Sample records for graphene quantum dots

  1. First principles study of edge carboxylated graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-05-01

    The structure stability and electronic properties of edge carboxylated hexagonal and triangular graphene quantum dots are investigated using density functional theory. The calculated binding energies show that the hexagonal clusters with armchair edges have the highest stability among all the quantum dots. The binding energy of carboxylated graphene quantum dots increases by increasing the number of carboxyl groups. Our study shows that the total dipole moment significantly increases by adding COOH with the highest value observed in triangular clusters. The edge states in triangular graphene quantum dots with zigzag edges produce completely different energy spectrum from other dots: (a) the energy gap in triangular zigzag is very small as compared to other clusters and (b) the highest occupied molecular orbital is localized at the edges which is in contrast to other clusters where it is distributed over the cluster surface. The enhanced reactivity and the controllable energy gap by shape and edge termination make graphene quantum dots ideal for various nanodevice applications such as sensors. The infrared spectra are presented to confirm the stability of the quantum dots.

  2. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence.

    PubMed

    Liu, Fei; Jang, Min-Ho; Ha, Hyun Dong; Kim, Je-Hyung; Cho, Yong-Hoon; Seo, Tae Seok

    2013-07-19

    Pristine graphene quantum dots and graphene oxide quantum dots are synthesized by chemical exfoliation from the graphite nanoparticles with high uniformity in terms of shape (circle), size (less than 4 nm), and thickness (monolayer). The origin of the blue and green photoluminescence of GQDs and GOQDs is attributed to intrinsic and extrinsic energy states, respectively. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Graphene based quantum dots.

    PubMed

    Zhang, H G; Hu, H; Pan, Y; Mao, J H; Gao, M; Guo, H M; Du, S X; Greber, T; Gao, H-J

    2010-08-04

    Laterally localized electronic states are identified on a single layer of graphene on ruthenium by low temperature scanning tunneling spectroscopy (STS). The individual states are separated by 3 nm and comprise regions of about 90 carbon atoms. This constitutes a highly regular quantum dot-array with molecular precision. It is evidenced by quantum well resonances (QWRs) with energies that relate to the corrugation of the graphene layer. The dI/dV conductance spectra are modeled by a layer height dependent potential-well with a delta-function potential that describes the barrier for electron penetration into graphene. The resulting QWRs are strongest and lowest in energy on the isolated 'hill' regions with a diameter of 2 nm, where the graphene is decoupled from the surface.

  4. Peptide-Decorated Tunable-Fluorescence Graphene Quantum Dots.

    PubMed

    Sapkota, Bedanga; Benabbas, Abdelkrim; Lin, Hao-Yu Greg; Liang, Wentao; Champion, Paul; Wanunu, Meni

    2017-03-22

    We report here the synthesis of graphene quantum dots with tunable size, surface chemistry, and fluorescence properties. In the size regime 15-35 nm, these quantum dots maintain strong visible light fluorescence (mean quantum yield of 0.64) and a high two-photon absorption (TPA) cross section (6500 Göppert-Mayer units). Furthermore, through noncovalent tailoring of the chemistry of these quantum dots, we obtain water-stable quantum dots. For example, quantum dots with lysine groups bind strongly to DNA in solution and inhibit polymerase-based DNA strand synthesis. Finally, by virtue of their mesoscopic size, the quantum dots exhibit good cell permeability into living epithelial cells, but they do not enter the cell nucleus.

  5. Green, Rapid, and Universal Preparation Approach of Graphene Quantum Dots under Ultraviolet Irradiation.

    PubMed

    Zhu, Jinli; Tang, Yanfeng; Wang, Gang; Mao, Jiarong; Liu, Zhiduo; Sun, Tongming; Wang, Miao; Chen, Da; Yang, Yucheng; Li, Jipeng; Deng, Yuan; Yang, Siwei

    2017-04-26

    It is of great significance and importance to explore a mild, clean, and highly efficient universal approach for the synthesis of graphene quantum dots. Herein, we introduced a new green, rapid, and universal preparation approach for graphene quantum dots via the free-radical polymerization of oxygen-containing aromatic compounds under ultraviolet irradiation. This approach had a high yield (86%), and the byproducts are only H 2 O and CO 2 . The obtained graphene quantum dots were well-crystallized and showed remarkable optical and biological properties. The colorful, different-sized graphene quantum dots can be used in fluorescent bioimaging in vitro and in vivo. This approach is suitable not only for the preparation of graphene quantum dots but also for heteroatom-doped graphene quantum dots.

  6. DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes.

    PubMed

    Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Ma, Juan Juan; Chen, Jian Rong; Feng, Hui

    2014-10-15

    An ultrasensitive nanosensor based on fluorescence resonance energy transfer (FRET) between biocompatible graphene quantum dots and carbon nanotubes for DNA detection was reported. We take advantage of good biocompatibility and strong fluorescence of graphene quantum dots, base pairing specificity of DNA and unique fluorescence resonance energy transfer between graphene quantum dots and carbon nanotubes to achieve the analysis of low concentrations of DNA. Graphene quantum dots with high quantum yield up to 0.20 were prepared and served as the fluorophore of DNA probe. FRET process between graphene quantum dots-labeled probe and oxidized carbon nanotubes is easily achieved due to their efficient self-assembly through specific π-π interaction. This nanosensor can distinguish complementary and mismatched nucleic acid sequences with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a broad linear span of up to 133.0 nM and ultralow detection limit of 0.4 nM. The constructed nanosensor is expected to be highly biocompatible because of all its components with excellent biocompatibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Electrostatically confined trilayer graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Mirzakhani, M.; Zarenia, M.; Vasilopoulos, P.; Peeters, F. M.

    2017-04-01

    Electrically gating of trilayer graphene (TLG) opens a band gap offering the possibility to electrically engineer TLG quantum dots. We study the energy levels of such quantum dots and investigate their dependence on a perpendicular magnetic field B and different types of stacking of the graphene layers. The dots are modeled as circular and confined by a truncated parabolic potential which can be realized by nanostructured gates or position-dependent doping. The energy spectra exhibit the intervalley symmetry EKe(m ) =-EK'h(m ) for the electron (e ) and hole (h ) states, where m is the angular momentum quantum number and K and K ' label the two valleys. The electron and hole spectra for B =0 are twofold degenerate due to the intervalley symmetry EK(m ) =EK'[-(m +1 ) ] . For both ABC [α =1.5 (1.2) for large (small) R ] and ABA (α =1 ) stackings, the lowest-energy levels show approximately a R-α dependence on the dot radius R in contrast with the 1 /R3 one for ABC-stacked dots with infinite-mass boundary. As functions of the field B , the oscillator strengths for dipole-allowed transitions differ drastically for the two types of stackings.

  8. Coal as an abundant source of graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Ye, Ruquan; Xiang, Changsheng; Lin, Jian; Peng, Zhiwei; Huang, Kewei; Yan, Zheng; Cook, Nathan P.; Samuel, Errol L. G.; Hwang, Chih-Chau; Ruan, Gedeng; Ceriotti, Gabriel; Raji, Abdul-Rahman O.; Martí, Angel A.; Tour, James M.

    2013-12-01

    Coal is the most abundant and readily combustible energy resource being used worldwide. However, its structural characteristic creates a perception that coal is only useful for producing energy via burning. Here we report a facile approach to synthesize tunable graphene quantum dots from various types of coal, and establish that the unique coal structure has an advantage over pure sp2-carbon allotropes for producing quantum dots. The crystalline carbon within the coal structure is easier to oxidatively displace than when pure sp2-carbon structures are used, resulting in nanometre-sized graphene quantum dots with amorphous carbon addends on the edges. The synthesized graphene quantum dots, produced in up to 20% isolated yield from coal, are soluble and fluorescent in aqueous solution, providing promise for applications in areas such as bioimaging, biomedicine, photovoltaics and optoelectronics, in addition to being inexpensive additives for structural composites.

  9. Coal as an abundant source of graphene quantum dots.

    PubMed

    Ye, Ruquan; Xiang, Changsheng; Lin, Jian; Peng, Zhiwei; Huang, Kewei; Yan, Zheng; Cook, Nathan P; Samuel, Errol L G; Hwang, Chih-Chau; Ruan, Gedeng; Ceriotti, Gabriel; Raji, Abdul-Rahman O; Martí, Angel A; Tour, James M

    2013-01-01

    Coal is the most abundant and readily combustible energy resource being used worldwide. However, its structural characteristic creates a perception that coal is only useful for producing energy via burning. Here we report a facile approach to synthesize tunable graphene quantum dots from various types of coal, and establish that the unique coal structure has an advantage over pure sp2-carbon allotropes for producing quantum dots. The crystalline carbon within the coal structure is easier to oxidatively displace than when pure sp2-carbon structures are used, resulting in nanometre-sized graphene quantum dots with amorphous carbon addends on the edges. The synthesized graphene quantum dots, produced in up to 20% isolated yield from coal, are soluble and fluorescent in aqueous solution, providing promise for applications in areas such as bioimaging, biomedicine, photovoltaics and optoelectronics, in addition to being inexpensive additives for structural composites.

  10. Synthesis and characterization of graphene quantum dots/cobalt ferrite nanocomposite

    NASA Astrophysics Data System (ADS)

    Ramachandran, Shilpa; Sathishkumar, M.; Kothurkar, Nikhil K.; Senthilkumar, R.

    2018-02-01

    A facile method has been developed for the synthesis of a graphene quantum dots/cobalt ferrite nanocomposite. Graphene quantum dots (GQDs) were synthesized by a simple bottom-up method using citric acid, followed by the co-precipitation of cobalt ferrite nanoparticles on the graphene quantum dots. The morphology, structural analysis, optical properties, magnetic properties were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis absorption spectroscopy, fluorescence spectroscopy, vibrating sample magnetometry (VSM) measurements. The synthesized nanocomposite showed good fluorescence and superparamagnetic properties, which are important for biomedical applications.

  11. Aqueous Exfoliation of Graphite into Graphene Assisted by Sulfonyl Graphene Quantum Dots for Photonic Crystal Applications.

    PubMed

    Zeng, Minxiang; Shah, Smit A; Huang, Dali; Parviz, Dorsa; Yu, Yi-Hsien; Wang, Xuezhen; Green, Micah J; Cheng, Zhengdong

    2017-09-13

    We investigate the π-π stacking of polyaromatic hydrocarbons (PAHs) with graphene surfaces, showing that such interactions are general across a wide range of PAH sizes and species, including graphene quantum dots. We synthesized a series of graphene quantum dots with sulfonyl, amino, and carboxylic functional groups and employed them to exfoliate and disperse pristine graphene in water. We observed that sulfonyl-functionalized graphene quantum dots were able to stabilize the highest concentration of graphene in comparison to other functional groups; this is consistent with prior findings by pyrene. The graphene nanosheets prepared showed excellent colloidal stability, indicating great potential for applications in electronics, solar cells, and photonic displays which was demonstrated in this work.

  12. Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants.

    PubMed

    Chakravarty, Disha; Erande, Manisha B; Late, Dattatray J

    2015-10-01

    We report investigations on the use of graphene quantum dots for growth enhancement in coriander (Coriandrum sativam L.) and garlic (Allium sativum) plants. The as-received seeds of coriander and garlic were treated with 0.2 mg mL(-1) of graphene quantum dots for 3 h before planting. Graphene quantum dots enhanced the growth rate in coriander and garlic plants, including leaves, roots, shoots, flowers and fruits, when the seeds were treated with graphene quantum dots. Our investigations open up the opportunity to use graphene quantum dots as plant growth regulators that can be used in a variety of other food plants for high yield. © 2015 Society of Chemical Industry.

  13. Coulomb Oscillations in a Gate-Controlled Few-Layer Graphene Quantum Dot.

    PubMed

    Song, Yipu; Xiong, Haonan; Jiang, Wentao; Zhang, Hongyi; Xue, Xiao; Ma, Cheng; Ma, Yulin; Sun, Luyan; Wang, Haiyan; Duan, Luming

    2016-10-12

    Graphene quantum dots could be an ideal host for spin qubits and thus have been extensively investigated based on graphene nanoribbons and etched nanostructures; however, edge and substrate-induced disorders severely limit device functionality. Here, we report the confinement of quantum dots in few-layer graphene with tunable barriers, defined by local strain and electrostatic gating. Transport measurements unambiguously reveal that confinement barriers are formed by inducing a band gap via the electrostatic gating together with local strain induced constriction. Numerical simulations according to the local top-gate geometry confirm the band gap opening by a perpendicular electric field. We investigate the magnetic field dependence of the energy-level spectra in these graphene quantum dots. Experimental results reveal a complex evolution of Coulomb oscillations with the magnetic field, featuring kinks at level crossings. The simulation of energy spectrum shows that the kink features and the magnetic field dependence are consistent with experimental observations, implying the hybridized nature of energy-level spectrum of these graphene quantum dots.

  14. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals

    NASA Astrophysics Data System (ADS)

    Dong, Yongqiang; Lin, Jianpeng; Chen, Yingmei; Fu, Fengfu; Chi, Yuwu; Chen, Guonan

    2014-06-01

    Six coal samples of different ranks have been used to prepare single-layer graphene quantum dots (S-GQDs). After chemical oxidation and a series of centrifugation separation, every coal could be treated into two fractions, namely, CoalA and CoalB. According to the characterization results of TEM, AFM, XRD, Raman and FTIR, CoalA was revealed to be mainly composed of S-GQDs, which have an average height of about 0.5 nm and an average plane dimension of about 10 nm. The obtained S-GQDs showed excitation-dependent fluorescence and excellent electrochemiluminescence. CoalB was found to be some other carbon-based nanomaterials (CNMs), including agglomerated GQDs, graphene oxide, carbon quantum dots and agglomerated carbon nanocrystals. Generally, low-ranked coals might be more suitable for the preparation of S-GQDs. The production yield of S-GQDs from the six investigated coals decreased from 56.30% to 14.66% when the coal rank increased gradually. In contrast, high-ranked coals had high production yield of CoalB and might be more suitable for preparing other CNMs that were contained in CoalB, although those CNMs were difficult to separate from each other in our experiment.Six coal samples of different ranks have been used to prepare single-layer graphene quantum dots (S-GQDs). After chemical oxidation and a series of centrifugation separation, every coal could be treated into two fractions, namely, CoalA and CoalB. According to the characterization results of TEM, AFM, XRD, Raman and FTIR, CoalA was revealed to be mainly composed of S-GQDs, which have an average height of about 0.5 nm and an average plane dimension of about 10 nm. The obtained S-GQDs showed excitation-dependent fluorescence and excellent electrochemiluminescence. CoalB was found to be some other carbon-based nanomaterials (CNMs), including agglomerated GQDs, graphene oxide, carbon quantum dots and agglomerated carbon nanocrystals. Generally, low-ranked coals might be more suitable for the preparation of

  15. The emission wavelength dependent photoluminescence lifetime of the N-doped graphene quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Xingxia; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210; University of Chinese Academy of Sciences, Beijing 100049

    2015-12-14

    Aromatic nitrogen doped graphene quantum dots were investigated by steady-state and time-resolved photoluminescence (PL) techniques. The PL lifetime was found to be dependent on the emission wavelength and coincident with the PL spectrum, which is different from most semiconductor quantum dots and fluorescent dyes. This result shows the synergy and competition between the quantum confinement effect and edge functional groups, which may have the potential to guide the synthesis and expand the applications of graphene quantum dots.

  16. Graphene quantum dots: Highly active bifunctional nanoprobes for nonenzymatic photoluminescence detection of hydroquinone.

    PubMed

    He, Yuezhen; Sun, Jian; Feng, Dexiang; Chen, Hongqi; Gao, Feng; Wang, Lun

    2015-12-15

    In this paper, a simple and sensitive photoluminescence method is developed for the hydroquinone quantitation by using graphene quantum dots which simultaneously serve as a peroxidase-mimicking catalyst and a photoluminescence indicator. In the presence of dissolved oxygen, graphene quantum dots with intrinsic peroxidase-mimicking catalytic activity can catalyze the oxidation of hydroquinone to produce p-benzoquinone, an intermediate, which can efficiently quench graphene quantum dots' photoluminescence. Based on this effect, a novel fluorescent platform is proposed for the sensing of hydroquinone, and the detection limit of 5 nM is found. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. FAST TRACK COMMUNICATION: Graphene based quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, H. G.; Hu, H.; Pan, Y.; Mao, J. H.; Gao, M.; Guo, H. M.; Du, S. X.; Greber, T.; Gao, H.-J.

    2010-08-01

    Laterally localized electronic states are identified on a single layer of graphene on ruthenium by low temperature scanning tunneling spectroscopy (STS). The individual states are separated by 3 nm and comprise regions of about 90 carbon atoms. This constitutes a highly regular quantum dot-array with molecular precision. It is evidenced by quantum well resonances (QWRs) with energies that relate to the corrugation of the graphene layer. The dI/dV conductance spectra are modeled by a layer height dependent potential-well with a delta-function potential that describes the barrier for electron penetration into graphene. The resulting QWRs are strongest and lowest in energy on the isolated 'hill' regions with a diameter of 2 nm, where the graphene is decoupled from the surface.

  18. What are the reasons for low use of graphene quantum dots in immunosensing of cancer biomarkers?

    PubMed

    Hasanzadeh, Mohammad; Shadjou, Nasrin

    2017-02-01

    Graphene quantum dots-based immunosensors have recently gained importance for detecting antigens and biomarkers responsible for cancer diagnosis. This paper reports a literature survey of the applications of graphene quantum dots for sensing cancer biomarkers. The survey sought to explore three questions: (1) Do graphene quantum dots improve immunosensing technology? (2) If so, can graphene quantum dots have a critical, positive impact on construction of immuno-devices? And (3) What is the reason for some troubles in the application of this technology? The number of published papers in the field seems positively answer the first two questions. However additional efforts must be made to move from the bench to the real diagnosis. Some approaches to improve the analytical performance of graphene quantum dots-based immunosensors through their figures of merit have been also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (II) ion.

    PubMed

    Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Chen, Jian Rong; Feng, Hui

    2015-06-15

    The sensitive detection of heavy metal ions in the organism and aquatic ecosystem using nanosensors based on environment friendly and biocompatible materials still remains a challenge. A fluorescent turn-on nanosensor for lead (II) detection based on biocompatible graphene quantum dots and graphene oxide by employment of Pb(2+)-induced G-quadruplex formation was reported. Graphene quantum dots with high quantum yield, good biocompatibility were prepared and served as the fluorophore of Pb(2+) probe. Fluorescence turn-off of graphene quantum dots is easily achieved through efficient photoinduced electron transfer between graphene quantum dots and graphene oxide, and subsequent fluorescence turn-on process is due to the formation of G-quadraplex aptamer-Pb(2+) complex triggered by the addition of Pb(2+). This nanosensor can distinguish Pb(2+) ion from other ions with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a fast response time of one minute, a broad linear span of up to 400.0 nM and ultralow detection limit of 0.6 nM. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Synthesis and characterization of graphene quantum dots-silver nanocomposites

    NASA Astrophysics Data System (ADS)

    Vandana, M.; Ashokkumar, S. P.; Vijeth, H.; Niranjana, M.; Yesappa, L.; Devendrappa, H.

    2018-04-01

    A facile microwave assisted hydrothermal method is used to synthesise glucose derived water soluble crystalline graphene quantum dots (GQDs) andcitrate reduction method was used to synthesized silver nanoparticles (SNPs). The formation of graphene quantum dots-silver nanocomposites (GSC) was synthesized through a simple refluxing process and characterised using Fourier Transform Infrared (FT-IR) to study the chemical interaction, Surface morphology using FESEM, Optical properties were studied using UV-Visible spectroscopy. The absorption band shows at 249, 306 and 447 nm confirms the formation of GQDs and GSC. The electrochemical performance of GSC tested to determine the oxidation/reduction processes by cyclic voltammetry and linear sweep voltammetry.

  1. Resonant tunneling in graphene pseudomagnetic quantum dots.

    PubMed

    Qi, Zenan; Bahamon, D A; Pereira, Vitor M; Park, Harold S; Campbell, D K; Neto, A H Castro

    2013-06-12

    Realistic relaxed configurations of triaxially strained graphene quantum dots are obtained from unbiased atomistic mechanical simulations. The local electronic structure and quantum transport characteristics of y-junctions based on such dots are studied, revealing that the quasi-uniform pseudomagnetic field induced by strain restricts transport to Landau level- and edge state-assisted resonant tunneling. Valley degeneracy is broken in the presence of an external field, allowing the selective filtering of the valley and chirality of the states assisting in the resonant tunneling. Asymmetric strain conditions can be explored to select the exit channel of the y-junction.

  2. Fabrication of nanoscale heterostructures comprised of graphene-encapsulated gold nanoparticles and semiconducting quantum dots for photocatalysis.

    PubMed

    Li, Yuan; Chopra, Nitin

    2015-05-21

    Patterned growth of multilayer graphene shell encapsulated gold nanoparticles (GNPs) and their covalent linking with inorganic quantum dots are demonstrated. GNPs were grown using a xylene chemical vapor deposition process, where the surface oxidized gold nanoparticles catalyze the multilayer graphene shell growth in a single step process. The graphene shell encapsulating gold nanoparticles could be further functionalized with carboxylic groups, which were covalently linked to amine-terminated quantum dots resulting in GNP-quantum dot heterostructures. The compositions, morphologies, crystallinity, and surface functionalization of GNPs and their heterostructures with quantum dots were evaluated using microscopic, spectroscopic, and analytical methods. Furthermore, optical properties of the derived architectures were studied using both experimental methods and simulations. Finally, GNP-quantum dot heterostructures were studied for photocatalytic degradation of phenol.

  3. Ambipolar Graphene-Quantum Dot Hybrid Vertical Photodetector with a Graphene Electrode.

    PubMed

    Che, Yongli; Zhang, Yating; Cao, Xiaolong; Zhang, Haiting; Song, Xiaoxian; Cao, Mingxuan; Yu, Yu; Dai, Haitao; Yang, Junbo; Zhang, Guizhong; Yao, Jianquan

    2017-09-20

    A strategy to fabricate an ambipolar near-infrared vertical photodetector (VPD) by sandwiching a photoactive material as a channel film between the bottom graphene and top metal electrodes was developed. The channel length in the vertical architecture was determined by the channel layer thickness, which can provide an ultrashort channel length without the need for a high-precision manufacturing process. The performance of VPDs with two types of semiconductor layers, a graphene-PbS quantum dot hybrid (GQDH) and PbS quantum dots (QDs), was measured. The GQDH VPD showed better photoelectric properties than the QD VPD because of the high mobility of graphene doped in the channel. The GQDH VPD exhibited excellent photoresponse properties with a responsivity of 1.6 × 10 4 A/W in the p-type regime and a fast response speed with a rise time of 8 ms. The simple manufacture and the promising photoresponse of the GQDH VPDs reveal that an easy and effective way to fabricate high-performance ambipolar photodetectors was developed.

  4. Ultra-broadband photodetectors based on epitaxial graphene quantum dots

    NASA Astrophysics Data System (ADS)

    El Fatimy, Abdel; Nath, Anindya; Kong, Byoung Don; Boyd, Anthony K.; Myers-Ward, Rachael L.; Daniels, Kevin M.; Jadidi, M. Mehdi; Murphy, Thomas E.; Gaskill, D. Kurt; Barbara, Paola

    2018-03-01

    Graphene is an ideal material for hot-electron bolometers due to its low heat capacity and weak electron-phonon coupling. Nanostructuring graphene with quantum-dot constrictions yields detectors of electromagnetic radiation with extraordinarily high intrinsic responsivity, higher than 1×109 V W-1 at 3 K. The sensing mechanism is bolometric in nature: the quantum confinement gap causes a strong dependence of the electrical resistance on the electron temperature. Here, we show that this quantum confinement gap does not impose a limitation on the photon energy for light detection and these quantum-dot bolometers work in a very broad spectral range, from terahertz through telecom to ultraviolet radiation, with responsivity independent of wavelength. We also measure the power dependence of the response. Although the responsivity decreases with increasing power, it stays higher than 1×108 V W-1 in a wide range of absorbed power, from 1 pW to 0.4 nW.

  5. Photoresponse of polyaniline-functionalized graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Lai, Sin Ki; Luk, Chi Man; Tang, Libin; Teng, Kar Seng; Lau, Shu Ping

    2015-03-01

    Polyaniline-functionalized graphene quantum dots (PANI-GQD) and pristine graphene quantum dots (GQDs) were utilized for optoelectronic devices. The PANI-GQD based photodetector exhibited higher responsivity which is about an order of magnitude at 405 nm and 7 folds at 532 nm as compared to GQD-based photodetectors. The improved photoresponse is attributed to the enhanced interconnection of GQD by island-like polymer matrices, which facilitate carrier transport within the polymer matrices. The optically tunable current-voltage (I-V) hysteresis of PANI-GQD was also demonstrated. The hysteresis magnifies progressively with light intensity at a scan range of +/-1 V. Both GQD and PANI-GQD devices change from positive to negative photocurrent when the bias reaches 4 V. Photogenerated carriers are excited to the trapping states in GQDs with increased bias. The trapped charges interact with charges injected from the electrodes which results in a net decrease of free charge carriers and a negative photocurrent. The photocurrent switching phenomenon in GQD and PANI-GQD devices may open up novel applications in optoelectronics.Polyaniline-functionalized graphene quantum dots (PANI-GQD) and pristine graphene quantum dots (GQDs) were utilized for optoelectronic devices. The PANI-GQD based photodetector exhibited higher responsivity which is about an order of magnitude at 405 nm and 7 folds at 532 nm as compared to GQD-based photodetectors. The improved photoresponse is attributed to the enhanced interconnection of GQD by island-like polymer matrices, which facilitate carrier transport within the polymer matrices. The optically tunable current-voltage (I-V) hysteresis of PANI-GQD was also demonstrated. The hysteresis magnifies progressively with light intensity at a scan range of +/-1 V. Both GQD and PANI-GQD devices change from positive to negative photocurrent when the bias reaches 4 V. Photogenerated carriers are excited to the trapping states in GQDs with increased bias. The

  6. Thiolated graphene - a new platform for anchoring CdSe quantum dots for hybrid heterostructures

    NASA Astrophysics Data System (ADS)

    Debgupta, Joyashish; Pillai, Vijayamohanan K.

    2013-04-01

    Effective organization of small CdSe quantum dots on graphene sheets has been achieved by a simple solution exchange with thiol terminated graphene prepared by diazonium salt chemistry. This generic methodology of CdSe QD attachment to any graphene surface has remarkable implications in designing hybrid heterostructures.Effective organization of small CdSe quantum dots on graphene sheets has been achieved by a simple solution exchange with thiol terminated graphene prepared by diazonium salt chemistry. This generic methodology of CdSe QD attachment to any graphene surface has remarkable implications in designing hybrid heterostructures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00363a

  7. Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging.

    PubMed

    Kuo, Wen-Shuo; Chen, Hua-Han; Chen, Shih-Yao; Chang, Chia-Yuan; Chen, Pei-Chi; Hou, Yung-I; Shao, Yu-Ting; Kao, Hui-Fang; Lilian Hsu, Chih-Li; Chen, Yi-Chun; Chen, Shean-Jen; Wu, Shang-Rung; Wang, Jiu-Yao

    2017-03-01

    Reactive oxygen species is the main contributor to photodynamic therapy. The results of this study show that a nitrogen-doped graphene quantum dot, serving as a photosensitizer, was capable of generating a higher amount of reactive oxygen species than a nitrogen-free graphene quantum dot in photodynamic therapy when photoexcited for only 3 min of 670 nm laser exposure (0.1 W cm -2 ), indicating highly improved antimicrobial effects. In addition, we found that higher nitrogen-bonding compositions of graphene quantum dots more efficiently performed photodynamic therapy actions than did the lower compositions that underwent identical treatments. Furthermore, the intrinsically emitted luminescence from nitrogen-doped graphene quantum dots and high photostability simultaneously enabled it to act as a promising contrast probe for tracking and localizing bacteria in biomedical imaging. Thus, the dual modality of nitrogen-doped graphene quantum dots presents possibilities for future clinical applications, and in particular multidrug resistant bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Reduced graphene oxide-germanium quantum dot nanocomposite: electronic, optical and magnetic properties

    NASA Astrophysics Data System (ADS)

    Amollo, Tabitha A.; Mola, Genene T.; Nyamori, Vincent O.

    2017-12-01

    Graphene provides numerous possibilities for structural modification and functionalization of its carbon backbone. Localized magnetic moments can, as well, be induced in graphene by the formation of structural defects which include vacancies, edges, and adatoms. In this work, graphene was functionalized using germanium atoms, we report the effect of the Ge ad atoms on the structural, electrical, optical and magnetic properties of graphene. Reduced graphene oxide (rGO)-germanium quantum dot nanocomposites of high crystalline quality were synthesized by the microwave-assisted solvothermal reaction. Highly crystalline spherical shaped germanium quantum dots, of diameter ranging between 1.6-9.0 nm, are anchored on the basal planes of rGO. The nanocomposites exhibit high electrical conductivity with a sheet resistance of up to 16 Ω sq-1. The electrical conductivity is observed to increase with the increase in Ge content in the nanocomposites. High defect-induced magnetization is attained in the composites via germanium adatoms. The evolution of the magnetic moments in the nanocomposites and the coercivity showed marked dependence on the Ge quantum dots size and concentration. Quantum confinement effects is evidenced in the UV-vis absorbance spectra and photoluminescence emission spectra of the nanocomposites which show marked size-dependence. The composites manifest strong absorption in the UV region, strong luminescence in the near UV region, and a moderate luminescence in the visible region.

  9. Sensing behavior of a graphene quantum dot phenalenyl towards toxic gases

    NASA Astrophysics Data System (ADS)

    Sharma, Vaishali; Narayan, Som; Dabhi, Shweta D.; Shinde, Satyam; Jha, Prafulla K.

    2018-04-01

    In the present work, by studying the interaction of graphene quantum dot (GQD) Phenalenylwith toxic gases hydrogen cyanide (HCN) and phosgene (COCl2) using density functional theory, we are aiming to evaluate the possibility of using GQD phenalenyl in the detection of HCN and COCl2. Owing to strong interactions between HCN/COCl2 and the GQD Phenalenyl, dramatic changes in the electronic properties of the graphene quantum dots together with highest occupied molecular orbitals and lowest unoccupied molecularorbitals (HOMO-LUMO) gap variationsare observed. The findings show that the GQD phenalenyl can be used as chemical nanosensor to detect HCN and COCl2 toxic gases.

  10. Magnetic properties of graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Espinosa-Ortega, T.; Luk'yanchuk, I. A.; Rubo, Y. G.

    2013-05-01

    Using the tight-binding approximation we calculated the diamagnetic susceptibility of graphene quantum dots (GQDs) of different geometrical shapes and characteristic sizes of 2-10 nm, when the magnetic properties are governed by the electron edge states. Two types of edge states can be discerned: the zero-energy states (ZESs), located exactly at the zero-energy Dirac point, and the dispersed edge states (DESs), with the energy close but not exactly equal to zero. DESs are responsible for a temperature-independent diamagnetic response, while ZESs provide a temperature-dependent spin paramagnetism. Hexagonal, circular, and randomly shaped GQDs contain mainly DESs, and, as a result, they are diamagnetic. The edge states of the triangular GQDs are of ZES type. These dots reveal the crossover between spin paramagnetism, dominating for small dots and at low temperatures, and orbital diamagnetism, dominating for large dots and at high temperatures.

  11. Effect of carrier doping and external electric field on the optical properties of graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Basak, Tista; Basak, Tushima

    2018-02-01

    In this paper, we demonstrate that the optical properties of finite-sized graphene quantum dots can be effectively controlled by doping it with different types of charge carriers (electron/hole). In addition, the role played by a suitably directed external electric field on the optical absorption of charge-doped graphene quantum dots have also been elucidated. The computations have been performed on diamond-shaped graphene quantum dot (DQD) within the framework of the Pariser-Parr-Pople (PPP) model Hamiltonian, which takes into account long-range Coulomb interactions. Our results reveal that the energy band-gap increases when the DQD is doped with holes while it decreases on doping it with electrons. Further, the optical absorption spectra of DQD exhibits red/blue-shift on doping with electrons/holes. Our computations also indicate that the application of external transverse electric field results in a substantial blue-shift of the optical spectrum for charge-doped DQD. However, it is observed that the influence of charge-doping is more prominent in tuning the optical properties of finite-sized graphene quantum dots as compared to externally applied electric field. Thus, tailoring the optical properties of finite-sized graphene quantum dots by manipulative doping with charge carriers and suitably aligned external electric field can greatly enhance its potential application in designing nano-photonic devices.

  12. Hybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells.

    PubMed

    Tavakoli, Mohammad Mahdi; Aashuri, Hossein; Simchi, Abdolreza; Fan, Zhiyong

    2015-10-07

    Recently, hybrid nanocomposites consisting of graphene/nanomaterial heterostructures have emerged as promising candidates for the fabrication of optoelectronic devices. In this work, we have employed a facile and in situ solution-based process to prepare zinc oxide/graphene quantum dots (ZnO/G QDs) in a hybrid structure. The prepared hybrid dots are composed of a ZnO core, with an average size of 5 nm, warped with graphene nanosheets. Spectroscopic studies show that the graphene shell quenches the photoluminescence intensity of the ZnO nanocrystals by about 72%, primarily due to charge transfer reactions and static quenching. A red shift in the absorption peak is also observed. Raman spectroscopy determines G-band splitting of the graphene shell into two separated sub-bands (G(+), G(-)) caused by the strain induced symmetry breaking. It is shown that the hybrid ZnO/G QDs can be used as a counter-electrode for heterojunction colloidal quantum-dot solar cells for efficient charge-carrier collection, as evidenced by the external quantum efficiency measurement. Under the solar simulated spectrum (AM 1.5G), we report enhanced power conversion efficiency (35%) with higher short current circuit (80%) for lead sulfide-based solar cells as compared to devices prepared by pristine ZnO nanocrystals.

  13. Valley filters, accumulators, and switches induced in graphene quantum dots by lines of adsorbed hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Azari, Mohammadhadi; Kirczenow, George

    2018-06-01

    We present electronic structure and quantum transport calculations that predict conducting channels induced in graphene quantum dots by lines of adsorbed hydrogen atoms to function as highly efficient, experimentally realizable valley filters, accumulators, and switches. The underlying physics is an interesting property of graphene Dirac point resonances (DPRs) that is revealed here, namely, that an electric current passing through a DPR-mediated conducting channel in a given direction is carried by electrons of only one of the two graphene valleys. Our predictions apply to lines of hydrogen atoms adsorbed on graphene quantum dots that are either free standing or supported on a hexagonal boron nitride substrate.

  14. Large tunable valley splitting in edge-free graphene quantum dots on boron nitride

    NASA Astrophysics Data System (ADS)

    Freitag, Nils M.; Reisch, Tobias; Chizhova, Larisa A.; Nemes-Incze, Péter; Holl, Christian; Woods, Colin R.; Gorbachev, Roman V.; Cao, Yang; Geim, Andre K.; Novoselov, Kostya S.; Burgdörfer, Joachim; Libisch, Florian; Morgenstern, Markus

    2018-05-01

    Coherent manipulation of the binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid-state systems, whereas exploitation of the valley has only recently been started, albeit without control at the single-electron level. Here, we show that van der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunnelling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits.

  15. Symmetry and optical selection rules in graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Pohle, Rico; Kavousanaki, Eleftheria G.; Dani, Keshav M.; Shannon, Nic

    2018-03-01

    Graphene quantum dots (GQD's) have optical properties which are very different from those of an extended graphene sheet. In this paper, we explore how the size, shape, and edge structure of a GQD affect its optical conductivity. Using representation theory, we derive optical selection rules for regular-shaped dots, starting from the symmetry properties of the current operator. We find that, where the x and y components of the current operator transform with the same irreducible representation (irrep) of the point group (for example in triangular or hexagonal GQD's), the optical conductivity is independent of the polarization of the light. On the other hand, where these components transform with different irreps (for example in rectangular GQD's), the optical conductivity depends on the polarization of light. We carry out explicit calculations of the optical conductivity of GQD's described by a simple tight-binding model and, for dots of intermediate size, find an absorption peak in the low-frequency range of the spectrum which allows us to distinguish between dots with zigzag and armchair edges. We also clarify the one-dimensional nature of states at the Van Hove singularity in graphene, providing a possible explanation for very high exciton-binding energies. Finally, we discuss the role of atomic vacancies and shape asymmetry.

  16. Resonant tunneling based graphene quantum dot memristors.

    PubMed

    Pan, Xuan; Skafidas, Efstratios

    2016-12-08

    In this paper, we model two-terminal all graphene quantum dot (GQD) based resistor-type memory devices (memristors). The resistive switching is achieved by resonant electron tunneling. We show that parallel GQDs can be used to create multi-state memory circuits. The number of states can be optimised with additional voltage sources, whilst the noise margin for each state can be controlled by appropriately choosing the branch resistance. A three-terminal GQD device configuration is also studied. The addition of an isolated gate terminal can be used to add further or modify the states of the memory device. The proposed devices provide a promising route towards volatile memory devices utilizing only atomically thin two-dimensional graphene.

  17. Fully Transparent Quantum Dot Light-Emitting Diode with a Laminated Top Graphene Anode.

    PubMed

    Yao, Li; Fang, Xin; Gu, Wei; Zhai, Wenhao; Wan, Yi; Xie, Xixi; Xu, Wanjin; Pi, Xiaodong; Ran, Guangzhao; Qin, Guogang

    2017-07-19

    A new method to employ graphene as top electrode was introduced, and based on that, fully transparent quantum dot light-emitting diodes (T-QLEDs) were successfully fabricated through a lamination process. We adopted the widely used wet transfer method to transfer bilayer graphene (BG) on polydimethylsiloxane/polyethylene terephthalate (PDMS/PET) substrate. The sheet resistance of graphene reduced to ∼540 Ω/□ through transferring BG for 3 times on the PDMS/PET. The T-QLED has an inverted device structure of glass/indium tin oxide (ITO)/ZnO nanoparticles/(CdSSe/ZnS quantum dots (QDs))/1,1-bis[(di-4-tolylamino)phenyl] cyclohexane (TAPC)/MoO 3 /graphene/PDMS/PET. The graphene anode on PDMS/PET substrate can be directly laminated on the MoO 3 /TAPC/(CdSSe/ZnS QDs)/ZnO nanoparticles/ITO/glass, which relied on the van der Waals interaction between the graphene/PDMS and the MoO 3 . The transmittance of the T-QLED is 79.4% at its main electroluminescence peak wavelength of 622 nm.

  18. Novel Synthesis of Slightly Fluorinated Graphene Quantum Dots with Luminescent and Paramagnetic Properties through Thermal Cutting of Fluorinated Graphene

    PubMed Central

    Feng, Qian; Xiao, Wenqing; Zheng, Yongping; Lin, Yuda; Li, Jiaxin; Ye, Qingying; Huang, Zhigao

    2018-01-01

    A novel approach has been developed to synthesize slightly fluorinated graphene quantum dots (GQDs-F) through thermal cutting of highly fluorinated graphene. The fluorinated graphene with substantial structure defects is fragile and is readily attacked. The direct evaporation of abundant CFn (n = 2, 3) groups near structure defects lead to the loss of adjacent skelton C atoms, and the fluorinated graphene can be thermally cut into GQDs-F with a relatively uniform nanosize in pyrolysis at 810 K. The GQDs-F with a low F/C atomic ratio of ca. 0.03 exhibit excitation wavelength-dependent properties with multicolor photoluminescence (PL) from blue to green. At the same time, F adatoms that are most likely located at the edges of GQDs-F have a high efficiency of introducing paramagnetic centres, and GQDs-F show a strong paramagnetism because of sp3-type defects and magnetic zigzag edges. The graphene quantum dots with such multimodal capabilities should have great applied value in material science. PMID:29316730

  19. Synthesis and characterization of graphene quantum dots and their size reduction using swift heavy ion beam

    NASA Astrophysics Data System (ADS)

    Mishra, Praveen; Bhat, Badekai Ramchandra

    2018-04-01

    Graphene quantum dots (GQDs) are nanosized fragments of graphene displaying quantum confinement effect. They have shown to be prepared from various methods which include ion beam etching of graphene. However, recently the modification of the GQDs has garnered tremendous attention owing to its suitability for various applications. Here, we have studied the effect of swift ion beam irradiation on the properties of GQDs. The ion beam treatment on the GQDs exhibited the change in observed photoluminescence of GQDs as they exhibited a blue luminescence on excitation with longwave UV (≈365 nm) due to the reduction in size and removal of the ethoxy (-C-O-C-) groups present on the quantum dots. This was confirmed by transmission electron microscopy, particle size analysis, and Fourier transform infrared spectroscopy.

  20. Tuning electronic properties in graphene quantum dots by chemical functionalization: Density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-03-01

    The energy gap and dipole moment of chemically functionalized graphene quantum dots are investigated by density functional theory. The energy gap can be tuned through edge passivation by different elements or groups. Edge passivation by oxygen considerably decreases the energy gap in hexagonal nanodots. Edge states in triangular quantum dots can also be manipulated by passivation with fluorine. The dipole moment depends on: (a) shape and edge termination of the quantum dot, (b) attached group, and (c) position to which the groups are attached. Depending on the position of attached groups, the total dipole can be increased, decreased, or eliminated.

  1. Electric transport through circular graphene quantum dots: Presence of disorder

    NASA Astrophysics Data System (ADS)

    Pal, G.; Apel, W.; Schweitzer, L.

    2011-08-01

    The electronic states of an electrostatically confined cylindrical graphene quantum dot and the electric transport through this device are studied theoretically within the continuum Dirac-equation approximation and compared with numerical results obtained from a tight-binding lattice description. A spectral gap, which may originate from strain effects, additional adsorbed atoms, or substrate-induced sublattice-symmetry breaking, allows for bound and scattering states. As long as the diameter of the dot is much larger than the lattice constant, the results of the continuum and the lattice model are in very good agreement. We also investigate the influence of a sloping dot-potential step, of on-site disorder along the sample edges, of uncorrelated short-range disorder potentials in the bulk, and of random magnetic fluxes that mimic ripple disorder. The quantum dot's spectral and transport properties depend crucially on the specific type of disorder. In general, the peaks in the density of bound states are broadened but remain sharp only in the case of edge disorder.

  2. Chiral Graphene Quantum Dots

    DOE PAGES

    Suzuki, Nozomu; Wang, Yichun; Elvati, Paolo; ...

    2016-01-15

    Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the “crowded” edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210–220 and 250–265 nm that changed their signs formore » different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210–220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250–265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to l/d-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than l-GQDs. Finally, emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials.« less

  3. Synthesis of novel monomeric graphene quantum dots and corresponding nanocomposite with molecularly imprinted polymer for electrochemical detection of an anticancerous ifosfamide drug.

    PubMed

    Bali Prasad, Bhim; Kumar, Anil; Singh, Ragini

    2017-08-15

    This paper reports a typical synthesis of a nanocomposite of functionalized graphene quantum dots and imprinted polymer at the surface of screen-printed carbon electrode using N-acryloyl-4-aminobenzamide, as a functional monomer, and an anticancerous drug, ifosfamide, as a print molecule (test analyte). Herein, graphene quantum dots in nanocomposite practically induced the electrocatalytic activity by lowering the oxidation overpotential of test analyte and thereby amplifying electronic transmission, without any interfacial barrier in between the film and the electrode surface. The differential pulse anodic stripping signal at functionalized graphene quantum dots based imprinted sensor was realized to be about 3- and 7-fold higher as compared to the traditionally made imprinted polymers prepared in the presence and the absence of graphene quantum dots (un-functionalized), respectively. This may be attributed to a pertinent synergism in between the positively charged functionalized graphene quantum dots in the film and the target analyte toward the enhancement of electro-conductivity of the film and thereby the electrode kinetics. In fact, the covalent attachment of graphene quantum dots with N-acryloyl-4-aminobenzamide molecules might exert an extended conjugation at their interface facilitating electro conducting to render the channelized pathways for the electron transport. The proposed sensor is practically applicable to the ultratrace evaluation of ifosfamide in real (biological/pharmaceutical) samples with detection limit as low as 0.11ngmL -1 (S/N=3), without any matrix effect, cross-reactivity, and false-positives. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Graphene quantum dots-carbon nanotube hybrid arrays for supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Yue; Zhao, Yang; Lu, Gewu; Chen, Nan; Zhang, Zhipan; Li, Hui; Shao, Huibo; Qu, Liangti

    2013-05-01

    Graphene quantum dots (GQDs) have been successfully deposited onto aligned carbon nanotubes (CNTs) by a benign electrochemical method and the capacitive properties of the as-formed GQD/CNT hybrid arrays were evaluated in symmetrical supercapacitors. It was found that supercapacitors fabricated from GQD/CNT hybrid arrays exhibited a high capacitance of 44 mF cm-2, representing a more than 200% improvement over that of bare CNT electrodes.

  5. Graphene quantum dots-carbon nanotube hybrid arrays for supercapacitors.

    PubMed

    Hu, Yue; Zhao, Yang; Lu, Gewu; Chen, Nan; Zhang, Zhipan; Li, Hui; Shao, Huibo; Qu, Liangti

    2013-05-17

    Graphene quantum dots (GQDs) have been successfully deposited onto aligned carbon nanotubes (CNTs) by a benign electrochemical method and the capacitive properties of the as-formed GQD/CNT hybrid arrays were evaluated in symmetrical supercapacitors. It was found that supercapacitors fabricated from GQD/CNT hybrid arrays exhibited a high capacitance of 44 mF cm(-2), representing a more than 200% improvement over that of bare CNT electrodes.

  6. Tuning Optoelectronic Properties of the Graphene-Based Quantum Dots C16- xSi xH10 Family.

    PubMed

    Ramadan, F-Z; Ouarrad, H; Drissi, L B

    2018-06-07

    The electronic and optical properties of graphene-based quantum dots (QDs) are investigated using DFT and many-body perturbation theory. Formation energy, hardeness and electrophilicity show that all structures, from pyrene to silicene QD passing through 15 CSi QD configurations, are energetically and chemically stable. It is also found that they are reactive which implies their favorable character for the possible electronic transport and conductivity. The electronic and optical properties are very sensitive to the number and position of the substituted silicon atoms as well as the directions of the light polarization. Moreover, quantum confinement effects make the exciton binding energy of CSi quantum dots larger than those of their higher dimensional allotropes such as silicene, graphene, and SiC sheet and nanotube. It is also higher those of other shapes of quantum dots like hexagonal graphene QDs and can be tailored from the ultraviolet region to the visible one. The values of the singlet-triplet splitting determined for the X- and Y-light polarized indicate that all configurations have a high fluorescence quantum yield compared to the yield of typical semiconductors, which makes them very promising for various applications such as the light-emitting diode material and nanomedicine.

  7. Tuning the electronic and optical properties of hexagonal boron-nitride nanosheet by inserting graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Ding, Yi-Min; Shi, Jun-Jie; Zhang, Min; Wu, Meng; Wang, Hui; Cen, Yu-Lang; Pan, Shu-Hang; Guo, Wen-Hui

    2018-02-01

    It is difficult to integrate two-dimensional (2D) graphene and hexagonal boron-nitride (h-BN) in optoelectronic nanodevices, due to the semi-metal and insulator characteristic of graphene and h-BN, respectively. Using the state-of-the-art first-principles calculations based on many-body perturbation theory, we investigate the electronic and optical properties of h-BN nanosheet embedded with graphene dots. We find that C atom impurities doped in h-BN nanosheet tend to phase-separate into graphene quantum dots (QD), and BNC hybrid structure, i.e. a graphene dot within a h-BN background, can be formed. The band gaps of BNC hybrid structures have an inverse relationship with the size of graphene dot. The calculated optical band gaps for BNC structures vary from 4.71 eV to 3.77 eV, which are much smaller than that of h-BN nanosheet. Furthermore, the valence band maximum is located in C atoms bonded to B atoms and conduction band minimum is located in C atoms bonded to N atoms, which means the electron and hole wave functions are closely distributed around the graphene dot. The bound excitons, localized around the graphene dot, determine the optical spectra of the BNC hybrid structures, in which the exciton binding energies decrease with increase in the size of graphene dots. Our results provide an important theoretical basis for the design and development of BNC-based optoelectronic nanodevices.

