in the graph as well as the noise effect on information partitioning by using synthetic data generated from two coupled logistic equation models. Our approach can provide a valuable reference for an autonomous information partitioning along separable causal paths which form a causal subgraph influencing a target.
Breast histopathology image segmentation using spatio-colour-texture based graph partition method.
Belsare, A D; Mushrif, M M; Pangarkar, M A; Meshram, N
2016-06-01
This paper proposes a novel integrated spatio-colour-texture based graph partitioning method for segmentation of nuclear arrangement in tubules with a lumen or in solid islands without a lumen from digitized Hematoxylin-Eosin stained breast histology images, in order to automate the process of histology breast image analysis to assist the pathologists. We propose a new similarity based super pixel generation method and integrate it with texton representation to form spatio-colour-texture map of Breast Histology Image. Then a new weighted distance based similarity measure is used for generation of graph and final segmentation using normalized cuts method is obtained. The extensive experiments carried shows that the proposed algorithm can segment nuclear arrangement in normal as well as malignant duct in breast histology tissue image. For evaluation of the proposed method the ground-truth image database of 100 malignant and nonmalignant breast histology images is created with the help of two expert pathologists and the quantitative evaluation of proposed breast histology image segmentation has been performed. It shows that the proposed method outperforms over other methods. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivasseau, Vincent, E-mail: vincent.rivasseau@th.u-psud.fr, E-mail: adrian.tanasa@ens-lyon.org; Tanasa, Adrian, E-mail: vincent.rivasseau@th.u-psud.fr, E-mail: adrian.tanasa@ens-lyon.org
The Loop Vertex Expansion (LVE) is a quantum field theory (QFT) method which explicitly computes the Borel sum of Feynman perturbation series. This LVE relies in a crucial way on symmetric tree weights which define a measure on the set of spanning trees of any connected graph. In this paper we generalize this method by defining new tree weights. They depend on the choice of a partition of a set of vertices of the graph, and when the partition is non-trivial, they are no longer symmetric under permutation of vertices. Nevertheless we prove they have the required positivity property tomore » lead to a convergent LVE; in fact we formulate this positivity property precisely for the first time. Our generalized tree weights are inspired by the Brydges-Battle-Federbush work on cluster expansions and could be particularly suited to the computation of connected functions in QFT. Several concrete examples are explicitly given.« less
Quantum Walk Schemes for Universal Quantum Computation
NASA Astrophysics Data System (ADS)
Underwood, Michael S.
Random walks are a powerful tool for the efficient implementation of algorithms in classical computation. Their quantum-mechanical analogues, called quantum walks, hold similar promise. Quantum walks provide a model of quantum computation that has recently been shown to be equivalent in power to the standard circuit model. As in the classical case, quantum walks take place on graphs and can undergo discrete or continuous evolution, though quantum evolution is unitary and therefore deterministic until a measurement is made. This thesis considers the usefulness of continuous-time quantum walks to quantum computation from the perspectives of both their fundamental power under various formulations, and their applicability in practical experiments. In one extant scheme, logical gates are effected by scattering processes. The results of an exhaustive search for single-qubit operations in this model are presented. It is shown that the number of distinct operations increases exponentially with the number of vertices in the scattering graph. A catalogue of all graphs on up to nine vertices that implement single-qubit unitaries at a specific set of momenta is included in an appendix. I develop a novel scheme for universal quantum computation called the discontinuous quantum walk, in which a continuous-time quantum walker takes discrete steps of evolution via perfect quantum state transfer through small 'widget' graphs. The discontinuous quantum-walk scheme requires an exponentially sized graph, as do prior discrete and continuous schemes. To eliminate the inefficient vertex resource requirement, a computation scheme based on multiple discontinuous walkers is presented. In this model, n interacting walkers inhabiting a graph with 2n vertices can implement an arbitrary quantum computation on an input of length n, an exponential savings over previous universal quantum walk schemes. This is the first quantum walk scheme that allows for the application of quantum error correction. The many-particle quantum walk can be viewed as a single quantum walk undergoing perfect state transfer on a larger weighted graph, obtained via equitable partitioning. I extend this formalism to non-simple graphs. Examples of the application of equitable partitioning to the analysis of quantum walks and many-particle quantum systems are discussed.
QSPIN: A High Level Java API for Quantum Computing Experimentation
NASA Technical Reports Server (NTRS)
Barth, Tim
2017-01-01
QSPIN is a high level Java language API for experimentation in QC models used in the calculation of Ising spin glass ground states and related quadratic unconstrained binary optimization (QUBO) problems. The Java API is intended to facilitate research in advanced QC algorithms such as hybrid quantum-classical solvers, automatic selection of constraint and optimization parameters, and techniques for the correction and mitigation of model and solution errors. QSPIN includes high level solver objects tailored to the D-Wave quantum annealing architecture that implement hybrid quantum-classical algorithms [Booth et al.] for solving large problems on small quantum devices, elimination of variables via roof duality, and classical computing optimization methods such as GPU accelerated simulated annealing and tabu search for comparison. A test suite of documented NP-complete applications ranging from graph coloring, covering, and partitioning to integer programming and scheduling are provided to demonstrate current capabilities.
Graph cuts via l1 norm minimization.
Bhusnurmath, Arvind; Taylor, Camillo J
2008-10-01
Graph cuts have become an increasingly important tool for solving a number of energy minimization problems in computer vision and other fields. In this paper, the graph cut problem is reformulated as an unconstrained l1 norm minimization that can be solved effectively using interior point methods. This reformulation exposes connections between the graph cuts and other related continuous optimization problems. Eventually the problem is reduced to solving a sequence of sparse linear systems involving the Laplacian of the underlying graph. The proposed procedure exploits the structure of these linear systems in a manner that is easily amenable to parallel implementations. Experimental results obtained by applying the procedure to graphs derived from image processing problems are provided.
Language in the brain at rest: new insights from resting state data and graph theoretical analysis
Muller, Angela M.; Meyer, Martin
2014-01-01
In humans, the most obvious functional lateralization is the specialization of the left hemisphere for language. Therefore, the involvement of the right hemisphere in language is one of the most remarkable findings during the last two decades of fMRI research. However, the importance of this finding continues to be underestimated. We examined the interaction between the two hemispheres and also the role of the right hemisphere in language. From two seeds representing Broca's area, we conducted a seed correlation analysis (SCA) of resting state fMRI data and could identify a resting state network (RSN) overlapping to significant extent with a language network that was generated by an automated meta-analysis tool. To elucidate the relationship between the clusters of this RSN, we then performed graph theoretical analyses (GTA) using the same resting state dataset. We show that the right hemisphere is clearly involved in language. A modularity analysis revealed that the interaction between the two hemispheres is mediated by three partitions: A bilateral frontal partition consists of nodes representing the classical left sided language regions as well as two right-sided homologs. The second bilateral partition consists of nodes from the right frontal, the left inferior parietal cortex as well as of two nodes within the posterior cerebellum. The third partition is also bilateral and comprises five regions from the posterior midline parts of the brain to the temporal and frontal cortex, two of the nodes are prominent default mode nodes. The involvement of this last partition in a language relevant function is a novel finding. PMID:24808843
Dynamic connectivity regression: Determining state-related changes in brain connectivity
Cribben, Ivor; Haraldsdottir, Ragnheidur; Atlas, Lauren Y.; Wager, Tor D.; Lindquist, Martin A.
2014-01-01
Most statistical analyses of fMRI data assume that the nature, timing and duration of the psychological processes being studied are known. However, often it is hard to specify this information a priori. In this work we introduce a data-driven technique for partitioning the experimental time course into distinct temporal intervals with different multivariate functional connectivity patterns between a set of regions of interest (ROIs). The technique, called Dynamic Connectivity Regression (DCR), detects temporal change points in functional connectivity and estimates a graph, or set of relationships between ROIs, for data in the temporal partition that falls between pairs of change points. Hence, DCR allows for estimation of both the time of change in connectivity and the connectivity graph for each partition, without requiring prior knowledge of the nature of the experimental design. Permutation and bootstrapping methods are used to perform inference on the change points. The method is applied to various simulated data sets as well as to an fMRI data set from a study (N=26) of a state anxiety induction using a socially evaluative threat challenge. The results illustrate the method’s ability to observe how the networks between different brain regions changed with subjects’ emotional state. PMID:22484408
Parallelization of a Fully-Distributed Hydrologic Model using Sub-basin Partitioning
NASA Astrophysics Data System (ADS)
Vivoni, E. R.; Mniszewski, S.; Fasel, P.; Springer, E.; Ivanov, V. Y.; Bras, R. L.
2005-12-01
A primary obstacle towards advances in watershed simulations has been the limited computational capacity available to most models. The growing trend of model complexity, data availability and physical representation has not been matched by adequate developments in computational efficiency. This situation has created a serious bottleneck which limits existing distributed hydrologic models to small domains and short simulations. In this study, we present novel developments in the parallelization of a fully-distributed hydrologic model. Our work is based on the TIN-based Real-time Integrated Basin Simulator (tRIBS), which provides continuous hydrologic simulation using a multiple resolution representation of complex terrain based on a triangulated irregular network (TIN). While the use of TINs reduces computational demand, the sequential version of the model is currently limited over large basins (>10,000 km2) and long simulation periods (>1 year). To address this, a parallel MPI-based version of the tRIBS model has been implemented and tested using high performance computing resources at Los Alamos National Laboratory. Our approach utilizes domain decomposition based on sub-basin partitioning of the watershed. A stream reach graph based on the channel network structure is used to guide the sub-basin partitioning. Individual sub-basins or sub-graphs of sub-basins are assigned to separate processors to carry out internal hydrologic computations (e.g. rainfall-runoff transformation). Routed streamflow from each sub-basin forms the major hydrologic data exchange along the stream reach graph. Individual sub-basins also share subsurface hydrologic fluxes across adjacent boundaries. We demonstrate how the sub-basin partitioning provides computational feasibility and efficiency for a set of test watersheds in northeastern Oklahoma. We compare the performance of the sequential and parallelized versions to highlight the efficiency gained as the number of processors increases. We also discuss how the coupled use of TINs and parallel processing can lead to feasible long-term simulations in regional watersheds while preserving basin properties at high-resolution.
NASA Astrophysics Data System (ADS)
Zagouras, Athanassios; Argiriou, Athanassios A.; Flocas, Helena A.; Economou, George; Fotopoulos, Spiros
2012-11-01
Classification of weather maps at various isobaric levels as a methodological tool is used in several problems related to meteorology, climatology, atmospheric pollution and to other fields for many years. Initially the classification was performed manually. The criteria used by the person performing the classification are features of isobars or isopleths of geopotential height, depending on the type of maps to be classified. Although manual classifications integrate the perceptual experience and other unquantifiable qualities of the meteorology specialists involved, these are typically subjective and time consuming. Furthermore, during the last years different approaches of automated methods for atmospheric circulation classification have been proposed, which present automated and so-called objective classifications. In this paper a new method of atmospheric circulation classification of isobaric maps is presented. The method is based on graph theory. It starts with an intelligent prototype selection using an over-partitioning mode of fuzzy c-means (FCM) algorithm, proceeds to a graph formulation for the entire dataset and produces the clusters based on the contemporary dominant sets clustering method. Graph theory is a novel mathematical approach, allowing a more efficient representation of spatially correlated data, compared to the classical Euclidian space representation approaches, used in conventional classification methods. The method has been applied to the classification of 850 hPa atmospheric circulation over the Eastern Mediterranean. The evaluation of the automated methods is performed by statistical indexes; results indicate that the classification is adequately comparable with other state-of-the-art automated map classification methods, for a variable number of clusters.
Graphing as a Problem-Solving Strategy.
ERIC Educational Resources Information Center
Cohen, Donald
1984-01-01
The focus is on how line graphs can be used to approximate solutions to rate problems and to suggest equations that offer exact algebraic solutions to the problem. Four problems requiring progressively greater graphing sophistication are presented plus four exercises. (MNS)
Graph Partitioning by Eigenvectors,
1987-01-01
the extremal nature of eigenvalues of symmetric matrices, the interlacing theorem, monotonicity of spectral radius of nonnegative matrices, Perron ... Frobenius theory, etc. (See Varga (1962) and Lancaster and Tismenetsky (1985).) Most of the results of this paper depend on the following lemma. ABSTRACT
Loop series for discrete statistical models on graphs
NASA Astrophysics Data System (ADS)
Chertkov, Michael; Chernyak, Vladimir Y.
2006-06-01
In this paper we present the derivation details, logic, and motivation for the three loop calculus introduced in Chertkov and Chernyak (2006 Phys. Rev. E 73 065102(R)). Generating functions for each of the three interrelated discrete statistical models are expressed in terms of a finite series. The first term in the series corresponds to the Bethe-Peierls belief-propagation (BP) contribution; the other terms are labelled by loops on the factor graph. All loop contributions are simple rational functions of spin correlation functions calculated within the BP approach. We discuss two alternative derivations of the loop series. One approach implements a set of local auxiliary integrations over continuous fields with the BP contribution corresponding to an integrand saddle-point value. The integrals are replaced by sums in the complementary approach, briefly explained in Chertkov and Chernyak (2006 Phys. Rev. E 73 065102(R)). Local gauge symmetry transformations that clarify an important invariant feature of the BP solution are revealed in both approaches. The individual terms change under the gauge transformation while the partition function remains invariant. The requirement for all individual terms to be nonzero only for closed loops in the factor graph (as opposed to paths with loose ends) is equivalent to fixing the first term in the series to be exactly equal to the BP contribution. Further applications of the loop calculus to problems in statistical physics, computer and information sciences are discussed.
The Relationships between Logical Thinking, Gender, and Kinematics Graph Interpretation Skills
ERIC Educational Resources Information Center
Bektasli, Behzat; White, Arthur L.
2012-01-01
Problem Statement: Kinematics is one of the topics in physics where graphs are used broadly. Kinematics includes many abstract formulas, and students usually try to solve problems with those formulas. However, using a kinematics graph instead of formulas might be a better option for problem solving in kinematics. Graphs are abstract…
A novel sub-shot segmentation method for user-generated video
NASA Astrophysics Data System (ADS)
Lei, Zhuo; Zhang, Qian; Zheng, Chi; Qiu, Guoping
2018-04-01
With the proliferation of the user-generated videos, temporal segmentation is becoming a challengeable problem. Traditional video temporal segmentation methods like shot detection are not able to work on unedited user-generated videos, since they often only contain one single long shot. We propose a novel temporal segmentation framework for user-generated video. It finds similar frames with a tree partitioning min-Hash technique, constructs sparse temporal constrained affinity sub-graphs, and finally divides the video into sub-shot-level segments with a dense-neighbor-based clustering method. Experimental results show that our approach outperforms all the other related works. Furthermore, it is indicated that the proposed approach is able to segment user-generated videos at an average human level.
Stroganov, Oleg V; Novikov, Fedor N; Zeifman, Alexey A; Stroylov, Viktor S; Chilov, Ghermes G
2011-09-01
A new graph-theoretical approach called thermodynamic sampling of amino acid residues (TSAR) has been elaborated to explicitly account for the protein side chain flexibility in modeling conformation-dependent protein properties. In TSAR, a protein is viewed as a graph whose nodes correspond to structurally independent groups and whose edges connect the interacting groups. Each node has its set of states describing conformation and ionization of the group, and each edge is assigned an array of pairwise interaction potentials between the adjacent groups. By treating the obtained graph as a belief-network-a well-established mathematical abstraction-the partition function of each node is found. In the current work we used TSAR to calculate partition functions of the ionized forms of protein residues. A simplified version of a semi-empirical molecular mechanical scoring function, borrowed from our Lead Finder docking software, was used for energy calculations. The accuracy of the resulting model was validated on a set of 486 experimentally determined pK(a) values of protein residues. The average correlation coefficient (R) between calculated and experimental pK(a) values was 0.80, ranging from 0.95 (for Tyr) to 0.61 (for Lys). It appeared that the hydrogen bond interactions and the exhaustiveness of side chain sampling made the most significant contribution to the accuracy of pK(a) calculations. Copyright © 2011 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Xiong, B.; Oude Elberink, S.; Vosselman, G.
2014-07-01
In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.
ERIC Educational Resources Information Center
Kar, Tugrul
2016-01-01
This study examined prospective middle school mathematics teachers' problem-posing skills by investigating their ability to associate linear graphs with daily life situations. Prospective teachers were given linear graphs and asked to pose problems that could potentially be represented by the graphs. Their answers were analyzed in two stages. In…
Deep graphs—A general framework to represent and analyze heterogeneous complex systems across scales
NASA Astrophysics Data System (ADS)
Traxl, Dominik; Boers, Niklas; Kurths, Jürgen
2016-06-01
Network theory has proven to be a powerful tool in describing and analyzing systems by modelling the relations between their constituent objects. Particularly in recent years, a great progress has been made by augmenting "traditional" network theory in order to account for the multiplex nature of many networks, multiple types of connections between objects, the time-evolution of networks, networks of networks and other intricacies. However, existing network representations still lack crucial features in order to serve as a general data analysis tool. These include, most importantly, an explicit association of information with possibly heterogeneous types of objects and relations, and a conclusive representation of the properties of groups of nodes as well as the interactions between such groups on different scales. In this paper, we introduce a collection of definitions resulting in a framework that, on the one hand, entails and unifies existing network representations (e.g., network of networks and multilayer networks), and on the other hand, generalizes and extends them by incorporating the above features. To implement these features, we first specify the nodes and edges of a finite graph as sets of properties (which are permitted to be arbitrary mathematical objects). Second, the mathematical concept of partition lattices is transferred to the network theory in order to demonstrate how partitioning the node and edge set of a graph into supernodes and superedges allows us to aggregate, compute, and allocate information on and between arbitrary groups of nodes. The derived partition lattice of a graph, which we denote by deep graph, constitutes a concise, yet comprehensive representation that enables the expression and analysis of heterogeneous properties, relations, and interactions on all scales of a complex system in a self-contained manner. Furthermore, to be able to utilize existing network-based methods and models, we derive different representations of multilayer networks from our framework and demonstrate the advantages of our representation. On the basis of the formal framework described here, we provide a rich, fully scalable (and self-explanatory) software package that integrates into the PyData ecosystem and offers interfaces to popular network packages, making it a powerful, general-purpose data analysis toolkit. We exemplify an application of deep graphs using a real world dataset, comprising 16 years of satellite-derived global precipitation measurements. We deduce a deep graph representation of these measurements in order to track and investigate local formations of spatio-temporal clusters of extreme precipitation events.
Computing Role Assignments of Proper Interval Graphs in Polynomial Time
NASA Astrophysics Data System (ADS)
Heggernes, Pinar; van't Hof, Pim; Paulusma, Daniël
A homomorphism from a graph G to a graph R is locally surjective if its restriction to the neighborhood of each vertex of G is surjective. Such a homomorphism is also called an R-role assignment of G. Role assignments have applications in distributed computing, social network theory, and topological graph theory. The Role Assignment problem has as input a pair of graphs (G,R) and asks whether G has an R-role assignment. This problem is NP-complete already on input pairs (G,R) where R is a path on three vertices. So far, the only known non-trivial tractable case consists of input pairs (G,R) where G is a tree. We present a polynomial time algorithm that solves Role Assignment on all input pairs (G,R) where G is a proper interval graph. Thus we identify the first graph class other than trees on which the problem is tractable. As a complementary result, we show that the problem is Graph Isomorphism-hard on chordal graphs, a superclass of proper interval graphs and trees.
GraphMeta: Managing HPC Rich Metadata in Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Dong; Chen, Yong; Carns, Philip
High-performance computing (HPC) systems face increasingly critical metadata management challenges, especially in the approaching exascale era. These challenges arise not only from exploding metadata volumes, but also from increasingly diverse metadata, which contains data provenance and arbitrary user-defined attributes in addition to traditional POSIX metadata. This ‘rich’ metadata is becoming critical to supporting advanced data management functionality such as data auditing and validation. In our prior work, we identified a graph-based model as a promising solution to uniformly manage HPC rich metadata due to its flexibility and generality. However, at the same time, graph-based HPC rich metadata anagement also introducesmore » significant challenges to the underlying infrastructure. In this study, we first identify the challenges on the underlying infrastructure to support scalable, high-performance rich metadata management. Based on that, we introduce GraphMeta, a graphbased engine designed for this use case. It achieves performance scalability by introducing a new graph partitioning algorithm and a write-optimal storage engine. We evaluate GraphMeta under both synthetic and real HPC metadata workloads, compare it with other approaches, and demonstrate its advantages in terms of efficiency and usability for rich metadata management in HPC systems.« less
Caetano, Tibério S; McAuley, Julian J; Cheng, Li; Le, Quoc V; Smola, Alex J
2009-06-01
As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer vision to computational biology. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding a correspondence between the nodes of different graphs. Many formulations of this problem can be cast in general as a quadratic assignment problem, where a linear term in the objective function encodes node compatibility and a quadratic term encodes edge compatibility. The main research focus in this theme is about designing efficient algorithms for approximately solving the quadratic assignment problem, since it is NP-hard. In this paper we turn our attention to a different question: how to estimate compatibility functions such that the solution of the resulting graph matching problem best matches the expected solution that a human would manually provide. We present a method for learning graph matching: the training examples are pairs of graphs and the 'labels' are matches between them. Our experimental results reveal that learning can substantially improve the performance of standard graph matching algorithms. In particular, we find that simple linear assignment with such a learning scheme outperforms Graduated Assignment with bistochastic normalisation, a state-of-the-art quadratic assignment relaxation algorithm.
Heuristic-driven graph wavelet modeling of complex terrain
NASA Astrophysics Data System (ADS)
Cioacǎ, Teodor; Dumitrescu, Bogdan; Stupariu, Mihai-Sorin; Pǎtru-Stupariu, Ileana; Nǎpǎrus, Magdalena; Stoicescu, Ioana; Peringer, Alexander; Buttler, Alexandre; Golay, François
2015-03-01
We present a novel method for building a multi-resolution representation of large digital surface models. The surface points coincide with the nodes of a planar graph which can be processed using a critically sampled, invertible lifting scheme. To drive the lazy wavelet node partitioning, we employ an attribute aware cost function based on the generalized quadric error metric. The resulting algorithm can be applied to multivariate data by storing additional attributes at the graph's nodes. We discuss how the cost computation mechanism can be coupled with the lifting scheme and examine the results by evaluating the root mean square error. The algorithm is experimentally tested using two multivariate LiDAR sets representing terrain surface and vegetation structure with different sampling densities.
NASA Astrophysics Data System (ADS)
Debnath, Lokenath
2010-09-01
This article is essentially devoted to a brief historical introduction to Euler's formula for polyhedra, topology, theory of graphs and networks with many examples from the real-world. Celebrated Königsberg seven-bridge problem and some of the basic properties of graphs and networks for some understanding of the macroscopic behaviour of real physical systems are included. We also mention some important and modern applications of graph theory or network problems from transportation to telecommunications. Graphs or networks are effectively used as powerful tools in industrial, electrical and civil engineering, communication networks in the planning of business and industry. Graph theory and combinatorics can be used to understand the changes that occur in many large and complex scientific, technical and medical systems. With the advent of fast large computers and the ubiquitous Internet consisting of a very large network of computers, large-scale complex optimization problems can be modelled in terms of graphs or networks and then solved by algorithms available in graph theory. Many large and more complex combinatorial problems dealing with the possible arrangements of situations of various kinds, and computing the number and properties of such arrangements can be formulated in terms of networks. The Knight's tour problem, Hamilton's tour problem, problem of magic squares, the Euler Graeco-Latin squares problem and their modern developments in the twentieth century are also included.
Solving the scalability issue in quantum-based refinement: Q|R#1.
Zheng, Min; Moriarty, Nigel W; Xu, Yanting; Reimers, Jeffrey R; Afonine, Pavel V; Waller, Mark P
2017-12-01
Accurately refining biomacromolecules using a quantum-chemical method is challenging because the cost of a quantum-chemical calculation scales approximately as n m , where n is the number of atoms and m (≥3) is based on the quantum method of choice. This fundamental problem means that quantum-chemical calculations become intractable when the size of the system requires more computational resources than are available. In the development of the software package called Q|R, this issue is referred to as Q|R#1. A divide-and-conquer approach has been developed that fragments the atomic model into small manageable pieces in order to solve Q|R#1. Firstly, the atomic model of a crystal structure is analyzed to detect noncovalent interactions between residues, and the results of the analysis are represented as an interaction graph. Secondly, a graph-clustering algorithm is used to partition the interaction graph into a set of clusters in such a way as to minimize disruption to the noncovalent interaction network. Thirdly, the environment surrounding each individual cluster is analyzed and any residue that is interacting with a particular cluster is assigned to the buffer region of that particular cluster. A fragment is defined as a cluster plus its buffer region. The gradients for all atoms from each of the fragments are computed, and only the gradients from each cluster are combined to create the total gradients. A quantum-based refinement is carried out using the total gradients as chemical restraints. In order to validate this interaction graph-based fragmentation approach in Q|R, the entire atomic model of an amyloid cross-β spine crystal structure (PDB entry 2oNA) was refined.
Thread Graphs, Linear Rank-Width and Their Algorithmic Applications
NASA Astrophysics Data System (ADS)
Ganian, Robert
The introduction of tree-width by Robertson and Seymour [7] was a breakthrough in the design of graph algorithms. A lot of research since then has focused on obtaining a width measure which would be more general and still allowed efficient algorithms for a wide range of NP-hard problems on graphs of bounded width. To this end, Oum and Seymour have proposed rank-width, which allows the solution of many such hard problems on a less restricted graph classes (see e.g. [3,4]). But what about problems which are NP-hard even on graphs of bounded tree-width or even on trees? The parameter used most often for these exceptionally hard problems is path-width, however it is extremely restrictive - for example the graphs of path-width 1 are exactly paths.
Network reconstruction via graph blending
NASA Astrophysics Data System (ADS)
Estrada, Rolando
2016-05-01
Graphs estimated from empirical data are often noisy and incomplete due to the difficulty of faithfully observing all the components (nodes and edges) of the true graph. This problem is particularly acute for large networks where the number of components may far exceed available surveillance capabilities. Errors in the observed graph can render subsequent analyses invalid, so it is vital to develop robust methods that can minimize these observational errors. Errors in the observed graph may include missing and spurious components, as well fused (multiple nodes are merged into one) and split (a single node is misinterpreted as many) nodes. Traditional graph reconstruction methods are only able to identify missing or spurious components (primarily edges, and to a lesser degree nodes), so we developed a novel graph blending framework that allows us to cast the full estimation problem as a simple edge addition/deletion problem. Armed with this framework, we systematically investigate the viability of various topological graph features, such as the degree distribution or the clustering coefficients, and existing graph reconstruction methods for tackling the full estimation problem. Our experimental results suggest that incorporating any topological feature as a source of information actually hinders reconstruction accuracy. We provide a theoretical analysis of this phenomenon and suggest several avenues for improving this estimation problem.
NASA Astrophysics Data System (ADS)
Kobylkin, Konstantin
2016-10-01
Computational complexity and approximability are studied for the problem of intersecting of a set of straight line segments with the smallest cardinality set of disks of fixed radii r > 0 where the set of segments forms straight line embedding of possibly non-planar geometric graph. This problem arises in physical network security analysis for telecommunication, wireless and road networks represented by specific geometric graphs defined by Euclidean distances between their vertices (proximity graphs). It can be formulated in a form of known Hitting Set problem over a set of Euclidean r-neighbourhoods of segments. Being of interest computational complexity and approximability of Hitting Set over so structured sets of geometric objects did not get much focus in the literature. Strong NP-hardness of the problem is reported over special classes of proximity graphs namely of Delaunay triangulations, some of their connected subgraphs, half-θ6 graphs and non-planar unit disk graphs as well as APX-hardness is given for non-planar geometric graphs at different scales of r with respect to the longest graph edge length. Simple constant factor approximation algorithm is presented for the case where r is at the same scale as the longest edge length.
Adaptive packet switch with an optical core (demonstrator)
NASA Astrophysics Data System (ADS)
Abdo, Ahmad; Bishtein, Vadim; Clark, Stewart A.; Dicorato, Pino; Lu, David T.; Paredes, Sofia A.; Taebi, Sareh; Hall, Trevor J.
2004-11-01
A three-stage opto-electronic packet switch architecture is described consisting of a reconfigurable optical centre stage surrounded by two electronic buffering stages partitioned into sectors to ease memory contention. A Flexible Bandwidth Provision (FBP) algorithm, implemented on a soft-core processor, is used to change the configuration of the input sectors and optical centre stage to set up internal paths that will provide variable bandwidth to serve the traffic. The switch is modeled by a bipartite graph built from a service matrix, which is a function of the arriving traffic. The bipartite graph is decomposed by solving an edge-colouring problem and the resulting permutations are used to configure the switch. Simulation results show that this architecture exhibits a dramatic reduction of complexity and increased potential for scalability, at the price of only a modest spatial speed-up k, 1
Graph Design via Convex Optimization: Online and Distributed Perspectives
NASA Astrophysics Data System (ADS)
Meng, De
Network and graph have long been natural abstraction of relations in a variety of applications, e.g. transportation, power system, social network, communication, electrical circuit, etc. As a large number of computation and optimization problems are naturally defined on graphs, graph structures not only enable important properties of these problems, but also leads to highly efficient distributed and online algorithms. For example, graph separability enables the parallelism for computation and operation as well as limits the size of local problems. More interestingly, graphs can be defined and constructed in order to take best advantage of those problem properties. This dissertation focuses on graph structure and design in newly proposed optimization problems, which establish a bridge between graph properties and optimization problem properties. We first study a new optimization problem called Geodesic Distance Maximization Problem (GDMP). Given a graph with fixed edge weights, finding the shortest path, also known as the geodesic, between two nodes is a well-studied network flow problem. We introduce the Geodesic Distance Maximization Problem (GDMP): the problem of finding the edge weights that maximize the length of the geodesic subject to convex constraints on the weights. We show that GDMP is a convex optimization problem for a wide class of flow costs, and provide a physical interpretation using the dual. We present applications of the GDMP in various fields, including optical lens design, network interdiction, and resource allocation in the control of forest fires. We develop an Alternating Direction Method of Multipliers (ADMM) by exploiting specific problem structures to solve large-scale GDMP, and demonstrate its effectiveness in numerical examples. We then turn our attention to distributed optimization on graph with only local communication. Distributed optimization arises in a variety of applications, e.g. distributed tracking and localization, estimation problems in sensor networks, multi-agent coordination. Distributed optimization aims to optimize a global objective function formed by summation of coupled local functions over a graph via only local communication and computation. We developed a weighted proximal ADMM for distributed optimization using graph structure. This fully distributed, single-loop algorithm allows simultaneous updates and can be viewed as a generalization of existing algorithms. More importantly, we achieve faster convergence by jointly designing graph weights and algorithm parameters. Finally, we propose a new problem on networks called Online Network Formation Problem: starting with a base graph and a set of candidate edges, at each round of the game, player one first chooses a candidate edge and reveals it to player two, then player two decides whether to accept it; player two can only accept limited number of edges and make online decisions with the goal to achieve the best properties of the synthesized network. The network properties considered include the number of spanning trees, algebraic connectivity and total effective resistance. These network formation games arise in a variety of cooperative multiagent systems. We propose a primal-dual algorithm framework for the general online network formation game, and analyze the algorithm performance by the competitive ratio and regret.
Should Science Be Used to Teach Mathematical Skills?
ERIC Educational Resources Information Center
Kren, Sandra R.; Huntsberger, John P.
1977-01-01
Studies elementary school childrens' abilities in (1) measuring and constructing angles, and (2) interpreting and constructing linear graphs as a result of instructional formats. Partitioned into instructional treatments of (1) science, (2) science-mathematics, (3) mathematics, and (4) control were 161 fourth- and fifth-grade children. Mathematics…
On Bipartite Graphs Trees and Their Partial Vertex Covers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caskurlu, Bugra; Mkrtchyan, Vahan; Parekh, Ojas D.
2015-03-01
Graphs can be used to model risk management in various systems. Particularly, Caskurlu et al. in [7] have considered a system, which has threats, vulnerabilities and assets, and which essentially represents a tripartite graph. The goal in this model is to reduce the risk in the system below a predefined risk threshold level. One can either restricting the permissions of the users, or encapsulating the system assets. The pointed out two strategies correspond to deleting minimum number of elements corresponding to vulnerabilities and assets, such that the flow between threats and assets is reduced below the predefined threshold level. Itmore » can be shown that the main goal in this risk management system can be formulated as a Partial Vertex Cover problem on bipartite graphs. It is well-known that the Vertex Cover problem is in P on bipartite graphs, however; the computational complexity of the Partial Vertex Cover problem on bipartite graphs has remained open. In this paper, we establish that the Partial Vertex Cover problem is NP-hard on bipartite graphs, which was also recently independently demonstrated [N. Apollonio and B. Simeone, Discrete Appl. Math., 165 (2014), pp. 37–48; G. Joret and A. Vetta, preprint, arXiv:1211.4853v1 [cs.DS], 2012]. We then identify interesting special cases of bipartite graphs, for which the Partial Vertex Cover problem, the closely related Budgeted Maximum Coverage problem, and their weighted extensions can be solved in polynomial time. We also present an 8/9-approximation algorithm for the Budgeted Maximum Coverage problem in the class of bipartite graphs. We show that this matches and resolves the integrality gap of the natural LP relaxation of the problem and improves upon a recent 4/5-approximation.« less
Local Higher-Order Graph Clustering
Yin, Hao; Benson, Austin R.; Leskovec, Jure; Gleich, David F.
2018-01-01
Local graph clustering methods aim to find a cluster of nodes by exploring a small region of the graph. These methods are attractive because they enable targeted clustering around a given seed node and are faster than traditional global graph clustering methods because their runtime does not depend on the size of the input graph. However, current local graph partitioning methods are not designed to account for the higher-order structures crucial to the network, nor can they effectively handle directed networks. Here we introduce a new class of local graph clustering methods that address these issues by incorporating higher-order network information captured by small subgraphs, also called network motifs. We develop the Motif-based Approximate Personalized PageRank (MAPPR) algorithm that finds clusters containing a seed node with minimal motif conductance, a generalization of the conductance metric for network motifs. We generalize existing theory to prove the fast running time (independent of the size of the graph) and obtain theoretical guarantees on the cluster quality (in terms of motif conductance). We also develop a theory of node neighborhoods for finding sets that have small motif conductance, and apply these results to the case of finding good seed nodes to use as input to the MAPPR algorithm. Experimental validation on community detection tasks in both synthetic and real-world networks, shows that our new framework MAPPR outperforms the current edge-based personalized PageRank methodology. PMID:29770258
Task Parallel Incomplete Cholesky Factorization using 2D Partitioned-Block Layout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyungjoo; Rajamanickam, Sivasankaran; Stelle, George Widgery
We introduce a task-parallel algorithm for sparse incomplete Cholesky factorization that utilizes a 2D sparse partitioned-block layout of a matrix. Our factorization algorithm follows the idea of algorithms-by-blocks by using the block layout. The algorithm-byblocks approach induces a task graph for the factorization. These tasks are inter-related to each other through their data dependences in the factorization algorithm. To process the tasks on various manycore architectures in a portable manner, we also present a portable tasking API that incorporates different tasking backends and device-specific features using an open-source framework for manycore platforms i.e., Kokkos. A performance evaluation is presented onmore » both Intel Sandybridge and Xeon Phi platforms for matrices from the University of Florida sparse matrix collection to illustrate merits of the proposed task-based factorization. Experimental results demonstrate that our task-parallel implementation delivers about 26.6x speedup (geometric mean) over single-threaded incomplete Choleskyby- blocks and 19.2x speedup over serial Cholesky performance which does not carry tasking overhead using 56 threads on the Intel Xeon Phi processor for sparse matrices arising from various application problems.« less
Projected power iteration for network alignment
NASA Astrophysics Data System (ADS)
Onaran, Efe; Villar, Soledad
2017-08-01
The network alignment problem asks for the best correspondence between two given graphs, so that the largest possible number of edges are matched. This problem appears in many scientific problems (like the study of protein-protein interactions) and it is very closely related to the quadratic assignment problem which has graph isomorphism, traveling salesman and minimum bisection problems as particular cases. The graph matching problem is NP-hard in general. However, under some restrictive models for the graphs, algorithms can approximate the alignment efficiently. In that spirit the recent work by Feizi and collaborators introduce EigenAlign, a fast spectral method with convergence guarantees for Erd-s-Renyí graphs. In this work we propose the algorithm Projected Power Alignment, which is a projected power iteration version of EigenAlign. We numerically show it improves the recovery rates of EigenAlign and we describe the theory that may be used to provide performance guarantees for Projected Power Alignment.
A binary linear programming formulation of the graph edit distance.
Justice, Derek; Hero, Alfred
2006-08-01
A binary linear programming formulation of the graph edit distance for unweighted, undirected graphs with vertex attributes is derived and applied to a graph recognition problem. A general formulation for editing graphs is used to derive a graph edit distance that is proven to be a metric, provided the cost function for individual edit operations is a metric. Then, a binary linear program is developed for computing this graph edit distance, and polynomial time methods for determining upper and lower bounds on the solution of the binary program are derived by applying solution methods for standard linear programming and the assignment problem. A recognition problem of comparing a sample input graph to a database of known prototype graphs in the context of a chemical information system is presented as an application of the new method. The costs associated with various edit operations are chosen by using a minimum normalized variance criterion applied to pairwise distances between nearest neighbors in the database of prototypes. The new metric is shown to perform quite well in comparison to existing metrics when applied to a database of chemical graphs.
Robust Algorithms for on Minor-Free Graphs Based on the Sherali-Adams Hierarchy
NASA Astrophysics Data System (ADS)
Magen, Avner; Moharrami, Mohammad
This work provides a Linear Programming-based Polynomial Time Approximation Scheme (PTAS) for two classical NP-hard problems on graphs when the input graph is guaranteed to be planar, or more generally Minor Free. The algorithm applies a sufficiently large number (some function of when approximation is required) of rounds of the so-called Sherali-Adams Lift-and-Project system. needed to obtain a -approximation, where f is some function that depends only on the graph that should be avoided as a minor. The problem we discuss are the well-studied problems, the and problems. An curious fact we expose is that in the world of minor-free graph, the is harder in some sense than the.