  8. Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications

    PubMed Central

    Paulo, Sofia; Palomares, Emilio; Martinez-Ferrero, Eugenia

    2016-01-01

    Graphene and carbon quantum dots have extraordinary optical and electrical features because of their quantum confinement properties. This makes them attractive materials for applications in photovoltaic devices (PV). Their versatility has led to their being used as light harvesting materials or selective contacts, either for holes or electrons, in silicon quantum dot, polymer or dye-sensitized solar cells. In this review, we summarize the most common uses of both types of semiconducting materials and highlight the significant advances made in recent years due to the influence that synthetic materials have on final performance. PMID:28335285

  9. Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tartakovskii, Alexander

    2012-07-01

    Lithographic Techniques: III-V Semiconductors and Carbon: 15. Electrically controlling single spin coherence in semiconductor nanostructures Y. Dovzhenko, K. Wang, M. D. Schroer and J. R. Petta; 16. Theory of electron and nuclear spins in III-V semiconductor and carbon-based dots H. Ribeiro and G. Burkard; 17. Graphene quantum dots: transport experiments and local imaging S. Schnez, J. Guettinger, F. Molitor, C. Stampfer, M. Huefner, T. Ihn and K. Ensslin; Part VI. Single Dots for Future Telecommunications Applications: 18. Electrically operated entangled light sources based on quantum dots R. M. Stevenson, A. J. Bennett and A. J. Shields; 19. Deterministic single quantum dot cavities at telecommunication wavelengths D. Dalacu, K. Mnaymneh, J. Lapointe, G. C. Aers, P. J. Poole, R. L. Williams and S. Hughes; Index.

  10. Graphene quantum dots-three-dimensional graphene composites for high-performance supercapacitors.

    PubMed

    Chen, Qing; Hu, Yue; Hu, Chuangang; Cheng, Huhu; Zhang, Zhipan; Shao, Huibo; Qu, Liangti

    2014-09-28

    Graphene quantum dots (GQDs) have been successfully deposited onto the three-dimensional graphene (3DG) by a benign electrochemical method and the ordered 3DG structure remains intact after the uniform deposition of GQDs. In addition, the capacitive properties of the as-formed GQD-3DG composites are evaluated in symmetrical supercapacitors. It is found that the supercapacitor fabricated from the GQD-3DG composite is highly stable and exhibits a high specific capacitance of 268 F g(-1), representing a more than 90% improvement over that of the supercapacitor made from pure 3DG electrodes (136 F g(-1)). Owing to the convenience of the current method, it can be further used in other well-defined electrode materials, such as carbon nanotubes, carbon aerogels and conjugated polymers to improve the performance of the supercapacitors.

  11. Demonstration of the lack of cytotoxicity of unmodified and folic acid modified graphene oxide quantum dots, and their application to fluorescence lifetime imaging of HaCaT cells.

    PubMed

    Goreham, Renee V; Schroeder, Kathryn L; Holmes, Amy; Bradley, Siobhan J; Nann, Thomas

    2018-01-24

    The authors describe the synthesis of water-soluble and fluorescent graphene oxide quantum dots via acid exfoliation of graphite nanoparticles. The resultant graphene oxide quantum dots (GoQDs) were then modified with folic acid. Folic acid receptors are overexpressed in cancer cells and hence can bind to functionalized graphene oxide quantum dots. On excitation at 305 nm, the GoQDs display green fluorescence with a peak wavelength at ~520 nm. The modified GoQDs are non-toxic to macrophage cells even after prolonged exposure and high concentrations. Fluorescence lifetime imaging and multiphoton microscopy was used (in combination) to image HeCaT cells exposed to GoQDs, resulting in a superior method for bioimaging. Graphical abstract Schematic representation of graphene oxide quantum dots, folic acid modified graphene oxide quantum dots (red), and the use of fluorescence lifetime to discriminate against green auto-fluorescence of HeCaT cells.

  12. Mode-locking of an InAs Quantum Dot Based Vertical External Cavity Surface Emitting Laser Using Atomic Layer Graphene

    DTIC Science & Technology

    2015-07-16

    SECURITY CLASSIFICATION OF: The InAs quantum dot (QD) grown on GaAs substrates represents a highly performance active region in the 1 - 1.3 µm...2015 Approved for Public Release; Distribution Unlimited Final Report: Mode-locking of an InAs Quantum Dot Based Vertical External Cavity Surface...ABSTRACT Final Report: Mode-locking of an InAs Quantum Dot Based Vertical External Cavity Surface Emitting Laser Using Atomic Layer Graphene Report

  13. Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO2/H2O medium.

    PubMed

    Gao, Hanyang; Xue, Chen; Hu, Guoxin; Zhu, Kunxu

    2017-07-01

    In this research, three kinds of graphene quantum dots (GQDs)-pristine graphene quantum dots (PGQDs), expanded graphene quantum dots (EGQDs) and graphene oxide quantum dots (GOQDs)-were produced from natural graphite, expanded graphite, and oxide graphite respectively in an ultrasound-assisted supercritical CO 2 (scCO 2 )/H 2 O system. The effects of aqueous solution content ratio, system pressure, and ultrasonic power on the yields of different kinds of GQDs were investigated. According to these experiment results, the combination of the intense knocking force generated from high-pressure acoustic cavitation in a scCO 2 /H 2 O system and the superior penetration ability of scCO 2 was considered to be the key to the successful exfoliation of such tiny pieces from bulk graphite. An interesting result was found that, contrary to common experience, the yield of PGQDs from natural graphite was much higher than that of GOQDs from graphite oxide. Based on the experimental analysis, the larger interlayer resistance of natural graphite, which hindered the insertion of scCO 2 molecules, and the hydrophobic property of natural graphite surface, which made the planar more susceptible to the attack of ultrasonic collapsing bubbles, were deduced to be the two main reasons for this result. The differences in characteristics among the three kinds of GQDs were also studied and compared in this research. In our opinion, this low-cost and time-saving method may provide an alternative green route for the production of various kinds of GQDs, especially PGQDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Comparison of the Optical Properties of Graphene and Alkyl-terminated Si and Ge Quantum Dots.

    PubMed

    de Weerd, Chris; Shin, Yonghun; Marino, Emanuele; Kim, Joosung; Lee, Hyoyoung; Saeed, Saba; Gregorkiewicz, Tom

    2017-10-31

    Semiconductor quantum dots are widely investigated due to their size dependent energy structure. In particular, colloidal quantum dots represent a promising nanomaterial for optoelectronic devices, such as photodetectors and solar cells, but also luminescent markers for biotechnology, among other applications. Ideal materials for these applications should feature efficient radiative recombination and absorption transitions, altogether with spectral tunability over a wide range. Group IV semiconductor quantum dots can fulfill these requirements and serve as an alternative to the commonly used direct bandgap materials containing toxic and/or rare elements. Here, we present optical properties of butyl-terminated Si and Ge quantum dots and compare them to those of graphene quantum dots, finding them remarkably similar. We investigate their time-resolved photoluminescence emission as well as the photoluminescence excitation and linear absorption spectra. We contemplate that their emission characteristics indicate a (semi-) resonant activation of the emitting channel; the photoluminescence excitation shows characteristics similar to those of a molecule. The optical density is consistent with band-to-band absorption processes originating from core-related states. Hence, these observations strongly indicate a different microscopic origin for absorption and radiative recombination in the three investigated quantum dot systems.

  15. Suspending effect on low-frequency charge noise in graphene quantum dot.

    PubMed

    Song, Xiang-Xiang; Li, Hai-Ou; You, Jie; Han, Tian-Yi; Cao, Gang; Tu, Tao; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping

    2015-01-30

    Charge noise is critical in the performance of gate-controlled quantum dots (QDs). Such information is not yet available for QDs made out of the new material graphene, where both substrate and edge states are known to have important effects. Here we show the 1/f noise for a microscopic graphene QD is substantially larger than that for a macroscopic graphene field-effect transistor (FET), increasing linearly with temperature. To understand its origin, we suspended the graphene QD above the substrate. In contrast to large area graphene FETs, we find that a suspended graphene QD has an almost-identical noise level as an unsuspended one. Tracking noise levels around the Coulomb blockade peak as a function of gate voltage yields potential fluctuations of order 1 μeV, almost one order larger than in GaAs/GaAlAs QDs. Edge states and surface impurities rather than substrate-induced disorders, appear to dominate the 1/f noise, thus affecting the coherency of graphene nano-devices.

  16. Graphene quantum dot synthesis using nanosecond laser pulses and its comparison to Methylene Blue

    NASA Astrophysics Data System (ADS)

    Kholikov, Khomidkhodza; Thomas, Zachary; Seyitliyev, Dovletgeldi; Smith, Skylar

    A biocompatible photodynamic therapy agent that generates a high amount of singlet oxygen with high water dispersibility and excellent photostability is desirable. In this work, a graphene based biomaterial which is a promising alternative to a standard photosensitizers was produced. Methylene blue was used as a reference photosensitizer. Bacteria deactivation by methylene blue was shown to be inhibited inside human blood due to protein binding. Graphene quantum dots (GQD) were synthesized by irradiating benzene and nickel oxide mixture using nanosecond laser pulses. High resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, and nuclear magnetic resonance (NMR) were used for characterization of GQDs. Initial results show graphene quantum dots whose size less than 5 nm were successfully obtained. UV-VIS spectra shows absorption peak around 310 nm. The results of these studies can potentially be used to develop therapies for the eradication of pathogens in open wounds, burns, or skin cancers. New therapies for these conditions are particularly needed when antibiotic-resistant infections are present. NIH KBRIN.

  17. Graphene Quantum Dots-based Photoluminescent Sensor: A Multifunctional Composite for Pesticide Detection.

    PubMed

    Zor, Erhan; Morales-Narváez, Eden; Zamora-Gálvez, Alejandro; Bingol, Haluk; Ersoz, Mustafa; Merkoçi, Arben

    2015-09-16

    Due to their size and difficulty to obtain, cost/effective biological or synthetic receptors (e.g., antibodies or aptamers, respectively), organic toxic compounds (e.g., less than 1 kDa) are generally challenging to detect using simple platforms such as biosensors. This study reports on the synthesis and characterization of a novel multifunctional composite material, magnetic silica beads/graphene quantum dots/molecularly imprinted polypyrrole (mSGP). mSGP is engineered to specifically and effectively capture and signal small molecules due to the synergy among chemical, magnetic, and optical properties combined with molecular imprinting of tributyltin (291 Da), a hazardous compound, selected as a model analyte. Magnetic and selective properties of the mSGP composite can be exploited to capture and preconcentrate the analyte onto its surface, and its photoluminescent graphene quantum dots, which are quenched upon analyte recognition, are used to interrogate the presence of the contaminant. This multifunctional material enables a rapid, simple and sensitive platform for small molecule detection, even in complex mediums such as seawater, without any sample treatment.

  18. Evidence for edge state photoluminescence in graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Lingam, Kiran; Podila, Ramakrishna; Qian, Haijun; Serkiz, Steve; Rao, Apparao M.

    2013-03-01

    For a practical realization of graphene-based logic devices, opening of a band gap in graphene is crucial and has proved challenging. To this end, several synthesis techniques including unzipping of carbon nanotubes, chemical vapor deposition and other bottom-up fabrication techniques have been pursued for the bulk production of graphene nanoribbons (GNRs) and graphene quantum dots (GQDs). However, only a limited progress has been made towards a fundamental understanding of the electronic and optical properties of GQDs. In particular, the origin of strong photoluminescence (PL) in GQDs, which has been attributed to the presence of emissive surface traps and/or the edge states in GQD, remains inconclusive to date. Here, we experimentally show that the PL is independent of the functional groups attached to the GQDs. Following a series of annealing experiments, we further show that the PL in GQDs originates from the edge states, and an edge-passivation subsequent to synthesis quenches PL. These results are consistent with comparative studies on other carbon nanostructures such as GNRs and carbon nano-onions.

  19. Graphene and PbS quantum dot hybrid vertical phototransistor

    NASA Astrophysics Data System (ADS)

    Song, Xiaoxian; Zhang, Yating; Zhang, Haiting; Yu, Yu; Cao, Mingxuan; Che, Yongli; Dai, Haitao; Yang, Junbo; Ding, Xin; Yao, Jianquan

    2017-04-01

    A field-effect phototransistor based on a graphene and lead sulfide quantum dot (PbS QD) hybrid in which PbS QDs are embedded in a graphene matrix has been fabricated with a vertical architecture through a solution process. The n-type Si/SiO2 substrate (gate), Au/Ag nanowire transparent source electrode, active layer and Au drain electrode are vertically stacked in the device, which has a downscaled channel length of 250 nm. Photoinduced electrons in the PbS QDs leap into the conduction band and fill in the trap states, while the photoinduced holes left in the valence band transfer to the graphene and form the photocurrent under biases from which the photoconductive gain is evaluated. The graphene/QD-based vertical phototransistor shows a photoresponsivity of 2 × 103 A W-1, and specific detectivity up to 7 × 1012 Jones under 808 nm laser illumination with a light irradiance of 12 mW cm-2. The solution-processed vertical phototransistor provides a new facile method for optoelectronic device applications.

  20. All-optical switch based on doped graphene quantum dots in a defect layer of a one-dimensional photonic crystal.

    PubMed

    Sahrai, Mostafa; Abbasabadi, Majid

    2018-01-20

    We discuss the light pulse propagation in a one-dimensional photonic crystal doped by graphene quantum dots in a defect layer. The graphene quantum dots behave as a three-level quantum system and are driven by three coherent laser fields. It is shown that the group velocity of the transmitted and reflected pulses can be switched from subluminal to superluminal light propagation by adjusting the relative phase of the applied fields. Furthermore, it is found that by proper choice of the phase difference between applied fields, the weak probe field amplification is achieved through a one-dimensional photonic crystal. In this way, the result is simultaneous subluminal transmission and reflection.

  1. Lifetime and linewidth of individual quantum dots interfaced with graphene.

    PubMed

    Miao, Xin; Gosztola, David J; Sumant, Anirudha V; Grebel, Haim

    2018-04-19

    We report on luminescence lifetimes and linewidths from an array of individual quantum dots (QDs) that were either interfaced with graphene surface guides or dispersed on aluminum electrodes. The observed fluorescence quenching is consistent with screening by charge carriers. Fluorescence quenching is typically mentioned as a sign that chromophores are interfacing with a conductive surface (metal or graphene); we find that the QDs interfaced with the metal film exhibit shortened lifetime and line-broadening but not necessarily fluorescence quenching as the latter may be impacted by molecular concentration, reflectivity and conductor imperfections. We also comment on angle-dependent lifetime measurements, which we postulate depend on the specifics of the local density-of-states involved.

  2. Suspending Effect on Low-Frequency Charge Noise in Graphene Quantum Dot

    PubMed Central

    Song, Xiang-Xiang; Li, Hai-Ou; You, Jie; Han, Tian-Yi; Cao, Gang; Tu, Tao; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping

    2015-01-01

    Charge noise is critical in the performance of gate-controlled quantum dots (QDs). Such information is not yet available for QDs made out of the new material graphene, where both substrate and edge states are known to have important effects. Here we show the 1/f noise for a microscopic graphene QD is substantially larger than that for a macroscopic graphene field-effect transistor (FET), increasing linearly with temperature. To understand its origin, we suspended the graphene QD above the substrate. In contrast to large area graphene FETs, we find that a suspended graphene QD has an almost-identical noise level as an unsuspended one. Tracking noise levels around the Coulomb blockade peak as a function of gate voltage yields potential fluctuations of order 1 μeV, almost one order larger than in GaAs/GaAlAs QDs. Edge states and surface impurities rather than substrate-induced disorders, appear to dominate the 1/f noise, thus affecting the coherency of graphene nano-devices. PMID:25634250

  3. Multiphoton luminescent graphene quantum dots for in vivo tracking of human adipose-derived stem cells

    NASA Astrophysics Data System (ADS)

    Kim, Jin; Song, Sung Ho; Jin, Yoonhee; Park, Hyun-Ji; Yoon, Hyewon; Jeon, Seokwoo; Cho, Seung-Woo

    2016-04-01

    The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy.The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy. Electronic supplementary information (ESI) available: Additional results. See DOI: 10.1039/c6nr02143c

  4. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes.

    PubMed

    Lin, Liangxu; Zhang, Shaowei

    2012-10-21

    We have developed an effective method to exfoliate and disintegrate multi-walled carbon nanotubes and graphite flakes. With this technique, high yield production of luminescent graphene quantum dots with high quantum yield and low oxidization can be achieved.

  5. Supramolecular recognition control of polyethylene glycol modified N-doped graphene quantum dots: tunable selectivity for alkali and alkaline-earth metal ions.

    PubMed

    Yang, Siwei; Sun, Jing; Zhu, Chong; He, Peng; Peng, Zheng; Ding, Guqiao

    2016-02-07

    The graphene quantum dot based fluorescent probe community needs unambiguous evidence about the control on the ion selectivity. In this paper, polyethylene glycol modified N-doped graphene quantum dots (PN-GQDs) were synthesized by alkylation reaction between graphene quantum dots and organic halides. We demonstrate the tunable selectivity and sensitivity by controlling the supramolecular recognition through the length and the end group size of the polyether chain on PN-GQDs. The relationship formulae between the selectivity/detection limit and polyether chains are experimentally deduced. The polyether chain length determines the interaction between the PN-GQDs and ions with different ratios of charge to radius, which in turn leads to a good selectivity control. Meanwhile the detection limit shows an exponential growth with the size of end groups of the polyether chain. The PN-GQDs can be used as ultrasensitive and selective fluorescent probes for Li(+), Na(+), K(+), Mg(2+), Ca(2+) and Sr(2+), respectively.

  6. Origin of White Electroluminescence in Graphene Quantum Dots Embedded Host/Guest Polymer Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Kyu Kim, Jung; Bae, Sukang; Yi, Yeonjin; Jin Park, Myung; Jin Kim, Sang; Myoung, Nosoung; Lee, Chang-Lyoul; Hee Hong, Byung; Hyeok Park, Jong

    2015-06-01

    Polymer light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nano-material without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions.

  7. Origin of White Electroluminescence in Graphene Quantum Dots Embedded Host/Guest Polymer Light Emitting Diodes.

    PubMed

    Kyu Kim, Jung; Bae, Sukang; Yi, Yeonjin; Jin Park, Myung; Jin Kim, Sang; Myoung, NoSoung; Lee, Chang-Lyoul; Hee Hong, Byung; Hyeok Park, Jong

    2015-06-11

    Polymer light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nano-material without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions.

  8. Colossal magnetoresistance in amino-functionalized graphene quantum dots at room temperature: manifestation of weak anti-localization and doorway to spintronics

    NASA Astrophysics Data System (ADS)

    Roy, Rajarshi; Thapa, Ranjit; Kumar, Gundam Sandeep; Mazumder, Nilesh; Sen, Dipayan; Sinthika, S.; Das, Nirmalya S.; Chattopadhyay, Kalyan K.

    2016-04-01

    In this work, we have demonstrated the signatures of localized surface distortions and disorders in functionalized graphene quantum dots (fGQD) and consequences in magneto-transport under weak field regime (~1 Tesla) at room temperature. Observed positive colossal magnetoresistance (MR) and its suppression is primarily explained by weak anti-localization phenomenon where competitive valley (inter and intra) dependent scattering takes place at room temperature under low magnetic field; analogous to low mobility disordered graphene samples. Furthermore, using ab-initio analysis we show that sub-lattice sensitive spin-polarized ground state exists in the GQD as a result of pz orbital asymmetry in GQD carbon atoms with amino functional groups. This spin polarized ground state is believed to help the weak anti-localization dependent magneto transport by generating more disorder and strain in a GQD lattice under applied magnetic field and lays the premise for future graphene quantum dot based spintronic applications.In this work, we have demonstrated the signatures of localized surface distortions and disorders in functionalized graphene quantum dots (fGQD) and consequences in magneto-transport under weak field regime (~1 Tesla) at room temperature. Observed positive colossal magnetoresistance (MR) and its suppression is primarily explained by weak anti-localization phenomenon where competitive valley (inter and intra) dependent scattering takes place at room temperature under low magnetic field; analogous to low mobility disordered graphene samples. Furthermore, using ab-initio analysis we show that sub-lattice sensitive spin-polarized ground state exists in the GQD as a result of pz orbital asymmetry in GQD carbon atoms with amino functional groups. This spin polarized ground state is believed to help the weak anti-localization dependent magneto transport by generating more disorder and strain in a GQD lattice under applied magnetic field and lays the premise for

  9. Femtosecond laser ablation of highly oriented pyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Russo, Paola; Hu, Anming; Compagnini, Giuseppe; Duley, Walter W.; Zhou, Norman Y.

    2014-01-01

    Porous graphene (PG) and graphene quantum dots (GQDs) are attracting attention due to their potential applications in photovoltaics, catalysis, and bio-related fields. We present a novel way for mass production of these promising materials. The femtosecond laser ablation of highly oriented pyrolytic graphite (HOPG) is employed for their synthesis. Porous graphene (PG) layers were found to float at the water-air interface, while graphene quantum dots (GQDs) were dispersed in the solution. The sheets consist of one to six stacked layers of spongy graphene, which form an irregular 3D porous structure that displays pores with an average size of 15-20 nm. Several characterization techniques have confirmed the porous nature of the collected layers. The analyses of the aqueous solution confirmed the presence of GQDs with dimensions of about 2-5 nm. It is found that the formation of both PG and GQDs depends on the fs-laser ablation energy. At laser fluences less than 12 J cm-2, no evidence of either PG or GQDs is detected. However, polyynes with six and eight carbon atoms per chain are found in the solution. For laser energies in the 20-30 J cm-2 range, these polyynes disappeared, while PG and GQDs were found at the water-air interface and in the solution, respectively. The origin of these materials can be explained based on the mechanisms for water breakdown and coal gasification. The absence of PG and GQDs, after the laser ablation of HOPG in liquid nitrogen, confirms the proposed mechanisms.Porous graphene (PG) and graphene quantum dots (GQDs) are attracting attention due to their potential applications in photovoltaics, catalysis, and bio-related fields. We present a novel way for mass production of these promising materials. The femtosecond laser ablation of highly oriented pyrolytic graphite (HOPG) is employed for their synthesis. Porous graphene (PG) layers were found to float at the water-air interface, while graphene quantum dots (GQDs) were dispersed in the

  10. Ultrafast adsorption and selective desorption of aqueous aromatic dyes by graphene sheets modified by graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Ying, Yulong; He, Peng; Ding, Guqiao; Peng, Xinsheng

    2016-06-01

    Graphene modified by graphene quantum dots (GQDs) has been employed to remove toxic organic dyes. An excellent removal capacity (497 mg g-1) and record-breaking adsorption rate (475 mg g-1 min-1 at 20 °C) were demonstrated for Rhodamine B. The enhancement in performance by nearly a factor of three compared to that of graphene was ascribed to the greatly increased accessible surface area of graphene in aqueous solution as well as the increase in surface charges with the modification with GQDs. Besides, this unique adsorption behavior of the modified graphene was expanded to other typical toxic aqueous aromatic dyes such as Evans Blue, Methyl Orange, Malachite Green and Rose Bengal. What is more, a unique desorption behavior of dyes was first observed when employing different solvents, which enabled the GQD-modified graphene to be exploited for selective extraction of dyes and recycling of the adsorbent. The adsorption and desorption mechanism were further investigated. Combining high removal capacity, rapid adsorption kinetics, good recyclability and unique selective desorption, GQD-modified graphene has potential applications in both water purification and separation of aromatic dyes.

  11. Graphene quantum dots for the inhibition of β amyloid aggregation

    NASA Astrophysics Data System (ADS)

    Liu, Yibiao; Xu, Li-Ping; Dai, Wenhao; Dong, Haifeng; Wen, Yongqiang; Zhang, Xueji

    2015-11-01

    The aggregation of Aβ peptides is a crucial factor leading to Alzheimer's disease (AD). Inhibiting the Aβ peptide aggregation has become one of the most essential strategies to treat AD. In this work, efficient and low-cytotoxicity inhibitors, graphene quantum dots (GQDs) are reported for their application in inhibiting the aggregation of Aβ peptides. Compared to other carbon materials, the low cytotoxicity and great biocompatibility of GQDs give an advantage to the clinical research for AD. In addition, the GQDs may cross the blood-brain barrier (BBB) because of the small size. It is believed that GQDs may be therapeutic agents against AD. This work provides a novel insight into the development of Alzheimer's drugs.The aggregation of Aβ peptides is a crucial factor leading to Alzheimer's disease (AD). Inhibiting the Aβ peptide aggregation has become one of the most essential strategies to treat AD. In this work, efficient and low-cytotoxicity inhibitors, graphene quantum dots (GQDs) are reported for their application in inhibiting the aggregation of Aβ peptides. Compared to other carbon materials, the low cytotoxicity and great biocompatibility of GQDs give an advantage to the clinical research for AD. In addition, the GQDs may cross the blood-brain barrier (BBB) because of the small size. It is believed that GQDs may be therapeutic agents against AD. This work provides a novel insight into the development of Alzheimer's drugs. Electronic supplementary information (ESI) available: Dose-dependent inhibition of Aβ1-42 fibrillization by GQDs; the photoluminescence spectra of all five GQDs with different charges in water/ethanol; TEM images of other four GQDs with different charges. See DOI: 10.1039/c5nr06282a

  12. Antibacterial Activity of Silver-Graphene Quantum Dots Nanocomposites Against Gram-Positive and Gram-Negative Bacteria

    NASA Technical Reports Server (NTRS)

    Makarov, Vladimir (Inventor); Habiba, Khaled (Inventor); Weiner, Brad R (Inventor); Morell, Gerardo (Inventor)

    2018-01-01

    The invention provides a composite of silver nanoparticles decorated with graphene quantum dots (Ag-GQDs) using pulsed laser synthesis. The nanocomposites were functionalized with polyethylene glycol (PEG). A concentration of 150 .mu.g/mL of Ag-GQDs, a non-toxic level for human cells, exhibits strong antibacterial activity against both Gram-Positive and Gram-Negative Bacteria.

  13. Graphene quantum dots as the electrolyte for solid state supercapacitors

    PubMed Central

    Zhang, Su; Li, Yutong; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng; Hong, Song; Huang, Minglu

    2016-01-01

    We propose that graphene quantum dots (GQDs) with a sufficient number of acidic oxygen-bearing functional groups such as -COOH and -OH can serve as solution- and solid- type electrolytes for supercapacitors. Moreover, we found that the ionic conductivity and ion-donating ability of the GQDs could be markedly improved by simply neutralizing their acidic functional groups by using KOH. These neutralized GQDs as the solution- or solid-type electrolytes greatly enhanced the capacitive performance and rate capability of the supercapacitors. The reason for the enhancement can be ascribed to the fully ionization of the weak acidic oxygen-bearing functional groups after neutralization. PMID:26763275

  14. One-pot hydrothermal synthesis of ZnS quantum dots/graphene hybrids as a dual anode for sodium ion and lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Rupeng; Wang, Yu; Jia, Mengqiu; Xu, Junjie; Pan, Erzhuang

    2018-04-01

    Committed to research high-performance sodium-ion batteries(SIBs) and lithium-ion batteries(LIBs) anode materials is attractive but challenging. Among the many promising anode materials, sulfides are considered as promising available anode material. In this paper, we successfully synthesized uniformly dispersed ZnS quantum dots (QDs) with sub-10-nm-scale on graphene nanosheets via a facile hydrothermal method. The prepared ZnS/graphene composites was studied as a dual anode for sodium-ion and lithium-ion batteries. Tested against SIBs, the nanocomposites exhibits an impressive specific capacity of 491 mAh/g at 100 mA/g after 100 cycles. Tested against LIBs, the nanocomposites delivers a superior specific capacity of 759 mAh/g at 100 mA/g after 100 cycles. This excellent performance is mainly due to the fact that graphene can improve the conductivity of the composites and effectively prevent the agglomeration and pulverization of ZnS quantum dots during cycling. Meanwhile, ZnS quantum dots with sub-10-nm-scale may also shorten diffuse path and reduce migration barrier, which is in favor of the full utilization of the active material and the improvement of the stability of the structure

  15. Electrically-induced polarization selection rules of a graphene quantum dot

    NASA Astrophysics Data System (ADS)

    Dong, Qing-Rui; Li, Yan; Jia, Chen; Wang, Fu-Li; Zhang, Ya-Ting; Liu, Chun-Xiang

    2018-05-01

    We study theoretically the single-electron triangular zigzag graphene quantum dot in uniform in-plane electric fields. The absorption spectra of the dot are calculated by the tight-binding method. The energy spectra and the distribution of wave functions are also presented to analyse the absorption spectra. The orthogonal zero-energy eigenstates are arranged along to the direction of the external field. The remarkable result is that all intraband transitions and some interband transitions are forbidden when the absorbed light is polarized along the direction of the electric field. With x-direction electric field, all intraband absorption is y polarized due to the electric-field-direction-polarization selection rule. Moreover, with y-direction electric field, all absorption is either x or y polarized due to the parity selection rule as well as to the electric-field-direction-polarization selection rule. Our calculation shows that the formation of the absorption spectra is co-decided by the polarization selection rules and the overlap between the eigenstates of the transition.

  16. Large Scale Synthesis and Light Emitting Fibers of Tailor-Made Graphene Quantum Dots

    PubMed Central

    Park, Hun; Hyun Noh, Sung; Hye Lee, Ji; Jun Lee, Won; Yun Jaung, Jae; Geol Lee, Seung; Hee Han, Tae

    2015-01-01

    Graphene oxide (GO), which is an oxidized form of graphene, has a mixed structure consisting of graphitic crystallites of sp2 hybridized carbon and amorphous regions. In this work, we present a straightforward route for preparing graphene-based quantum dots (GQDs) by extraction of the crystallites from the amorphous matrix of the GO sheets. GQDs with controlled functionality are readily prepared by varying the reaction temperature, which results in precise tunability of their optical properties. Here, it was concluded that the tunable optical properties of GQDs are a result of the different fraction of chemical functionalities present. The synthesis approach presented in this paper provides an efficient strategy for achieving large-scale production and long-time optical stability of the GQDs, and the hybrid assembly of GQD and polymer has potential applications as photoluminescent fibers or films. PMID:26383257

  17. Synthesis of Nitrogen- and Chlorine-Doped Graphene Quantum Dots for Cancer Cell Imaging.

    PubMed

    Nafiujjaman, Md; Joon, Hwang; Kwak, Kwang Soo; Lee, Yong-Kyu

    2018-06-01

    In this study, we synthesized high quantum yield nitrogen and chlorine-doped graphene quantum dots (Cl-GQDs-N) for cancer cell imaging using simple and high production yield hydrothermal method from low-cost fructose. Prepared Cl-GQDs-N are about 30 nm in diameter and these Cl-GQDs-N display powerful blue color photoluminescence under the 365 nm UV lamp. We have further investigated their optical performances under various conditions. In vitro study shows no toxicity effect in normal and cancer cells treated with Cl-GQDs-N. Finally, we believe that our synthesized Cl-GQDs-N will bring more application opportunities in the field of bioimaging, optoelectronics and beyond.

  18. A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots.

    PubMed

    Wu, Zhu Lian; Gao, Ming Xuan; Wang, Ting Ting; Wan, Xiao Yan; Zheng, Lin Ling; Huang, Cheng Zhi

    2014-04-07

    A general quantitative pH sensor for environmental and intracellular applications was developed by the facile hydrothermal preparation of dicyandiamide (DCD) N-doped high quantum yield (QY) graphene quantum dots (GQDs) using citric acid (CA) as the carbon source. The obtained N-doped GQDs have excellent photoluminesence (PL) properties with a relatively high QY of 36.5%, suggesting that N-doped chemistry could promote the QY of carbon nanomaterials. The possible mechanism for the formation of the GQDs involves the CA self-assembling into a nanosheet structure through intermolecular H-bonding at the initial stage of the reaction, and then the pure graphene core with many function groups formed through the dehydration between the carboxyl and hydroxyl of the intermolecules under hydrothermal conditions. These N-doped GQDs have low toxicity, and are photostable and pH-sensitive between 1.81 to 8.96, giving a general pH sensor with a wide range of applications from real water to intracellular contents.

  19. Highly Efficient Moisture-Triggered Nanogenerator Based on Graphene Quantum Dots.

    PubMed

    Huang, Yaxin; Cheng, Huhu; Shi, Gaoquan; Qu, Liangti

    2017-11-08

    A high-performance moisture triggered nanogenerator is fabricated by using graphene quantum dots (GQDs) as the active material. GQDs are prepared by direct oxidation and etching of natural graphite powder, which have small sizes of 2-5 nm and abundant oxygen-containing functional groups. After the treatment by electrochemical polarization, the GQDs-based moisture triggered nanogenerator can deliver a high voltage up to 0.27 V under 70% relative humidity variation, and a power density of 1.86 mW cm -2 with an optimized load resistor. The latter value is much higher than the moisture-electric power generators reported previously. The GQD moisture triggered nanogenerator is promising for self-power electronics and miniature sensors.

  20. Femtosecond laser ablation of highly oriented pyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots.

    PubMed

    Russo, Paola; Hu, Anming; Compagnini, Giuseppe; Duley, Walter W; Zhou, Norman Y

    2014-02-21

    Porous graphene (PG) and graphene quantum dots (GQDs) are attracting attention due to their potential applications in photovoltaics, catalysis, and bio-related fields. We present a novel way for mass production of these promising materials. The femtosecond laser ablation of highly oriented pyrolytic graphite (HOPG) is employed for their synthesis. Porous graphene (PG) layers were found to float at the water-air interface, while graphene quantum dots (GQDs) were dispersed in the solution. The sheets consist of one to six stacked layers of spongy graphene, which form an irregular 3D porous structure that displays pores with an average size of 15-20 nm. Several characterization techniques have confirmed the porous nature of the collected layers. The analyses of the aqueous solution confirmed the presence of GQDs with dimensions of about 2-5 nm. It is found that the formation of both PG and GQDs depends on the fs-laser ablation energy. At laser fluences less than 12 J cm(-2), no evidence of either PG or GQDs is detected. However, polyynes with six and eight carbon atoms per chain are found in the solution. For laser energies in the 20-30 J cm(-2) range, these polyynes disappeared, while PG and GQDs were found at the water-air interface and in the solution, respectively. The origin of these materials can be explained based on the mechanisms for water breakdown and coal gasification. The absence of PG and GQDs, after the laser ablation of HOPG in liquid nitrogen, confirms the proposed mechanisms.

  1. Sandwiched confinement of quantum dots in graphene matrix for efficient electron transfer and photocurrent production

    PubMed Central

    Zhu, Nan; Zheng, Kaibo; Karki, Khadga J.; Abdellah, Mohamed; Zhu, Qiushi; Carlson, Stefan; Haase, Dörthe; Žídek, Karel; Ulstrup, Jens; Canton, Sophie E.; Pullerits, Tõnu; Chi, Qijin

    2015-01-01

    Quantum dots (QDs) and graphene are both promising materials for the development of new-generation optoelectronic devices. Towards this end, synergic assembly of these two building blocks is a key step but remains a challenge. Here, we show a one-step strategy for organizing QDs in a graphene matrix via interfacial self-assembly, leading to the formation of sandwiched hybrid QD-graphene nanofilms. We have explored structural features, electron transfer kinetics and photocurrent generation capacity of such hybrid nanofilms using a wide variety of advanced techniques. Graphene nanosheets interlink QDs and significantly improve electronic coupling, resulting in fast electron transfer from photoexcited QDs to graphene with a rate constant of 1.3 × 109 s−1. Efficient electron transfer dramatically enhances photocurrent generation in a liquid-junction QD-sensitized solar cell where the hybrid nanofilm acts as a photoanode. We thereby demonstrate a cost-effective method to construct large-area QD-graphene hybrid nanofilms with straightforward scale-up potential for optoelectronic applications. PMID:25996307

  2. Sandwiched confinement of quantum dots in graphene matrix for efficient electron transfer and photocurrent production

    NASA Astrophysics Data System (ADS)

    Zhu, Nan; Zheng, Kaibo; Karki, Khadga J.; Abdellah, Mohamed; Zhu, Qiushi; Carlson, Stefan; Haase, Dörthe; Žídek, Karel; Ulstrup, Jens; Canton, Sophie E.; Pullerits, Tõnu; Chi, Qijin

    2015-05-01

    Quantum dots (QDs) and graphene are both promising materials for the development of new-generation optoelectronic devices. Towards this end, synergic assembly of these two building blocks is a key step but remains a challenge. Here, we show a one-step strategy for organizing QDs in a graphene matrix via interfacial self-assembly, leading to the formation of sandwiched hybrid QD-graphene nanofilms. We have explored structural features, electron transfer kinetics and photocurrent generation capacity of such hybrid nanofilms using a wide variety of advanced techniques. Graphene nanosheets interlink QDs and significantly improve electronic coupling, resulting in fast electron transfer from photoexcited QDs to graphene with a rate constant of 1.3 × 109 s-1. Efficient electron transfer dramatically enhances photocurrent generation in a liquid-junction QD-sensitized solar cell where the hybrid nanofilm acts as a photoanode. We thereby demonstrate a cost-effective method to construct large-area QD-graphene hybrid nanofilms with straightforward scale-up potential for optoelectronic applications.

  3. Simultaneous detection of multiple DNA targets by integrating dual-color graphene quantum dot nanoprobes and carbon nanotubes.

    PubMed

    Qian, Zhaosheng; Shan, Xiaoyue; Chai, Lujing; Chen, Jianrong; Feng, Hui

    2014-12-01

    Simultaneous detection of multiple DNA targets was achieved based on a biocompatible graphene quantum dots (GQDs) and carbon nanotubes (CNTs) platform through spontaneous assembly between dual-color GQD-based probes and CNTs and subsequently self-recognition between DNA probes and targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electrochemical quantification of some water soluble vitamins in commercial multi-vitamin using poly-amino acid caped by graphene quantum dots nanocomposite as dual signal amplification elements.

    PubMed

    Shadjou, Nasrin; Hasanzadeh, Mohammad; Omari, Ali

    2017-12-15

    Rapid analyses of some water soluble vitamins (Vitamin B2, B9, and C) in commercial multi vitamins could be routinely performed in analytical laboratories. This study reports on the electropolymerization of a low toxic and biocompatible polymer "poly aspartic acid-graphene quantum dots" as a novel strategy for surface modification of glassy carbon electrode and preparation a new interface for measurement of selected vitamins in commercial multi vitamins. Electrochemical deposition, as a well-controlled synthesis procedure, has been used for subsequently layer-by-layer preparation of graphene quantum dots nanostructures on a poly aspartic acid using cyclic voltammetry techniques in the regime of -1.5 to 2 V. The field emission scanning electron microscopy indicated immobilization of graphene quantum dots onto poly aspartic acid film. The modified electrode possessed as an effective electroactivity for detection of water soluble vitamins by using cyclic voltammetry, chronoamperometry and differential pulse voltammetry. Enhancement of peak currents is ascribed to the fast heterogeneous electron transfer kinetics that arise from the synergistic coupling between the excellent properties of poly aspartic acid as semiconducting polymer, graphene quantum dots as high density of edge plane sites and chemical modification. Under the optimized analysis conditions, the prepared sensor for detection of VB2, VB9, and VC showed a low limit of quantification 0.22, 0.1, 0.1 μM, respectively. Copyright © 2017. Published by Elsevier Inc.

  5. Electron injection from graphene quantum dots to poly(amido amine) dendrimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, T. N.; Inciong, M. R.; Santiago, S. R.

    2016-04-18

    The steady-state and time-resolved photoluminescence (PL) are used to study the electron injection from graphene quantum dots (GQDs) to poly(amido amine) (PAMAM) dendrimers. The PL is enhanced by depositing GQDs on the surfaces of the PAMAM dendrimers. The maximum enhancement of PL with a factor of 10.9 is achieved at a GQD concentration of 0.9 mg/ml. The dynamics of PL in the GQD/PAMAM composite are analyzed, evidencing the existence of electron injection. On the basis of Kelvin probe measurements, the electron injection from the GQDs to the PAMAM dendrimers is accounted for by the work function difference between them.

  6. Direct growth of Ge quantum dots on a graphene/SiO2/Si structure using ion beam sputtering deposition.

    PubMed

    Zhang, Z; Wang, R F; Zhang, J; Li, H S; Zhang, J; Qiu, F; Yang, J; Wang, C; Yang, Y

    2016-07-29

    The growth of Ge quantum dots (QDs) using the ion beam sputtering deposition technique has been successfully conducted directly on single-layer graphene supported by SiO2/Si substrate. The results show that the morphology and size of Ge QDs on graphene can be modulated by tuning the Ge coverage. Charge transfer behavior, i.e. doping effect in graphene has been demonstrated at the interface of Ge/graphene. Compared with that of traditional Ge dots grown on Si substrate, the positions of both corresponding photoluminescence (PL) peaks of Ge QDs/graphene hybrid structure undergo a large red-shift, which can probably be attributed to the lack of atomic intermixing and the existence of surface states in this hybrid material. According to first-principles calculations, the Ge growth on the graphene should follow the so-called Volmer-Weber mode instead of the Stranski-Krastanow one which is observed generally in the traditional Ge QDs/Si system. The calculations also suggest that the interaction between Ge and graphene layer can be enhanced with the decrease of the Ge coverage. Our results may supply a prototype for fabricating novel optoelectronic devices based on a QDs/graphene hybrid nanostructure.

  7. Light-induced negative differential resistance in graphene/Si-quantum-dot tunneling diodes.

    PubMed

    Lee, Kyeong Won; Jang, Chan Wook; Shin, Dong Hee; Kim, Jong Min; Kang, Soo Seok; Lee, Dae Hun; Kim, Sung; Choi, Suk-Ho; Hwang, Euyheon

    2016-07-28

    One of the interesing tunneling phenomena is negative differential resistance (NDR), the basic principle of resonant-tunneling diodes. NDR has been utilized in various semiconductor devices such as frequency multipliers, oscillators, relfection amplifiers, logic switches, and memories. The NDR in graphene has been also reported theoretically as well as experimentally, but should be further studied to fully understand its mechanism, useful for practical device applications. Especially, there has been no observation about light-induced NDR (LNDR) in graphene-related structures despite very few reports on the LNDR in GaAs-based heterostructures. Here, we report first observation of LNDR in graphene/Si quantum dots-embedded SiO2 (SQDs:SiO2) multilayers (MLs) tunneling diodes. The LNDR strongly depends on temperature (T) as well as on SQD size, and the T dependence is consistent with photocurrent (PC)-decay behaviors. With increasing light power, the PC-voltage curves are more structured with peak-to-valley ratios over 2 at room temperature. The physical mechanism of the LNDR, governed by resonant tunneling of charge carriers through the minibands formed across the graphene/SQDs:SiO2 MLs and by their nonresonant phonon-assisted tunneling, is discussed based on theoretical considerations.

  8. Optical graphene quantum dots gas sensors: Theoretical study

    NASA Astrophysics Data System (ADS)

    Raeyani, D.; Shojaei, S.; Ahmadi-Kandjani, S.

    2018-02-01

    In this work, we theoretically studied the changes of graphene quantum dots (GQD) absorption spectra under the influence of different gases to indicate optical gas sensing features of GQDs. The adsorption of gas molecules such as CO2, N2 and Ar on GQDs have been theoretically investigated through time-dependent density functional theory (TDDFT) calculations. Our study revealed that UV-Vis absorption spectrum of GQDs in the presence of CO2 undergoes considerable changes than that of N2 and Ar. The shift of maximum absorption wavelength for adsorption of CO2, N2 and Ar in same distance from GQD in addition to density of state (DOS) and orbital analyses have been obtained. To verify our theoretical results, comparison with experimental study has been done and good agreement has been observed. Comparing with electrical property of GQD, optical properties showed an efficient tool to be implemented in gas adsorption and paves the way towards GQD optical gas sensors.

  9. Enhanced Conversion Efficiency of III–V Triple-junction Solar Cells with Graphene Quantum Dots

    PubMed Central

    Lin, Tzu-Neng; Santiago, Svette Reina Merden S.; Zheng, Jie-An; Chao, Yu-Chiang; Yuan, Chi-Tsu; Shen, Ji-Lin; Wu, Chih-Hung; Lin, Cheng- An J.; Liu, Wei-Ren; Cheng, Ming-Chiang; Chou, Wu-Ching

    2016-01-01

    Graphene has been used to synthesize graphene quantum dots (GQDs) via pulsed laser ablation. By depositing the synthesized GQDs on the surface of InGaP/InGaAs/Ge triple-junction solar cells, the short-circuit current, fill factor, and conversion efficiency were enhanced remarkably. As the GQD concentration is increased, the conversion efficiency in the solar cell increases accordingly. A conversion efficiency of 33.2% for InGaP/InGaAs/Ge triple-junction solar cells has been achieved at the GQD concentration of 1.2 mg/ml, corresponding to a 35% enhancement compared to the cell without GQDs. On the basis of time-resolved photoluminescence, external quantum efficiency, and work-function measurements, we suggest that the efficiency enhancement in the InGaP/InGaAs/Ge triple-junction solar cells is primarily caused by the carrier injection from GQDs to the InGaP top subcell. PMID:27982073

  10. Aryl-modified graphene quantum dots with enhanced photoluminescence and improved pH tolerance

    NASA Astrophysics Data System (ADS)

    Luo, Peihui; Ji, Zhe; Li, Chun; Shi, Gaoquan

    2013-07-01

    Chemical modification is an important technique to modulate the chemical and optical properties of graphene quantum dots (GQDs). In this paper, we report a versatile diazonium chemistry method to graft aryl groups including phenyl, 4-carboxyphenyl, 4-sulfophenyl and 5-sulfonaphthyl to GQDs via Gomberg-Bachmann reaction. The aryl-modified GQDs are nanocrystals with lateral dimensions in the range of 2-4 nm and an average thickness lower than 1 nm. Upon chemical modification with aryl groups, the photoluminescence (PL) bands of GQDs were tuned in the range of 418 and 447 nm, and their fluorescence quantum yields (QYs) were increased for up to about 6 times. Furthermore, the aryl-modified GQDs exhibited stable PL (both intensity and peak position) in a wide pH window of 1-11. The mechanism of improving the PL properties of GQDs by aryl-modification was also discussed.Chemical modification is an important technique to modulate the chemical and optical properties of graphene quantum dots (GQDs). In this paper, we report a versatile diazonium chemistry method to graft aryl groups including phenyl, 4-carboxyphenyl, 4-sulfophenyl and 5-sulfonaphthyl to GQDs via Gomberg-Bachmann reaction. The aryl-modified GQDs are nanocrystals with lateral dimensions in the range of 2-4 nm and an average thickness lower than 1 nm. Upon chemical modification with aryl groups, the photoluminescence (PL) bands of GQDs were tuned in the range of 418 and 447 nm, and their fluorescence quantum yields (QYs) were increased for up to about 6 times. Furthermore, the aryl-modified GQDs exhibited stable PL (both intensity and peak position) in a wide pH window of 1-11. The mechanism of improving the PL properties of GQDs by aryl-modification was also discussed. Electronic supplementary information (ESI) available: Fluorescence quantum yield measurements, estimation of grafting ratio, TEM images, FTIR spectra, PL spectra and zeta potentials. See DOI: 10.1039/c3nr02156d

  11. Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties

    NASA Astrophysics Data System (ADS)

    Jiang, Feng; Chen, Daiqin; Li, Ruimin; Wang, Yucheng; Zhang, Guoqiang; Li, Shumu; Zheng, Junpeng; Huang, Naiyan; Gu, Ying; Wang, Chunru; Shu, Chunying

    2013-01-01

    Size-controllable amine-functionalized graphene quantum dots (GQDs) are prepared by an eco-friendly method with graphene oxide sheets, ammonia and hydrogen peroxide as starting materials. Using a Sephadex G-25 gel column for fine separation, for the first time we obtain GQDs with either single or double layers. By atomic force microscopy characterization, we confirm that hydrogen peroxide and ammonia play a synergistic role on graphene oxide (GO), in which the former cuts the GO into small pieces and the latter passivates the active surface to give amine-modified GQDs. Due to the low cytotoxicity and excellent biocompatibility of the obtained amine-functionalized GQDs, besides the multiwavelength imaging properties of GQDs, for the first time we find that this kind of GQD exhibits good antimycoplasma properties. Given the superior antimycoplasma effect of the GQDs and their eco-friendly mass production with low cost, these new GQDs may offer opportunities for the development of new antimycoplasma agents, thus extending their widespread application in biomedicine.Size-controllable amine-functionalized graphene quantum dots (GQDs) are prepared by an eco-friendly method with graphene oxide sheets, ammonia and hydrogen peroxide as starting materials. Using a Sephadex G-25 gel column for fine separation, for the first time we obtain GQDs with either single or double layers. By atomic force microscopy characterization, we confirm that hydrogen peroxide and ammonia play a synergistic role on graphene oxide (GO), in which the former cuts the GO into small pieces and the latter passivates the active surface to give amine-modified GQDs. Due to the low cytotoxicity and excellent biocompatibility of the obtained amine-functionalized GQDs, besides the multiwavelength imaging properties of GQDs, for the first time we find that this kind of GQD exhibits good antimycoplasma properties. Given the superior antimycoplasma effect of the GQDs and their eco-friendly mass production with

  12. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges

    NASA Astrophysics Data System (ADS)

    Gan, Zhixing; Xu, Hao; Hao, Yanling

    2016-04-01

    Luminescent nanomaterials, with wide applications in biosensing, bioimaging, illumination and display techniques, have been consistently garnering enormous research attention. In particular, those with wavelength-controllable emissions could be highly beneficial. Carbon nanostructures, including graphene quantum dots (GQDs) and other graphene oxide derivates (GODs), with excitation-dependent photoluminescence (PL), which means their fluorescence color could be tuned simply by changing the excitation wavelength, have attracted lots of interest. However the intrinsic mechanism for the excitation-dependent PL is still obscure and fiercely debated presently. In this review, we attempt to summarize the latest efforts to explore the mechanism, including the quantum confinement effect, surface traps model, giant red-edge effect, edge states model and electronegativity of heteroatom model, as well as the newly developed synergistic model, to seek some clues to unravel the mechanism. Meanwhile the controversial difficulties for each model are further discussed. Besides this, the challenges and potential influences of the synthetic methodology and development of the materials are illustrated extensively to elicit more thought and constructive attempts toward their application.

  13. Chemical processing of three-dimensional graphene networks on transparent conducting electrodes for depleted-heterojunction quantum dot solar cells.

    PubMed

    Tavakoli, Mohammad Mahdi; Simchi, Abdolreza; Fan, Zhiyong; Aashuri, Hossein

    2016-01-07

    We present a novel chemical procedure to prepare three-dimensional graphene networks (3DGNs) as a transparent conductive film to enhance the photovoltaic performance of PbS quantum-dot (QD) solar cells. It is shown that 3DGN electrodes enhance electron extraction, yielding a 30% improvement in performance compared with the conventional device.

  14. Car-Parrinello molecular dynamics study of the melting behaviors of n-atom (n = 6, 10) graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Shekaari, Ashkan; Abolhassani, Mohammad Reza

    2017-06-01

    First-principles molecular dynamics has been applied to inquire into the melting behaviors of n-atom (n = 6, 10) graphene quantum dots (GQD6 and zigzag GQD10) within the temperature range of T = 0-500 K. The temperature dependence of the geometry of each quantum dot is thoroughly evaluated via calculating the related shape deformation parameters and the eigenvalues of the quadrupole tensors. Examining the variations of some phase-transition indicators such as root-mean-square bond length fluctuations and mean square displacements broadly proposes the value of Tm = 70 K for the melting point of GQD6 while a continuous, two-stage phase transition has been concluded for zigzag GQD10.

  15. Organosilane-functionalized graphene quantum dots and their encapsulation into bi-layer hollow silica spheres for bioimaging applications.

    PubMed

    Wen, Ting; Yang, Baocheng; Guo, Yanzhen; Sun, Jing; Zhao, Chunmei; Zhang, Shouren; Zhang, Miao; Wang, Yonggang

    2014-11-14

    Graphene quantum dots (GQDs) represent an important class of luminescent quantum dots owing to their low toxicity and superior biocompatibility. Chemical functionalization of GQDs and subsequent combination with other materials further provide attractive techniques for advanced bioapplications. Herein, we report the facile fabrication of fluorescent organosilane-functionalized graphene quantum dots (Si-GQDs) and their embedding into mesoporous hollow silica spheres as a biolabel for the first time. Well-proportioned Si-GQDs with bright and excitation dependent tunable emissions in the visible region were obtained via a simple and economical solvothermal route adopting graphite oxide as a carbon source and 3-(2-aminoethylamino)-propyltrimethoxysilane as a surface modifier. The as-synthesized Si-GQDs can be well dispersed and stored in organic solvents, easily manufactured into transparent film and bulk form, and particularly provide great potential to be combined with other materials. As a proof-of-principle experiment, we demonstrate the successful incorporation of Si-GQDs into hollow mesoporous silica spheres and conduct preliminary cellular imaging experiments. Interestingly, the Si-GQDs not only serve as fluorescent chromophores in the composite material, but also play a crucial role in the formation of mesoporous hollow silica spheres with a distinctive bi-layer architecture. The layer thickness and optical properties can be precisely controlled by simply adjusting the silane coupling agent addition procedure in the preparation process. Our demonstration of low-cost Si-GQDs and their encapsulation into multifunctional composites may expand the applications of carbon-based nanomaterials for future biomedical imaging and other optoelectronic applications.

  16. Synthesis and Characterization of Mn3O4 - Graphene Core - Shell Quantum Dots for Electrochemical Pseudocapacitor Applications

    NASA Astrophysics Data System (ADS)

    Ko, Yohan; Son, Dong Ick

    2018-05-01

    We report on the in-situ chemical growth of unique core-shell quantum dots (QDs) with single layer graphene on the surfaces of the Mn3O4 QDs and on their structural, optical and electrical properties. The Mn3O4-graphene QDs were synthesized through a simple hydrothermal technique. In order to enhance performance for electrochemical energy storage, we developed core (active material) - shell (conductive material)-type Mn3O4 - graphene QDs as electrode materials by using an aqueous electrolyte (6M KOH). As a result, the performance of electrochemical energy storage exhibit a specific capacitance of 452.72 Fg-1 at a current density of 1 Ag-1.

  17. Magnetic enhancement of photoluminescence from blue-luminescent graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Shi, Chentian; Zhang, Chunfeng; Pu, Songyang; Wang, Rui; Wu, Xuewei; Wang, Xiaoyong; Xue, Fei; Pan, Dengyu; Xiao, Min

    2016-02-01

    Graphene quantum-dots (GQDs) have been predicted and demonstrated with fascinating optical and magnetic properties. However, the magnetic effect on the optical properties remains experimentally unexplored. Here, we conduct a magneto-photoluminescence study on the blue-luminescence GQDs at cryogenic temperatures with magnetic field up to 10 T. When the magnetic field is applied, a remarkable enhancement of photoluminescence emission has been observed together with an insignificant change in circular polarization. The results have been well explained by the scenario of magnetic-field-controlled singlet-triplet mixing in GQDs owing to the Zeeman splitting of triplet states, which is further verified by temperature-dependent experiments. This work uncovers the pivotal role of intersystem crossing in GQDs, which is instrumental for their potential applications such as light-emitting diodes, photodynamic therapy, and spintronic devices.

  18. Light-induced negative differential resistance in graphene/Si-quantum-dot tunneling diodes

    PubMed Central

    Lee, Kyeong Won; Jang, Chan Wook; Shin, Dong Hee; Kim, Jong Min; Kang, Soo Seok; Lee, Dae Hun; Kim, Sung; Choi, Suk-Ho; Hwang, Euyheon

    2016-01-01

    One of the interesing tunneling phenomena is negative differential resistance (NDR), the basic principle of resonant-tunneling diodes. NDR has been utilized in various semiconductor devices such as frequency multipliers, oscillators, relfection amplifiers, logic switches, and memories. The NDR in graphene has been also reported theoretically as well as experimentally, but should be further studied to fully understand its mechanism, useful for practical device applications. Especially, there has been no observation about light-induced NDR (LNDR) in graphene-related structures despite very few reports on the LNDR in GaAs-based heterostructures. Here, we report first observation of LNDR in graphene/Si quantum dots-embedded SiO2 (SQDs:SiO2) multilayers (MLs) tunneling diodes. The LNDR strongly depends on temperature (T) as well as on SQD size, and the T dependence is consistent with photocurrent (PC)-decay behaviors. With increasing light power, the PC-voltage curves are more structured with peak-to-valley ratios over 2 at room temperature. The physical mechanism of the LNDR, governed by resonant tunneling of charge carriers through the minibands formed across the graphene/SQDs:SiO2 MLs and by their nonresonant phonon-assisted tunneling, is discussed based on theoretical considerations. PMID:27465107

  19. Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jianhong; Xiang, Jinzhong, E-mail: jzhxiang@ynu.edu.cn; Tang, Libin, E-mail: scitang@163.com

    Graphene quantum dots (GQDs) are becoming one of the hottest advanced functional materials because of the opening of the bandgap due to quantum confinement effect, which shows unique optical and electrical properties. The chlorine doped GQDs (Cl-GQDs) have been fabricated by chemical exfoliation of HCl treated carbon fibers (CFs), which were prepared from degreasing cotton through an annealing process at 1000 °C for 30 min. Raman study shows that both G and 2D peaks of GQDs may be redshifted (softened) by chlorine doping, leading to an n-type doping. The first vertical (Cl)-GQDs based photovoltaic detectors have been demonstrated, both the light absorbingmore » and electron-accepting roles for (Cl)-GQDs in photodetection have been found, resulting in an exceptionally big ratio of photocurrent to dark current as high as ∼10{sup 5} at room temperature using a 405 nm laser irradiation under the reverse bias voltage. The study expands the application of (Cl)-GQDs to the important optoelectronic detection devices.« less

  20. Solvothermal tuning of photoluminescent graphene quantum dots: from preparation to photoluminescence mechanism

    NASA Astrophysics Data System (ADS)

    Qi, Bao-Ping; Zhang, Xiaoru; Shang, Bing-Bing; Xiang, Dongshan; Zhang, Shenghui

    2018-02-01

    Solvothermal synthesis was employed to tune the surface states of graphene quantum dots (GQDs). Two series of GQDs with the particle sizes from 2.6 to 4.5 nm were prepared as follows: (I) GQDs with the same size but different oxygen degrees; (II) GQDs with different core sizes but the similar surface chemistry. Both the large sizes and the high surface oxidation degrees led to the redshift photoluminescence (PL) of GQDs. Electrochemiluminescence (ECL) spectra from two series of GQDs were all in accordance with their PL spectra, respectively, which provided good evidence for the conjugated structures in GQDs responsible for PL. [Figure not available: see fulltext.

  1. Sensitivity to Heavy-Metal Ions of Unfolded Fullerene Quantum Dots

    PubMed Central

    Ciotta, Erica; Paoloni, Stefano; Richetta, Maria; Tagliatesta, Pietro; Lorecchio, Chiara; Casciardi, Stefano

    2017-01-01

    A novel type of graphene-like quantum dots, synthesized by oxidation and cage-opening of C60 buckminsterfullerene, has been studied as a fluorescent and absorptive probe for heavy-metal ions. The lattice structure of such unfolded fullerene quantum dots (UFQDs) is distinct from that of graphene since it includes both carbon hexagons and pentagons. The basic optical properties, however, are similar to those of regular graphene oxide quantum dots. On the other hand, UFQDs behave quite differently in the presence of heavy-metal ions, in that multiple sensitivity to Cu2+, Pb2+ and As(III) was observed through comparable quenching of the fluorescent emission and different variations of the transmittance spectrum. By dynamic light scattering measurements and transmission electron microscope (TEM) images we confirmed, for the first time in metal sensing, that this response is due to multiple complexation and subsequent aggregation of UFQDs. Nonetheless, the explanation of the distinct behaviour of transmittance in the presence of As(III) and the formation of precipitate with Pb2+ require further studies. These differences, however, also make it possible to discriminate between the three metal ions in view of the implementation of a selective multiple sensor. PMID:29135946

  2. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups.

    PubMed

    Jin, Sung Hwan; Kim, Da Hye; Jun, Gwang Hoon; Hong, Soon Hyung; Jeon, Seokwoo

    2013-02-26

    The band gap properties of graphene quantum dots (GQDs) arise from quantum confinement effects and differ from those in semimetallic graphene sheets. Tailoring the size of the band gap and understanding the band gap tuning mechanism are essential for the applications of GQDs in opto-electronics. In this study, we observe that the photoluminescence (PL) of the GQDs shifts due to charge transfers between functional groups and GQDs. GQDs that are functionalized with amine groups and are 1-3 layers thick and less than 5 nm in diameter were successfully fabricated using a two-step cutting process from graphene oxides (GOs). The functionalized GQDs exhibit a redshift of PL emission (ca. 30 nm) compared to the unfunctionalized GQDs. Furthermore, the PL emissions of the GQDs and the amine-functionalized GQDs were also shifted by changes in the pH due to the protonation or deprotonation of the functional groups. The PL shifts resulted from charge transfers between the functional groups and GQDs, which can tune the band gap of the GQDs. Calculations from density functional theory (DFT) are in good agreement with our proposed mechanism for band gap tuning in the GQDs through the use of functionalization.

  3. Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties.

    PubMed

    Jiang, Feng; Chen, Daiqin; Li, Ruimin; Wang, Yucheng; Zhang, Guoqiang; Li, Shumu; Zheng, Junpeng; Huang, Naiyan; Gu, Ying; Wang, Chunru; Shu, Chunying

    2013-02-07

    Size-controllable amine-functionalized graphene quantum dots (GQDs) are prepared by an eco-friendly method with graphene oxide sheets, ammonia and hydrogen peroxide as starting materials. Using a Sephadex G-25 gel column for fine separation, for the first time we obtain GQDs with either single or double layers. By atomic force microscopy characterization, we confirm that hydrogen peroxide and ammonia play a synergistic role on graphene oxide (GO), in which the former cuts the GO into small pieces and the latter passivates the active surface to give amine-modified GQDs. Due to the low cytotoxicity and excellent biocompatibility of the obtained amine-functionalized GQDs, besides the multiwavelength imaging properties of GQDs, for the first time we find that this kind of GQD exhibits good antimycoplasma properties. Given the superior antimycoplasma effect of the GQDs and their eco-friendly mass production with low cost, these new GQDs may offer opportunities for the development of new antimycoplasma agents, thus extending their widespread application in biomedicine.

  4. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots

    PubMed Central

    Qu, Dan; Zheng, Min; Zhang, Ligong; Zhao, Haifeng; Xie, Zhigang; Jing, Xiabin; Haddad, Raid E.; Fan, Hongyou; Sun, Zaicheng

    2014-01-01

    Photoluminescent graphene quantum dots (GQDs) have received enormous attention because of their unique chemical, electronic and optical properties. Here a series of GQDs were synthesized under hydrothermal processes in order to investigate the formation process and optical properties of N-doped GQDs. Citric acid (CA) was used as a carbon precursor and self-assembled into sheet structure in a basic condition and formed N-free GQD graphite framework through intermolecular dehydrolysis reaction. N-doped GQDs were prepared using a series of N-containing bases such as urea. Detailed structural and property studies demonstrated the formation mechanism of N-doped GQDs for tunable optical emissions. Hydrothermal conditions promote formation of amide between –NH2 and –COOH with the presence of amine in the reaction. The intramoleculur dehydrolysis between neighbour amide and COOH groups led to formation of pyrrolic N in the graphene framework. Further, the pyrrolic N transformed to graphite N under hydrothermal conditions. N-doping results in a great improvement of PL quantum yield (QY) of GQDs. By optimized reaction conditions, the highest PL QY (94%) of N-doped GQDs was obtained using CA as a carbon source and ethylene diamine as a N source. The obtained N-doped GQDs exhibit an excitation-independent blue emission with single exponential lifetime decay. PMID:24938871

  5. Graphene quantum dots for cancer targeted drug delivery.

    PubMed

    Iannazzo, Daniela; Pistone, Alessandro; Salamò, Marina; Galvagno, Signorino; Romeo, Roberto; Giofré, Salvatore V; Branca, Caterina; Visalli, Giuseppa; Di Pietro, Angela

    2017-02-25

    A biocompatible and cell traceable drug delivery system Graphene Quantum Dots (GQD) based, for the targeted delivery of the DNA intercalating drug doxorubicin (DOX) to cancer cells, is here reported. Highly dispersible and water soluble GQD, synthesized by acidic oxidation and exfoliation of multi-walled carbon nanotubes (MWCNT), were covalently linked to the tumor targeting module biotin (BTN), able to efficiently recognize biotin receptors over-expressed on cancer cells and loaded with DOX. Biological test performed on A549 cells reported a very low toxicity of the synthesized carrier (GQD and GQD-BTN). In GQD-BTN-DOX treated cancer cells, the cytotoxicity was strongly dependent from cell uptake which was greater and delayed after treatment with GQD-BTN-DOX system with respect to what observed for cells treated with the same system lacking of the targeting module BTN (GQD-DOX) or with the free drug alone. A delayed nuclear internalization of the drug is reported, due to the drug detachment from the nanosystem, triggered by the acidic environment of cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. High efficiency spin-valve and spin-filter in a doped rhombic graphene quantum dot device

    NASA Astrophysics Data System (ADS)

    Silva, P. V.; Saraiva-Souza, A.; Maia, D. W.; Souza, F. M.; Filho, A. G. Souza; Meunier, V.; Girão, E. C.

    2018-04-01

    Spin-polarized transport through a rhombic graphene quantum dot (rGQD) attached to armchair graphene nanoribbon (AGNR) electrodes is investigated by means of the Green's function technique combined with single-band tight-binding (TB) approach including a Hubbard-like term. The Hubbard repulsion was included within the mean-field approximation. Compared to anti-ferromagnetic (AFM), we show that the ferromagnetic (FM) ordering of the rGQD corresponds to a smaller bandgap, thus resulting in an efficient spin injector. As a consequence, the electron transport spectrum reveals a spin valve effect, which is controlled by doping with B/N atoms creating a p-n-type junction. The calculations point out that such systems can be used as spin-filter devices with efficiency close to a 100 % .

  7. Dopamine fluorescent sensors based on polypyrrole/graphene quantum dots core/shell hybrids.

    PubMed

    Zhou, Xi; Ma, Peipei; Wang, Anqi; Yu, Chenfei; Qian, Tao; Wu, Shishan; Shen, Jian

    2015-02-15

    A facilely prepared fluorescent sensor was developed for dopamine (DA) detection with high sensitivity and selectivity based on polypyrrole/graphene quantum dots (PPy/GQDs) core/shell hybrids. The composites exhibit strong fluorescence emission, which is dramatically enhanced as high as three times than pristine GQDs. The prepared sensor allows a highly sensitive determination of DA by fluorescent intensity decreasing with the addition of DA and presents a good linearity in range of 5-8000 nM with the detection limit of 10 pM (S/N = 3). Furthermore, the application of the proposed approach have been demonstrated in real samples and showed promise in diagnostic purposes. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Quantum Dot Photonics

    NASA Astrophysics Data System (ADS)

    Kinnischtzke, Laura A.

    We report on several experiments using single excitons confined to single semiconductor quantum dots (QDs). Electric and magnetic fields have previously been used as experimental knobs to understand and control individual excitons in single quantum dots. We realize new ways of electric field control by changing materials and device geometry in the first two experiments with strain-based InAs QDs. A standard Schottky diode heterostructure is demonstrated with graphene as the Schottky gate material, and its performance is bench-marked against a diode with a standard gate material, semi-transparent nickel-chromium (NiCr). This change of materials increases the photon collection rate by eliminating absorption in the metallic NiCr layer. A second set of experiments investigates the electric field response of QDs as a possible metrology source. A linear voltage potential drop in a plane near the QDs is used to describe how the spatially varying voltage profile is also imparted on the QDs. We demonstrate a procedure to map this voltage profile as a preliminary route towards a full quantum sensor array. Lastly, InAs QDs are explored as potential spin-photon interfaces. We describe how a magnetic field is used to realize a reversible exchange of information between light and matter, including a discussion of the polarization-dependence of the photoluminesence, and how that can be linked to the spin of a resident electron or hole. We present evidence of this in two wavelength regimes for InAs quantum dots, and discuss how an external magnetic field informs the spin physics of these 2-level systems. This thesis concludes with the discovery of a new class of quantum dots. As-yet unidentified defect states in single layer tungsten diselenide (WSe 2 ) are shown to host quantum light emission. We explore the spatial extent of electron confinement and tentatively identify a radiative lifetime of 1 ns for these single photon emitters.

  9. Gate-defined quantum confinement in suspended bilayer graphene

    NASA Astrophysics Data System (ADS)

    Allen, M. T.; Martin, J.; Yacoby, A.

    2012-07-01

    Quantum-confined devices that manipulate single electrons in graphene are emerging as attractive candidates for nanoelectronics applications. Previous experiments have employed etched graphene nanostructures, but edge and substrate disorder severely limit device functionality. Here we present a technique that builds quantum-confined structures in suspended bilayer graphene with tunnel barriers defined by external electric fields that open a bandgap, thereby eliminating both edge and substrate disorder. We report clean quantum dot formation in two regimes: at zero magnetic field B using the energy gap induced by a perpendicular electric field and at B>0 using the quantum Hall ν=0 gap for confinement. Coulomb blockade oscillations exhibit periodicity consistent with electrostatic simulations based on local top-gate geometry, a direct demonstration of local control over the band structure of graphene. This technology integrates single electron transport with high device quality and access to vibrational modes, enabling broad applications from electromechanical sensors to quantum bits.

  10. Targeting N-doped graphene quantum dot with high photothermal conversion efficiency for dual-mode imaging and therapy in vitro.

    PubMed

    Xuan, Yang; Zhang, Ruo-Yun; Zhang, Xiao-Shuai; An, Jie; Cheng, Kai; Li, Cheng; Hou, Xiao-Lin; Zhao, Yuan-Di

    2018-08-31

    A graphene quantum dot (GQD) is a novel carbon nanomaterial with the advantages of low cost and no pollution. It has attracted serious attention in the biomedical fields because of its stabilities and tunable fluorescence wavelength. In this manuscript, an N-doped graphene quantum dot (N-GQD) was synthesized by a hydrothermal method using citric acid as the carbon source and urea as the nitrogen source. X-ray diffraction, Raman spectroscopy, transmission electron microscopy, UV-vis absorption spectrum, and fluorescence spectrum were used to characterize the N-GQD. The results showed that the N-GQD had a uniform size of about 5 nm. The two fluorescence emission peaks, one in the visible light region showed a 49.75% quantum yield, while another in the near infrared region was 2.49%. The photothermal conversion efficiency was 62.53%, higher than any kind of carbon nanomaterial in existence today. MTT and a long-term cytotoxicity experiment confirmed that the N-GQD had low cytotoxicity. The probe also had the ability of photoacoustic response at the same time. After coupling with folic acid, it presented imaging and photothermal therapy on the cells, which has great application prospects in the early diagnosis and treatment of tumors.

  11. Graphene quantum dots for ultrasensitive detection of acetylcholinesterase and its inhibitors

    NASA Astrophysics Data System (ADS)

    Li, Nan; Wang, Xuewan; Chen, Jie; Sun, Lei; Chen, Peng

    2015-09-01

    Graphene quantum dots (GQDs) are emerging zero-dimensional materials promising a wide spectrum of novel applications including development of optical sensors. Herein, a GQD-based fluorometric sensor is devised to detect acetylcholinesterase (AChE, a critical enzyme in central nervous system and neuromuscular junctions) with an ultralow detection limit (0.58 pM with S/N of 5.0), using a photoluminescence ‘turn-off’ mechanism. This simple ‘mix-and-detect’ platform can also be employed to sense a variety of compounds that can directly or indirectly inhibit the enzymatic activities of AChE, such as nerve gases, pesticides, and therapeutic drugs. As the proof-of-concept demonstrations, we show the sensitive detection of paraoxon (a pesticide), tacrine (a drug to treat Alzheimer’s disease), and dopamine (an important neurotransmitter).

  12. Blinking suppression of CdTe quantum dots on epitaxial graphene and the analysis with Marcus electron transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirose, Takuya; Tamai, Naoto, E-mail: tamai@kwansei.ac.jp; Kutsuma, Yasunori

    We have prepared epitaxial graphene by a Si sublimation method from 4H-SiC. Single-particle spectroscopy of CdTe quantum dots (QDs) on epitaxial graphene covered with polyvinylpyrrolidone (PVP) or polyethylene glycol (PEG) showed the suppression of luminescence blinking and ∼10 times decreased luminescence intensity as compared with those on a glass. The electronic coupling constant, H{sub 01}, between CdTe QDs and graphene was calculated to be (3.3 ± 0.4) × 10{sup 2 }cm{sup −1} in PVP and (3.7 ± 0.8) × 10{sup 2 }cm{sup −1} in PEG based on Marcus theory of electron transfer and Tang-Marcus model of blinking with statistical distribution.

  13. ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity

    NASA Astrophysics Data System (ADS)

    Lu, Yanghua; Wu, Zhiqian; Xu, Wenli; Lin, Shisheng

    2016-12-01

    A ZnO quantum dot photo-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity of more than 1915 A W-1 and detectivity of more than 1.02 × 1013 Jones (Jones = cm Hz1/2 W-1) has been demonstrated. The interfaced h-BN layer increases the barrier height at the graphene/GaN heterojunction, which decreases the dark current and improves the on/off current ratio of the device. The photo-doping effect increases the barrier height and carrier concentration at the graphene/h-BN/GaN heterojunction, thus the responsivity is improved from 1473 A W-1 to 1915 A W-1 and the detectivity is improved from 5.8 × 1012 to 1.0 × 1013 Jones. Moreover, all of the responsivity and detectivity values are the highest values among all the graphene-based ultraviolet photodetectors.

  14. All Carbon-Based Photodetectors: An eminent integration of graphite quantum dots and two dimensional graphene

    PubMed Central

    Cheng, Shih-Hao; Weng, Tong-Min; Lu, Meng-Lin; Tan, Wei-Chun; Chen, Ju-Ying; Chen, Yang-Fang

    2013-01-01

    Photodetectors with ultrahigh sensitivity based on the composite made with all carbon-based materials consisting of graphite quantum dots (QDs), and two dimensional graphene crystal have been demonstrated. Under light illumination, remarkably, a photocurrent responsivity up to 4 × 107 AW−1 can be obtained. The underlying mechanism is attributed to the spatial separation of photogenerated electrons and holes due to the charge transfer caused by the appropriate band alignment across the interface between graphite QDs and graphene. Besides, the large absorptivity of graphite QDs and the excellent conductivity of the graphene sheet also play significant roles. Our result therefore demonstrates an outstanding illustration for the integration of the distinct properties of nanostructured carbon materials with different dimensionalities to achieve highly efficient devices. Together with the associated mechanism, it paves a valuable step for the further development of all carbon-based, cheap, and non-toxic optoelectronics devices with excellent performance. PMID:24045846

  15. Potassium doping: Tuning the optical properties of graphene quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Fuli; Li, Xueming, E-mail: lxmscience@163.com; Lu, Chaoyu

    2016-07-15

    Doping with hetero-atoms is an effective way to tune the properties of graphene quantum dots (GQDs). Here, potassium-doped GQDs (K-GQDs) are synthesized by a one-pot hydrothermal treatment of sucrose and potassium hydroxide solution. Optical properties of the GQDs are altered as a result of K-doping. The absorption peaks exhibit a blue shift. Multiple photoluminescence (PL) peaks are observed as the excitation wavelength is varied from 380 nm to 620 nm. New energy levels are introduced into the K-GQDs and provide alternative electron transition pathways. The maximum PL intensity of the K-GQDs is obtained at an excitation wavelength of 480 nmmore » which is distinct from the undoped GQDs (375 nm). The strong PL of the K-GQDs at the longer emission wavelengths is expected to make K-GQDs more suitable for bioimaging and optoelectronic applications.« less

  16. Photoinduced Electron Transfer from Various Aniline Derivatives to Graphene Quantum Dots.

    PubMed

    Ghosh, Tufan; Chatterjee, Swarupa; Prasad, Edamana

    2015-12-10

    The present study utilizes the luminescence nature of the graphene quantum dots (GQDs) to analyze the mechanistic aspects of the photoinduced electron transfer (PET) processes between GQDs and aniline derivatives. A systematic investigation of PET from various aniline derivatives to GQDs has been presented. Solution-processable GQDs have been synthesized from graphene oxide (GO) at 200 °C. The as-synthesized GQDs exhibit a strong green luminescence at 510 nm, upon photoexcitation at 440 nm. Various aniline derivatives (aniline, N-methylaniline, N,N'-dimethylaniline, N-ethylaniline, N,N'-diethylaniline, and N,N'-diphenylaniline) have been utilized as electron donors to probe the PET process. Results from UV-visible absorption and steady-state and time-resolve luminescence spectroscopy suggest that the GQDs interact with the aniline derivatives in the excited state, which results in a significant luminescence quenching of the GQDs. The bimolecular rate constants of the dynamic quenching have been deduced for various donor-acceptor systems, and the values are in the range of (1.06-2.68) × 10(9) M(-1) s(-1). The negative values of the free energy change of the electron transfer process suggest that PET from aniline derivatives to GQDs is feasible and could be responsible for the luminescence quenching. The PET has been confirmed by detecting radical cations for certain aniline derivatives, using a nanosecond laser flash photolysis setup. The present study shows that among the various types of graphene systems, GQDs are better candidates for understanding the mechanism of PET in graphene-based donor-acceptor systems.

  17. Constructing three-dimensional porous graphene-carbon quantum dots/g-C3N4 nanosheet aerogel metal-free photocatalyst with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    He, Huijuan; Huang, Langhuan; Zhong, Zijun; Tan, Shaozao

    2018-05-01

    Photocatalysis has been widely considered to be an effective way for solving the worldwide environmental pollution issues. Herein, a new type of three-dimensional (3D) ternary graphene-carbon quantum dots/g-C3N4 nanosheet (GA-CQDs/CNN) aerogel visible-light-driven photocatalyst was synthesized via a two-step hydrothermal method. In this unique ternary photocatalyst, both carbon quantum dots (CQDs) and reduced graphene oxide (rGO) could improve the visible light absorption and promote the charge separation. Furthermore, reduced graphene oxide (rGO) could act as a supportor for the 3D framework. Such a ternary system overcame the drawbacks of bulk g-C3N4 (BCN) and achieved the enhanced photocatalytic activity and long-term stability. As a result, the methyl orange (MO) removal ratio of GA-CQDs/CNN-24% was up to 91.1%, which was about 7.6 times higher than that of bulk g-C3N4 (BCN) under the identical conditions. Moreover that GA-CQDs/CNN-24% exhibited inappreciable loss of photocatalytic activity after four-cycle degradation processes. Finally, the photocatalytic mechanism of GA-CQDs/CNN-24% was interpreted both theoretically and experimentally.

  18. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition.

    PubMed

    Liu, Donghua; Chen, Xiaosong; Hu, Yibin; Sun, Tai; Song, Zhibo; Zheng, Yujie; Cao, Yongbin; Cai, Zhi; Cao, Min; Peng, Lan; Huang, Yuli; Du, Lei; Yang, Wuli; Chen, Gang; Wei, Dapeng; Wee, Andrew Thye Shen; Wei, Dacheng

    2018-01-15

    Graphene is regarded as a potential surface-enhanced Raman spectroscopy (SERS) substrate. However, the application of graphene quantum dots (GQDs) has had limited success due to material quality. Here, we develop a quasi-equilibrium plasma-enhanced chemical vapor deposition method to produce high-quality ultra-clean GQDs with sizes down to 2 nm directly on SiO 2 /Si, which are used as SERS substrates. The enhancement factor, which depends on the GQD size, is higher than conventional graphene sheets with sensitivity down to 1 × 10 -9  mol L -1 rhodamine. This is attributed to the high-quality GQDs with atomically clean surfaces and large number of edges, as well as the enhanced charge transfer between molecules and GQDs with appropriate diameters due to the existence of Van Hove singularities in the electronic density of states. This work demonstrates a sensitive SERS substrate, and is valuable for applications of GQDs in graphene-based photonics and optoelectronics.

  19. ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity.

    PubMed

    Lu, Yanghua; Wu, Zhiqian; Xu, Wenli; Lin, Shisheng

    2016-12-02

    A ZnO quantum dot  photo-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity of more than 1915 A W -1 and detectivity of more than 1.02 × 10 13 Jones (Jones = cm Hz 1/2 W -1 ) has been demonstrated. The interfaced h-BN layer increases the barrier height at the graphene/GaN heterojunction, which decreases the dark current and improves the on/off current ratio of the device. The photo-doping effect increases the barrier height and carrier concentration at the graphene/h-BN/GaN heterojunction, thus the responsivity is improved from 1473 A W -1 to 1915 A W -1 and the detectivity is improved from 5.8 × 10 12 to 1.0 × 10 13 Jones. Moreover, all of the responsivity and detectivity values are the highest values among all the graphene-based ultraviolet photodetectors.

  20. PREFACE: Quantum Dot 2010

    NASA Astrophysics Data System (ADS)

    Taylor, Robert A.

    2010-09-01

    These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur

  1. Systematic Bandgap Engineering of Graphene Quantum Dots and Applications for Photocatalytic Water Splitting and CO2 Reduction.

    PubMed

    Yan, Yibo; Chen, Jie; Li, Nan; Tian, Jingqi; Li, Kaixin; Jiang, Jizhou; Liu, Jiyang; Tian, Qinghua; Chen, Peng

    2018-04-24

    Graphene quantum dots (GQDs), which is the latest addition to the nanocarbon material family, promise a wide spectrum of applications. Herein, we demonstrate two different functionalization strategies to systematically tailor the bandgap structures of GQDs whereby making them snugly suitable for particular applications. Furthermore, the functionalized GQDs with a narrow bandgap and intramolecular Z-scheme structure are employed as the efficient photocatalysts for water splitting and carbon dioxide reduction under visible light. The underlying mechanisms of our observations are studied and discussed.

  2. Quantum confinement-induced tunable exciton states in graphene oxide.

    PubMed

    Lee, Dongwook; Seo, Jiwon; Zhu, Xi; Lee, Jiyoul; Shin, Hyeon-Jin; Cole, Jacqueline M; Shin, Taeho; Lee, Jaichan; Lee, Hangil; Su, Haibin

    2013-01-01

    Graphene oxide has recently been considered to be a potential replacement for cadmium-based quantum dots due to its expected high fluorescence. Although previously reported, the origin of the luminescence in graphene oxide is still controversial. Here, we report the presence of core/valence excitons in graphene-based materials, a basic ingredient for optical devices, induced by quantum confinement. Electron confinement in the unreacted graphitic regions of graphene oxide was probed by high resolution X-ray absorption near edge structure spectroscopy and first-principles calculations. Using experiments and simulations, we were able to tune the core/valence exciton energy by manipulating the size of graphitic regions through the degree of oxidation. The binding energy of an exciton in highly oxidized graphene oxide is similar to that in organic electroluminescent materials. These results open the possibility of graphene oxide-based optoelectronic device technology.

  3. Photoluminescent graphene quantum dots for in vivo imaging of apoptotic cells

    NASA Astrophysics Data System (ADS)

    Roy, Prathik; Periasamy, Arun Prakash; Lin, Chiu-Ya; Her, Guor-Mour; Chiu, Wei-Jane; Li, Chi-Lin; Shu, Chia-Lun; Huang, Chih-Ching; Liang, Chi-Te; Chang, Huan-Tsung

    2015-01-01

    Apoptosis (programmed cell death) is linked to many incurable neurodegenerative, cardiovascular and cancer causing diseases. Numerous methods have been developed for imaging apoptotic cells in vitro; however, there are few methods available for imaging apoptotic cells in live animals (in vivo). Here we report a novel method utilizing the unique photoluminescence properties of plant leaf-derived graphene quantum dots (GQDs) modified with annexin V antibody (AbA5) to form (AbA5)-modified GQDs (AbA5-GQDs) enabling us to label apoptotic cells in live zebrafish (Danio rerio). The key is that zebrafish shows bright red photoluminescence in the presence of apoptotic cells. The toxicity of the GQDs has also been investigated with the GQDs exhibiting high biocompatibility as they were excreted from the zebrafish's body without affecting its growth significantly at a concentration lower than 2 mg mL-1 over a period of 4 to 72 hour post fertilization. The GQDs have further been used to image human breast adenocarcinoma cell line (MCF-7 cells), human cervical cancer cell line (HeLa cells), and normal human mammary epithelial cell line (MCF-10A). These results are indispensable to further the advance of graphene-based nanomaterials for biomedical applications.Apoptosis (programmed cell death) is linked to many incurable neurodegenerative, cardiovascular and cancer causing diseases. Numerous methods have been developed for imaging apoptotic cells in vitro; however, there are few methods available for imaging apoptotic cells in live animals (in vivo). Here we report a novel method utilizing the unique photoluminescence properties of plant leaf-derived graphene quantum dots (GQDs) modified with annexin V antibody (AbA5) to form (AbA5)-modified GQDs (AbA5-GQDs) enabling us to label apoptotic cells in live zebrafish (Danio rerio). The key is that zebrafish shows bright red photoluminescence in the presence of apoptotic cells. The toxicity of the GQDs has also been investigated with

  4. Masking agent-free and channel-switch-mode simultaneous sensing of Fe(3+) and Hg(2+) using dual-excitation graphene quantum dots.

    PubMed

    Xu, Fengzhou; Shi, Hui; He, Xiaoxiao; Wang, Kemin; He, Dinggeng; Yan, Lv'an; Ye, Xiaosheng; Tang, Jinlu; Shangguan, Jingfang; Luo, Lan

    2015-06-21

    A novel channel-switch-mode strategy for simultaneous sensing of Fe(3+) and Hg(2+) is developed with dual-excitation single-emission graphene quantum dots (GQDs). By utilizing the dual-channel fluorescence response performance of GQDs, this strategy achieved a facile, low-cost, masking agent-free, quantitative and selective dual-ion assay even in mixed ion samples and practical water samples.

  5. Enhanced monolayer MoS2/InP heterostructure solar cells by graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Lin, Shisheng; Ding, Guqiao; Li, Xiaoqiang; Wu, Zhiqian; Zhang, Shengjiao; Xu, Zhijuan; Xu, Sen; Lu, Yanghua; Xu, Wenli; Zheng, Zheyang

    2016-04-01

    We demonstrate significantly improved photovoltaic response of monolayer molybdenum disulfide (MoS2)/indium phosphide (InP) van der Waals heterostructure induced by graphene quantum dots (GQDs). Raman and photoluminescence measurements indicate that effective charge transfer takes place between GQDs and MoS2, which results in n-type doping of MoS2. The doping effect increases the barrier height at the MoS2/InP heterojunction, thus the averaged power conversion efficiency of MoS2/InP solar cells is improved from 2.1% to 4.1%. The light induced doping by GQD provides a feasible way for developing more efficient MoS2 based heterostructure solar cells.

  6. Quantum confinement-induced tunable exciton states in graphene oxide

    PubMed Central

    Lee, Dongwook; Seo, Jiwon; Zhu, Xi; Lee, Jiyoul; Shin, Hyeon-Jin; Cole, Jacqueline M.; Shin, Taeho; Lee, Jaichan; Lee, Hangil; Su, Haibin

    2013-01-01

    Graphene oxide has recently been considered to be a potential replacement for cadmium-based quantum dots due to its expected high fluorescence. Although previously reported, the origin of the luminescence in graphene oxide is still controversial. Here, we report the presence of core/valence excitons in graphene-based materials, a basic ingredient for optical devices, induced by quantum confinement. Electron confinement in the unreacted graphitic regions of graphene oxide was probed by high resolution X-ray absorption near edge structure spectroscopy and first-principles calculations. Using experiments and simulations, we were able to tune the core/valence exciton energy by manipulating the size of graphitic regions through the degree of oxidation. The binding energy of an exciton in highly oxidized graphene oxide is similar to that in organic electroluminescent materials. These results open the possibility of graphene oxide-based optoelectronic device technology. PMID:23872608

  7. Gate-defined Quantum Confinement in Suspended Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Allen, Monica

    2013-03-01

    Quantum confined devices in carbon-based materials offer unique possibilities for applications ranging from quantum computation to sensing. In particular, nanostructured carbon is a promising candidate for spin-based quantum computation due to the ability to suppress hyperfine coupling to nuclear spins, a dominant source of spin decoherence. Yet graphene lacks an intrinsic bandgap, which poses a serious challenge for the creation of such devices. We present a novel approach to quantum confinement utilizing tunnel barriers defined by local electric fields that break sublattice symmetry in suspended bilayer graphene. This technique electrostatically confines charges via band structure control, thereby eliminating the edge and substrate disorder that hinders on-chip etched nanostructures to date. We report clean single electron tunneling through gate-defined quantum dots in two regimes: at zero magnetic field using the energy gap induced by a perpendicular electric field and at finite magnetic fields using Landau level confinement. The observed Coulomb blockade periodicity agrees with electrostatic simulations based on local top-gate geometry, a direct demonstration of local control over the band structure of graphene. This technology integrates quantum confinement with pristine device quality and access to vibrational modes, enabling wide applications from electromechanical sensors to quantum bits. More broadly, the ability to externally tailor the graphene bandgap over nanometer scales opens a new unexplored avenue for creating quantum devices.

  8. Synthesis of reduced graphene oxide intercalated ZnO quantum dots nanoballs for selective biosensing detection

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Zhao, Minggang; Li, Yingchun; Fan, Sisi; Ding, Longjiang; Liang, Jingjing; Chen, Shougang

    2016-07-01

    ZnO quantum dots (QDs), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) are always used in sensors due to their excellent electrochemical characteristics. In this work, ZnO QDs were intercalated by rGO sheets with cross-linked MWCNTs to construct intercalation nanoballs. A MWCNTs/rGO/ZnO QDs 3D hierarchical architecture was fabricated on supporting Ni foam, which exhibited excellent mechanical, kinetic and electrochemical properties. The intercalation construction can introduce strong interfacial effects to improve the surface electronic state. The selectively determinate of uric acid, dopamine, and ascorbic acid by an electrode material using distinct applied potentials was realized.

  9. Direct determination of graphene quantum dots based on terbium-sensitized luminescence

    NASA Astrophysics Data System (ADS)

    Llorent-Martínez, Eulogio J.; Molina-García, Lucía; Durán, Gema M.; Ruiz-Medina, Antonio; Ríos, Ángel

    2018-06-01

    Graphene quantum dots (GQD) were determined in water samples using terbium-sensitized luminescence (TSL). Terbium ions complex with GQD due to the carboxylic groups that are usually present in these nanomaterials, increasing the luminescence signal of terbium. In Tb(III)-GQD complexes, GQD absorb energy at their characteristic excitation wavelength and transfer it to terbium ion, which emits at its particular emission wavelength. The analytical signal, measured at λexc = 257 nm and λem = 545 nm, increases proportionally to GQD concentration between 50 and 500 μg L-1. Under optimum conditions, the proposed method presents a detection limit of 15 μg L-1 and is selective to GQD in the presence of other nanomaterials of similar size. As GQD are highly water-soluble, they are potential contaminants in environmental or drinking waters water samples, and hence the method was applied to the analysis of different drinking waters which were the target samples for the application of the developed method.

  10. Determination of graphene's edge energy using hexagonal graphene quantum dots and PM7 method.

    PubMed

    Vorontsov, Alexander V; Tretyakov, Evgeny V

    2018-05-18

    Graphene quantum dots (GQDs) are important for a variety of applications and designs, and the shapes of GQDs rely on the energy of their boundaries. Presently, many methods have been developed for the preparation of GQDs with the required boundaries, shapes and edge terminations. However, research on the properties of GQDs and their applications is limited due to the unavailability of these compounds in pure form. In the present computational study, the standard enthalpy of formation, the standard enthalpy of formation of edges and the standard enthalpy of hydrogenation are studied for hexagonal GQDs with purely zigzag and armchair edges in non-passivated and H-passivated forms using the semiempirical quantum chemistry method pm7. The standard enthalpy of formation of the edge is found to remain constant for GQDs studied in the range of 1 to 6 nm, and the enthalpies of edge C atoms are 32.4 and 35.5 kcal mol-1 for armchair and zigzag edges, respectively. In contrast to some literature data, the standard enthalpy of formation of hydrogenated edges is far from zero, and the values are 7.3 and 8.0 kcal mol-1 C for armchair and zigzag edges, respectively. The standard enthalpy of hydrogenation is found to be -10.2 and -9.72 eV nm-1 for the armchair and zigzag edges, respectively.

  11. Partial pseudospin polarization, latticetronics and Fano resonances in quantum dots based in graphene ribbons: a conductance spectroscopy

    NASA Astrophysics Data System (ADS)

    López, Luis I. A.; Champi, Ana; Ujevic, Sebastian; Mendoza, Michel

    2015-11-01

    In this work we study, as a function of the height V and width L b of the potential barriers, the transport of Dirac quasi-particles through quantum dots in graphene ribbons. We observed, as we increase V, a partial polarization ( PP) of the pseudospin due to the participation of the hyperbolic bands. This generates polarizations in the sub-lattices A or B outside the dot regions for single, coupled, and open dots. Thus for energies around the Dirac point, the conductance G at both sides of the dot shows a latticetronics of conductances G A and G B as a function of V and L b . This fact can be used as a PP spectroscopy which associates hole-type waves with the latticetronics. A periodic enhancement of PP is obtained with the increase of V in dots formed by barriers that completely occupy the nanoribbon width. For this case, a direct correspondence between G( V) and PP( V) exists. On the other hand, for the open dots, the PP( V) and the G( V) show a complex behavior that exhibit higher intensities when compared to the previous case. In the Dirac limit we have no backscattering signs, however when we move slightly away from this limit the first signs of confinement appear in the PP( V) (it freezes in a given sub-lattice). In the last case the backscattering fingerprints are obtained directly from the conductance (splittings). The open quantum dots are very sensible to their opening w d and this generates Fano line-shapes of difficult interpretation around the Dirac point. The PP spectroscopy used here allows us to understand the influence of w d in the relativistic analogues and to associate electron-type waves with the observed Fano line-shapes.

  12. Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing.

    PubMed

    Wu, Xu; Tian, Fei; Wang, Wenxue; Chen, Jiao; Wu, Min; Zhao, Julia Xiaojun

    2013-08-21

    A facile bottom-up method for the synthesis of highly fluorescent graphene quantum dots (GQDs) has been developed using a one-step pyrolysis of a natural amino acid, L-glutamic acid, with the assistance of a simple heating mantle device. The developed GQDs showed strong blue, green and red luminescence under the irradiation of ultra-violet, blue and green light, respectively. Moreover, the GQDs emitted near-infrared (NIR) fluorescence in the range of 800-850 nm with the excitation-dependent manner. This NIR fluorescence has a large Stokes shift of 455 nm, providing significant advantage for sensitive determination and imaging of biological targets. The fluorescence properties of the GQDs, such as quantum yields, fluorescence life time, and photostability, were measured and the fluorescence quantum yield was as high as 54.5 %. The morphology and composites of the GQDs were characterized using TEM, SEM, EDS, and FT-IR. The feasibility of using the GQDs as a fluorescent biomarker was investigated through in vitro and in vivo fluorescence imaging. The results showed that the GQDs could be a promising candidate for bioimaging. Most importantly, compared to the traditional quantum dots (QDs), the GQDs is chemically inert. Thus, the potential toxicity of the intrinsic heavy metal in the traditional QDs would not be a concern for GQDs. In addition, the GQDs possessed an intrinsic peroxidase-like catalytic activity that was similar to the graphene sheets and carbon nanotubes. Coupled with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), the GQDs can be used for the sensitive detection of hydrogen peroxide with a limit of detection of 20 μM.