Stencils and problem partitionings: Their influence on the performance of multiple processor systems
NASA Technical Reports Server (NTRS)
Reed, D. A.; Adams, L. M.; Patrick, M. L.
1986-01-01
Given a discretization stencil, partitioning the problem domain is an important first step for the efficient solution of partial differential equations on multiple processor systems. Partitions are derived that minimize interprocessor communication when the number of processors is known a priori and each domain partition is assigned to a different processor. This partitioning technique uses the stencil structure to select appropriate partition shapes. For square problem domains, it is shown that non-standard partitions (e.g., hexagons) are frequently preferable to the standard square partitions for a variety of commonly used stencils. This investigation is concluded with a formalization of the relationship between partition shape, stencil structure, and architecture, allowing selection of optimal partitions for a variety of parallel systems.
Multiple graph regularized protein domain ranking.
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-11-19
Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Multiple graph regularized protein domain ranking
2012-01-01
Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. PMID:23157331
Decision net, directed graph, and neural net processing of imaging spectrometer data
NASA Technical Reports Server (NTRS)
Casasent, David; Liu, Shiaw-Dong; Yoneyama, Hideyuki; Barnard, Etienne
1989-01-01
A decision-net solution involving a novel hierarchical classifier and a set of multiple directed graphs, as well as a neural-net solution, are respectively presented for large-class problem and mixture problem treatments of imaging spectrometer data. The clustering method for hierarchical classifier design, when used with multiple directed graphs, yields an efficient decision net. New directed-graph rules for reducing local maxima as well as the number of perturbations required, and the new starting-node rules for extending the reachability and reducing the search time of the graphs, are noted to yield superior results, as indicated by an illustrative 500-class imaging spectrometer problem.
NASA Technical Reports Server (NTRS)
Drake, Michael J.; Boynton, William V.
1988-01-01
The effect of oxygen fugacity on the partitioning of REEs between hibonite and silicate melt is investigated in hibonite-growth experiments at 1470 C. The experimental procedures and apparatus are described, and the results are presented in extensive tables and graphs and characterized in detail. The absolute activity coefficients in hibonite are estimated as 330 for La, 1200 for Eu(3+), and 24,000 for Yb. It is inferred that ideal solution behavior cannot be assumed when calculating REE condensation temperatures for (Ca, Al)-rich inclusions in carbonaceous chondrites.
Reachability in K 3,3-Free Graphs and K 5-Free Graphs Is in Unambiguous Log-Space
NASA Astrophysics Data System (ADS)
Thierauf, Thomas; Wagner, Fabian
We show that the reachability problem for directed graphs that are either K 3,3-free or K 5-free is in unambiguous log-space, UL ∩ coUL. This significantly extends the result of Bourke, Tewari, and Vinodchandran that the reachability problem for directed planar graphs is in UL ∩ coUL.
Discriminative graph embedding for label propagation.
Nguyen, Canh Hao; Mamitsuka, Hiroshi
2011-09-01
In many applications, the available information is encoded in graph structures. This is a common problem in biological networks, social networks, web communities and document citations. We investigate the problem of classifying nodes' labels on a similarity graph given only a graph structure on the nodes. Conventional machine learning methods usually require data to reside in some Euclidean spaces or to have a kernel representation. Applying these methods to nodes on graphs would require embedding the graphs into these spaces. By embedding and then learning the nodes on graphs, most methods are either flexible with different learning objectives or efficient enough for large scale applications. We propose a method to embed a graph into a feature space for a discriminative purpose. Our idea is to include label information into the embedding process, making the space representation tailored to the task. We design embedding objective functions that the following learning formulations become spectral transforms. We then reformulate these spectral transforms into multiple kernel learning problems. Our method, while being tailored to the discriminative tasks, is efficient and can scale to massive data sets. We show the need of discriminative embedding on some simulations. Applying to biological network problems, our method is shown to outperform baselines.
Sketch Matching on Topology Product Graph.
Liang, Shuang; Luo, Jun; Liu, Wenyin; Wei, Yichen
2015-08-01
Sketch matching is the fundamental problem in sketch based interfaces. After years of study, it remains challenging when there exists large irregularity and variations in the hand drawn sketch shapes. While most existing works exploit topology relations and graph representations for this problem, they are usually limited by the coarse topology exploration and heuristic (thus suboptimal) similarity metrics between graphs. We present a new sketch matching method with two novel contributions. We introduce a comprehensive definition of topology relations, which results in a rich and informative graph representation of sketches. For graph matching, we propose topology product graph that retains the full correspondence for matching two graphs. Based on it, we derive an intuitive sketch similarity metric whose exact solution is easy to compute. In addition, the graph representation and new metric naturally support partial matching, an important practical problem that received less attention in the literature. Extensive experimental results on a real challenging dataset and the superior performance of our method show that it outperforms the state-of-the-art.
Lohse, Christian; Bassett, Danielle S; Lim, Kelvin O; Carlson, Jean M
2014-10-01
Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.
NASA Astrophysics Data System (ADS)
He, Xianjin; Zhang, Xinchang; Xin, Qinchuan
2018-02-01
Recognition of building group patterns (i.e., the arrangement and form exhibited by a collection of buildings at a given mapping scale) is important to the understanding and modeling of geographic space and is hence essential to a wide range of downstream applications such as map generalization. Most of the existing methods develop rigid rules based on the topographic relationships between building pairs to identify building group patterns and thus their applications are often limited. This study proposes a method to identify a variety of building group patterns that allow for map generalization. The method first identifies building group patterns from potential building clusters based on a machine-learning algorithm and further partitions the building clusters with no recognized patterns based on the graph partitioning method. The proposed method is applied to the datasets of three cities that are representative of the complex urban environment in Southern China. Assessment of the results based on the reference data suggests that the proposed method is able to recognize both regular (e.g., the collinear, curvilinear, and rectangular patterns) and irregular (e.g., the L-shaped, H-shaped, and high-density patterns) building group patterns well, given that the correctness values are consistently nearly 90% and the completeness values are all above 91% for three study areas. The proposed method shows promises in automated recognition of building group patterns that allows for map generalization.
A Direct Mapping of Max k-SAT and High Order Parity Checks to a Chimera Graph
Chancellor, N.; Zohren, S.; Warburton, P. A.; Benjamin, S. C.; Roberts, S.
2016-01-01
We demonstrate a direct mapping of max k-SAT problems (and weighted max k-SAT) to a Chimera graph, which is the non-planar hardware graph of the devices built by D-Wave Systems Inc. We further show that this mapping can be used to map a similar class of maximum satisfiability problems where the clauses are replaced by parity checks over potentially large numbers of bits. The latter is of specific interest for applications in decoding for communication. We discuss an example in which the decoding of a turbo code, which has been demonstrated to perform near the Shannon limit, can be mapped to a Chimera graph. The weighted max k-SAT problem is the most general class of satisfiability problems, so our result effectively demonstrates how any satisfiability problem may be directly mapped to a Chimera graph. Our methods faithfully reproduce the low energy spectrum of the target problems, so therefore may also be used for maximum entropy inference. PMID:27857179
Dynamic graph cuts for efficient inference in Markov Random Fields.
Kohli, Pushmeet; Torr, Philip H S
2007-12-01
Abstract-In this paper we present a fast new fully dynamic algorithm for the st-mincut/max-flow problem. We show how this algorithm can be used to efficiently compute MAP solutions for certain dynamically changing MRF models in computer vision such as image segmentation. Specifically, given the solution of the max-flow problem on a graph, the dynamic algorithm efficiently computes the maximum flow in a modified version of the graph. The time taken by it is roughly proportional to the total amount of change in the edge weights of the graph. Our experiments show that, when the number of changes in the graph is small, the dynamic algorithm is significantly faster than the best known static graph cut algorithm. We test the performance of our algorithm on one particular problem: the object-background segmentation problem for video. It should be noted that the application of our algorithm is not limited to the above problem, the algorithm is generic and can be used to yield similar improvements in many other cases that involve dynamic change.
NASA Astrophysics Data System (ADS)
Kriz, Igor; Loebl, Martin; Somberg, Petr
2013-05-01
We study various mathematical aspects of discrete models on graphs, specifically the Dimer and the Ising models. We focus on proving gluing formulas for individual summands of the partition function. We also obtain partial results regarding conjectured limits realized by fermions in rational conformal field theories.
F-RAG: Generating Atomic Coordinates from RNA Graphs by Fragment Assembly.
Jain, Swati; Schlick, Tamar
2017-11-24
Coarse-grained models represent attractive approaches to analyze and simulate ribonucleic acid (RNA) molecules, for example, for structure prediction and design, as they simplify the RNA structure to reduce the conformational search space. Our structure prediction protocol RAGTOP (RNA-As-Graphs Topology Prediction) represents RNA structures as tree graphs and samples graph topologies to produce candidate graphs. However, for a more detailed study and analysis, construction of atomic from coarse-grained models is required. Here we present our graph-based fragment assembly algorithm (F-RAG) to convert candidate three-dimensional (3D) tree graph models, produced by RAGTOP into atomic structures. We use our related RAG-3D utilities to partition graphs into subgraphs and search for structurally similar atomic fragments in a data set of RNA 3D structures. The fragments are edited and superimposed using common residues, full atomic models are scored using RAGTOP's knowledge-based potential, and geometries of top scoring models is optimized. To evaluate our models, we assess all-atom RMSDs and Interaction Network Fidelity (a measure of residue interactions) with respect to experimentally solved structures and compare our results to other fragment assembly programs. For a set of 50 RNA structures, we obtain atomic models with reasonable geometries and interactions, particularly good for RNAs containing junctions. Additional improvements to our protocol and databases are outlined. These results provide a good foundation for further work on RNA structure prediction and design applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mutual proximity graphs for improved reachability in music recommendation.
Flexer, Arthur; Stevens, Jeff
2018-01-01
This paper is concerned with the impact of hubness, a general problem of machine learning in high-dimensional spaces, on a real-world music recommendation system based on visualisation of a k-nearest neighbour (knn) graph. Due to a problem of measuring distances in high dimensions, hub objects are recommended over and over again while anti-hubs are nonexistent in recommendation lists, resulting in poor reachability of the music catalogue. We present mutual proximity graphs, which are an alternative to knn and mutual knn graphs, and are able to avoid hub vertices having abnormally high connectivity. We show that mutual proximity graphs yield much better graph connectivity resulting in improved reachability compared to knn graphs, mutual knn graphs and mutual knn graphs enhanced with minimum spanning trees, while simultaneously reducing the negative effects of hubness.
Mutual proximity graphs for improved reachability in music recommendation
Flexer, Arthur; Stevens, Jeff
2018-01-01
This paper is concerned with the impact of hubness, a general problem of machine learning in high-dimensional spaces, on a real-world music recommendation system based on visualisation of a k-nearest neighbour (knn) graph. Due to a problem of measuring distances in high dimensions, hub objects are recommended over and over again while anti-hubs are nonexistent in recommendation lists, resulting in poor reachability of the music catalogue. We present mutual proximity graphs, which are an alternative to knn and mutual knn graphs, and are able to avoid hub vertices having abnormally high connectivity. We show that mutual proximity graphs yield much better graph connectivity resulting in improved reachability compared to knn graphs, mutual knn graphs and mutual knn graphs enhanced with minimum spanning trees, while simultaneously reducing the negative effects of hubness. PMID:29348779
Convergence of Mayer and Virial expansions and the Penrose tree-graph identity
NASA Astrophysics Data System (ADS)
Procacci, Aldo; Yuhjtman, Sergio A.
2017-01-01
We establish new lower bounds for the convergence radius of the Mayer series and the Virial series of a continuous particle system interacting via a stable and tempered pair potential. Our bounds considerably improve those given by Penrose (J Math Phys 4:1312, 1963) and Ruelle (Ann Phys 5:109-120, 1963) for the Mayer series and by Lebowitz and Penrose (J Math Phys 7:841-847, 1964) for the Virial series. To get our results, we exploit the tree-graph identity given by Penrose (Statistical mechanics: foundations and applications. Benjamin, New York, 1967) using a new partition scheme based on minimum spanning trees.
MISAGA: An Algorithm for Mining Interesting Subgraphs in Attributed Graphs.
He, Tiantian; Chan, Keith C C
2018-05-01
An attributed graph contains vertices that are associated with a set of attribute values. Mining clusters or communities, which are interesting subgraphs in the attributed graph is one of the most important tasks of graph analytics. Many problems can be defined as the mining of interesting subgraphs in attributed graphs. Algorithms that discover subgraphs based on predefined topologies cannot be used to tackle these problems. To discover interesting subgraphs in the attributed graph, we propose an algorithm called mining interesting subgraphs in attributed graph algorithm (MISAGA). MISAGA performs its tasks by first using a probabilistic measure to determine whether the strength of association between a pair of attribute values is strong enough to be interesting. Given the interesting pairs of attribute values, then the degree of association is computed for each pair of vertices using an information theoretic measure. Based on the edge structure and degree of association between each pair of vertices, MISAGA identifies interesting subgraphs by formulating it as a constrained optimization problem and solves it by identifying the optimal affiliation of subgraphs for the vertices in the attributed graph. MISAGA has been tested with several large-sized real graphs and is found to be potentially very useful for various applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, Kathleen E.; Humble, Travis S.
Using quantum annealing to solve an optimization problem requires minor embedding a logic graph into a known hardware graph. We introduce the minor set cover (MSC) of a known graph GG : a subset of graph minors which contain any remaining minor of the graph as a subgraph, in an effort to reduce the complexity of the minor embedding problem. Any graph that can be embedded into GG will be embeddable into a member of the MSC. Focusing on embedding into the hardware graph of commercially available quantum annealers, we establish the MSC for a particular known virtual hardware, whichmore » is a complete bipartite graph. Furthermore, we show that the complete bipartite graph K N,N has a MSC of N minors, from which K N+1 is identified as the largest clique minor of K N,N. In the case of determining the largest clique minor of hardware with faults we briefly discussed this open question.« less
Graph Coloring Used to Model Traffic Lights.
ERIC Educational Resources Information Center
Williams, John
1992-01-01
Two scheduling problems, one involving setting up an examination schedule and the other describing traffic light problems, are modeled as colorings of graphs consisting of a set of vertices and edges. The chromatic number, the least number of colors necessary for coloring a graph, is employed in the solutions. (MDH)
Efficient solution for finding Hamilton cycles in undirected graphs.
Alhalabi, Wadee; Kitanneh, Omar; Alharbi, Amira; Balfakih, Zain; Sarirete, Akila
2016-01-01
The Hamilton cycle problem is closely related to a series of famous problems and puzzles (traveling salesman problem, Icosian game) and, due to the fact that it is NP-complete, it was extensively studied with different algorithms to solve it. The most efficient algorithm is not known. In this paper, a necessary condition for an arbitrary un-directed graph to have Hamilton cycle is proposed. Based on this condition, a mathematical solution for this problem is developed and several proofs and an algorithmic approach are introduced. The algorithm is successfully implemented on many Hamiltonian and non-Hamiltonian graphs. This provides a new effective approach to solve a problem that is fundamental in graph theory and can influence the manner in which the existing applications are used and improved.
Function plot response: A scalable system for teaching kinematics graphs
NASA Astrophysics Data System (ADS)
Laverty, James; Kortemeyer, Gerd
2012-08-01
Understanding and interpreting graphs are essential skills in all sciences. While students are mostly proficient in plotting given functions and reading values off graphs, they frequently lack the ability to construct and interpret graphs in a meaningful way. Students can use graphs as representations of value pairs, but often fail to interpret them as the representation of functions, and mostly fail to use them as representations of physical reality. Working with graphs in classroom settings has been shown to improve student abilities with graphs, particularly when the students can interact with them. We introduce a novel problem type in an online homework system, which requires students to construct the graphs themselves in free form, and requires no hand-grading by instructors. Initial experiences using the new problem type in an introductory physics course are reported.
Exactly solved models on planar graphs with vertices in {Z}^3
NASA Astrophysics Data System (ADS)
Kels, Andrew P.
2017-12-01
It is shown how exactly solved edge interaction models on the square lattice, may be extended onto more general planar graphs, with edges connecting a subset of next nearest neighbour vertices of {Z}3 . This is done by using local deformations of the square lattice, that arise through the use of the star-triangle relation. Similar to Baxter’s Z-invariance property, these local deformations leave the partition function invariant up to some simple factors coming from the star-triangle relation. The deformations used here extend the usual formulation of Z-invariance, by requiring the introduction of oriented rapidity lines which form directed closed paths in the rapidity graph of the model. The quasi-classical limit is also considered, in which case the deformations imply a classical Z-invariance property, as well as a related local closure relation, for the action functional of a system of classical discrete Laplace equations.
Individualized Math Problems in Graphs and Tables. Oregon Vo-Tech Mathematics Problem Sets.
ERIC Educational Resources Information Center
Cosler, Norma, Ed.
This is one of eighteen sets of individualized mathematics problems developed by the Oregon Vo-Tech Math Project. Each of these problem packages is organized around a mathematical topic and contains problems related to diverse vocations. Solutions are provided for all problems. Problems involving the construction and interpretation of graphs and…
Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets
NASA Astrophysics Data System (ADS)
Hamilton, Kathleen E.; Humble, Travis S.
2017-04-01
Using quantum annealing to solve an optimization problem requires minor embedding a logic graph into a known hardware graph. In an effort to reduce the complexity of the minor embedding problem, we introduce the minor set cover (MSC) of a known graph G: a subset of graph minors which contain any remaining minor of the graph as a subgraph. Any graph that can be embedded into G will be embeddable into a member of the MSC. Focusing on embedding into the hardware graph of commercially available quantum annealers, we establish the MSC for a particular known virtual hardware, which is a complete bipartite graph. We show that the complete bipartite graph K_{N,N} has a MSC of N minors, from which K_{N+1} is identified as the largest clique minor of K_{N,N}. The case of determining the largest clique minor of hardware with faults is briefly discussed but remains an open question.
Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets
Hamilton, Kathleen E.; Humble, Travis S.
2017-02-23
Using quantum annealing to solve an optimization problem requires minor embedding a logic graph into a known hardware graph. We introduce the minor set cover (MSC) of a known graph GG : a subset of graph minors which contain any remaining minor of the graph as a subgraph, in an effort to reduce the complexity of the minor embedding problem. Any graph that can be embedded into GG will be embeddable into a member of the MSC. Focusing on embedding into the hardware graph of commercially available quantum annealers, we establish the MSC for a particular known virtual hardware, whichmore » is a complete bipartite graph. Furthermore, we show that the complete bipartite graph K N,N has a MSC of N minors, from which K N+1 is identified as the largest clique minor of K N,N. In the case of determining the largest clique minor of hardware with faults we briefly discussed this open question.« less
Residuals-Based Subgraph Detection with Cue Vertices
2015-11-30
Workshop, 2012, pp. 129–132. [5] M. E. J. Newman , “Finding community structure in networks using the eigenvectors of matrices,” Phys. Rev. E, vol. 74, no...from Data, vol. 1, no. 1, 2007. [7] M. W. Mahoney , L. Orecchia, and N. K. Vishnoi, “A spectral algorithm for improving graph partitions,” CoRR, vol. abs
Minimizing communication cost among distributed controllers in software defined networks
NASA Astrophysics Data System (ADS)
Arlimatti, Shivaleela; Elbreiki, Walid; Hassan, Suhaidi; Habbal, Adib; Elshaikh, Mohamed
2016-08-01
Software Defined Networking (SDN) is a new paradigm to increase the flexibility of today's network by promising for a programmable network. The fundamental idea behind this new architecture is to simplify network complexity by decoupling control plane and data plane of the network devices, and by making the control plane centralized. Recently controllers have distributed to solve the problem of single point of failure, and to increase scalability and flexibility during workload distribution. Even though, controllers are flexible and scalable to accommodate more number of network switches, yet the problem of intercommunication cost between distributed controllers is still challenging issue in the Software Defined Network environment. This paper, aims to fill the gap by proposing a new mechanism, which minimizes intercommunication cost with graph partitioning algorithm, an NP hard problem. The methodology proposed in this paper is, swapping of network elements between controller domains to minimize communication cost by calculating communication gain. The swapping of elements minimizes inter and intra communication cost among network domains. We validate our work with the OMNeT++ simulation environment tool. Simulation results show that the proposed mechanism minimizes the inter domain communication cost among controllers compared to traditional distributed controllers.
Exact and approximate graph matching using random walks.
Gori, Marco; Maggini, Marco; Sarti, Lorenzo
2005-07-01
In this paper, we propose a general framework for graph matching which is suitable for different problems of pattern recognition. The pattern representation we assume is at the same time highly structured, like for classic syntactic and structural approaches, and of subsymbolic nature with real-valued features, like for connectionist and statistic approaches. We show that random walk based models, inspired by Google's PageRank, give rise to a spectral theory that nicely enhances the graph topological features at node level. As a straightforward consequence, we derive a polynomial algorithm for the classic graph isomorphism problem, under the restriction of dealing with Markovian spectrally distinguishable graphs (MSD), a class of graphs that does not seem to be easily reducible to others proposed in the literature. The experimental results that we found on different test-beds of the TC-15 graph database show that the defined MSD class "almost always" covers the database, and that the proposed algorithm is significantly more efficient than top scoring VF algorithm on the same data. Most interestingly, the proposed approach is very well-suited for dealing with partial and approximate graph matching problems, derived for instance from image retrieval tasks. We consider the objects of the COIL-100 visual collection and provide a graph-based representation, whose node's labels contain appropriate visual features. We show that the adoption of classic bipartite graph matching algorithms offers a straightforward generalization of the algorithm given for graph isomorphism and, finally, we report very promising experimental results on the COIL-100 visual collection.
Some cycle-supermagic labelings of the calendula graphs
NASA Astrophysics Data System (ADS)
Pradipta, T. R.; Salman, A. N. M.
2018-01-01
In this paper, we introduce a calendula graph, denoted by Clm,n . It is a graph constructed from a cycle on m vertices Cm and m copies of Cn which are Cn1 , Cn2 , ⋯, Cnm and grafting the i-th edge of Cm to an edge of in Cni for each i ∈ {1,2,⋯,m}. A graph G = (V, E) admits a Cn -covering, if every edge e ∈ E(G) belongs to a subgraph of G isomorphic to Cn . The graph G is called cycle-magic, if there exists a total labeling ϕ: V ∪ E → {1,2,…,|V|+|E|} such that for every subgraph Cn ‧ = (V‧,E‧) of G isomorphic to Cn has the same weight. In this case, the weight of Cn , denoted by ϕ(Cn ’), is defined as ∑ v∈V(C’n ) ϕ(v) + ∑ e∈E(C’n ) ϕ(e). Furthermore, G is called cycle-supermagic, if ϕ:V→{1,2,…,|V|}. In this paper, we provide some cycle-supermagic labelings of calendula graphs. In order to prove it, we develop a technique, to make a partition of a multiset into m sub-multisets with the same cardinality such that the sum of all elements of each sub-multiset is same. The technique is called an m-balanced multiset.
Domain decomposition methods in aerodynamics
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.; Saltz, Joel
1990-01-01
Compressible Euler equations are solved for two-dimensional problems by a preconditioned conjugate gradient-like technique. An approximate Riemann solver is used to compute the numerical fluxes to second order accuracy in space. Two ways to achieve parallelism are tested, one which makes use of parallelism inherent in triangular solves and the other which employs domain decomposition techniques. The vectorization/parallelism in triangular solves is realized by the use of a recording technique called wavefront ordering. This process involves the interpretation of the triangular matrix as a directed graph and the analysis of the data dependencies. It is noted that the factorization can also be done in parallel with the wave front ordering. The performances of two ways of partitioning the domain, strips and slabs, are compared. Results on Cray YMP are reported for an inviscid transonic test case. The performances of linear algebra kernels are also reported.
Performance Enhancement Strategies for Multi-Block Overset Grid CFD Applications
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Biswas, Rupak
2003-01-01
The overset grid methodology has significantly reduced time-to-solution of highfidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process resolves the geometrical complexity of the problem domain by using separately generated but overlapping structured discretization grids that periodically exchange information through interpolation. However, high performance computations of such large-scale realistic applications must be handled efficiently on state-of-the-art parallel supercomputers. This paper analyzes the effects of various performance enhancement strategies on the parallel efficiency of an overset grid Navier-Stokes CFD application running on an SGI Origin2000 machinc. Specifically, the role of asynchronous communication, grid splitting, and grid grouping strategies are presented and discussed. Details of a sophisticated graph partitioning technique for grid grouping are also provided. Results indicate that performance depends critically on the level of latency hiding and the quality of load balancing across the processors.
NASA Astrophysics Data System (ADS)
Sur, Chiranjib; Shukla, Anupam
2018-03-01
Bacteria Foraging Optimisation Algorithm is a collective behaviour-based meta-heuristics searching depending on the social influence of the bacteria co-agents in the search space of the problem. The algorithm faces tremendous hindrance in terms of its application for discrete problems and graph-based problems due to biased mathematical modelling and dynamic structure of the algorithm. This had been the key factor to revive and introduce the discrete form called Discrete Bacteria Foraging Optimisation (DBFO) Algorithm for discrete problems which exceeds the number of continuous domain problems represented by mathematical and numerical equations in real life. In this work, we have mainly simulated a graph-based road multi-objective optimisation problem and have discussed the prospect of its utilisation in other similar optimisation problems and graph-based problems. The various solution representations that can be handled by this DBFO has also been discussed. The implications and dynamics of the various parameters used in the DBFO are illustrated from the point view of the problems and has been a combination of both exploration and exploitation. The result of DBFO has been compared with Ant Colony Optimisation and Intelligent Water Drops Algorithms. Important features of DBFO are that the bacteria agents do not depend on the local heuristic information but estimates new exploration schemes depending upon the previous experience and covered path analysis. This makes the algorithm better in combination generation for graph-based problems and combination generation for NP hard problems.
Learning locality preserving graph from data.
Zhang, Yan-Ming; Huang, Kaizhu; Hou, Xinwen; Liu, Cheng-Lin
2014-11-01
Machine learning based on graph representation, or manifold learning, has attracted great interest in recent years. As the discrete approximation of data manifold, the graph plays a crucial role in these kinds of learning approaches. In this paper, we propose a novel learning method for graph construction, which is distinct from previous methods in that it solves an optimization problem with the aim of directly preserving the local information of the original data set. We show that the proposed objective has close connections with the popular Laplacian Eigenmap problem, and is hence well justified. The optimization turns out to be a quadratic programming problem with n(n-1)/2 variables (n is the number of data points). Exploiting the sparsity of the graph, we further propose a more efficient cutting plane algorithm to solve the problem, making the method better scalable in practice. In the context of clustering and semi-supervised learning, we demonstrated the advantages of our proposed method by experiments.
NASA Astrophysics Data System (ADS)
Shakeri, Nadim; Jalili, Saeed; Ahmadi, Vahid; Rasoulzadeh Zali, Aref; Goliaei, Sama
2015-01-01
The problem of finding the Hamiltonian path in a graph, or deciding whether a graph has a Hamiltonian path or not, is an NP-complete problem. No exact solution has been found yet, to solve this problem using polynomial amount of time and space. In this paper, we propose a two dimensional (2-D) optical architecture based on optical electronic devices such as micro ring resonators, optical circulators and MEMS based mirror (MEMS-M) to solve the Hamiltonian Path Problem, for undirected graphs in linear time. It uses a heuristic algorithm and employs n+1 different wavelengths of a light ray, to check whether a Hamiltonian path exists or not on a graph with n vertices. Then if a Hamiltonian path exists, it reports the path. The device complexity of the proposed architecture is O(n2).
On spatial coalescents with multiple mergers in two dimensions.
Heuer, Benjamin; Sturm, Anja
2013-08-01
We consider the genealogy of a sample of individuals taken from a spatially structured population when the variance of the offspring distribution is relatively large. The space is structured into discrete sites of a graph G. If the population size at each site is large, spatial coalescents with multiple mergers, so called spatial Λ-coalescents, for which ancestral lines migrate in space and coalesce according to some Λ-coalescent mechanism, are shown to be appropriate approximations to the genealogy of a sample of individuals. We then consider as the graph G the two dimensional torus with side length 2L+1 and show that as L tends to infinity, and time is rescaled appropriately, the partition structure of spatial Λ-coalescents of individuals sampled far enough apart converges to the partition structure of a non-spatial Kingman coalescent. From a biological point of view this means that in certain circumstances both the spatial structure as well as larger variances of the underlying offspring distribution are harder to detect from the sample. However, supplemental simulations show that for moderately large L the different structure is still evident. Copyright © 2012 Elsevier Inc. All rights reserved.
In-Memory Graph Databases for Web-Scale Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castellana, Vito G.; Morari, Alessandro; Weaver, Jesse R.
RDF databases have emerged as one of the most relevant way for organizing, integrating, and managing expo- nentially growing, often heterogeneous, and not rigidly structured data for a variety of scientific and commercial fields. In this paper we discuss the solutions integrated in GEMS (Graph database Engine for Multithreaded Systems), a software framework for implementing RDF databases on commodity, distributed-memory high-performance clusters. Unlike the majority of current RDF databases, GEMS has been designed from the ground up to primarily employ graph-based methods. This is reflected in all the layers of its stack. The GEMS framework is composed of: a SPARQL-to-C++more » compiler, a library of data structures and related methods to access and modify them, and a custom runtime providing lightweight software multithreading, network messages aggregation and a partitioned global address space. We provide an overview of the framework, detailing its component and how they have been closely designed and customized to address issues of graph methods applied to large-scale datasets on clusters. We discuss in details the principles that enable automatic translation of the queries (expressed in SPARQL, the query language of choice for RDF databases) to graph methods, and identify differences with respect to other RDF databases.« less
Pyke, Aryn; Betts, Shawn; Fincham, Jon M; Anderson, John R
2015-03-01
Different external representations for learning and solving mathematical operations may affect learning and transfer. To explore the effects of learning representations, learners were each introduced to two new operations (b↑n and b↓n) via either formulas or graphical representations. Both groups became adept at solving regular (trained) problems. During transfer, no external formulas or graphs were present; however, graph learners' knowledge could allow them to mentally associate problem expressions with visuospatial referents. The angular gyrus (AG) has recently been hypothesized to map problems to mental referents (e.g., symbolic answers; Grabner, Ansari, Koschutnig, Reishofer, & Ebner Human Brain Mapping, 34, 1013-1024, 2013), and we sought to test this hypothesis for visuospatial referents. To determine whether the AG and other math (horizontal intraparietal sulcus) and visuospatial (fusiform and posterior superior parietal lobule [PSPL]) regions were implicated in processing visuospatial mental referents, we included two types of transfer problems, computational and relational, which differed in referential load (one graph vs. two). During solving, the activations in AG, PSPL, and fusiform reflected the referential load manipulation among graph but not formula learners. Furthermore, the AG was more active among graph learners overall, which is consistent with its hypothesized referential role. Behavioral performance was comparable across the groups on computational transfer problems, which could be solved in a way that incorporated learners' respective procedures for regular problems. However, graph learners were more successful on relational transfer problems, which assessed their understanding of the relations between pairs of similar problems within and across operations. On such problems, their behavioral performance correlated with activation in the AG, fusiform, and a relational processing region (BA 10).
Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain.
Pang, Jiahao; Cheung, Gene
2017-04-01
Inverse imaging problems are inherently underdetermined, and hence, it is important to employ appropriate image priors for regularization. One recent popular prior-the graph Laplacian regularizer-assumes that the target pixel patch is smooth with respect to an appropriately chosen graph. However, the mechanisms and implications of imposing the graph Laplacian regularizer on the original inverse problem are not well understood. To address this problem, in this paper, we interpret neighborhood graphs of pixel patches as discrete counterparts of Riemannian manifolds and perform analysis in the continuous domain, providing insights into several fundamental aspects of graph Laplacian regularization for image denoising. Specifically, we first show the convergence of the graph Laplacian regularizer to a continuous-domain functional, integrating a norm measured in a locally adaptive metric space. Focusing on image denoising, we derive an optimal metric space assuming non-local self-similarity of pixel patches, leading to an optimal graph Laplacian regularizer for denoising in the discrete domain. We then interpret graph Laplacian regularization as an anisotropic diffusion scheme to explain its behavior during iterations, e.g., its tendency to promote piecewise smooth signals under certain settings. To verify our analysis, an iterative image denoising algorithm is developed. Experimental results show that our algorithm performs competitively with state-of-the-art denoising methods, such as BM3D for natural images, and outperforms them significantly for piecewise smooth images.
Quantum speedup of the traveling-salesman problem for bounded-degree graphs
NASA Astrophysics Data System (ADS)
Moylett, Dominic J.; Linden, Noah; Montanaro, Ashley
2017-03-01
The traveling-salesman problem is one of the most famous problems in graph theory. However, little is currently known about the extent to which quantum computers could speed up algorithms for the problem. In this paper, we prove a quadratic quantum speedup when the degree of each vertex is at most 3 by applying a quantum backtracking algorithm to a classical algorithm by Xiao and Nagamochi. We then use similar techniques to accelerate a classical algorithm for when the degree of each vertex is at most 4, before speeding up higher-degree graphs via reductions to these instances.
Convergence of the Graph Allen-Cahn Scheme
NASA Astrophysics Data System (ADS)
Luo, Xiyang; Bertozzi, Andrea L.
2017-05-01
The graph Laplacian and the graph cut problem are closely related to Markov random fields, and have many applications in clustering and image segmentation. The diffuse interface model is widely used for modeling in material science, and can also be used as a proxy to total variation minimization. In Bertozzi and Flenner (Multiscale Model Simul 10(3):1090-1118, 2012), an algorithm was developed to generalize the diffuse interface model to graphs to solve the graph cut problem. This work analyzes the conditions for the graph diffuse interface algorithm to converge. Using techniques from numerical PDE and convex optimization, monotonicity in function value and convergence under an a posteriori condition are shown for a class of schemes under a graph-independent stepsize condition. We also generalize our results to incorporate spectral truncation, a common technique used to save computation cost, and also to the case of multiclass classification. Various numerical experiments are done to compare theoretical results with practical performance.
Modification of Prim’s algorithm on complete broadcasting graph
NASA Astrophysics Data System (ADS)
Dairina; Arif, Salmawaty; Munzir, Said; Halfiani, Vera; Ramli, Marwan
2017-09-01
Broadcasting is an information dissemination from one object to another object through communication between two objects in a network. Broadcasting for n objects can be solved by n - 1 communications and minimum time unit defined by ⌈2log n⌉ In this paper, weighted graph broadcasting is considered. The minimum weight of a complete broadcasting graph will be determined. Broadcasting graph is said to be complete if every vertex is connected. Thus to determine the minimum weight of complete broadcasting graph is equivalent to determine the minimum spanning tree of a complete graph. The Kruskal’s and Prim’s algorithm will be used to determine the minimum weight of a complete broadcasting graph regardless the minimum time unit ⌈2log n⌉ and modified Prim’s algorithm for the problems of the minimum time unit ⌈2log n⌉ is done. As an example case, here, the training of trainer problem is solved using these algorithms.
Novo, Leonardo; Chakraborty, Shantanav; Mohseni, Masoud; Neven, Hartmut; Omar, Yasser
2015-01-01
Continuous time quantum walks provide an important framework for designing new algorithms and modelling quantum transport and state transfer problems. Often, the graph representing the structure of a problem contains certain symmetries that confine the dynamics to a smaller subspace of the full Hilbert space. In this work, we use invariant subspace methods, that can be computed systematically using the Lanczos algorithm, to obtain the reduced set of states that encompass the dynamics of the problem at hand without the specific knowledge of underlying symmetries. First, we apply this method to obtain new instances of graphs where the spatial quantum search algorithm is optimal: complete graphs with broken links and complete bipartite graphs, in particular, the star graph. These examples show that regularity and high-connectivity are not needed to achieve optimal spatial search. We also show that this method considerably simplifies the calculation of quantum transport efficiencies. Furthermore, we observe improved efficiencies by removing a few links from highly symmetric graphs. Finally, we show that this reduction method also allows us to obtain an upper bound for the fidelity of a single qubit transfer on an XY spin network. PMID:26330082
A partitioning strategy for nonuniform problems on multiprocessors
NASA Technical Reports Server (NTRS)
Berger, M. J.; Bokhari, S.
1985-01-01
The partitioning of a problem on a domain with unequal work estimates in different subddomains is considered in a way that balances the work load across multiple processors. Such a problem arises for example in solving partial differential equations using an adaptive method that places extra grid points in certain subregions of the domain. A binary decomposition of the domain is used to partition it into rectangles requiring equal computational effort. The communication costs of mapping this partitioning onto different microprocessors: a mesh-connected array, a tree machine and a hypercube is then studied. The communication cost expressions can be used to determine the optimal depth of the above partitioning.
Attribute-based Decision Graphs: A framework for multiclass data classification.
Bertini, João Roberto; Nicoletti, Maria do Carmo; Zhao, Liang
2017-01-01
Graph-based algorithms have been successfully applied in machine learning and data mining tasks. A simple but, widely used, approach to build graphs from vector-based data is to consider each data instance as a vertex and connecting pairs of it using a similarity measure. Although this abstraction presents some advantages, such as arbitrary shape representation of the original data, it is still tied to some drawbacks, for example, it is dependent on the choice of a pre-defined distance metric and is biased by the local information among data instances. Aiming at exploring alternative ways to build graphs from data, this paper proposes an algorithm for constructing a new type of graph, called Attribute-based Decision Graph-AbDG. Given a vector-based data set, an AbDG is built by partitioning each data attribute range into disjoint intervals and representing each interval as a vertex. The edges are then established between vertices from different attributes according to a pre-defined pattern. Classification is performed through a matching process among the attribute values of the new instance and AbDG. Moreover, AbDG provides an inner mechanism to handle missing attribute values, which contributes for expanding its applicability. Results of classification tasks have shown that AbDG is a competitive approach when compared to well-known multiclass algorithms. The main contribution of the proposed framework is the combination of the advantages of attribute-based and graph-based techniques to perform robust pattern matching data classification, while permitting the analysis the input data considering only a subset of its attributes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Super (a*, d*)-ℋ-antimagic total covering of second order of shackle graphs
NASA Astrophysics Data System (ADS)
Hesti Agustin, Ika; Dafik; Nisviasari, Rosanita; Prihandini, R. M.