  13. Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing

    PubMed Central

    Wu, Xu; Tian, Fei; Wang, Wenxue; Chen, Jiao; Wu, Min; Zhao, Julia Xiaojun

    2013-01-01

    A facile bottom-up method for the synthesis of highly fluorescent graphene quantum dots (GQDs) has been developed using a one-step pyrolysis of a natural amino acid, L-glutamic acid, with the assistance of a simple heating mantle device. The developed GQDs showed strong blue, green and red luminescence under the irradiation of ultra-violet, blue and green light, respectively. Moreover, the GQDs emitted near-infrared (NIR) fluorescence in the range of 800–850 nm with the excitation-dependent manner. This NIR fluorescence has a large Stokes shift of 455 nm, providing significant advantage for sensitive determination and imaging of biological targets. The fluorescence properties of the GQDs, such as quantum yields, fluorescence life time, and photostability, were measured and the fluorescence quantum yield was as high as 54.5 %. The morphology and composites of the GQDs were characterized using TEM, SEM, EDS, and FT-IR. The feasibility of using the GQDs as a fluorescent biomarker was investigated through in vitro and in vivo fluorescence imaging. The results showed that the GQDs could be a promising candidate for bioimaging. Most importantly, compared to the traditional quantum dots (QDs), the GQDs is chemically inert. Thus, the potential toxicity of the intrinsic heavy metal in the traditional QDs would not be a concern for GQDs. In addition, the GQDs possessed an intrinsic peroxidase-like catalytic activity that was similar to the graphene sheets and carbon nanotubes. Coupled with 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), the GQDs can be used for the sensitive detection of hydrogen peroxide with a limit of detection of 20 μM. PMID:23997934

  14. Novel magnetic graphene quantum dot as dual modality fluorescence/MMOCT contrast agent for tracking epithelial cells

    NASA Astrophysics Data System (ADS)

    Li, Wei; Matcher, Stephen J.

    2017-02-01

    A novel nanoparticle, magnetic graphene quantum dot (MGQD), was synthesized by hydrothermally cutting graphene oxide-iron oxide sheet for contrast agent in magnetomotive optical coherence tomography (MMOCT) and confocal fluorescence microscopy (CFM). The MGQD has superparamagnetism, which allows the MGQD to be tracked and imaged using MMOCT. The MMOCT can display paramagnetic nanoparticle in vivo and provide an anatomical information with micron scale resolution and long imaging depth in clinic application. Moreover, the MGQD has excitation-depend fluorescence and emits visible fluorescence under the excitation of 360nm light, which allows the MGQD to be used as tracer in CFM. CFM can offer intracellular details due to higher resolution, while CFM is unsuitable for imaging anatomical structure because of the limited view of field. The use of MGQD for cell or tissue tracking realizes the combination of MMOCT and CFM, and gives a more comprehensive diagnosis.

  15. Size and diluted magnetic properties of diamond shaped graphene quantum dots: Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Jabar, A.

    2018-05-01

    The magnetic properties of diamond shaped graphene quantum dots have been investigated by varying their sizes with the Monte Carlo simulation. The magnetizations and magnetic susceptibilities have been studied with dilutions x (magnetic atom), several sizes L (carbon atom) and exchange interaction J between the magnetic atoms. The all magnetic susceptibilities have been situated at the transitions temperatures of each parameters. The obtained values increase when increases the values of x, L and J. The effect of exchanges interactions and crystal field on the magnetization has been discussed. The magnetic hysteresis cycles for several dilutions x, sizes L, exchange interactions J and temperatures T. The magnetic coercive increases with increasing the exchange interactions and decreases when the temperatures values increasing.

  16. Graphene oxide quantum dot-derived nitrogen-enriched hybrid graphene nanosheets by simple photochemical doping for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Yongjie; Li, Xinyu; Hu, Guanghui; Wu, Ting; Luo, Yi; Sun, Lang; Tang, Tao; Wen, Jianfeng; Wang, Heng; Li, Ming

    2017-11-01

    Nitrogen-enriched graphene was fabricated via a facile strategy. Graphene oxide (GO) nanosheets and graphene oxide quantum dots (GQDs) were used as a structure-directing agent and in situ activating agent, respectively, after photoreduction under NH3 atmosphere. The combination of photoreduction and NH3 not only reduced GO and GQD composites (GO/GQDs) within a shorter duration but also doped a high level of nitrogen on the composites (NrGO/GQDs). The nitrogen content of NrGO/GQDs reached as high as 18.86 at% within 5 min of irradiation. Benefiting from the nitrogen-enriched GO/GQDs hybrid structure, GQDs effectively prevent the agglomeration of GO sheets and increased the numbers of ion channels in the material. Meanwhile, the high levels of nitrogen improved electrical conductivity and strengthened the binding energy between GQD and GO sheets. Compared with reduced GO and low nitrogen-doped reduced GO, NrGO/GQD electrodes exhibited better electrochemical characteristics with a high specific capacitance of 344 F g-1 at a current density of 0.25 A g-1. Moreover, the NrGO/GQD electrodes exhibited 82% capacitance retention after 3000 cycles at a current density of 0.8 A g-1 in 6 M KOH electrolyte. More importantly, the NrGO/GQD electrodes deliver a high energy density of 43 Wh kg-1 at a power density of 417 W kg-1 in 1 M Li2SO4 electrolyte. The nitrogen-doped graphene and corresponding supercapacitor presented in this study are novel materials with potential applications in advanced energy storage systems.

  17. A novel metronidazole fluorescent nanosensor based on graphene quantum dots embedded silica molecularly imprinted polymer.

    PubMed

    Mehrzad-Samarin, Mina; Faridbod, Farnoush; Dezfuli, Amin Shiralizadeh; Ganjali, Mohammad Reza

    2017-06-15

    A novel optical nanosensor for detection of Metronidazole in biological samples was reported. Graphene quantum dots embedded silica molecular imprinted polymer (GQDs-embedded SMIP) was synthesized and used as a selective fluorescent probe for Metronidazole detection. The new synthesized GQDs-embedded SMIP showed strong fluorescent emission at 450nm excited at 365nm which quenched in presence of Metronidazole as a template molecule.. The quenching was proportional to the concentration of Metronidazole in a linear range of at least 0.2μM to 15μM. The limit of detection for metronidazole determination was obtained 0.15μM. The nanosensor successfully worked in plasma matrixes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Perturbation effect of reduced graphene oxide quantum dots (rGOQDs) on aryl hydrocarbon receptor (AhR) pathway in zebrafish.

    PubMed

    Zhang, Jing-Hui; Sun, Tai; Niu, Aping; Tang, Yu-Mei; Deng, Shun; Luo, Wei; Xu, Qun; Wei, Dapeng; Pei, De-Sheng

    2017-07-01

    Graphene quantum dots (GQDs) has been widely used in enormous fields, however, the inherent molecular mechanism of GQDs for potential risks in biological system is still elusive to date. In this study, the outstanding reduced graphene quantum dots (rGOQDs) with the QY as high as 24.62% were successfully synthesized by the improved Hummers method and DMF hydrothermal treatment approach. The rGOQDs were N-doped photoluminescent nanomaterials with functional groups on the surface. The fluorescent bio-imaging was performed by exposing zebrafish in different concentrations of the as-prepared rGOQDs, and the distribution of rGOQDs was successfully observed. Moreover, the developmental toxicity and genotoxicity were evaluated to further investigate the potential hazard of rGOQDs. The result indicated that rGOQDs were responsible for the dose-dependent abnormalities on the development of zebrafish. Since the real-time polymerase chain reaction (RT-PCR) results showed that the expression of cyp1a was the highest expression in the selected genes and significantly up-regulated 8.49 fold in zebrafish, the perturbation of rGOQDs on aryl hydrocarbon receptor (AhR) pathway was investigated by using the Tg(cyp1a:gfp) zebrafish for the first time. The results demonstrated that rGOQDs significantly increased the green fluorescent protein (GFP) expression promoted by cyp1a in a dose-dependent manner, which was also further confirmed by the western blotting. This study offered an opportunity to reveal the potential hazards of in vivo bio-probes, which provided a valuable reference for investigating the graphene-based materials on the disturbance of AhR pathway in biological organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Graphene oxide quantum dot-sensitized porous titanium dioxide microsphere: Visible-light-driven photocatalyst based on energy band engineering.

    PubMed

    Zhang, Yu; Qi, Fuyuan; Li, Ying; Zhou, Xin; Sun, Hongfeng; Zhang, Wei; Liu, Daliang; Song, Xi-Ming

    2017-07-15

    We report a novel graphene oxide quantum dot (GOQD)-sensitized porous TiO 2 microsphere for efficient photoelectric conversion. Electro-chemical analysis along with the Mott-Schottky equation reveals conductivity type and energy band structure of the two semiconductors. Based on their energy band structures, visible light-induced electrons can transfer from the p-type GOQD to the n-type TiO 2 . Enhanced photocurrent and photocatalytic activity in visible light further confirm the enhanced separation of electrons and holes in the nanocomposite. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Facile synthesis of soluble graphene quantum dots and its improved property in detecting heavy metal ions.

    PubMed

    Zhou, Chengfeng; Jiang, Wei; Via, Brian K

    2014-06-01

    An effective approach to produce graphene quantum dots (GQDs) has been developed, which based on the cutting of graphene oxide (GO) powder into smaller pieces and being reduced by a green approach, using sodium polystyrene sulfonate (PSS) as a dispersant and l-ascorbic acid (l-AA) as the reducing agent, which is environmentally friendly. Then the as-prepared GQDs were further used for the detection of heavy metal ions Pb(2+). This kind of GQDs has greater solubility in water and is more biocompatible than GO that has been reduced by hydrazine hydrate. The few-layers of GQDs with defects and residual OH groups were shown to be particularly well suited for the determination of metal ions in the liquid phase using an electrochemical method, in which a remarkably low detection limit of 7×10(-9)M for Pb(2+) was achieved. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Enhancing Cell Nucleus Accumulation and DNA Cleavage Activity of Anti-Cancer Drug via Graphene Quantum Dots

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Wu, Congyu; Zhou, Xuejiao; Han, Ting; Xin, Xiaozhen; Wu, Jiaying; Zhang, Jingyan; Guo, Shouwu

    2013-10-01

    Graphene quantum dots (GQDs) maintain the intrinsic layered structural motif of graphene but with smaller lateral size and abundant periphery carboxylic groups, and are more compatible with biological system, thus are promising nanomaterials for therapeutic applications. Here we show that GQDs have a superb ability in drug delivery and anti-cancer activity boost without any pre-modification due to their unique structural properties. They could efficiently deliver doxorubicin (DOX) to the nucleus through DOX/GQD conjugates, because the conjugates assume different cellular and nuclear internalization pathways comparing to free DOX. Also, the conjugates could enhance DNA cleavage activity of DOX markedly. This enhancement combining with efficient nuclear delivery improved cytotoxicity of DOX dramatically. Furthermore, the DOX/GQD conjugates could also increase the nuclear uptake and cytotoxicity of DOX to drug-resistant cancer cells indicating that the conjugates may be capable to increase chemotherapy efficacy of anti-cancer drugs that are suboptimal due to the drug resistance.

  2. Preparation of quantum dots CdTe decorated graphene composite for sensitive detection of uric acid and dopamine.

    PubMed

    Yu, Hong-Wei; Jiang, Jing-Hui; Zhang, Ze; Wan, Guang-Cai; Liu, Zhi-Yong; Chang, Dong; Pan, Hong-Zhi

    2017-02-15

    The assembly of quantum dots (QDs) in a simply method opens up opportunities to obtain access to the full potential of assembled QDs by virtue of the collective properties of the ensembles. In this study, quantum dots CdTe and graphene (Gr) nanocomposite was constructed for the simultaneous determination of uric acid (UA) and dopamine (DA). The CdTe QDs-Gr nanocomposite was prepared by ultrasonication and was characterized with microscopic techniques. The nanocomposite modified electrode was characterized by cyclicvoltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effects between CdTe QDs and Gr, the fabricated electrode exhibited excellent electrochemical catalytic activities, good biological compatibility and high sensitivity toward the oxidation of UA and DA. Under optimum conditions, in the co-existence system the linear calibration plots for UA and DA were obtained over the range of 3-600 μM and 1-500 μM with detection limits of 1.0 μM and 0.33 μM. The fabricated biosensor also exhibits the excellent repeatability, reproducibility, storage stability along with acceptable selectivity. Copyright © 2016. Published by Elsevier Inc.

  3. Molybdenum disulphide and graphene quantum dots as electrode modifiers for laccase biosensor.

    PubMed

    Vasilescu, Ioana; Eremia, Sandra A V; Kusko, Mihaela; Radoi, Antonio; Vasile, Eugeniu; Radu, Gabriel-Lucian

    2016-01-15

    A nanocomposite formed from molybdenum disulphide (MoS2) and graphene quantum dots (GQDs) was proposed as a novel and suitable support for enzyme immobilisation displaying interesting electrochemical properties. The conductivity of the carbon based screen-printed electrodes was highly improved after modification with MoS2 nanoflakes and GQDs, the nanocomposite also providing compatible matrix for laccase immobilisation. The influence of different modification steps on the final electroanalytical performances of the modified electrode were evaluated by UV-vis absorption and fluorescence spectroscopy, scanning electron microscopy, transmission electron microscopy, X ray diffraction, electrochemical impedance spectroscopy and cyclic voltammetry. The developed laccase biosensor has responded efficiently to caffeic acid over a concentration range of 0.38-100µM, had a detection limit of 0.32µM and a sensitivity of 17.92nAµM(-1). The proposed analytical tool was successfully applied for the determination of total polyphenolic content from red wine samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Direct determination of graphene quantum dots based on terbium-sensitized luminescence.

    PubMed

    Llorent-Martínez, Eulogio J; Molina-García, Lucía; Durán, Gema M; Ruiz-Medina, Antonio; Ríos, Ángel

    2018-06-05

    Graphene quantum dots (GQD) were determined in water samples using terbium-sensitized luminescence (TSL). Terbium ions complex with GQD due to the carboxylic groups that are usually present in these nanomaterials, increasing the luminescence signal of terbium. In Tb(III)-GQD complexes, GQD absorb energy at their characteristic excitation wavelength and transfer it to terbium ion, which emits at its particular emission wavelength. The analytical signal, measured at λ exc =257nm and λ em =545nm, increases proportionally to GQD concentration between 50 and 500μgL -1 . Under optimum conditions, the proposed method presents a detection limit of 15μgL -1 and is selective to GQD in the presence of other nanomaterials of similar size. As GQD are highly water-soluble, they are potential contaminants in environmental or drinking waters water samples, and hence the method was applied to the analysis of different drinking waters which were the target samples for the application of the developed method. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Influence of graphene quantum dots on electrical properties of polymer composites

    NASA Astrophysics Data System (ADS)

    Arthisree, D.; Joshi, Girish M.

    2017-07-01

    We successfully prepared synthetic nanocomposite (SNC) by dispersing graphene quantum dots (GQD) in cellulose acetate (CA) polymer system. The dispersion and occupied network of GQD were foreseen by microscopic techniques. The variation of plane to crossed linked array network was observed by the polarizing optical microscopic (POM) technique. The scanning electron microscopy (SEM) revealed the leaves like impressions of GQD in host polymer system. The series network of GQD occupied in CA at higher resolution was confirmed by transmission electron microscopy (TEM). The two dimensional (2D) topographic images demonstrated an entangled polymer network to plane morphology. The variation in surface roughness was evaluated from the dimensional (3D) topography. The influence of temperature on AC conductivity with highest value (4  ×  10-5 S cm-1), contributes to the decrease in activation energy. The DC conductivity obeys the percolation criteria co-related to the GQD loading by weight fraction. Furthermore, this synthetic nanocomposite is feasible for the development of sensing and electrical applications.

  6. Morphology and Admittance Spectroscopy of Cellulose Acetate/Graphene Quantum Dots Nanocomposites

    NASA Astrophysics Data System (ADS)

    Arthisree, D.; Joshi, Girish M.; Kumar, Annamalai Senthil

    Graphene quantum dots (GQDs) are considered as fascinating materials feasible for biological, optoelectronic devices, energy and environmental applications. Casting nanocomposite films for technological application is a challenging research interest. Cellulose acetate (CA) is one of the most abundant, economic, environmental friendly and biodegradable biomaterials. It has been found that CA is a preferred composite matrix to prepare recasting films, due to its efficient antifouling feature. In the present investigation, we exhibited preparation of CA/GQD nanocomposite by solution blending as a function of GQD loading 0.1-0.5wt.%. Morphology and electrical properties were examined as a function of GQD loading. The nanocomposite was characterized by impedance spectroscopy, and the measured admittance (Y) was plotted against temperature across broadband frequency. The magnitude of Y exhibits direct relation under the varying temperature. The morphology of the nanocomposites was observed by atomic force microscope technique in contact mode. Collective observation from our results is that it can be revealed that CA/GQD nanocomposites are suitable for thermal sensing applications.

  7. Designing field-controllable graphene-dot-graphene single molecule switches: A quantum-theoretical proof-of-concept under realistic operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pejov, Ljupčo, E-mail: ljupcop@pmf.ukim.mk; Petreska, Irina; Kocarev, Ljupčo

    2015-12-28

    A theoretical proof of the concept that a particularly designed graphene-based moletronics device, constituted by two semi-infinite graphene subunits, acting as source and drain electrodes, and a central benzenoid ring rotator (a “quantum dot”), could act as a field-controllable molecular switch is outlined and analyzed with the density functional theory approach. Besides the ideal (0 K) case, we also consider the operation of such a device under realistic operating (i.e., finite-temperature) conditions. An in-depth insight into the physics behind device controllability by an external field was gained by thorough analyses of the torsional potential of the dot under various conditionsmore » (absence or presence of an external gating field with varying strength), computing the torsional correlation time and transition probabilities within the Bloembergen-Purcell-Pound formalism. Both classical and quantum mechanical tunneling contributions to the intramolecular rotation were considered in the model. The main idea that we put forward in the present study is that intramolecular rotors can be controlled by the gating field even in cases when these groups do not possess a permanent dipole moment (as in cases considered previously by us [I. Petreska et al., J. Chem. Phys. 134, 014708-1–014708-12 (2011)] and also by other groups [P. E. Kornilovitch et al., Phys. Rev. B 66, 245413-1–245413-7 (2002)]). Consequently, one can control the molecular switching properties by an external electrostatic field utilizing even nonpolar intramolecular rotors (i.e., in a more general case than those considered so far). Molecular admittance of the currently considered graphene-based molecular switch under various conditions is analyzed employing non-equilibrium Green’s function formalism, as well as by analysis of frontier molecular orbitals’ behavior.« less

  8. CdTe quantum dots@luminol as signal amplification system for chrysoidine with chemiluminescence-chitosan/graphene oxide-magnetite-molecularly imprinting sensor

    NASA Astrophysics Data System (ADS)

    Duan, Huimin; Li, Leilei; Wang, Xiaojiao; Wang, Yanhui; Li, Jianbo; Luo, Chuannan

    2016-01-01

    A sensitive chemiluminescence (CL) sensor based on chemiluminescence resonance energy transfer (CRET) in CdTe quantum dots@luminol (CdTe QDs@luminol) nanomaterials combined with chitosan/graphene oxide-magnetite-molecularly imprinted polymer (Cs/GM-MIP) for sensing chrysoidine was developed. CdTe QDs@luminol was designed to not only amplify the signal of CL but also reduce luminol consumption in the detection of chrysoidine. On the basis of the abundant hydroxy and amino, Cs and graphene oxide were introduced into the GM-MIP to improve the adsorption ability. The adsorption capacities of chrysoidine by both Cs/GM-MIP and non-imprinted polymer (Cs/GM-NIP) were investigated, and the CdTe QDs@luminol and Cs/GM-MIP were characterized by UV-vis, FTIR, SEM and TEM. The proposed sensor can detect chrysoidine within a linear range of 1.0 × 10- 7 - 1.0 × 10- 5 mol/L with a detection limit of 3.2 × 10- 8 mol/L (3δ) due to considerable chemiluminescence signal enhancement of the CdTe quantum dots@luminol detector and the high selectivity of the Cs/GM-MIP system. Under the optimal conditions of CL, the CdTe QDs@luminol-Cs/GM-MIP-CL sensor was used for chrysoidine determination in samples with satisfactory recoveries in the range of 90-107%.

  9. Role of C–N Configurations in the Photoluminescence of Graphene Quantum Dots Synthesized by a Hydrothermal Route

    PubMed Central

    Permatasari, Fitri Aulia; Aimon, Akfiny Hasdi; Iskandar, Ferry; Ogi, Takashi; Okuyama, Kikuo

    2016-01-01

    Graphene quantum dots (GQDs) containing N atoms were successfully synthesized using a facile, inexpensive, and environmentally friendly hydrothermal reaction of urea and citric acid, and the effect of the GQDs’ C–N configurations on their photoluminescence (PL) properties were investigated. High-resolution transmission electron microscopy (HR-TEM) images confirmed that the dots were spherical, with an average diameter of 2.17 nm. X-ray photoelectron spectroscopy (XPS) analysis indicated that the C–N configurations of the GQDs substantially affected their PL intensity. Increased PL intensity was obtained in areas with greater percentages of pyridinic-N and lower percentages of pyrrolic-N. This enhanced PL was attributed to delocalized π electrons from pyridinic-N contributing to the C system of the GQDs. On the basis of energy electron loss spectroscopy (EELS) and UV-Vis spectroscopy analyses, we propose a PL mechanism for hydrothermally synthesized GQDs. PMID:26876153

  10. Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe

    NASA Astrophysics Data System (ADS)

    Hwang, Eunhee; Hwang, Hee Min; Shin, Yonghun; Yoon, Yeoheung; Lee, Hanleem; Yang, Junghee; Bak, Sora; Lee, Hyoyoung

    2016-12-01

    A band gap tuning of environmental-friendly graphene quantum dot (GQD) becomes a keen interest for novel applications such as photoluminescence (PL) sensor. Here, for tuning the band gap of GQD, a hexafluorohydroxypropanyl benzene (HFHPB) group acted as a receptor of a chemical warfare agent was chemically attached on the GQD via the diazonium coupling reaction of HFHPB diazonium salt, providing new HFHPB-GQD material. With a help of the electron withdrawing HFHPB group, the energy band gap of the HFHPB-GQD was widened and its PL decay life time decreased. As designed, after addition of dimethyl methyl phosphonate (DMMP), the PL intensity of HFHPB-GQD sensor sharply increased up to approximately 200% through a hydrogen bond with DMMP. The fast response and short recovery time was proven by quartz crystal microbalance (QCM) analysis. This HFHPB-GQD sensor shows highly sensitive to DMMP in comparison with GQD sensor without HFHPB and graphene. In addition, the HFHPB-GQD sensor showed high selectivity only to the phosphonate functional group among many other analytes and also stable enough for real device applications. Thus, the tuning of the band gap of the photoluminescent GQDs may open up new promising strategies for the molecular detection of target substrates.

  11. Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe

    PubMed Central

    Hwang, Eunhee; Hwang, Hee Min; Shin, Yonghun; Yoon, Yeoheung; Lee, Hanleem; Yang, Junghee; Bak, Sora; Lee, Hyoyoung

    2016-01-01

    A band gap tuning of environmental-friendly graphene quantum dot (GQD) becomes a keen interest for novel applications such as photoluminescence (PL) sensor. Here, for tuning the band gap of GQD, a hexafluorohydroxypropanyl benzene (HFHPB) group acted as a receptor of a chemical warfare agent was chemically attached on the GQD via the diazonium coupling reaction of HFHPB diazonium salt, providing new HFHPB-GQD material. With a help of the electron withdrawing HFHPB group, the energy band gap of the HFHPB-GQD was widened and its PL decay life time decreased. As designed, after addition of dimethyl methyl phosphonate (DMMP), the PL intensity of HFHPB-GQD sensor sharply increased up to approximately 200% through a hydrogen bond with DMMP. The fast response and short recovery time was proven by quartz crystal microbalance (QCM) analysis. This HFHPB-GQD sensor shows highly sensitive to DMMP in comparison with GQD sensor without HFHPB and graphene. In addition, the HFHPB-GQD sensor showed high selectivity only to the phosphonate functional group among many other analytes and also stable enough for real device applications. Thus, the tuning of the band gap of the photoluminescent GQDs may open up new promising strategies for the molecular detection of target substrates. PMID:27991584

  12. Graphene quantum dot incorporated perovskite films: passivating grain boundaries and facilitating electron extraction.

    PubMed

    Fang, Xiang; Ding, Jianning; Yuan, Ningyi; Sun, Peng; Lv, Minghang; Ding, Guqiao; Zhu, Chong

    2017-02-22

    Organic-inorganic halide perovskites have emerged as attractive materials for use in photovoltaic cells. Owing to the existence of dangling bonds at the grain boundaries between perovskite crystals, minimizing the charge recombination at the surface or grain boundaries by passivating these trap states has been identified to be one of the most important strategies for further optimization of device performance. Previous reports have mainly focused on surface passivation by inserting special materials such as graphene or fullerene between the electron transfer layer and the perovskite film. Here, we report an enhanced efficiency of mesoscopic perovskite solar cells by using graphene quantum dots (GQDs) to passivate the grain boundaries of CH 3 NH 3 PbI 3 . The highest efficiency (17.62%) is achieved via decoration with 7% GQDs, which is an 8.2% enhancement with respect to a pure perovskite based device. Various analyses including electrochemical impedance spectroscopy, time-resolved photoluminescence decay and open-circuit voltage decay measurements are employed in investigating the mechanism behind the improvement in device performance. The findings reveal two important roles played by GQDs in promoting the performance of perovskite solar cells - that GQDs are conducive to facilitating electron extraction and can effectively passivate the electron traps at the perovskite grain boundaries.

  13. Fabrication of green dye-sensitized solar cell based on ZnO nanoparticles as a photoanode and graphene quantum dots as a photo-sensitizer.

    PubMed

    Zamiri, Golnoush; Bagheri, Samira

    2018-02-01

    Zero-dimensional graphene quantum dots (GQDs) consist of single- or few-layer graphene with a size less than 20 nm and stand for a new type of QDs with unique properties combining the graphene nature and size-resulted quantum effects. GQDs possess unique optical and electronic properties, and in particular possess a band-gap less than 2.0 eV because of quantum confinement and edge effects. In this study, we investigated the performance of DSSCs using different thicknesses of ZnO nanoparticles as a photo-anode and GQDs as a green photosensitizer. The current voltage (I-V) test results indicate that the performance of DSSCs is improved by increasing the thickness of the photo-anode and the thickness of 40 μm shows the highest efficiency for DSSC device based on ZnO nanoparticles photo-anodes. The DSSC using ZnO nanoparticles as a photo-anode with thickness of 40 μm shows almost same efficiency when we replaced N-719 with GQDs which is confirmed that using GQDs as an alternative to ruthenium based dyes is a new approach for DSSCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Gate Tuning of Förster Resonance Energy Transfer in a Graphene - Quantum Dot FET Photo-Detector.

    PubMed

    Li, Ruifeng; Schneider, Lorenz Maximilian; Heimbrodt, Wolfram; Wu, Huizhen; Koch, Martin; Rahimi-Iman, Arash

    2016-06-20

    Graphene photo-detectors functionalized by colloidal quantum dots (cQDs) have been demonstrated to show effective photo-detection. Although the transfer of charge carriers or energy from the cQDs to graphene is not sufficiently understood, it is clear that the mechanism and efficiency of the transfer depends on the morphology of the interface between cQDs and graphene, which is determined by the shell of the cQDs in combination with its ligands. Here, we present a study of a graphene field-effect transistor (FET), which is functionalized by long-ligand CdSe/ZnS core/shell cQDs. Time-resolved photo-luminescence from the cQDs as a function of the applied gate voltage has been investigated in order to probe transfer dynamics in this system. Thereby, a clear modification of the photo-luminescence lifetime has been observed, indicating a change of the decay channels. Furthermore, we provide responsivities under a Förster-like energy transfer model as a function of the gate voltage in support of our findings. The model shows that by applying a back-gate voltage to the photo-detector, the absorption can be tuned with respect to the photo-luminescence of the cQDs. This leads to a tunable energy transfer rate across the interface of the photo-detector, which offers an opportunity to optimize the photo-detection.

  15. Dual-Mode SERS-Fluorescence Immunoassay Using Graphene Quantum Dot Labeling on One-Dimensional Aligned Magnetoplasmonic Nanoparticles.

    PubMed

    Zou, Fengming; Zhou, Hongjian; Tan, Tran Van; Kim, Jeonghyo; Koh, Kwangnak; Lee, Jaebeom

    2015-06-10

    A novel dual-mode immunoassay based on surface-enhanced Raman scattering (SERS) and fluorescence was designed using graphene quantum dot (GQD) labels to detect a tuberculosis (TB) antigen, CFP-10, via a newly developed sensing platform of linearly aligned magnetoplasmonic (MagPlas) nanoparticles (NPs). The GQDs were excellent bilabeling materials for simultaneous Raman scattering and photoluminescence (PL). The one-dimensional (1D) alignment of MagPlas NPs simplified the immunoassay process and enabled fast, enhanced signal transduction. With a sandwich-type immunoassay using dual-mode nanoprobes, both SERS signals and fluorescence images were recognized in a highly sensitive and selective manner with a detection limit of 0.0511 pg mL(-1).

  16. Charge carrier transport in defective reduced graphene oxide as quantum dots and nanoplatelets in multilayer films

    NASA Astrophysics Data System (ADS)

    Jimenez, Mawin J. M.; Oliveira, Rafael F.; Almeida, Tiago P.; Hensel Ferreira, Rafael C.; Bufon, Carlos Cesar B.; Rodrigues, Varlei; Pereira-da-Silva, Marcelo A.; Gobbi, Ângelo L.; Piazzetta, Maria H. O.; Riul, Antonio, Jr.

    2017-12-01

    Graphene is a breakthrough 2D material due to its unique mechanical, electrical, and thermal properties, with considerable responsiveness in real applications. However, the coverage of large areas with pristine graphene is a challenge and graphene derivatives have been alternatively exploited to produce hybrid and composite materials that allow for new developments, considering also the handling of large areas using distinct methodologies. For electronic applications there is significant interest in the investigation of the electrical properties of graphene derivatives and related composites to determine whether the characteristic 2D charge transport of pristine graphene is preserved. Here, we report a systematic study of the charge transport mechanisms of reduced graphene oxide chemically functionalized with sodium polystyrene sulfonate (PSS), named as GPSS. GPSS was produced either as quantum dots (QDs) or nanoplatelets (NPLs), being further nanostructured with poly(diallyldimethylammonium chloride) through the layer-by-layer (LbL) assembly to produce graphene nanocomposites with molecular level control. Current-voltage (I-V) measurements indicated a meticulous growth of the LbL nanostructures onto gold interdigitated electrodes (IDEs), with a space-charge-limited current dominated by a Mott-variable range hopping mechanism. A 2D intra-planar conduction within the GPSS nanostructure was observed, which resulted in effective charge carrier mobility (μ) of 4.7 cm2 V-1 s-1 for the QDs and 34.7 cm2 V-1 s-1 for the NPLs. The LbL assemblies together with the dimension of the materials (QDs or NPLs) were favorably used for the fine tuning and control of the charge carrier mobility inside the LbL nanostructures. Such 2D charge conduction mechanism and high μ values inside an interlocked multilayered assembly containing graphene-based nanocomposites are of great interest for organic devices and functionalization of interfaces.

  17. Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers

    NASA Astrophysics Data System (ADS)

    Liu, Wenwen; Yan, Xingbin; Chen, Jiangtao; Feng, Yaqiang; Xue, Qunji

    2013-06-01

    In comparison with graphene sheets, graphene quantum dots (GQDs) exhibit novel chemical/physical properties including nanometer-size, abundant edge defects, good electrical conductivity, high mobility, chemical inertia, stable photoluminescence and better surface grafting, making them promising for fabricating various novel devices. In the present work, an asymmetric micro-supercapacitor, using GQDs as negative active material and polyaniline (PANI) nanofibers as positive active material, is built for the first time by a simple and controllable two-step electro-deposition on interdigital finger gold electrodes. Electrochemical measurements reveal that the as-made GQDs//PANI asymmetric micro-supercapacitor has a more excellent rate capability (up to 1000 V s-1) than previously reported electrode materials, as well as faster power response capability (with a very short relaxation time constant of 115.9 μs) and better cycling stability after 1500 cycles in aqueous electrolyte. On this basis, an all-solid-state GQDs//PANI asymmetric micro-supercapacitor is fabricated using H3PO4-polyvinyl alcohol gel as electrolyte, which also exhibits desirable electrochemical capacitive performances. These encouraging results presented here may open up new insight into GQDs with highly promising applications in high-performance energy-storage devices, and further expand the potential applications of GQDs beyond the energy-oriented application of GQDs discussed above.In comparison with graphene sheets, graphene quantum dots (GQDs) exhibit novel chemical/physical properties including nanometer-size, abundant edge defects, good electrical conductivity, high mobility, chemical inertia, stable photoluminescence and better surface grafting, making them promising for fabricating various novel devices. In the present work, an asymmetric micro-supercapacitor, using GQDs as negative active material and polyaniline (PANI) nanofibers as positive active material, is built for the first time by a

  18. Quantum scar and breakdown of universality in graphene: A theoretical insight

    NASA Astrophysics Data System (ADS)

    Iyakutti, Kombiah; Rajeswarapalanichamy, Ratnavelu; Surya, Velappa Jayaraman; Kawazoe, Yoshiyuki

    2017-12-01

    Graphene has brought forward a lot of new physics. One of them is the emergence of massless Dirac fermions in addition to the electrons and these features are new to physics. In this theoretical study, the signatures for quantum scar and the breakdown of universality in graphene are investigated with reference to the presence of these two types of fermions. Taking the graphene quantum dot (QD) potential as the confining potential, the radial part of Dirac equations are solved numerically. Concentrations of the two component eigen-wavefunctions about classical periodic orbits emerge as the signatures for the quantum scar. The sudden variations, in the ratio of the radial wave-functions (large and small components), R(g/f), with mass ratio κ are the signatures for breakdown of universality in graphene. The breakdown of universality occurs for the states k = -1 and k = 1, and the state k = -1 is more susceptible to the breakdown of universality.

  19. Fabrication of valine-functionalized graphene quantum dots and its use as a novel optical probe for sensitive and selective detection of Hg2 +

    NASA Astrophysics Data System (ADS)

    Xiaoyan, Zhou; Zhangyi, Li; Zaijun, Li

    2017-01-01

    The functionalization of graphene quantum dots has become a powerful method to modulate its chemical, electronic and optical properties for various applications. In the study, we reported a facile synthesis of valine-functionalized graphene quantum dots (Val-GQDs) and its use as a novel fluorescent probe for optical detection of Hg2 +. Herein, Val-GQDs was synthesized by the thermal pyrolysis of citric acid and valine. The resulting Val-GQDs has an average size of 3 nm and the edge of graphene sheets contains the rich of hydrophilic groups, leading to a high water-solubility. Compared to the GQDs prepared by thermal pyrolysis of citric acid, Val-GQDs exhibits a stronger fluorescence (> 10-fold) and better photostability (> 4-fold). Interestingly, the existence of valine moieties in the Val-GQDs results in a more sensitive fluorescent response to Hg2 +. The fluorescent signal will linearly decrease with the increase of Hg2 + concentration in the range from 0.8 nM to 1 μM with the correlation coefficient of 0.992. The detection limit is 0.4 nM (S/N = 3), which the sensitivity is > 14-fold that of GQDs. The analytical method provides the prominent advantage of sensitivity, selectivity and stability. It has been successfully applied in the optical detection of Hg2 + in real water samples. The study also provides a promising approach for the design and synthesis of functionalized GQDs to meet the needs of further applications in sensing and catalysis.

  20. Graphene quantum blisters: A tunable system to confine charge carriers

    NASA Astrophysics Data System (ADS)

    Abdullah, H. M.; Van der Donck, M.; Bahlouli, H.; Peeters, F. M.; Van Duppen, B.

    2018-05-01

    Due to Klein tunneling, electrostatic confinement of electrons in graphene is not possible. This hinders the use of graphene for quantum dot applications. Only through quasi-bound states with finite lifetime has one achieved to confine charge carriers. Here, we propose that bilayer graphene with a local region of decoupled graphene layers is able to generate bound states under the application of an electrostatic gate. The discrete energy levels in such a quantum blister correspond to localized electron and hole states in the top and bottom layers. We find that this layer localization and the energy spectrum itself are tunable by a global electrostatic gate and that the latter also coincides with the electronic modes in a graphene disk. Curiously, states with energy close to the continuum exist primarily in the classically forbidden region outside the domain defining the blister. The results are robust against variations in size and shape of the blister which shows that it is a versatile system to achieve tunable electrostatic confinement in graphene.

  1. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    DOEpatents

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  2. Europium-decorated graphene quantum dots as a fluorescent probe for label-free, rapid and sensitive detection of Cu(2+) and L-cysteine.

    PubMed

    Lin, Liping; Song, Xinhong; Chen, Yiying; Rong, Mingcong; Wang, Yiru; Zhao, Li; Zhao, Tingting; Chen, Xi

    2015-09-03

    In this work, europium-decorated graphene quantum dots (Eu-GQDs) were prepared by treating three-dimensional Eu-decorated graphene (3D Eu-graphene) via a strong acid treatment. Various characterizations revealed that Eu atoms were successfully complexed with the oxygen functional groups on the surface of graphene quantum dots (GQDs) with the atomic ratio of 2.54%. Compared with Eu free GQDs, the introduction of Eu atoms enhanced the electron density and improved the surface chemical activities of Eu-GQDs. Therefore, the obtained Eu-GQDs were used as a novel "off-on" fluorescent probe for the label-free determination of Cu(2+) and l-cysteine (L-Cys) with high sensitivity and selectivity. The fluorescence intensity of Eu-GQDs was quenched in the presence of Cu(2+) owing to the coordination reaction between Cu(2+) and carboxyl groups on the surface of the Eu-GQDs. The fluorescence intensity of Eu-GQDs recovered with the subsequent addition of L-Cys because of the strong affinity of Cu(2+) to L-Cys via the Cu-S bond. The experimental results showed that the fluorescence variation of the proposed approach had a good linear relationship in the range of 0.1-10 μM for Cu(2+) and 0.5-50 μM for L-Cys with corresponding detection limits of 0.056 μM for Cu(2+) and 0.31 μM for L-Cys. The current approach also displayed a special response to Cu(2+) and L-Cys over the other co-existing metal ions and amino acids, and the results obtained from buffer-diluted serum samples suggested its applicability in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties.

    PubMed

    Wang, Liang; Wang, Yanli; Xu, Tao; Liao, Haobo; Yao, Chenjie; Liu, Yuan; Li, Zhen; Chen, Zhiwen; Pan, Dengyu; Sun, Litao; Wu, Minghong

    2014-10-28

    Graphene quantum dots (GQDs) have various alluring properties and potential applications, but their large-scale applications are limited by current synthetic methods that commonly produce GQDs in small amounts. Moreover, GQDs usually exhibit polycrystalline or highly defective structures and thus poor optical properties. Here we report the gram-scale synthesis of single-crystalline GQDs by a facile molecular fusion route under mild and green hydrothermal conditions. The synthesis involves the nitration of pyrene followed by hydrothermal treatment in alkaline aqueous solutions, where alkaline species play a crucial role in tuning their size, functionalization and optical properties. The single-crystalline GQDs are bestowed with excellent optical properties such as bright excitonic fluorescence, strong excitonic absorption bands extending to the visible region, large molar extinction coefficients and long-term photostability. These high-quality GQDs can find a large array of novel applications in bioimaging, biosensing, light emitting diodes, solar cells, hydrogen production, fuel cells and supercapacitors.

  4. Investigating the bioavailability of graphene quantum dots in lung tissues via Fourier transform infrared spectroscopy.

    PubMed

    Tabish, Tanveer A; Lin, Liangxu; Ali, Muhammad; Jabeen, Farhat; Ali, Muhammad; Iqbal, Rehana; Horsell, David W; Winyard, Paul G; Zhang, Shaowei

    2018-06-06

    Biomolecular fractions affect the fate and behaviour of quantum dots (QDs) in living systems but how the interactions between biomolecules and QDs affect the bioavailability of QDs is a major knowledge gap in risk assessment analysis. The transport of QDs after release into a living organism is a complex process. The majority accumulate in the lungs where they can directly affect the inhalation process and lung architecture. Here, we investigate the bioavailability of graphene quantum dots (GQDs) to the lungs of rats by measuring the alterations in macromolecular fractions via Fourier transform infrared spectroscopy (FTIR). GQDs were intravenously injected into the rats in a dose-dependent manner (low (5 mg kg -1 ) and high (15 mg kg -1 ) doses of GQDs per body weight of rat) for 7 days. The lung tissues were isolated, processed and haematoxylin-eosin stained for histological analysis to identify cell death. Key biochemical differences were identified by spectral signatures: pronounced changes in cholesterol were found in two cases of low and high doses; a change in phosphorylation profile of substrate proteins in the tissues was observed in low dose at 24 h. This is the first time biomolecules have been measured in biological tissue using FTIR to investigate the biocompatibility of foreign material. We found that highly accurate toxicological changes can be investigated with FTIR measurements of tissue sections. As a result, FTIR could form the basis of a non-invasive pre-diagnostic tool for predicting the toxicity of GQDs.

  5. Quantum dot behavior in transition metal dichalcogenides nanostructures

    NASA Astrophysics Data System (ADS)

    Luo, Gang; Zhang, Zhuo-Zhi; Li, Hai-Ou; Song, Xiang-Xiang; Deng, Guang-Wei; Cao, Gang; Xiao, Ming; Guo, Guo-Ping

    2017-08-01

    Recently, transition metal dichalcogenides (TMDCs) semiconductors have been utilized for investigating quantum phenomena because of their unique band structures and novel electronic properties. In a quantum dot (QD), electrons are confined in all lateral dimensions, offering the possibility for detailed investigation and controlled manipulation of individual quantum systems. Beyond the definition of graphene QDs by opening an energy gap in nanoconstrictions, with the presence of a bandgap, gate-defined QDs can be achieved on TMDCs semiconductors. In this paper, we review the confinement and transport of QDs in TMDCs nanostructures. The fabrication techniques for demonstrating two-dimensional (2D) materials nanostructures such as field-effect transistors and QDs, mainly based on e-beam lithography and transfer assembly techniques are discussed. Subsequently, we focus on electron transport through TMDCs nanostructures and QDs. With steady improvement in nanoscale materials characterization and using graphene as a springboard, 2D materials offer a platform that allows creation of heterostructure QDs integrated with a variety of crystals, each of which has entirely unique physical properties.

  6. II-VI colloidal quantum-dot/quantum-rod heterostructures under electric field effect and their energy transfer rate to graphene

    NASA Astrophysics Data System (ADS)

    Zahra, H.; Elmaghroui, D.; Fezai, I.; Jaziri, S.

    2016-11-01

    We theoretically investigate the energy transfer between a CdSe/CdS Quantum-dot/Quantum-rod (QD/QR) core/shell structure and a weakly doped graphene layer, separated by a dielectric spacer. A numerical method assuming the realistic shape of the type I and quasi-type II CdSe/CdS QD/QR is developed in order to calculate their energy structure. An electric field is applied for both types to manipulate the carriers localization and the exciton energy. Our evaluation for the isolated QD/QR shows that a quantum confined Stark effect can be obtained with large negative electric filed while a small effect is observed with positive ones. Owing to the evolution of the carriers delocalization and their excitonic energy versus the electric field, both type I and quasi-type II QD/QR donors are suitable as sources of charge and energy. With a view to improve its absorption, the graphene sheet (acceptor) is placed at different distances from the QD/QR (donor). Using the random phase approximation and the massless Dirac Fermi approximation, the quenching rate integral is exactly evaluated. That reveals a high transfer rate that can be obtained with type I QD/QR with no dependence on the electric field. On the contrary, a high dependence is obtained for the quasi-type II donor and a high fluorescence rate from F = 80 kV/cm. Rather than the exciton energy, the transition dipole is found to be responsible for the evolution of the fluorescence rate. We find also that the fluorescence rate decreases with increasing the spacer thickness and shows a power low dependence. The QD/QR fluorescence quenching can be observed up to large distance which is estimated to be dependent only on the donor exciton energy.

  7. Amplified electrochemiluminescence of quantum dots by electrochemically reduced graphene oxide for nanobiosensing of acetylcholine.

    PubMed

    Deng, Shengyuan; Lei, Jianping; Cheng, Lingxiao; Zhang, Yangyang; Ju, Huangxian

    2011-07-15

    A signal amplification system for electrochemiluminescence (ECL) of quantum dots (QDs) was developed by using electrochemically reduced graphene oxide (ERGO) to construct a nanobiosensing platform. Due to the structural defects of GO, the ECL emission of QDs coated on GO modified electrode was significantly quenched. After the electrochemical reduction of GO, the restoration of structural conjugation was observed with spectroscopic, morphologic and impedance techniques. Thus in the presence of dissolved O₂ as coreactant, the QDs/ERGO modified electrode showed ECL intensity increase by 4.2 and 178.9 times as compared with intrinsic QDs and QDs/GO modified electrodes due to the adsorption of dissolved O₂ on ERGO and the facilitated electron transfer. After choline oxidase (ChO) or ChO-acetylcholinesterase was further covalently cross-linked on the QDs/ERGO modified electrode, two ECL biosensors for choline and acetylcholine were fabricated, which showed the linear response ranges and detection limits of 10-210 μM and 8.8 μM for choline, and 10-250 μM and 4.7 μM for acetylcholine, respectively. This green and facile approach to prepare graphene-QDs system could be of potential applications in electronic device and bioanalysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Synthesis of gold-palladium nanowaxberries/dodecylamine-functionalized graphene quantum dots-graphene micro-aerogel for voltammetric determination of peanut allergen Ara h 1.

    PubMed

    Li, Ruiyi; Liu, Ling; Zhu, Haiyan; Li, Zaijun

    2018-05-30

    The paper reports synthesis of gold-palladium nanowaxberries(AuPd NWs)/dodecylamine-functionalized graphene quantum dots(D-GQDs)-graphene micro-aerogel(GMA). D-GQDs was used as a solid particle surfactant for stabilizing Pickering emulsion of toluene-in-graphene oxide aqueous dispersion. Graphene oxide sheets in the aqueous phase are reduced by hydrazine hydrate, diffused into the toluene droplet and self-assembled into graphene oxide micro-gels. Followed by freeze-drying, thermal annealing and hybridized with AuPd NWs. The as-prepared AuPd NWs/D-GQDs-GMA shows an unique three-dimensional structure with the size of microns. The small size and strong polarity make it can be directly dispersed in ethanol to form stable dispersion for sensor preparation. The hybrid of GMA, D-GQDs and AuPd NWs greatly improves the electron transfer, electroactive surface area and ion diffusion. The architecture of conductor/semiconductor/conductor achieves to a significant amplification of detection signal. The DNA biosensor based on the AuPd NWs/D-GQDs-GMA exhibits ultrasensitive differential pulse voltammetric (DPV) response towards peanut allergen Ara h 1. The DPV signal linearly increases with increasing DNA concentration in the range of 1.0 × 10 -22 -1.0 × 10 -17  M with the detection limit of 4.7 × 10 -23  M (S/N = 3). The analytical method was successfully applied to voltammetric determination of peanut allergen Ara h 1 in peanut milk beverage. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Synthesis of quantum dots

    DOEpatents

    McDaniel, Hunter

    2017-10-17

    Common approaches to synthesizing alloyed quantum dots employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Disclosed quantum dot synthesis embodiments avoid these hazardous and air-sensitive selenium precursors. Certain embodiments utilize a combination comprising a thiol and an amine that together reduce and complex the elemental selenium to form a highly reactive selenium precursor at room temperature. The same combination of thiol and amine acts as the reaction solvent, stabilizing ligand, and sulfur source in the synthesis of quantum dot cores. A non-injection approach may also be used. The optical properties of the quantum dots synthesized by this new approach can be finely tuned for a variety of applications by controlling size and/or composition of size and composition. Further, using the same approach, a shell can be grown around a quantum dot core that improves stability, luminescence efficiency, and may reduce toxicity.

  10. Multi-Excitonic Quantum Dot Molecules

    NASA Astrophysics Data System (ADS)

    Scheibner, M.; Stinaff, E. A.; Doty, M. F.; Ware, M. E.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    With the ability to create coupled pairs of quantum dots, the next step towards the realization of semiconductor based quantum information processing devices can be taken. However, so far little knowledge has been gained on these artificial molecules. Our photoluminescence experiments on single InAs/GaAs quantum dot molecules provide the systematics of coupled quantum dots by delineating the spectroscopic features of several key charge configurations in such quantum systems, including X, X^+,X^2+, XX, XX^+ (with X being the neutral exciton). We extract general rules which determine the formation of molecular states of coupled quantum dots. These include the fact that quantum dot molecules provide the possibility to realize various spin configurations and to switch the electron hole exchange interaction on and off by shifting charges inside the molecule. This knowledge will be valuable in developing implementations for quantum information processing.

  11. Enhanced fluorescence of tetrasulfonated zinc phthalocyanine by graphene quantum dots and its application in molecular sensing/imaging.

    PubMed

    Wang, Jian; Zhang, Yanjun; Ye, Jiqing; Jiang, Zhou

    2017-06-01

    When excited at 435 nm, tetra-sulfonate zinc phthalocyanine (ZnPcS 4 ) emitted dual fluorescence at 495 and 702 nm. The abnormal fluorescence at 495 nm was experimentally studied and analyzed in detail for the first time. The abnormal fluorescence at 495 nm was deduced to originate from triplet-triplet (T-T) energy transfer of excited phthalocyanine ( 3 *ZnPcS 4 ). Furthermore, graphene quantum dots (GQDs) enhanced the 495 nm fluorescence quantum yield (Q) of ZnPcS 4 . The fluorescence properties of ZnPcS 4 -GQDs conjugate were retained in a cellular environment. Based on the fluorescence of ZnPcS 4 -GQDs conjugate, we designed and prepared an Apt29/thrombin/Apt15 sandwich thrombin sensor with high specificity and affinity. This cost-saving, simple operational sensing strategy can be extended to use in sensing/imaging of other biomolecules. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Quantum dot quantum cascade infrared photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xue-Jiao; Zhai, Shen-Qiang; Zhuo, Ning

    2014-04-28

    We demonstrate an InAs quantum dot quantum cascade infrared photodetector operating at room temperature with a peak detection wavelength of 4.3 μm. The detector shows sensitive photoresponse for normal-incidence light, which is attributed to an intraband transition of the quantum dots and the following transfer of excited electrons on a cascade of quantum levels. The InAs quantum dots for the infrared absorption were formed by making use of self-assembled quantum dots in the Stranski–Krastanov growth mode and two-step strain-compensation design based on InAs/GaAs/InGaAs/InAlAs heterostructure, while the following extraction quantum stairs formed by LO-phonon energy are based on a strain-compensated InGaAs/InAlAs chirpedmore » superlattice. Johnson noise limited detectivities of 3.64 × 10{sup 11} and 4.83 × 10{sup 6} Jones at zero bias were obtained at 80 K and room temperature, respectively. Due to the low dark current and distinct photoresponse up to room temperature, this device can form high temperature imaging.« less

  13. Energy levels of double triangular graphene quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, F. X.; Jiang, Z. T., E-mail: ztjiang616@hotmail.com; Zhang, H. Y.

    2014-09-28

    We investigate theoretically the energy levels of the coupled double triangular graphene quantum dots (GQDs) based on the tight-binding Hamiltonian model. The double GQDs including the ZZ-type, ZA-type, and AA-type GQDs with the two GQDs having the zigzag or armchair boundaries can be coupled together via different interdot connections, such as the direct coupling, the chains of benzene rings, and those of carbon atoms. It is shown that the energy spectrum of the coupled double GQDs is the amalgamation of those spectra of the corresponding two isolated GQDs with the modification triggered by the interdot connections. The interdot connection ismore » inclined to lift up the degeneracies of the energy levels in different degree, and as the connection changes from the direct coupling to the long chains, the removal of energy degeneracies is suppressed in ZZ-type and AA-type double GQDs, which indicates that the two coupled GQDs are inclined to become decoupled. Then we consider the influences on the spectra of the coupled double GQDs induced by the electric fields applied on the GQDs or the connection, which manifests as the global spectrum redistribution or the local energy level shift. Finally, we study the symmetrical and asymmetrical energy spectra of the double GQDs caused by the substrates supporting the two GQDs, clearly demonstrating how the substrates affect the double GQDs' spectrum. This research elucidates the energy spectra of the coupled double GQDs, as well as the mechanics of manipulating them by the electric field and the substrates, which would be a significant reference for designing GQD-based devices.« less

  14. Spectroscopy characterization and quantum yield determination of quantum dots

    NASA Astrophysics Data System (ADS)

    Contreras Ortiz, S. N.; Mejía Ospino, E.; Cabanzo, R.

    2016-02-01

    In this paper we show the characterization of two kinds of quantum dots: hydrophilic and hydrophobic, with core and core/shell respectively, using spectroscopy techniques such as UV-Vis, fluorescence and Raman. We determined the quantum yield in the quantum dots using the quinine sulphate as standard. This salt is commonly used because of its quantum yield (56%) and stability. For the CdTe excitation, we used a wavelength of 549nm and for the CdSe/ZnS excitation a wavelength of 527nm. The results show that CdSe/ZnS (49%) has better fluorescence, better quantum dots, and confirm the fluorescence result. The quantum dots have shown a good fluorescence performance, so this property will be used to replace dyes, with the advantage that quantum dots are less toxic than some dyes like the rhodamine. In addition, in this work we show different techniques to find the quantum dots emission: fluorescence spectrum, synchronous spectrum and Raman spectrum.

  15. Ultrafast light matter interaction in CdSe/ZnS core-shell quantum dots

    NASA Astrophysics Data System (ADS)

    Yadav, Rajesh Kumar; Sharma, Rituraj; Mondal, Anirban; Adarsh, K. V.

    2018-04-01

    Core-shell quantum dot are imperative for carrier (electron and holes) confinement in core/shell, which provides a stage to explore the linear and nonlinear optical phenomena at the nanoscalelimit. Here we present a comprehensive study of ultrafast excitation dynamics and nonlinear optical absorption of CdSe/ZnS core shell quantum dot with the help of ultrafast spectroscopy. Pump-probe and time-resolved measurements revealed the drop of trapping at CdSe surface due to the presence of the ZnS shell, which makes more efficient photoluminescence. We have carried out femtosecond transient absorption studies of the CdSe/ZnS core-shell quantum dot by irradiation with 400 nm laser light, monitoring the transients in the visible region. The optical nonlinearity of the core-shell quantum dot studied by using the Z-scan technique with 120 fs pulses at the wavelengths of 800 nm. The value of two photon absorption coefficients (β) of core-shell QDs extracted as80cm/GW, and it shows excellent benchmark for the optical limiting onset of 2.5GW/cm2 with the low limiting differential transmittance of 0.10, that is an order of magnitude better than graphene based materials.

  16. Graphene Quantum Dot Layers with Energy-Down-Shift Effect on Crystalline-Silicon Solar Cells.

    PubMed

    Lee, Kyung D; Park, Myung J; Kim, Do-Yeon; Kim, Soo M; Kang, Byungjun; Kim, Seongtak; Kim, Hyunho; Lee, Hae-Seok; Kang, Yoonmook; Yoon, Sam S; Hong, Byung H; Kim, Donghwan

    2015-09-02

    Graphene quantum dot (GQD) layers were deposited as an energy-down-shift layer on crystalline-silicon solar cell surfaces by kinetic spraying of GQD suspensions. A supersonic air jet was used to accelerate the GQDs onto the surfaces. Here, we report the coating results on a silicon substrate and the GQDs' application as an energy-down-shift layer in crystalline-silicon solar cells, which enhanced the power conversion efficiency (PCE). GQD layers deposited at nozzle scan speeds of 40, 30, 20, and 10 mm/s were evaluated after they were used to fabricate crystalline-silicon solar cells; the results indicate that GQDs play an important role in increasing the optical absorptivity of the cells. The short-circuit current density was enhanced by about 2.94% (0.9 mA/cm(2)) at 30 mm/s. Compared to a reference device without a GQD energy-down-shift layer, the PCE of p-type silicon solar cells was improved by 2.7% (0.4 percentage points).

  17. Graphene Quantum Dots Interfaced with Single Bacterial Spore for Bio-Electromechanical Devices: A Graphene Cytobot

    PubMed Central

    Sreeprasad, T. S.; Nguyen, Phong; Alshogeathri, Ahmed; Hibbeler, Luke; Martinez, Fabian; McNeil, Nolan; Berry, Vikas

    2015-01-01

    The nanoarchitecture and micromachinery of a cell can be leveraged to fabricate sophisticated cell-driven devices. This requires a coherent strategy to derive cell's mechanistic abilities, microconstruct, and chemical-texture towards such microtechnologies. For example, a microorganism's hydrophobic membrane encapsulating hygroscopic constituents allows it to sustainably withhold a high aquatic pressure. Further, it provides a rich surface chemistry available for nano-interfacing and a strong mechanical response to humidity. Here we demonstrate a route to incorporate a complex cellular structure into microelectromechanics by interfacing compatible graphene quantum dots (GQDs) with a highly responsive single spore microstructure. A sensitive and reproducible electron-tunneling width modulation of 1.63 nm within a network of GQDs chemically-secured on a spore was achieved via sporal hydraulics with a driving force of 299.75 Torrs (21.7% water at GQD junctions). The electron-transport activation energy and the Coulomb blockade threshold for the GQD network were 35 meV and 31 meV, respectively; while the inter-GQD capacitance increased by 1.12 folds at maximum hydraulic force. This is the first example of nano/bio interfacing with spores and will lead to the evolution of next-generation bio-derived microarchitectures, probes for cellular/biochemical processes, biomicrorobotic-mechanisms, and membranes for micromechanical actuation. PMID:25774962

  18. Graphene Quantum Dot-Aerogel: From Nanoscopic to Macroscopic Fluorescent Materials. Sensing Polyaromatic Compounds in Water.

    PubMed

    Martín-Pacheco, Ana; Del Río Castillo, Antonio Esaú; Martín, Cristina; Herrero, María Antonia; Merino, Sonia; García Fierro, José Luis; Díez-Barra, Enrique; Vázquez, Ester

    2018-05-30

    Fluorescence based on quantum confinement is a property restricted to the nanoscopic range. The incorporation of nanoparticles in a three-dimensional polymeric network could afford macroscopic scaffolds that show nanoscopic properties. Moreover, if these scaffolds are based on strong bonds, the stability of the resulting materials can be preserved, thus enhancing their final applications. We report for the first time the preparation of a graphene quantum dot (GQD) composite based on a cationic covalent network. This new material has unusual features: (i) the final composite remains stable after several swelling-deswelling cycles, thus demonstrating strong interactions between GQDs and the polymeric material, and therefore it could be used as a portable system. (ii) Fluorescence emission in the composite and in solution is quasi-independent to the excitation wavelength. (iii) However, and in contrast to the behavior observed in GQD solutions, the fluorescence of the composite remains unaltered over a wide pH range and in the presence of different ions commonly found in tap water. (iv) Fluorescence quenching is only observed as a consequence of molecules that bear aromatic systems, and this could be applied to the preparation of in situ water sensors.

  19. Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers.

    PubMed

    Liu, Wenwen; Yan, Xingbin; Chen, Jiangtao; Feng, Yaqiang; Xue, Qunji

    2013-07-07

    In comparison with graphene sheets, graphene quantum dots (GQDs) exhibit novel chemical/physical properties including nanometer-size, abundant edge defects, good electrical conductivity, high mobility, chemical inertia, stable photoluminescence and better surface grafting, making them promising for fabricating various novel devices. In the present work, an asymmetric micro-supercapacitor, using GQDs as negative active material and polyaniline (PANI) nanofibers as positive active material, is built for the first time by a simple and controllable two-step electro-deposition on interdigital finger gold electrodes. Electrochemical measurements reveal that the as-made GQDs//PANI asymmetric micro-supercapacitor has a more excellent rate capability (up to 1000 V s(-1)) than previously reported electrode materials, as well as faster power response capability (with a very short relaxation time constant of 115.9 μs) and better cycling stability after 1500 cycles in aqueous electrolyte. On this basis, an all-solid-state GQDs//PANI asymmetric micro-supercapacitor is fabricated using H3PO4-polyvinyl alcohol gel as electrolyte, which also exhibits desirable electrochemical capacitive performances. These encouraging results presented here may open up new insight into GQDs with highly promising applications in high-performance energy-storage devices, and further expand the potential applications of GQDs beyond the energy-oriented application of GQDs discussed above.

  20. Graphene quantum dots: effect of size, composition and curvature on their assembly

    DOE PAGES

    Elvati, Paolo; Baumeister, Elizabeth; Violi, Angela

    2017-03-21

    Graphene Quantum Dots (GQDs) are a relatively new class of molecules that have ignited tremendous research interest due to their extraordinary and tunable optical, electrical, chemical and structural properties. In this paper, we report a molecular-level elucidation of the key mechanisms and physical–chemical factors controlling the assembly and stability of nanostructures formed by GQDs in an aqueous environment, using molecular dynamics simulations. We observe the general tendency to form small aggregates and three recurring configurations, one of them with a single layer of water separating two GQDs. The type and characteristics of the structure are mostly determined by the hydrophobicitymore » of the GQDs as well as the steric hindrance of the dangling groups. The composition of the terminal groups plays a key role in determining the configuration of the GQDs, which is also markedly affected by the formation of clusters. Notably, the aggregated GQDs assume strongly correlated shapes and, in some cases, display a radically different conformation distribution compared to single molecules. This cooperative effect prolongs the lifetime of the GQD configurations and can explain the observed persistence of chiral conformations that are only marginally more stable than their specular images.« less

  1. Double quantum dot memristor

    NASA Astrophysics Data System (ADS)

    Li, Ying; Holloway, Gregory W.; Benjamin, Simon C.; Briggs, G. Andrew D.; Baugh, Jonathan; Mol, Jan A.

    2017-08-01

    Memristive systems are generalizations of memristors, which are resistors with memory. In this paper, we present a quantum description of quantum dot memristive systems. Using this model we propose and experimentally demonstrate a simple and practical scheme for realizing memristive systems with quantum dots. The approach harnesses a phenomenon that is commonly seen as a bane of nanoelectronics, i.e., switching of a trapped charge in the vicinity of the device. We show that quantum dot memristive systems have hysteresis current-voltage characteristics and quantum jump-induced stochastic behavior. While our experiment requires low temperatures, the same setup could, in principle, be realized with a suitable single-molecule transistor and operated at or near room temperature.

  2. Charge-transfer channel in quantum dot-graphene hybrid materials

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Wang, Jingang; Ma, Fengcai; Sun, Mengtao

    2018-04-01

    The energy band theory of a classical semiconductor can qualitatively explain the charge-transfer process in low-dimensional hybrid colloidal quantum dot (QD)-graphene (GR) materials; however, the definite charge-transfer channels are not clear. Using density functional theory (DFT) and time-dependent DFT, we simulate the hybrid QD-GR nanostructure, and by constructing its orbital interaction diagram, we show the quantitative coupling characteristics of the molecular orbitals (MOs) of the hybrid structure. The main MOs are derived from the fragment MOs (FOs) of GR, and the Cd13Se13 QD FOs merge with the GR FOs in a certain proportion to afford the hybrid system. Upon photoexcitation, electrons in the GR FOs jump to the QD FOs, leaving holes in the GR FOs, and the definite charge-transfer channels can be found by analyzing the complex MOs coupling. The excited electrons and remaining holes can also be localized in the GR or the QD or transfer between the QD and GR with different absorption energies. The charge-transfer process for the selected excited states of the hybrid QD-GR structure are testified by the charge difference density isosurface. The natural transition orbitals, charge-transfer length analysis and 2D site representation of the transition density matrix also verify the electron-hole delocalization, localization, or coherence chacracteristics of the selected excited states. Therefore, our research enhances understanding of the coupling mechanism of low-dimensional hybrid materials and will aid in the design and manipulation of hybrid photoelectric devices for practical application in many fields.

  3. Charge-transfer channel in quantum dot-graphene hybrid materials.

    PubMed

    Cao, Shuo; Wang, Jingang; Ma, Fengcai; Sun, Mengtao

    2018-04-06

    The energy band theory of a classical semiconductor can qualitatively explain the charge-transfer process in low-dimensional hybrid colloidal quantum dot (QD)-graphene (GR) materials; however, the definite charge-transfer channels are not clear. Using density functional theory (DFT) and time-dependent DFT, we simulate the hybrid QD-GR nanostructure, and by constructing its orbital interaction diagram, we show the quantitative coupling characteristics of the molecular orbitals (MOs) of the hybrid structure. The main MOs are derived from the fragment MOs (FOs) of GR, and the Cd 13 Se 13 QD FOs merge with the GR FOs in a certain proportion to afford the hybrid system. Upon photoexcitation, electrons in the GR FOs jump to the QD FOs, leaving holes in the GR FOs, and the definite charge-transfer channels can be found by analyzing the complex MOs coupling. The excited electrons and remaining holes can also be localized in the GR or the QD or transfer between the QD and GR with different absorption energies. The charge-transfer process for the selected excited states of the hybrid QD-GR structure are testified by the charge difference density isosurface. The natural transition orbitals, charge-transfer length analysis and 2D site representation of the transition density matrix also verify the electron-hole delocalization, localization, or coherence chacracteristics of the selected excited states. Therefore, our research enhances understanding of the coupling mechanism of low-dimensional hybrid materials and will aid in the design and manipulation of hybrid photoelectric devices for practical application in many fields.

  4. Characteristics of Reduced Graphene Oxide Quantum Dots for a Flexible Memory Thin Film Transistor.

    PubMed

    Kim, Yo-Han; Lee, Eun Yeol; Lee, Hyun Ho; Seo, Tae Seok

    2017-05-17

    Reduced graphene oxide quantum dot (rGOQD) devices in formats of capacitor and thin film transistor (TFT) were demonstrated and examined as the first trial to achieve nonambipolar channel property. In addition, through a gold nanoparticle (Au NP) layer embedded between the rGOQD active channel and dielectric layer, memory capacitor and TFT performances were realized by capacitance-voltage (C-V) hysteresis and gate program, erase, and reprogram biases. First, capacitor structure of the rGOQD memory device was constructed to examine memory charging effect featured in hysteretic C-V behavior with a 30 nm dielectric layer of cross-linked poly(vinyl alcohol). For the intervening Au NP charging layer, self-assembled monolayer (SAM) formation of the Au NP was executed to utilize electrostatic interaction by a dip-coating process under ambient environments with a conformal fabrication uniformity. Second, the rGOQD memory TFT device was also constructed in the same format of the Au NPs SAMs on a flexible substrate. Characteristics of the rGOQD TFT output showed novel saturation curves unlike typical graphene-based TFTs. However, The rGOQD TFT device reveals relatively low on/off ratio of 10 1 and mobility of 5.005 cm 2 /V·s. For the memory capacitor, the flat-band voltage shift (ΔV FB ) was measured as 3.74 V for ±10 V sweep, and for the memory TFT, the threshold voltage shift (ΔV th ) by the Au NP charging was detected as 7.84 V. In summary, it was concluded that the rGOQD memory device could accomplish an ideal graphene-based memory performance, which could have provided a wide memory window and saturated output characteristics.

  5. Generating atomically sharp p -n junctions in graphene and testing quantum electron optics on the nanoscale

    NASA Astrophysics Data System (ADS)

    Bai, Ke-Ke; Zhou, Jiao-Jiao; Wei, Yi-Cong; Qiao, Jia-Bin; Liu, Yi-Wen; Liu, Hai-Wen; Jiang, Hua; He, Lin

    2018-01-01

    Creation of high-quality p -n junctions in graphene monolayer is vital in studying many exotic phenomena of massless Dirac fermions. However, even with the fast progress of graphene technology for more than ten years, it remains conspicuously difficult to generate nanoscale and atomically sharp p -n junctions in graphene. Here, we realized nanoscale p -n junctions with atomically sharp boundaries in graphene monolayer by using monolayer vacancy island of Cu surface. The generated sharp p -n junctions with the height as high as 660 meV isolate the graphene above the Cu monolayer vacancy island as nanoscale graphene quantum dots (GQDs) in a continuous graphene sheet. Massless Dirac fermions are confined by the p -n junctions for a finite time to form quasibound states in the GQDs. By using scanning tunneling microscopy, we observe resonances of quasibound states in the GQDs with various sizes and directly visualize effects of geometries of the GQDs on the quantum interference patterns of the quasibound states, which allow us to test the quantum electron optics based on graphene in atomic scale.

  6. Thermoelectric energy harvesting with quantum dots

    NASA Astrophysics Data System (ADS)

    Sothmann, Björn; Sánchez, Rafael; Jordan, Andrew N.

    2015-01-01

    We review recent theoretical work on thermoelectric energy harvesting in multi-terminal quantum-dot setups. We first discuss several examples of nanoscale heat engines based on Coulomb-coupled conductors. In particular, we focus on quantum dots in the Coulomb-blockade regime, chaotic cavities and resonant tunneling through quantum dots and wells. We then turn toward quantum-dot heat engines that are driven by bosonic degrees of freedom such as phonons, magnons and microwave photons. These systems provide interesting connections to spin caloritronics and circuit quantum electrodynamics.

  7. Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry

    NASA Astrophysics Data System (ADS)

    Lüker, S.; Kuhn, T.; Reiter, D. E.

    2017-12-01

    Phonons strongly influence the optical control of semiconductor quantum dots. When modeling the electron-phonon interaction in several theoretical approaches, the quantum dot geometry is approximated by a spherical structure, though typical self-assembled quantum dots are strongly lens-shaped. By explicitly comparing simulations of a spherical and a lens-shaped dot using a well-established correlation expansion approach, we show that, indeed, lens-shaped dots can be exactly mapped to a spherical geometry when studying the phonon influence on the electronic system. We also give a recipe to reproduce spectral densities from more involved dots by rather simple spherical models. On the other hand, breaking the spherical symmetry has a pronounced impact on the spatiotemporal properties of the phonon dynamics. As an example we show that for a lens-shaped quantum dot, the phonon emission is strongly concentrated along the direction of the smallest axis of the dot, which is important for the use of phonons for the communication between different dots.

  8. Clinical Potential of Quantum Dots

    PubMed Central

    Iga, Arthur M.; Robertson, John H. P.; Winslet, Marc C.; Seifalian, Alexander M.

    2007-01-01

    Advances in nanotechnology have led to the development of novel fluorescent probes called quantum dots. Quantum dots have revolutionalized the processes of tagging molecules within research settings and are improving sentinel lymph node mapping and identification in vivo studies. As the unique physical and chemical properties of these fluorescent probes are being unraveled, new potential methods of early cancer detection, rapid spread and therapeutic management, that is, photodynamic therapy are being explored. Encouraging results of optical and real time identification of sentinel lymph nodes and lymph flow using quantum dots in vivo models are emerging. Quantum dots have also superseded many of the limitations of organic fluorophores and are a promising alternative as a research tool. In this review, we examine the promising clinical potential of quantum dots, their hindrances for clinical use and the current progress in abrogating their inherent toxicity. PMID:18317518

  9. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.

    PubMed

    Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin

    2017-06-27

    Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.

  10. Third order nonlinear optical properties of graphene quantum dots under continuous wavelength regime at 532 nm

    NASA Astrophysics Data System (ADS)

    Kumara, K.; Shetty, T. C. S.; Patil, P. S.; Maidur, Shivaraj R.; Dharmaprakash, S. M.

    2018-04-01

    Graphene quantum dots (GQDs) have drawn more attention due to their multifunctional characteristics which can be used for various applications. However, literature on nonlinear optical (NLO) properties of GQDs is scarcely available. Therefore more investigations are required on NLO properties of GQDs. We report preparation of GQDs from pyrolysis method using citric acid as starting material. Third order nonlinear optical (TNLO) properties are studied using Z-scan technique employing continuous wavelength laser. Study reveals that GQD's show self defocusing effect. This is due to thermal heating of solvent which leads to negative nonlinear refractive index of the material. Open aperture (OA) Z-scan reveals reverse saturation absorption (RSA) nature of the material indicating optical limiting (OL) property. A broad UV absorbance spectrum reveals photoluminescence (PL) emission of the material which is independent of excitation wavelength.

  11. Preparation of nitrogen-doped carbon using graphene Quantum dots-chitosan as the precursor and its supercapacitive behaviors.

    PubMed

    Tan, Wensheng; Fu, Renjun; Ji, Hong; Kong, Yong; Xu, Yueguo; Qin, Yong

    2018-06-01

    Nitrogen-doped carbon (N-C) is pyrolytically prepared by using the nanocomposites of graphene Quantum dots (GQDs) and chitosan (CS) as the precursor. Due to the existence of GQDs nanofiller, the three-dimensional (3D) interconnected frameworks of CS are well preserved after the pyrolysis treatment; meanwhile, CS in the nanocomposites functions as nitrogen source for the N-C. The obtained N-C exhibits a considerable specific capacitance (545Fg -1 at 1Ag -1 ), high rate capability and excellent cyclic stability (88.9% capacitance retention after 5000cycles at 10Ag -1 ) when it is used as the electrode materials in supercapacitors. The well-preserved 3D frameworks and N-doping are believed to be responsible for the excellent supercapacitive behaviors of the N-C. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Quantum Dots Investigated for Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Hepp, Aloysius F.

    2001-01-01

    The NASA Glenn Research Center has been investigating the synthesis of quantum dots of CdSe and CuInS2 for use in intermediate-bandgap solar cells. Using quantum dots in a solar cell to create an intermediate band will allow the harvesting of a much larger portion of the available solar spectrum. Theoretical studies predict a potential efficiency of 63.2 percent, which is approximately a factor of 2 better than any state-of-the-art devices available today. This technology is also applicable to thin-film devices--where it offers a potential four-fold increase in power-to-weight ratio over the state of the art. Intermediate-bandgap solar cells require that quantum dots be sandwiched in an intrinsic region between the photovoltaic solar cell's ordinary p- and n-type regions (see the preceding figure). The quantum dots form the intermediate band of discrete states that allow sub-bandgap energies to be absorbed. However, when the current is extracted, it is limited by the bandgap, not the individual photon energies. The energy states of the quantum dot can be controlled by controlling the size of the dot. Ironically, the ground-state energy levels are inversely proportional to the size of the quantum dots. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Ba Wendi et al., in the early 1990's. The most studied quantum dots prepared by this method have been of CdSe. To produce these dots, researchers inject a syringe of the desired organometallic precursors into heated triocytlphosphine oxide (TOPO) that has been vigorously stirred under an inert atmosphere (see the following figure). The solution immediately begins to change from colorless to yellow, then orange and red/brown, as the quantum dots increase in size. When the desired size is reached, the heat is removed from the flask. Quantum dots of different sizes can be identified by placing them under a "black light" and observing the various color differences in

  13. Photoluminescence, chemiluminescence and anodic electrochemiluminescence of hydrazide-modified graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Dong, Yongqiang; Dai, Ruiping; Dong, Tongqing; Chi, Yuwu; Chen, Guonan

    2014-09-01

    Single-layer graphene quantum dots (SGQDs) were refluxed with hydrazine (N2H4) to prepare hydrazide-modified SGQDs (HM-SGQDs). Compared with SGQDs, partial oxygen-containing groups have been removed from HM-SGQDs. At the same time, a lot of hydrazide groups have been introduced into HM-SGQDs. The introduced hydrazide groups provide HM-SGQDs with a new kind of surface state, and give HM-SGQDs unique photoluminescence (PL) properties such as blue-shifted PL emission and a relatively high PL quantum yield. More importantly, the hydrazide-modification made HM-SGQDs have abundant luminol-like units. Accordingly, HM-SGQDs exhibit unique and excellent chemiluminescence (CL) and anodic electrochemiluminescence (ECL). The hydrazide groups of HM-SGQDs can be chemically oxidized by the dissolved oxygen (O2) in alkaline solutions, producing a strong CL signal. The CL intensity is mainly dependent on the pH value and the concentration of O2, implying the potential applications of HM-SGQDs in pH and O2 sensors. The hydrazide groups of HM-SGQDs can also be electrochemically oxidized in alkaline solutions, producing a strong anodic ECL signal. The ECL intensity can be enhanced sensitively by hydrogen peroxide (H2O2). The enhanced ECL intensity is proportional to the concentration of H2O2 in a wide range of 3 μM to 500 μM. The detection limit of H2O2 was calculated to be about 0.7 μM. The results suggest the great potential applications of HM-SGQDs in the sensors of H2O2 and bio-molecules that are able to produce H2O2 in the presence of enzymes.Single-layer graphene quantum dots (SGQDs) were refluxed with hydrazine (N2H4) to prepare hydrazide-modified SGQDs (HM-SGQDs). Compared with SGQDs, partial oxygen-containing groups have been removed from HM-SGQDs. At the same time, a lot of hydrazide groups have been introduced into HM-SGQDs. The introduced hydrazide groups provide HM-SGQDs with a new kind of surface state, and give HM-SGQDs unique photoluminescence (PL) properties such

  14. High Color-Purity Green, Orange, and Red Light-Emitting Didoes Based on Chemically Functionalized Graphene Quantum Dots

    NASA Astrophysics Data System (ADS)

    Kwon, Woosung; Kim, Young-Hoon; Kim, Ji-Hee; Lee, Taehyung; Do, Sungan; Park, Yoonsang; Jeong, Mun Seok; Lee, Tae-Woo; Rhee, Shi-Woo

    2016-04-01

    Chemically derived graphene quantum dots (GQDs) to date have showed very broad emission linewidth due to many kinds of chemical bondings with different energy levels, which significantly degrades the color purity and color tunability. Here, we show that use of aniline derivatives to chemically functionalize GQDs generates new extrinsic energy levels that lead to photoluminescence of very narrow linewidths. We use transient absorption and time-resolved photoluminescence spectroscopies to study the electronic structures and related electronic transitions of our GQDs, which reveals that their underlying carrier dynamics is strongly related to the chemical properties of aniline derivatives. Using these functionalized GQDs as lumophores, we fabricate light-emitting didoes (LEDs) that exhibit green, orange, and red electroluminescence that has high color purity. The maximum current efficiency of 3.47 cd A-1 and external quantum efficiency of 1.28% are recorded with our LEDs; these are the highest values ever reported for LEDs based on carbon-nanoparticle phosphors. This functionalization of GQDs with aniline derivatives represents a new method to fabricate LEDs that produce natural color.

  15. Quantum soldering of individual quantum dots.

    PubMed

    Roy, Xavier; Schenck, Christine L; Ahn, Seokhoon; Lalancette, Roger A; Venkataraman, Latha; Nuckolls, Colin; Steigerwald, Michael L

    2012-12-07

    Making contact to a quantum dot: Single quantum-dot electronic circuits are fabricated by wiring atomically precise metal chalcogenide clusters with conjugated molecular connectors. These wired clusters can couple electronically to nanoscale electrodes and be tuned to control the charge-transfer characteristics (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Functionalized graphene oxide quantum dot-PVA hydrogel: a colorimetric sensor for Fe2+, Co2+ and Cu2+ ions

    NASA Astrophysics Data System (ADS)

    Baruah, Upama; Chowdhury, Devasish

    2016-04-01

    Functionalized graphene oxide quantum dots (GOQDs)-poly(vinyl alcohol) (PVA) hybrid hydrogels were prepared using a simple, facile and cost-effective strategy. GOQDs bearing different surface functional groups were introduced as the cross-linking agent into the PVA matrix thereby resulting in gelation. The four different types of hybrid hydrogels were prepared using graphene oxide, reduced graphene oxide, ester functionalized graphene oxide and amine functionalized GOQDs as cross-linking agents. It was observed that the hybrid hydrogel prepared with amine functionalized GOQDs was the most stable. The potential applicability of using this solid sensing platform has been subsequently explored in an easy, simple, effective and sensitive method for optical detection of M2+ (Fe2+, Co2+ and Cu2+) in aqueous media involving colorimetric detection. Amine functionalized GOQDs-PVA hybrid hydrogel when put into the corresponding solution of Fe2+, Co2+ and Cu2+ renders brown, orange and blue coloration respectively of the solution detecting the presence of Fe2+, Co2+ and Cu2+ ions in the solution. The minimum detection limit observed was 1 × 10-7 M using UV-visible spectroscopy. Further, the applicability of the sensing material was also tested for a mixture of co-existing ions in solution to demonstrate the practical applicability of the system. Insight into the probable mechanistic pathway involved in the detection process is also being discussed.

  17. Biocompatible Quantum Dots for Biological Applications

    PubMed Central

    Rosenthal, Sandra J.; Chang, Jerry C.; Kovtun, Oleg; McBride, James R.; Tomlinson, Ian D.

    2011-01-01

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, sizetunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots. PMID:21276935

  18. Functionalized graphene quantum dots loaded with free radicals combined with liquid chromatography and tandem mass spectrometry to screen radical scavenging natural antioxidants from Licorice and Scutellariae.

    PubMed

    Wang, Guoying; Niu, XiuLi; Shi, Gaofeng; Chen, Xuefu; Yao, Ruixing; Chen, Fuwen

    2014-12-01

    A novel screening method was developed for the detection and identification of radical scavenging natural antioxidants based on a free radical reaction combined with liquid chromatography with tandem mass spectrometry. Functionalized graphene quantum dots were prepared for loading free radicals in the complex screening system. The detection was performed with and without a preliminary exposure of the samples to specific free radicals on the functionalized graphene quantum dots, which can facilitate charge transfer between free radicals and antioxidants. The difference in chromatographic peak areas was used to identify potential antioxidants. This is a novel approach to simultaneously evaluate the antioxidant power of a component versus a free radical, and to identify it in a vegetal matrix. The structures of the antioxidants in the samples were identified using tandem mass spectrometry and comparison with standards. Fourteen compounds were found to possess potential antioxidant activity, and their free radical scavenging capacities were investigated. The order of scavenging capacity of 14 compounds was compared according to their free radical scavenging rate. 4',5,6,7-Tetrahydroxyflavone (radical scavenging rate: 0.05253 mL mg(-1) s(-1) ) showed the strongest capability for scavenging free radicals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Magnetic Manipulation of Massless Dirac Fermions in Graphene Quantum Dot

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Pan, Hui; Xu, Huai-Zhe

    2010-12-01

    We have theoretically analyzed the quasibound states in a graphene quantum dot (GQD) with a magnetic flux Φ in the centre. It is shown that the two-fold time reversal degeneracy is broken and the quasibound states of GQD with positive/negative angular momentum shifted upwards / downwards with increasing the magnetic flux. The variation of the quasibound energy depends linearly on the magnetic flux, which is quite different from the parabolic relationship for Schrödinger electrons. The GQD's quasibound states spectrum shows an obvious Aharonov—Bohm (AB) oscillations with the magnetic flux. It is also shown that the quasibound state with energy equal to the barrier height becomes a bound state completely confined in GQD.

  20. Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study

    DOE PAGES

    Michael, Stephan; Chow, Weng; Schneider, Hans

    2016-05-01

    In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. We study the influence of two important quantum-dot material parameters, here, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density canmore » compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. By minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.« less

  1. Intrinsic and extrinsic defects in a family of coal-derived graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srinivasa Rao; van Tol, Johan; Ye, Ruquan; Tour, James M.

    2015-11-01

    In this letter, we report on the high frequency (239.2 and 336 GHz) electron spin resonance (ESR) studies performed on graphene quantum dots (GQDs), prepared through a wet chemistry route from three types of coal: (a) bituminous, (b) anthracite, and (c) coke; and from non-coal derived GQDs. The microwave frequency-, power-, and temperature-dependent ESR spectra coupled with computer-aided simulations reveal four distinct magnetic defect centers. In bituminous- and anthracite-derived GQDs, we have identified two of them as intrinsic carbon-centered magnetic defect centers (a broad signal of peak to peak width = 697 (10-4 T), g = 2.0023; and a narrow signal of peak to peak width = 60 (10-4 T), g = 2.003). The third defect center is Mn2+ (6S5/2, 3d5) (signal width = 61 (10-4 T), g = 2.0023, Aiso = 93(10-4 T)), and the fourth defect is identified as Cu2+ (2D5/2, 3d9) (g⊥ = 2.048 and g‖ = 2.279), previously undetected. Coke-derived and non-coal derived GQDs show Mn2+ and two-carbon related signals, and no Cu2+ signal. The extrinsic impurities most likely originate from the starting coal. Furthermore, Raman, photoluminescence, and ESR measurements detected no noticeable changes in the properties of the bituminous GQDs after one year. This study highlights the importance of employing high frequency ESR spectroscopy in identifying the (magnetic) defects, which are roadblocks for spin relaxation times of graphene-based materials. These defects would not have been possible to probe by other spin transport measurements.

  2. [The effects of graphene quantum dots on hematopoietic system in rats].

    PubMed

    Wang, Ting-jian; Wang, Sha-li

    2016-01-01

    To study the effects of graphene quantum dots (GQDs) on hematopoietic system in rats. Thirty male SD rats were randomly divided into three groups (n = 10): control group, high dose group (10 mg/kg · d), low dose group (5 mg/kg · d), The rats in experimental group were intravenous injected with GQDs for 28 days and those in control group were injected with normal saline at the same volume. Routine blood and the function of liver and kidney were detected by instrument analysis. The cycle and apoptosis of bone marrow mononuclear cells (BMCs) were detected by FCM. The other three only healthy male SD rat bone marrow mononuclear cells (BMCs) were cultured by joining GQDs for 24 h, 48 h,72 h in vitro, the proliferation was assayed by CCK-8, the content of granulocyte macrophage colony stimulating factor (GM-CSF) from cultural supernatants were detected by ELISA. The amount of red blood cell and concentration of hemoglobin from experimental group were increased significantly compared with those of control groups (P < 0.05), the concentration of triglyceride and high density lipoprotein were decreased. DNA synthesis period was prolonged (P < 0.01), there was no significant difference in apoptosis. BMCs were promoted proliferation clearly after using GQDs for 72 h (P < 0.05). The content of GM-CSF was increased (P < 0.01) . GQDs may promote hematopoietic function in rats.

  3. Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.

    PubMed

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-05-13

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.

  4. Improved charge trapping properties by embedded graphene oxide quantum-dots for flash memory application

    NASA Astrophysics Data System (ADS)

    Jia, Xinlei; Yan, Xiaobing; Wang, Hong; Yang, Tao; Zhou, Zhenyu; Zhao, Jianhui

    2018-06-01

    In this work, we have investigated two kinds of charge trapping memory devices with Pd/Al2O3/ZnO/SiO2/p-Si and Pd/Al2O3/ZnO/graphene oxide quantum-dots (GOQDs)/ZnO/SiO2/p-Si structure. Compared with the single ZnO sample, the memory window of the ZnO-GOQDs-ZnO sample reaches a larger value (more than doubled) of 2.7 V under the sweeping gate voltage ± 7 V, indicating a better charge storage capability and the significant charge trapping effects by embedding the GOQDs trapping layer. The ZnO-GOQDs-ZnO devices have better date retention properties with the high and low capacitances loss of ˜ 1.1 and ˜ 6.9%, respectively, as well as planar density of the trapped charges of 1.48 × 1012 cm- 2. It is proposed that the GOQDs play an important role in the outstanding memory characteristics due to the deep quantum potential wells and the discrete distribution of the GOQDs. The long date retention time might have resulted from the high potential barrier which suppressed both the back tunneling and the leakage current. Intercalating GOQDs in the memory device is a promising method to realize large memory window, low-power consumption and excellent retention properties.

  5. Engineering Graphene Quantum Dots for Enhanced Ultraviolet and Visible Light p-Si Nanowire-Based Photodetector.

    PubMed

    Mihalache, Iuliana; Radoi, Antonio; Pascu, Razvan; Romanitan, Cosmin; Vasile, Eugenia; Kusko, Mihaela

    2017-08-30

    In this work, a significant improvement of the classical silicon nanowire (SiNW)-based photodetector was achieved through the realization of core-shell structures using newly designed GQD PEI s via simple solution processing. The poly(ethyleneimine) (PEI)-assisted synthesis successfully tuned both optical and electrical properties of graphene quantum dots (GQDs) to fulfill the requirements for strong yellow photoluminescence emission along with large band gap formation and the introduction of electronic states inside the band gap. The fabrication of a GQD PEI -based device was followed by systematic structural and photoelectronic investigation. Thus, the GQD PEI /SiNW photodetector exhibited a large photocurrent to dark current ratio (I ph /I dark up to ∼0.9 × 10 2 under 4 V bias) and a remarkable improvement of the external quantum efficiency values that far exceed 100%. In this frame, GQD PEI s demonstrate the ability to arbitrate both charge-carrier photogeneration and transport inside a heterojunction, leading to simultaneous attendance of various mechanisms: (i) efficient suppression of the dark current governed by the type I alignment in energy levels, (ii) charge photomultiplication determined by the presence of the PEI-induced electron trap levels, and (iii) broadband ultraviolet-to-visible downconversion effects.

  6. Studies of quantum dots in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Goldmann, Eyal

    We present two studies of quantum dots in the quantum Hall regime. In the first study, presented in Chapter 3, we investigate the edge reconstruction phenomenon believed to occur when the quantum dot filling fraction is n≲1 . Our approach involves the examination of large dots (≤40 electrons) using a partial diagonalization technique in which the occupancies of the deep interior orbitals are frozen. To interpret the results of this calculation, we evaluate the overlap between the diagonalized ground state and a set of trial wavefunctions which we call projected necklace (PN) states. A PN state is simply the angular momentum projection of a maximum density droplet surrounded by a ring of localized electrons. Our calculations reveal that PN states have up to 99% overlap with the diagonalized ground states, and are lower in energy than the states identified in Chamon and Wen's study of the edge reconstruction. In the second study, presented in Chapter 4, we investigate quantum dots in the fractional quantum Hall regime using a Hartree formulation of composite fermion theory. We find that under appropriate conditions, the chemical potential of the dots oscillates periodically with B due to the transfer of composite fermions between quasi-Landau bands. This effect is analogous the addition spectrum oscillations which occur in quantum dots in the integer quantum Hall regime. Period f0 oscillations are found in sharply confined dots with filling factors nu = 2/5 and nu = 2/3. Period 3 f0 oscillations are found in a parabolically confined nu = 2/5 dot. More generally, we argue that the oscillation period of dots with band pinning should vary continuously with B, whereas the period of dots without band pinning is f0 .

  7. The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells

    NASA Astrophysics Data System (ADS)

    Shang, Weihu; Zhang, Xiaoyan; Zhang, Mo; Fan, Zetan; Sun, Ying; Han, Mei; Fan, Louzhen

    2014-05-01

    Cellular imaging after transplantation may provide important information to determine the efficacy of stem cell therapy. We have reported that graphene quantum dots (GQDs) are a type of robust biological labeling agent for stem cells that demonstrate little cytotoxicity. In this study, we examined the interactions of GQDs on human neural stem cells (hNSCs) with the aim to investigate the uptake and biocompatibility of GQDs. We examined the mechanism of GQD uptake by hNSCs and investigated the effects of GQDs on the proliferation, metabolic activity, and differentiation potential of hNSCs. This information is critical to assess the suitability of GQDs for stem cell tracking. Our results indicated that GQDs were taken up into hNSCs in a concentration- and time-dependent manner via the endocytosis mechanism. Furthermore, no significant change was found in the viability, proliferation, metabolic activity, and differentiation potential of hNSCs after treatment with GQDs. Thus, these data open a promising avenue for labeling stem cells with GQDs and also offer a potential opportunity to develop GQDs for biomedical applications.

  8. Facile Synthesis of Molecularly Imprinted Graphene Quantum Dots for the Determination of Dopamine with Affinity-Adjustable.

    PubMed

    Zhou, Xi; Wang, Anqi; Yu, Chenfei; Wu, Shishan; Shen, Jian

    2015-06-10

    A facilely prepared fluorescence sensor was developed for dopamine (DA) determination based on polyindole/graphene quantum dots molecularly imprinted polymers (PIn/GQDs@MIPs). The proposed sensor exhibits a high sensitivity with a linear range of 5 × 10(-10) to 1.2 × 10(-6) M and the limit of detection as low as 1 × 10(-10) M in the determination of DA, which is probably due to the tailor-made imprinted cavities for binding DA thought hydrogen bonds between amine groups of DA and oxygen-containing groups of the novel composite. Furthermore, the prepared sensor can rebind DA in dual-type: a low affinity type (noncovalent interaction is off) and a high affinity type (noncovalent interaction is on), and the rebinding interaction can be adjusted by tuning the pH, which shows a unique potential for adjusting the binding interaction while keeping the specificity, allowing for wider applications.

  9. A sensing approach for dopamine determination by boronic acid-functionalized molecularly imprinted graphene quantum dots composite

    NASA Astrophysics Data System (ADS)

    Zhou, Xi; Gao, Xuexia; Song, Fengyan; Wang, Chunpeng; Chu, Fuxiang; Wu, Shishan

    2017-11-01

    A novel fluorescence sensor was developed for dopamine (DA) determination based on molecularly imprinted graphene quantum dots and poly(indolylboronic acid) composite (MIPs@ PIn-BAc/GQDs). When the DA is added to the system, it leads to an aggregation and fluorescence quenching of the MIPs@ PIn-BAc/GQDs because of the covalent binding between the catechol group of DA and boronic acid. Such fluorescence behaviors are used for well testing DA in a range from 5 × 10-9 to 1.2 × 10-6 M with the detection limit of 2.5 × 10-9 M. Furthermore, the prepared sensors could well against the interferences from various biomolecules and be successfully used for the assay of DA in human biological samples, exhibiting excellent specificity. It is believed that the prepared MIPs@ PIn-BAc/GQDs hold great promise as a practical platform that can monitor DA level change.

  10. Quenching of graphene quantum dots fluorescence by alkaline phosphatase activity in the presence of hydroquinone diphosphate.

    PubMed

    Pereira da Silva Neves, Marta Maria; González-García, María Begoña; Pérez-Junquera, Alejandro; Hernández-Santos, David; Fanjul-Bolado, Pablo

    2018-05-01

    In this work, a turn-off photoluminescent sensing proof-of-concept based on blue luminescent graphene quantum dots (GQDs) as the fluorescent probe was developed. For that purpose, GQDs optical response was related with the catalytic enzymatic activity of alkaline phosphatase (ALP), in the presence of hydroquinone diphosphate (HQDP). The hydrolysis of HQDP by ALP generated hydroquinone (HQ). The oxidation of HQ, enzymatically produced, to p-benzoquinone (BQ) resulted in the quenching of GQDs fluorescence (FL). Therefore, the developed luminescent sensing mechanism allowed the FL quenching with ALP activity to be related and thus quantified the concentration of ALP down to 0.5 nM of enzyme. This innovative design principle appears as a promising tool for the development of enzymatic sensors based on ALP labeling with fluorescent detection or even for direct ALP luminescent quantification in an easy, fast and sensitive manner. Copyright © 2018 John Wiley & Sons, Ltd.

  11. Charge reconfiguration in arrays of quantum dots

    NASA Astrophysics Data System (ADS)

    Bayer, Johannes C.; Wagner, Timo; Rugeramigabo, Eddy P.; Haug, Rolf J.

    2017-12-01

    Semiconductor quantum dots are potential building blocks for scalable qubit architectures. Efficient control over the exchange interaction and the possibility of coherently manipulating electron states are essential ingredients towards this goal. We studied experimentally the shuttling of electrons trapped in serial quantum dot arrays isolated from the reservoirs. The isolation hereby enables a high degree of control over the tunnel couplings between the quantum dots, while electrons can be transferred through the array by gate voltage variations. Model calculations are compared with our experimental results for double, triple, and quadruple quantum dot arrays. We are able to identify all transitions observed in our experiments, including cotunneling transitions between distant quantum dots. The shuttling of individual electrons between quantum dots along chosen paths is demonstrated.

  12. Fluorine Functionalized Graphene Quantum Dots as Inhibitor against hIAPP Amyloid Aggregation.

    PubMed

    Yousaf, Maryam; Huang, Huan; Li, Ping; Wang, Chen; Yang, Yanlian

    2017-06-21

    Fibrillar deposits of the human islet amyloid polypeptide (hIAPP) are considered as a root of Type II diabetes mellitus. Fluorinated graphene quantum dots (FGQDs) are new carbon nanomaterials with unique physicochemical properties containing highly electronegative F atoms. Herein we report a single step synthesis method of FGQDs with an inhibitory effect on aggregation and cytotoxicity of hIAPP in vitro. Highly fluorescent and water dispersible FGQDs, less than 3 nm in size, were synthesized by the microwave-assisted hydrothermal method. Efficient inhibition capability of FGQDs to amyloid aggregation was demonstrated. The morphologies of hIAPP aggregates were observed to change from the entangled long fibrils to short thin fibrils and amorphous aggregates in the presence of FGQDs. In thioflavin T fluorescence analysis, inhibited aggregation with prolonged lag time and reduced fluorescence intensity at equilibrium were observed when hIAPP was incubated together with FGQDs. Circular dichroism spectrum results reveal that FGQDs could inhibit conformational transition of the peptide from native structure to β-sheets. FGQDs could also rescue the cytotoxicity of INS-1 cells induced by hIAPP in a dose dependent manner. This study could be beneficial for design and preparation of inhibitors for amyloids, which is important for prevention and treatment of amyloidosis.