2017-12-01
Let H be a simple and connected graph. A shackle of graph H, denoted by G = shack(H, v, n), is a graph G constructed by non-trivial graphs H 1, H 2, …, H n such that, for every 1 ≤ s, t ≤ n, H s and Ht have no a common vertex with |s - t| ≥ 2 and for every 1 ≤ i ≤ n - 1, Hi and H i+1 share exactly one common vertex v, called connecting vertex, and those k - 1 connecting vertices are all distinct. The graph G is said to be an (a*, d*)-H-antimagic total graph of second order if there exist a bijective function f : V(G) ∪ E(G) → {1, 2, …, |V(G)| + |E(G)|} such that for all subgraphs isomorphic to H, the total H-weights W(H)=\\displaystyle {\\sum }v\\in V(H)f(v)+\\displaystyle {\\sum }e\\in E(H)f(e) form an arithmetic sequence of second order of \\{a* ,a* +d* ,a* +3d* ,a* +6d* ,\\ldots ,a* +(\\frac{{n}2-n}{2})d* \\}, where a* and d* are positive integers and n is the number of all subgraphs isomorphic to H. An (a*, d*)-H-antimagic total labeling of second order f is called super if the smallest labels appear in the vertices. In this paper, we study a super (a*, d*)-H antimagic total labeling of second order of G = shack(H, v, n) by using a partition technique of second order.
Exploiting Elementary Landscapes for TSP, Vehicle Routing and Scheduling
2015-09-03
Traveling Salesman Problem (TSP) and Graph Coloring are elementary. Problems such as MAX-kSAT are a superposition of k elementary landscapes. This...search space. Problems such as the Traveling Salesman Problem (TSP), Graph Coloring, the Frequency Assignment Problem , as well as Min-Cut and Max-Cut...echoing our earlier esults on the Traveling Salesman Problem . Using two locally optimal solutions as “parent” solutions, we have developed a
GRADIENT: Graph Analytic Approach for Discovering Irregular Events, Nascent and Temporal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Emilie
2015-03-31
Finding a time-ordered signature within large graphs is a computationally complex problem due to the combinatorial explosion of potential patterns. GRADIENT is designed to search and understand that problem space.
GRADIENT: Graph Analytic Approach for Discovering Irregular Events, Nascent and Temporal
Hogan, Emilie
2018-01-16
Finding a time-ordered signature within large graphs is a computationally complex problem due to the combinatorial explosion of potential patterns. GRADIENT is designed to search and understand that problem space.
Renal cortex segmentation using optimal surface search with novel graph construction.
Li, Xiuli; Chen, Xinjian; Yao, Jianhua; Zhang, Xing; Tian, Jie
2011-01-01
In this paper, we propose a novel approach to solve the renal cortex segmentation problem, which has rarely been studied. In this study, the renal cortex segmentation problem is handled as a multiple-surfaces extraction problem, which is solved using the optimal surface search method. We propose a novel graph construction scheme in the optimal surface search to better accommodate multiple surfaces. Different surface sub-graphs are constructed according to their properties, and inter-surface relationships are also modeled in the graph. The proposed method was tested on 17 clinical CT datasets. The true positive volume fraction (TPVF) and false positive volume fraction (FPVF) are 74.10% and 0.08%, respectively. The experimental results demonstrate the effectiveness of the proposed method.
Graph edit distance from spectral seriation.
Robles-Kelly, Antonio; Hancock, Edwin R
2005-03-01
This paper is concerned with computing graph edit distance. One of the criticisms that can be leveled at existing methods for computing graph edit distance is that they lack some of the formality and rigor of the computation of string edit distance. Hence, our aim is to convert graphs to string sequences so that string matching techniques can be used. To do this, we use a graph spectral seriation method to convert the adjacency matrix into a string or sequence order. We show how the serial ordering can be established using the leading eigenvector of the graph adjacency matrix. We pose the problem of graph-matching as a maximum a posteriori probability (MAP) alignment of the seriation sequences for pairs of graphs. This treatment leads to an expression in which the edit cost is the negative logarithm of the a posteriori sequence alignment probability. We compute the edit distance by finding the sequence of string edit operations which minimizes the cost of the path traversing the edit lattice. The edit costs are determined by the components of the leading eigenvectors of the adjacency matrix and by the edge densities of the graphs being matched. We demonstrate the utility of the edit distance on a number of graph clustering problems.
Enhanced Vaccine Control of Epidemics in Adaptive Networks
2010-04-29
than random vaccination 32. When vaccine is very limited, outbreaks can be minimized by fragmenting the network via a graph partitioning strategy...Although an outbreak could transiently decrease network connectivity in a real social network, long term reductions in average connectivity are...37, cholera and typhoid fever 35, as well as pertussis 38. Although not all of the above diseases currently possess a vaccine, research is ongo
Spadafore, Maxwell; Najarian, Kayvan; Boyle, Alan P
2017-11-29
Transcription factors (TFs) form a complex regulatory network within the cell that is crucial to cell functioning and human health. While methods to establish where a TF binds to DNA are well established, these methods provide no information describing how TFs interact with one another when they do bind. TFs tend to bind the genome in clusters, and current methods to identify these clusters are either limited in scope, unable to detect relationships beyond motif similarity, or not applied to TF-TF interactions. Here, we present a proximity-based graph clustering approach to identify TF clusters using either ChIP-seq or motif search data. We use TF co-occurrence to construct a filtered, normalized adjacency matrix and use the Markov Clustering Algorithm to partition the graph while maintaining TF-cluster and cluster-cluster interactions. We then apply our graph structure beyond clustering, using it to increase the accuracy of motif-based TFBS searching for an example TF. We show that our method produces small, manageable clusters that encapsulate many known, experimentally validated transcription factor interactions and that our method is capable of capturing interactions that motif similarity methods might miss. Our graph structure is able to significantly increase the accuracy of motif TFBS searching, demonstrating that the TF-TF connections within the graph correlate with biological TF-TF interactions. The interactions identified by our method correspond to biological reality and allow for fast exploration of TF clustering and regulatory dynamics.
Design tool for multiprocessor scheduling and evaluation of iterative dataflow algorithms
NASA Technical Reports Server (NTRS)
Jones, Robert L., III
1995-01-01
A graph-theoretic design process and software tool is defined for selecting a multiprocessing scheduling solution for a class of computational problems. The problems of interest are those that can be described with a dataflow graph and are intended to be executed repetitively on a set of identical processors. Typical applications include signal processing and control law problems. Graph-search algorithms and analysis techniques are introduced and shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The software tool applies the design process to a given problem and includes performance optimization through the inclusion of additional precedence constraints among the schedulable tasks.
NASA Astrophysics Data System (ADS)
Albirri, E. R.; Sugeng, K. A.; Aldila, D.
2018-04-01
Nowadays, in the modern world, since technology and human civilization start to progress, all city in the world is almost connected. The various places in this world are easier to visit. It is an impact of transportation technology and highway construction. The cities which have been connected can be represented by graph. Graph clustering is one of ways which is used to answer some problems represented by graph. There are some methods in graph clustering to solve the problem spesifically. One of them is Highly Connected Subgraphs (HCS) method. HCS is used to identify cluster based on the graph connectivity k for graph G. The connectivity in graph G is denoted by k(G)> \\frac{n}{2} that n is the total of vertices in G, then it is called as HCS or the cluster. This research used literature review and completed with simulation of program in a software. We modified HCS algorithm by using weighted graph. The modification is located in the Process Phase. Process Phase is used to cut the connected graph G into two subgraphs H and \\bar{H}. We also made a program by using software Octave-401. Then we applied the data of Flight Routes Mapping of One of Airlines in Indonesia to our program.
A Ranking Approach on Large-Scale Graph With Multidimensional Heterogeneous Information.
Wei, Wei; Gao, Bin; Liu, Tie-Yan; Wang, Taifeng; Li, Guohui; Li, Hang
2016-04-01
Graph-based ranking has been extensively studied and frequently applied in many applications, such as webpage ranking. It aims at mining potentially valuable information from the raw graph-structured data. Recently, with the proliferation of rich heterogeneous information (e.g., node/edge features and prior knowledge) available in many real-world graphs, how to effectively and efficiently leverage all information to improve the ranking performance becomes a new challenging problem. Previous methods only utilize part of such information and attempt to rank graph nodes according to link-based methods, of which the ranking performances are severely affected by several well-known issues, e.g., over-fitting or high computational complexity, especially when the scale of graph is very large. In this paper, we address the large-scale graph-based ranking problem and focus on how to effectively exploit rich heterogeneous information of the graph to improve the ranking performance. Specifically, we propose an innovative and effective semi-supervised PageRank (SSP) approach to parameterize the derived information within a unified semi-supervised learning framework (SSLF-GR), then simultaneously optimize the parameters and the ranking scores of graph nodes. Experiments on the real-world large-scale graphs demonstrate that our method significantly outperforms the algorithms that consider such graph information only partially.
NASA Astrophysics Data System (ADS)
Chen, Jung-Chieh
This paper presents a low complexity algorithmic framework for finding a broadcasting schedule in a low-altitude satellite system, i. e., the satellite broadcast scheduling (SBS) problem, based on the recent modeling and computational methodology of factor graphs. Inspired by the huge success of the low density parity check (LDPC) codes in the field of error control coding, in this paper, we transform the SBS problem into an LDPC-like problem through a factor graph instead of using the conventional neural network approaches to solve the SBS problem. Based on a factor graph framework, the soft-information, describing the probability that each satellite will broadcast information to a terminal at a specific time slot, is exchanged among the local processing in the proposed framework via the sum-product algorithm to iteratively optimize the satellite broadcasting schedule. Numerical results show that the proposed approach not only can obtain optimal solution but also enjoys the low complexity suitable for integral-circuit implementation.
Quantum speedup in solving the maximal-clique problem
NASA Astrophysics Data System (ADS)
Chang, Weng-Long; Yu, Qi; Li, Zhaokai; Chen, Jiahui; Peng, Xinhua; Feng, Mang
2018-03-01
The maximal-clique problem, to find the maximally sized clique in a given graph, is classically an NP-complete computational problem, which has potential applications ranging from electrical engineering, computational chemistry, and bioinformatics to social networks. Here we develop a quantum algorithm to solve the maximal-clique problem for any graph G with n vertices with quadratic speedup over its classical counterparts, where the time and spatial complexities are reduced to, respectively, O (√{2n}) and O (n2) . With respect to oracle-related quantum algorithms for the NP-complete problems, we identify our algorithm as optimal. To justify the feasibility of the proposed quantum algorithm, we successfully solve a typical clique problem for a graph G with two vertices and one edge by carrying out a nuclear magnetic resonance experiment involving four qubits.
NASA Astrophysics Data System (ADS)
Cahyaningrum, Rosalia D.; Bustamam, Alhadi; Siswantining, Titin
2017-03-01
Technology of microarray became one of the imperative tools in life science to observe the gene expression levels, one of which is the expression of the genes of people with carcinoma. Carcinoma is a cancer that forms in the epithelial tissue. These data can be analyzed such as the identification expressions hereditary gene and also build classifications that can be used to improve diagnosis of carcinoma. Microarray data usually served in large dimension that most methods require large computing time to do the grouping. Therefore, this study uses spectral clustering method which allows to work with any object for reduces dimension. Spectral clustering method is a method based on spectral decomposition of the matrix which is represented in the form of a graph. After the data dimensions are reduced, then the data are partitioned. One of the famous partition method is Partitioning Around Medoids (PAM) which is minimize the objective function with exchanges all the non-medoid points into medoid point iteratively until converge. Objectivity of this research is to implement methods spectral clustering and partitioning algorithm PAM to obtain groups of 7457 genes with carcinoma based on the similarity value. The result in this study is two groups of genes with carcinoma.
The Statistical Mechanics of Dilute, Disordered Systems
NASA Astrophysics Data System (ADS)
Blackburn, Roger Michael
Available from UMI in association with The British Library. Requires signed TDF. A graph partitioning problem with variable inter -partition costs is studied by exploiting its mapping on to the Ashkin-Teller spin glass. The cavity method is used to derive the TAP equations and free energy for both extensively connected and dilute systems. Unlike Ising and Potts spin glasses, the self-consistent equation for the distribution of effective fields does not have a solution solely made up of delta functions. Numerical integration is used to find the stable solution, from which the ground state energy is calculated. Simulated annealing is used to test the results. The retrieving activity distribution for networks of boolean functions trained as associative memories for optimal capacity is derived. For infinite networks, outputs are shown to be frozen, in contrast to dilute asymmetric networks trained with the Hebb rule. For finite networks, a steady leaking to the non-retrieving attractor is demonstrated. Simulations of quenched networks are reported which show a departure from this picture: some configurations remain frozen for all time, while others follow cycles of small periods. An estimate of the critical capacity from the simulations is found to be in broad agreement with recent analytical results. The existing theory is extended to include noise on recall, and the behaviour is found to be robust to noise up to order 1/c^2 for networks with connectivity c.
Scarselli, Franco; Tsoi, Ah Chung; Hagenbuchner, Markus; Noi, Lucia Di
2013-12-01
This paper proposes the combination of two state-of-the-art algorithms for processing graph input data, viz., the probabilistic mapping graph self organizing map, an unsupervised learning approach, and the graph neural network, a supervised learning approach. We organize these two algorithms in a cascade architecture containing a probabilistic mapping graph self organizing map, and a graph neural network. We show that this combined approach helps us to limit the long-term dependency problem that exists when training the graph neural network resulting in an overall improvement in performance. This is demonstrated in an application to a benchmark problem requiring the detection of spam in a relatively large set of web sites. It is found that the proposed method produces results which reach the state of the art when compared with some of the best results obtained by others using quite different approaches. A particular strength of our method is its applicability towards any input domain which can be represented as a graph. Copyright © 2013 Elsevier Ltd. All rights reserved.
An Adiabatic Quantum Algorithm for Determining Gracefulness of a Graph
NASA Astrophysics Data System (ADS)
Hosseini, Sayed Mohammad; Davoudi Darareh, Mahdi; Janbaz, Shahrooz; Zaghian, Ali
2017-07-01
Graph labelling is one of the noticed contexts in combinatorics and graph theory. Graceful labelling for a graph G with e edges, is to label the vertices of G with 0, 1, ℒ, e such that, if we specify to each edge the difference value between its two ends, then any of 1, 2, ℒ, e appears exactly once as an edge label. For a given graph, there are still few efficient classical algorithms that determine either it is graceful or not, even for trees - as a well-known class of graphs. In this paper, we introduce an adiabatic quantum algorithm, which for a graceful graph G finds a graceful labelling. Also, this algorithm can determine if G is not graceful. Numerical simulations of the algorithm reveal that its time complexity has a polynomial behaviour with the problem size up to the range of 15 qubits. A general sufficient condition for a combinatorial optimization problem to have a satisfying adiabatic solution is also derived.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Visweswara Sathanur, Arun; Choudhury, Sutanay; Joslyn, Cliff A.
Property graphs can be used to represent heterogeneous networks with attributed vertices and edges. Given one property graph, simulating another graph with same or greater size with identical statistical properties with respect to the attributes and connectivity is critical for privacy preservation and benchmarking purposes. In this work we tackle the problem of capturing the statistical dependence of the edge connectivity on the vertex labels and using the same distribution to regenerate property graphs of the same or expanded size in a scalable manner. However, accurate simulation becomes a challenge when the attributes do not completely explain the network structure.more » We propose the Property Graph Model (PGM) approach that uses an attribute (or label) augmentation strategy to mitigate the problem and preserve the graph connectivity as measured via degree distribution, vertex label distributions and edge connectivity. Our proposed algorithm is scalable with a linear complexity in the number of edges in the target graph. We illustrate the efficacy of the PGM approach in regenerating and expanding the datasets by leveraging two distinct illustrations.« less
Network immunization under limited budget using graph spectra
NASA Astrophysics Data System (ADS)
Zahedi, R.; Khansari, M.
2016-03-01
In this paper, we propose a new algorithm that minimizes the worst expected growth of an epidemic by reducing the size of the largest connected component (LCC) of the underlying contact network. The proposed algorithm is applicable to any level of available resources and, despite the greedy approaches of most immunization strategies, selects nodes simultaneously. In each iteration, the proposed method partitions the LCC into two groups. These are the best candidates for communities in that component, and the available resources are sufficient to separate them. Using Laplacian spectral partitioning, the proposed method performs community detection inference with a time complexity that rivals that of the best previous methods. Experiments show that our method outperforms targeted immunization approaches in both real and synthetic networks.
Distributed Computation of the knn Graph for Large High-Dimensional Point Sets
Plaku, Erion; Kavraki, Lydia E.
2009-01-01
High-dimensional problems arising from robot motion planning, biology, data mining, and geographic information systems often require the computation of k nearest neighbor (knn) graphs. The knn graph of a data set is obtained by connecting each point to its k closest points. As the research in the above-mentioned fields progressively addresses problems of unprecedented complexity, the demand for computing knn graphs based on arbitrary distance metrics and large high-dimensional data sets increases, exceeding resources available to a single machine. In this work we efficiently distribute the computation of knn graphs for clusters of processors with message passing. Extensions to our distributed framework include the computation of graphs based on other proximity queries, such as approximate knn or range queries. Our experiments show nearly linear speedup with over one hundred processors and indicate that similar speedup can be obtained with several hundred processors. PMID:19847318
A system for routing arbitrary directed graphs on SIMD architectures
NASA Technical Reports Server (NTRS)
Tomboulian, Sherryl
1987-01-01
There are many problems which can be described in terms of directed graphs that contain a large number of vertices where simple computations occur using data from connecting vertices. A method is given for parallelizing such problems on an SIMD machine model that is bit-serial and uses only nearest neighbor connections for communication. Each vertex of the graph will be assigned to a processor in the machine. Algorithms are given that will be used to implement movement of data along the arcs of the graph. This architecture and algorithms define a system that is relatively simple to build and can do graph processing. All arcs can be transversed in parallel in time O(T), where T is empirically proportional to the diameter of the interconnection network times the average degree of the graph. Modifying or adding a new arc takes the same time as parallel traversal.
Graph-cut based discrete-valued image reconstruction.
Tuysuzoglu, Ahmet; Karl, W Clem; Stojanovic, Ivana; Castañòn, David; Ünlü, M Selim
2015-05-01
Efficient graph-cut methods have been used with great success for labeling and denoising problems occurring in computer vision. Unfortunately, the presence of linear image mappings has prevented the use of these techniques in most discrete-amplitude image reconstruction problems. In this paper, we develop a graph-cut based framework for the direct solution of discrete amplitude linear image reconstruction problems cast as regularized energy function minimizations. We first analyze the structure of discrete linear inverse problem cost functions to show that the obstacle to the application of graph-cut methods to their solution is the variable mixing caused by the presence of the linear sensing operator. We then propose to use a surrogate energy functional that overcomes the challenges imposed by the sensing operator yet can be utilized efficiently in existing graph-cut frameworks. We use this surrogate energy functional to devise a monotonic iterative algorithm for the solution of discrete valued inverse problems. We first provide experiments using local convolutional operators and show the robustness of the proposed technique to noise and stability to changes in regularization parameter. Then we focus on nonlocal, tomographic examples where we consider limited-angle data problems. We compare our technique with state-of-the-art discrete and continuous image reconstruction techniques. Experiments show that the proposed method outperforms state-of-the-art techniques in challenging scenarios involving discrete valued unknowns.
Fat water decomposition using globally optimal surface estimation (GOOSE) algorithm.
Cui, Chen; Wu, Xiaodong; Newell, John D; Jacob, Mathews
2015-03-01
This article focuses on developing a novel noniterative fat water decomposition algorithm more robust to fat water swaps and related ambiguities. Field map estimation is reformulated as a constrained surface estimation problem to exploit the spatial smoothness of the field, thus minimizing the ambiguities in the recovery. Specifically, the differences in the field map-induced frequency shift between adjacent voxels are constrained to be in a finite range. The discretization of the above problem yields a graph optimization scheme, where each node of the graph is only connected with few other nodes. Thanks to the low graph connectivity, the problem is solved efficiently using a noniterative graph cut algorithm. The global minimum of the constrained optimization problem is guaranteed. The performance of the algorithm is compared with that of state-of-the-art schemes. Quantitative comparisons are also made against reference data. The proposed algorithm is observed to yield more robust fat water estimates with fewer fat water swaps and better quantitative results than other state-of-the-art algorithms in a range of challenging applications. The proposed algorithm is capable of considerably reducing the swaps in challenging fat water decomposition problems. The experiments demonstrate the benefit of using explicit smoothness constraints in field map estimation and solving the problem using a globally convergent graph-cut optimization algorithm. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yamamoto, Takanori; Bannai, Hideo; Nagasaki, Masao; Miyano, Satoru
We present new decomposition heuristics for finding the optimal solution for the maximum-weight connected graph problem, which is known to be NP-hard. Previous optimal algorithms for solving the problem decompose the input graph into subgraphs using heuristics based on node degree. We propose new heuristics based on betweenness centrality measures, and show through computational experiments that our new heuristics tend to reduce the number of subgraphs in the decomposition, and therefore could lead to the reduction in computational time for finding the optimal solution. The method is further applied to analysis of biological pathway data.
Graphs and matroids weighted in a bounded incline algebra.
Lu, Ling-Xia; Zhang, Bei
2014-01-01
Firstly, for a graph weighted in a bounded incline algebra (or called a dioid), a longest path problem (LPP, for short) is presented, which can be considered the uniform approach to the famous shortest path problem, the widest path problem, and the most reliable path problem. The solutions for LPP and related algorithms are given. Secondly, for a matroid weighted in a linear matroid, the maximum independent set problem is studied.
What energy functions can be minimized via graph cuts?
Kolmogorov, Vladimir; Zabih, Ramin
2004-02-01
In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are complex and highly specific to a particular energy function, graph cuts have seen limited application to date. In this paper, we give a characterization of the energy functions that can be minimized by graph cuts. Our results are restricted to functions of binary variables. However, our work generalizes many previous constructions and is easily applicable to vision problems that involve large numbers of labels, such as stereo, motion, image restoration, and scene reconstruction. We give a precise characterization of what energy functions can be minimized using graph cuts, among the energy functions that can be written as a sum of terms containing three or fewer binary variables. We also provide a general-purpose construction to minimize such an energy function. Finally, we give a necessary condition for any energy function of binary variables to be minimized by graph cuts. Researchers who are considering the use of graph cuts to optimize a particular energy function can use our results to determine if this is possible and then follow our construction to create the appropriate graph. A software implementation is freely available.
Mapping Computation with No Memory
NASA Astrophysics Data System (ADS)
Burckel, Serge; Gioan, Emeric; Thomé, Emmanuel
We investigate the computation of mappings from a set S n to itself with in situ programs, that is using no extra variables than the input, and performing modifications of one component at a time. We consider several types of mappings and obtain effective computation and decomposition methods, together with upper bounds on the program length (number of assignments). Our technique is combinatorial and algebraic (graph coloration, partition ordering, modular arithmetics).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demeure, I.M.
The research presented here is concerned with representation techniques and tools to support the design, prototyping, simulation, and evaluation of message-based parallel, distributed computations. The author describes ParaDiGM-Parallel, Distributed computation Graph Model-a visual representation technique for parallel, message-based distributed computations. ParaDiGM provides several views of a computation depending on the aspect of concern. It is made of two complementary submodels, the DCPG-Distributed Computing Precedence Graph-model, and the PAM-Process Architecture Model-model. DCPGs are precedence graphs used to express the functionality of a computation in terms of tasks, message-passing, and data. PAM graphs are used to represent the partitioning of a computationmore » into schedulable units or processes, and the pattern of communication among those units. There is a natural mapping between the two models. He illustrates the utility of ParaDiGM as a representation technique by applying it to various computations (e.g., an adaptive global optimization algorithm, the client-server model). ParaDiGM representations are concise. They can be used in documenting the design and the implementation of parallel, distributed computations, in describing such computations to colleagues, and in comparing and contrasting various implementations of the same computation. He then describes VISA-VISual Assistant, a software tool to support the design, prototyping, and simulation of message-based parallel, distributed computations. VISA is based on the ParaDiGM model. In particular, it supports the editing of ParaDiGM graphs to describe the computations of interest, and the animation of these graphs to provide visual feedback during simulations. The graphs are supplemented with various attributes, simulation parameters, and interpretations which are procedures that can be executed by VISA.« less
Flying through Graphs: An Introduction to Graph Theory.
ERIC Educational Resources Information Center
McDuffie, Amy Roth
2001-01-01
Presents an activity incorporating basic terminology, concepts, and solution methods of graph theory in the context of solving problems related to air travel. Discusses prerequisite knowledge and resources and includes a teacher's guide with a student worksheet. (KHR)
Identification of structural domains in proteins by a graph heuristic.
Wernisch, L; Hunting, M; Wodak, S J
1999-05-15
A novel automatic procedure for identifying domains from protein atomic coordinates is presented. The procedure, termed STRUDL (STRUctural Domain Limits), does not take into account information on secondary structures and handles any number of domains made up of contiguous or non-contiguous chain segments. The core algorithm uses the Kernighan-Lin graph heuristic to partition the protein into residue sets which display minimum interactions between them. These interactions are deduced from the weighted Voronoi diagram. The generated partitions are accepted or rejected on the basis of optimized criteria, representing basic expected physical properties of structural domains. The graph heuristic approach is shown to be very effective, it approximates closely the exact solution provided by a branch and bound algorithm for a number of test proteins. In addition, the overall performance of STRUDL is assessed on a set of 787 representative proteins from the Protein Data Bank by comparison to domain definitions in the CATH protein classification. The domains assigned by STRUDL agree with the CATH assignments in at least 81% of the tested proteins. This result is comparable to that obtained previously using PUU (Holm and Sander, Proteins 1994;9:256-268), the only other available algorithm designed to identify domains with any number of non-contiguous chain segments. A detailed discussion of the structures for which our assignments differ from those in CATH brings to light some clear inconsistencies between the concept of structural domains based on minimizing inter-domain interactions and that of delimiting structural motifs that represent acceptable folding topologies or architectures. Considering both concepts as complementary and combining them in a layered approach might be the way forward.
Graphs as a Problem-Solving Tool in 1-D Kinematics
ERIC Educational Resources Information Center
Desbien, Dwain M.
2008-01-01
In this age of the microcomputer-based lab (MBL), students are quite accustomed to looking at graphs of position, velocity, and acceleration versus time. A number of textbooks argue convincingly that the slope of the velocity graph gives the acceleration, the area under the velocity graph yields the displacement, and the area under the…
A software tool for dataflow graph scheduling
NASA Technical Reports Server (NTRS)
Jones, Robert L., III
1994-01-01
A graph-theoretic design process and software tool is presented for selecting a multiprocessing scheduling solution for a class of computational problems. The problems of interest are those that can be described using a dataflow graph and are intended to be executed repetitively on multiple processors. The dataflow paradigm is very useful in exposing the parallelism inherent in algorithms. It provides a graphical and mathematical model which describes a partial ordering of algorithm tasks based on data precedence.
Decomposition Algorithm for Global Reachability on a Time-Varying Graph
NASA Technical Reports Server (NTRS)
Kuwata, Yoshiaki
2010-01-01
A decomposition algorithm has been developed for global reachability analysis on a space-time grid. By exploiting the upper block-triangular structure, the planning problem is decomposed into smaller subproblems, which is much more scalable than the original approach. Recent studies have proposed the use of a hot-air (Montgolfier) balloon for possible exploration of Titan and Venus because these bodies have thick haze or cloud layers that limit the science return from an orbiter, and the atmospheres would provide enough buoyancy for balloons. One of the important questions that needs to be addressed is what surface locations the balloon can reach from an initial location, and how long it would take. This is referred to as the global reachability problem, where the paths from starting locations to all possible target locations must be computed. The balloon could be driven with its own actuation, but its actuation capability is fairly limited. It would be more efficient to take advantage of the wind field and ride the wind that is much stronger than what the actuator could produce. It is possible to pose the path planning problem as a graph search problem on a directed graph by discretizing the spacetime world and the vehicle actuation. The decomposition algorithm provides reachability analysis of a time-varying graph. Because the balloon only moves in the positive direction in time, the adjacency matrix of the graph can be represented with an upper block-triangular matrix, and this upper block-triangular structure can be exploited to decompose a large graph search problem. The new approach consumes a much smaller amount of memory, which also helps speed up the overall computation when the computing resource has a limited physical memory compared to the problem size.
Partitioning problems in parallel, pipelined and distributed computing
NASA Technical Reports Server (NTRS)
Bokhari, S.
1985-01-01
The problem of optimally assigning the modules of a parallel program over the processors of a multiple computer system is addressed. A Sum-Bottleneck path algorithm is developed that permits the efficient solution of many variants of this problem under some constraints on the structure of the partitions. In particular, the following problems are solved optimally for a single-host, multiple satellite system: partitioning multiple chain structured parallel programs, multiple arbitrarily structured serial programs and single tree structured parallel programs. In addition, the problems of partitioning chain structured parallel programs across chain connected systems and across shared memory (or shared bus) systems are also solved under certain constraints. All solutions for parallel programs are equally applicable to pipelined programs. These results extend prior research in this area by explicitly taking concurrency into account and permit the efficient utilization of multiple computer architectures for a wide range of problems of practical interest.
Resolution of ranking hierarchies in directed networks.
Letizia, Elisa; Barucca, Paolo; Lillo, Fabrizio
2018-01-01
Identifying hierarchies and rankings of nodes in directed graphs is fundamental in many applications such as social network analysis, biology, economics, and finance. A recently proposed method identifies the hierarchy by finding the ordered partition of nodes which minimises a score function, termed agony. This function penalises the links violating the hierarchy in a way depending on the strength of the violation. To investigate the resolution of ranking hierarchies we introduce an ensemble of random graphs, the Ranked Stochastic Block Model. We find that agony may fail to identify hierarchies when the structure is not strong enough and the size of the classes is small with respect to the whole network. We analytically characterise the resolution threshold and we show that an iterated version of agony can partly overcome this resolution limit.
Resolution of ranking hierarchies in directed networks
Barucca, Paolo; Lillo, Fabrizio
2018-01-01
Identifying hierarchies and rankings of nodes in directed graphs is fundamental in many applications such as social network analysis, biology, economics, and finance. A recently proposed method identifies the hierarchy by finding the ordered partition of nodes which minimises a score function, termed agony. This function penalises the links violating the hierarchy in a way depending on the strength of the violation. To investigate the resolution of ranking hierarchies we introduce an ensemble of random graphs, the Ranked Stochastic Block Model. We find that agony may fail to identify hierarchies when the structure is not strong enough and the size of the classes is small with respect to the whole network. We analytically characterise the resolution threshold and we show that an iterated version of agony can partly overcome this resolution limit. PMID:29394278
Efficient Synthesis of Graph Methods: a Dynamically Scheduled Architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minutoli, Marco; Castellana, Vito G.; Tumeo, Antonino
RDF databases naturally map to a graph representation and employ languages, such as SPARQL, that implements queries as graph pattern matching routines. Graph methods exhibit an irregular behavior: they present unpredictable, fine-grained data accesses, and are synchronization inten- sive. Graph data structures expose large amounts of dy- namic parallelism, but are difficult to partition without gen- erating load unbalance. In this paper, we present a novel ar- chitecture to improve the synthesis of graph methods. Our design addresses the issues of these algorithms with two com- ponents: a Dynamic Task Scheduler (DTS), which reduces load unbalance and maximize resource utilization,more » and a Hi- erarchical Memory Interface controller (HMI), which pro- vides support for concurrent memory operations on multi- ported/multi-banked shared memories. We evaluate our ap- proach by generating the accelerators for a set of SPARQL queries from the Lehigh University Benchmark (LUBM). We first analyze the load unbalance of these queries, showing that execution time among tasks can differ even of order of magnitudes. We then synthesize the queries and com- pare the performance of the resulting accelerators against the current state of the art. Experimental results show that our solution provides a speedup over the serial implementa- tion close to the theoretical maximum and a speedup up to 3.45 over a baseline parallel implementation. We conclude our study by exploring the design space to achieve maximum memory channels utilization. The best design used at least three of the four memory channels for more than 90% of the execution time.« less
Nearest neighbor-density-based clustering methods for large hyperspectral images
NASA Astrophysics Data System (ADS)
Cariou, Claude; Chehdi, Kacem
2017-10-01
We address the problem of hyperspectral image (HSI) pixel partitioning using nearest neighbor - density-based (NN-DB) clustering methods. NN-DB methods are able to cluster objects without specifying the number of clusters to be found. Within the NN-DB approach, we focus on deterministic methods, e.g. ModeSeek, knnClust, and GWENN (standing for Graph WatershEd using Nearest Neighbors). These methods only require the availability of a k-nearest neighbor (kNN) graph based on a given distance metric. Recently, a new DB clustering method, called Density Peak Clustering (DPC), has received much attention, and kNN versions of it have quickly followed and showed their efficiency. However, NN-DB methods still suffer from the difficulty of obtaining the kNN graph due to the quadratic complexity with respect to the number of pixels. This is why GWENN was embedded into a multiresolution (MR) scheme to bypass the computation of the full kNN graph over the image pixels. In this communication, we propose to extent the MR-GWENN scheme on three aspects. Firstly, similarly to knnClust, the original labeling rule of GWENN is modified to account for local density values, in addition to the labels of previously processed objects. Secondly, we set up a modified NN search procedure within the MR scheme, in order to stabilize of the number of clusters found from the coarsest to the finest spatial resolution. Finally, we show that these extensions can be easily adapted to the three other NN-DB methods (ModeSeek, knnClust, knnDPC) for pixel clustering in large HSIs. Experiments are conducted to compare the four NN-DB methods for pixel clustering in HSIs. We show that NN-DB methods can outperform a classical clustering method such as fuzzy c-means (FCM), in terms of classification accuracy, relevance of found clusters, and clustering speed. Finally, we demonstrate the feasibility and evaluate the performances of NN-DB methods on a very large image acquired by our AISA Eagle hyperspectral imaging sensor.
An MBO Scheme for Minimizing the Graph Ohta-Kawasaki Functional
NASA Astrophysics Data System (ADS)
van Gennip, Yves
2018-06-01
We study a graph-based version of the Ohta-Kawasaki functional, which was originally introduced in a continuum setting to model pattern formation in diblock copolymer melts and has been studied extensively as a paradigmatic example of a variational model for pattern formation. Graph-based problems inspired by partial differential equations (PDEs) and variational methods have been the subject of many recent papers in the mathematical literature, because of their applications in areas such as image processing and data classification. This paper extends the area of PDE inspired graph-based problems to pattern-forming models, while continuing in the tradition of recent papers in the field. We introduce a mass conserving Merriman-Bence-Osher (MBO) scheme for minimizing the graph Ohta-Kawasaki functional with a mass constraint. We present three main results: (1) the Lyapunov functionals associated with this MBO scheme Γ -converge to the Ohta-Kawasaki functional (which includes the standard graph-based MBO scheme and total variation as a special case); (2) there is a class of graphs on which the Ohta-Kawasaki MBO scheme corresponds to a standard MBO scheme on a transformed graph and for which generalized comparison principles hold; (3) this MBO scheme allows for the numerical computation of (approximate) minimizers of the graph Ohta-Kawasaki functional with a mass constraint.
Adjusting protein graphs based on graph entropy.
Peng, Sheng-Lung; Tsay, Yu-Wei
2014-01-01
Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid.
Adjusting protein graphs based on graph entropy
2014-01-01
Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid. PMID:25474347
Self-organizing maps for learning the edit costs in graph matching.
Neuhaus, Michel; Bunke, Horst
2005-06-01
Although graph matching and graph edit distance computation have become areas of intensive research recently, the automatic inference of the cost of edit operations has remained an open problem. In the present paper, we address the issue of learning graph edit distance cost functions for numerically labeled graphs from a corpus of sample graphs. We propose a system of self-organizing maps (SOMs) that represent the distance measuring spaces of node and edge labels. Our learning process is based on the concept of self-organization. It adapts the edit costs in such a way that the similarity of graphs from the same class is increased, whereas the similarity of graphs from different classes decreases. The learning procedure is demonstrated on two different applications involving line drawing graphs and graphs representing diatoms, respectively.
Optimal Link Removal for Epidemic Mitigation: A Two-Way Partitioning Approach
Enns, Eva A.; Mounzer, Jeffrey J.; Brandeau, Margaret L.
2011-01-01
The structure of the contact network through which a disease spreads may influence the optimal use of resources for epidemic control. In this work, we explore how to minimize the spread of infection via quarantining with limited resources. In particular, we examine which links should be removed from the contact network, given a constraint on the number of removable links, such that the number of nodes which are no longer at risk for infection is maximized. We show how this problem can be posed as a non-convex quadratically constrained quadratic program (QCQP), and we use this formulation to derive a link removal algorithm. The performance of our QCQP-based algorithm is validated on small Erdős-Renyi and small-world random graphs, and then tested on larger, more realistic networks, including a real-world network of injection drug use. We show that our approach achieves near optimal performance and out-perform so ther intuitive link removal algorithms, such as removing links in order of edge centrality. PMID:22115862
Sim, Jaehyun; Sim, Jun; Park, Eunsung; Lee, Julian
2015-06-01
Many proteins undergo large-scale motions where relatively rigid domains move against each other. The identification of rigid domains, as well as the hinge residues important for their relative movements, is important for various applications including flexible docking simulations. In this work, we develop a method for protein rigid domain identification based on an exhaustive enumeration of maximal rigid domains, the rigid domains not fully contained within other domains. The computation is performed by mapping the problem to that of finding maximal cliques in a graph. A minimal set of rigid domains are then selected, which cover most of the protein with minimal overlap. In contrast to the results of existing methods that partition a protein into non-overlapping domains using approximate algorithms, the rigid domains obtained from exact enumeration naturally contain overlapping regions, which correspond to the hinges of the inter-domain bending motion. The performance of the algorithm is demonstrated on several proteins. © 2015 Wiley Periodicals, Inc.