  13. Quantum dot in interacting environments

    NASA Astrophysics Data System (ADS)

    Rylands, Colin; Andrei, Natan

    2018-04-01

    A quantum impurity attached to an interacting quantum wire gives rise to an array of new phenomena. Using the Bethe Ansatz we solve exactly models describing two geometries of a quantum dot coupled to an interacting quantum wire: a quantum dot that is (i) side coupled and (ii) embedded in a Luttinger liquid. We find the eigenstates and determine the spectrum through the Bethe Ansatz equations. Using this we derive exact expressions for the ground-state dot occupation. The thermodynamics are then studied using the thermodynamics Bethe Ansatz equations. It is shown that at low energies the dot becomes fully hybridized and acts as a backscattering impurity or tunnel junction depending on the geometry and furthermore that the two geometries are related by changing the sign of the interactions. Although remaining strongly coupled for all values of the interaction in the wire, there exists competition between the tunneling and backscattering leading to a suppression or enhancement of the dot occupation depending on the sign of the bulk interactions.

  14. Optical signatures of coupled quantum dots.

    PubMed

    Stinaff, E A; Scheibner, M; Bracker, A S; Ponomarev, I V; Korenev, V L; Ware, M E; Doty, M F; Reinecke, T L; Gammon, D

    2006-02-03

    An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.

  15. Optical Signatures of Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Korenev, V. L.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.

    2006-02-01

    An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.

  16. Influence of the quantum dot geometry on p -shell transitions in differently charged quantum dots

    NASA Astrophysics Data System (ADS)

    Holtkemper, M.; Reiter, D. E.; Kuhn, T.

    2018-02-01

    Absorption spectra of neutral, negatively, and positively charged semiconductor quantum dots are studied theoretically. We provide an overview of the main energetic structure around the p -shell transitions, including the influence of nearby nominally dark states. Based on the envelope function approximation, we treat the four-band Luttinger theory as well as the direct and short-range exchange Coulomb interactions within a configuration interaction approach. The quantum dot confinement is approximated by an anisotropic harmonic potential. We present a detailed investigation of state mixing and correlations mediated by the individual interactions. Differences and similarities between the differently charged quantum dots are highlighted. Especially large differences between negatively and positively charged quantum dots become evident. We present a visualization of energetic shifts and state mixtures due to changes in size, in-plane asymmetry, and aspect ratio. Thereby we provide a better understanding of the experimentally hard to access question of quantum dot geometry effects. Our findings show a method to determine the in-plane asymmetry from photoluminescence excitation spectra. Furthermore, we supply basic knowledge for tailoring the strength of certain state mixtures or the energetic order of particular excited states via changes of the shape of the quantum dot. Such knowledge builds the basis to find the optimal QD geometry for possible applications and experiments using excited states.

  17. Quantum dot-polymer conjugates for stable luminescent displays.

    PubMed

    Ghimire, Sushant; Sivadas, Anjaly; Yuyama, Ken-Ichi; Takano, Yuta; Francis, Raju; Biju, Vasudevanpillai

    2018-05-23

    The broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices. One of the primary requirements for such real-world applications of quantum dots is their stable and uniform distribution in optically transparent matrices. In this work, we prepare transparent thin films of polymer-quantum dot conjugates, where CdSe/ZnS quantum dots are uniformly distributed at high densities in a chitosan-polystyrene copolymer (CS-g-PS) matrix. Here, quantum dots in an aqueous solution are conjugated to the copolymer by a phase transfer reaction. With the stable conjugation of quantum dots to the copolymer, we prevent undesired phase separation between the two and aggregation of quantum dots. Furthermore, the conjugate allows us to prepare transparent thin films in which quantum dots are uniformly distributed at high densities. The CS-g-PS copolymer helps us in not only preserving the photoluminescence properties of quantum dots in the film but also rendering excellent photostability to quantum dots at the ensemble and single particle levels, making the conjugate a promising material for photoluminescence-based devices.

  18. Entanglement in a quantum neural network based on quantum dots

    NASA Astrophysics Data System (ADS)

    Altaisky, M. V.; Zolnikova, N. N.; Kaputkina, N. E.; Krylov, V. A.; Lozovik, Yu E.; Dattani, N. S.

    2017-05-01

    We studied the quantum correlations between the nodes in a quantum neural network built of an array of quantum dots with dipole-dipole interaction. By means of the quasiadiabatic path integral simulation of the density matrix evolution in a presence of the common phonon bath we have shown the coherence in such system can survive up to the liquid nitrogen temperature of 77 K and above. The quantum correlations between quantum dots are studied by means of calculation of the entanglement of formation in a pair of quantum dots with the typical dot size of a few nanometers and interdot distance of the same order. We have shown that the proposed quantum neural network can keep the mixture of entangled states of QD pairs up to the above mentioned high temperatures.

  19. A Nanowire-Based Plasmonic Quantum Dot Laser.

    PubMed

    Ho, Jinfa; Tatebayashi, Jun; Sergent, Sylvain; Fong, Chee Fai; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2016-04-13

    Quantum dots enable strong carrier confinement and exhibit a delta-function like density of states, offering significant improvements to laser performance and high-temperature stability when used as a gain medium. However, quantum dot lasers have been limited to photonic cavities that are diffraction-limited and further miniaturization to meet the demands of nanophotonic-electronic integration applications is challenging based on existing designs. Here we introduce the first quantum dot-based plasmonic laser to reduce the cross-sectional area of nanowire quantum dot lasers below the cutoff limit of photonic modes while maintaining the length in the order of the lasing wavelength. Metal organic chemical vapor deposition grown GaAs-AlGaAs core-shell nanowires containing InGaAs quantum dot stacks are placed directly on a silver film, and lasing was observed from single nanowires originating from the InGaAs quantum dot emission into the low-loss higher order plasmonic mode. Lasing threshold pump fluences as low as ∼120 μJ/cm(2) was observed at 7 K, and lasing was observed up to 125 K. Temperature stability from the quantum dot gain, leading to a high characteristic temperature was demonstrated. These results indicate that high-performance, miniaturized quantum dot lasers can be realized with plasmonics.

  20. Optical Fiber Sensing Using Quantum Dots

    PubMed Central

    Jorge, Pedro; Martins, Manuel António; Trindade, Tito; Santos, José Luís; Farahi, Faramarz

    2007-01-01

    Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in solid membranes and immobilized in optical fibers or planar waveguide platforms. PMID:28903308

  1. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers

    NASA Astrophysics Data System (ADS)

    Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan

    2018-02-01

    The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm2 was demonstrated.

  2. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers.

    PubMed

    Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan

    2018-02-21

    The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm 2 was demonstrated.

  3. A tunable few electron triple quantum dot

    NASA Astrophysics Data System (ADS)

    Gaudreau, L.; Kam, A.; Granger, G.; Studenikin, S. A.; Zawadzki, P.; Sachrajda, A. S.

    2009-11-01

    In this paper, we report on a tunable few electron lateral triple quantum dot design. The quantum dot potentials are arranged in series. The device is aimed at studies of triple quantum dot properties where knowing the exact number of electrons is important as well as quantum information applications involving electron spin qubits. We demonstrate tuning strategies for achieving required resonant conditions such as quadruple points where all three quantum dots are on resonance. We find that in such a device resonant conditions at specific configurations are accompanied by complex charge transfer behavior.

  4. Hybrid quantum-classical modeling of quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas

    2017-11-01

    The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.

  5. Quantum Entanglement of Quantum Dot Spin Using Flying Qubits

    DTIC Science & Technology

    2015-05-01

    QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS UNIVERSITY OF MICHIGAN MAY 2015 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...To) SEP 2012 – DEC 2014 4. TITLE AND SUBTITLE QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS 5a. CONTRACT NUMBER FA8750-12-2-0333...been to advance the frontier of quantum entangled semiconductor electrons using ultrafast optical techniques. The approach is based on

  6. Andreev molecules in semiconductor nanowire double quantum dots.

    PubMed

    Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M

    2017-09-19

    Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.

  7. Quantum-Dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Snider, Gregory

    2000-03-01

    Quantum-dot Cellular Automata (QCA) [1] is a promising architecture which employs quantum dots for digital computation. It is a revolutionary approach that holds the promise of high device density and low power dissipation. A basic QCA cell consists of four quantum dots coupled capacitively and by tunnel barriers. The cell is biased to contain two excess electrons within the four dots, which are forced to opposite "corners" of the four-dot cell by mutual Coulomb repulsion. These two possible polarization states of the cell will represent logic "0" and "1". Properly arranged, arrays of these basic cells can implement Boolean logic functions. Experimental results from functional QCA devices built of nanoscale metal dots defined by tunnel barriers will be presented. The experimental devices to be presented consist of Al islands, which we will call quantum dots, interconnected by tunnel junctions and lithographically defined capacitors. Aluminum/ aluminum-oxide/aluminum tunnel junctions were fabricated using a standard e-beam lithography and shadow evaporation technique. The experiments were performed in a dilution refrigerator at a temperature of 70 mK. The operation of a cell is evaluated by direct measurements of the charge state of dots within a cell as the input voltage is changed. The experimental demonstration of a functioning cell will be presented. A line of three cells demonstrates that there are no metastable switching states in a line of cells. A QCA majority gate will also be presented, which is a programmable AND/OR gate and represents the basic building block of QCA systems. The results of recent experiments will be presented. 1. C.S. Lent, P.D. Tougaw, W. Porod, and G.H. Bernstein, Nanotechnology, 4, 49 (1993).

  8. Quantum-dot-in-perovskite solids.

    PubMed

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H

    2015-07-16

    Heteroepitaxy-atomically aligned growth of a crystalline film atop a different crystalline substrate-is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  9. Dot-in-Well Quantum-Dot Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Bandara, Sumith; Ting, David; Hill, cory; Liu, John; Mumolo, Jason; Chang, Yia Chung

    2008-01-01

    Dot-in-well (DWELL) quantum-dot infrared photodetectors (QDIPs) [DWELL-QDIPs] are subjects of research as potentially superior alternatives to prior QDIPs. Heretofore, there has not existed a reliable method for fabricating quantum dots (QDs) having precise, repeatable dimensions. This lack has constituted an obstacle to the development of uniform, high-performance, wavelength-tailorable QDIPs and of focal-plane arrays (FPAs) of such QDIPs. However, techniques for fabricating quantum-well infrared photodetectors (QWIPs) having multiple-quantum- well (MQW) structures are now well established. In the present research on DWELL-QDIPs, the arts of fabrication of QDs and QWIPs are combined with a view toward overcoming the deficiencies of prior QDIPs. The longer-term goal is to develop focal-plane arrays of radiationhard, highly uniform arrays of QDIPs that would exhibit high performance at wavelengths from 8 to 15 m when operated at temperatures between 150 and 200 K. Increasing quantum efficiency is the key to the development of competitive QDIP-based FPAs. Quantum efficiency can be increased by increasing the density of QDs and by enhancing infrared absorption in QD-containing material. QDIPs demonstrated thus far have consisted, variously, of InAs islands on GaAs or InAs islands in InGaAs/GaAs wells. These QDIPs have exhibited low quantum efficiencies because the numbers of QD layers (and, hence, the areal densities of QDs) have been small typically five layers in each QDIP. The number of QD layers in such a device must be thus limited to prevent the aggregation of strain in the InAs/InGaAs/GaAs non-lattice- matched material system. The approach being followed in the DWELL-QDIP research is to embed In- GaAs QDs in GaAs/AlGaAs multi-quantum- well (MQW) structures (see figure). This material system can accommodate a large number of QD layers without excessive lattice-mismatch strain and the associated degradation of photodetection properties. Hence, this material

  10. Quantum and classical ripples in graphene

    NASA Astrophysics Data System (ADS)

    Hašík, Juraj; Tosatti, Erio; MartoÅák, Roman

    2018-04-01

    Thermal ripples of graphene are well understood at room temperature, but their quantum counterparts at low temperatures are in need of a realistic quantitative description. Here we present atomistic path-integral Monte Carlo simulations of freestanding graphene, which show upon cooling a striking classical-quantum evolution of height and angular fluctuations. The crossover takes place at ever-decreasing temperatures for ever-increasing wavelengths so that a completely quantum regime is never attained. Zero-temperature quantum graphene is flatter and smoother than classical graphene at large scales yet rougher at short scales. The angular fluctuation distribution of the normals can be quantitatively described by coexistence of two Gaussians, one classical strongly T -dependent and one quantum about 2° wide, of zero-point character. The quantum evolution of ripple-induced height and angular spread should be observable in electron diffraction in graphene and other two-dimensional materials, such as MoS2, bilayer graphene, boron nitride, etc.

  11. Spin-based quantum computation in multielectron quantum dots

    NASA Astrophysics Data System (ADS)

    Hu, Xuedong; Das Sarma, S.

    2001-10-01

    In a quantum computer the hardware and software are intrinsically connected because the quantum Hamiltonian (or more precisely its time development) is the code that runs the computer. We demonstrate this subtle and crucial relationship by considering the example of electron-spin-based solid-state quantum computer in semiconductor quantum dots. We show that multielectron quantum dots with one valence electron in the outermost shell do not behave simply as an effective single-spin system unless special conditions are satisfied. Our work compellingly demonstrates that a delicate synergy between theory and experiment (between software and hardware) is essential for constructing a quantum computer.

  12. Three-terminal quantum-dot thermal management devices

    NASA Astrophysics Data System (ADS)

    Zhang, Yanchao; Zhang, Xin; Ye, Zhuolin; Lin, Guoxing; Chen, Jincan

    2017-04-01

    We theoretically demonstrate that the heat flows can be manipulated by designing a three-terminal quantum-dot system consisting of three Coulomb-coupled quantum dots connected to respective reservoirs. In this structure, the electron transport between the quantum dots is forbidden, but the heat transport is allowed by the Coulomb interaction to transmit heat between the reservoirs with a temperature difference. We show that such a system is capable of performing thermal management operations, such as heat flow swap, thermal switch, and heat path selector. An important thermal rectifier, i.e., a thermal diode, can be implemented separately in two different paths. The asymmetric configuration of a quantum-dot system is a necessary condition for thermal management operations in practical applications. These results should have important implications in providing the design principle for quantum-dot thermal management devices and may open up potential applications for the thermal management of quantum-dot systems at the nanoscale.

  13. Quantum Dots and Their Multimodal Applications: A Review

    PubMed Central

    Bera, Debasis; Qian, Lei; Tseng, Teng-Kuan; Holloway, Paul H.

    2010-01-01

    Semiconducting quantum dots, whose particle sizes are in the nanometer range, have very unusual properties. The quantum dots have band gaps that depend in a complicated fashion upon a number of factors, described in the article. Processing-structure-properties-performance relationships are reviewed for compound semiconducting quantum dots. Various methods for synthesizing these quantum dots are discussed, as well as their resulting properties. Quantum states and confinement of their excitons may shift their optical absorption and emission energies. Such effects are important for tuning their luminescence stimulated by photons (photoluminescence) or electric field (electroluminescence). In this article, decoupling of quantum effects on excitation and emission are described, along with the use of quantum dots as sensitizers in phosphors. In addition, we reviewed the multimodal applications of quantum dots, including in electroluminescence device, solar cell and biological imaging.

  14. Humidity sensor and ultraviolet photodetector based on carrier trapping effect and negative photoconductivity in graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Zhuang, ShenDong; Chen, Yan; Zhang, WeiChao; Chen, Zhuo; Wang, ZhenLin

    2018-01-01

    We report on the experimental realization of a graphene quantum dots (GQD)-based humidity sensor and ultraviolet (UV) photodetector. We demonstrate that the conductance of the GQD increases linearly with increasing relative humidity (RH) of the surrounding environment due to the carrier trapping effect, which forms the basis of a humidity sensor. When the sensor is operated in the dark state, the sensitivity can reach as high as 0.48 nS RH -1. The GQD are also found to exhibit light intensity dependent negative photoconductivity under the UV irradiation, which can be exploited for UV detection. As a result of these carrier trapping and de-trapping processes, the performance of the photodetector can be significantly improved with the increasing RH, and the photoresponsivity can reach a high value of -418.1 μA W-1 in the high humid state of RH=90%.

  15. Synthetic Developments of Nontoxic Quantum Dots.

    PubMed

    Das, Adita; Snee, Preston T

    2016-03-03

    Semiconductor nanocrystals, or quantum dots (QDs), are candidates for biological sensing, photovoltaics, and catalysis due to their unique photophysical properties. The most studied QDs are composed of heavy metals like cadmium and lead. However, this engenders concerns over heavy metal toxicity. To address this issue, numerous studies have explored the development of nontoxic (or more accurately less toxic) quantum dots. In this Review, we select three major classes of nontoxic quantum dots composed of carbon, silicon and Group I-III-VI elements and discuss the myriad of synthetic strategies and surface modification methods to synthesize quantum dots composed of these material systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Non-Markovian full counting statistics in quantum dot molecules

    PubMed Central

    Xue, Hai-Bin; Jiao, Hu-Jun; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-01-01

    Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules. PMID:25752245

  17. Temperature dependence of Coulomb oscillations in a few-layer two-dimensional WS2 quantum dot.

    PubMed

    Song, Xiang-Xiang; Zhang, Zhuo-Zhi; You, Jie; Liu, Di; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guo-Ping

    2015-11-05

    Standard semiconductor fabrication techniques are used to fabricate a quantum dot (QD) made of WS2, where Coulomb oscillations were found. The full-width-at-half-maximum of the Coulomb peaks increases linearly with temperature while the height of the peaks remains almost independent of temperature, which is consistent with standard semiconductor QD theory. Unlike graphene etched QDs, where Coulomb peaks belonging to the same QD can have different temperature dependences, these results indicate the absence of the disordered confining potential. This difference in the potential-forming mechanism between graphene etched QDs and WS2 QDs may be the reason for the larger potential fluctuation found in graphene QDs.

  18. Temperature dependence of Coulomb oscillations in a few-layer two-dimensional WS2 quantum dot

    PubMed Central

    Song, Xiang-Xiang; Zhang, Zhuo-Zhi; You, Jie; Liu, Di; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guo-Ping

    2015-01-01

    Standard semiconductor fabrication techniques are used to fabricate a quantum dot (QD) made of WS2, where Coulomb oscillations were found. The full-width-at-half-maximum of the Coulomb peaks increases linearly with temperature while the height of the peaks remains almost independent of temperature, which is consistent with standard semiconductor QD theory. Unlike graphene etched QDs, where Coulomb peaks belonging to the same QD can have different temperature dependences, these results indicate the absence of the disordered confining potential. This difference in the potential-forming mechanism between graphene etched QDs and WS2 QDs may be the reason for the larger potential fluctuation found in graphene QDs. PMID:26538164

  19. Dicke states in multiple quantum dots

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Manolescu, Andrei

    2013-10-01

    We present a theoretical study of the collective optical effects which can occur in groups of three and four quantum dots. We define conditions for stable subradiant (dark) states, rapidly decaying super-radiant states, and spontaneous trapping of excitation. Each quantum dot is treated like a two-level system. The quantum dots are, however, realistic, meaning that they may have different transition energies and dipole moments. The dots interact via a short-range coupling which allows excitation transfer across the dots, but conserves the total population of the system. We calculate the time evolution of single-exciton and biexciton states using the Lindblad equation. In the steady state the individual populations of each dot may have permanent oscillations with frequencies given by the energy separation between the subradiant eigenstates.

  20. Nitrogen-doped graphene quantum dots-based fluorescence molecularly imprinted sensor for thiacloprid detection.

    PubMed

    Liu, Yang; Cao, Nan; Gui, Wenying; Ma, Qiang

    2018-06-01

    In this paper, a test strip-based sensor was developed for thiacloprid quantitative detection based on PDA molecularly imprinted polymer (MIP) and nitrogen-doped graphene quantum dots (N-GQDs). Thiacloprid is a new type of nicotine insecticide, which can block the normal neurotransmitter delivery process in insects. In the sensing system, N-GQDs were immersed into filter paper at first. Then, dopamine (DA) with thiacloprid can be self-polymerized on test strip surface to form the uniform PDA film. After removed thiacloprid template, the established poly dopamine (PDA) MIP can selectively recognize thiacloprid. As a result, captured thiacloprid can enhance the fluorescence intensity of N-GQDs into the test strip. As a result, the fluorescence intensity of N-GQDs can be linearly related within a certain range of thiacloprid concentration. Under the optimum conditions, the proposed sensor for thiacloprid detection exhibited a linear ranging from 0.1 mg/L to 10 mg/L with a low detection limit of 0.03 mg/L. The N-GQDs based test strip-based sensor for thiaclopridis reported for the first time. The sensing system has high selectivity to thiacloprid and provides new opportunities in the pesticide detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Multifunctional inulin tethered silver-graphene quantum dots nanotheranostic module for pancreatic cancer therapy.

    PubMed

    Nigam Joshi, Preeti; Agawane, Sachin; Athalye, Meghana C; Jadhav, Vrushali; Sarkar, Dhiman; Prakash, Rajiv

    2017-09-01

    Cancer nanotechnology is an emerging area of cancer diagnosis and therapy. Although considerable progress has been made for targeted drug delivery systems to deliver anticancer agents to particular site of interest, new nanomaterials are frequently being developed and explored for better drug delivery efficiency. In the present work, we have explored a novel nanoformulation based on silver-graphene quantum dots (Ag-GQDs) nanocomposite for its successful implementation for pancreatic cancer specific drug delivery in wistar rats. Carboxymethyl inulin (CMI); a modified variant of natural polysaccharide inulin is tethered with the nanocomposite via carbodiimide coupling to enhance the biocompatibility of nanoformulation. Experiments are performed to investigate the cytotoxicity reduction of silver nanoparticles after inulin tethering as well as anticancer efficacy of the system using 5-Fluorouracil (5-FU) as model drug. SEM, TEM, FT-IR, UV-vis, photoluminescence and anti proliferative assays (MTT) are performed for characterisation of the nanocomposite. Hyaluronic acid (HA) is conjugated as targeting moiety for CD-44 (cancer stem cell marker) to fabricate a complete targeted drug delivery vehicle specific for pancreatic cancer. In the present work two prime objectives were achieved; mitigation the toxicity of silver nanoparticles by inulin coating and it's in vivo application for pancreatic cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A 2 × 2 quantum dot array with controllable inter-dot tunnel couplings

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Uditendu; Dehollain, Juan Pablo; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven M. K.

    2018-04-01

    The interaction between electrons in arrays of electrostatically defined quantum dots is naturally described by a Fermi-Hubbard Hamiltonian. Moreover, the high degree of tunability of these systems makes them a powerful platform to simulate different regimes of the Hubbard model. However, most quantum dot array implementations have been limited to one-dimensional linear arrays. In this letter, we present a square lattice unit cell of 2 × 2 quantum dots defined electrostatically in an AlGaAs/GaAs heterostructure using a double-layer gate technique. We probe the properties of the array using nearby quantum dots operated as charge sensors. We show that we can deterministically and dynamically control the charge occupation in each quantum dot in the single- to few-electron regime. Additionally, we achieve simultaneous individual control of the nearest-neighbor tunnel couplings over a range of 0-40 μeV. Finally, we demonstrate fast (˜1 μs) single-shot readout of the spin state of electrons in the dots through spin-to-charge conversion via Pauli spin blockade. These advances pave the way for analog quantum simulations in two dimensions, not previously accessible in quantum dot systems.

  3. Intrinsic and extrinsic defects in a family of coal-derived graphene quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu, E-mail: tour@rice.edu; Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695; Tol, Johan van

    In this letter, we report on the high frequency (239.2 and 336 GHz) electron spin resonance (ESR) studies performed on graphene quantum dots (GQDs), prepared through a wet chemistry route from three types of coal: (a) bituminous, (b) anthracite, and (c) coke; and from non-coal derived GQDs. The microwave frequency-, power-, and temperature-dependent ESR spectra coupled with computer-aided simulations reveal four distinct magnetic defect centers. In bituminous- and anthracite-derived GQDs, we have identified two of them as intrinsic carbon-centered magnetic defect centers (a broad signal of peak to peak width = 697 (10{sup −4} T), g = 2.0023; and a narrow signal of peak tomore » peak width = 60 (10{sup −4} T), g = 2.003). The third defect center is Mn{sup 2+} ({sup 6}S{sub 5/2}, 3d{sup 5}) (signal width = 61 (10{sup −4} T), g = 2.0023, A{sub iso} = 93(10{sup −4} T)), and the fourth defect is identified as Cu{sup 2+} ({sup 2}D{sub 5/2}, 3d{sup 9}) (g{sub ⊥} = 2.048 and g{sub ‖} = 2.279), previously undetected. Coke-derived and non-coal derived GQDs show Mn{sup 2+} and two-carbon related signals, and no Cu{sup 2+} signal. The extrinsic impurities most likely originate from the starting coal. Furthermore, Raman, photoluminescence, and ESR measurements detected no noticeable changes in the properties of the bituminous GQDs after one year. This study highlights the importance of employing high frequency ESR spectroscopy in identifying the (magnetic) defects, which are roadblocks for spin relaxation times of graphene-based materials. These defects would not have been possible to probe by other spin transport measurements.« less

  4. Improved activity and thermo-stability of the horse radish peroxidase with graphene quantum dots and its application in fluorometric detection of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Xiaoyan, Zhou; Yuanyuan, Jiang; Zaijun, Li; Zhiguo, Gu; Guangli, Wang

    2016-08-01

    Graphene quantum dots (GQDs) have received extensive concern in many fields such as optical probe, bioimaging and biosensor. However, few reports refer on the influence of GQDs on enzyme performance. The paper reports two kinds of graphene quantum dots (termed as GO-GQDs and N,S-GQDs) that were prepared by cutting of graphene oxide and pyrolysis of citric acid and L-cysteine, and their use for the horse radish peroxidase (HRP) modification. The study reveals that GO-GQDs and N,S-GQDs exhibit an opposite effect on the HRP performance. Only HRP modified with GO-GQDs offers an enhanced activity (more than 1.9 times of pristine enzyme) and thermo-stability. This is because GO-GQDs offer a larger conjugate rigid plane and fewer hydrophilic groups compared to N,S-GQDs. The characteristics can make GO-GQDs induce a proper conformational change in the HRP for the catalytic performance, improving the enzyme activity and thermo-stability. The HRP modified with green luminescent GO-GQDs was also employed as a biocatalyst for sensing of H2O2 by a fluorometric sensor. The colorless tetramethylbenzidine (TMB) is oxidized into blue oxidized TMB in the presence of H2O2 by the assistance of HRP/GO-GQDs, leading to an obvious fluorescence quenching. The fluorescence intensity linearly decreases with the increase of H2O2 concentration in the range from 2 × 10 - 9 to 2 × 10 - 4 M with the detection limit of 6.8 × 10 - 10 M. The analytical method provides the advantage of sensitivity, stability and accuracy compared with present H2O2 sensors based on the pristine HRP. It has been successfully applied in the determination of H2O2 in real water samples. The study also opens a new avenue for modification of enzyme activity and stability that offers great promise in applications such as biological catalysis, biosensing and enzyme engineering.

  5. Using of Quantum Dots in Biology and Medicine.

    PubMed

    Pleskova, Svetlana; Mikheeva, Elza; Gornostaeva, Ekaterina

    2018-01-01

    Quantum dots are nanoparticles, which due to their unique physical and chemical (first of all optical) properties, are promising in biology and medicine. There are many ways for quantum dots synthesis, both in the form of nanoislands self-forming on the surfaces, which can be used as single-photon emitters in electronics for storing information, and in the form of colloidal quantum dots for diagnostic and therapeutic purposes in living systems. The paper describes the main methods of quantum dots synthesis and summarizes medical and biological ways of their use. The main emphasis is laid on the ways of quantum dots surface modification. Influence of the size and form of nanoparticles, charge on the surfaces of quantum dots, and cover type on the efficiency of internalization by cells and cell compartments is shown. The main mechanisms of penetration are considered.

  6. Graphene-palladium nanowires based electrochemical sensor using ZnFe2O4-graphene quantum dots as an effective peroxidase mimic.

    PubMed

    Liu, Weiyan; Yang, Hongmei; Ma, Chao; Ding, Ya-nan; Ge, Shenguang; Yu, Jinghua; Yan, Mei

    2014-12-10

    We proposed an electrochemical DNA sensor by using peroxidase-like magnetic ZnFe2O4-graphene quantum dots (ZnFe2O4/GQDs) nanohybrid as a mimic enzymatic label. Aminated graphene and Pd nanowires were successively modified on glassy carbon electrode, which improved the electronic transfer rate as well as increased the amount of immobilized capture ssDNA (S1). The nanohybrid ZnFe2O4/GQDs was prepared by assembling the GQDs on the surface of ZnFe2O4 through a photo-Fenton reaction, which was not only used as a mimic enzyme but also as a carrier to label complementary ssDNA (S3). By synergistically integrating highly catalytically activity of nano-sized GQDs and ZnFe2O4, the nanohybrid possessed highly-efficient peroxidase-like catalytic activity which could produce a large current toward the reduction of H2O2 for signal amplification. Thionine was used as an excellent electron mediator. Compared with traditional enzyme labels, the mimic enzyme ZnFe2O4/GQDs exhibited many advantages such as environment friendly and better stability. Under the optimal conditions, the approach provided a wide linear range from 10(-16) to 5×10(-9) M and low detection limit of 6.2×10(-17) M. The remarkable high catalytic capability could allow the nanohybrid to replace conventional peroxidase-based assay systems. The new, robust and convenient assay systems can be widely utilized for the identification of other target molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Synthesis of Nitrogen-Doped Graphene Quantum Dots at Low Temperature for Electrochemical Sensing Trinitrotoluene.

    PubMed

    Cai, Zhewei; Li, Fumin; Wu, Ping; Ji, Lijuan; Zhang, Hui; Cai, Chenxin; Gervasio, Dominic F

    2015-12-01

    Nitrogen-doped graphene quantum dots (N-GQDs) are synthesized at low temperature as a new catalyst allowing electrochemical detection of 2,4,6-trinitrotoluene (TNT). N-GQDs are made by an oxidative ultrasonication of graphene oxide (GO) forming nanometer-sized species, which are then chemically reduced and nitrogen doped by reacting with hydrazine. The as-synthesized N-GQDs have an average diameter of ∼2.5 nm with an N/C atomic ratio of up to ∼6.4%. To detect TNT, TNT is first accumulated on N-GQDs modified glassy carbon (N-GQDs/GC) electrode by holding the electrode at a 0 V versus Ag/AgCl for 150 s in an aqueous TNT solution. Next, the N-GQDs/GC electrode with accumulated TNT is transferred to a fresh PBS solution (0.1 M, pH 7.0, without TNT), where the TNT reduction current at -0.36 V versus Ag/AgCl in a linear scan voltammogram (LSV) shows a linear response to TNT concentration in the aqueous solution from 1 to 400 ppb, with a correlation coefficient of 0.999, a detection limit of 0.2 ppb at a signal/noise (S/N) of 3, and a detection sensitivity of 363 ± 7 mA mM(-1) cm(-2). The detection limit of 0.2 ppb of TNT for this new method is much lower than 2 ppb set by the U.S. Environmental Protection Agency for drinking water. Therefore, N-GQDs allow an electrochemical method for assaying TNT in drinking water to determine if levels of TNT are safe or not.

  8. Effect of self assembled quantum dots on carrier mobility, with application to modeling the dark current in quantum dot infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Youssef, Sarah; El-Batawy, Yasser M.; Abouelsaood, Ahmed A.

    2016-09-01

    A theoretical method for calculating the electron mobility in quantum dot infrared photodetectors is developed. The mobility calculation is based on a time-dependent, finite-difference solution of the Boltzmann transport equation in a bulk semiconductor material with randomly positioned conical quantum dots. The quantum dots act as scatterers of current carriers (conduction-band electrons in our case), resulting in limiting their mobility. In fact, carrier scattering by quantum dots is typically the dominant factor in determining the mobility in the active region of the quantum dot device. The calculated values of the mobility are used in a recently developed generalized drift-diffusion model for the dark current of the device [Ameen et al., J. Appl. Phys. 115, 063703 (2014)] in order to fix the overall current scale. The results of the model are verified by comparing the predicted dark current characteristics to those experimentally measured and reported for actual InAs/GaAs quantum dot infrared photodetectors. Finally, the effect of the several relevant device parameters, including the operating temperature and the quantum dot average density, is studied.

  9. Polarization of the photoluminescence of quantum dots incorporated into quantum wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platonov, A. V., E-mail: alexei.platonov@mail.ioffe.ru; Kochereshko, V. P.; Kats, V. N.

    The photoluminescence spectra of individual quantum dots incorporated into a quantum wire are studied. From the behavior of the spectra in a magnetic field, it is possible to estimate the exciton binding energy in a quantum dot incorporated into a quantum wire. It is found that the exciton photoluminescence signal emitted from a quantum dot along the direction of the nanowire axis is linearly polarized. At the same time, the photoluminescence signal propagating in the direction orthogonal to the nanowire axis is practically unpolarized. The experimentally observed effect is attributed to the nonaxial arrangement of the dot in the wiremore » under conditions of a huge increase in the exciton binding energy due to the effect of the image potential on the exciton.« less

  10. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    PubMed

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Luminescent Quantum Dots as Ultrasensitive Biological Labels

    NASA Astrophysics Data System (ADS)

    Nie, Shuming

    2000-03-01

    Highly luminescent semiconductor quantum dots have been covalently coupled to biological molecules for use in ultrasensitive biological detection. This new class of luminescent labels is considerably brighter and more resistant againt photobleaching in comparison with organic dyes. Quantum dots labeled with the protein transferrin undergo receptor-mediated endocytosis (RME) in cultured HeLa cells, and those dots that were conjugated to immunomolecules recognize specific antibodies or antigens. In addition, we show that DNA functionalized quantum dots can be used to target specific genes by hybridization. We expect that quantum dot bioconjugates will have a broad range of biological applications, such as ligand-receptor interactions, real-time monitoring of molecular trafficking inside living cells, multicolor fluorescence in-situ hybridization (FISH), high-sensitivity detection in miniaturized devices (e.g., DNA chips), and fluorescent tagging of combinatorial chemical libraries. A potential clinical application is the use of quantum dots for ultrasensitive viral RNA detection, in which as low as 100 copies of hepatitis C and HIV viruses per ml blood should be detected.

  12. The impact of quantum dot filling on dual-band optical transitions via intermediate quantum states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jiang, E-mail: jiang.wu@ucl.ac.uk; Passmore, Brandon; Manasreh, M. O.

    2015-08-28

    InAs/GaAs quantum dot infrared photodetectors with different doping levels were investigated to understand the effect of quantum dot filling on both intraband and interband optical transitions. The electron filling of self-assembled InAs quantum dots was varied by direct doping of quantum dots with different concentrations. Photoresponse in the near infrared and middle wavelength infrared spectral region was observed from samples with low quantum dot filling. Although undoped quantum dots were favored for interband transitions with the absence of a second optical excitation in the near infrared region, doped quantum dots were preferred to improve intraband transitions in the middle wavelengthmore » infrared region. As a result, partial filling of quantum dot was required, to the extent of maintaining a low dark current, to enhance the dual-band photoresponse through the confined electron states.« less

  13. High-performance PbS quantum dot vertical field-effect phototransistor using graphene as a transparent electrode

    NASA Astrophysics Data System (ADS)

    Che, Yongli; Zhang, Yating; Cao, Xiaolong; Song, Xiaoxian; Zhang, Haiting; Cao, Mingxuan; Dai, Haitao; Yang, Junbo; Zhang, Guizhong; Yao, Jianquan

    2016-12-01

    Solution processed photoactive PbS quantum dots (QDs) were used as channel in high-performance near-infrared vertical field-effect phototransistor (VFEpT) where monolayer graphene embedded as transparent electrode. In this vertical architecture, the PbS QD channel was sandwiched and naturally protected between the drain and source electrodes, which made the device ultrashort channel length (110 nm) simply the thickness of the channel layer. The VFEpT exhibited ambipolar operation with high mobilities of μe = 3.5 cm2/V s in n-channel operation and μh = 3.3 cm2/V s in p-channel operation at low operation voltages. By using the photoactive PbS QDs as channel material, the VFEpT exhibited good photoresponse properties with a responsivity of 4.2 × 102 A/W, an external quantum efficiency of 6.4 × 104% and a photodetectivity of 2.1 × 109 Jones at the light irradiance of 36 mW/cm2. Additionally, the VFEpT showed excellent on/off switching with good stability and reproducibility and fast response speed with a short rise time of 12 ms in n-channel operation and 10.6 ms in p-channel operation. These high mobilities, good photoresponse properties and simplistic fabrication of our VFEpTs provided a facile route to the high-performance inorganic photodetectors.

  14. Spectroscopy of Single AlInAs Quantum Dots

    NASA Astrophysics Data System (ADS)

    Derebezov, I. A.; Gaisler, A. V.; Gaisler, V. A.; Dmitriev, D. V.; Toropov, A. I.; Kozhukhov, A. S.; Shcheglov, D. V.; Latyshev, A. V.; Aseev, A. L.

    2018-03-01

    A system of quantum dots based on Al x In1- x As/Al y Ga1- y As solid solutions is investigated. The use of Al x In1- x As wide-gap solid solutions as the basis of quantum dots substantially extends the spectral emission range to the short-wavelength region, including the wavelength region near 770 nm, which is of interest for the development of aerospace systems of quantum cryptography. The optical characteristics of Al x In1- x As single quantum dots grown by the Stranski-Krastanov mechanism were studied by cryogenic microphotoluminescence. The statistics of the emission of single quantum dot excitons was studied using a Hanbury Brown-Twiss interferometer. The pair photon correlation function indicates the sub-Poissonian nature of the emission statistics, which directly confirms the possibility of developing single-photon emitters based on Al x In1- x As quantum dots. The fine structure of quantum dot exciton states was investigated at wavelengths near 770 nm. The splitting of the exciton states is found to be similar to the natural width of exciton lines, which is of great interest for the development of entangled photon pair emitters based on Al x In1- x As quantum dots.

  15. Thiomersal photo-degradation with visible light mediated by graphene quantum dots: Indirect quantification using optical multipath mercury cold-vapor absorption spectrophotometry

    NASA Astrophysics Data System (ADS)

    Miranda-Andrades, Jarol R.; Khan, Sarzamin; Toloza, Carlos A. T.; Romani, Eric C.; Freire Júnior, Fernando L.; Aucelio, Ricardo Q.

    2017-12-01

    Thiomersal is employed as preservative in vaccines, cosmetic and pharmaceutical products due to its capacity to inhibit bacterial growth. Thiomersal contains 49.55% of mercury in its composition and its highly toxic ethylmercury degradation product has been linked to neurological disorders. The photo-degradation of thiomersal has been achieved by visible light using graphene quantum dots as catalysts. The generated mercury cold vapor (using adjusted experimental conditions) was detected by multipath atomic absorption spectrometry allowing the quantification of thiomersal at values as low as 20 ng L- 1 even in complex samples as aqueous effluents of pharmaceutical industry and urine. A kinetic study (pseudo-first order with k = 0.11 min- 1) and insights on the photo-degradation process are presented.

  16. Advances in graphene-based optoelectronics, plasmonics and photonics

    NASA Astrophysics Data System (ADS)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-03-01

    Since the early works on graphene it has been remarked that graphene is a marvelous electronic material. Soon after its discovery, graphene was efficiently utilized in the fabrication of optoelectronic, plasmonic and photonic devices, including graphene-based Schottky junction solar cells. The present work is a review of the progress in the experimental research on graphene-based optoelectronics, plasmonics and photonics, with the emphasis on recent advances. The main graphene-based optoelectronic devices presented in this review are photodetectors and modulators. In the area of graphene-based plasmonics, a review of the plasmonic nanostructures enhancing or tuning graphene-light interaction, as well as of graphene plasmons is presented. In the area of graphene-based photonics, we report progress on fabrication of different types of graphene quantum dots as well as functionalized graphene and graphene oxide, the research on the photoluminescence and fluorescence of graphene nanostructures as well as on the energy exchange between graphene and semiconductor quantum dots. In particular, the promising achievements of research on graphene-based Schottky junction solar cells is presented.

  17. Quantum strain sensor with a topological insulator HgTe quantum dot

    PubMed Central

    Korkusinski, Marek; Hawrylak, Pawel

    2014-01-01

    We present a theory of electronic properties of HgTe quantum dot and propose a strain sensor based on a strain-driven transition from a HgTe quantum dot with inverted bandstructure and robust topologically protected quantum edge states to a normal state without edge states in the energy gap. The presence or absence of edge states leads to large on/off ratio of conductivity across the quantum dot, tunable by adjusting the number of conduction channels in the source-drain voltage window. The electronic properties of a HgTe quantum dot as a function of size and applied strain are described using eight-band Luttinger and Bir-Pikus Hamiltonians, with surface states identified with chirality of Luttinger spinors and obtained through extensive numerical diagonalization of the Hamiltonian. PMID:24811674

  18. Thick-shell nanocrystal quantum dots

    DOEpatents

    Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  19. Fast synthesize ZnO quantum dots via ultrasonic method.

    PubMed

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Origins and optimization of entanglement in plasmonically coupled quantum dots

    DOE PAGES

    Otten, Matthew; Larson, Jeffrey; Min, Misun; ...

    2016-08-11

    In this paper, a system of two or more quantum dots interacting with a dissipative plasmonic nanostructure is investigated in detail by using a cavity quantum electrodynamics approach with a model Hamiltonian. We focus on determining and understanding system configurations that generate multiple bipartite quantum entanglements between the occupation states of the quantum dots. These configurations include allowing for the quantum dots to be asymmetrically coupled to the plasmonic system. Analytical solution of a simplified limit for an arbitrary number of quantum dots and numerical simulations and optimization for the two- and three-dot cases are used to develop guidelines formore » maximizing the bipartite entanglements. For any number of quantum dots, we show that through simple starting states and parameter guidelines, one quantum dot can be made to share a strong amount of bipartite entanglement with all other quantum dots in the system, while entangling all other pairs to a lesser degree.« less

  1. Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids.

    PubMed

    Talgorn, Elise; Gao, Yunan; Aerts, Michiel; Kunneman, Lucas T; Schins, Juleon M; Savenije, T J; van Huis, Marijn A; van der Zant, Herre S J; Houtepen, Arjan J; Siebbeles, Laurens D A

    2011-09-25

    Solid films of colloidal quantum dots show promise in the manufacture of photodetectors and solar cells. These devices require high yields of photogenerated charges and high carrier mobilities, which are difficult to achieve in quantum-dot films owing to a strong electron-hole interaction and quantum confinement. Here, we show that the quantum yield of photogenerated charges in strongly coupled PbSe quantum-dot films is unity over a large temperature range. At high photoexcitation density, a transition takes place from hopping between localized states to band-like transport. These strongly coupled quantum-dot films have electrical properties that approach those of crystalline bulk semiconductors, while retaining the size tunability and cheap processing properties of colloidal quantum dots.

  2. Graphene quantum dot as a green and facile sensor for free chlorine in drinking water.

    PubMed

    Dong, Yongqiang; Li, Geli; Zhou, Nana; Wang, Ruixue; Chi, Yuwu; Chen, Guonan

    2012-10-02

    Free chlorine was found to be able to destroy the passivated surface of the graphene quantum dots (GQDs) obtained by pyrolyzing citric acid, resulting in significant quenching of their fluorescence (FL) signal. After optimizing some experimental conditions (including response time, concentration of GQDs, and pH value of solution), a green and facile sensing system has been developed for the detection of free residual chlorine in water based on FL quenching of GQDs. The sensing system exhibits many advantages, such as short response time, excellent selectivity, wide linear response range, and high sensitivity. The linear response range of free chlorine (R(2) = 0.992) was from 0.05 to 10 μM. The detection limit (S/N = 3) was as low as 0.05 μM, which is much lower than that of the most widely used N-N-diethyl-p-phenylenediamine (DPD) colorimetric method. This sensing system was finally used to detect free residual chlorine in local tap water samples. The result agreed well with that by the DPD colorimetric method, suggesting the potential application of this new, green, sensitive, and facile sensing system in drinking water quality monitoring.

  3. Graphene quantum dots as additives in capillary electrophoresis for separation cinnamic acid and its derivatives.

    PubMed

    Sun, Yaming; Bi, Qing; Zhang, Xiaoli; Wang, Litao; Zhang, Xia; Dong, Shuqing; Zhao, Liang

    2016-05-01

    A facile capillary electrophoresis (CE) method for the separation of cinnamic acid and its derivatives (3,4-dimethoxycinnamic acid, 4-methoxycinnamic acid, isoferulic acid, sinapic acid, cinnamic acid, ferulic acid, and trans-4-hydroxycinnamic acid) using graphene quantum dots (GQDs) as additives with direct ultraviolet (UV) detection is reported. GQDs were synthesized by chemical oxidization and further purified by a macroporous resin column to remove salts (Na2SO4 and NaNO3) and other impurities. Transmission electron microscopy (TEM) indicated that GQDs have a relatively uniform particle size (2.3 nm). Taking into account the structural features of GQDs, cinnamic acid and its derivatives were adopted as model compounds to investigate whether GQDs can be used to improve CE separations. The separation performance of GQDs used as additives in CE was studied through variations of pH, concentration of the background electrolyte (BGE), and contents of GQDs. The results indicated that excellent separation can be achieved in less than 18 min, which is mainly attributed to the interaction between the analytes and GQDs, especially isoferulic acid, sinapic acid, and cinnamic acid. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Semiconductor Quantum Dots with Photoresponsive Ligands.

    PubMed

    Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume

    2016-10-01

    Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.

  5. Interactions between photoexcited NIR emitting CdHgTe quantum dots and graphene oxide

    NASA Astrophysics Data System (ADS)

    Jagtap, Amardeep M.; Varade, Vaibhav; Konkena, Bharathi; Ramesh, K. P.; Chatterjee, Abhijit; Banerjee, Arup; Pendyala, Naresh Babu; Koteswara Rao, K. S. R.

    2016-02-01

    Hydrothermally grown mercury cadmium telluride quantum dots (CdHgTe QDs) are decorated on graphene oxide (GO) sheets through physisorption. The structural change of GO through partial reduction of oxygen functional groups is observed with X-ray photoelectron spectroscopy in GO-QDs composites. Raman spectroscopy provides relatively a small change (˜1.1 times) in D/G ratio of band intensity and red shift in G band from 1606 cm-1 to 1594 cm-1 in GO-CdHgTe QDs (2.6 nm) composites, which indicates structural modification of GO network. Steady state and time resolved photoluminescence (PL) spectroscopy shows the electronic interactions between photoexcited near infrared emitting CdHgTe QDs and GO. Another interesting observation is PL quenching in the presence of GO, and it is quite effective in the case of smaller size QDs (2.6 nm) compared to the larger size QDs (4.2 nm). Thus, the observed PL quenching is attributed to the photogenerated electron transfer from QDs to GO. The photoexcited electron transfer rate decreases from 2.2 × 109 to 1.5 × 108 s-1 with increasing particle size from 2.6 to 4.2 nm. Photoconductivity measurements on QDs-GO composite devices show nearly 3 fold increase in the current density under photo-illumination, which is a promising aspect for solar energy conversion and other optoelectronic applications.

  6. Investigation of Quantum Dot Lasers

    DTIC Science & Technology

    2004-08-09

    Accomplishments: • Introduction Since the first demonstration of room-temperature operation of self-assembled quantum-dot (QD) lasers about a...regions (JGaAs), wetting layer (JWL), and Auger recombination in the dots ( JAug ). for the present 1.3µm dots, the temperature invariant measured

  7. Excitonic quantum interference in a quantum dot chain with rings.

    PubMed

    Hong, Suc-Kyoung; Nam, Seog Woo; Yeon, Kyu-Hwang

    2008-04-16

    We demonstrate excitonic quantum interference in a closely spaced quantum dot chain with nanorings. In the resonant dipole-dipole interaction model with direct diagonalization method, we have found a peculiar feature that the excitation of specified quantum dots in the chain is completely inhibited, depending on the orientational configuration of the transition dipole moments and specified initial preparation of the excitation. In practice, these excited states facilitating quantum interference can provide a conceptual basis for quantum interference devices of excitonic hopping.

  8. Ultralow Noise Monolithic Quantum Dot Photonic Oscillators

    DTIC Science & Technology

    2013-10-28

    HBCU/MI) ULTRALOW NOISE MONOLITHIC QUANTUM DOT PHOTONIC OSCILLATORS LUKE LESTER UNIVERSITY OF NEW MEXICO 10/28/2013 Final Report DISTRIBUTION A...TELEPHONE NUMBER (Include area code) 24-10-2013 Final 01-06-2010 to 31-05-2013 Ultralow Noise Monolithic Quantum Dot Photonic Oscillators FA9550-10-1-0276...277-7647 Reset Grant Title: ULTRALOW NOISE MONOLITHIC QUANTUM DOT PHOTONIC OSCILLATORS Grant/Contract Number: FA9550-10-1-0276 Final Performance

  9. Measurement back-action: Listening with quantum dots

    NASA Astrophysics Data System (ADS)

    Ladd, Thaddeus D.

    2012-07-01

    Single electrons in quantum dots can be disturbed by the apparatus used to measure them. The disturbance can be mediated by incoherent phonons -- literally, noise. Engineering acoustic interference could negate these deleterious effects and bring quantum dots closer to becoming a robust quantum technology.

  10. Zinc sulfide quantum dots for photocatalytic and sensing applications

    NASA Astrophysics Data System (ADS)

    Sergeev, Alexander A.; Leonov, Andrei A.; Zhuikova, Elena I.; Postnova, Irina V.; Voznesenskiy, Sergey S.

    2017-09-01

    Herein, we report the photocatalytic and sensing applications of pure and Mn-doped ZnS quantum dots. The quantum dots were prepared by a chemical precipitation in an aqueous solution in the presence of glutathione as a stabilizing agent. The synthesized quantum dots were used as effective photocatalyst for the degradation of methylene blue dye. Interestingly, fully degradation of methylene blue dye was achieved in 5 min using pure ZnS quantum dots. Further, the synthesized quantum dots were used as efficient sensing element for methane fluorescent sensor. Interfering studies confirmed that the developed sensor possesses very good sensitivity and selectivity towards methane.

  11. Competition Between Resonant Plasmonic Coupling and Electrostatic Interaction in Reduced Graphene Oxide Quantum Dots.

    PubMed

    Karna, Sanjay; Mahat, Meg; Choi, Tae-Youl; Shimada, Ryoko; Wang, Zhiming; Neogi, Arup

    2016-11-22

    The light emission from reduced graphene oxide quantum dots (rGO-QDs) exhibit a significant enhancement in photoluminescence (PL) due to localized surface plasmon (LSP) interactions. Silver and gold nanoparticles (NPs) coupled to rGO nanoparticles exhibit the effect of resonant LSP coupling on the emission processes. Enhancement of the radiative recombination rate in the presence of Ag-NPs induced LSP tuned to the emission energy results in a four-fold increase in PL intensity. The localized field due to the resonantly coupled LSP modes induces n-π* transitions that are not observed in the absence of the resonant interaction of the plasmons with the excitons. An increase in the density of the Ag-NPs result in a detuning of the LSP energy from the emission energy of the nanoparticles. The detuning is due to the cumulative effect of the red-shift in the LSP energy and the electrostatic field induced blue shift in the PL energy of the rGO-QDs. The detuning quenches the PL emission from rGO-QDs at higher concentration of Ag NPs due to non-dissipative effects unlike plasmon induced Joule heating that occurs under resonance conditions. An increase in Au nanoparticles concentration results in an enhancement of PL emission due to electrostatic image charge effect.

  12. Fluorescent Quantum Dots for Biological Labeling

    NASA Technical Reports Server (NTRS)

    McDonald, Gene; Nadeau, Jay; Nealson, Kenneth; Storrie-Lomardi, Michael; Bhartia, Rohit

    2003-01-01

    Fluorescent semiconductor quantum dots that can serve as "on/off" labels for bacteria and other living cells are undergoing development. The "on/off" characterization of these quantum dots refers to the fact that, when properly designed and manufactured, they do not fluoresce until and unless they come into contact with viable cells of biological species that one seeks to detect. In comparison with prior fluorescence-based means of detecting biological species, fluorescent quantum dots show promise for greater speed, less complexity, greater sensitivity, and greater selectivity for species of interest. There are numerous potential applications in medicine, environmental monitoring, and detection of bioterrorism.

  13. Influence of surface states of CuInS2 quantum dots in quantum dots sensitized photo-electrodes

    NASA Astrophysics Data System (ADS)

    Peng, Zhuoyin; Liu, Yueli; Wu, Lei; Zhao, Yinghan; Chen, Keqiang; Chen, Wen

    2016-12-01

    Surface states are significant factor for the enhancement of electrochemical performance in CuInS2 quantum dot sensitized photo-electrodes. DDT, OLA, MPA, and S2- ligand capped CuInS2 quantum dot sensitized photo-electrodes are prepared by thermolysis, solvethermal and ligand-exchange processes, respectively, and their optical properties and photoelectrochemical properties are investigated. The S2- ligand enhances the UV-vis absorption and electron-hole separation property as well as the excellent charge transfer performance of the photo-electrodes, which is attributed to the fact that the atomic S2- ligand for the interfacial region of quantum dots may improve the electron transfer rate. These S2--capped CuInS2 quantum dot sensitized photo-electrodes exhibit the excellent photoelectrochemical efficiency and IPCE peak value, which is higher than that of the samples with DDT, OLA and MPA ligands.

  14. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications

    PubMed Central

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-01-01

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided. PMID:28788080

  15. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.

    PubMed

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-07-28

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  16. Detection of CdSe quantum dot photoluminescence for security label on paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isnaeni,, E-mail: isnaeni@lipi.go.id; Sugiarto, Iyon Titok; Bilqis, Ratu

    CdSe quantum dot has great potential in various applications especially for emitting devices. One example potential application of CdSe quantum dot is security label for anti-counterfeiting. In this work, we present a practical approach of security label on paper using one and two colors of colloidal CdSe quantum dot, which is used as stamping ink on various types of paper. Under ambient condition, quantum dot is almost invisible. The quantum dot security label can be revealed by detecting emission of quantum dot using photoluminescence and cnc machine. The recorded quantum dot emission intensity is then analyzed using home-made program tomore » reveal quantum dot pattern stamp having the word ’RAHASIA’. We found that security label using quantum dot works well on several types of paper. The quantum dot patterns can survive several days and further treatment is required to protect the quantum dot. Oxidation of quantum dot that occurred during this experiment reduced the emission intensity of quantum dot patterns.« less

  17. Metamorphic quantum dots: Quite different nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seravalli, L.; Frigeri, P.; Nasi, L.

    In this work, we present a study of InAs quantum dots deposited on InGaAs metamorphic buffers by molecular beam epitaxy. By comparing morphological, structural, and optical properties of such nanostructures with those of InAs/GaAs quantum dot ones, we were able to evidence characteristics that are typical of metamorphic InAs/InGaAs structures. The more relevant are: the cross-hatched InGaAs surface overgrown by dots, the change in critical coverages for island nucleation and ripening, the nucleation of new defects in the capping layers, and the redshift in the emission energy. The discussion on experimental results allowed us to conclude that metamorphic InAs/InGaAs quantummore » dots are rather different nanostructures, where attention must be put to some issues not present in InAs/GaAs structures, namely, buffer-related defects, surface morphology, different dislocation mobility, and stacking fault energies. On the other hand, we show that metamorphic quantum dot nanostructures can provide new possibilities of tailoring various properties, such as dot positioning and emission energy, that could be very useful for innovative dot-based devices.« less

  18. Photon-assisted tunneling in an asymmetrically coupled triple quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bao-Chuan; Cao, Gang, E-mail: gcao@ustc.edu.cn; Chen, Bao-Bao

    The gate-defined quantum dot is regarded as one of the basic structures required for scalable semiconductor quantum processors. Here, we demonstrate a structure that contains three quantum dots scaled in series. The electron number of each dot and the tunnel coupling between them can be tuned conveniently using splitting gates. We tune the quantum dot array asymmetrically such that the tunnel coupling between the right dot and the central dot is much larger than that between the left dot and the central dot. When driven by microwaves, the sidebands of the photon-assisted tunneling process appear not only in the left-to-centralmore » dot transition region but also in the left-to-right dot transition region. These sidebands are both attributed to the left-to-central transition for asymmetric coupling. Our result shows that there is a region of a triple quantum dot structure that remains indistinct when studied with a normal two-dimensional charge stability diagram; this will be helpful in future studies of the scalability of quantum dot systems.« less

  19. Silicon Quantum Dots with Counted Antimony Donor Implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Meenakshi; Pacheco, Jose L.; Perry, Daniel Lee

    2015-10-01

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. A focused ion beam is used to implant close to quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of ions implanted can be counted to a precision of a single ion. Regular coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization, are observed in devices with counted implants.

  20. Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot-To-Dot Surface Passivation.

    PubMed

    Carey, Graham H; Levina, Larissa; Comin, Riccardo; Voznyy, Oleksandr; Sargent, Edward H

    2015-06-03

    Through a combination of chemical and mutual dot-to-dot surface passivation, high-quality colloidal quantum dot solids are fabricated. The joint passivation techniques lead to a record diffusion length for colloidal quantum dots of 230 ± 20 nm. The technique is applied to create thick photovoltaic devices that exhibit high current density without losing fill factor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Reconfigurable quadruple quantum dots in a silicon nanowire transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betz, A. C., E-mail: ab2106@cam.ac.uk; Broström, M.; Gonzalez-Zalba, M. F.

    2016-05-16

    We present a reconfigurable metal-oxide-semiconductor multi-gate transistor that can host a quadruple quantum dot in silicon. The device consists of an industrial quadruple-gate silicon nanowire field-effect transistor. Exploiting the corner effect, we study the versatility of the structure in the single quantum dot and the serial double quantum dot regimes and extract the relevant capacitance parameters. We address the fabrication variability of the quadruple-gate approach which, paired with improved silicon fabrication techniques, makes the corner state quantum dot approach a promising candidate for a scalable quantum information architecture.

  2. Improved dot size uniformity and luminescense of InAs quantum dots on InP substrate

    NASA Technical Reports Server (NTRS)

    Qiu, Y.; Uhl, D.

    2002-01-01

    InAs self-organized quantum dots have been grown in InGaAs quantum well on InP substrates by metalorganic vapor phase epitaxy. Atomic Force Microscopy confirmed of quantum dot formation with dot density of 3X10(sup 10) cm(sup -2). Improved dot size uniformity and strong room temperature photoluminescence up to 2 micron were observed after modifying the InGaAs well.

  3. Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier.

    PubMed

    Lv, Ouyang; Tao, Yongxin; Qin, Yong; Chen, Chuanxiang; Pan, Yan; Deng, Linhong; Liu, Li; Kong, Yong

    2016-10-01

    Highly fluorescent graphene quantum dots (GQDs)-chitosan (CS) hybrid xerogels (GQDs-CS) were facilely synthesized, and the morphology of GQDs-CS was controllable by varying the content of GQDs in the xerogel. The GQDs-CS exhibited a porous and three-dimensional (3D) network structure when the content of GQDs reached 43% (wt%) in the xerogel, which was beneficial for drug loading and sustained release. The as-prepared GQDs-CS could also be applied for in vivo imaging since it showed strong blue, green and red luminescence under excitation of varying wavelengths. Moreover, the pH-induced protonation/deprotonation of the -NH2 groups on CS chains can result in a pH-dependent drug delivery behavior of the GQDs-CS hybrid xerogel. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Spectroscopy of Charged Quantum Dot Molecules

    NASA Astrophysics Data System (ADS)

    Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.; Korenev, V. L.

    2006-03-01

    Spins of single charges in quantum dots are attractive for many quantum information and spintronic proposals. Scalable quantum information applications require the ability to entangle and operate on multiple spins in coupled quantum dots (CQDs). To further the understanding of these systems, we present detailed spectroscopic studies of InAs CQDs with control of the discrete electron or hole charging of the system. The optical spectrum reveals a pattern of energy anticrossings and crossings in the photoluminescence as a function of applied electric field. These features can be understood as a superposition of charge and spin configurations of the two dots and represent clear signatures of quantum mechanical coupling. The molecular resonance leading to these anticrossings is achieved at different electric fields for the optically excited (trion) states and the ground (hole) states allowing for the possibility of using the excited states for optically induced coupling of the qubits.

  5. Negative exchange interactions in coupled few-electron quantum dots

    NASA Astrophysics Data System (ADS)

    Deng, Kuangyin; Calderon-Vargas, F. A.; Mayhall, Nicholas J.; Barnes, Edwin

    2018-06-01

    It has been experimentally shown that negative exchange interactions can arise in a linear three-dot system when a two-electron double quantum dot is exchange coupled to a larger quantum dot containing on the order of one hundred electrons. The origin of this negative exchange can be traced to the larger quantum dot exhibiting a spin tripletlike rather than singletlike ground state. Here we show using a microscopic model based on the configuration interaction (CI) method that both tripletlike and singletlike ground states are realized depending on the number of electrons. In the case of only four electrons, a full CI calculation reveals that tripletlike ground states occur for sufficiently large dots. These results hold for symmetric and asymmetric quantum dots in both Si and GaAs, showing that negative exchange interactions are robust in few-electron double quantum dots and do not require large numbers of electrons.

  6. A reconfigurable gate architecture for Si/SiGe quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zajac, D. M.; Hazard, T. M.; Mi, X.

    2015-06-01

    We demonstrate a reconfigurable quantum dot gate architecture that incorporates two interchangeable transport channels. One channel is used to form quantum dots, and the other is used for charge sensing. The quantum dot transport channel can support either a single or a double quantum dot. We demonstrate few-electron occupation in a single quantum dot and extract charging energies as large as 6.6 meV. Magnetospectroscopy is used to measure valley splittings in the range of 35–70 μeV. By energizing two additional gates, we form a few-electron double quantum dot and demonstrate tunable tunnel coupling at the (1,0) to (0,1) interdot charge transition.

  7. Designing quantum dots for solotronics.

    PubMed

    Kobak, J; Smoleński, T; Goryca, M; Papaj, M; Gietka, K; Bogucki, A; Koperski, M; Rousset, J-G; Suffczyński, J; Janik, E; Nawrocki, M; Golnik, A; Kossacki, P; Pacuski, W

    2014-01-01

    Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory.

  8. Designing quantum dots for solotronics

    PubMed Central

    Kobak, J.; Smoleński, T.; Goryca, M.; Papaj, M.; Gietka, K.; Bogucki, A.; Koperski, M.; Rousset, J.-G.; Suffczyński, J.; Janik, E.; Nawrocki, M.; Golnik, A.; Kossacki, P.; Pacuski, W.

    2014-01-01

    Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory. PMID:24463946

  9. Studies of silicon quantum dots prepared at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Al-Agel, Faisal A.; Suleiman, Jamal; Khan, Shamshad A.

    2017-03-01

    In this research work, we have synthesized silicon quantum dots at different substrate temperatures 193, 153 and 123 K at a fixed working pressure 5 Torr. of Argon gas. The structural studies of these silicon quantum dots have been undertaken using X-ray diffraction, Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The optical and electrical properties have been studied using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Fluorescence spectroscopy and I-V measurement system. X-ray diffraction pattern of Si quantum dots prepared at different temperatures show the amorphous nature except for the quantum dots synthesized at 193 K which shows polycrystalline nature. FESEM images of samples suggest that the size of quantum dots varies from 2 to 8 nm. On the basis of UV-visible spectroscopy measurements, a direct band gap has been observed for Si quantum dots. FTIR spectra suggest that as-grown Si quantum dots are partially oxidized which is due exposure of as-prepared samples to air after taking out from the chamber. PL spectra of the synthesized silicon quantum dots show an intense peak at 444 nm, which may be attributed to the formation of Si quantum dots. Temperature dependence of dc conductivity suggests that the dc conductivity enhances exponentially by raising the temperature. On the basis above properties i.e. direct band gap, high absorption coefficient and high conductivity, these silicon quantum dots will be useful for the fabrication of solar cells.

  10. Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system.

    PubMed

    Javanbakht, Siamak; Namazi, Hassan

    2018-06-01

    Creating anticancer properties in the hydrogel film could make it as a candidate for treating cancer tissues. In this work, a novel hydrogel nanocomposite films with anticancer properties were designed via incorporation of graphene quantum dot (GQD) as a nanoparticle into carboxymethyl cellulose (CMC) hydrogel and using doxorubicin (DOX) as drug model with broad-spectrum anticancer properties. Drug release studies carried out at two different pHs and the MTT assay was evaluated for DOX-loaded CMC/GQD nanocomposite hydrogel films against blood cancer cells (K562). The prepared nanocomposite hydrogel films were characterized using Fourier transform infrared (FT-IR), UV-Vis spectroscopy, scanning electron microscopy (SEM), permeability and mechanical properties. The prepared CMC/GQD nanocomposite hydrogel films showed an improvement in vitro swelling, degradation, water vapor permeability and pH-sensitive drug delivery properties along with not significant toxicity against blood cancer cells (K562). According to the obtained results, this nanocomposite hydrogel films can be proposed to use as an anticancer film and drug delivery system. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. A novel turn-on fluorescent strategy for sensing ascorbic acid using graphene quantum dots as fluorescent probe.

    PubMed

    Liu, Hua; Na, Weidan; Liu, Ziping; Chen, Xueqian; Su, Xingguang

    2017-06-15

    In this paper, a facile and rapid fluorescence turn-on assay for fluorescent detection of ascorbic acid (AA) was developed by using the orange emission graphene quantum dots (GQDs). In the presence of horse radish peroxidase (HRP) and hydrogen peroxide (H 2 O 2 ), catechol can be oxidized by hydroxyl radicals and converted to o-benzoquinone, which can significantly quench the fluorescence of GQDs. However, when AA present in the system, it can consume part of H 2 O 2 and hydroxyl radicals to inhibit the generation of o-benzoquinone, resulting in fluorescence recovery. Under the optimized experimental conditions, the fluorescence intensity was linearly correlated with the concentration of H 2 O 2 in the range of 3.33-500µM with a detection limit of 1.2µM. The linear detection for AA was in the range from 1.11 to 300µM with a detection limit of 0.32µM. The proposed method was applied to the determination of AA in human serum samples with satisfactory results. Copyright © 2017. Published by Elsevier B.V.

  12. Optical Signatures of Coupled Quantum Dots

    DTIC Science & Technology

    2006-02-03

    Optical Signatures of Coupled Quantum Dots E. A. Stinaff,1 M. Scheibner,1 A. S . Bracker,1 I. V. Ponomarev,1 V. L. Korenev ,2 M. E. Ware,1 M. F. Doty,1...possibility of optically coupling quantum dots for application in quantum information processing. S emiconductor approaches to quantum information can...REPORTS 3 FEBRUARY 2006 VOL 311 SCIENCE www.sciencemag.org636 o n A ug us t 1 4, 2 00 7 w w w . s ci en ce m ag .o rg D ow nl oa de d fr om Report

  13. Coulomb-coupled quantum-dot thermal transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Yanchao; Yang, Zhimin; Zhang, Xin; Lin, Bihong; Lin, Guoxing; Chen, Jincan

    2018-04-01

    A quantum-dot thermal transistor consisting of three Coulomb-coupled quantum dots coupled to the respective electronic reservoirs by tunnel contacts is established. The heat flows through the collector and emitter can be controlled by the temperature of the base. It is found that a small change in the base heat flow can induce a large heat flow change in the collector and emitter. The huge amplification factor can be obtained by optimizing the Coulomb interaction between the collector and the emitter or by decreasing the tunneling rate at the base. The proposed quantum-dot thermal transistor may open up potential applications in low-temperature solid-state thermal circuits at the nanoscale.

  14. InAs Colloidal Quantum Dots Synthesis via Aminopnictogen Precursor Chemistry.

    PubMed

    Grigel, Valeriia; Dupont, Dorian; De Nolf, Kim; Hens, Zeger; Tessier, Mickael D

    2016-10-05

    Despite their various potential applications, InAs colloidal quantum dots have attracted considerably less attention than more classical II-VI materials because of their complex syntheses that require hazardous precursors. Recently, amino-phosphine has been introduced as a cheap, easy-to-use and efficient phosphorus precursor to synthesize InP quantum dots. Here, we use aminopnictogen precursors to implement a similar approach for synthesizing InAs quantum dots. We develop a two-step method based on the combination of aminoarsine as the arsenic precursor and aminophosphine as the reducing agent. This results in state-of-the-art InAs quantum dots with respect to the size dispersion and band-gap range. Moreover, we present shell coating procedures that lead to the formation of InAs/ZnS(e) core/shell quantum dots that emit in the infrared region. This innovative synthesis approach can greatly facilitate the research on InAs quantum dots and may lead to synthesis protocols for a wide range of III-V quantum dots.

  15. Intracellular distribution of nontargeted quantum dots after natural uptake and microinjection

    PubMed Central

    Damalakiene, Leona; Karabanovas, Vitalijus; Bagdonas, Saulius; Valius, Mindaugas; Rotomskis, Ricardas

    2013-01-01

    Background: The purpose of this study was to elucidate the mechanism of natural uptake of nonfunctionalized quantum dots in comparison with microinjected quantum dots by focusing on their time-dependent accumulation and intracellular localization in different cell lines. Methods: The accumulation dynamics of nontargeted CdSe/ZnS carboxyl-coated quantum dots (emission peak 625 nm) was analyzed in NIH3T3, MCF-7, and HepG2 cells by applying the methods of confocal and steady-state fluorescence spectroscopy. Intracellular colocalization of the quantum dots was investigated by staining with Lysotracker®. Results: The uptake of quantum dots into cells was dramatically reduced at a low temperature (4°C), indicating that the process is energy-dependent. The uptake kinetics and imaging of intracellular localization of quantum dots revealed three accumulation stages of carboxyl-coated quantum dots at 37°C, ie, a plateau stage, growth stage, and a saturation stage, which comprised four morphological phases: adherence to the cell membrane; formation of granulated clusters spread throughout the cytoplasm; localization of granulated clusters in the perinuclear region; and formation of multivesicular body-like structures and their redistribution in the cytoplasm. Diverse quantum dots containing intracellular vesicles in the range of approximately 0.5–8 μm in diameter were observed in the cytoplasm, but none were found in the nucleus. Vesicles containing quantum dots formed multivesicular body-like structures in NIH3T3 cells after 24 hours of incubation, which were Lysotracker-negative in serum-free medium and Lysotracker-positive in complete medium. The microinjected quantum dots remained uniformly distributed in the cytosol for at least 24 hours. Conclusion: Natural uptake of quantum dots in cells occurs through three accumulation stages via a mechanism requiring energy. The sharp contrast of the intracellular distribution after microinjection of quantum dots in comparison

  16. Array of nanoparticles coupling with quantum-dot: Lattice plasmon quantum features

    NASA Astrophysics Data System (ADS)

    Salmanogli, Ahmad; Gecim, H. Selcuk

    2018-06-01

    In this study, we analyze the interaction of lattice plasmon with quantum-dot in order to mainly examine the quantum features of the lattice plasmon containing the photonic/plasmonic properties. Despite optical properties of the localized plasmon, the lattice plasmon severely depends on the array geometry, which may influence its quantum features such as uncertainty and the second-order correlation function. To investigate this interaction, we consider a closed system containing an array of the plasmonic nanoparticles and quantum-dot. We analyze this system with full quantum theory by which the array electric far field is quantized and the strength coupling of the quantum-dot array is analytically calculated. Moreover, the system's dynamics are evaluated and studied via the Heisenberg-Langevin equations to attain the system optical modes. We also analytically examine the Purcell factor, which shows the effect of the lattice plasmon on the quantum-dot spontaneous emission. Finally, the lattice plasmon uncertainty and its time evolution of the second-order correlation function at different spatial points are examined. These parameters are dramatically affected by the retarded field effect of the array nanoparticles. We found a severe quantum fluctuation at points where the lattice plasmon occurs, suggesting that the lattice plasmon photons are correlated.

  17. Temperature independent infrared responsivity of a quantum dot quantum cascade photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feng-Jiao; Zhuo, Ning; Liu, Shu-Man, E-mail: liusm@semi.ac.cn

    2016-06-20

    We demonstrate a quantum dot quantum cascade photodetector with a hybrid active region of InAs quantum dots and an InGaAs quantum well, which exhibited a temperature independent response at 4.5 μm. The normal incident responsivity reached 10.3 mA/W at 120 K and maintained a value of 9 mA/W up to 260 K. It exhibited a specific detectivity above 10{sup 11} cm Hz{sup 1/2} W{sup −1} at 77 K, which remained at 10{sup 8} cm Hz{sup 1/2} W{sup −1} at 260 K. We ascribe the device's good thermal stability of infrared response to the three-dimensional quantum confinement of the InAs quantum dots incorporated in the active region.

  18. Tuning Single Quantum Dot Emission with a Micromirror.

    PubMed

    Yuan, Gangcheng; Gómez, Daniel; Kirkwood, Nicholas; Mulvaney, Paul

    2018-02-14

    The photoluminescence of single quantum dots fluctuates between bright (on) and dark (off) states, also termed fluorescence intermittency or blinking. This blinking limits the performance of quantum dot-based devices such as light-emitting diodes and solar cells. However, the origins of the blinking remain unresolved. Here, we use a movable gold micromirror to determine both the quantum yield of the bright state and the orientation of the excited state dipole of single quantum dots. We observe that the quantum yield of the bright state is close to unity for these single QDs. Furthermore, we also study the effect of a micromirror on blinking, and then evaluate excitation efficiency, biexciton quantum yield, and detection efficiency. The mirror does not modify the off-time statistics, but it does change the density of optical states available to the quantum dot and hence the on times. The duration of the on times can be lengthened due to an increase in the radiative recombination rate.

  19. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.

    PubMed

    Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A

    2014-07-03

    The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).

  20. Tunable UV-visible absorption of SnS2 layered quantum dots produced by liquid phase exfoliation.

    PubMed

    Fu, Xiao; Ilanchezhiyan, P; Mohan Kumar, G; Cho, Hak Dong; Zhang, Lei; Chan, A Sattar; Lee, Dong J; Panin, Gennady N; Kang, Tae Won

    2017-02-02

    4H-SnS 2 layered crystals synthesized by a hydrothermal method were used to obtain via liquid phase exfoliation quantum dots (QDs), consisting of a single layer (SLQDs) or multiple layers (MLQDs). Systematic downshift of the peaks in the Raman spectra of crystals with a decrease in size was observed. The bandgap of layered QDs, estimated by UV-visible absorption spectroscopy and the tunneling current measurements using graphene probes, increases from 2.25 eV to 3.50 eV with decreasing size. 2-4 nm SLQDs, which are transparent in the visible region, show selective absorption and photosensitivity at wavelengths in the ultraviolet region of the spectrum while larger MLQDs (5-90 nm) exhibit a broad band absorption in the visible spectral region and the photoresponse under white light. The results show that the layered quantum dots obtained by liquid phase exfoliation exhibit well-controlled and regulated bandgap absorption in a wide tunable wavelength range. These novel layered quantum dots prepared using an inexpensive method of exfoliation and deposition from solution onto various substrates at room temperature can be used to create highly efficient visible-blind ultraviolet photodetectors and multiple bandgap solar cells.

  1. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control.

    PubMed

    Sun, Liangfeng; Choi, Joshua J; Stachnik, David; Bartnik, Adam C; Hyun, Byung-Ryool; Malliaras, George G; Hanrath, Tobias; Wise, Frank W

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr(-1) m(-2)) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH(2) groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.

  2. Quantum dots and nanocomposites.

    PubMed

    Mansur, Herman Sander

    2010-01-01

    Quantum dots (QDs), also known as semiconducting nanoparticles, are promising zero-dimensional advanced materials because of their nanoscale size and because they can be engineered to suit particular applications such as nonlinear optical devices (NLO), electro-optical devices, and computing applications. QDs can be joined to polymers in order to produce nanocomposites which can be considered a scientific revolution of the 21st century. One of the fastest moving and most exciting interfaces of nanotechnology is the use of QDs in medicine, cell and molecular biology. Recent advances in nanomaterials have produced a new class of markers and probes by conjugating semiconductor QDs with biomolecules that have affinities for binding with selected biological structures. The nanoscale of QDs ensures that they do not scatter light at visible or longer wavelengths, which is important in order to minimize optical losses in practical applications. Moreover, at this scale, quantum confinement and surface effects become very important and therefore manipulation of the dot diameter or modification of its surface allows the properties of the dot to be controlled. Quantum confinement affects the absorption and emission of photons from the dot. Thus, the absorption edge of a material can be tuned by control of the particle size. This paper reviews developments in the myriad of possibilities for the use of semiconductor QDs associated with molecules producing novel hybrid nanocomposite systems for nanomedicine and bioengineering applications.

  3. Spin interactions in InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Doty, M. F.; Ware, M. E.; Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    Fine structure splittings in optical spectra of self-assembled InAs quantum dots (QDs) generally arise from spin interactions between particles confined in the dots. We present experimental studies of the fine structure that arises from multiple charges confined in a single dot [1] or in molecular orbitals of coupled pairs of dots. To probe the underlying spin interactions we inject particles with a known spin orientation (by using polarized light to perform photoluminescence excitation spectroscopy experiments) or use a magnetic field to orient and/or mix the spin states. We develop a model of the spin interactions that aids in the development of quantum information processing applications based on controllable interactions between spins confined to QDs. [1] Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot, Phys. Rev. Lett. 95, 177403 (2005)

  4. CdS/CdSe quantum dots and ZnPc dye co-sensitized solar cells with Au nanoparticles/graphene oxide as efficient modified layer.

    PubMed

    Chen, Cong; Cheng, Yu; Jin, Junjie; Dai, Qilin; Song, Hongwei

    2016-10-15

    Co-sensitization by using two or more sensitizers with complementary absorption spectra to expand the spectral response range is an effective approach to enhance device performance of quantum dot sensitized solar cells (QDSSCs). To improve the light-harvesting in the visible/near-infrared (NIR) region, organic dye zinc phthalocyanine (ZnPc) was combined with CdS/CdSe quantum dots (QDs) for co-sensitized solar cells based on ZnO inverse opals (IOs) as photoanode. The resulting co-sensitized device shows an efficient panchromatic spectral response feature to ∼750nm and presents an overall conversion efficiency of 4.01%, which is superior to that of the individual ZnPc-sensitized solar cells and CdS/CdSe-sensitized solar cells. Meanwhile, an Au nanoparticles/graphene oxide (Au NPs/GO) composite layer was successfully prepared to modify Cu2S counter electrode for the co-sensitized solar cells. Reducing the carrier recombination process by GO and catalytic process of Au NPs leads to increased power conversion efficiency(PCE) from 4.01 to 4.60% and sustainable stability remains ∼85% of its original value after 60min light exposure. In this paper, introduction of the organic dyes as co-sensitizer and Au NPs/GO as counter electrode modified layer has been proved to be an effective route to improve the performance of QDSSCs. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Quantum Computation Using Optically Coupled Quantum Dot Arrays

    NASA Technical Reports Server (NTRS)

    Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.

  6. ZnO-graphene quantum dots heterojunctions for natural sunlight-driven photocatalytic environmental remediation

    NASA Astrophysics Data System (ADS)

    Kumar, Suneel; Dhiman, Ankita; Sudhagar, Pitchaimuthu; Krishnan, Venkata

    2018-07-01

    In this work, we report the formation of heterojunctions comprising of graphene quantum dots (GQD) decorated ZnO nanorods (NR) and its use as efficient photocatalysts for environmental remediation. The heterojunctions has been designed to be active both in the UV and visible light regions and anticipated utilize the maximum part of the solar light spectrum. In this view, we examined the photocatalytic performance of our heterojunctions towards the degradation of colored pollutant (methylene blue (MB) dye) and a colorless pollutant (carbendazim (CZ) fungicide) under sunlight irradiation. Compared to bare photocatalyst ZnO and GQD, the heterojunction with 2 wt% of GQD (ZGQD2) showed the best photocatalytic activity by effectively degrading (about 95%) of organic pollutants (MB and CZ) from water within a short span of 70 min. The superior photocatalytic activity of these ZnO-GQD heterojunctions could be attributed to efficient charge carrier separation lead suppressed recombination rate at photocatalyst interfaces. In addition to the enhanced light absorption from UV to visible region, the high specific surface area of ZGQD2 heterojunction (353.447 m2 g-1) also imparts strong adsorption capacity for pollutants over catalyst surface, resulting in high photoactivity. Based on the obtained results, band gap alignment at ZnO-GQD heterojunction and active species trapping experiments, a plausible mechanism is proposed for photocatalytic reaction. The excellent photostability and recyclability of the ZnO-GQD heterojunctions fostering as promising photocatalyst candidate for environmental remediation applications.

  7. Dual-colored graphene quantum dots-labeled nanoprobes/graphene oxide: functional carbon materials for respective and simultaneous detection of DNA and thrombin

    NASA Astrophysics Data System (ADS)

    Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Chen, Jian Rong; Feng, Hui

    2014-10-01

    Convenient and simultaneous detection of multiple biomarkers such as DNA and proteins with biocompatible materials and good analytical performance still remains a challenge. Herein, we report the respective and simultaneous detection of DNA and bovine α-thrombin (thrombin) entirely based on biocompatible carbon materials through a specially designed fluorescence on-off-on process. Colorful fluorescence, high emission efficiency, good photostability and excellent compatibility enables graphene quantum dots (GQDs) as the best choice for fluorophores in bioprobes, and thus two-colored GQDs as labeling fluorophores were chemically bonded with specific oligonucleotide sequence and aptamer to prepare two probes targeting the DNA and thrombin, respectively. Each probe can be assembled on the graphene oxide (GO) platform spontaneously by π-π stacking and electrostatic attraction; as a result, fast electron transfer in the assembly efficiently quenches the fluorescence of probe. The presence of DNA or thrombin can trigger the self-recognition between capturing a nucleotide sequence and its target DNA or between thrombin and its aptamer due to their specific hybridization and duplex DNA structures or the formation of apatamer-substrate complex, which is taken advantage of in order to achieve a separate quantitative analysis of DNA and thrombin. A dual-functional biosensor for simultaneous detection of DNA and thrombin was also constructed by self-assembly of two probes with distinct colors and GO platform, and was further evaluated with the presence of various concentrations of DNA and thrombin. Both biosensors serving as a general detection model for multiple species exhibit outstanding analytical performance, and are expected to be applied in vivo because of the excellent biocompatibility of their used materials.

  8. Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%.

    PubMed

    Santra, Pralay K; Kamat, Prashant V

    2012-02-08

    To make Quantum Dot Sensitized Solar Cells (QDSC) competitive, it is necessary to achieve power conversion efficiencies comparable to other emerging solar cell technologies. By employing Mn(2+) doping of CdS, we have now succeeded in significantly improving QDSC performance. QDSC constructed with Mn-doped-CdS/CdSe deposited on mesoscopic TiO(2) film as photoanode, Cu(2)S/Graphene Oxide composite electrode, and sulfide/polysulfide electrolyte deliver power conversion efficiency of 5.4%.

  9. Enhanced performance of porphyrin sensitized solar cell based on graphene quantum dots decorated photoanodes

    NASA Astrophysics Data System (ADS)

    Sehgal, Preeti; Narula, Anudeep Kumar

    2018-05-01

    Porphyrin sensitized solar cells (PSSC) has been successfully fabricated composed of graphene quantum dots (GQD) functionalized ZnO photoanodes, zinc tetrakis (4-carboxy phenyl)porphyrin (TCPPZn) as sensitizer and polypyrrole coated oxidised multiwalled carbon nanotubes (PPy/OMWCNT) as counter electrode. The effect of the concentration of GQD on the structural, morphological, photophysical and photovoltaic properties of GQD@ZnO, and GQD@ZnO/TCPPZn nanocomposites has also been investigated. Studies indicate that TCPPZn adsorbed on the surface on GQD@ZnO. Hot electron injection mechanism and multiple exciton generation from GQD to ZnO were mainly responsible for the photoexcitation response in PSSC. This study indicates that GQD can play role of sensitizer to some extent. The time decay measurements reveals the evidences of FRET mechanism, and synergistic interaction between GQD and TCPPZn. The Jsc, Voc, PCE of the corresponding PSSC devices enhanced initially and then decreased. Among all the devices fabricated, the PSSC with a 40% amount of GQD (GQD@ZnO/TCPPZn 40%) attains the best performance with the Jsc = 10.1 mA/cm2, Voc = 0.48, PCE = 2.45% FF = 0.507 higher than ZnO@TCPPZn device fabricated without GQD. Overall, this design provides a new concept for the development of photoanodes which derive better efficiency for dye sensitized solar cell (DSSC) and PSSC at economical low cost.

  10. Quantum Dots in Diagnostics and Detection: Principles and Paradigms

    PubMed Central

    Pisanic, T. R.; Zhang, Y.; Wang, T. H.

    2014-01-01

    Quantum dots are semiconductor nanocrystals that exhibit exceptional optical and electrical behaviors not found in their bulk counterparts. Following seminal work in the development of water-soluble quantum dots in the late 1990's, researchers have sought to develop interesting and novel ways of exploiting the extraordinary properties of quantum dots for biomedical applications. Since that time, over 10,000 articles have been published related to the use of quantum dots in biomedicine, many of which regard their use in detection and diagnostic bioassays. This review presents a didactic overview of fundamental physical phenomena associated with quantum dots and paradigm examples of how these phenomena can and have been readily exploited for manifold uses in nanobiotechnology with a specific focus on their implementation in in vitro diagnostic assays and biodetection. PMID:24770716

  11. Quantum dot nanoparticle conjugation, characterization, and applications in neuroscience

    NASA Astrophysics Data System (ADS)

    Pathak, Smita

    Quantum dot are semiconducting nanoparticles that have been used for decades in a variety of applications such as solar cells, LEDs and medical imaging. Their use in the last area, however, has been extremely limited despite their potential as revolutionary new biological labeling tools. Quantum dots are much brighter and more stable than conventional fluorophores, making them optimal for high resolution imaging and long term studies. Prior work in this area involves synthesizing and chemically conjugating quantum dots to molecules of interest in-house. However this method is both time consuming and prone to human error. Additionally, non-specific binding and nanoparticle aggregation currently prevent researchers from utilizing this system to its fullest capacity. Another critical issue that has not been addressed is determining the number of ligands bound to nanoparticles, which is crucial for proper interpretation of results. In this work, methods to label fixed cells using two types of chemically modified quantum dots are studied. Reproducible non-specific artifact labeling is consistently demonstrated if antibody-quantum dot conditions are less than optimal. In order to explain this, antibodies bound to quantum dots were characterized and quantified. While other groups have qualitatively characterized antibody functionalized quantum dots using TEM, AFM, UV spectroscopy and gel electrophoresis, and in some cases have reported calculated estimates of the putative number of total antibodies bound to quantum dots, no quantitative experimental results had been reported prior to this work. The chemical functionalization and characterization of quantum dot nanocrystals achieved in this work elucidates binding mechanisms of ligands to nanoparticles and allows researchers to not only translate our tools to studies in their own areas of interest but also derive quantitative results from these studies. This research brings ease of use and increased reliability to

  12. Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors

    NASA Astrophysics Data System (ADS)

    Yakimov, A. I.; Kirienko, V. V.; Armbrister, V. A.; Bloshkin, A. A.; Dvurechenskii, A. V.; Shklyaev, A. A.

    2016-10-01

    We study the effect of quantum dot charging on the mid-infrared photocurrent, optical gain, hole capture probability, and absorption quantum efficiency in remotely delta-doped Ge/Si quantum dot photodetectors. The dot occupation with holes is controlled by varying dot and doping densities. From our investigations of samples doped to contain from about one to nine holes per dot we observe an over 10 times gain enhancement and similar suppression of the hole capture probability with increased carrier population. The data are explained by quenching the capture process and increasing the photoexcited hole lifetime due to formation of the repulsive Coulomb potential of the extra holes inside the quantum dots. The normal incidence quantum efficiency is found to be strongly asymmetric with respect to applied bias polarity. Based on the polarization-dependent absorption measurements it is concluded that, at a positive voltage, when holes move toward the nearest δ-doping plane, photocurrent is originated from the bound-to-continuum transitions of holes between the ground state confined in Ge dots and the extended states of the Si matrix. At a negative bias polarity, the photoresponse is caused by optical excitation to a quasibound state confined near the valence band edge with subsequent tunneling to the Si valence band. In a latter case, the possibility of hole transfer into continuum states arises from the electric field generated by charge distributed between quantum dots and delta-doping planes.

  13. Origins of low energy-transfer efficiency between patterned GaN quantum well and CdSe quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xingsheng, E-mail: xsxu@semi.ac.cn

    For hybrid light emitting devices (LEDs) consisting of GaN quantum wells and colloidal quantum dots, it is necessary to explore the physical mechanisms causing decreases in the quantum efficiencies and the energy transfer efficiency between a GaN quantum well and CdSe quantum dots. This study investigated the electro-luminescence for a hybrid LED consisting of colloidal quantum dots and a GaN quantum well patterned with photonic crystals. It was found that both the quantum efficiency of colloidal quantum dots on a GaN quantum well and the energy transfer efficiency between the patterned GaN quantum well and the colloidal quantum dots decreasedmore » with increases in the driving voltage or the driving time. Under high driving voltages, the decreases in the quantum efficiency of the colloidal quantum dots and the energy transfer efficiency can be attributed to Auger recombination, while those decreases under long driving time are due to photo-bleaching and Auger recombination.« less

  14. Optical Spectroscopy Of Charged Quantum Dot Molecules

    NASA Astrophysics Data System (ADS)

    Scheibner, M.; Bracker, A. S.; Stinaff, E. A.; Doty, M. F.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2007-04-01

    Coupling between two closely spaced quantum dots is observed by means of photoluminescence spectroscopy. Hole coupling is realized by rational crystal growth and heterostructure design. We identify molecular resonances of different excitonic charge states, including the important case of a doubly charged quantum dot molecule.

  15. Interaction of Water-Soluble CdTe Quantum Dots with Bovine Serum Albumin

    PubMed Central

    2011-01-01

    Semiconductor nanoparticles (quantum dots) are promising fluorescent markers, but it is very little known about interaction of quantum dots with biological molecules. In this study, interaction of CdTe quantum dots coated with thioglycolic acid (TGA) with bovine serum albumin was investigated. Steady state spectroscopy, atomic force microscopy, electron microscopy and dynamic light scattering methods were used. It was explored how bovine serum albumin affects stability and spectral properties of quantum dots in aqueous media. CdTe–TGA quantum dots in aqueous solution appeared to be not stable and precipitated. Interaction with bovine serum albumin significantly enhanced stability and photoluminescence quantum yield of quantum dots and prevented quantum dots from aggregating. PMID:27502633

  16. Four-Wave Mixing Spectroscopy of Quantum Dot Molecules

    NASA Astrophysics Data System (ADS)

    Sitek, A.; Machnikowski, P.

    2007-08-01

    We study theoretically the nonlinear four-wave mixing response of an ensemble of coupled pairs of quantum dots (quantum dot molecules). We discuss the shape of the echo signal depending on the parameters of the ensemble: the statistics of transition energies and the degree of size correlations between the dots forming the molecules.

  17. Carbon quantum dots and a method of making the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zidan, Ragaiy; Teprovich, Joseph A.; Washington, Aaron L.

    The present invention is directed to a method of preparing a carbon quantum dot. The carbon quantum dot can be prepared from a carbon precursor, such as a fullerene, and a complex metal hydride. The present invention also discloses a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride and a polymer containing a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride.

  18. Semiconductor quantum dot scintillation under gamma-ray irradiation.

    PubMed

    Létant, S E; Wang, T-F

    2006-12-01

    We recently demonstrated the ability of semiconductor quantum dots to convert alpha radiation into visible photons. In this letter, we report on the scintillation of quantum dots under gamma irradiation and compare the energy resolution of the 59 keV line of americium-241 obtained with our quantum dot-glass nanocomposite to that of a standard sodium iodide scintillator. A factor 2 improvement is demonstrated experimentally and interpreted theoretically using a combination of energy-loss and photon-transport models.

  19. Integrated photonics using colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Menon, Vinod M.; Husaini, Saima; Okoye, Nicky; Valappil, Nikesh V.

    2009-11-01

    Integrated photonic devices were realized using colloidal quantum dot composites such as flexible microcavity laser, microdisk emitters and integrated active-passive waveguides. The microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. Planar photonic devices consisting of vertically coupled microring resonators, microdisk emitters, active-passive integrated waveguide structures and coupled active microdisk resonators were realized using soft lithography, photo-lithography, and electron beam lithography, respectively. The gain medium in all these devices was a composite consisting of quantum dots embedded in SU8 matrix. Finally, the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements was determined. In addition to their specific functionalities, these novel device demonstrations and their development present a low-cost alternative to the traditional photonic device fabrication techniques.

  20. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.

    PubMed

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-23

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  1. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-01

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  2. New Antimony Selenide/Nickel Oxide Photocathode Boosts the Efficiency of Graphene Quantum-Dot Co-Sensitized Solar Cells.

    PubMed

    Kolay, Ankita; Kokal, Ramesh K; Kalluri, Ankarao; Macwan, Isaac; Patra, Prabir K; Ghosal, Partha; Deepa, Melepurath

    2017-10-11

    A novel assembly of a photocathode and a photoanode is investigated to explore their complementary effects in enhancing the photovoltaic performance of a quantum-dot solar cell (QDSC). While p-type nickel oxide (NiO) has been used previously, antimony selenide (Sb 2 Se 3 ) has not been used in a QDSC, especially as a component of a counter electrode (CE) architecture that doubles as the photocathode. Here, near-infrared (NIR) light-absorbing Sb 2 Se 3 nanoparticles (NPs) coated over electrodeposited NiO nanofibers on a carbon (C) fabric substrate was employed as the highly efficient photocathode. Quasi-spherical Sb 2 Se 3 NPs, with a band gap of 1.13 eV, upon illumination, release photoexcited electrons in addition to other charge carriers at the CE to further enhance the reduction of the oxidized polysulfide. The p-type conducting behavior of Sb 2 Se 3 , coupled with a work function at 4.63 eV, also facilitates electron injection to polysulfide. The effect of graphene quantum dots (GQDs) as co-sensitizers as well as electron conduits is also investigated in which a TiO 2 /CdS/GQDs photoanode structure in combination with a C-fabric CE delivered a power-conversion efficiency (PCE) of 5.28%, which is a vast improvement over the 4.23% that is obtained by using a TiO 2 /CdS photoanode (without GQDs) with the same CE. GQDs, due to a superior conductance, impact efficiency more than Sb 2 Se 3 NPs do. The best PCE of a TiO 2 /CdS/GQDs-nS 2- /S n 2- -Sb 2 Se 3 /NiO/C-fabric cell is 5.96% (0.11 cm 2 area), which, when replicated on a smaller area of 0.06 cm 2 , is seen to increase dramatically to 7.19%. The cell is also tested for 6 h of continuous irradiance. The rationalization for the channelized photogenerated electron movement, which augments the cell performance, is furnished in detail in these studies.

  3. Fermionic entanglement via quantum walks in quantum dots

    NASA Astrophysics Data System (ADS)

    Melnikov, Alexey A.; Fedichkin, Leonid E.

    2018-02-01

    Quantum walks are fundamentally different from random walks due to the quantum superposition property of quantum objects. Quantum walk process was found to be very useful for quantum information and quantum computation applications. In this paper we demonstrate how to use quantum walks as a tool to generate high-dimensional two-particle fermionic entanglement. The generated entanglement can survive longer in the presence of depolorazing noise due to the periodicity of quantum walk dynamics. The possibility to create two distinguishable qudits in a system of tunnel-coupled semiconductor quantum dots is discussed.