On the Ramsey numbers for complete distance graphs with vertices in {l_brace}0,1{r_brace}{sup n}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailov, Kirill A; Raigorodskii, Andrei M
2009-12-31
A new problem of Ramsey type is posed for complete distance graphs in R{sup n} with vertices in the Boolean cube. This problem is closely related to the classical Nelson-Erdos-Hadwiger problem on the chromatic number of a space. Several quite sharp estimates are obtained for certain numerical characteristics that appear in the framework of the problem. Bibliography: 15 titles.
Infinitesimal deformations of Poisson bi-vectors using the Kontsevich graph calculus
NASA Astrophysics Data System (ADS)
Buring, Ricardo; Kiselev, Arthemy V.; Rutten, Nina
2018-02-01
Let \\mathscr{P} be a Poisson structure on a finite-dimensional affine real manifold. Can \\mathscr{P} be deformed in such a way that it stays Poisson? The language of Kontsevich graphs provides a universal approach - with respect to all affine Poisson manifolds - to finding a class of solutions to this deformation problem. For that reasoning, several types of graphs are needed. In this paper we outline the algorithms to generate those graphs. The graphs that encode deformations are classified by the number of internal vertices k; for k ≤ 4 we present all solutions of the deformation problem. For k ≥ 5, first reproducing the pentagon-wheel picture suggested at k = 6 by Kontsevich and Willwacher, we construct the heptagon-wheel cocycle that yields a new unique solution without 2-loops and tadpoles at k = 8.
Martín H., José Antonio
2013-01-01
Many practical problems in almost all scientific and technological disciplines have been classified as computationally hard (NP-hard or even NP-complete). In life sciences, combinatorial optimization problems frequently arise in molecular biology, e.g., genome sequencing; global alignment of multiple genomes; identifying siblings or discovery of dysregulated pathways. In almost all of these problems, there is the need for proving a hypothesis about certain property of an object that can be present if and only if it adopts some particular admissible structure (an NP-certificate) or be absent (no admissible structure), however, none of the standard approaches can discard the hypothesis when no solution can be found, since none can provide a proof that there is no admissible structure. This article presents an algorithm that introduces a novel type of solution method to “efficiently” solve the graph 3-coloring problem; an NP-complete problem. The proposed method provides certificates (proofs) in both cases: present or absent, so it is possible to accept or reject the hypothesis on the basis of a rigorous proof. It provides exact solutions and is polynomial-time (i.e., efficient) however parametric. The only requirement is sufficient computational power, which is controlled by the parameter . Nevertheless, here it is proved that the probability of requiring a value of to obtain a solution for a random graph decreases exponentially: , making tractable almost all problem instances. Thorough experimental analyses were performed. The algorithm was tested on random graphs, planar graphs and 4-regular planar graphs. The obtained experimental results are in accordance with the theoretical expected results. PMID:23349711
Folksonomies and clustering in the collaborative system CiteULike
NASA Astrophysics Data System (ADS)
Capocci, Andrea; Caldarelli, Guido
2008-06-01
We analyze CiteULike, an online collaborative tagging system where users bookmark and annotate scientific papers. Such a system can be naturally represented as a tri-partite graph whose nodes represent papers, users and tags connected by individual tag assignments. The semantics of tags is studied here, in order to uncover the hidden relationships between tags. We find that the clustering coefficient can be used to analyze the semantical patterns among tags.
Plan-graph Based Heuristics for Conformant Probabilistic Planning
NASA Technical Reports Server (NTRS)
Ramakrishnan, Salesh; Pollack, Martha E.; Smith, David E.
2004-01-01
In this paper, we introduce plan-graph based heuristics to solve a variation of the conformant probabilistic planning (CPP) problem. In many real-world problems, it is the case that the sensors are unreliable or take too many resources to provide knowledge about the environment. These domains are better modeled as conformant planning problems. POMDP based techniques are currently the most successful approach for solving CPP but have the limitation of state- space explosion. Recent advances in deterministic and conformant planning have shown that plan-graphs can be used to enhance the performance significantly. We show that this enhancement can also be translated to CPP. We describe our process for developing the plan-graph heuristics and estimating the probability of a partial plan. We compare the performance of our planner PVHPOP when used with different heuristics. We also perform a comparison with a POMDP solver to show over a order of magnitude improvement in performance.
Number Partitioning via Quantum Adiabatic Computation
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadim N.; Toussaint, Udo
2002-01-01
We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.
A graph theoretic approach to scene matching
NASA Technical Reports Server (NTRS)
Ranganath, Heggere S.; Chipman, Laure J.
1991-01-01
The ability to match two scenes is a fundamental requirement in a variety of computer vision tasks. A graph theoretic approach to inexact scene matching is presented which is useful in dealing with problems due to imperfect image segmentation. A scene is described by a set of graphs, with nodes representing objects and arcs representing relationships between objects. Each node has a set of values representing the relations between pairs of objects, such as angle, adjacency, or distance. With this method of scene representation, the task in scene matching is to match two sets of graphs. Because of segmentation errors, variations in camera angle, illumination, and other conditions, an exact match between the sets of observed and stored graphs is usually not possible. In the developed approach, the problem is represented as an association graph, in which each node represents a possible mapping of an observed region to a stored object, and each arc represents the compatibility of two mappings. Nodes and arcs have weights indicating the merit or a region-object mapping and the degree of compatibility between two mappings. A match between the two graphs corresponds to a clique, or fully connected subgraph, in the association graph. The task is to find the clique that represents the best match. Fuzzy relaxation is used to update the node weights using the contextual information contained in the arcs and neighboring nodes. This simplifies the evaluation of cliques. A method of handling oversegmentation and undersegmentation problems is also presented. The approach is tested with a set of realistic images which exhibit many types of sementation errors.
Multiclass Data Segmentation using Diffuse Interface Methods on Graphs
2014-01-01
37] that performs interac- tive image segmentation using the solution to a combinatorial Dirichlet problem. Elmoataz et al . have developed general...izations of the graph Laplacian [25] for image denoising and manifold smoothing. Couprie et al . in [18] define a conve- niently parameterized graph...continuous setting carry over to the discrete graph representation. For general data segmentation, Bresson et al . in [8], present rigorous convergence
ERIC Educational Resources Information Center
Eshach, Haim
2010-01-01
One essential skill that students who learn physics should possess is the ability to create and interpret kinematic graphs. However, it is well documented in the literature that students show lack of competence in these abilities. They have problems in connecting graphs and physics concepts, as well as graphs and the real world. The present paper…
Transforming graph states using single-qubit operations.
Dahlberg, Axel; Wehner, Stephanie
2018-07-13
Stabilizer states form an important class of states in quantum information, and are of central importance in quantum error correction. Here, we provide an algorithm for deciding whether one stabilizer (target) state can be obtained from another stabilizer (source) state by single-qubit Clifford operations (LC), single-qubit Pauli measurements (LPM) and classical communication (CC) between sites holding the individual qubits. What is more, we provide a recipe to obtain the sequence of LC+LPM+CC operations which prepare the desired target state from the source state, and show how these operations can be applied in parallel to reach the target state in constant time. Our algorithm has applications in quantum networks, quantum computing, and can also serve as a design tool-for example, to find transformations between quantum error correcting codes. We provide a software implementation of our algorithm that makes this tool easier to apply. A key insight leading to our algorithm is to show that the problem is equivalent to one in graph theory, which is to decide whether some graph G ' is a vertex-minor of another graph G The vertex-minor problem is, in general, [Formula: see text]-Complete, but can be solved efficiently on graphs which are not too complex. A measure of the complexity of a graph is the rank-width which equals the Schmidt-rank width of a subclass of stabilizer states called graph states, and thus intuitively is a measure of entanglement. Here, we show that the vertex-minor problem can be solved in time O (| G | 3 ), where | G | is the size of the graph G , whenever the rank-width of G and the size of G ' are bounded. Our algorithm is based on techniques by Courcelle for solving fixed parameter tractable problems, where here the relevant fixed parameter is the rank width. The second half of this paper serves as an accessible but far from exhausting introduction to these concepts, that could be useful for many other problems in quantum information.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
Dominant partition method. [based on a wave function formalism
NASA Technical Reports Server (NTRS)
Dixon, R. M.; Redish, E. F.
1979-01-01
By use of the L'Huillier, Redish, and Tandy (LRT) wave function formalism, a partially connected method, the dominant partition method (DPM) is developed for obtaining few body reductions of the many body problem in the LRT and Bencze, Redish, and Sloan (BRS) formalisms. The DPM maps the many body problem to a fewer body one by using the criterion that the truncated formalism must be such that consistency with the full Schroedinger equation is preserved. The DPM is based on a class of new forms for the irreducible cluster potential, which is introduced in the LRT formalism. Connectivity is maintained with respect to all partitions containing a given partition, which is referred to as the dominant partition. Degrees of freedom corresponding to the breakup of one or more of the clusters of the dominant partition are treated in a disconnected manner. This approach for simplifying the complicated BRS equations is appropriate for physical problems where a few body reaction mechanism prevails.
Man-made objects cuing in satellite imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skurikhin, Alexei N
2009-01-01
We present a multi-scale framework for man-made structures cuing in satellite image regions. The approach is based on a hierarchical image segmentation followed by structural analysis. A hierarchical segmentation produces an image pyramid that contains a stack of irregular image partitions, represented as polygonized pixel patches, of successively reduced levels of detail (LOOs). We are jumping off from the over-segmented image represented by polygons attributed with spectral and texture information. The image is represented as a proximity graph with vertices corresponding to the polygons and edges reflecting polygon relations. This is followed by the iterative graph contraction based on Boruvka'smore » Minimum Spanning Tree (MST) construction algorithm. The graph contractions merge the patches based on their pairwise spectral and texture differences. Concurrently with the construction of the irregular image pyramid, structural analysis is done on the agglomerated patches. Man-made object cuing is based on the analysis of shape properties of the constructed patches and their spatial relations. The presented framework can be used as pre-scanning tool for wide area monitoring to quickly guide the further analysis to regions of interest.« less
Supplantation of Mental Operations on Graphs
ERIC Educational Resources Information Center
Vogel, Markus; Girwidz, Raimund; Engel, Joachim
2007-01-01
Research findings show the difficulties younger students have in working with graphs. Higher mental operations are necessary for a skilled interpretation of abstract representations. We suggest connecting a concrete representation of the modeled problem with the related graph. The idea is to illustrate essential mental operations externally. This…
Bipartite separability and nonlocal quantum operations on graphs
NASA Astrophysics Data System (ADS)
Dutta, Supriyo; Adhikari, Bibhas; Banerjee, Subhashish; Srikanth, R.
2016-07-01
In this paper we consider the separability problem for bipartite quantum states arising from graphs. Earlier it was proved that the degree criterion is the graph-theoretic counterpart of the familiar positive partial transpose criterion for separability, although there are entangled states with positive partial transpose for which the degree criterion fails. Here we introduce the concept of partially symmetric graphs and degree symmetric graphs by using the well-known concept of partial transposition of a graph and degree criteria, respectively. Thus, we provide classes of bipartite separable states of dimension m ×n arising from partially symmetric graphs. We identify partially asymmetric graphs that lack the property of partial symmetry. We develop a combinatorial procedure to create a partially asymmetric graph from a given partially symmetric graph. We show that this combinatorial operation can act as an entanglement generator for mixed states arising from partially symmetric graphs.
Graph-based normalization and whitening for non-linear data analysis.
Aaron, Catherine
2006-01-01
In this paper we construct a graph-based normalization algorithm for non-linear data analysis. The principle of this algorithm is to get a spherical average neighborhood with unit radius. First we present a class of global dispersion measures used for "global normalization"; we then adapt these measures using a weighted graph to build a local normalization called "graph-based" normalization. Then we give details of the graph-based normalization algorithm and illustrate some results. In the second part we present a graph-based whitening algorithm built by analogy between the "global" and the "local" problem.
An optimal repartitioning decision policy
NASA Technical Reports Server (NTRS)
Nicol, D. M.; Reynolds, P. F., Jr.
1986-01-01
A central problem to parallel processing is the determination of an effective partitioning of workload to processors. The effectiveness of any given partition is dependent on the stochastic nature of the workload. The problem of determining when and if the stochastic behavior of the workload has changed enough to warrant the calculation of a new partition is treated. The problem is modeled as a Markov decision process, and an optimal decision policy is derived. Quantification of this policy is usually intractable. A heuristic policy which performs nearly optimally is investigated empirically. The results suggest that the detection of change is the predominant issue in this problem.
The Edge-Disjoint Path Problem on Random Graphs by Message-Passing.
Altarelli, Fabrizio; Braunstein, Alfredo; Dall'Asta, Luca; De Bacco, Caterina; Franz, Silvio
2015-01-01
We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length.
The Edge-Disjoint Path Problem on Random Graphs by Message-Passing
2015-01-01
We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length. PMID:26710102
Dynamic programming and graph algorithms in computer vision.
Felzenszwalb, Pedro F; Zabih, Ramin
2011-04-01
Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting since, by carefully exploiting problem structure, they often provide nontrivial guarantees concerning solution quality. In this paper, we review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo, the mid-level problem of interactive object segmentation, and the high-level problem of model-based recognition.
Band connectivity for topological quantum chemistry: Band structures as a graph theory problem
NASA Astrophysics Data System (ADS)
Bradlyn, Barry; Elcoro, L.; Vergniory, M. G.; Cano, Jennifer; Wang, Zhijun; Felser, C.; Aroyo, M. I.; Bernevig, B. Andrei
2018-01-01
The conventional theory of solids is well suited to describing band structures locally near isolated points in momentum space, but struggles to capture the full, global picture necessary for understanding topological phenomena. In part of a recent paper [B. Bradlyn et al., Nature (London) 547, 298 (2017), 10.1038/nature23268], we have introduced the way to overcome this difficulty by formulating the problem of sewing together many disconnected local k .p band structures across the Brillouin zone in terms of graph theory. In this paper, we give the details of our full theoretical construction. We show that crystal symmetries strongly constrain the allowed connectivities of energy bands, and we employ graph theoretic techniques such as graph connectivity to enumerate all the solutions to these constraints. The tools of graph theory allow us to identify disconnected groups of bands in these solutions, and so identify topologically distinct insulating phases.
Schwerdtfeger, Peter; Wirz, Lukas N; Avery, James
2015-01-01
Fullerenes are carbon molecules that form polyhedral cages. Their bond structures are exactly the planar cubic graphs that have only pentagon and hexagon faces. Strikingly, a number of chemical properties of a fullerene can be derived from its graph structure. A rich mathematics of cubic planar graphs and fullerene graphs has grown since they were studied by Goldberg, Coxeter, and others in the early 20th century, and many mathematical properties of fullerenes have found simple and beautiful solutions. Yet many interesting chemical and mathematical problems in the field remain open. In this paper, we present a general overview of recent topological and graph theoretical developments in fullerene research over the past two decades, describing both solved and open problems. WIREs Comput Mol Sci 2015, 5:96–145. doi: 10.1002/wcms.1207 Conflict of interest: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. PMID:25678935
ERIC Educational Resources Information Center
Berg, Craig; Boote, Stacy
2017-01-01
Prior graphing research has demonstrated that clinical interviews and free-response instruments produce very different results than multiple-choice instruments, indicating potential validity problems when using multiple-choice instruments to assess graphing skills (Berg & Smith in "Science Education," 78(6), 527-554, 1994). Extending…
Multiclass Data Segmentation Using Diffuse Interface Methods on Graphs
2014-01-01
interac- tive image segmentation using the solution to a combinatorial Dirichlet problem. Elmoataz et al . have developed general- izations of the graph...Laplacian [25] for image denoising and manifold smoothing. Couprie et al . in [18] define a conve- niently parameterized graph-based energy function that...over to the discrete graph representation. For general data segmentation, Bresson et al . in [8], present rigorous convergence results for two algorithms
Efficient enumeration of monocyclic chemical graphs with given path frequencies
2014-01-01
Background The enumeration of chemical graphs (molecular graphs) satisfying given constraints is one of the fundamental problems in chemoinformatics and bioinformatics because it leads to a variety of useful applications including structure determination and development of novel chemical compounds. Results We consider the problem of enumerating chemical graphs with monocyclic structure (a graph structure that contains exactly one cycle) from a given set of feature vectors, where a feature vector represents the frequency of the prescribed paths in a chemical compound to be constructed and the set is specified by a pair of upper and lower feature vectors. To enumerate all tree-like (acyclic) chemical graphs from a given set of feature vectors, Shimizu et al. and Suzuki et al. proposed efficient branch-and-bound algorithms based on a fast tree enumeration algorithm. In this study, we devise a novel method for extending these algorithms to enumeration of chemical graphs with monocyclic structure by designing a fast algorithm for testing uniqueness. The results of computational experiments reveal that the computational efficiency of the new algorithm is as good as those for enumeration of tree-like chemical compounds. Conclusions We succeed in expanding the class of chemical graphs that are able to be enumerated efficiently. PMID:24955135
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Homer; Ashok Varikuti; Xinming Ou
Various tools exist to analyze enterprise network systems and to produce attack graphs detailing how attackers might penetrate into the system. These attack graphs, however, are often complex and difficult to comprehend fully, and a human user may find it problematic to reach appropriate configuration decisions. This paper presents methodologies that can 1) automatically identify portions of an attack graph that do not help a user to understand the core security problems and so can be trimmed, and 2) automatically group similar attack steps as virtual nodes in a model of the network topology, to immediately increase the understandability ofmore » the data. We believe both methods are important steps toward improving visualization of attack graphs to make them more useful in configuration management for large enterprise networks. We implemented our methods using one of the existing attack-graph toolkits. Initial experimentation shows that the proposed approaches can 1) significantly reduce the complexity of attack graphs by trimming a large portion of the graph that is not needed for a user to understand the security problem, and 2) significantly increase the accessibility and understandability of the data presented in the attack graph by clearly showing, within a generated visualization of the network topology, the number and type of potential attacks to which each host is exposed.« less
NASA Astrophysics Data System (ADS)
Rosdiana, L.; Widodo, W.; Nurita, T.; Fauziah, A. N. M.
2018-04-01
This study aimed to describe the ability of pre-service teachers to create graphs, solve the problem of spatial and temporal evolution on the symptoms of vibrations and waves. The learning was conducted using e-learning method. The research design is a quasi-experimental design with one-shot case study. The e-learning contained learning materials and tasks involving answering tasks, making questions, solving their own questions, and making graphs. The participants of the study was 28 students of Science Department, Universitas Negeri Surabaya. The results obtained by using the e-learning were that the students’ ability increase gradually from task 1 to task 3 (the tasks consisted of three tasks). Additionally, based on the questionnaire with 28 respondents, it showed that 24 respondents stated that making graphs via e-learning were still difficult. Four respondents said that it was easy to make graphs via e-learning. Nine respondents stated that the e-learning did not help them in making graphs and 19 respondents stated that the e-learning help in creating graphs. The conclusion of the study is that the students was able to make graphs on paper sheet, but they got difficulty to make the graphs in e-learning (the virtual form).
ERIC Educational Resources Information Center
Earnest, Darrell
2015-01-01
This article reports on students' problem-solving approaches across three representations--number lines, coordinate planes, and function graphs--the axes of which conventional mathematics treats in terms of consistent geometric and numeric coordinations. I consider these representations to be a part of a "hierarchical representational…
Quantum Optimization of Fully Connected Spin Glasses
NASA Astrophysics Data System (ADS)
Venturelli, Davide; Mandrà, Salvatore; Knysh, Sergey; O'Gorman, Bryan; Biswas, Rupak; Smelyanskiy, Vadim
2015-07-01
Many NP-hard problems can be seen as the task of finding a ground state of a disordered highly connected Ising spin glass. If solutions are sought by means of quantum annealing, it is often necessary to represent those graphs in the annealer's hardware by means of the graph-minor embedding technique, generating a final Hamiltonian consisting of coupled chains of ferromagnetically bound spins, whose binding energy is a free parameter. In order to investigate the effect of embedding on problems of interest, the fully connected Sherrington-Kirkpatrick model with random ±1 couplings is programmed on the D-Wave TwoTM annealer using up to 270 qubits interacting on a Chimera-type graph. We present the best embedding prescriptions for encoding the Sherrington-Kirkpatrick problem in the Chimera graph. The results indicate that the optimal choice of embedding parameters could be associated with the emergence of the spin-glass phase of the embedded problem, whose presence was previously uncertain. This optimal parameter setting allows the performance of the quantum annealer to compete with (and potentially outperform, in the absence of analog control errors) optimized simulated annealing algorithms.
Julián-Ortiz, Jesus V de; Gozalbes, Rafael; Besalú, Emili
2016-01-01
The search for new drug candidates in databases is of paramount importance in pharmaceutical chemistry. The selection of molecular subsets is greatly optimized and much more promising when potential drug-like molecules are detected a priori. In this work, about one hundred thousand molecules are ranked following a new methodology: a drug/non-drug classifier constructed by a consensual set of classification trees. The classification trees arise from the stochastic generation of training sets, which in turn are used to estimate probability factors of test molecules to be drug-like compounds. Molecules were represented by Topological Quantum Similarity Indices and their Graph Theoretical counterparts. The contribution of the present paper consists of presenting an effective ranking method able to improve the probability of finding drug-like substances by using these types of molecular descriptors.
Sy, B K; Deller, J R
1989-05-01
An intelligent communication device is developed to assist the nonverbal, motor disabled in the generation of written and spoken messages. The device is centered on a knowledge base of the grammatical rules and message elements. A "belief" reasoning scheme based on both the information from external sources and the embedded knowledge is used to optimize the process of message search. The search for the message elements is conceptualized as a path search in the language graph, and a special frame architecture is used to construct and to partition the graph. Bayesian "belief" reasoning from the Dempster-Shafer theory of evidence is augmented to cope with time-varying evidence. An "information fusion" strategy is also introduced to integrate various forms of external information. Experimental testing of the prototype system is discussed.
Song, Qi; Wu, Xiaodong; Liu, Yunlong; Smith, Mark; Buatti, John; Sonka, Milan
2009-01-01
We present a novel method for globally optimal surface segmentation of multiple mutually interacting objects, incorporating both edge and shape knowledge in a 3-D graph-theoretic approach. Hard surface interacting constraints are enforced in the interacting regions, preserving the geometric relationship of those partially interacting surfaces. The soft smoothness a priori shape compliance is introduced into the energy functional to provide shape guidance. The globally optimal surfaces can be simultaneously achieved by solving a maximum flow problem based on an arc-weighted graph representation. Representing the segmentation problem in an arc-weighted graph, one can incorporate a wider spectrum of constraints into the formulation, thus increasing segmentation accuracy and robustness in volumetric image data. To the best of our knowledge, our method is the first attempt to introduce the arc-weighted graph representation into the graph-searching approach for simultaneous segmentation of multiple partially interacting objects, which admits a globally optimal solution in a low-order polynomial time. Our new approach was applied to the simultaneous surface detection of bladder and prostate. The result was quite encouraging in spite of the low saliency of the bladder and prostate in CT images.
GoFFish: Graph-Oriented Framework for Foresight and Insight Using Scalable Heuristics
2015-09-01
series of research challenges that arise from the above and related to: scalability, data partitioning, memory representation and storage, exe - cution...job with varied deadlines in Jan, 2013. Further, we also build an SPSP model using Jan, 2013 data post facto as an ideal case. Fig. 7 reports the...Advanced Studies on Collaborative Research . Riverton, NJ, USA: IBM Corp., 2009, pp. 101–111. [42] G. J. Nutt, “The evolution towards flexible workflow
NASA Astrophysics Data System (ADS)
Brazhnik, Olga D.; Freed, Karl F.
1996-07-01
The lattice cluster theory (LCT) is extended to enable inclusion of longer range correlation contributions to the partition function of lattice model polymers in the athermal limit. A diagrammatic technique represents the expansion of the partition function in powers of the inverse lattice coordination number. Graph theory is applied to sort, classify, and evaluate the numerous diagrams appearing in higher orders. New general theorems are proven that provide a significant reduction in the computational labor required to evaluate the contributions from higher order correlations. The new algorithm efficiently generates the correction to the Flory mean field approximation from as many as eight sterically interacting bonds. While the new results contain the essential ingredients for treating a system of flexible chains with arbitrary lengths and concentrations, the complexity of our new algorithm motivates us to test the theory here for the simplest case of a system of lattice dimers by comparison to the dimer packing entropies from the work of Gaunt. This comparison demonstrates that the eight bond LCT is exact through order φ5 for dimers in one through three dimensions, where φ is the volume fraction of dimers. A subsequent work will use the contracted diagrams, derived and tested here, to treat the packing entropy for a system of flexible N-mers at a volume fraction of φ on hypercubic lattices.
Labeled Graph Kernel for Behavior Analysis.
Zhao, Ruiqi; Martinez, Aleix M
2016-08-01
Automatic behavior analysis from video is a major topic in many areas of research, including computer vision, multimedia, robotics, biology, cognitive science, social psychology, psychiatry, and linguistics. Two major problems are of interest when analyzing behavior. First, we wish to automatically categorize observed behaviors into a discrete set of classes (i.e., classification). For example, to determine word production from video sequences in sign language. Second, we wish to understand the relevance of each behavioral feature in achieving this classification (i.e., decoding). For instance, to know which behavior variables are used to discriminate between the words apple and onion in American Sign Language (ASL). The present paper proposes to model behavior using a labeled graph, where the nodes define behavioral features and the edges are labels specifying their order (e.g., before, overlaps, start). In this approach, classification reduces to a simple labeled graph matching. Unfortunately, the complexity of labeled graph matching grows exponentially with the number of categories we wish to represent. Here, we derive a graph kernel to quickly and accurately compute this graph similarity. This approach is very general and can be plugged into any kernel-based classifier. Specifically, we derive a Labeled Graph Support Vector Machine (LGSVM) and a Labeled Graph Logistic Regressor (LGLR) that can be readily employed to discriminate between many actions (e.g., sign language concepts). The derived approach can be readily used for decoding too, yielding invaluable information for the understanding of a problem (e.g., to know how to teach a sign language). The derived algorithms allow us to achieve higher accuracy results than those of state-of-the-art algorithms in a fraction of the time. We show experimental results on a variety of problems and datasets, including multimodal data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, Adam
2007-05-22
MpiGraph consists of an MPI application called mpiGraph written in C to measure message bandwidth and an associated crunch_mpiGraph script written in Perl to process the application output into an HTMO report. The mpiGraph application is designed to inspect the health and scalability of a high-performance interconnect while under heavy load. This is useful to detect hardware and software problems in a system, such as slow nodes, links, switches, or contention in switch routing. It is also useful to characterize how interconnect performance changes with different settings or how one interconnect type compares to another.
Finding Maximum Cliques on the D-Wave Quantum Annealer
Chapuis, Guillaume; Djidjev, Hristo; Hahn, Georg; ...
2018-05-03
This work assesses the performance of the D-Wave 2X (DW) quantum annealer for finding a maximum clique in a graph, one of the most fundamental and important NP-hard problems. Because the size of the largest graphs DW can directly solve is quite small (usually around 45 vertices), we also consider decomposition algorithms intended for larger graphs and analyze their performance. For smaller graphs that fit DW, we provide formulations of the maximum clique problem as a quadratic unconstrained binary optimization (QUBO) problem, which is one of the two input types (together with the Ising model) acceptable by the machine, andmore » compare several quantum implementations to current classical algorithms such as simulated annealing, Gurobi, and third-party clique finding heuristics. We further estimate the contributions of the quantum phase of the quantum annealer and the classical post-processing phase typically used to enhance each solution returned by DW. We demonstrate that on random graphs that fit DW, no quantum speedup can be observed compared with the classical algorithms. On the other hand, for instances specifically designed to fit well the DW qubit interconnection network, we observe substantial speed-ups in computing time over classical approaches.« less
Finding Maximum Cliques on the D-Wave Quantum Annealer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapuis, Guillaume; Djidjev, Hristo; Hahn, Georg
This work assesses the performance of the D-Wave 2X (DW) quantum annealer for finding a maximum clique in a graph, one of the most fundamental and important NP-hard problems. Because the size of the largest graphs DW can directly solve is quite small (usually around 45 vertices), we also consider decomposition algorithms intended for larger graphs and analyze their performance. For smaller graphs that fit DW, we provide formulations of the maximum clique problem as a quadratic unconstrained binary optimization (QUBO) problem, which is one of the two input types (together with the Ising model) acceptable by the machine, andmore » compare several quantum implementations to current classical algorithms such as simulated annealing, Gurobi, and third-party clique finding heuristics. We further estimate the contributions of the quantum phase of the quantum annealer and the classical post-processing phase typically used to enhance each solution returned by DW. We demonstrate that on random graphs that fit DW, no quantum speedup can be observed compared with the classical algorithms. On the other hand, for instances specifically designed to fit well the DW qubit interconnection network, we observe substantial speed-ups in computing time over classical approaches.« less
The Container Problem in Bubble-Sort Graphs
NASA Astrophysics Data System (ADS)
Suzuki, Yasuto; Kaneko, Keiichi
Bubble-sort graphs are variants of Cayley graphs. A bubble-sort graph is suitable as a topology for massively parallel systems because of its simple and regular structure. Therefore, in this study, we focus on n-bubble-sort graphs and propose an algorithm to obtain n-1 disjoint paths between two arbitrary nodes in time bounded by a polynomial in n, the degree of the graph plus one. We estimate the time complexity of the algorithm and the sum of the path lengths after proving the correctness of the algorithm. In addition, we report the results of computer experiments evaluating the average performance of the algorithm.
Efficient algorithms for a class of partitioning problems
NASA Technical Reports Server (NTRS)
Iqbal, M. Ashraf; Bokhari, Shahid H.
1990-01-01
The problem of optimally partitioning the modules of chain- or tree-like tasks over chain-structured or host-satellite multiple computer systems is addressed. This important class of problems includes many signal processing and industrial control applications. Prior research has resulted in a succession of faster exact and approximate algorithms for these problems. Polynomial exact and approximate algorithms are described for this class that are better than any of the previously reported algorithms. The approach is based on a preprocessing step that condenses the given chain or tree structured task into a monotonic chain or tree. The partitioning of this monotonic take can then be carried out using fast search techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, Andrew T.; Gelever, Stephan A.; Lee, Chak S.
2017-12-12
smoothG is a collection of parallel C++ classes/functions that algebraically constructs reduced models of different resolutions from a given high-fidelity graph model. In addition, smoothG also provides efficient linear solvers for the reduced models. Other than pure graph problem, the software finds its application in subsurface flow and power grid simulations in which graph Laplacians are found
Matching Extension and the Genus of a Graph,
1986-04-01
genus and the cardinality of the maximum matchings of a graph, Discrete Math . 25, 1979, 149-156. oQORE 1967. The Four-Color Problem, Academic Press...Press, New York, 1969, 287-293. M D PLUMMER 1980. On n-extendable graphs, Discrete Math . 31, 1980, 201-210. 1985. A theorem on matchings in the plane
GraphStore: A Distributed Graph Storage System for Big Data Networks
ERIC Educational Resources Information Center
Martha, VenkataSwamy
2013-01-01
Networks, such as social networks, are a universal solution for modeling complex problems in real time, especially in the Big Data community. While previous studies have attempted to enhance network processing algorithms, none have paved a path for the development of a persistent storage system. The proposed solution, GraphStore, provides an…
Neurally and Ocularly Informed Graph-Based Models for Searching 3D Environments
2014-06-03
hBCI = hybrid brain–computer interface, TAG = transductive annotation by graph, CV = computer vision, TSP = traveling salesman problem . are navigated...environment that are most likely to contain objects that the subject would like to visit. 2.9. Route planning A traveling salesman problem (TSP) solver...fixations in a visual search task using fixation-related potentials J. Vis. 13 Croes G 1958 A method for solving traveling - salesman problems Oper. Res
Solution to the SLAM problem in low dynamic environments using a pose graph and an RGB-D sensor.
Lee, Donghwa; Myung, Hyun
2014-07-11
In this study, we propose a solution to the simultaneous localization and mapping (SLAM) problem in low dynamic environments by using a pose graph and an RGB-D (red-green-blue depth) sensor. The low dynamic environments refer to situations in which the positions of objects change over long intervals. Therefore, in the low dynamic environments, robots have difficulty recognizing the repositioning of objects unlike in highly dynamic environments in which relatively fast-moving objects can be detected using a variety of moving object detection algorithms. The changes in the environments then cause groups of false loop closing when the same moved objects are observed for a while, which means that conventional SLAM algorithms produce incorrect results. To address this problem, we propose a novel SLAM method that handles low dynamic environments. The proposed method uses a pose graph structure and an RGB-D sensor. First, to prune the falsely grouped constraints efficiently, nodes of the graph, that represent robot poses, are grouped according to the grouping rules with noise covariances. Next, false constraints of the pose graph are pruned according to an error metric based on the grouped nodes. The pose graph structure is reoptimized after eliminating the false information, and the corrected localization and mapping results are obtained. The performance of the method was validated in real experiments using a mobile robot system.
Combinatorial approximation algorithms for MAXCUT using random walks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seshadhri, Comandur; Kale, Satyen
We give the first combinatorial approximation algorithm for MaxCut that beats the trivial 0.5 factor by a constant. The main partitioning procedure is very intuitive, natural, and easily described. It essentially performs a number of random walks and aggregates the information to provide the partition. We can control the running time to get an approximation factor-running time tradeoff. We show that for any constant b > 1.5, there is an {tilde O}(n{sup b}) algorithm that outputs a (0.5 + {delta})-approximation for MaxCut, where {delta} = {delta}(b) is some positive constant. One of the components of our algorithm is a weakmore » local graph partitioning procedure that may be of independent interest. Given a starting vertex i and a conductance parameter {phi}, unless a random walk of length {ell} = O(log n) starting from i mixes rapidly (in terms of {phi} and {ell}), we can find a cut of conductance at most {phi} close to the vertex. The work done per vertex found in the cut is sublinear in n.« less
Clustering Financial Time Series by Network Community Analysis
NASA Astrophysics Data System (ADS)
Piccardi, Carlo; Calatroni, Lisa; Bertoni, Fabio
In this paper, we describe a method for clustering financial time series which is based on community analysis, a recently developed approach for partitioning the nodes of a network (graph). A network with N nodes is associated to the set of N time series. The weight of the link (i, j), which quantifies the similarity between the two corresponding time series, is defined according to a metric based on symbolic time series analysis, which has recently proved effective in the context of financial time series. Then, searching for network communities allows one to identify groups of nodes (and then time series) with strong similarity. A quantitative assessment of the significance of the obtained partition is also provided. The method is applied to two distinct case-studies concerning the US and Italy Stock Exchange, respectively. In the US case, the stability of the partitions over time is also thoroughly investigated. The results favorably compare with those obtained with the standard tools typically used for clustering financial time series, such as the minimal spanning tree and the hierarchical tree.
ERIC Educational Resources Information Center
Maries, Alexandru; Lin, Shih-Yin; Singh, Chandralekha
2017-01-01
Prior research suggests that introductory physics students have difficulty with graphing and interpreting graphs. Here, we discuss an investigation of student difficulties in translating between mathematical and graphical representations for a problem in electrostatics and the effect of increasing levels of scaffolding on students'…
On extreme points of the diffusion polytope
Hay, M. J.; Schiff, J.; Fisch, N. J.
2017-01-04
Here, we consider a class of diffusion problems defined on simple graphs in which the populations at any two vertices may be averaged if they are connected by an edge. The diffusion polytope is the convex hull of the set of population vectors attainable using finite sequences of these operations. A number of physical problems have linear programming solutions taking the diffusion polytope as the feasible region, e.g. the free energy that can be removed from plasma using waves, so there is a need to describe and enumerate its extreme points. We also review known results for the case ofmore » the complete graph Kn, and study a variety of problems for the path graph Pn and the cyclic graph Cn. Finall, we describe the different kinds of extreme points that arise, and identify the diffusion polytope in a number of simple cases. In the case of increasing initial populations on Pn the diffusion polytope is topologically an n-dimensional hypercube.« less
Graph Matching: Relax at Your Own Risk.
Lyzinski, Vince; Fishkind, Donniell E; Fiori, Marcelo; Vogelstein, Joshua T; Priebe, Carey E; Sapiro, Guillermo
2016-01-01
Graph matching-aligning a pair of graphs to minimize their edge disagreements-has received wide-spread attention from both theoretical and applied communities over the past several decades, including combinatorics, computer vision, and connectomics. Its attention can be partially attributed to its computational difficulty. Although many heuristics have previously been proposed in the literature to approximately solve graph matching, very few have any theoretical support for their performance. A common technique is to relax the discrete problem to a continuous problem, therefore enabling practitioners to bring gradient-descent-type algorithms to bear. We prove that an indefinite relaxation (when solved exactly) almost always discovers the optimal permutation, while a common convex relaxation almost always fails to discover the optimal permutation. These theoretical results suggest that initializing the indefinite algorithm with the convex optimum might yield improved practical performance. Indeed, experimental results illuminate and corroborate these theoretical findings, demonstrating that excellent results are achieved in both benchmark and real data problems by amalgamating the two approaches.
Approximate ground states of the random-field Potts model from graph cuts
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Kumar, Ravinder; Weigel, Martin; Banerjee, Varsha; Janke, Wolfhard; Puri, Sanjay
2018-05-01
While the ground-state problem for the random-field Ising model is polynomial, and can be solved using a number of well-known algorithms for maximum flow or graph cut, the analog random-field Potts model corresponds to a multiterminal flow problem that is known to be NP-hard. Hence an efficient exact algorithm is very unlikely to exist. As we show here, it is nevertheless possible to use an embedding of binary degrees of freedom into the Potts spins in combination with graph-cut methods to solve the corresponding ground-state problem approximately in polynomial time. We benchmark this heuristic algorithm using a set of quasiexact ground states found for small systems from long parallel tempering runs. For a not-too-large number q of Potts states, the method based on graph cuts finds the same solutions in a fraction of the time. We employ the new technique to analyze the breakup length of the random-field Potts model in two dimensions.
Graphing trillions of triangles.
Burkhardt, Paul
2017-07-01
The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for Big Graphs requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed.
Dynamic Programming and Graph Algorithms in Computer Vision*
Felzenszwalb, Pedro F.; Zabih, Ramin
2013-01-01
Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting, since by carefully exploiting problem structure they often provide non-trivial guarantees concerning solution quality. In this paper we briefly review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo; the mid-level problem of interactive object segmentation; and the high-level problem of model-based recognition. PMID:20660950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosmanis, Ansis
2011-02-15
I introduce a continuous-time quantum walk on graphs called the quantum snake walk, the basis states of which are fixed-length paths (snakes) in the underlying graph. First, I analyze the quantum snake walk on the line, and I show that, even though most states stay localized throughout the evolution, there are specific states that most likely move on the line as wave packets with momentum inversely proportional to the length of the snake. Next, I discuss how an algorithm based on the quantum snake walk might potentially be able to solve an extended version of the glued trees problem, whichmore » asks to find a path connecting both roots of the glued trees graph. To the best of my knowledge, no efficient quantum algorithm solving this problem is known yet.« less
Carter, Ned; Holmström, Anne; Simpanen, Monica; Melin, Lennart
1988-01-01
Shoplifting and employee theft constitute a major problem for retailers. Previous research has described techniques for effectively reducing either type of theft but has not addressed the problem of thefts of unspecified origin. In a grocery store we evaluated the effect of identifying for employees frequently stolen products from three groups of items and graphing, twice weekly in the lunchroom, losses for the separate groups. After the products were identified and losses graphed, thefts from the three groups dropped from eight per day to two per day. PMID:16795718
High-performance parallel analysis of coupled problems for aircraft propulsion
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Lanteri, S.; Gumaste, U.; Ronaghi, M.
1994-01-01
Applications are described of high-performance parallel, computation for the analysis of complete jet engines, considering its multi-discipline coupled problem. The coupled problem involves interaction of structures with gas dynamics, heat conduction and heat transfer in aircraft engines. The methodology issues addressed include: consistent discrete formulation of coupled problems with emphasis on coupling phenomena; effect of partitioning strategies, augmentation and temporal solution procedures; sensitivity of response to problem parameters; and methods for interfacing multiscale discretizations in different single fields. The computer implementation issues addressed include: parallel treatment of coupled systems; domain decomposition and mesh partitioning strategies; data representation in object-oriented form and mapping to hardware driven representation, and tradeoff studies between partitioning schemes and fully coupled treatment.
Solving a Hamiltonian Path Problem with a bacterial computer
Baumgardner, Jordan; Acker, Karen; Adefuye, Oyinade; Crowley, Samuel Thomas; DeLoache, Will; Dickson, James O; Heard, Lane; Martens, Andrew T; Morton, Nickolaus; Ritter, Michelle; Shoecraft, Amber; Treece, Jessica; Unzicker, Matthew; Valencia, Amanda; Waters, Mike; Campbell, A Malcolm; Heyer, Laurie J; Poet, Jeffrey L; Eckdahl, Todd T
2009-01-01
Background The Hamiltonian Path Problem asks whether there is a route in a directed graph from a beginning node to an ending node, visiting each node exactly once. The Hamiltonian Path Problem is NP complete, achieving surprising computational complexity with modest increases in size. This challenge has inspired researchers to broaden the definition of a computer. DNA computers have been developed that solve NP complete problems. Bacterial computers can be programmed by constructing genetic circuits to execute an algorithm that is responsive to the environment and whose result can be observed. Each bacterium can examine a solution to a mathematical problem and billions of them can explore billions of possible solutions. Bacterial computers can be automated, made responsive to selection, and reproduce themselves so that more processing capacity is applied to problems over time. Results We programmed bacteria with a genetic circuit that enables them to evaluate all possible paths in a directed graph in order to find a Hamiltonian path. We encoded a three node directed graph as DNA segments that were autonomously shuffled randomly inside bacteria by a Hin/hixC recombination system we previously adapted from Salmonella typhimurium for use in Escherichia coli. We represented nodes in the graph as linked halves of two different genes encoding red or green fluorescent proteins. Bacterial populations displayed phenotypes that reflected random ordering of edges in the graph. Individual bacterial clones that found a Hamiltonian path reported their success by fluorescing both red and green, resulting in yellow colonies. We used DNA sequencing to verify that the yellow phenotype resulted from genotypes that represented Hamiltonian path solutions, demonstrating that our bacterial computer functioned as expected. Conclusion We successfully designed, constructed, and tested a bacterial computer capable of finding a Hamiltonian path in a three node directed graph. This proof-of-concept experiment demonstrates that bacterial computing is a new way to address NP-complete problems using the inherent advantages of genetic systems. The results of our experiments also validate synthetic biology as a valuable approach to biological engineering. We designed and constructed basic parts, devices, and systems using synthetic biology principles of standardization and abstraction. PMID:19630940
Convex Regression with Interpretable Sharp Partitions
Petersen, Ashley; Simon, Noah; Witten, Daniela
2016-01-01
We consider the problem of predicting an outcome variable on the basis of a small number of covariates, using an interpretable yet non-additive model. We propose convex regression with interpretable sharp partitions (CRISP) for this task. CRISP partitions the covariate space into blocks in a data-adaptive way, and fits a mean model within each block. Unlike other partitioning methods, CRISP is fit using a non-greedy approach by solving a convex optimization problem, resulting in low-variance fits. We explore the properties of CRISP, and evaluate its performance in a simulation study and on a housing price data set. PMID:27635120
Go With the Flow, on Jupiter and Snow. Coherence from Model-Free Video Data Without Trajectories
NASA Astrophysics Data System (ADS)
AlMomani, Abd AlRahman R.; Bollt, Erik
2018-06-01
Viewing a data set such as the clouds of Jupiter, coherence is readily apparent to human observers, especially the Great Red Spot, but also other great storms and persistent structures. There are now many different definitions and perspectives mathematically describing coherent structures, but we will take an image processing perspective here. We describe an image processing perspective inference of coherent sets from a fluidic system directly from image data, without attempting to first model underlying flow fields, related to a concept in image processing called motion tracking. In contrast to standard spectral methods for image processing which are generally related to a symmetric affinity matrix, leading to standard spectral graph theory, we need a not symmetric affinity which arises naturally from the underlying arrow of time. We develop an anisotropic, directed diffusion operator corresponding to flow on a directed graph, from a directed affinity matrix developed with coherence in mind, and corresponding spectral graph theory from the graph Laplacian. Our methodology is not offered as more accurate than other traditional methods of finding coherent sets, but rather our approach works with alternative kinds of data sets, in the absence of vector field. Our examples will include partitioning the weather and cloud structures of Jupiter, and a local to Potsdam, NY, lake effect snow event on Earth, as well as the benchmark test double-gyre system.
Unsupervised segmentation of MRI knees using image partition forests
NASA Astrophysics Data System (ADS)
Marčan, Marija; Voiculescu, Irina
2016-03-01
Nowadays many people are affected by arthritis, a condition of the joints with limited prevention measures, but with various options of treatment the most radical of which is surgical. In order for surgery to be successful, it can make use of careful analysis of patient-based models generated from medical images, usually by manual segmentation. In this work we show how to automate the segmentation of a crucial and complex joint -- the knee. To achieve this goal we rely on our novel way of representing a 3D voxel volume as a hierarchical structure of partitions which we have named Image Partition Forest (IPF). The IPF contains several partition layers of increasing coarseness, with partitions nested across layers in the form of adjacency graphs. On the basis of a set of properties (size, mean intensity, coordinates) of each node in the IPF we classify nodes into different features. Values indicating whether or not any particular node belongs to the femur or tibia are assigned through node filtering and node-based region growing. So far we have evaluated our method on 15 MRI knee images. Our unsupervised segmentation compared against a hand-segmented gold standard has achieved an average Dice similarity coefficient of 0.95 for femur and 0.93 for tibia, and an average symmetric surface distance of 0.98 mm for femur and 0.73 mm for tibia. The paper also discusses ways to introduce stricter morphological and spatial conditioning in the bone labelling process.
ERIC Educational Resources Information Center
Debnath, Lokenath
2010-01-01
This article is essentially devoted to a brief historical introduction to Euler's formula for polyhedra, topology, theory of graphs and networks with many examples from the real-world. Celebrated Konigsberg seven-bridge problem and some of the basic properties of graphs and networks for some understanding of the macroscopic behaviour of real…
EarthVision 2000: Examining Students' Representations of Complex Data Sets.
ERIC Educational Resources Information Center
Vellom, R. Paul; Pape, Stephen J.
2000-01-01
Examines pencil-and-paper graphs produced by students at the beginning of a 1-week summer teacher/student institute as well as computer-based graphs produced by those same students at the end of the institute. Initial problems with managing data sets and producing meaningful graphs disappeared quickly as students used the process of "building…
An agglomerative hierarchical clustering approach to visualisation in Bayesian clustering problems
Dawson, Kevin J.; Belkhir, Khalid
2009-01-01
Clustering problems (including the clustering of individuals into outcrossing populations, hybrid generations, full-sib families and selfing lines) have recently received much attention in population genetics. In these clustering problems, the parameter of interest is a partition of the set of sampled individuals, - the sample partition. In a fully Bayesian approach to clustering problems of this type, our knowledge about the sample partition is represented by a probability distribution on the space of possible sample partitions. Since the number of possible partitions grows very rapidly with the sample size, we can not visualise this probability distribution in its entirety, unless the sample is very small. As a solution to this visualisation problem, we recommend using an agglomerative hierarchical clustering algorithm, which we call the exact linkage algorithm. This algorithm is a special case of the maximin clustering algorithm that we introduced previously. The exact linkage algorithm is now implemented in our software package Partition View. The exact linkage algorithm takes the posterior co-assignment probabilities as input, and yields as output a rooted binary tree, - or more generally, a forest of such trees. Each node of this forest defines a set of individuals, and the node height is the posterior co-assignment probability of this set. This provides a useful visual representation of the uncertainty associated with the assignment of individuals to categories. It is also a useful starting point for a more detailed exploration of the posterior distribution in terms of the co-assignment probabilities. PMID:19337306
Communication Optimal Parallel Multiplication of Sparse Random Matrices
2013-02-21
Definition 2.1), and (2) the algorithm is sparsity- independent, where the computation is statically partitioned to processors independent of the sparsity...struc- ture of the input matrices (see Definition 2.5). The second assumption applies to nearly all existing al- gorithms for general sparse matrix-matrix...where A and B are n× n ER(d) matrices: Definition 2.1 An ER(d) matrix is an adjacency matrix of an Erdős-Rényi graph with parameters n and d/n. That
SPROC: A multiple-processor DSP IC
NASA Technical Reports Server (NTRS)
Davis, R.
1991-01-01
A large, single-chip, multiple-processor, digital signal processing (DSP) integrated circuit (IC) fabricated in HP-Cmos34 is presented. The innovative architecture is best suited for analog and real-time systems characterized by both parallel signal data flows and concurrent logic processing. The IC is supported by a powerful development system that transforms graphical signal flow graphs into production-ready systems in minutes. Automatic compiler partitioning of tasks among four on-chip processors gives the IC the signal processing power of several conventional DSP chips.
On the Parameterized Complexity of Some Optimization Problems Related to Multiple-Interval Graphs
NASA Astrophysics Data System (ADS)
Jiang, Minghui
We show that for any constant t ≥ 2, K -Independent Set and K-Dominating Set in t-track interval graphs are W[1]-hard. This settles an open question recently raised by Fellows, Hermelin, Rosamond, and Vialette. We also give an FPT algorithm for K-Clique in t-interval graphs, parameterized by both k and t, with running time max { t O(k), 2 O(klogk) } ·poly(n), where n is the number of vertices in the graph. This slightly improves the previous FPT algorithm by Fellows, Hermelin, Rosamond, and Vialette. Finally, we use the W[1]-hardness of K-Independent Set in t-track interval graphs to obtain the first parameterized intractability result for a recent bioinformatics problem called Maximal Strip Recovery (MSR). We show that MSR-d is W[1]-hard for any constant d ≥ 4 when the parameter is either the total length of the strips, or the total number of adjacencies in the strips, or the number of strips in the optimal solution.
Mathematical formula recognition using graph grammar
NASA Astrophysics Data System (ADS)
Lavirotte, Stephane; Pottier, Loic
1998-04-01
This paper describes current results of Ofr, a system for extracting and understanding mathematical expressions in documents. Such a tool could be really useful to be able to re-use knowledge in scientific books which are not available in electronic form. We currently also study use of this system for direct input of formulas with a graphical tablet for computer algebra system softwares. Existing solutions for mathematical recognition have problems to analyze 2D expressions like vectors and matrices. This is because they often try to use extended classical grammar to analyze formulas, relatively to baseline. But a lot of mathematical notations do not respect rules for such a parsing and that is the reason why they fail to extend text parsing technic. We investigate graph grammar and graph rewriting as a solution to recognize 2D mathematical notations. Graph grammar provide a powerful formalism to describe structural manipulations of multi-dimensional data. The main two problems to solve are ambiguities between rules of grammar and construction of graph.
Integrated Network Decompositions and Dynamic Programming for Graph Optimization (INDDGO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
The INDDGO software package offers a set of tools for finding exact solutions to graph optimization problems via tree decompositions and dynamic programming algorithms. Currently the framework offers serial and parallel (distributed memory) algorithms for finding tree decompositions and solving the maximum weighted independent set problem. The parallel dynamic programming algorithm is implemented on top of the MADNESS task-based runtime.
Graph cuts for curvature based image denoising.
Bae, Egil; Shi, Juan; Tai, Xue-Cheng
2011-05-01
Minimization of total variation (TV) is a well-known method for image denoising. Recently, the relationship between TV minimization problems and binary MRF models has been much explored. This has resulted in some very efficient combinatorial optimization algorithms for the TV minimization problem in the discrete setting via graph cuts. To overcome limitations, such as staircasing effects, of the relatively simple TV model, variational models based upon higher order derivatives have been proposed. The Euler's elastica model is one such higher order model of central importance, which minimizes the curvature of all level lines in the image. Traditional numerical methods for minimizing the energy in such higher order models are complicated and computationally complex. In this paper, we will present an efficient minimization algorithm based upon graph cuts for minimizing the energy in the Euler's elastica model, by simplifying the problem to that of solving a sequence of easy graph representable problems. This sequence has connections to the gradient flow of the energy function, and converges to a minimum point. The numerical experiments show that our new approach is more effective in maintaining smooth visual results while preserving sharp features better than TV models.
Artistic image analysis using graph-based learning approaches.
Carneiro, Gustavo
2013-08-01
We introduce a new methodology for the problem of artistic image analysis, which among other tasks, involves the automatic identification of visual classes present in an art work. In this paper, we advocate the idea that artistic image analysis must explore a graph that captures the network of artistic influences by computing the similarities in terms of appearance and manual annotation. One of the novelties of our methodology is the proposed formulation that is a principled way of combining these two similarities in a single graph. Using this graph, we show that an efficient random walk algorithm based on an inverted label propagation formulation produces more accurate annotation and retrieval results compared with the following baseline algorithms: bag of visual words, label propagation, matrix completion, and structural learning. We also show that the proposed approach leads to a more efficient inference and training procedures. This experiment is run on a database containing 988 artistic images (with 49 visual classification problems divided into a multiclass problem with 27 classes and 48 binary problems), where we show the inference and training running times, and quantitative comparisons with respect to several retrieval and annotation performance measures.
graphkernels: R and Python packages for graph comparison
Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten
2018-01-01
Abstract Summary Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. Availability and implementation The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. Contact mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch Supplementary information Supplementary data are available online at Bioinformatics. PMID:29028902
Detecting labor using graph theory on connectivity matrices of uterine EMG.
Al-Omar, S; Diab, A; Nader, N; Khalil, M; Karlsson, B; Marque, C
2015-08-01
Premature labor is one of the most serious health problems in the developed world. One of the main reasons for this is that no good way exists to distinguish true labor from normal pregnancy contractions. The aim of this paper is to investigate if the application of graph theory techniques to multi-electrode uterine EMG signals can improve the discrimination between pregnancy contractions and labor. To test our methods we first applied them to synthetic graphs where we detected some differences in the parameters results and changes in the graph model from pregnancy-like graphs to labor-like graphs. Then, we applied the same methods to real signals. We obtained the best differentiation between pregnancy and labor through the same parameters. Major improvements in differentiating between pregnancy and labor were obtained using a low pass windowing preprocessing step. Results show that real graphs generally became more organized when moving from pregnancy, where the graph showed random characteristics, to labor where the graph became a more small-world like graph.
graphkernels: R and Python packages for graph comparison.
Sugiyama, Mahito; Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten
2018-02-01
Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch. Supplementary data are available online at Bioinformatics. © The Author(s) 2017. Published by Oxford University Press.
GraphCrunch 2: Software tool for network modeling, alignment and clustering.
Kuchaiev, Oleksii; Stevanović, Aleksandar; Hayes, Wayne; Pržulj, Nataša
2011-01-19
Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI) data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype. We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant extension of GraphCrunch which implements the most popular random network models and compares them with the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner algorithm ("GRAAL") for purely topological network alignment. GRAAL can align any pair of networks and exposes large, dense, contiguous regions of topological and functional similarities far larger than any other existing tool. Finally, GraphCruch 2 implements an algorithm for clustering nodes within a network based solely on their topological similarities. Using GraphCrunch 2, we demonstrate that eukaryotic and viral PPI networks may belong to different graph model families and show that topology-based clustering can reveal important functional similarities between proteins within yeast and human PPI networks. GraphCrunch 2 is a software tool that implements the latest research on biological network analysis. It parallelizes computationally intensive tasks to fully utilize the potential of modern multi-core CPUs. It is open-source and freely available for research use. It runs under the Windows and Linux platforms.
Managing Network Partitions in Structured P2P Networks
NASA Astrophysics Data System (ADS)
Shafaat, Tallat M.; Ghodsi, Ali; Haridi, Seif
Structured overlay networks form a major class of peer-to-peer systems, which are touted for their abilities to scale, tolerate failures, and self-manage. Any long-lived Internet-scale distributed system is destined to face network partitions. Consequently, the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems. This makes it a crucial requirement for building any structured peer-to-peer systems to be resilient to network partitions. Although the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems, it has hardly been studied in the context of structured peer-to-peer systems. Structured overlays have mainly been studied under churn (frequent joins/failures), which as a side effect solves the problem of network partitions, as it is similar to massive node failures. Yet, the crucial aspect of network mergers has been ignored. In fact, it has been claimed that ring-based structured overlay networks, which constitute the majority of the structured overlays, are intrinsically ill-suited for merging rings. In this chapter, we motivate the problem of network partitions and mergers in structured overlays. We discuss how a structured overlay can automatically detect a network partition and merger. We present an algorithm for merging multiple similar ring-based overlays when the underlying network merges. We examine the solution in dynamic conditions, showing how our solution is resilient to churn during the merger, something widely believed to be difficult or impossible. We evaluate the algorithm for various scenarios and show that even when falsely detecting a merger, the algorithm quickly terminates and does not clutter the network with many messages. The algorithm is flexible as the tradeoff between message complexity and time complexity can be adjusted by a parameter.
Efficient parallel architecture for highly coupled real-time linear system applications
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Homaifar, Abdollah; Barua, Soumavo
1988-01-01
A systematic procedure is developed for exploiting the parallel constructs of computation in a highly coupled, linear system application. An overall top-down design approach is adopted. Differential equations governing the application under consideration are partitioned into subtasks on the basis of a data flow analysis. The interconnected task units constitute a task graph which has to be computed in every update interval. Multiprocessing concepts utilizing parallel integration algorithms are then applied for efficient task graph execution. A simple scheduling routine is developed to handle task allocation while in the multiprocessor mode. Results of simulation and scheduling are compared on the basis of standard performance indices. Processor timing diagrams are developed on the basis of program output accruing to an optimal set of processors. Basic architectural attributes for implementing the system are discussed together with suggestions for processing element design. Emphasis is placed on flexible architectures capable of accommodating widely varying application specifics.
Scheduling Independent Partitions in Integrated Modular Avionics Systems
Du, Chenglie; Han, Pengcheng
2016-01-01
Recently the integrated modular avionics (IMA) architecture has been widely adopted by the avionics industry due to its strong partition mechanism. Although the IMA architecture can achieve effective cost reduction and reliability enhancement in the development of avionics systems, it results in a complex allocation and scheduling problem. All partitions in an IMA system should be integrated together according to a proper schedule such that their deadlines will be met even under the worst case situations. In order to help provide a proper scheduling table for all partitions in IMA systems, we study the schedulability of independent partitions on a multiprocessor platform in this paper. We firstly present an exact formulation to calculate the maximum scaling factor and determine whether all partitions are schedulable on a limited number of processors. Then with a Game Theory analogy, we design an approximation algorithm to solve the scheduling problem of partitions, by allowing each partition to optimize its own schedule according to the allocations of the others. Finally, simulation experiments are conducted to show the efficiency and reliability of the approach proposed in terms of time consumption and acceptance ratio. PMID:27942013
NASA Technical Reports Server (NTRS)
Schmidt, Phillip; Garg, Sanjay; Holowecky, Brian
1992-01-01
A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.
NASA Technical Reports Server (NTRS)
Schmidt, Phillip H.; Garg, Sanjay; Holowecky, Brian R.
1993-01-01
A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.
Kaindl, H; Kainz, G; Radda, K
2001-01-01
Most of the work on search in artificial intelligence (AI) deals with one search direction only-mostly forward search-although it is known that a structural asymmetry of the search graph causes differences in the efficiency of searching in the forward or the backward direction, respectively. In the case of symmetrical graph structure, however, current theory would not predict such differences in efficiency. In several classes of job sequencing problems, we observed a phenomenon of asymmetry in search that relates to the distribution of the are costs in the search graph. This phenomenon can be utilized for improving the search efficiency by a new algorithm that automatically selects the search direction. We demonstrate fur a class of job sequencing problems that, through the utilization of this phenomenon, much more difficult problems can be solved-according to our best knowledge-than by the best published approach, and on the same problems, the running time is much reduced. As a consequence, we propose to check given problems for asymmetrical distribution of are costs that may cause asymmetry in search.
Dynamic extension of the Simulation Problem Analysis Kernel (SPANK)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, E.F.; Buhl, W.F.
1988-07-15
The Simulation Problem Analysis Kernel (SPANK) is an object-oriented simulation environment for general simulation purposes. Among its unique features is use of the directed graph as the primary data structure, rather than the matrix. This allows straightforward use of graph algorithms for matching variables and equations, and reducing the problem graph for efficient numerical solution. The original prototype implementation demonstrated the principles for systems of algebraic equations, allowing simulation of steady-state, nonlinear systems (Sowell 1986). This paper describes how the same principles can be extended to include dynamic objects, allowing simulation of general dynamic systems. The theory is developed andmore » an implementation is described. An example is taken from the field of building energy system simulation. 2 refs., 9 figs.« less
Sudden emergence of q-regular subgraphs in random graphs
NASA Astrophysics Data System (ADS)
Pretti, M.; Weigt, M.
2006-07-01
We investigate the computationally hard problem whether a random graph of finite average vertex degree has an extensively large q-regular subgraph, i.e., a subgraph with all vertices having degree equal to q. We reformulate this problem as a constraint-satisfaction problem, and solve it using the cavity method of statistical physics at zero temperature. For q = 3, we find that the first large q-regular subgraphs appear discontinuously at an average vertex degree c3 - reg simeq 3.3546 and contain immediately about 24% of all vertices in the graph. This transition is extremely close to (but different from) the well-known 3-core percolation point c3 - core simeq 3.3509. For q > 3, the q-regular subgraph percolation threshold is found to coincide with that of the q-core.
Graph Theory and the High School Student.
ERIC Educational Resources Information Center
Chartrand, Gary; Wall, Curtiss E.
1980-01-01
Graph theory is presented as a tool to instruct high school mathematics students. A variety of real world problems can be modeled which help students recognize the importance and difficulty of applying mathematics. (MP)
Statistical mechanics of high-density bond percolation
NASA Astrophysics Data System (ADS)
Timonin, P. N.
2018-05-01
High-density (HD) percolation describes the percolation of specific κ -clusters, which are the compact sets of sites each connected to κ nearest filled sites at least. It takes place in the classical patterns of independently distributed sites or bonds in which the ordinary percolation transition also exists. Hence, the study of series of κ -type HD percolations amounts to the description of classical clusters' structure for which κ -clusters constitute κ -cores nested one into another. Such data are needed for description of a number of physical, biological, and information properties of complex systems on random lattices, graphs, and networks. They range from magnetic properties of semiconductor alloys to anomalies in supercooled water and clustering in biological and social networks. Here we present the statistical mechanics approach to study HD bond percolation on an arbitrary graph. It is shown that the generating function for κ -clusters' size distribution can be obtained from the partition function of the specific q -state Potts-Ising model in the q →1 limit. Using this approach we find exact κ -clusters' size distributions for the Bethe lattice and Erdos-Renyi graph. The application of the method to Euclidean lattices is also discussed.
An effective trust-based recommendation method using a novel graph clustering algorithm
NASA Astrophysics Data System (ADS)
Moradi, Parham; Ahmadian, Sajad; Akhlaghian, Fardin
2015-10-01
Recommender systems are programs that aim to provide personalized recommendations to users for specific items (e.g. music, books) in online sharing communities or on e-commerce sites. Collaborative filtering methods are important and widely accepted types of recommender systems that generate recommendations based on the ratings of like-minded users. On the other hand, these systems confront several inherent issues such as data sparsity and cold start problems, caused by fewer ratings against the unknowns that need to be predicted. Incorporating trust information into the collaborative filtering systems is an attractive approach to resolve these problems. In this paper, we present a model-based collaborative filtering method by applying a novel graph clustering algorithm and also considering trust statements. In the proposed method first of all, the problem space is represented as a graph and then a sparsest subgraph finding algorithm is applied on the graph to find the initial cluster centers. Then, the proposed graph clustering algorithm is performed to obtain the appropriate users/items clusters. Finally, the identified clusters are used as a set of neighbors to recommend unseen items to the current active user. Experimental results based on three real-world datasets demonstrate that the proposed method outperforms several state-of-the-art recommender system methods.
Site partitioning for distributed redundant disk arrays
NASA Technical Reports Server (NTRS)
Mourad, Antoine N.; Fuchs, W. K.; Saab, Daniel G.
1992-01-01
Distributed redundant disk arrays can be used in a distributed computing system or database system to provide recovery in the presence of temporary and permanent failures of single sites. In this paper, we look at the problem of partitioning the sites into redundant arrays in such way that the communication costs for maintaining the parity information are minimized. We show that the partitioning problem is NP-complete and we propose two heuristic algorithms for finding approximate solutions.
Students' Interpretation of a Function Associated with a Real-Life Problem from Its Graph
ERIC Educational Resources Information Center
Mahir, Nevin
2010-01-01
The properties of a function such as limit, continuity, derivative, growth, or concavity can be determined more easily from its graph than by doing any algebraic operation. For this reason, it is important for students of mathematics to interpret some of the properties of a function from its graph. In this study, we investigated the competence of…
Overview and extensions of a system for routing directed graphs on SIMD architectures
NASA Technical Reports Server (NTRS)
Tomboulian, Sherryl
1988-01-01
Many problems can be described in terms of directed graphs that contain a large number of vertices where simple computations occur using data from adjacent vertices. A method is given for parallelizing such problems on an SIMD machine model that uses only nearest neighbor connections for communication, and has no facility for local indirect addressing. Each vertex of the graph will be assigned to a processor in the machine. Rules for a labeling are introduced that support the use of a simple algorithm for movement of data along the edges of the graph. Additional algorithms are defined for addition and deletion of edges. Modifying or adding a new edge takes the same time as parallel traversal. This combination of architecture and algorithms defines a system that is relatively simple to build and can do fast graph processing. All edges can be traversed in parallel in time O(T), where T is empirically proportional to the average path length in the embedding times the average degree of the graph. Additionally, researchers present an extension to the above method which allows for enhanced performance by allowing some broadcasting capabilities.
Graphing trillions of triangles
Burkhardt, Paul
2016-01-01
The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for Big Graphs requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed. PMID:28690426
Information-optimal genome assembly via sparse read-overlap graphs.
Shomorony, Ilan; Kim, Samuel H; Courtade, Thomas A; Tse, David N C
2016-09-01
In the context of third-generation long-read sequencing technologies, read-overlap-based approaches are expected to play a central role in the assembly step. A fundamental challenge in assembling from a read-overlap graph is that the true sequence corresponds to a Hamiltonian path on the graph, and, under most formulations, the assembly problem becomes NP-hard, restricting practical approaches to heuristics. In this work, we avoid this seemingly fundamental barrier by first setting the computational complexity issue aside, and seeking an algorithm that targets information limits In particular, we consider a basic feasibility question: when does the set of reads contain enough information to allow unambiguous reconstruction of the true sequence? Based on insights from this information feasibility question, we present an algorithm-the Not-So-Greedy algorithm-to construct a sparse read-overlap graph. Unlike most other assembly algorithms, Not-So-Greedy comes with a performance guarantee: whenever information feasibility conditions are satisfied, the algorithm reduces the assembly problem to an Eulerian path problem on the resulting graph, and can thus be solved in linear time. In practice, this theoretical guarantee translates into assemblies of higher quality. Evaluations on both simulated reads from real genomes and a PacBio Escherichia coli K12 dataset demonstrate that Not-So-Greedy compares favorably with standard string graph approaches in terms of accuracy of the resulting read-overlap graph and contig N50. Available at github.com/samhykim/nsg courtade@eecs.berkeley.edu or dntse@stanford.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Multiply scaled constrained nonlinear equation solvers. [for nonlinear heat conduction problems
NASA Technical Reports Server (NTRS)
Padovan, Joe; Krishna, Lala
1986-01-01
To improve the numerical stability of nonlinear equation solvers, a partitioned multiply scaled constraint scheme is developed. This scheme enables hierarchical levels of control for nonlinear equation solvers. To complement the procedure, partitioned convergence checks are established along with self-adaptive partitioning schemes. Overall, such procedures greatly enhance the numerical stability of the original solvers. To demonstrate and motivate the development of the scheme, the problem of nonlinear heat conduction is considered. In this context the main emphasis is given to successive substitution-type schemes. To verify the improved numerical characteristics associated with partitioned multiply scaled solvers, results are presented for several benchmark examples.
Partition functions of thermally dissociating diatomic molecules and related momentum problem
NASA Astrophysics Data System (ADS)
Buchowiecki, Marcin
2017-11-01
The anharmonicity and ro-vibrational coupling in ro-vibrational partition functions of diatomic molecules are analyzed for the high temperatures of the thermal dissociation regime. The numerically exact partition functions and thermal energies are calculated. At the high temperatures the proper integration of momenta is important if the partition function of the molecule, understood as bounded system, is to be obtained. The problem of proper treatment of momentum is crucial for correctness of high temperature molecular simulations as the decomposition of simulated molecule have to be avoided; the analysis of O2, H2+, and NH3 molecules allows to show importance of βDe value.
Site Partitioning for Redundant Arrays of Distributed Disks
NASA Technical Reports Server (NTRS)
Mourad, Antoine N.; Fuchs, W. Kent; Saab, Daniel G.
1996-01-01
Redundant arrays of distributed disks (RADD) can be used in a distributed computing system or database system to provide recovery in the presence of disk crashes and temporary and permanent failures of single sites. In this paper, we look at the problem of partitioning the sites of a distributed storage system into redundant arrays in such a way that the communication costs for maintaining the parity information are minimized. We show that the partitioning problem is NP-hard. We then propose and evaluate several heuristic algorithms for finding approximate solutions. Simulation results show that significant reduction in remote parity update costs can be achieved by optimizing the site partitioning scheme.
A modified approach to controller partitioning
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Veillette, Robert J.
1993-01-01
The idea of computing a decentralized control law for the integrated flight/propulsion control of an aircraft by partitioning a given centralized controller is investigated. An existing controller partitioning methodology is described, and a modified approach is proposed with the objective of simplifying the associated controller approximation problem. Under the existing approach, the decentralized control structure is a variable in the partitioning process; by contrast, the modified approach assumes that the structure is fixed a priori. Hence, the centralized controller design may take the decentralized control structure into account. Specifically, the centralized controller may be designed to include all the same inputs and outputs as the decentralized controller; then, the two controllers may be compared directly, simplifying the partitioning process considerably. Following the modified approach, a centralized controller is designed for an example aircraft mode. The design includes all the inputs and outputs to be used in a specified decentralized control structure. However, it is shown that the resulting centralized controller is not well suited for approximation by a decentralized controller of the given structure. The results indicate that it is not practical in general to cast the controller partitioning problem as a direct controller approximation problem.
Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs.
Kundeti, Vamsi K; Rajasekaran, Sanguthevar; Dinh, Hieu; Vaughn, Matthew; Thapar, Vishal
2010-11-15
Assembling genomic sequences from a set of overlapping reads is one of the most fundamental problems in computational biology. Algorithms addressing the assembly problem fall into two broad categories - based on the data structures which they employ. The first class uses an overlap/string graph and the second type uses a de Bruijn graph. However with the recent advances in short read sequencing technology, de Bruijn graph based algorithms seem to play a vital role in practice. Efficient algorithms for building these massive de Bruijn graphs are very essential in large sequencing projects based on short reads. In an earlier work, an O(n/p) time parallel algorithm has been given for this problem. Here n is the size of the input and p is the number of processors. This algorithm enumerates all possible bi-directed edges which can overlap with a node and ends up generating Θ(nΣ) messages (Σ being the size of the alphabet). In this paper we present a Θ(n/p) time parallel algorithm with a communication complexity that is equal to that of parallel sorting and is not sensitive to Σ. The generality of our algorithm makes it very easy to extend it even to the out-of-core model and in this case it has an optimal I/O complexity of Θ(nlog(n/B)Blog(M/B)) (M being the main memory size and B being the size of the disk block). We demonstrate the scalability of our parallel algorithm on a SGI/Altix computer. A comparison of our algorithm with the previous approaches reveals that our algorithm is faster--both asymptotically and practically. We demonstrate the scalability of our sequential out-of-core algorithm by comparing it with the algorithm used by VELVET to build the bi-directed de Bruijn graph. Our experiments reveal that our algorithm can build the graph with a constant amount of memory, which clearly outperforms VELVET. We also provide efficient algorithms for the bi-directed chain compaction problem. The bi-directed de Bruijn graph is a fundamental data structure for any sequence assembly program based on Eulerian approach. Our algorithms for constructing Bi-directed de Bruijn graphs are efficient in parallel and out of core settings. These algorithms can be used in building large scale bi-directed de Bruijn graphs. Furthermore, our algorithms do not employ any all-to-all communications in a parallel setting and perform better than the prior algorithms. Finally our out-of-core algorithm is extremely memory efficient and can replace the existing graph construction algorithm in VELVET.
NASA Astrophysics Data System (ADS)
Vatutin, Eduard
2017-12-01
The article deals with the problem of analysis of effectiveness of the heuristic methods with limited depth-first search techniques of decision obtaining in the test problem of getting the shortest path in graph. The article briefly describes the group of methods based on the limit of branches number of the combinatorial search tree and limit of analyzed subtree depth used to solve the problem. The methodology of comparing experimental data for the estimation of the quality of solutions based on the performing of computational experiments with samples of graphs with pseudo-random structure and selected vertices and arcs number using the BOINC platform is considered. It also shows description of obtained experimental results which allow to identify the areas of the preferable usage of selected subset of heuristic methods depending on the size of the problem and power of constraints. It is shown that the considered pair of methods is ineffective in the selected problem and significantly inferior to the quality of solutions that are provided by ant colony optimization method and its modification with combinatorial returns.
Scattering theory for graphs isomorphic to a regular tree at infinity
NASA Astrophysics Data System (ADS)
Colin de Verdière, Yves; Truc, Françoise
2013-06-01
We describe the spectral theory of the adjacency operator of a graph which is isomorphic to a regular tree at infinity. Using some combinatorics, we reduce the problem to a scattering problem for a finite rank perturbation of the adjacency operator on a regular tree. We develop this scattering theory using the classical recipes for Schrödinger operators in Euclidian spaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X; Belcher, AH; Wiersma, R
Purpose: In radiation therapy optimization the constraints can be either hard constraints which must be satisfied or soft constraints which are included but do not need to be satisfied exactly. Currently the voxel dose constraints are viewed as soft constraints and included as a part of the objective function and approximated as an unconstrained problem. However in some treatment planning cases the constraints should be specified as hard constraints and solved by constrained optimization. The goal of this work is to present a computation efficiency graph form alternating direction method of multipliers (ADMM) algorithm for constrained quadratic treatment planning optimizationmore » and compare it with several commonly used algorithms/toolbox. Method: ADMM can be viewed as an attempt to blend the benefits of dual decomposition and augmented Lagrangian methods for constrained optimization. Various proximal operators were first constructed as applicable to quadratic IMRT constrained optimization and the problem was formulated in a graph form of ADMM. A pre-iteration operation for the projection of a point to a graph was also proposed to further accelerate the computation. Result: The graph form ADMM algorithm was tested by the Common Optimization for Radiation Therapy (CORT) dataset including TG119, prostate, liver, and head & neck cases. Both unconstrained and constrained optimization problems were formulated for comparison purposes. All optimizations were solved by LBFGS, IPOPT, Matlab built-in toolbox, CVX (implementing SeDuMi) and Mosek solvers. For unconstrained optimization, it was found that LBFGS performs the best, and it was 3–5 times faster than graph form ADMM. However, for constrained optimization, graph form ADMM was 8 – 100 times faster than the other solvers. Conclusion: A graph form ADMM can be applied to constrained quadratic IMRT optimization. It is more computationally efficient than several other commercial and noncommercial optimizers and it also used significantly less computer memory.« less
Jiang, Yuyi; Shao, Zhiqing; Guo, Yi
2014-01-01
A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems. PMID:25143977
Jiang, Yuyi; Shao, Zhiqing; Guo, Yi
2014-01-01
A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems.
Dong, Jianwu; Chen, Feng; Zhou, Dong; Liu, Tian; Yu, Zhaofei; Wang, Yi
2017-03-01
Existence of low SNR regions and rapid-phase variations pose challenges to spatial phase unwrapping algorithms. Global optimization-based phase unwrapping methods are widely used, but are significantly slower than greedy methods. In this paper, dual decomposition acceleration is introduced to speed up a three-dimensional graph cut-based phase unwrapping algorithm. The phase unwrapping problem is formulated as a global discrete energy minimization problem, whereas the technique of dual decomposition is used to increase the computational efficiency by splitting the full problem into overlapping subproblems and enforcing the congruence of overlapping variables. Using three dimensional (3D) multiecho gradient echo images from an agarose phantom and five brain hemorrhage patients, we compared this proposed method with an unaccelerated graph cut-based method. Experimental results show up to 18-fold acceleration in computation time. Dual decomposition significantly improves the computational efficiency of 3D graph cut-based phase unwrapping algorithms. Magn Reson Med 77:1353-1358, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Mining connected global and local dense subgraphs for bigdata
NASA Astrophysics Data System (ADS)
Wu, Bo; Shen, Haiying
2016-01-01
The problem of discovering connected dense subgraphs of natural graphs is important in data analysis. Discovering dense subgraphs that do not contain denser subgraphs or are not contained in denser subgraphs (called significant dense subgraphs) is also critical for wide-ranging applications. In spite of many works on discovering dense subgraphs, there are no algorithms that can guarantee the connectivity of the returned subgraphs or discover significant dense subgraphs. Hence, in this paper, we define two subgraph discovery problems to discover connected and significant dense subgraphs, propose polynomial-time algorithms and theoretically prove their validity. We also propose an algorithm to further improve the time and space efficiency of our basic algorithm for discovering significant dense subgraphs in big data by taking advantage of the unique features of large natural graphs. In the experiments, we use massive natural graphs to evaluate our algorithms in comparison with previous algorithms. The experimental results show the effectiveness of our algorithms for the two problems and their efficiency. This work is also the first that reveals the physical significance of significant dense subgraphs in natural graphs from different domains.
Comparing Phylogenetic Trees by Matching Nodes Using the Transfer Distance Between Partitions
Giaro, Krzysztof
2017-01-01
Abstract Ability to quantify dissimilarity of different phylogenetic trees describing the relationship between the same group of taxa is required in various types of phylogenetic studies. For example, such metrics are used to assess the quality of phylogeny construction methods, to define optimization criteria in supertree building algorithms, or to find horizontal gene transfer (HGT) events. Among the set of metrics described so far in the literature, the most commonly used seems to be the Robinson–Foulds distance. In this article, we define a new metric for rooted trees—the Matching Pair (MP) distance. The MP metric uses the concept of the minimum-weight perfect matching in a complete bipartite graph constructed from partitions of all pairs of leaves of the compared phylogenetic trees. We analyze the properties of the MP metric and present computational experiments showing its potential applicability in tasks related to finding the HGT events. PMID:28177699
Comparing Phylogenetic Trees by Matching Nodes Using the Transfer Distance Between Partitions.
Bogdanowicz, Damian; Giaro, Krzysztof
2017-05-01
Ability to quantify dissimilarity of different phylogenetic trees describing the relationship between the same group of taxa is required in various types of phylogenetic studies. For example, such metrics are used to assess the quality of phylogeny construction methods, to define optimization criteria in supertree building algorithms, or to find horizontal gene transfer (HGT) events. Among the set of metrics described so far in the literature, the most commonly used seems to be the Robinson-Foulds distance. In this article, we define a new metric for rooted trees-the Matching Pair (MP) distance. The MP metric uses the concept of the minimum-weight perfect matching in a complete bipartite graph constructed from partitions of all pairs of leaves of the compared phylogenetic trees. We analyze the properties of the MP metric and present computational experiments showing its potential applicability in tasks related to finding the HGT events.
Cascading Failures in Bi-partite Graphs: Model for Systemic Risk Propagation
Huang, Xuqing; Vodenska, Irena; Havlin, Shlomo; Stanley, H. Eugene
2013-01-01
As economic entities become increasingly interconnected, a shock in a financial network can provoke significant cascading failures throughout the system. To study the systemic risk of financial systems, we create a bi-partite banking network model composed of banks and bank assets and propose a cascading failure model to describe the risk propagation process during crises. We empirically test the model with 2007 US commercial banks balance sheet data and compare the model prediction of the failed banks with the real failed banks after 2007. We find that our model efficiently identifies a significant portion of the actual failed banks reported by Federal Deposit Insurance Corporation. The results suggest that this model could be useful for systemic risk stress testing for financial systems. The model also identifies that commercial rather than residential real estate assets are major culprits for the failure of over 350 US commercial banks during 2008–2011. PMID:23386974
Non-crystallographic nets: characterization and first steps towards a classification.
Moreira de Oliveira, Montauban; Eon, Jean Guillaume
2014-05-01
Non-crystallographic (NC) nets are periodic nets characterized by the existence of non-trivial bounded automorphisms. Such automorphisms cannot be associated with any crystallographic symmetry in realizations of the net by crystal structures. It is shown that bounded automorphisms of finite order form a normal subgroup F(N) of the automorphism group of NC nets (N, T). As a consequence, NC nets are unstable nets (they display vertex collisions in any barycentric representation) and, conversely, stable nets are crystallographic nets. The labelled quotient graphs of NC nets are characterized by the existence of an equivoltage partition (a partition of the vertex set that preserves label vectors over edges between cells). A classification of NC nets is proposed on the basis of (i) their relationship to the crystallographic net with a homeomorphic barycentric representation and (ii) the structure of the subgroup F(N).
Flows in a tube structure: Equation on the graph
NASA Astrophysics Data System (ADS)
Panasenko, Grigory; Pileckas, Konstantin
2014-08-01
The steady-state Navier-Stokes equations in thin structures lead to some elliptic second order equation for the macroscopic pressure on a graph. At the nodes of the graph the pressure satisfies Kirchoff-type junction conditions. In the non-steady case the problem for the macroscopic pressure on the graph becomes nonlocal in time. In the paper we study the existence and uniqueness of a solution to such one-dimensional model on the graph for a pipe-wise network. We also prove the exponential decay of the solution with respect to the time variable in the case when the data decay exponentially with respect to time.
Shem-Tov, Doron; Halperin, Eran
2014-06-01
Recent technological improvements in the field of genetic data extraction give rise to the possibility of reconstructing the historical pedigrees of entire populations from the genotypes of individuals living today. Current methods are still not practical for real data scenarios as they have limited accuracy and assume unrealistic assumptions of monogamy and synchronized generations. In order to address these issues, we develop a new method for pedigree reconstruction, [Formula: see text], which is based on formulations of the pedigree reconstruction problem as variants of graph coloring. The new formulation allows us to consider features that were overlooked by previous methods, resulting in a reconstruction of up to 5 generations back in time, with an order of magnitude improvement of false-negatives rates over the state of the art, while keeping a lower level of false positive rates. We demonstrate the accuracy of [Formula: see text] compared to previous approaches using simulation studies over a range of population sizes, including inbred and outbred populations, monogamous and polygamous mating patterns, as well as synchronous and asynchronous mating.
Robot Acquisition of Active Maps Through Teleoperation and Vector Space Analysis
NASA Technical Reports Server (NTRS)
Peters, Richard Alan, II
2003-01-01
The work performed under this contract was in the area of intelligent robotics. The problem being studied was the acquisition of intelligent behaviors by a robot. The method was to acquire action maps that describe tasks as sequences of reflexive behaviors. Action maps (a.k.a. topological maps) are graphs whose nodes represent sensorimotor states and whose edges represent the motor actions that cause the robot to proceed from one state to the next. The maps were acquired by the robot after being teleoperated or otherwise guided by a person through a task several times. During a guided task, the robot records all its sensorimotor signals. The signals from several task trials are partitioned into episodes of static behavior. The corresponding episodes from each trial are averaged to produce a task description as a sequence of characteristic episodes. The sensorimotor states that indicate episode boundaries become the nodes, and the static behaviors, the edges. It was demonstrated that if compound maps are constructed from a set of tasks then the robot can perform new tasks in which it was never explicitly trained.
Value-based customer grouping from large retail data sets
NASA Astrophysics Data System (ADS)
Strehl, Alexander; Ghosh, Joydeep
2000-04-01
In this paper, we propose OPOSSUM, a novel similarity-based clustering algorithm using constrained, weighted graph- partitioning. Instead of binary presence or absence of products in a market-basket, we use an extended 'revenue per product' measure to better account for management objectives. Typically the number of clusters desired in a database marketing application is only in the teens or less. OPOSSUM proceeds top-down, which is more efficient and takes a small number of steps to attain the desired number of clusters as compared to bottom-up agglomerative clustering approaches. OPOSSUM delivers clusters that are balanced in terms of either customers (samples) or revenue (value). To facilitate data exploration and validation of results we introduce CLUSION, a visualization toolkit for high-dimensional clustering problems. To enable closed loop deployment of the algorithm, OPOSSUM has no user-specified parameters. Thresholding heuristics are avoided and the optimal number of clusters is automatically determined by a search for maximum performance. Results are presented on a real retail industry data-set of several thousand customers and products, to demonstrate the power of the proposed technique.
Analysis of Partitioned Methods for the Biot System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bukac, Martina; Layton, William; Moraiti, Marina
2015-02-18
In this work, we present a comprehensive study of several partitioned methods for the coupling of flow and mechanics. We derive energy estimates for each method for the fully-discrete problem. We write the obtained stability conditions in terms of a key control parameter defined as a ratio of the coupling strength and the speed of propagation. Depending on the parameters in the problem, give the choice of the partitioned method which allows the largest time step. (C) 2015 Wiley Periodicals, Inc.
The Use of Graphs in Specific Situations of the Initial Conditions of Linear Differential Equations
ERIC Educational Resources Information Center
Buendía, Gabriela; Cordero, Francisco
2013-01-01
In this article, we present a discussion on the role of graphs and its significance in the relation between the number of initial conditions and the order of a linear differential equation, which is known as the initial value problem. We propose to make a functional framework for the use of graphs that intends to broaden the explanations of the…
The Time Window Vehicle Routing Problem Considering Closed Route
NASA Astrophysics Data System (ADS)
Irsa Syahputri, Nenna; Mawengkang, Herman
2017-12-01
The Vehicle Routing Problem (VRP) determines the optimal set of routes used by a fleet of vehicles to serve a given set of customers on a predefined graph; the objective is to minimize the total travel cost (related to the travel times or distances) and operational cost (related to the number of vehicles used). In this paper we study a variant of the predefined graph: given a weighted graph G and vertices a and b, and given a set X of closed paths in G, find the minimum total travel cost of a-b path P such that no path in X is a subpath of P. Path P is allowed to repeat vertices and edges. We use integer programming model to describe the problem. A feasible neighbourhood approach is proposed to solve the model
Solving Set Cover with Pairs Problem using Quantum Annealing
NASA Astrophysics Data System (ADS)
Cao, Yudong; Jiang, Shuxian; Perouli, Debbie; Kais, Sabre
2016-09-01
Here we consider using quantum annealing to solve Set Cover with Pairs (SCP), an NP-hard combinatorial optimization problem that plays an important role in networking, computational biology, and biochemistry. We show an explicit construction of Ising Hamiltonians whose ground states encode the solution of SCP instances. We numerically simulate the time-dependent Schrödinger equation in order to test the performance of quantum annealing for random instances and compare with that of simulated annealing. We also discuss explicit embedding strategies for realizing our Hamiltonian construction on the D-wave type restricted Ising Hamiltonian based on Chimera graphs. Our embedding on the Chimera graph preserves the structure of the original SCP instance and in particular, the embedding for general complete bipartite graphs and logical disjunctions may be of broader use than that the specific problem we deal with.
Implementation of spectral clustering on microarray data of carcinoma using k-means algorithm
NASA Astrophysics Data System (ADS)
Frisca, Bustamam, Alhadi; Siswantining, Titin
2017-03-01
Clustering is one of data analysis methods that aims to classify data which have similar characteristics in the same group. Spectral clustering is one of the most popular modern clustering algorithms. As an effective clustering technique, spectral clustering method emerged from the concepts of spectral graph theory. Spectral clustering method needs partitioning algorithm. There are some partitioning methods including PAM, SOM, Fuzzy c-means, and k-means. Based on the research that has been done by Capital and Choudhury in 2013, when using Euclidian distance k-means algorithm provide better accuracy than PAM algorithm. So in this paper we use k-means as our partition algorithm. The major advantage of spectral clustering is in reducing data dimension, especially in this case to reduce the dimension of large microarray dataset. Microarray data is a small-sized chip made of a glass plate containing thousands and even tens of thousands kinds of genes in the DNA fragments derived from doubling cDNA. Application of microarray data is widely used to detect cancer, for the example is carcinoma, in which cancer cells express the abnormalities in his genes. The purpose of this research is to classify the data that have high similarity in the same group and the data that have low similarity in the others. In this research, Carcinoma microarray data using 7457 genes. The result of partitioning using k-means algorithm is two clusters.
Optimal graph based segmentation using flow lines with application to airway wall segmentation.
Petersen, Jens; Nielsen, Mads; Lo, Pechin; Saghir, Zaigham; Dirksen, Asger; de Bruijne, Marleen
2011-01-01
This paper introduces a novel optimal graph construction method that is applicable to multi-dimensional, multi-surface segmentation problems. Such problems are often solved by refining an initial coarse surface within the space given by graph columns. Conventional columns are not well suited for surfaces with high curvature or complex shapes but the proposed columns, based on properly generated flow lines, which are non-intersecting, guarantee solutions that do not self-intersect and are better able to handle such surfaces. The method is applied to segment human airway walls in computed tomography images. Comparison with manual annotations on 649 cross-sectional images from 15 different subjects shows significantly smaller contour distances and larger area of overlap than are obtained with recently published graph based methods. Airway abnormality measurements obtained with the method on 480 scan pairs from a lung cancer screening trial are reproducible and correlate significantly with lung function.
Graph Structured Program Evolution: Evolution of Loop Structures
NASA Astrophysics Data System (ADS)
Shirakawa, Shinichi; Nagao, Tomoharu
Recently, numerous automatic programming techniques have been developed and applied in various fields. A typical example is genetic programming (GP), and various extensions and representations of GP have been proposed thus far. Complex programs and hand-written programs, however, may contain several loops and handle multiple data types. In this chapter, we propose a new method called Graph Structured Program Evolution (GRAPE). The representation of GRAPE is a graph structure; therefore, it can represent branches and loops using this structure. Each programis constructed as an arbitrary directed graph of nodes and a data set. The GRAPE program handles multiple data types using the data set for each type, and the genotype of GRAPE takes the form of a linear string of integers. We apply GRAPE to three test problems, factorial, exponentiation, and list sorting, and demonstrate that the optimum solution in each problem is obtained by the GRAPE system.
Topology and static response of interaction networks in molecular biology
Radulescu, Ovidiu; Lagarrigue, Sandrine; Siegel, Anne; Veber, Philippe; Le Borgne, Michel
2005-01-01
We introduce a mathematical framework describing static response of networks occurring in molecular biology. This formalism has many similarities with the Laplace–Kirchhoff equations for electrical networks. We introduce the concept of graph boundary and we show how the response of the biological networks to external perturbations can be related to the Dirichlet or Neumann problems for the corresponding equations on the interaction graph. Solutions to these two problems are given in terms of path moduli (measuring path rigidity with respect to the propagation of interaction along the graph). Path moduli are related to loop products in the interaction graph via generalized Mason–Coates formulae. We apply our results to two specific biological examples: the lactose operon and the genetic regulation of lipogenesis. Our applications show consistency with experimental results and in the case of lipogenesis check some hypothesis on the behaviour of hepatic fatty acids on fasting. PMID:16849230
Isomorphism of dimer configurations and spanning trees on finite square lattices
NASA Astrophysics Data System (ADS)
Brankov, J. G.
1995-09-01
One-to-one mappings of the close-packed dimer configurations on a finite square lattice with free boundaries L onto the spanning trees of a related graph (or two-graph) G are found. The graph (two-graph) G can be constructed from L by: (1) deleting all the vertices of L with arbitrarily fixed parity of the row and column numbers; (2) suppressing all the vertices of degree 2 except those of degree 2 in L; (3) merging all the vertices of degree 1 into a single vertex g. The matrix Kirchhoff theorem reduces the enumeration problem for the spanning trees on G to the eigenvalue problem for the discrete Laplacian on the square lattice L'=G g with mixed Dirichlet-Neumann boundary conditions in at least one direction. That fact explains some of the unusual finite-size properties of the dimer model.
Using Betweenness Centrality to Identify Manifold Shortcuts
Cukierski, William J.; Foran, David J.
2010-01-01
High-dimensional data presents a challenge to tasks of pattern recognition and machine learning. Dimensionality reduction (DR) methods remove the unwanted variance and make these tasks tractable. Several nonlinear DR methods, such as the well known ISOMAP algorithm, rely on a neighborhood graph to compute geodesic distances between data points. These graphs can contain unwanted edges which connect disparate regions of one or more manifolds. This topological sensitivity is well known [1], [2], [3], yet handling high-dimensional, noisy data in the absence of a priori manifold knowledge, remains an open and difficult problem. This work introduces a divisive, edge-removal method based on graph betweenness centrality which can robustly identify manifold-shorting edges. The problem of graph construction in high dimension is discussed and the proposed algorithm is fit into the ISOMAP workflow. ROC analysis is performed and the performance is tested on synthetic and real datasets. PMID:20607142
Pan, Yongke; Niu, Wenjia
2017-01-01
Semisupervised Discriminant Analysis (SDA) is a semisupervised dimensionality reduction algorithm, which can easily resolve the out-of-sample problem. Relative works usually focus on the geometric relationships of data points, which are not obvious, to enhance the performance of SDA. Different from these relative works, the regularized graph construction is researched here, which is important in the graph-based semisupervised learning methods. In this paper, we propose a novel graph for Semisupervised Discriminant Analysis, which is called combined low-rank and k-nearest neighbor (LRKNN) graph. In our LRKNN graph, we map the data to the LR feature space and then the kNN is adopted to satisfy the algorithmic requirements of SDA. Since the low-rank representation can capture the global structure and the k-nearest neighbor algorithm can maximally preserve the local geometrical structure of the data, the LRKNN graph can significantly improve the performance of SDA. Extensive experiments on several real-world databases show that the proposed LRKNN graph is an efficient graph constructor, which can largely outperform other commonly used baselines. PMID:28316616
Probabilistic generation of random networks taking into account information on motifs occurrence.
Bois, Frederic Y; Gayraud, Ghislaine
2015-01-01
Because of the huge number of graphs possible even with a small number of nodes, inference on network structure is known to be a challenging problem. Generating large random directed graphs with prescribed probabilities of occurrences of some meaningful patterns (motifs) is also difficult. We show how to generate such random graphs according to a formal probabilistic representation, using fast Markov chain Monte Carlo methods to sample them. As an illustration, we generate realistic graphs with several hundred nodes mimicking a gene transcription interaction network in Escherichia coli.
Probabilistic Generation of Random Networks Taking into Account Information on Motifs Occurrence
Bois, Frederic Y.
2015-01-01
Abstract Because of the huge number of graphs possible even with a small number of nodes, inference on network structure is known to be a challenging problem. Generating large random directed graphs with prescribed probabilities of occurrences of some meaningful patterns (motifs) is also difficult. We show how to generate such random graphs according to a formal probabilistic representation, using fast Markov chain Monte Carlo methods to sample them. As an illustration, we generate realistic graphs with several hundred nodes mimicking a gene transcription interaction network in Escherichia coli. PMID:25493547
A strategy to load balancing for non-connectivity MapReduce job
NASA Astrophysics Data System (ADS)
Zhou, Huaping; Liu, Guangzong; Gui, Haixia
2017-09-01
MapReduce has been widely used in large scale and complex datasets as a kind of distributed programming model. Original Hash partitioning function in MapReduce often results the problem of data skew when data distribution is uneven. To solve the imbalance of data partitioning, we proposes a strategy to change the remaining partitioning index when data is skewed. In Map phase, we count the amount of data which will be distributed to each reducer, then Job Tracker monitor the global partitioning information and dynamically modify the original partitioning function according to the data skew model, so the Partitioner can change the index of these partitioning which will cause data skew to the other reducer that has less load in the next partitioning process, and can eventually balance the load of each node. Finally, we experimentally compare our method with existing methods on both synthetic and real datasets, the experimental results show our strategy can solve the problem of data skew with better stability and efficiency than Hash method and Sampling method for non-connectivity MapReduce task.
The Erdős-Rothschild problem on edge-colourings with forbidden monochromatic cliques
NASA Astrophysics Data System (ADS)
Pikhurko, Oleg; Staden, Katherine; Yilma, Zelealem B.
2017-09-01
Let $\\mathbf{k} := (k_1,\\dots,k_s)$ be a sequence of natural numbers. For a graph $G$, let $F(G;\\mathbf{k})$ denote the number of colourings of the edges of $G$ with colours $1,\\dots,s$ such that, for every $c \\in \\{1,\\dots,s\\}$, the edges of colour $c$ contain no clique of order $k_c$. Write $F(n;\\mathbf{k})$ to denote the maximum of $F(G;\\mathbf{k})$ over all graphs $G$ on $n$ vertices. This problem was first considered by Erd\\H{o}s and Rothschild in 1974, but it has been solved only for a very small number of non-trivial cases. We prove that, for every $\\mathbf{k}$ and $n$, there is a complete multipartite graph $G$ on $n$ vertices with $F(G;\\mathbf{k}) = F(n;\\mathbf{k})$. Also, for every $\\mathbf{k}$ we construct a finite optimisation problem whose maximum is equal to the limit of $\\log_2 F(n;\\mathbf{k})/{n\\choose 2}$ as $n$ tends to infinity. Our final result is a stability theorem for complete multipartite graphs $G$, describing the asymptotic structure of such $G$ with $F(G;\\mathbf{k}) = F(n;\\mathbf{k}) \\cdot 2^{o(n^2)}$ in terms of solutions to the optimisation problem.
Song, Qi; Chen, Mingqing; Bai, Junjie; Sonka, Milan; Wu, Xiaodong
2011-01-01
Multi-object segmentation with mutual interaction is a challenging task in medical image analysis. We report a novel solution to a segmentation problem, in which target objects of arbitrary shape mutually interact with terrain-like surfaces, which widely exists in the medical imaging field. The approach incorporates context information used during simultaneous segmentation of multiple objects. The object-surface interaction information is encoded by adding weighted inter-graph arcs to our graph model. A globally optimal solution is achieved by solving a single maximum flow problem in a low-order polynomial time. The performance of the method was evaluated in robust delineation of lung tumors in megavoltage cone-beam CT images in comparison with an expert-defined independent standard. The evaluation showed that our method generated highly accurate tumor segmentations. Compared with the conventional graph-cut method, our new approach provided significantly better results (p < 0.001). The Dice coefficient obtained by the conventional graph-cut approach (0.76 +/- 0.10) was improved to 0.84 +/- 0.05 when employing our new method for pulmonary tumor segmentation.
SING: Subgraph search In Non-homogeneous Graphs
2010-01-01
Background Finding the subgraphs of a graph database that are isomorphic to a given query graph has practical applications in several fields, from cheminformatics to image understanding. Since subgraph isomorphism is a computationally hard problem, indexing techniques have been intensively exploited to speed up the process. Such systems filter out those graphs which cannot contain the query, and apply a subgraph isomorphism algorithm to each residual candidate graph. The applicability of such systems is limited to databases of small graphs, because their filtering power degrades on large graphs. Results In this paper, SING (Subgraph search In Non-homogeneous Graphs), a novel indexing system able to cope with large graphs, is presented. The method uses the notion of feature, which can be a small subgraph, subtree or path. Each graph in the database is annotated with the set of all its features. The key point is to make use of feature locality information. This idea is used to both improve the filtering performance and speed up the subgraph isomorphism task. Conclusions Extensive tests on chemical compounds, biological networks and synthetic graphs show that the proposed system outperforms the most popular systems in query time over databases of medium and large graphs. Other specific tests show that the proposed system is effective for single large graphs. PMID:20170516
NASA Technical Reports Server (NTRS)
Lee, C. S. G.; Chen, C. L.
1989-01-01
Two efficient mapping algorithms for scheduling the robot inverse dynamics computation consisting of m computational modules with precedence relationship to be executed on a multiprocessor system consisting of p identical homogeneous processors with processor and communication costs to achieve minimum computation time are presented. An objective function is defined in terms of the sum of the processor finishing time and the interprocessor communication time. The minimax optimization is performed on the objective function to obtain the best mapping. This mapping problem can be formulated as a combination of the graph partitioning and the scheduling problems; both have been known to be NP-complete. Thus, to speed up the searching for a solution, two heuristic algorithms were proposed to obtain fast but suboptimal mapping solutions. The first algorithm utilizes the level and the communication intensity of the task modules to construct an ordered priority list of ready modules and the module assignment is performed by a weighted bipartite matching algorithm. For a near-optimal mapping solution, the problem can be solved by the heuristic algorithm with simulated annealing. These proposed optimization algorithms can solve various large-scale problems within a reasonable time. Computer simulations were performed to evaluate and verify the performance and the validity of the proposed mapping algorithms. Finally, experiments for computing the inverse dynamics of a six-jointed PUMA-like manipulator based on the Newton-Euler dynamic equations were implemented on an NCUBE/ten hypercube computer to verify the proposed mapping algorithms. Computer simulation and experimental results are compared and discussed.
Team formation and breakup in multiagent systems
NASA Astrophysics Data System (ADS)
Rao, Venkatesh Guru
The goal of this dissertation is to pose and solve problems involving team formation and breakup in two specific multiagent domains: formation travel and space-based interferometric observatories. The methodology employed comprises elements drawn from control theory, scheduling theory and artificial intelligence (AI). The original contribution of the work comprises three elements. The first contribution, the partitioned state-space approach is a technique for formulating and solving co-ordinated motion problem using calculus of variations techniques. The approach is applied to obtain optimal two-agent formation travel trajectories on graphs. The second contribution is the class of MixTeam algorithms, a class of team dispatchers that extends classical dispatching by accommodating team formation and breakup and exploration/exploitation learning. The algorithms are applied to observation scheduling and constellation geometry design for interferometric space telescopes. The use of feedback control for team scheduling is also demonstrated with these algorithms. The third contribution is the analysis of the optimality properties of greedy, or myopic, decision-making for a simple class of team dispatching problems. This analysis represents a first step towards the complete analysis of complex team schedulers such as the MixTeam algorithms. The contributions represent an extension to the literature on team dynamics in control theory. The broad conclusions that emerge from this research are that greedy or myopic decision-making strategies for teams perform well when specific parameters in the domain are weakly affected by an agent's actions, and that intelligent systems require a closer integration of domain knowledge in decision-making functions.
KmL3D: a non-parametric algorithm for clustering joint trajectories.
Genolini, C; Pingault, J B; Driss, T; Côté, S; Tremblay, R E; Vitaro, F; Arnaud, C; Falissard, B
2013-01-01
In cohort studies, variables are measured repeatedly and can be considered as trajectories. A classic way to work with trajectories is to cluster them in order to detect the existence of homogeneous patterns of evolution. Since cohort studies usually measure a large number of variables, it might be interesting to study the joint evolution of several variables (also called joint-variable trajectories). To date, the only way to cluster joint-trajectories is to cluster each trajectory independently, then to cross the partitions obtained. This approach is unsatisfactory because it does not take into account a possible co-evolution of variable-trajectories. KmL3D is an R package that implements a version of k-means dedicated to clustering joint-trajectories. It provides facilities for the management of missing values, offers several quality criteria and its graphic interface helps the user to select the best partition. KmL3D can work with any number of joint-variable trajectories. In the restricted case of two joint trajectories, it proposes 3D tools to visualize the partitioning and then export 3D dynamic rotating-graphs to PDF format. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
An Efficient Downlink Scheduling Strategy Using Normal Graphs for Multiuser MIMO Wireless Systems
NASA Astrophysics Data System (ADS)
Chen, Jung-Chieh; Wu, Cheng-Hsuan; Lee, Yao-Nan; Wen, Chao-Kai
Inspired by the success of the low-density parity-check (LDPC) codes in the field of error-control coding, in this paper we propose transforming the downlink multiuser multiple-input multiple-output scheduling problem into an LDPC-like problem using the normal graph. Based on the normal graph framework, soft information, which indicates the probability that each user will be scheduled to transmit packets at the access point through a specified angle-frequency sub-channel, is exchanged among the local processors to iteratively optimize the multiuser transmission schedule. Computer simulations show that the proposed algorithm can efficiently schedule simultaneous multiuser transmission which then increases the overall channel utilization and reduces the average packet delay.
Nelson, Carl A; Miller, David J; Oleynikov, Dmitry
2008-01-01
As modular systems come into the forefront of robotic telesurgery, streamlining the process of selecting surgical tools becomes an important consideration. This paper presents a method for optimal queuing of tools in modular surgical tool systems, based on patterns in tool-use sequences, in order to minimize time spent changing tools. The solution approach is to model the set of tools as a graph, with tool-change frequency expressed as edge weights in the graph, and to solve the Traveling Salesman Problem for the graph. In a set of simulations, this method has shown superior performance at optimizing tool arrangements for streamlining surgical procedures.
Extremal problems for topological indices in combinatorial chemistry.
Tichy, Robert F; Wagner, Stephan
2005-09-01
Topological indices of molecular graphs are related to several physicochemical characteristics; recently, the inverse problem for some of these indices has been studied, and it has some applications in the design of combinatorial libraries for drug discovery. It is thus very natural to study also extremal problems for these indices, i.e., finding graphs having minimal or maximal index. In this paper, these questions will be discussed for three different indices, namely the sigma-index, the c-index and the Z-index, with emphasis on the sigma-index.
NASA Astrophysics Data System (ADS)
Fu, Junjie; Wang, Jin-zhi
2017-09-01
In this paper, we study the finite-time consensus problems with globally bounded convergence time also known as fixed-time consensus problems for multi-agent systems subject to directed communication graphs. Two new distributed control strategies are proposed such that leaderless and leader-follower consensus are achieved with convergence time independent on the initial conditions of the agents. Fixed-time formation generation and formation tracking problems are also solved as the generalizations. Simulation examples are provided to demonstrate the performance of the new controllers.
Graph state generation with noisy mirror-inverting spin chains
NASA Astrophysics Data System (ADS)
Clark, Stephen R.; Klein, Alexander; Bruderer, Martin; Jaksch, Dieter
2007-06-01
We investigate the influence of noise on a graph state generation scheme which exploits a mirror inverting spin chain. Within this scheme the spin chain is used repeatedly as an entanglement bus (EB) to create multi-partite entanglement. The noise model we consider comprises of each spin of this EB being exposed to independent local noise which degrades the capabilities of the EB. Here we concentrate on quantifying its performance as a single-qubit channel and as a mediator of a two-qubit entangling gate, since these are basic operations necessary for graph state generation using the EB. In particular, for the single-qubit case we numerically calculate the average channel fidelity and whether the channel becomes entanglement breaking, i.e. expunges any entanglement the transferred qubit may have with other external qubits. We find that neither local decay nor dephasing noise cause entanglement breaking. This is in contrast to local thermal and depolarizing noise where we determine a critical length and critical noise coupling, respectively, at which entanglement breaking occurs. The critical noise coupling for local depolarizing noise is found to exhibit a power-law dependence on the chain length. For two-qubits we similarly compute the average gate fidelity and whether the ability for this gate to create entanglement is maintained. The concatenation of these noisy gates for the construction of a five-qubit linear cluster state and a Greenberger Horne Zeilinger state indicates that the level of noise that can be tolerated for graph state generation is tightly constrained.
NASA Astrophysics Data System (ADS)
Wahid, Juliana; Hussin, Naimah Mohd
2016-08-01
The construction of population of initial solution is a crucial task in population-based metaheuristic approach for solving curriculum-based university course timetabling problem because it can affect the convergence speed and also the quality of the final solution. This paper presents an exploration on combination of graph heuristics in construction approach in curriculum based course timetabling problem to produce a population of initial solutions. The graph heuristics were set as single and combination of two heuristics. In addition, several ways of assigning courses into room and timeslot are implemented. All settings of heuristics are then tested on the same curriculum based course timetabling problem instances and are compared with each other in terms of number of population produced. The result shows that combination of saturation degree followed by largest degree heuristic produce the highest number of population of initial solutions. The results from this study can be used in the improvement phase of algorithm that uses population of initial solutions.
ERIC Educational Resources Information Center
Caddle, Mary C.; Brizuela, Barbara M.
2011-01-01
This paper looks at 21 fifth grade students as they discuss a linear graph in the Cartesian plane. The problem presented to students depicted a graph showing distance as a function of elapsed time for a person walking at a constant rate of 5 miles/h. The question asked students to consider how many more hours, after having already walked 4 h,…
Preserving Differential Privacy in Degree-Correlation based Graph Generation
Wang, Yue; Wu, Xintao
2014-01-01
Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as cluster coefficient often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we study the problem of enforcing edge differential privacy in graph generation. The idea is to enforce differential privacy on graph model parameters learned from the original network and then generate the graphs for releasing using the graph model with the private parameters. In particular, we develop a differential privacy preserving graph generator based on the dK-graph generation model. We first derive from the original graph various parameters (i.e., degree correlations) used in the dK-graph model, then enforce edge differential privacy on the learned parameters, and finally use the dK-graph model with the perturbed parameters to generate graphs. For the 2K-graph model, we enforce the edge differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We conduct experiments on four real networks and compare the performance of our private dK-graph models with the stochastic Kronecker graph generation model in terms of utility and privacy tradeoff. Empirical evaluations show the developed private dK-graph generation models significantly outperform the approach based on the stochastic Kronecker generation model. PMID:24723987
Wang, Zhaocai; Huang, Dongmei; Meng, Huajun; Tang, Chengpei
2013-10-01
The minimum spanning tree (MST) problem is to find minimum edge connected subsets containing all the vertex of a given undirected graph. It is a vitally important NP-complete problem in graph theory and applied mathematics, having numerous real life applications. Moreover in previous studies, DNA molecular operations usually were used to solve NP-complete head-to-tail path search problems, rarely for NP-hard problems with multi-lateral path solutions result, such as the minimum spanning tree problem. In this paper, we present a new fast DNA algorithm for solving the MST problem using DNA molecular operations. For an undirected graph with n vertex and m edges, we reasonably design flexible length DNA strands representing the vertex and edges, take appropriate steps and get the solutions of the MST problem in proper length range and O(3m+n) time complexity. We extend the application of DNA molecular operations and simultaneity simplify the complexity of the computation. Results of computer simulative experiments show that the proposed method updates some of the best known values with very short time and that the proposed method provides a better performance with solution accuracy over existing algorithms. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings.
Krenn, Mario; Gu, Xuemei; Zeilinger, Anton
2017-12-15
We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the #P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems from graph theory-such as Hall's marriage problem-are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows one to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and how to potentially simulate properties of graphs and networks with quantum experiments (such as critical exponents and phase transitions).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kupavskii, A B; Raigorodskii, A M
2013-10-31
We investigate in detail some properties of distance graphs constructed on the integer lattice. Such graphs find wide applications in problems of combinatorial geometry, in particular, such graphs were employed to answer Borsuk's question in the negative and to obtain exponential estimates for the chromatic number of the space. This work is devoted to the study of the number of cliques and the chromatic number of such graphs under certain conditions. Constructions of sequences of distance graphs are given, in which the graphs have unit length edges and contain a large number of triangles that lie on a sphere of radius 1/√3more » (which is the minimum possible). At the same time, the chromatic numbers of the graphs depend exponentially on their dimension. The results of this work strengthen and generalize some of the results obtained in a series of papers devoted to related issues. Bibliography: 29 titles.« less
Run-time scheduling and execution of loops on message passing machines
NASA Technical Reports Server (NTRS)
Crowley, Kay; Saltz, Joel; Mirchandaney, Ravi; Berryman, Harry
1989-01-01
Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.
Run-time scheduling and execution of loops on message passing machines
NASA Technical Reports Server (NTRS)
Saltz, Joel; Crowley, Kathleen; Mirchandaney, Ravi; Berryman, Harry
1990-01-01
Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.
A density-based clustering model for community detection in complex networks
NASA Astrophysics Data System (ADS)
Zhao, Xiang; Li, Yantao; Qu, Zehui
2018-04-01
Network clustering (or graph partitioning) is an important technique for uncovering the underlying community structures in complex networks, which has been widely applied in various fields including astronomy, bioinformatics, sociology, and bibliometric. In this paper, we propose a density-based clustering model for community detection in complex networks (DCCN). The key idea is to find group centers with a higher density than their neighbors and a relatively large integrated-distance from nodes with higher density. The experimental results indicate that our approach is efficient and effective for community detection of complex networks.
Communication-Efficient Arbitration Models for Low-Resolution Data Flow Computing
1988-12-01
Given graph G = (V, E), weights w (v) for each v e V and L (e) for each e c E, and positive integers B and J, find a partition of V into disjoint...MIT/LCS/TR-218, Cambridge, Mass. Agerwala, Tilak, February 1982, "Data Flow Systems", Computer, pp. 10-13. Babb, Robert G ., July 1984, "Parallel...Processing with Large-Grain Data Flow Techniques," IEEE Computer 17, 7, pp. 55-61. Babb, Robert G ., II, Lise Storc, and William C. Ragsdale, 1986, "A Large
Discrete Methods and their Applications
1993-02-03
problem of finding all near-optimal solutions to a linear program. In paper [18], we give a brief and elementary proof of a result of Hoffman [1952) about...relies only on linear programming duality; second, we obtain geometric and algebraic representations of the bounds that are determined explicitly in...same. We have studied the problem of finding the minimum n such that a given unit interval graph is an n--graph. A linear time algorithm to compute
Determination system for solar cell layout in traffic light network using dominating set
NASA Astrophysics Data System (ADS)
Eka Yulia Retnani, Windi; Fambudi, Brelyanes Z.; Slamin
2018-04-01
Graph Theory is one of the fields in Mathematics that solves discrete problems. In daily life, the applications of Graph Theory are used to solve various problems. One of the topics in the Graph Theory that is used to solve the problem is the dominating set. The concept of dominating set is used, for example, to locate some objects systematically. In this study, the dominating set are used to determine the dominating points for solar panels, where the vertex represents the traffic light point and the edge represents the connection between the points of the traffic light. To search the dominating points for solar panels using the greedy algorithm. This algorithm is used to determine the location of solar panel. This research produced applications that can determine the location of solar panels with optimal results, that is, the minimum dominating points.
All-Optical Implementation of the Ant Colony Optimization Algorithm
Hu, Wenchao; Wu, Kan; Shum, Perry Ping; Zheludev, Nikolay I.; Soci, Cesare
2016-01-01
We report all-optical implementation of the optimization algorithm for the famous “ant colony” problem. Ant colonies progressively optimize pathway to food discovered by one of the ants through identifying the discovered route with volatile chemicals (pheromones) secreted on the way back from the food deposit. Mathematically this is an important example of graph optimization problem with dynamically changing parameters. Using an optical network with nonlinear waveguides to represent the graph and a feedback loop, we experimentally show that photons traveling through the network behave like ants that dynamically modify the environment to find the shortest pathway to any chosen point in the graph. This proof-of-principle demonstration illustrates how transient nonlinearity in the optical system can be exploited to tackle complex optimization problems directly, on the hardware level, which may be used for self-routing of optical signals in transparent communication networks and energy flow in photonic systems. PMID:27222098
Fiber tracking of brain white matter based on graph theory.
Lu, Meng
2015-01-01
Brain white matter tractography is reconstructed via diffusion-weighted magnetic resonance images. Due to the complex structure of brain white matter fiber bundles, fiber crossing and fiber branching are abundant in human brain. And regular methods with diffusion tensor imaging (DTI) can't accurately handle this problem. the biggest problems of the brain tractography. Therefore, this paper presented a novel brain white matter tractography method based on graph theory, so the fiber tracking between two voxels is transformed into locating the shortest path in a graph. Besides, the presented method uses Q-ball imaging (QBI) as the source data instead of DTI, because QBI can provide accurate information about multiple fiber crossing and branching in one voxel using orientation distribution function (ODF). Experiments showed that the presented method can accurately handle the problem of brain white matter fiber crossing and branching, and reconstruct brain tractograhpy both in phantom data and real brain data.
DTS: Building custom, intelligent schedulers
NASA Technical Reports Server (NTRS)
Hansson, Othar; Mayer, Andrew
1994-01-01
DTS is a decision-theoretic scheduler, built on top of a flexible toolkit -- this paper focuses on how the toolkit might be reused in future NASA mission schedulers. The toolkit includes a user-customizable scheduling interface, and a 'Just-For-You' optimization engine. The customizable interface is built on two metaphors: objects and dynamic graphs. Objects help to structure problem specifications and related data, while dynamic graphs simplify the specification of graphical schedule editors (such as Gantt charts). The interface can be used with any 'back-end' scheduler, through dynamically-loaded code, interprocess communication, or a shared database. The 'Just-For-You' optimization engine includes user-specific utility functions, automatically compiled heuristic evaluations, and a postprocessing facility for enforcing scheduling policies. The optimization engine is based on BPS, the Bayesian Problem-Solver (1,2), which introduced a similar approach to solving single-agent and adversarial graph search problems.
A SAT Based Effective Algorithm for the Directed Hamiltonian Cycle Problem
NASA Astrophysics Data System (ADS)
Jäger, Gerold; Zhang, Weixiong
The Hamiltonian cycle problem (HCP) is an important combinatorial problem with applications in many areas. While thorough theoretical and experimental analyses have been made on the HCP in undirected graphs, little is known for the HCP in directed graphs (DHCP). The contribution of this work is an effective algorithm for the DHCP. Our algorithm explores and exploits the close relationship between the DHCP and the Assignment Problem (AP) and utilizes a technique based on Boolean satisfiability (SAT). By combining effective algorithms for the AP and SAT, our algorithm significantly outperforms previous exact DHCP algorithms including an algorithm based on the award-winning Concorde TSP algorithm.
Markovian Search Games in Heterogeneous Spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Christopher H
2009-01-01
We consider how to search for a mobile evader in a large heterogeneous region when sensors are used for detection. Sensors are modeled using probability of detection. Due to environmental effects, this probability will not be constant over the entire region. We map this problem to a graph search problem and, even though deterministic graph search is NP-complete, we derive a tractable, optimal, probabilistic search strategy. We do this by defining the problem as a differential game played on a Markov chain. We prove that this strategy is optimal in the sense of Nash. Simulations of an example problem illustratemore » our approach and verify our claims.« less
Thermodynamic limit of random partitions and dispersionless Toda hierarchy
NASA Astrophysics Data System (ADS)
Takasaki, Kanehisa; Nakatsu, Toshio
2012-01-01
We study the thermodynamic limit of random partition models for the instanton sum of 4D and 5D supersymmetric U(1) gauge theories deformed by some physical observables. The physical observables correspond to external potentials in the statistical model. The partition function is reformulated in terms of the density function of Maya diagrams. The thermodynamic limit is governed by a limit shape of Young diagrams associated with dominant terms in the partition function. The limit shape is characterized by a variational problem, which is further converted to a scalar-valued Riemann-Hilbert problem. This Riemann-Hilbert problem is solved with the aid of a complex curve, which may be thought of as the Seiberg-Witten curve of the deformed U(1) gauge theory. This solution of the Riemann-Hilbert problem is identified with a special solution of the dispersionless Toda hierarchy that satisfies a pair of generalized string equations. The generalized string equations for the 5D gauge theory are shown to be related to hidden symmetries of the statistical model. The prepotential and the Seiberg-Witten differential are also considered.
Predicting activity approach based on new atoms similarity kernel function.
Abu El-Atta, Ahmed H; Moussa, M I; Hassanien, Aboul Ella
2015-07-01
Drug design is a high cost and long term process. To reduce time and costs for drugs discoveries, new techniques are needed. Chemoinformatics field implements the informational techniques and computer science like machine learning and graph theory to discover the chemical compounds properties, such as toxicity or biological activity. This is done through analyzing their molecular structure (molecular graph). To overcome this problem there is an increasing need for algorithms to analyze and classify graph data to predict the activity of molecules. Kernels methods provide a powerful framework which combines machine learning with graph theory techniques. These kernels methods have led to impressive performance results in many several chemoinformatics problems like biological activity prediction. This paper presents a new approach based on kernel functions to solve activity prediction problem for chemical compounds. First we encode all atoms depending on their neighbors then we use these codes to find a relationship between those atoms each other. Then we use relation between different atoms to find similarity between chemical compounds. The proposed approach was compared with many other classification methods and the results show competitive accuracy with these methods. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kase, Sue E.; Vanni, Michelle; Knight, Joanne A.; Su, Yu; Yan, Xifeng
2016-05-01
Within operational environments decisions must be made quickly based on the information available. Identifying an appropriate knowledge base and accurately formulating a search query are critical tasks for decision-making effectiveness in dynamic situations. The spreading of graph data management tools to access large graph databases is a rapidly emerging research area of potential benefit to the intelligence community. A graph representation provides a natural way of modeling data in a wide variety of domains. Graph structures use nodes, edges, and properties to represent and store data. This research investigates the advantages of information search by graph query initiated by the analyst and interactively refined within the contextual dimensions of the answer space toward a solution. The paper introduces SLQ, a user-friendly graph querying system enabling the visual formulation of schemaless and structureless graph queries. SLQ is demonstrated with an intelligence analyst information search scenario focused on identifying individuals responsible for manufacturing a mosquito-hosted deadly virus. The scenario highlights the interactive construction of graph queries without prior training in complex query languages or graph databases, intuitive navigation through the problem space, and visualization of results in graphical format.
Distributed-Memory Breadth-First Search on Massive Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buluc, Aydin; Beamer, Scott; Madduri, Kamesh
This chapter studies the problem of traversing large graphs using the breadth-first search order on distributed-memory supercomputers. We consider both the traditional level-synchronous top-down algorithm as well as the recently discovered direction optimizing algorithm. We analyze the performance and scalability trade-offs in using different local data structures such as CSR and DCSC, enabling in-node multithreading, and graph decompositions such as 1D and 2D decomposition.
Graph State-Based Quantum Group Authentication Scheme
NASA Astrophysics Data System (ADS)
Liao, Longxia; Peng, Xiaoqi; Shi, Jinjing; Guo, Ying
2017-02-01
Motivated by the elegant structure of the graph state, we design an ingenious quantum group authentication scheme, which is implemented by operating appropriate operations on the graph state and can solve the problem of multi-user authentication. Three entities, the group authentication server (GAS) as a verifier, multiple users as provers and the trusted third party Trent are included. GAS and Trent assist the multiple users in completing the authentication process, i.e., GAS is responsible for registering all the users while Trent prepares graph states. All the users, who request for authentication, encode their authentication keys on to the graph state by performing Pauli operators. It demonstrates that a novel authentication scheme can be achieved with the flexible use of graph state, which can synchronously authenticate a large number of users, meanwhile the provable security can be guaranteed definitely.
Applications of graph theory in protein structure identification
2011-01-01
There is a growing interest in the identification of proteins on the proteome wide scale. Among different kinds of protein structure identification methods, graph-theoretic methods are very sharp ones. Due to their lower costs, higher effectiveness and many other advantages, they have drawn more and more researchers’ attention nowadays. Specifically, graph-theoretic methods have been widely used in homology identification, side-chain cluster identification, peptide sequencing and so on. This paper reviews several methods in solving protein structure identification problems using graph theory. We mainly introduce classical methods and mathematical models including homology modeling based on clique finding, identification of side-chain clusters in protein structures upon graph spectrum, and de novo peptide sequencing via tandem mass spectrometry using the spectrum graph model. In addition, concluding remarks and future priorities of each method are given. PMID:22165974
Trace for Differential Pencils on a Star-Type Graph
NASA Astrophysics Data System (ADS)
Yang, Chuan-Fu
2013-07-01
In this work, we consider the spectral problem for differential pencils on a star-type graph with a Kirchhoff-type condition in the internal vertex. The regularized trace formula of this operator is established with the contour integration method in complex analysis.
Curriculum-Based Measurement, Program Development, Graphing Performance and Increasing Efficiency.
ERIC Educational Resources Information Center
Deno, Stanley L.; And Others
1987-01-01
Four brief articles look at aspects of curriculum based measurement (CBM) for academically handicapped students including procedures of CBM with examples, different approaches to graphing student performance, and solutions to the problem of making time to measure student progress frequently. (DB)
Shi, Yan; Wang, Hao Gang; Li, Long; Chan, Chi Hou
2008-10-01
A multilevel Green's function interpolation method based on two kinds of multilevel partitioning schemes--the quasi-2D and the hybrid partitioning scheme--is proposed for analyzing electromagnetic scattering from objects comprising both conducting and dielectric parts. The problem is formulated using the surface integral equation for homogeneous dielectric and conducting bodies. A quasi-2D multilevel partitioning scheme is devised to improve the efficiency of the Green's function interpolation. In contrast to previous multilevel partitioning schemes, noncubic groups are introduced to discretize the whole EM structure in this quasi-2D multilevel partitioning scheme. Based on the detailed analysis of the dimension of the group in this partitioning scheme, a hybrid quasi-2D/3D multilevel partitioning scheme is proposed to effectively handle objects with fine local structures. Selection criteria for some key parameters relating to the interpolation technique are given. The proposed algorithm is ideal for the solution of problems involving objects such as missiles, microstrip antenna arrays, photonic bandgap structures, etc. Numerical examples are presented to show that CPU time is between O(N) and O(N log N) while the computer memory requirement is O(N).
Parasol: An Architecture for Cross-Cloud Federated Graph Querying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieberman, Michael; Choudhury, Sutanay; Hughes, Marisa
2014-06-22
Large scale data fusion of multiple datasets can often provide in- sights that examining datasets individually cannot. However, when these datasets reside in different data centers and cannot be collocated due to technical, administrative, or policy barriers, a unique set of problems arise that hamper querying and data fusion. To ad- dress these problems, a system and architecture named Parasol is presented that enables federated queries over graph databases residing in multiple clouds. Parasol’s design is flexible and requires only minimal assumptions for participant clouds. Query optimization techniques are also described that are compatible with Parasol’s lightweight architecture. Experiments onmore » a prototype implementation of Parasol indicate its suitability for cross-cloud federated graph queries.« less
Network Security Risk Assessment System Based on Attack Graph and Markov Chain
NASA Astrophysics Data System (ADS)
Sun, Fuxiong; Pi, Juntao; Lv, Jin; Cao, Tian
2017-10-01
Network security risk assessment technology can be found in advance of the network problems and related vulnerabilities, it has become an important means to solve the problem of network security. Based on attack graph and Markov chain, this paper provides a Network Security Risk Assessment Model (NSRAM). Based on the network infiltration tests, NSRAM generates the attack graph by the breadth traversal algorithm. Combines with the international standard CVSS, the attack probability of atomic nodes are counted, and then the attack transition probabilities of ones are calculated by Markov chain. NSRAM selects the optimal attack path after comprehensive measurement to assessment network security risk. The simulation results show that NSRAM can reflect the actual situation of network security objectively.
Search Problems in Mission Planning and Navigation of Autonomous Aircraft. M.S. Thesis
NASA Technical Reports Server (NTRS)
Krozel, James A.
1988-01-01
An architecture for the control of an autonomous aircraft is presented. The architecture is a hierarchical system representing an anthropomorphic breakdown of the control problem into planner, navigator, and pilot systems. The planner system determines high level global plans from overall mission objectives. This abstract mission planning is investigated by focusing on the Traveling Salesman Problem with variations on local and global constraints. Tree search techniques are applied including the breadth first, depth first, and best first algorithms. The minimum-column and row entries for the Traveling Salesman Problem cost matrix provides a powerful heuristic to guide these search techniques. Mission planning subgoals are directed from the planner to the navigator for planning routes in mountainous terrain with threats. Terrain/threat information is abstracted into a graph of possible paths for which graph searches are performed. It is shown that paths can be well represented by a search graph based on the Voronoi diagram of points representing the vertices of mountain boundaries. A comparison of Dijkstra's dynamic programming algorithm and the A* graph search algorithm from artificial intelligence/operations research is performed for several navigation path planning examples. These examples illustrate paths that minimize a combination of distance and exposure to threats. Finally, the pilot system synthesizes the flight trajectory by creating the control commands to fly the aircraft.
Statistics of Gaussian packets on metric and decorated graphs.
Chernyshev, V L; Shafarevich, A I
2014-01-28
We study a semiclassical asymptotics of the Cauchy problem for a time-dependent Schrödinger equation on metric and decorated graphs with a localized initial function. A decorated graph is a topological space obtained from a graph via replacing vertices with smooth Riemannian manifolds. The main term of an asymptotic solution at an arbitrary finite time is a sum of Gaussian packets and generalized Gaussian packets (localized near a certain set of codimension one). We study the number of packets as time tends to infinity. We prove that under certain assumptions this number grows in time as a polynomial and packets fill the graph uniformly. We discuss a simple example of the opposite situation: in this case, a numerical experiment shows a subexponential growth.
Topology for efficient information dissemination in ad-hoc networking
NASA Technical Reports Server (NTRS)
Jennings, E.; Okino, C. M.
2002-01-01
In this paper, we explore the information dissemination problem in ad-hoc wirless networks. First, we analyze the probability of successful broadcast, assuming: the nodes are uniformly distributed, the available area has a lower bould relative to the total number of nodes, and there is zero knowledge of the overall topology of the network. By showing that the probability of such events is small, we are motivated to extract good graph topologies to minimize the overall transmissions. Three algorithms are used to generate topologies of the network with guaranteed connectivity. These are the minimum radius graph, the relative neighborhood graph and the minimum spanning tree. Our simulation shows that the relative neighborhood graph has certain good graph properties, which makes it suitable for efficient information dissemination.
Efficient dynamic graph construction for inductive semi-supervised learning.
Dornaika, F; Dahbi, R; Bosaghzadeh, A; Ruichek, Y
2017-10-01
Most of graph construction techniques assume a transductive setting in which the whole data collection is available at construction time. Addressing graph construction for inductive setting, in which data are coming sequentially, has received much less attention. For inductive settings, constructing the graph from scratch can be very time consuming. This paper introduces a generic framework that is able to make any graph construction method incremental. This framework yields an efficient and dynamic graph construction method that adds new samples (labeled or unlabeled) to a previously constructed graph. As a case study, we use the recently proposed Two Phase Weighted Regularized Least Square (TPWRLS) graph construction method. The paper has two main contributions. First, we use the TPWRLS coding scheme to represent new sample(s) with respect to an existing database. The representative coefficients are then used to update the graph affinity matrix. The proposed method not only appends the new samples to the graph but also updates the whole graph structure by discovering which nodes are affected by the introduction of new samples and by updating their edge weights. The second contribution of the article is the application of the proposed framework to the problem of graph-based label propagation using multiple observations for vision-based recognition tasks. Experiments on several image databases show that, without any significant loss in the accuracy of the final classification, the proposed dynamic graph construction is more efficient than the batch graph construction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Non-rigid image registration using graph-cuts.
Tang, Tommy W H; Chung, Albert C S
2007-01-01
Non-rigid image registration is an ill-posed yet challenging problem due to its supernormal high degree of freedoms and inherent requirement of smoothness. Graph-cuts method is a powerful combinatorial optimization tool which has been successfully applied into image segmentation and stereo matching. Under some specific constraints, graph-cuts method yields either a global minimum or a local minimum in a strong sense. Thus, it is interesting to see the effects of using graph-cuts in non-rigid image registration. In this paper, we formulate non-rigid image registration as a discrete labeling problem. Each pixel in the source image is assigned a displacement label (which is a vector) indicating which position in the floating image it is spatially corresponding to. A smoothness constraint based on first derivative is used to penalize sharp changes in displacement labels across pixels. The whole system can be optimized by using the graph-cuts method via alpha-expansions. We compare 2D and 3D registration results of our method with two state-of-the-art approaches. It is found that our method is more robust to different challenging non-rigid registration cases with higher registration accuracy.
Yan, Fei; Christmas, William; Kittler, Josef
2008-10-01
In this paper, we propose a multilayered data association scheme with graph-theoretic formulation for tracking multiple objects that undergo switching dynamics in clutter. The proposed scheme takes as input object candidates detected in each frame. At the object candidate level, "tracklets'' are "grown'' from sets of candidates that have high probabilities of containing only true positives. At the tracklet level, a directed and weighted graph is constructed, where each node is a tracklet, and the edge weight between two nodes is defined according to the "compatibility'' of the two tracklets. The association problem is then formulated as an all-pairs shortest path (APSP) problem in this graph. Finally, at the path level, by analyzing the APSPs, all object trajectories are identified, and track initiation and track termination are automatically dealt with. By exploiting a special topological property of the graph, we have also developed a more efficient APSP algorithm than the general-purpose ones. The proposed data association scheme is applied to tennis sequences to track tennis balls. Experiments show that it works well on sequences where other data association methods perform poorly or fail completely.
NASA Astrophysics Data System (ADS)
Dangi, Shusil; Linte, Cristian A.
2017-03-01
Segmentation of right ventricle from cardiac MRI images can be used to build pre-operative anatomical heart models to precisely identify regions of interest during minimally invasive therapy. Furthermore, many functional parameters of right heart such as right ventricular volume, ejection fraction, myocardial mass and thickness can also be assessed from the segmented images. To obtain an accurate and computationally efficient segmentation of right ventricle from cardiac cine MRI, we propose a segmentation algorithm formulated as an energy minimization problem in a graph. Shape prior obtained by propagating label from an average atlas using affine registration is incorporated into the graph framework to overcome problems in ill-defined image regions. The optimal segmentation corresponding to the labeling with minimum energy configuration of the graph is obtained via graph-cuts and is iteratively refined to produce the final right ventricle blood pool segmentation. We quantitatively compare the segmentation results obtained from our algorithm to the provided gold-standard expert manual segmentation for 16 cine-MRI datasets available through the MICCAI 2012 Cardiac MR Right Ventricle Segmentation Challenge according to several similarity metrics, including Dice coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.
Unsupervised classification of multivariate geostatistical data: Two algorithms
NASA Astrophysics Data System (ADS)
Romary, Thomas; Ors, Fabien; Rivoirard, Jacques; Deraisme, Jacques
2015-12-01
With the increasing development of remote sensing platforms and the evolution of sampling facilities in mining and oil industry, spatial datasets are becoming increasingly large, inform a growing number of variables and cover wider and wider areas. Therefore, it is often necessary to split the domain of study to account for radically different behaviors of the natural phenomenon over the domain and to simplify the subsequent modeling step. The definition of these areas can be seen as a problem of unsupervised classification, or clustering, where we try to divide the domain into homogeneous domains with respect to the values taken by the variables in hand. The application of classical clustering methods, designed for independent observations, does not ensure the spatial coherence of the resulting classes. Image segmentation methods, based on e.g. Markov random fields, are not adapted to irregularly sampled data. Other existing approaches, based on mixtures of Gaussian random functions estimated via the expectation-maximization algorithm, are limited to reasonable sample sizes and a small number of variables. In this work, we propose two algorithms based on adaptations of classical algorithms to multivariate geostatistical data. Both algorithms are model free and can handle large volumes of multivariate, irregularly spaced data. The first one proceeds by agglomerative hierarchical clustering. The spatial coherence is ensured by a proximity condition imposed for two clusters to merge. This proximity condition relies on a graph organizing the data in the coordinates space. The hierarchical algorithm can then be seen as a graph-partitioning algorithm. Following this interpretation, a spatial version of the spectral clustering algorithm is also proposed. The performances of both algorithms are assessed on toy examples and a mining dataset.
Querying graphs in protein-protein interactions networks using feedback vertex set.
Blin, Guillaume; Sikora, Florian; Vialette, Stéphane
2010-01-01
Recent techniques increase rapidly the amount of our knowledge on interactions between proteins. The interpretation of these new information depends on our ability to retrieve known substructures in the data, the Protein-Protein Interactions (PPIs) networks. In an algorithmic point of view, it is an hard task since it often leads to NP-hard problems. To overcome this difficulty, many authors have provided tools for querying patterns with a restricted topology, i.e., paths or trees in PPI networks. Such restriction leads to the development of fixed parameter tractable (FPT) algorithms, which can be practicable for restricted sizes of queries. Unfortunately, Graph Homomorphism is a W[1]-hard problem, and hence, no FPT algorithm can be found when patterns are in the shape of general graphs. However, Dost et al. gave an algorithm (which is not implemented) to query graphs with a bounded treewidth in PPI networks (the treewidth of the query being involved in the time complexity). In this paper, we propose another algorithm for querying pattern in the shape of graphs, also based on dynamic programming and the color-coding technique. To transform graphs queries into trees without loss of informations, we use feedback vertex set coupled to a node duplication mechanism. Hence, our algorithm is FPT for querying graphs with a bounded size of their feedback vertex set. It gives an alternative to the treewidth parameter, which can be better or worst for a given query. We provide a python implementation which allows us to validate our implementation on real data. Especially, we retrieve some human queries in the shape of graphs into the fly PPI network.
Local adjacency metric dimension of sun graph and stacked book graph
NASA Astrophysics Data System (ADS)
Yulisda Badri, Alifiah; Darmaji
2018-03-01
A graph is a mathematical system consisting of a non-empty set of nodes and a set of empty sides. One of the topics to be studied in graph theory is the metric dimension. Application in the metric dimension is the navigation robot system on a path. Robot moves from one vertex to another vertex in the field by minimizing the errors that occur in translating the instructions (code) obtained from the vertices of that location. To move the robot must give different instructions (code). In order for the robot to move efficiently, the robot must be fast to translate the code of the nodes of the location it passes. so that the location vertex has a minimum distance. However, if the robot must move with the vertex location on a very large field, so the robot can not detect because the distance is too far.[6] In this case, the robot can determine its position by utilizing location vertices based on adjacency. The problem is to find the minimum cardinality of the required location vertex, and where to put, so that the robot can determine its location. The solution to this problem is the dimension of adjacency metric and adjacency metric bases. Rodrguez-Velzquez and Fernau combine the adjacency metric dimensions with local metric dimensions, thus becoming the local adjacency metric dimension. In the local adjacency metric dimension each vertex in the graph may have the same adjacency representation as the terms of the vertices. To obtain the local metric dimension of values in the graph of the Sun and the stacked book graph is used the construction method by considering the representation of each adjacent vertex of the graph.
A coherent Ising machine for 2000-node optimization problems
NASA Astrophysics Data System (ADS)
Inagaki, Takahiro; Haribara, Yoshitaka; Igarashi, Koji; Sonobe, Tomohiro; Tamate, Shuhei; Honjo, Toshimori; Marandi, Alireza; McMahon, Peter L.; Umeki, Takeshi; Enbutsu, Koji; Tadanaga, Osamu; Takenouchi, Hirokazu; Aihara, Kazuyuki; Kawarabayashi, Ken-ichi; Inoue, Kyo; Utsunomiya, Shoko; Takesue, Hiroki
2016-11-01
The analysis and optimization of complex systems can be reduced to mathematical problems collectively known as combinatorial optimization. Many such problems can be mapped onto ground-state search problems of the Ising model, and various artificial spin systems are now emerging as promising approaches. However, physical Ising machines have suffered from limited numbers of spin-spin couplings because of implementations based on localized spins, resulting in severe scalability problems. We report a 2000-spin network with all-to-all spin-spin couplings. Using a measurement and feedback scheme, we coupled time-multiplexed degenerate optical parametric oscillators to implement maximum cut problems on arbitrary graph topologies with up to 2000 nodes. Our coherent Ising machine outperformed simulated annealing in terms of accuracy and computation time for a 2000-node complete graph.
An Out-of-Math Experience: Einstein, Relativity, and the Developmental Mathematics Student.
ERIC Educational Resources Information Center
Fiore, Greg
2000-01-01
Discusses Einstein's special relativity theory and some of the developmental mathematics involved. Presents motivational classroom materials used in discussing relative-motion problems, evaluating a radical expression, graphing with asymptotes, interpreting a graph, studying variation, and solving literal and radical equations. (KHR)
EEG Sleep Stages Classification Based on Time Domain Features and Structural Graph Similarity.
Diykh, Mohammed; Li, Yan; Wen, Peng
2016-11-01
The electroencephalogram (EEG) signals are commonly used in diagnosing and treating sleep disorders. Many existing methods for sleep stages classification mainly depend on the analysis of EEG signals in time or frequency domain to obtain a high classification accuracy. In this paper, the statistical features in time domain, the structural graph similarity and the K-means (SGSKM) are combined to identify six sleep stages using single channel EEG signals. Firstly, each EEG segment is partitioned into sub-segments. The size of a sub-segment is determined empirically. Secondly, statistical features are extracted, sorted into different sets of features and forwarded to the SGSKM to classify EEG sleep stages. We have also investigated the relationships between sleep stages and the time domain features of the EEG data used in this paper. The experimental results show that the proposed method yields better classification results than other four existing methods and the support vector machine (SVM) classifier. A 95.93% average classification accuracy is achieved by using the proposed method.
Approximate inference on planar graphs using loop calculus and belief progagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chertkov, Michael; Gomez, Vicenc; Kappen, Hilbert
We introduce novel results for approximate inference on planar graphical models using the loop calculus framework. The loop calculus (Chertkov and Chernyak, 2006b) allows to express the exact partition function Z of a graphical model as a finite sum of terms that can be evaluated once the belief propagation (BP) solution is known. In general, full summation over all correction terms is intractable. We develop an algorithm for the approach presented in Chertkov et al. (2008) which represents an efficient truncation scheme on planar graphs and a new representation of the series in terms of Pfaffians of matrices. We analyzemore » in detail both the loop series and the Pfaffian series for models with binary variables and pairwise interactions, and show that the first term of the Pfaffian series can provide very accurate approximations. The algorithm outperforms previous truncation schemes of the loop series and is competitive with other state-of-the-art methods for approximate inference.« less
Alignment of Tractograms As Graph Matching.
Olivetti, Emanuele; Sharmin, Nusrat; Avesani, Paolo
2016-01-01
The white matter pathways of the brain can be reconstructed as 3D polylines, called streamlines, through the analysis of diffusion magnetic resonance imaging (dMRI) data. The whole set of streamlines is called tractogram and represents the structural connectome of the brain. In multiple applications, like group-analysis, segmentation, or atlasing, tractograms of different subjects need to be aligned. Typically, this is done with registration methods, that transform the tractograms in order to increase their similarity. In contrast with transformation-based registration methods, in this work we propose the concept of tractogram correspondence, whose aim is to find which streamline of one tractogram corresponds to which streamline in another tractogram, i.e., a map from one tractogram to another. As a further contribution, we propose to use the relational information of each streamline, i.e., its distances from the other streamlines in its own tractogram, as the building block to define the optimal correspondence. We provide an operational procedure to find the optimal correspondence through a combinatorial optimization problem and we discuss its similarity to the graph matching problem. In this work, we propose to represent tractograms as graphs and we adopt a recent inexact sub-graph matching algorithm to approximate the solution of the tractogram correspondence problem. On tractograms generated from the Human Connectome Project dataset, we report experimental evidence that tractogram correspondence, implemented as graph matching, provides much better alignment than affine registration and comparable if not better results than non-linear registration of volumes.
Short paths in expander graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinberg, J.; Rubinfeld, R.
Graph expansion has proved to be a powerful general tool for analyzing the behavior of routing algorithms and the interconnection networks on which they run. We develop new routing algorithms and structural results for bounded-degree expander graphs. Our results are unified by the fact that they are all based upon, and extend, a body of work asserting that expanders are rich in short, disjoint paths. In particular, our work has consequences for the disjoint paths problem, multicommodify flow, and graph minor containment. We show: (i) A greedy algorithm for approximating the maximum disjoint paths problem achieves a polylogarithmic approximation ratiomore » in bounded-degree expanders. Although our algorithm is both deterministic and on-line, its performance guarantee is an improvement over previous bounds in expanders. (ii) For a multicommodily flow problem with arbitrary demands on a bounded-degree expander, there is a (1 + {epsilon})-optimal solution using only flow paths of polylogarithmic length. It follows that the multicommodity flow algorithm of Awerbuch and Leighton runs in nearly linear time per commodity in expanders. Our analysis is based on establishing the following: given edge weights on an expander G, one can increase some of the weights very slightly so the resulting shortest-path metric is smooth - the min-weight path between any pair of nodes uses a polylogarithmic number of edges. (iii) Every bounded-degree expander on n nodes contains every graph with O(n/log{sup O(1)} n) nodes and edges as a minor.« less
Spatial partitioning algorithms for data visualization
NASA Astrophysics Data System (ADS)
Devulapalli, Raghuveer; Quist, Mikael; Carlsson, John Gunnar
2013-12-01
Spatial partitions of an information space are frequently used for data visualization. Weighted Voronoi diagrams are among the most popular ways of dividing a space into partitions. However, the problem of computing such a partition efficiently can be challenging. For example, a natural objective is to select the weights so as to force each Voronoi region to take on a pre-defined area, which might represent the relevance or market share of an informational object. In this paper, we present an easy and fast algorithm to compute these weights of the Voronoi diagrams. Unlike previous approaches whose convergence properties are not well-understood, we give a formulation to the problem based on convex optimization with excellent performance guarantees in theory and practice. We also show how our technique can be used to control the shape of these partitions. More specifically we show how to convert undesirable skinny and long regions into fat regions while maintaining the areas of the partitions. As an application, we use these to visualize the amount of website traffic for the top 101 websites.
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Schmidt, Phillip H.
1993-01-01
A parameter optimization framework has earlier been developed to solve the problem of partitioning a centralized controller into a decentralized, hierarchical structure suitable for integrated flight/propulsion control implementation. This paper presents results from the application of the controller partitioning optimization procedure to IFPC design for a Short Take-Off and Vertical Landing (STOVL) aircraft in transition flight. The controller partitioning problem and the parameter optimization algorithm are briefly described. Insight is provided into choosing various 'user' selected parameters in the optimization cost function such that the resulting optimized subcontrollers will meet the characteristics of the centralized controller that are crucial to achieving the desired closed-loop performance and robustness, while maintaining the desired subcontroller structure constraints that are crucial for IFPC implementation. The optimization procedure is shown to improve upon the initial partitioned subcontrollers and lead to performance comparable to that achieved with the centralized controller. This application also provides insight into the issues that should be addressed at the centralized control design level in order to obtain implementable partitioned subcontrollers.
Graph-Based Semi-Supervised Hyperspectral Image Classification Using Spatial Information
NASA Astrophysics Data System (ADS)
Jamshidpour, N.; Homayouni, S.; Safari, A.
2017-09-01
Hyperspectral image classification has been one of the most popular research areas in the remote sensing community in the past decades. However, there are still some problems that need specific attentions. For example, the lack of enough labeled samples and the high dimensionality problem are two most important issues which degrade the performance of supervised classification dramatically. The main idea of semi-supervised learning is to overcome these issues by the contribution of unlabeled samples, which are available in an enormous amount. In this paper, we propose a graph-based semi-supervised classification method, which uses both spectral and spatial information for hyperspectral image classification. More specifically, two graphs were designed and constructed in order to exploit the relationship among pixels in spectral and spatial spaces respectively. Then, the Laplacians of both graphs were merged to form a weighted joint graph. The experiments were carried out on two different benchmark hyperspectral data sets. The proposed method performed significantly better than the well-known supervised classification methods, such as SVM. The assessments consisted of both accuracy and homogeneity analyses of the produced classification maps. The proposed spectral-spatial SSL method considerably increased the classification accuracy when the labeled training data set is too scarce.When there were only five labeled samples for each class, the performance improved 5.92% and 10.76% compared to spatial graph-based SSL, for AVIRIS Indian Pine and Pavia University data sets respectively.
Graph-Based Object Class Discovery
NASA Astrophysics Data System (ADS)
Xia, Shengping; Hancock, Edwin R.
We are interested in the problem of discovering the set of object classes present in a database of images using a weakly supervised graph-based framework. Rather than making use of the ”Bag-of-Features (BoF)” approach widely used in current work on object recognition, we represent each image by a graph using a group of selected local invariant features. Using local feature matching and iterative Procrustes alignment, we perform graph matching and compute a similarity measure. Borrowing the idea of query expansion , we develop a similarity propagation based graph clustering (SPGC) method. Using this method class specific clusters of the graphs can be obtained. Such a cluster can be generally represented by using a higher level graph model whose vertices are the clustered graphs, and the edge weights are determined by the pairwise similarity measure. Experiments are performed on a dataset, in which the number of images increases from 1 to 50K and the number of objects increases from 1 to over 500. Some objects have been discovered with total recall and a precision 1 in a single cluster.
Label Information Guided Graph Construction for Semi-Supervised Learning.
Zhuang, Liansheng; Zhou, Zihan; Gao, Shenghua; Yin, Jingwen; Lin, Zhouchen; Ma, Yi
2017-09-01
In the literature, most existing graph-based semi-supervised learning methods only use the label information of observed samples in the label propagation stage, while ignoring such valuable information when learning the graph. In this paper, we argue that it is beneficial to consider the label information in the graph learning stage. Specifically, by enforcing the weight of edges between labeled samples of different classes to be zero, we explicitly incorporate the label information into the state-of-the-art graph learning methods, such as the low-rank representation (LRR), and propose a novel semi-supervised graph learning method called semi-supervised low-rank representation. This results in a convex optimization problem with linear constraints, which can be solved by the linearized alternating direction method. Though we take LRR as an example, our proposed method is in fact very general and can be applied to any self-representation graph learning methods. Experiment results on both synthetic and real data sets demonstrate that the proposed graph learning method can better capture the global geometric structure of the data, and therefore is more effective for semi-supervised learning tasks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braunstein, Samuel L.; Ghosh, Sibasish; Severini, Simone
We reconsider density matrices of graphs as defined in quant-ph/0406165. The density matrix of a graph is the combinatorial Laplacian of the graph normalized to have unit trace. We describe a simple combinatorial condition (the 'degree condition') to test the separability of density matrices of graphs. The condition is directly related to the Peres-Horodecki partial transposition condition. We prove that the degree condition is necessary for separability, and we conjecture that it is also sufficient. We prove special cases of the conjecture involving nearest-point graphs and perfect matchings. We observe that the degree condition appears to have a value beyondmore » the density matrices of graphs. In fact, we point out that circulant density matrices and other matrices constructed from groups always satisfy the condition and indeed are separable with respect to any split. We isolate a number of problems and delineate further generalizations.« less
NASA Astrophysics Data System (ADS)
Buscema, Massimo; Asadi-Zeydabadi, Masoud; Lodwick, Weldon; Breda, Marco
2016-04-01
Significant applications such as the analysis of Alzheimer's disease differentiated from dementia, or in data mining of social media, or in extracting information of drug cartel structural composition, are often modeled as graphs. The structural or topological complexity or lack of it in a graph is quite often useful in understanding and more importantly, resolving the problem. We are proposing a new index we call the H0function to measure the structural/topological complexity of a graph. To do this, we introduce the concept of graph pruning and its associated algorithm that is used in the development of our measure. We illustrate the behavior of our measure, the H0 function, through different examples found in the appendix. These examples indicate that the H0 function contains information that is useful and important characteristics of a graph. Here, we restrict ourselves to undirected.
Tutte polynomial in functional magnetic resonance imaging
NASA Astrophysics Data System (ADS)
García-Castillón, Marlly V.
2015-09-01
Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.
Navigability of Random Geometric Graphs in the Universe and Other Spacetimes.
Cunningham, William; Zuev, Konstantin; Krioukov, Dmitri
2017-08-18
Random geometric graphs in hyperbolic spaces explain many common structural and dynamical properties of real networks, yet they fail to predict the correct values of the exponents of power-law degree distributions observed in real networks. In that respect, random geometric graphs in asymptotically de Sitter spacetimes, such as the Lorentzian spacetime of our accelerating universe, are more attractive as their predictions are more consistent with observations in real networks. Yet another important property of hyperbolic graphs is their navigability, and it remains unclear if de Sitter graphs are as navigable as hyperbolic ones. Here we study the navigability of random geometric graphs in three Lorentzian manifolds corresponding to universes filled only with dark energy (de Sitter spacetime), only with matter, and with a mixture of dark energy and matter. We find these graphs are navigable only in the manifolds with dark energy. This result implies that, in terms of navigability, random geometric graphs in asymptotically de Sitter spacetimes are as good as random hyperbolic graphs. It also establishes a connection between the presence of dark energy and navigability of the discretized causal structure of spacetime, which provides a basis for a different approach to the dark energy problem in cosmology.
Single Polygon Counting on Cayley Tree of Order 3
NASA Astrophysics Data System (ADS)
Pah, Chin Hee
2010-07-01
We showed that one form of generalized Catalan numbers is the solution to the problem of finding different connected component with finite vertices containing a fixed root for the semi-infinite Cayley tree of order 3. We give the formula for the full graph, Cayley tree of order 3 which is derived from the generalized Catalan numbers. Using ratios of Gamma functions, two upper bounds are given for problem defined on semi-infinite Cayley tree of order 3 as well as the full graph.
NASA Astrophysics Data System (ADS)
Nielsen, Roger L.; Ustunisik, Gokce; Weinsteiger, Allison B.; Tepley, Frank J.; Johnston, A. Dana; Kent, Adam J. R.
2017-09-01
Quantitative models of petrologic processes require accurate partition coefficients. Our ability to obtain accurate partition coefficients is constrained by their dependence on pressure temperature and composition, and on the experimental and analytical techniques we apply. The source and magnitude of error in experimental studies of trace element partitioning may go unrecognized if one examines only the processed published data. The most important sources of error are relict crystals, and analyses of more than one phase in the analytical volume. Because we have typically published averaged data, identification of compromised data is difficult if not impossible. We addressed this problem by examining unprocessed data from plagioclase/melt partitioning experiments, by comparing models based on that data with existing partitioning models, and evaluated the degree to which the partitioning models are dependent on the calibration data. We found that partitioning models are dependent on the calibration data in ways that result in erroneous model values, and that the error will be systematic and dependent on the value of the partition coefficient. In effect, use of different calibration datasets will result in partitioning models whose results are systematically biased, and that one can arrive at different and conflicting conclusions depending on how a model is calibrated, defeating the purpose of applying the models. Ultimately this is an experimental data problem, which can be solved if we publish individual analyses (not averages) or use a projection method wherein we use an independent compositional constraint to identify and estimate the uncontaminated composition of each phase.
Visibility graph network analysis of natural gas price: The case of North American market
NASA Astrophysics Data System (ADS)
Sun, Mei; Wang, Yaqi; Gao, Cuixia
2016-11-01
Fluctuations in prices of natural gas significantly affect global economy. Therefore, the research on the characteristics of natural gas price fluctuations, turning points and its influencing cycle on the subsequent price series is of great significance. Global natural gas trade concentrates on three regional markets: the North American market, the European market and the Asia-Pacific market, with North America having the most developed natural gas financial market. In addition, perfect legal supervision and coordinated regulations make the North American market more open and more competitive. This paper focuses on the North American natural gas market specifically. The Henry Hub natural gas spot price time series is converted to a visibility graph network which provides a new direction for macro analysis of time series, and several indicators are investigated: degree and degree distribution, the average shortest path length and community structure. The internal mechanisms underlying price fluctuations are explored through the indicators. The results show that the natural gas prices visibility graph network (NGP-VGN) is of small-world and scale-free properties simultaneously. After random rearrangement of original price time series, the degree distribution of network becomes exponential distribution, different from the original ones. This means that, the original price time series is of long-range negative correlation fractal characteristic. In addition, nodes with large degree correspond to significant geopolitical or economic events. Communities correspond to time cycles in visibility graph network. The cycles of time series and the impact scope of hubs can be found by community structure partition.
Connectomics and neuroticism: an altered functional network organization.
Servaas, Michelle N; Geerligs, Linda; Renken, Remco J; Marsman, Jan-Bernard C; Ormel, Johan; Riese, Harriëtte; Aleman, André
2015-01-01
The personality trait neuroticism is a potent risk marker for psychopathology. Although the neurobiological basis remains unclear, studies have suggested that alterations in connectivity may underlie it. Therefore, the aim of the current study was to shed more light on the functional network organization in neuroticism. To this end, we applied graph theory on resting-state functional magnetic resonance imaging (fMRI) data in 120 women selected based on their neuroticism score. Binary and weighted brain-wide graphs were constructed to examine changes in the functional network structure and functional connectivity strength. Furthermore, graphs were partitioned into modules to specifically investigate connectivity within and between functional subnetworks related to emotion processing and cognitive control. Subsequently, complex network measures (ie, efficiency and modularity) were calculated on the brain-wide graphs and modules, and correlated with neuroticism scores. Compared with low neurotic individuals, high neurotic individuals exhibited a whole-brain network structure resembling more that of a random network and had overall weaker functional connections. Furthermore, in these high neurotic individuals, functional subnetworks could be delineated less clearly and the majority of these subnetworks showed lower efficiency, while the affective subnetwork showed higher efficiency. In addition, the cingulo-operculum subnetwork demonstrated more ties with other functional subnetworks in association with neuroticism. In conclusion, the 'neurotic brain' has a less than optimal functional network organization and shows signs of functional disconnectivity. Moreover, in high compared with low neurotic individuals, emotion and salience subnetworks have a more prominent role in the information exchange, while sensory(-motor) and cognitive control subnetworks have a less prominent role.
Graph Theory Approach for Studying Food Webs
NASA Astrophysics Data System (ADS)
Longjas, A.; Tejedor, A.; Foufoula-Georgiou, E.
2017-12-01
Food webs are complex networks of feeding interactions among species in ecological communities. Metrics describing food web structure have been proposed to compare and classify food webs ranging from food chain length, connectance, degree distribution, centrality measures, to the presence of motifs (distinct compartments), among others. However, formal methodologies for studying both food web topology and the dynamic processes operating on them are still lacking. Here, we utilize a quantitative framework using graph theory within which a food web is represented by a directed graph, i.e., a collection of vertices (species or trophic species defined as sets of species sharing the same predators and prey) and directed edges (predation links). This framework allows us to identify apex (environmental "source" node) to outlet (top predators) subnetworks and compute the steady-state flux (e.g., carbon, nutrients, energy etc.) in the food web. We use this framework to (1) construct vulnerability maps that quantify the relative change of flux delivery to the top predators in response to perturbations in prey species (2) identify keystone species, whose loss would precipitate further species extinction, and (3) introduce a suite of graph-theoretic metrics to quantify the topologic (imposed by food web connectivity) and dynamic (dictated by the flux partitioning and distribution) components of a food web's complexity. By projecting food webs into a 2D Topodynamic Complexity Space whose coordinates are given by Number of alternative paths (topologic) and Leakage Index (dynamic), we show that this space provides a basis for food web comparison and provide physical insights into their dynamic behavior.
Combining Techniques to Refine Item to Skills Q-Matrices with a Partition Tree
ERIC Educational Resources Information Center
Desmarais, Michel C.; Xu, Peng; Beheshti, Behzad
2015-01-01
The problem of mapping items to skills is gaining interest with the emergence of recent techniques that can use data for both defining this mapping, and for refining mappings given by experts. We investigate the problem of refining mapping from an expert by combining the output of different techniques. The combination is based on a partition tree…
Dim target detection method based on salient graph fusion
NASA Astrophysics Data System (ADS)
Hu, Ruo-lan; Shen, Yi-yan; Jiang, Jun
2018-02-01
Dim target detection is one key problem in digital image processing field. With development of multi-spectrum imaging sensor, it becomes a trend to improve the performance of dim target detection by fusing the information from different spectral images. In this paper, one dim target detection method based on salient graph fusion was proposed. In the method, Gabor filter with multi-direction and contrast filter with multi-scale were combined to construct salient graph from digital image. And then, the maximum salience fusion strategy was designed to fuse the salient graph from different spectral images. Top-hat filter was used to detect dim target from the fusion salient graph. Experimental results show that proposal method improved the probability of target detection and reduced the probability of false alarm on clutter background images.
Enhancing Community Detection By Affinity-based Edge Weighting Scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Andy; Sanders, Geoffrey; Henson, Van
Community detection refers to an important graph analytics problem of finding a set of densely-connected subgraphs in a graph and has gained a great deal of interest recently. The performance of current community detection algorithms is limited by an inherent constraint of unweighted graphs that offer very little information on their internal community structures. In this paper, we propose a new scheme to address this issue that weights the edges in a given graph based on recently proposed vertex affinity. The vertex affinity quantifies the proximity between two vertices in terms of their clustering strength, and therefore, it is idealmore » for graph analytics applications such as community detection. We also demonstrate that the affinity-based edge weighting scheme can improve the performance of community detection algorithms significantly.« less
An industrial robot singular trajectories planning based on graphs and neural networks
NASA Astrophysics Data System (ADS)
Łęgowski, Adrian; Niezabitowski, Michał
2016-06-01
Singular trajectories are rarely used because of issues during realization. A method of planning trajectories for given set of points in task space with use of graphs and neural networks is presented. In every desired point the inverse kinematics problem is solved in order to derive all possible solutions. A graph of solutions is made. The shortest path is determined to define required nodes in joint space. Neural networks are used to define the path between these nodes.
Video Measurements: Quantity or Quality
ERIC Educational Resources Information Center
Zajkov, Oliver; Mitrevski, Boce
2012-01-01
Students have problems with understanding, using and interpreting graphs. In order to improve the students' skills for working with graphs, we propose Manual Video Measurement (MVM). In this paper, the MVM method is explained and its accuracy is tested. The comparison with the standardized video data software shows that its accuracy is comparable…
NASA Astrophysics Data System (ADS)
Golénia, Sylvain; Schumacher, Christoph
2013-06-01
In this comment we answer negatively to our conjecture concerning the deficiency indices. More precisely, given any non-negative integer n, there is locally finite graph on which the adjacency matrix has deficiency indices (n, n).
Students' Reading Images in Kinematics: The Case of Real-Time Graphs.
ERIC Educational Resources Information Center
Testa, Italo; Monroy, Gabriella; Sassi, Elena
2002-01-01
Describes a study in which secondary school students were called upon to read and interpret documents containing images of real-time kinematics graphs specially designed to address common learning problems and minimize iconic difficulties. Makes suggestions regarding the acquisition of some specific capabilities that are needed to avoid…
Developing Intuitive Reasoning with Graphs to Support Science Arguments
ERIC Educational Resources Information Center
Grueber, David
2011-01-01
Graphs are important for supporting critical thinking and scientific argumentation because students can use them to reason, make judgments and decisions, and solve problems like a scientist (Connery 2007). Yet teaching students how to use math to actually think critically continues to be difficult for teachers. This article describes two…
Optimizing spread dynamics on graphs by message passing
NASA Astrophysics Data System (ADS)
Altarelli, F.; Braunstein, A.; Dall'Asta, L.; Zecchina, R.
2013-09-01
Cascade processes are responsible for many important phenomena in natural and social sciences. Simple models of irreversible dynamics on graphs, in which nodes activate depending on the state of their neighbors, have been successfully applied to describe cascades in a large variety of contexts. Over the past decades, much effort has been devoted to understanding the typical behavior of the cascades arising from initial conditions extracted at random from some given ensemble. However, the problem of optimizing the trajectory of the system, i.e. of identifying appropriate initial conditions to maximize (or minimize) the final number of active nodes, is still considered to be practically intractable, with the only exception being models that satisfy a sort of diminishing returns property called submodularity. Submodular models can be approximately solved by means of greedy strategies, but by definition they lack cooperative characteristics which are fundamental in many real systems. Here we introduce an efficient algorithm based on statistical physics for the optimization of trajectories in cascade processes on graphs. We show that for a wide class of irreversible dynamics, even in the absence of submodularity, the spread optimization problem can be solved efficiently on large networks. Analytic and algorithmic results on random graphs are complemented by the solution of the spread maximization problem on a real-world network (the Epinions consumer reviews network).
Topological visual mapping in robotics.
Romero, Anna; Cazorla, Miguel
2012-08-01
A key problem in robotics is the construction of a map from its environment. This map could be used in different tasks, like localization, recognition, obstacle avoidance, etc. Besides, the simultaneous location and mapping (SLAM) problem has had a lot of interest in the robotics community. This paper presents a new method for visual mapping, using topological instead of metric information. For that purpose, we propose prior image segmentation into regions in order to group the extracted invariant features in a graph so that each graph defines a single region of the image. Although others methods have been proposed for visual SLAM, our method is complete, in the sense that it makes all the process: it presents a new method for image matching; it defines a way to build the topological map; and it also defines a matching criterion for loop-closing. The matching process will take into account visual features and their structure using the graph transformation matching (GTM) algorithm, which allows us to process the matching and to remove out the outliers. Then, using this image comparison method, we propose an algorithm for constructing topological maps. During the experimentation phase, we will test the robustness of the method and its ability constructing topological maps. We have also introduced new hysteresis behavior in order to solve some problems found building the graph.
A Sharp methodology for VLSI layout
NASA Astrophysics Data System (ADS)
Bapat, Shekhar
1993-01-01
The layout problem for VLSI circuits is recognized as a very difficult problem and has been traditionally decomposed into the several seemingly independent sub-problems of placement, global routing, and detailed routing. Although this structure achieves a reduction in programming complexity, it is also typically accompanied by a reduction in solution quality. Most current placement research recognizes that the separation is artificial, and that the placement and routing problems should be solved ideally in tandem. We propose a new interconnection model, Sharp and an associated partitioning algorithm. The Sharp interconnection model uses a partitioning shape that roughly resembles the musical sharp 'number sign' and makes extensive use of pre-computed rectilinear Steiner trees. The model is designed to generate strategic routing information along with the partitioning results. Additionally, the Sharp model also generates estimates of the routing congestion. We also propose the Sharp layout heuristic that solves the layout problem in its entirety. The Sharp layout heuristic makes extensive use of the Sharp partitioning model. The use of precomputed Steiner tree forms enables the method to model accurately net characteristics. For example, the Steiner tree forms can model both the length of the net and more importantly its route. In fact, the tree forms are also appropriate for modeling the timing delays of nets. The Sharp heuristic works to minimize both the total layout area by minimizing total net length (thus reducing the total wiring area), and the congestion imbalances in the various channels (thus reducing the unused or wasted channel area). Our heuristic uses circuit element movements amongst the different partitioning blocks and selection of alternate minimal Steiner tree forms to achieve this goal. The objective function for the algorithm can be modified readily to include other important circuit constraints like propagation delays. The layout technique first computes a very high-level approximation of the layout solution (i.e., the positions of the circuit elements and the associated net routes). The approximate solution is alternately refined, objective function. The technique creates well defined sub-problems and offers intermediary steps that can be solved in parallel, as well as a parallel mechanism to merge the sub-problem solutions.
Handling Data Skew in MapReduce Cluster by Using Partition Tuning
Gao, Yufei; Zhou, Yanjie; Zhou, Bing; Shi, Lei; Zhang, Jiacai
2017-01-01
The healthcare industry has generated large amounts of data, and analyzing these has emerged as an important problem in recent years. The MapReduce programming model has been successfully used for big data analytics. However, data skew invariably occurs in big data analytics and seriously affects efficiency. To overcome the data skew problem in MapReduce, we have in the past proposed a data processing algorithm called Partition Tuning-based Skew Handling (PTSH). In comparison with the one-stage partitioning strategy used in the traditional MapReduce model, PTSH uses a two-stage strategy and the partition tuning method to disperse key-value pairs in virtual partitions and recombines each partition in case of data skew. The robustness and efficiency of the proposed algorithm were tested on a wide variety of simulated datasets and real healthcare datasets. The results showed that PTSH algorithm can handle data skew in MapReduce efficiently and improve the performance of MapReduce jobs in comparison with the native Hadoop, Closer, and locality-aware and fairness-aware key partitioning (LEEN). We also found that the time needed for rule extraction can be reduced significantly by adopting the PTSH algorithm, since it is more suitable for association rule mining (ARM) on healthcare data. © 2017 Yufei Gao et al.
Handling Data Skew in MapReduce Cluster by Using Partition Tuning.
Gao, Yufei; Zhou, Yanjie; Zhou, Bing; Shi, Lei; Zhang, Jiacai
2017-01-01
The healthcare industry has generated large amounts of data, and analyzing these has emerged as an important problem in recent years. The MapReduce programming model has been successfully used for big data analytics. However, data skew invariably occurs in big data analytics and seriously affects efficiency. To overcome the data skew problem in MapReduce, we have in the past proposed a data processing algorithm called Partition Tuning-based Skew Handling (PTSH). In comparison with the one-stage partitioning strategy used in the traditional MapReduce model, PTSH uses a two-stage strategy and the partition tuning method to disperse key-value pairs in virtual partitions and recombines each partition in case of data skew. The robustness and efficiency of the proposed algorithm were tested on a wide variety of simulated datasets and real healthcare datasets. The results showed that PTSH algorithm can handle data skew in MapReduce efficiently and improve the performance of MapReduce jobs in comparison with the native Hadoop, Closer, and locality-aware and fairness-aware key partitioning (LEEN). We also found that the time needed for rule extraction can be reduced significantly by adopting the PTSH algorithm, since it is more suitable for association rule mining (ARM) on healthcare data.
Handling Data Skew in MapReduce Cluster by Using Partition Tuning
Zhou, Yanjie; Zhou, Bing; Shi, Lei
2017-01-01
The healthcare industry has generated large amounts of data, and analyzing these has emerged as an important problem in recent years. The MapReduce programming model has been successfully used for big data analytics. However, data skew invariably occurs in big data analytics and seriously affects efficiency. To overcome the data skew problem in MapReduce, we have in the past proposed a data processing algorithm called Partition Tuning-based Skew Handling (PTSH). In comparison with the one-stage partitioning strategy used in the traditional MapReduce model, PTSH uses a two-stage strategy and the partition tuning method to disperse key-value pairs in virtual partitions and recombines each partition in case of data skew. The robustness and efficiency of the proposed algorithm were tested on a wide variety of simulated datasets and real healthcare datasets. The results showed that PTSH algorithm can handle data skew in MapReduce efficiently and improve the performance of MapReduce jobs in comparison with the native Hadoop, Closer, and locality-aware and fairness-aware key partitioning (LEEN). We also found that the time needed for rule extraction can be reduced significantly by adopting the PTSH algorithm, since it is more suitable for association rule mining (ARM) on healthcare data. PMID:29065568
Congenital blindness is associated with large-scale reorganization of anatomical networks.
Hasson, Uri; Andric, Michael; Atilgan, Hicret; Collignon, Olivier
2016-03-01
Blindness is a unique model for understanding the role of experience in the development of the brain's functional and anatomical architecture. Documenting changes in the structure of anatomical networks for this population would substantiate the notion that the brain's core network-level organization may undergo neuroplasticity as a result of life-long experience. To examine this issue, we compared whole-brain networks of regional cortical-thickness covariance in early blind and matched sighted individuals. This covariance is thought to reflect signatures of integration between systems involved in similar perceptual/cognitive functions. Using graph-theoretic metrics, we identified a unique mode of anatomical reorganization in the blind that differed from that found for sighted. This was seen in that network partition structures derived from subgroups of blind were more similar to each other than they were to partitions derived from sighted. Notably, after deriving network partitions, we found that language and visual regions tended to reside within separate modules in sighted but showed a pattern of merging into shared modules in the blind. Our study demonstrates that early visual deprivation triggers a systematic large-scale reorganization of whole-brain cortical-thickness networks, suggesting changes in how occipital regions interface with other functional networks in the congenitally blind. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Hamster Math: Authentic Experiences in Data Collection.
ERIC Educational Resources Information Center
Jorgensen, Beth
1996-01-01
Describes the data collection and interpretation project of primary grade students involving predicting, graphing, estimating, measuring, number problem construction, problem solving, and probability. (MKR)
Partitioning Strategy Using Static Analysis Techniques
NASA Astrophysics Data System (ADS)
Seo, Yongjin; Soo Kim, Hyeon
2016-08-01
Flight software is software used in satellites' on-board computers. It has requirements such as real time and reliability. The IMA architecture is used to satisfy these requirements. The IMA architecture has the concept of partitions and this affected the configuration of flight software. That is, situations occurred in which software that had been loaded on one system was divided into many partitions when being loaded. For new issues, existing studies use experience based partitioning methods. However, these methods have a problem that they cannot be reused. In this respect, this paper proposes a partitioning method that is reusable and consistent.
Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oshemkov, Andrey A
2010-10-06
A complete invariant is constructed that is a solution of the problem of semilocal classification of saddle singularities of integrable Hamiltonian systems. Namely, a certain combinatorial object (an f{sub n}-graph) is associated with every nondegenerate saddle singularity of rank zero; as a result, the problem of semilocal classification of saddle singularities of rank zero is reduced to the problem of enumeration of the f{sub n}-graphs. This enables us to describe a simple algorithm for obtaining the lists of saddle singularities of rank zero for a given number of degrees of freedom and a given complexity. Bibliography: 24 titles.
Enabling Graph Mining in RDF Triplestores using SPARQL for Holistic In-situ Graph Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangkeun; Sukumar, Sreenivas R; Hong, Seokyong
The graph analysis is now considered as a promising technique to discover useful knowledge in data with a new perspective. We envi- sion that there are two dimensions of graph analysis: OnLine Graph Analytic Processing (OLGAP) and Graph Mining (GM) where each respectively focuses on subgraph pattern matching and automatic knowledge discovery in graph. Moreover, as these two dimensions aim to complementarily solve complex problems, holistic in-situ graph analysis which covers both OLGAP and GM in a single system is critical for minimizing the burdens of operating multiple graph systems and transferring intermediate result-sets between those systems. Nevertheless, most existingmore » graph analysis systems are only capable of one dimension of graph analysis. In this work, we take an approach to enabling GM capabilities (e.g., PageRank, connected-component analysis, node eccentricity, etc.) in RDF triplestores, which are originally developed to store RDF datasets and provide OLGAP capability. More specifically, to achieve our goal, we implemented six representative graph mining algorithms using SPARQL. The approach allows a wide range of available RDF data sets directly applicable for holistic graph analysis within a system. For validation of our approach, we evaluate performance of our implementations with nine real-world datasets and three different computing environments - a laptop computer, an Amazon EC2 instance, and a shared-memory Cray XMT2 URIKA-GD graph-processing appliance. The experimen- tal results show that our implementation can provide promising and scalable performance for real world graph analysis in all tested environments. The developed software is publicly available in an open-source project that we initiated.« less
Enabling Graph Mining in RDF Triplestores using SPARQL for Holistic In-situ Graph Analysis
Lee, Sangkeun; Sukumar, Sreenivas R; Hong, Seokyong; ...
2016-01-01
The graph analysis is now considered as a promising technique to discover useful knowledge in data with a new perspective. We envi- sion that there are two dimensions of graph analysis: OnLine Graph Analytic Processing (OLGAP) and Graph Mining (GM) where each respectively focuses on subgraph pattern matching and automatic knowledge discovery in graph. Moreover, as these two dimensions aim to complementarily solve complex problems, holistic in-situ graph analysis which covers both OLGAP and GM in a single system is critical for minimizing the burdens of operating multiple graph systems and transferring intermediate result-sets between those systems. Nevertheless, most existingmore » graph analysis systems are only capable of one dimension of graph analysis. In this work, we take an approach to enabling GM capabilities (e.g., PageRank, connected-component analysis, node eccentricity, etc.) in RDF triplestores, which are originally developed to store RDF datasets and provide OLGAP capability. More specifically, to achieve our goal, we implemented six representative graph mining algorithms using SPARQL. The approach allows a wide range of available RDF data sets directly applicable for holistic graph analysis within a system. For validation of our approach, we evaluate performance of our implementations with nine real-world datasets and three different computing environments - a laptop computer, an Amazon EC2 instance, and a shared-memory Cray XMT2 URIKA-GD graph-processing appliance. The experimen- tal results show that our implementation can provide promising and scalable performance for real world graph analysis in all tested environments. The developed software is publicly available in an open-source project that we initiated.« less
Many-core graph analytics using accelerated sparse linear algebra routines
NASA Astrophysics Data System (ADS)
Kozacik, Stephen; Paolini, Aaron L.; Fox, Paul; Kelmelis, Eric
2016-05-01
Graph analytics is a key component in identifying emerging trends and threats in many real-world applications. Largescale graph analytics frameworks provide a convenient and highly-scalable platform for developing algorithms to analyze large datasets. Although conceptually scalable, these techniques exhibit poor performance on modern computational hardware. Another model of graph computation has emerged that promises improved performance and scalability by using abstract linear algebra operations as the basis for graph analysis as laid out by the GraphBLAS standard. By using sparse linear algebra as the basis, existing highly efficient algorithms can be adapted to perform computations on the graph. This approach, however, is often less intuitive to graph analytics experts, who are accustomed to vertex-centric APIs such as Giraph, GraphX, and Tinkerpop. We are developing an implementation of the high-level operations supported by these APIs in terms of linear algebra operations. This implementation is be backed by many-core implementations of the fundamental GraphBLAS operations required, and offers the advantages of both the intuitive programming model of a vertex-centric API and the performance of a sparse linear algebra implementation. This technology can reduce the number of nodes required, as well as the run-time for a graph analysis problem, enabling customers to perform more complex analysis with less hardware at lower cost. All of this can be accomplished without the requirement for the customer to make any changes to their analytics code, thanks to the compatibility with existing graph APIs.
Modular structure of functional networks in olfactory memory.
Meunier, David; Fonlupt, Pierre; Saive, Anne-Lise; Plailly, Jane; Ravel, Nadine; Royet, Jean-Pierre
2014-07-15
Graph theory enables the study of systems by describing those systems as a set of nodes and edges. Graph theory has been widely applied to characterize the overall structure of data sets in the social, technological, and biological sciences, including neuroscience. Modular structure decomposition enables the definition of sub-networks whose components are gathered in the same module and work together closely, while working weakly with components from other modules. This processing is of interest for studying memory, a cognitive process that is widely distributed. We propose a new method to identify modular structure in task-related functional magnetic resonance imaging (fMRI) networks. The modular structure was obtained directly from correlation coefficients and thus retained information about both signs and weights. The method was applied to functional data acquired during a yes-no odor recognition memory task performed by young and elderly adults. Four response categories were explored: correct (Hit) and incorrect (False alarm, FA) recognition and correct and incorrect rejection. We extracted time series data for 36 areas as a function of response categories and age groups and calculated condition-based weighted correlation matrices. Overall, condition-based modular partitions were more homogeneous in young than elderly subjects. Using partition similarity-based statistics and a posteriori statistical analyses, we demonstrated that several areas, including the hippocampus, caudate nucleus, and anterior cingulate gyrus, belonged to the same module more frequently during Hit than during all other conditions. Modularity values were negatively correlated with memory scores in the Hit condition and positively correlated with bias scores (liberal/conservative attitude) in the Hit and FA conditions. We further demonstrated that the proportion of positive and negative links between areas of different modules (i.e., the proportion of correlated and anti-correlated areas) accounted for most of the observed differences in signed modularity. Taken together, our results provided some evidence that the neural networks involved in odor recognition memory are organized into modules and that these modular partitions are linked to behavioral performance and individual strategies. Copyright © 2014 Elsevier Inc. All rights reserved.
Computational Study for Planar Connected Dominating Set Problem
NASA Astrophysics Data System (ADS)
Marzban, Marjan; Gu, Qian-Ping; Jia, Xiaohua
The connected dominating set (CDS) problem is a well studied NP-hard problem with many important applications. Dorn et al. [ESA2005, LNCS3669,pp95-106] introduce a new technique to generate 2^{O(sqrt{n})} time and fixed-parameter algorithms for a number of non-local hard problems, including the CDS problem in planar graphs. The practical performance of this algorithm is yet to be evaluated. We perform a computational study for such an evaluation. The results show that the size of instances can be solved by the algorithm mainly depends on the branchwidth of the instances, coinciding with the theoretical result. For graphs with small or moderate branchwidth, the CDS problem instances with size up to a few thousands edges can be solved in a practical time and memory space. This suggests that the branch-decomposition based algorithms can be practical for the planar CDS problem.
Data Wrangling Within Different Astronomy Career Trajectories
NASA Astrophysics Data System (ADS)
Guillen, Reynal; Gu, D.; Holbrook, J.; Murillo, L.; Traweek, S.
2012-01-01
Five kinds of astronomers work with large data sets: cosmologists, data analysts, instrumentation people, observers, and numerical theorists. Each of these career trajectories can diverge and converge in and out of collaborations with each other and perform different kinds of work. Nonetheless, each group defines and wrangles data differently. This poster characterizes their different meanings of data, analytic skills, techniques, and technologies. It also identifies some sites and patterns of convergence. We plot these collaborative relationships in bi-partite graphs. These emergent characteristics of the astronomy workforce have implications for curricula, pedagogies, and the division of labor in research collaborations.
ALI: A CSSL/multiprocessor software interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makoui, A.; Karplus, W.J.
ALI (A Language Interface) is a software package which translates simulation models expressed in one of the higher-level languages, CSSL-IV or ACSL, into sequences of instructions for each processor of a network of microprocessors. The partitioning of the source program among the processors is automatically accomplished. The code is converted into a data flow graph, analyzed and divided among the processors to minimize the overall execution time in the presence of interprocessor communication delays. This paper describes ALI from the user's point of view and includes a detailed example of the application of ALI to a specific dynamic system simulation.
Šubelj, Lovro; van Eck, Nees Jan; Waltman, Ludo
2016-01-01
Clustering methods are applied regularly in the bibliometric literature to identify research areas or scientific fields. These methods are for instance used to group publications into clusters based on their relations in a citation network. In the network science literature, many clustering methods, often referred to as graph partitioning or community detection techniques, have been developed. Focusing on the problem of clustering the publications in a citation network, we present a systematic comparison of the performance of a large number of these clustering methods. Using a number of different citation networks, some of them relatively small and others very large, we extensively study the statistical properties of the results provided by different methods. In addition, we also carry out an expert-based assessment of the results produced by different methods. The expert-based assessment focuses on publications in the field of scientometrics. Our findings seem to indicate that there is a trade-off between different properties that may be considered desirable for a good clustering of publications. Overall, map equation methods appear to perform best in our analysis, suggesting that these methods deserve more attention from the bibliometric community.
Šubelj, Lovro; van Eck, Nees Jan; Waltman, Ludo
2016-01-01
Clustering methods are applied regularly in the bibliometric literature to identify research areas or scientific fields. These methods are for instance used to group publications into clusters based on their relations in a citation network. In the network science literature, many clustering methods, often referred to as graph partitioning or community detection techniques, have been developed. Focusing on the problem of clustering the publications in a citation network, we present a systematic comparison of the performance of a large number of these clustering methods. Using a number of different citation networks, some of them relatively small and others very large, we extensively study the statistical properties of the results provided by different methods. In addition, we also carry out an expert-based assessment of the results produced by different methods. The expert-based assessment focuses on publications in the field of scientometrics. Our findings seem to indicate that there is a trade-off between different properties that may be considered desirable for a good clustering of publications. Overall, map equation methods appear to perform best in our analysis, suggesting that these methods deserve more attention from the bibliometric community. PMID:27124610
Distributed memory parallel Markov random fields using graph partitioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinemann, C.; Perciano, T.; Ushizima, D.
Markov random fields (MRF) based algorithms have attracted a large amount of interest in image analysis due to their ability to exploit contextual information about data. Image data generated by experimental facilities, though, continues to grow larger and more complex, making it more difficult to analyze in a reasonable amount of time. Applying image processing algorithms to large datasets requires alternative approaches to circumvent performance problems. Aiming to provide scientists with a new tool to recover valuable information from such datasets, we developed a general purpose distributed memory parallel MRF-based image analysis framework (MPI-PMRF). MPI-PMRF overcomes performance and memory limitationsmore » by distributing data and computations across processors. The proposed approach was successfully tested with synthetic and experimental datasets. Additionally, the performance of the MPI-PMRF framework is analyzed through a detailed scalability study. We show that a performance increase is obtained while maintaining an accuracy of the segmentation results higher than 98%. The contributions of this paper are: (a) development of a distributed memory MRF framework; (b) measurement of the performance increase of the proposed approach; (c) verification of segmentation accuracy in both synthetic and experimental, real-world datasets« less
Detecting communities using asymptotical surprise
NASA Astrophysics Data System (ADS)
Traag, V. A.; Aldecoa, R.; Delvenne, J.-C.
2015-08-01
Nodes in real-world networks are repeatedly observed to form dense clusters, often referred to as communities. Methods to detect these groups of nodes usually maximize an objective function, which implicitly contains the definition of a community. We here analyze a recently proposed measure called surprise, which assesses the quality of the partition of a network into communities. In its current form, the formulation of surprise is rather difficult to analyze. We here therefore develop an accurate asymptotic approximation. This allows for the development of an efficient algorithm for optimizing surprise. Incidentally, this leads to a straightforward extension of surprise to weighted graphs. Additionally, the approximation makes it possible to analyze surprise more closely and compare it to other methods, especially modularity. We show that surprise is (nearly) unaffected by the well-known resolution limit, a particular problem for modularity. However, surprise may tend to overestimate the number of communities, whereas they may be underestimated by modularity. In short, surprise works well in the limit of many small communities, whereas modularity works better in the limit of few large communities. In this sense, surprise is more discriminative than modularity and may find communities where modularity fails to discern any structure.
Figure-Ground Segmentation Using Factor Graphs
Shen, Huiying; Coughlan, James; Ivanchenko, Volodymyr
2009-01-01
Foreground-background segmentation has recently been applied [26,12] to the detection and segmentation of specific objects or structures of interest from the background as an efficient alternative to techniques such as deformable templates [27]. We introduce a graphical model (i.e. Markov random field)-based formulation of structure-specific figure-ground segmentation based on simple geometric features extracted from an image, such as local configurations of linear features, that are characteristic of the desired figure structure. Our formulation is novel in that it is based on factor graphs, which are graphical models that encode interactions among arbitrary numbers of random variables. The ability of factor graphs to express interactions higher than pairwise order (the highest order encountered in most graphical models used in computer vision) is useful for modeling a variety of pattern recognition problems. In particular, we show how this property makes factor graphs a natural framework for performing grouping and segmentation, and demonstrate that the factor graph framework emerges naturally from a simple maximum entropy model of figure-ground segmentation. We cast our approach in a learning framework, in which the contributions of multiple grouping cues are learned from training data, and apply our framework to the problem of finding printed text in natural scenes. Experimental results are described, including a performance analysis that demonstrates the feasibility of the approach. PMID:20160994
Collaborative mining and transfer learning for relational data
NASA Astrophysics Data System (ADS)
Levchuk, Georgiy; Eslami, Mohammed
2015-06-01
Many of the real-world problems, - including human knowledge, communication, biological, and cyber network analysis, - deal with data entities for which the essential information is contained in the relations among those entities. Such data must be modeled and analyzed as graphs, with attributes on both objects and relations encode and differentiate their semantics. Traditional data mining algorithms were originally designed for analyzing discrete objects for which a set of features can be defined, and thus cannot be easily adapted to deal with graph data. This gave rise to the relational data mining field of research, of which graph pattern learning is a key sub-domain [11]. In this paper, we describe a model for learning graph patterns in collaborative distributed manner. Distributed pattern learning is challenging due to dependencies between the nodes and relations in the graph, and variability across graph instances. We present three algorithms that trade-off benefits of parallelization and data aggregation, compare their performance to centralized graph learning, and discuss individual benefits and weaknesses of each model. Presented algorithms are designed for linear speedup in distributed computing environments, and learn graph patterns that are both closer to ground truth and provide higher detection rates than centralized mining algorithm.
Effects of the Application of Graphing Calculator on Students' Probability Achievement
ERIC Educational Resources Information Center
Tan, Choo-Kim
2012-01-01
A Graphing Calculator (GC) is one of the most portable and affordable technology in mathematics education. It quickens the mechanical procedure in solving mathematical problems and creates a highly interactive learning environment, which makes learning a seemingly difficult subject, easy. Since research on the use of GCs for the teaching and…
ERIC Educational Resources Information Center
Nivens, Ryan Andrew
2016-01-01
This article provides a range of activities designed to engage students in using an early form of graphing. While the "Australian Curriculum: Mathematics" (2014) highlights understanding, fluency, problem-solving, and reasoning, the National Research Council (2001) describes five strands of mathematical proficiency, with the additional…
Using Texas Instruments Emulators as Teaching Tools in Quantitative Chemical Analysis
ERIC Educational Resources Information Center
Young, Vaneica Y.
2011-01-01
This technology report alerts upper-division undergraduate chemistry faculty and lecturers to the use of Texas Instruments emulators as virtual graphing calculators. These may be used in multimedia lectures to instruct students on the use of their graphing calculators to obtain solutions to complex chemical problems. (Contains 1 figure.)
Craig, Hugh; Berretta, Regina; Moscato, Pablo
2016-01-01
In this study we propose a novel, unsupervised clustering methodology for analyzing large datasets. This new, efficient methodology converts the general clustering problem into the community detection problem in graph by using the Jensen-Shannon distance, a dissimilarity measure originating in Information Theory. Moreover, we use graph theoretic concepts for the generation and analysis of proximity graphs. Our methodology is based on a newly proposed memetic algorithm (iMA-Net) for discovering clusters of data elements by maximizing the modularity function in proximity graphs of literary works. To test the effectiveness of this general methodology, we apply it to a text corpus dataset, which contains frequencies of approximately 55,114 unique words across all 168 written in the Shakespearean era (16th and 17th centuries), to analyze and detect clusters of similar plays. Experimental results and comparison with state-of-the-art clustering methods demonstrate the remarkable performance of our new method for identifying high quality clusters which reflect the commonalities in the literary style of the plays. PMID:27571416
NASA Technical Reports Server (NTRS)
Kuwata, Yoshiaki; Blackmore, Lars; Wolf, Michael; Fathpour, Nanaz; Newman, Claire; Elfes, Alberto
2009-01-01
Hot air (Montgolfiere) balloons represent a promising vehicle system for possible future exploration of planets and moons with thick atmospheres such as Venus and Titan. To go to a desired location, this vehicle can primarily use the horizontal wind that varies with altitude, with a small help of its own actuation. A main challenge is how to plan such trajectory in a highly nonlinear and time-varying wind field. This paper poses this trajectory planning as a graph search on the space-time grid and addresses its computational aspects. When capturing various time scales involved in the wind field over the duration of long exploration mission, the size of the graph becomes excessively large. We show that the adjacency matrix of the graph is block-triangular, and by exploiting this structure, we decompose the large planning problem into several smaller subproblems, whose memory requirement stays almost constant as the problem size grows. The approach is demonstrated on a global reachability analysis of a possible Titan mission scenario.