  4. Synthesis and Characterization of Mercaptoacetic Acid Capped Cadmium Sulphide Quantum Dots.

    PubMed

    Wageh, S; Maize, Mai; Donia, A M; Al-Ghamdi, Ahmed A; Umar, Ahmad

    2015-12-01

    This paper reports the facile synthesis and detailed characterization of mercaptoacetic acid capped cadmium sulphide (CdS) quantum dots using various cadmium precursors. The mercaptoacetic acid capped CdS quantum dots were prepared by facile and simple wet chemical method and characterized by several techniques such as energy dispersive spectroscopy (EDS), X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, UV-vis. spectroscopy, photoluminescence spectroscopy, high-resolution transmission microscopy (HRTEM) and thremogravimetric analysis. The EDS studies revealed that the prepared quantum dots possess higher atomic percentage of sulfur compared to cadmium due to the coordination of thiolate to the quantum dots surfaces. The X-ray and absorption analyses exhibited that the size of quantum dots prepared by cadmium acetate is larger than the quantum dots prepared by cadmium chloride and cadmium nitrate. The increase in size can be attributed to the low stability constant of cadmium acetate in comparison with cadmium chloride and cadmium nitrate. The FTIR and thermogravimetric analysis showed that the nature of capping molecule on the surface of quantum dots are different depending on the cadmium precursors which affect the emission from CdS quantum dots. Photoemission spectroscopy revealed that the emission of quantum dots prepared by cadmium acetate has high intensity band edge emission along with low intensity trapping state emission. However the CdS quantum dots prepared by cadmium chloride and cadmium nitrate produced only trapping state emissions.

  5. Recent Progress Towards Quantum Dot Solar Cells with Enhanced Optical Absorption.

    PubMed

    Zheng, Zerui; Ji, Haining; Yu, Peng; Wang, Zhiming

    2016-12-01

    Quantum dot solar cells, as a promising candidate for the next generation solar cell technology, have received tremendous attention in the last 10 years. Some recent developments in epitaxy growth and device structures have opened up new avenues for practical quantum dot solar cells. Unfortunately, the performance of quantum dot solar cells is often plagued by marginal photon absorption. In this review, we focus on the recent progress made in enhancing optical absorption in quantum dot solar cells, including optimization of quantum dot growth, improving the solar cells structure, and engineering light trapping techniques.

  6. Nanowire–quantum-dot lasers on flexible membranes

    NASA Astrophysics Data System (ADS)

    Tatebayashi, Jun; Ota, Yasutomo; Ishida, Satomi; Nishioka, Masao; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2018-06-01

    We demonstrate lasing in a single nanowire with quantum dots as an active medium embedded on poly(dimethylsiloxane) membranes towards application in nanowire-based flexible nanophotonic devices. Nanowire laser structures with 50 quantum dots are grown on patterned GaAs(111)B substrates and then transferred from the as-grown substrates on poly(dimethylsiloxane) transparent flexible organosilicon membranes, by means of spin-casting and curing processes. We observe lasing oscillation in the transferred single nanowire cavity with quantum dots at 1.425 eV with a threshold pump pulse fluence of ∼876 µJ/cm2, which enables the realization of high-performance multifunctional NW-based flexible photonic devices.

  7. 3D super-resolution imaging with blinking quantum dots

    PubMed Central

    Wang, Yong; Fruhwirth, Gilbert; Cai, En; Ng, Tony; Selvin, Paul R.

    2013-01-01

    Quantum dots are promising candidates for single molecule imaging due to their exceptional photophysical properties, including their intense brightness and resistance to photobleaching. They are also notorious for their blinking. Here we report a novel way to take advantage of quantum dot blinking to develop an imaging technique in three-dimensions with nanometric resolution. We first applied this method to simulated images of quantum dots, and then to quantum dots immobilized on microspheres. We achieved imaging resolutions (FWHM) of 8–17 nm in the x-y plane and 58 nm (on coverslip) or 81 nm (deep in solution) in the z-direction, approximately 3–7 times better than what has been achieved previously with quantum dots. This approach was applied to resolve the 3D distribution of epidermal growth factor receptor (EGFR) molecules at, and inside of, the plasma membrane of resting basal breast cancer cells. PMID:24093439

  8. Multi-million atom electronic structure calculations for quantum dots

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is comparable in size to the electron wavelength. Under such conditions quantum dots can be interpreted as artificial atoms with the potential to be custom tailored to new functionality. In the past decade or so, these nanostructures have attracted significant experimental and theoretical attention in the field of nanoscience. The new and tunable optical and electrical properties of these artificial atoms have been proposed in a variety of different fields, for example in communication and computing systems, medical and quantum computing applications. Predictive and quantitative modeling and simulation of these structures can help to narrow down the vast design space to a range that is experimentally affordable and move this part of nanoscience to nano-Technology. Modeling of such quantum dots pose a formidable challenge to theoretical physicists because: (1) Strain originating from the lattice mismatch of the materials penetrates deep inside the buffer surrounding the quantum dots and require large scale (multi-million atom) simulations to correctly capture its effect on the electronic structure, (2) The interface roughness, the alloy randomness, and the atomistic granularity require the calculation of electronic structure at the atomistic scale. Most of the current or past theoretical calculations are based on continuum approach such as effective mass approximation or k.p modeling capturing either no or one of the above mentioned effects, thus missing some of the essential physics. The Objectives of this thesis are: (1) to model and simulate the experimental quantum dot topologies at the atomistic scale; (2) to theoretically explore the essential physics i.e. long range strain, linear and quadratic piezoelectricity, interband optical transition strengths, quantum confined

  9. Realizing Rec. 2020 color gamut with quantum dot displays.

    PubMed

    Zhu, Ruidong; Luo, Zhenyue; Chen, Haiwei; Dong, Yajie; Wu, Shin-Tson

    2015-09-07

    We analyze how to realize Rec. 2020 wide color gamut with quantum dots. For photoluminescence, our simulation indicates that we are able to achieve over 97% of the Rec. 2020 standard with quantum dots by optimizing the emission spectra and redesigning the color filters. For electroluminescence, by optimizing the emission spectra of quantum dots is adequate to render over 97% of the Rec. 2020 standard. We also analyze the efficiency and angular performance of these devices, and then compare results with LCDs using green and red phosphors-based LED backlight. Our results indicate that quantum dot display is an outstanding candidate for achieving wide color gamut and high optical efficiency.

  10. Recent advances in experimental basic research on graphene and graphene-based nanostructures

    NASA Astrophysics Data System (ADS)

    Hieu Nguyen, Van

    2016-06-01

    The present work is a review of the results achieved in the experimental basic research on following rapidly developing modern topics of nanoscience and nanotechnology related to graphene and graphene-based nanosystems: reduction of graphene oxide and investigation of physical properties of reduced graphene oxide; fabrication and investigation of graphene quantum dots; study of light emission from excited graphene; fabrication and investigation of graphene nanopores; preparation and investigation of graphene oxide-liquid crystals as well as aqueous graphene oxide dispersions. Besides presenting the scientific content of the above-mentioned five topics in detail, we briefly mention promising and interesting works, demonstrating that the area of basic research on graphene and graphene-based nanostructures is still being enlarged.

  11. Computation of energy states of hydrogenic quantum dot with two-electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakar, Y., E-mail: yuyakar@yahoo.com; Özmen, A., E-mail: aozmen@selcuk.edu.tr; Çakır, B., E-mail: bcakir@selcuk.edu.tr

    2016-03-25

    In this study we have investigated the electronic structure of the hydrogenic quantum dot with two electrons inside an impenetrable potential surface. The energy eigenvalues and wavefunctions of the ground and excited states of spherical quantum dot have been calculated by using the Quantum Genetic Algorithm (QGA) and Hartree-Fock Roothaan (HFR) method, and the energies are investigated as a function of dot radius. The results show that as dot radius increases, the energy of quantum dot decreases.

  12. In situ electron-beam polymerization stabilized quantum dot micelles.

    PubMed

    Travert-Branger, Nathalie; Dubois, Fabien; Renault, Jean-Philippe; Pin, Serge; Mahler, Benoit; Gravel, Edmond; Dubertret, Benoit; Doris, Eric

    2011-04-19

    A polymerizable amphiphile polymer containing PEG was synthesized and used to encapsulate quantum dots in micelles. The quantum dot micelles were then polymerized using a "clean" electron beam process that did not require any post-irradiation purification. Fluorescence spectroscopy revealed that the polymerized micelles provided an organic coating that preserved the quantum dot fluorescence better than nonpolymerized micelles, even under harsh conditions. © 2011 American Chemical Society

  13. Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots.

    PubMed

    Chen, Yan; Zhang, Jiaxiang; Zopf, Michael; Jung, Kyubong; Zhang, Yang; Keil, Robert; Ding, Fei; Schmidt, Oliver G

    2016-01-27

    Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms.

  14. Synthesis of Cesium Lead Halide Perovskite Quantum Dots

    ERIC Educational Resources Information Center

    Shekhirev, Mikhail; Goza, John; Teeter, Jacob D.; Lipatov, Alexey; Sinitskii, Alexander

    2017-01-01

    Synthesis of quantum dots is a valuable experiment for demonstration and discussion of quantum phenomena in undergraduate chemistry curricula. Recently, a new class of all-inorganic perovskite quantum dots (QDs) with a formula of CsPbX[subscript 3] (X = Cl, Br, I) was presented and attracted tremendous attention. Here we adapt the synthesis of…

  15. Field-emission from quantum-dot-in-perovskite solids

    PubMed Central

    García de Arquer, F. Pelayo; Gong, Xiwen; Sabatini, Randy P.; Liu, Min; Kim, Gi-Hwan; Sutherland, Brandon R.; Voznyy, Oleksandr; Xu, Jixian; Pang, Yuangjie; Hoogland, Sjoerd; Sinton, David; Sargent, Edward

    2017-01-01

    Quantum dot and well architectures are attractive for infrared optoelectronics, and have led to the realization of compelling light sensors. However, they require well-defined passivated interfaces and rapid charge transport, and this has restricted their efficient implementation to costly vacuum-epitaxially grown semiconductors. Here we report solution-processed, sensitive infrared field-emission photodetectors. Using quantum-dots-in-perovskite, we demonstrate the extraction of photocarriers via field emission, followed by the recirculation of photogenerated carriers. We use in operando ultrafast transient spectroscopy to sense bias-dependent photoemission and recapture in field-emission devices. The resultant photodiodes exploit the superior electronic transport properties of organometal halide perovskites, the quantum-size-tuned absorption of the colloidal quantum dots and their matched interface. These field-emission quantum-dot-in-perovskite photodiodes extend the perovskite response into the short-wavelength infrared and achieve measured specific detectivities that exceed 1012 Jones. The results pave the way towards novel functional photonic devices with applications in photovoltaics and light emission. PMID:28337981

  16. Design strategy for terahertz quantum dot cascade lasers.

    PubMed

    Burnett, Benjamin A; Williams, Benjamin S

    2016-10-31

    The development of quantum dot cascade lasers has been proposed as a path to obtain terahertz semiconductor lasers that operate at room temperature. The expected benefit is due to the suppression of nonradiative electron-phonon scattering and reduced dephasing that accompanies discretization of the electronic energy spectrum. We present numerical modeling which predicts that simple scaling of conventional quantum well based designs to the quantum dot regime will likely fail due to electrical instability associated with high-field domain formation. A design strategy adapted for terahertz quantum dot cascade lasers is presented which avoids these problems. Counterintuitively, this involves the resonant depopulation of the laser's upper state with the LO-phonon energy. The strategy is tested theoretically using a density matrix model of transport and gain, which predicts sufficient gain for lasing at stable operating points. Finally, the effect of quantum dot size inhomogeneity on the optical lineshape is explored, suggesting that the design concept is robust to a moderate amount of statistical variation.

  17. Graphene quantum dots with visible light absorption of the carbon core: insights from single-particle spectroscopy and first principles based theory

    NASA Astrophysics Data System (ADS)

    Ghosh, Siddharth; Awasthi, Manohar; Ghosh, Moumita; Seibt, Michael; Niehaus, Thomas A.

    2016-12-01

    Luminescent carbon nanodots (CND) are a recent addition to the family of carbon nanostructures. Interestingly, a large group of CNDs are fluorescent in the visible spectrum and possess single dipole emitters with potential applications in super-resolution microscopy, quantum information science, and optoelectronics. There is a large diversity of CND’s size as well as a strong variability of edge topology and functional groups in real samples. This hampers a direct comparison of experimental and theoretical findings that is necessary to understand the unusual photophysics of these systems. Here, we derive atomistic models of finite sized (<2.5 nm) CNDs from high resolution transmission electron microscopy (HRTEM) which are studied using approximate time-dependent density functional theory. The atomistic models are found to be primarily two-dimensional (2D) and can hence be categorised as graphene quantum dots (GQD). The GQD model structures that are presented here show excitation energies in the visible spectrum matching previous single GQD level photoluminescence studies. We also present the effect of edge hydroxyl and carboxyl functional groups on the absorption spectrum. Overall, the study reveals the atomistic origin of CNDs photoluminescence in the visible range.

  18. Cavity-Mediated Coherent Coupling between Distant Quantum Dots

    NASA Astrophysics Data System (ADS)

    Nicolí, Giorgio; Ferguson, Michael Sven; Rössler, Clemens; Wolfertz, Alexander; Blatter, Gianni; Ihn, Thomas; Ensslin, Klaus; Reichl, Christian; Wegscheider, Werner; Zilberberg, Oded

    2018-06-01

    Scalable architectures for quantum information technologies require one to selectively couple long-distance qubits while suppressing environmental noise and cross talk. In semiconductor materials, the coherent coupling of a single spin on a quantum dot to a cavity hosting fermionic modes offers a new solution to this technological challenge. Here, we demonstrate coherent coupling between two spatially separated quantum dots using an electronic cavity design that takes advantage of whispering-gallery modes in a two-dimensional electron gas. The cavity-mediated, long-distance coupling effectively minimizes undesirable direct cross talk between the dots and defines a scalable architecture for all-electronic semiconductor-based quantum information processing.

  19. [Effect of quantum dots CdSe/ZnS's concentration on its fluorescence].

    PubMed

    Jin, Min; Huang, Yu-hua; Luo, Ji-xiang

    2015-02-01

    The authors measured the absorption and the fluorescence spectra of the quantum dots CdSe/ZnS with 4 nm in size at different concentration with the use of the UV-Vis absorption spectroscopy and fluorescence spectrometer. The effect of quantum dots CdSe/ZnS's concentration on its fluorescence was especially studied and its physical mechanism was analyzed. It was observed that the optimal concentration of the quantum dots CdSe/ZnS for fluorescence is 2 micromole x L(-1). When the quantum dot's concentration is over 2 micromol x L(-1), the fluorescence is decreased with the increase in the concentration. While the quantum dot's concentration is less than 2 micromol x L(-1), the fluorescence is decreased with the decrease in the concentration. There are two main reasons: (1) fluorescence quenching and 2) the competition between absorption and fluorescence. When the quantum dot's concentration is over 2 micromol x L(-1), the distance between quantum dots is so close that the fluorescence quenching is induced. The closer the distance between quantum dots is, the more serious the fluorescence quenching is induced. Also, in this case, the absorption is so large that some of the quantum dots can not be excited because the incident light can not pass through the whole sample. As a result, the fluorescence is decreased with the increase in the quantum dot's concentration. As the quantum dot's concentration is below 2 micromol x L(-1), the distance between quantum dots is far enough that no more fluorescence quenching is induced. In this case, the fluorescence is determined by the particle number per unit volume. More particle number per unit volume produces more fluorescence. Therefore, the fluorescence is decreased with the decrease in the quantum dot's concentration.

  20. Non-blinking quantum dot with a plasmonic nanoshell resonator

    NASA Astrophysics Data System (ADS)

    Ji, Botao; Giovanelli, Emerson; Habert, Benjamin; Spinicelli, Piernicola; Nasilowski, Michel; Xu, Xiangzhen; Lequeux, Nicolas; Hugonin, Jean-Paul; Marquier, Francois; Greffet, Jean-Jacques; Dubertret, Benoit

    2015-02-01

    Colloidal semiconductor quantum dots are fluorescent nanocrystals exhibiting exceptional optical properties, but their emission intensity strongly depends on their charging state and local environment. This leads to blinking at the single-particle level or even complete fluorescence quenching, and limits the applications of quantum dots as fluorescent particles. Here, we show that a single quantum dot encapsulated in a silica shell coated with a continuous gold nanoshell provides a system with a stable and Poissonian emission at room temperature that is preserved regardless of drastic changes in the local environment. This novel hybrid quantum dot/silica/gold structure behaves as a plasmonic resonator with a strong Purcell factor, in very good agreement with simulations. The gold nanoshell also acts as a shield that protects the quantum dot fluorescence and enhances its resistance to high-power photoexcitation or high-energy electron beams. This plasmonic fluorescent resonator opens the way to a new family of plasmonic nanoemitters with robust optical properties.

  1. Quantum dot-linked immunosorbent assay (QLISA) using orientation-directed antibodies.

    PubMed

    Suzuki, Miho; Udaka, Hikari; Fukuda, Takeshi

    2017-09-05

    An approach similar to the enzyme-linked immunosorbent assay (ELISA), with the advantage of saving time and effort but exhibiting high performance, was developed using orientation-directed half-part antibodies immobilized on CdSe/ZnS quantum dots. ELISA is a widely accepted assay used to detect the presence of a target substance. However, it takes time to quantify the target with specificity and sensitivity owing to signal amplification. In this study, CdSe/ZnS quantum dots are introduced as bright and photobleaching-tolerant fluorescent materials. Since hydrophilic surface coating of quantum dots rendered biocompatibility and functional groups for chemical reactions, the quantum dots were modified with half-sized antibodies after partial reduction. The half-sized antibody could be bound to a quantum dot through a unique thiol site to properly display the recognition domain for the core process of ELISA, which is an antigen-antibody interaction. The reducing conditions were investigated to generate efficient conjugates of quantum dots and half-sized antibodies. This was applied to IL-6 detection, as the quantification of IL-6 is significant owing to its close relationships with various biomedical phenomena that cause different diseases. An ELISA-like assay with CdSe/ZnS quantum dot institution (QLISA; Quantum dot-linked immunosorbent assay) was developed to detect 0.05ng/mL IL-6, which makes it sufficiently sensitive as an immunosorbent assay. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. PEDOT:PSS/graphene quantum dots films with enhanced thermoelectric properties via strong interfacial interaction and phase separation.

    PubMed

    Du, Fei-Peng; Cao, Nan-Nan; Zhang, Yun-Fei; Fu, Ping; Wu, Yan-Guang; Lin, Zhi-Dong; Shi, Run; Amini, Abbas; Cheng, Chun

    2018-04-24

    The typical conductive polymer of PEDOT:PSS has recently attracted intensive attention in thermoelectric conversion because of its low cost and low thermal conductivity as well as high electrical conductivity. However, compared to inorganic counterparts, the relatively poor thermoelectric performance of PEDOT:PSS has greatly limited its development and high-tech applications. Here, we report a dramatic enhancement in the thermoelectric performance of PEDOT:PSS by constructing unique composite films with graphene quantum dots (GQDs). At room temperature, the electrical conductivity and Seebeck coefficient of PEDOT:PSS/GQDs reached to 7172 S/m and 14.6 μV/K, respectively, which are 30.99% and 113.2% higher than those of pristine PEDOT:PSS. As a result, the power factor of the optimized PEDOT:PSS/GQDs composite is 550% higher than that of pristine PEDOT:PSS. These significant improvements are attributed to the ordered alignment of PEDOT chains on the surface of GQDs, originated from the strong interfacial interaction between PEDOT:PSS and GQDs and the separation of PEDOT and PSS phases. This study evidently provides a promising route for PEDOT:PSS applied in high-efficiency thermoelectric conversion.

  3. Chemical redox modulated fluorescence of nitrogen-doped graphene quantum dots for probing the activity of alkaline phosphatase.

    PubMed

    Liu, JingJing; Tang, Duosi; Chen, Zhitao; Yan, Xiaomei; Zhong, Zhou; Kang, Longtian; Yao, Jiannian

    2017-08-15

    Alkaline phosphatase (ALP) as an essential enzyme plays an important role in clinical diagnoses and biomedical researches. Hence, the development of convenient and sensitivity assay for monitoring ALP is extremely important. In this work, on the basis of chemical redox strategy to modulate the fluorescence of nitrogen-doped graphene quantum dots (NGQDs), a novel label-free fluorescent sensing system for the detection of alkaline phosphatase (ALP) activity has been developed. The fluorescence of NGQDs is firstly quenched by ultrathin cobalt oxyhydroxide (CoOOH) nanosheets, and then restored by ascorbic acid (AA), which can reduce CoOOH to Co 2+ , thus the ALP can be monitored based on the enzymatic hydrolysis of L-ascorbic acid-2-phosphate (AAP) by ALP to generate AA. Quantitative evaluation of ALP activity in a range from 0.1 to 5U/L with the detection limit of 0.07U/L can be realized in this sensing system. Endowed with high sensitivity and selectivity, the proposed assay is capable of detecting ALP in biological system with satisfactory results. Meanwhile, this sensing system can be easily extended to the detection of various AA-involved analytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Isotopically enhanced triple-quantum-dot qubit

    PubMed Central

    Eng, Kevin; Ladd, Thaddeus D.; Smith, Aaron; Borselli, Matthew G.; Kiselev, Andrey A.; Fong, Bryan H.; Holabird, Kevin S.; Hazard, Thomas M.; Huang, Biqin; Deelman, Peter W.; Milosavljevic, Ivan; Schmitz, Adele E.; Ross, Richard S.; Gyure, Mark F.; Hunter, Andrew T.

    2015-01-01

    Like modern microprocessors today, future processors of quantum information may be implemented using all-electrical control of silicon-based devices. A semiconductor spin qubit may be controlled without the use of magnetic fields by using three electrons in three tunnel-coupled quantum dots. Triple dots have previously been implemented in GaAs, but this material suffers from intrinsic nuclear magnetic noise. Reduction of this noise is possible by fabricating devices using isotopically purified silicon. We demonstrate universal coherent control of a triple-quantum-dot qubit implemented in an isotopically enhanced Si/SiGe heterostructure. Composite pulses are used to implement spin-echo type sequences, and differential charge sensing enables single-shot state readout. These experiments demonstrate sufficient control with sufficiently low noise to enable the long pulse sequences required for exchange-only two-qubit logic and randomized benchmarking. PMID:26601186

  5. Growing High-Quality InAs Quantum Dots for Infrared Lasers

    NASA Technical Reports Server (NTRS)

    Qiu, Yueming; Uhl, David

    2004-01-01

    An improved method of growing high-quality InAs quantum dots embedded in lattice-matched InGaAs quantum wells on InP substrates has been developed. InAs/InGaAs/InP quantum dot semiconductor lasers fabricated by this method are capable of operating at room temperature at wavelengths greater than or equal to 1.8 mm. Previously, InAs quantum dot lasers based on InP substrates have been reported only at low temperature of 77 K at a wavelength of 1.9 micrometers. In the present method, as in the prior method, one utilizes metalorganic vapor phase epitaxy to grow the aforementioned semiconductor structures. The development of the present method was prompted in part by the observation that when InAs quantum dots are deposited on an InGaAs layer, some of the InAs in the InGaAs layer becomes segregated from the layer and contributes to the formation of the InAs quantum dots. As a result, the quantum dots become highly nonuniform; some even exceed a critical thickness, beyond which they relax. In the present method, one covers the InGaAs layer with a thin layer of GaAs before depositing the InAs quantum dots. The purpose and effect of this thin GaAs layer is to suppress the segregation of InAs from the InGaAs layer, thereby enabling the InAs quantum dots to become nearly uniform (see figure). Devices fabricated by this method have shown near-room-temperature performance.

  6. Solid-phase synthesis of graphene quantum dots from the food additive citric acid under microwave irradiation and their use in live-cell imaging.

    PubMed

    Zhuang, Qianfen; Wang, Yong; Ni, Yongnian

    2016-05-01

    The work demonstrated that solid citric acid, one of the most common food additives, can be converted to graphene quantum dots (GQDs) under microwave heating. The as-prepared GQDs were further characterized by various analytical techniques like transmission electron microscopy, atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, fluorescence and UV-visible spectroscopy. Cytotoxicity of the GQDs was evaluated using HeLa cells. The result showed that the GQDs almost did not exhibit cytotoxicity at concentrations as high as 1000 µg mL(-1). In addition, it was found that the GQDs showed good solubility, excellent photostability, and excitation-dependent multicolor photoluminescence. Subsequently, the multicolor GQDs were successfully used as a fluorescence light-up probe for live-cell imaging. Copyright © 2015 John Wiley & Sons, Ltd.

  7. A triple quantum dot based nano-electromechanical memory device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pozner, R.; Lifshitz, E.; Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000

    Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, “ON” and “OFF” states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Consideringmore » realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM.« less

  8. Vacuum-induced coherence in quantum dot systems

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Machnikowski, Paweł

    2012-11-01

    We present a theoretical study of vacuum-induced coherence in a pair of vertically stacked semiconductor quantum dots. The process consists in a coherent excitation transfer from a single-exciton state localized in one dot to a delocalized state in which the exciton occupation gets trapped. We study the influence of the factors characteristic of quantum dot systems (as opposed to natural atoms): energy mismatch, coupling between the single-exciton states localized in different dots, and different and nonparallel dipoles due to sub-band mixing, as well as coupling to phonons. We show that the destructive effect of the energy mismatch can be overcome by an appropriate interplay of the dipole moments and coupling between the dots which allows one to observe the trapping effect even in a structure with technologically realistic energy splitting of the order of milli-electron volts. We also analyze the impact of phonon dynamics on the occupation trapping and show that phonon effects are suppressed in a certain range of system parameters. This analysis shows that the vacuum-induced coherence effect and the associated long-living trapped excitonic population can be achieved in quantum dots.

  9. Optically Driven Spin Based Quantum Dots for Quantum Computing - Research Area 6 Physics 6.3.2

    DTIC Science & Technology

    2015-12-15

    quantum dots (SAQD) in Schottky diodes . Based on spins in these dots, a scalable architecture has been proposed [Adv. in Physics, 59, 703 (2010)] by us...housed in two coupled quantum dots with tunneling between them, as described above, may not be scalable but can serve as a node in a quantum network. The... tunneling -coupled two-electron spin ground states in the vertically coupled quantum dots for “universal computation” two spin qubits within the universe of

  10. Transport properties of a quantum dot and a quantum ring in series

    NASA Astrophysics Data System (ADS)

    Seo, Minky; Chung, Yunchul

    2018-01-01

    The decoherence mechanism of an electron interferometer is studied by using a serial quantum dot and ring device. By coupling a quantum dot to a quantum ring (closed-loop electron interferometer), we were able to observe both Coulomb oscillations and Aharonov-Bohm interference simultaneously. The coupled device behaves like an ordinary double quantum dot at zero magnetic field while the conductance of the Coulomb blockade peak is modulated by the electron interference at finite magnetic fields. By injecting one electron at a time (by exploiting the sequential tunneling of a quantum dot) into the interferometer, we were able to study the visibility of the electron interference at non-zero bias voltage. The visibility was found to decay rapidly as the electron energy was increased, which was consistent with the recently reported result for an electron interferometer. However, the lobe pattern and the sudden phase jump became less prominent. These results imply that the lobe pattern and the phase jump in an electron interferometer may be due to electron interactions inside the interferometer, as is predicted by the theory.

  11. Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel.

    PubMed

    Pelc, Jason S; Yu, Leo; De Greve, Kristiaan; McMahon, Peter L; Natarajan, Chandra M; Esfandyarpour, Vahid; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Yamamoto, Yoshihisa; Fejer, M M

    2012-12-03

    Long-distance quantum communication networks require appropriate interfaces between matter qubit-based nodes and low-loss photonic quantum channels. We implement a downconversion quantum interface, where the single photons emitted from a semiconductor quantum dot at 910 nm are downconverted to 1560 nm using a fiber-coupled periodically poled lithium niobate waveguide and a 2.2-μm pulsed pump laser. The single-photon character of the quantum dot emission is preserved during the downconversion process: we measure a cross-correlation g(2)(τ = 0) = 0.17 using resonant excitation of the quantum dot. We show that the downconversion interface is fully compatible with coherent optical control of the quantum dot electron spin through the observation of Rabi oscillations in the downconverted photon counts. These results represent a critical step towards a long-distance hybrid quantum network in which subsystems operating at different wavelengths are connected through quantum frequency conversion devices and 1.5-μm quantum channels.

  12. Tunability and Stability of Lead Sulfide Quantum Dots in Ferritin

    NASA Astrophysics Data System (ADS)

    Peterson, J. Ryan; Hansen, Kameron

    Quantum dot solar cells have become one of the fastest growing solar cell technologies to date, and lead sulfide has proven to be an efficient absorber. However, one of the primary concerns in dye-sensitized quantum dot solar cell development is core degradation. We have synthesized lead sulfide quantum dots inside of the spherical protein ferritin in order to protect them from photocorrosion. We have studied the band gaps of these quantum dots and found them to be widely tunable inside ferritin just as they are outside the protein shell. In addition, we have examined their stability by measuring changes in photoluminescence as they are exposed to light over minutes and hours and found that the ferritin-enclosed PbS quantum dots have significantly better resistance to photocorrosion. Brigham Young University, National Science Foundation.

  13. Production of three-dimensional quantum dot lattice of Ge/Si core-shell quantum dots and Si/Ge layers in an alumina glass matrix.

    PubMed

    Buljan, M; Radić, N; Sancho-Paramon, J; Janicki, V; Grenzer, J; Bogdanović-Radović, I; Siketić, Z; Ivanda, M; Utrobičić, A; Hübner, R; Weidauer, R; Valeš, V; Endres, J; Car, T; Jerčinović, M; Roško, J; Bernstorff, S; Holy, V

    2015-02-13

    We report on the formation of Ge/Si quantum dots with core/shell structure that are arranged in a three-dimensional body centered tetragonal quantum dot lattice in an amorphous alumina matrix. The material is prepared by magnetron sputtering deposition of Al2O3/Ge/Si multilayer. The inversion of Ge and Si in the deposition sequence results in the formation of thin Si/Ge layers instead of the dots. Both materials show an atomically sharp interface between the Ge and Si parts of the dots and layers. They have an amorphous internal structure that can be crystallized by an annealing treatment. The light absorption properties of these complex materials are significantly different compared to films that form quantum dot lattices of the pure Ge, Si or a solid solution of GeSi. They show a strong narrow absorption peak that characterizes a type II confinement in accordance with theoretical predictions. The prepared materials are promising for application in quantum dot solar cells.

  14. Double quantum dots decorated 3D graphene flowers for highly efficient photoelectrocatalytic hydrogen production

    NASA Astrophysics Data System (ADS)

    Cheng, Qifa; Xu, Jing; Wang, Tao; Fan, Ling; Ma, Ruifang; Yu, Xinzhi; Zhu, Jian; Xu, Zhi; Lu, Bingan

    2017-11-01

    Photoelectrocatalysis (PEC) has been demonstrated as a promising technique for hydrogen production. However, the high over-potential and high recombination rate of photo-induced electron-hole pairs lead to poor hydrogen production efficiency. In order to overcome these problems, TiO2 and Au dual quantum dots (QDs) on three-dimensional graphene flowers (Au@TiO2@3DGFs) was synthesized by an electro-deposition strategy. The combination of Au and TiO2 modulates the band gap of TiO2, shifts the absorption to visible lights and improves the utilization efficiency of solar light. Simultaneously, the size-quantization TiO2 on 3DGFs not only achieves a larger specific surface area over conventional nanomaterials, but also promotes the separation of the photo-induced electron-hole pairs. Besides, the 3DGFs as a scaffold for QDs can provide more active sites and stable structure. Thus, the newly-developed Au@TiO2@3DGFs composite exhibited an impressive PEC activity and excellent durability. Under -240 mV potential (vs. RHE), the photoelectric current density involved visible light illumination (100 mW cm-2) reached 90 mA cm-2, which was about 3.6 times of the natural current density (without light, only 25 mA cm-2). It worth noting that the photoelectric current density did not degrade and even increased to 95 mA cm-2 over 90 h irradiation, indicating an amazing chemical stability.

  15. Graphene quantum dots modified silicon nanowire array for ultrasensitive detection in the gas phase

    NASA Astrophysics Data System (ADS)

    Li, T. Y.; Duan, C. Y.; Zhu, Y. X.; Chen, Y. F.; Wang, Y.

    2017-03-01

    Si nanostructure-based gas detectors have attracted much attention due to their huge surface areas, relatively high carrier mobility, maneuverability for surface functionalization and compatibility to modern electronic industry. However, the unstable surface of Si, especially for the nanostructures in a corrosive atmosphere, hinders their sensitivity and reproducibility when used for detection in the gas phase. In this study, we proposed a novel strategy to fabricate a Si-based gas detector by using the vertically aligned Si nanowire (SiNW) array as a skeleton and platform, and decorated chemically inert graphene quantum dots (GQDs) to protect the SiNWs from oxidation and promote the carriers’ interaction with the analytes. The radial core-shell structures of the GQDs/SiNW array were then assembled into a resistor-based gas detection system and evaluated by using nitrogen dioxide (NO2) as the model analyte. Compared to the bare SiNW array, our novel sensor exhibited ultrahigh sensitivity for detecting trace amounts of NO2 with the concentration as low as 10 ppm in room temperature and an immensely reduced recovery time, which is of significant importance for their practical application. Meanwhile, strikingly, reproducibility and stability could also be achieved by showing no sensitivity decline after storing the GQDs/SiNW array in air for two weeks. Our results demonstrate that protecting the surface of the SiNW array with chemically inert GQDs is a feasible strategy to realize ultrasensitive detection in the gas phase.

  16. Optically programmable electron spin memory using semiconductor quantum dots.

    PubMed

    Kroutvar, Miro; Ducommun, Yann; Heiss, Dominik; Bichler, Max; Schuh, Dieter; Abstreiter, Gerhard; Finley, Jonathan J

    2004-11-04

    The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer. Semiconductor quantum dots fabricated by strain driven self-assembly are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned, electronically coupled and embedded into active devices. It has been predicted that the atomic-like electronic structure of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment, thus protecting the 'spin' quantum information against decoherence. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.

  17. Quantum Effects on the Capacitance of Graphene-Based Electrodes

    DOE PAGES

    Zhan, Cheng; Neal, Justin; Wu, Jianzhong; ...

    2015-09-08

    We recently measured quantum capacitance for electric double layers (EDL) at electrolyte/graphene interfaces. However, the importance of quantum capacitance in realistic carbon electrodes is not clear. Toward understanding that from a theoretical perspective, here we studied the quantum capacitance and total capacitance of graphene electrodes as a function of the number of graphene layers. The quantum capacitance was obtained from electronic density functional theory based on fixed band approximation with an implicit solvation model, while the EDL capacitances were from classical density functional theory. We found that quantum capacitance plays a dominant role in total capacitance of the single-layer graphenemore » both in aqueous and ionic-liquid electrolytes but the contribution decreases as the number of graphene layers increases. Moreover, the total integral capacitance roughly levels off and is dominated by the EDL capacitance beyond about four graphene layers. Finally, because many porous carbons have nanopores with stacked graphene layers at the surface, this research provides a good estimate of the effect of quantum capacitance on their electrochemical performance.« less

  18. Facilitated preparation of bioconjugatable zwitterionic quantum dots using dual-lipid encapsulation.

    PubMed

    Shrake, Robert; Demillo, Violeta G; Ahmadiantehrani, Mojtaba; Zhu, Xiaoshan; Publicover, Nelson G; Hunter, Kenneth W

    2015-01-01

    Zwitterionic quantum dots prepared through incorporated zwitterionic ligands on quantum dot surfaces, are being paid significant attention in biomedical applications because of their excellent colloidal stability across a wide pH and ionic strength range, antifouling surface, good biocompatibility, etc. In this work, we report a dual-lipid encapsulation approach to prepare bioconjugatable zwitterionic quantum dots using amidosulfobetaine-16 lipids, dipalmitoyl-sn-glycero-3-phosphoethanolamine lipids with functional head groups, and CuInS2/ZnS quantum dots in a tetrahydrofuran/methanol/water solvent system with sonication. Amidosulfobetaine-16 is a zwitterionic lipid and dipalmitoyl-sn-glycero-3-phosphoethanolamine, with its functional head, provides bioconjugation capability. Under sonication, tetrahydrofuran/methanol containing amidosulfobetaine-16, dipalmitoyl-sn-glycero-3-phosphoethanolamine, and hydrophobic quantum dots are dispersed in water to form droplets. Highly water-soluble tetrahydrofuran/methanol in droplets is further displaced by water, which induces the lipid self-assembling on hydrophobic surface of quantum dots and thus forms water soluble zwitterionic quantum dots. The prepared zwitterionic quantum dots maintain colloidal stability in aqueous solutions with high salinity and over a wide pH range. They are also able to be conjugated with biomolecules for bioassay with minimal nonspecific binding. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. In vivo cation exchange in quantum dots for tumor-specific imaging.

    PubMed

    Liu, Xiangyou; Braun, Gary B; Qin, Mingde; Ruoslahti, Erkki; Sugahara, Kazuki N

    2017-08-24

    In vivo tumor imaging with nanoprobes suffers from poor tumor specificity. Here, we introduce a nanosystem, which allows selective background quenching to gain exceptionally tumor-specific signals. The system uses near-infrared quantum dots and a membrane-impermeable etchant, which serves as a cation donor. The etchant rapidly quenches the quantum dots through cation exchange (ionic etching), and facilitates renal clearance of metal ions released from the quantum dots. The quantum dots are intravenously delivered into orthotopic breast and pancreas tumors in mice by using the tumor-penetrating iRGD peptide. Subsequent etching quenches excess quantum dots, leaving a highly tumor-specific signal provided by the intact quantum dots remaining in the extravascular tumor cells and fibroblasts. No toxicity is noted. The system also facilitates the detection of peritoneal tumors with high specificity upon intraperitoneal tumor targeting and selective etching of excess untargeted quantum dots. In vivo cation exchange may be a promising strategy to enhance specificity of tumor imaging.The imaging of tumors in vivo using nanoprobes has been challenging due to the lack of sufficient tumor specificity. Here, the authors develop a tumor-specific quantum dot system that permits in vivo cation exchange to achieve selective background quenching and high tumor-specific imaging.

  20. Size dependence in tunneling spectra of PbSe quantum-dot arrays.

    PubMed

    Ou, Y C; Cheng, S F; Jian, W B

    2009-07-15

    Interdot Coulomb interactions and collective Coulomb blockade were theoretically argued to be a newly important topic, and experimentally identified in semiconductor quantum dots, formed in the gate confined two-dimensional electron gas system. Developments of cluster science and colloidal synthesis accelerated the studies of electron transport in colloidal nanocrystal or quantum-dot solids. To study the interdot coupling, various sizes of two-dimensional arrays of colloidal PbSe quantum dots are self-assembled on flat gold surfaces for scanning tunneling microscopy and scanning tunneling spectroscopy measurements at both room and liquid-nitrogen temperatures. The tip-to-array, array-to-substrate, and interdot capacitances are evaluated and the tunneling spectra of quantum-dot arrays are analyzed by the theory of collective Coulomb blockade. The current-voltage of PbSe quantum-dot arrays conforms properly to a scaling power law function. In this study, the dependence of tunneling spectra on the sizes (numbers of quantum dots) of arrays is reported and the capacitive coupling between quantum dots in the arrays is explored.

  1. Rhizopus stolonifer mediated biosynthesis of biocompatible cadmium chalcogenide quantum dots.

    PubMed

    Mareeswari, P; Brijitta, J; Harikrishna Etti, S; Meganathan, C; Kaliaraj, Gobi Saravanan

    2016-12-01

    We report an efficient method to biosynthesize biocompatible cadmium telluride and cadmium sulphide quantum dots from the fungus Rhizopus stolonifer. The suspension of the quantum dots exhibited purple and greenish-blue luminescence respectively upon UV light illumination. Photoluminescence spectroscopy, X-ray diffraction, and transmission electron microscopy confirms the formation of the quantum dots. From the photoluminescence spectrum the emission maxima is found to be 424 and 476nm respectively. The X-ray diffraction of the quantum dots matches with results reported in literature. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay for cell viability evaluation carried out on 3-days transfer, inoculum 3×10 5 cells, embryonic fibroblast cells lines shows that more than 80% of the cells are viable even after 48h, indicating the biocompatible nature of the quantum dots. A good contrast in imaging has been obtained upon incorporating the quantum dots in human breast adenocarcinoma Michigan Cancer Foundation-7 cell lines. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Effects of graphene quantum dots on linear and nonlinear optical behavior of malignant ovarian cells

    NASA Astrophysics Data System (ADS)

    Mohajer, Salman; Ara, Mohammad Hossein Majles; Serahatjoo, Leila

    2016-07-01

    We investigate linear and nonlinear optical properties of standard human ovarian cancer cells (cell line: A2780cp) in vitro. Cells were treated by graphene quantum dots (GQDs) with two special concentrations. Nontoxicity of GQDs was examined in standard biological viability tests. Cancerous cells were fixed on a glass slide; then, interaction of light with biofilms was studied in linear and nonlinear regimes. Absorption spectra of untreated biofilms and biofilms with two different concentrations of GQDs was studied by UV-visible spectrophotometer. Optical behavior of biofilms in a linear regime of intensity (with low-intensity laser exposure) was reported using a simple optical setup. After that, we compared the attenuation of light in biofilm of cancerous cells with and without GQDs. Nonlinear behavior of these biofilms was investigated by a Z-scan setup using a continued wave He-Ne laser. Results showed that GQDs decreased the extinction coefficient and changed the sign and exact value of the nonlinear refractive index of malignant ovarian cells noticeably. The nonlinear refractive index of studied cells with no GQDs treatment was in the order of 10-8 (cm2/w) with a positive sign. This quantity changed to the same order of magnitude with a negative sign after GQDs treatment. Thus, GQDs can be used for cancer diagnosis under laser irradiation.

  3. Anomalous fluorescence enhancement and fluorescence quenching of graphene quantum dots by single walled carbon nanotubes.

    PubMed

    Das, Ruma; Rajender, Gone; Giri, P K

    2018-02-07

    We explore the mechanism of the fluorescence enhancement and fluorescence quenching effect of single walled carbon nanotubes (SWCNTs) on highly fluorescent graphene quantum dots (GQDs) over a wide range of concentrations of SWCNTs. At very low concentrations of SWCNTs, the fluorescence intensity of the GQDs is enhanced, while at higher concentrations, systematic quenching of fluorescence is observed. The nature of the Stern-Volmer plot for the latter case was found to be non-linear indicating a combined effect of dynamic and static quenching. The contribution of the dynamic quenching component was assessed through the fluorescence lifetime measurements. The contribution of static quenching is confirmed from the red shift of the fluorescence spectra of the GQDs after addition of SWCNTs. The fluorescence intensity is first enhanced at very low concentration due to improved dispersion and higher absorption by GQDs, while at higher concentration, the fluorescence of GQDs is quenched due to the complex formation and associated reduction of the radiative sites of the GQDs, which is confirmed from time-resolved fluorescence measurements. Laser confocal microscopy imaging provides direct evidence of the enhancement and quenching of fluorescence at low and high concentrations of SWCNTs, respectively. This study provides an important insight into tuning the fluorescence of GQDs and understanding the interaction between GQDs and different CNTs, which is important for bio-imaging and drug delivery applications.

  4. Templated self-assembly of quantum dots from aqueous solution using protein scaffolds

    NASA Astrophysics Data System (ADS)

    Szuchmacher Blum, Amy; Soto, Carissa M.; Wilson, Charmaine D.; Whitley, Jessica L.; Moore, Martin H.; Sapsford, Kim E.; Lin, Tianwei; Chatterji, Anju; Johnson, John E.; Ratna, Banahalli R.

    2006-10-01

    Short, histidine-containing peptides can be conjugated to lysine-containing protein scaffolds to controllably attach quantum dots (QDs) to the scaffold, allowing for generic attachment of quantum dots to any protein without the use of specially engineered domains. This technique was used to bind quantum dots from aqueous solution to both chicken IgG and cowpea mosaic virus (CPMV), a 30 nm viral particle. These quantum dot protein assemblies were studied in detail. The IgG QD complexes were shown to retain binding specificity to their antigen after modification. The CPMV QD complexes have a local concentration of quantum dots greater than 3000 nmol ml-1, and show a 15% increase in fluorescence quantum yield over free quantum dots in solution.

  5. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.

    PubMed

    De Greve, Kristiaan; Yu, Leo; McMahon, Peter L; Pelc, Jason S; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa

    2012-11-15

    Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency downconversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates, the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.

  6. Charge transport in quantum dot organic solar cells with Si quantum dots sandwiched between poly(3-hexylthiophene) (P3HT) absorber and bathocuproine (BCP) transport layers

    NASA Astrophysics Data System (ADS)

    Verma, Upendra Kumar; Kumar, Brijesh

    2017-10-01

    We have modeled a multilayer quantum dot organic solar cell that explores the current-voltage characteristic of the solar cell whose characteristics can be tuned by varying the fabrication parameters of the quantum dots (QDs). The modeled device consists of a hole transport layer (HTL) which doubles up as photon absorbing layer, several quantum dot layers, and an electron transport layer (ETL). The conduction of charge carriers in HTL and ETL has been modeled by the drift-diffusion transport mechanism. The conduction and recombination in the quantum dot layers are described by a system of coupled rate equations incorporating tunneling and bimolecular recombination. Analysis of QD-solar cells shows improved device performance compared to the similar bilayer and trilayer device structures without QDs. Keeping other design parameters constant, solar cell characteristics can be controlled by the quantum dot layers. Bimolecular recombination coefficient of quantum dots is a prime factor which controls the open circuit voltage (VOC) without any significant reduction in short circuit current (JSC).

  7. Bit-Serial Adder Based on Quantum Dots

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Mathew

    2003-01-01

    A proposed integrated circuit based on quantum-dot cellular automata (QCA) would function as a bit-serial adder. This circuit would serve as a prototype building block for demonstrating the feasibility of quantum-dots computing and for the further development of increasingly complex and increasingly capable quantum-dots computing circuits. QCA-based bit-serial adders would be especially useful in that they would enable the development of highly parallel and systolic processors for implementing fast Fourier, cosine, Hartley, and wavelet transforms. The proposed circuit would complement the QCA-based circuits described in "Implementing Permutation Matrices by Use of Quantum Dots" (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42 and "Compact Interconnection Networks Based on Quantum Dots" (NPO-20855), which appears elsewhere in this issue. Those articles described the limitations of very-large-scale-integrated (VLSI) circuitry and the major potential advantage afforded by QCA. To recapitulate: In a VLSI circuit, signal paths that are required not to interact with each other must not cross in the same plane. In contrast, for reasons too complex to describe in the limited space available for this article, suitably designed and operated QCA-based signal paths that are required not to interact with each other can nevertheless be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. To enable a meaningful description of the proposed bit-serial adder, it is necessary to further recapitulate the description of a quantum-dot cellular automation from the first-mentioned prior article: A quantum-dot cellular automaton contains four quantum dots positioned at the corners of a square cell. The cell contains two extra mobile electrons that can tunnel (in the

  8. Quantum dot bioconjugates for ultrasensitive nonisotopic detection.

    PubMed

    Chan, W C; Nie, S

    1998-09-25

    Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection. In comparison with organic dyes such as rhodamine, this class of luminescent labels is 20 times as bright, 100 times as stable against photobleaching, and one-third as wide in spectral linewidth. These nanometer-sized conjugates are water-soluble and biocompatible. Quantum dots that were labeled with the protein transferrin underwent receptor-mediated endocytosis in cultured HeLa cells, and those dots that were labeled with immunomolecules recognized specific antibodies or antigens.

  9. Two-electrons quantum dot in plasmas under the external fields

    NASA Astrophysics Data System (ADS)

    Bahar, M. K.; Soylu, A.

    2018-02-01

    In this study, for the first time, the combined effects of the external electric field, magnetic field, and confinement frequency on energies of two-electron parabolic quantum dots in Debye and quantum plasmas modeled by more general exponential cosine screened Coulomb (MGECSC) potential are investigated by numerically solving the Schrödinger equation using the asymptotic iteration method. The MGECSC potential includes four different potential forms when considering different sets of the parameters in potential. Since the plasma is an important experimental argument for quantum dots, the influence of plasmas modeled by the MGECSC potential on quantum dots is probed. The confinement frequency of quantum dots and the external fields created significant quantum restrictions on quantum dot. In this study, as well as discussion of the functionalities of the quantum restrictions for experimental applications, the parameters are also compared with each other in terms of influence and behaviour. In this manner, the motivation points of this study are summarized as follows: Which parameter can be alternative to which parameter, in terms of experimental applications? Which parameters exhibit similar behaviour? What is the role of plasmas on the corresponding behaviours? In the light of these research studies, it can be said that obtained results and performed discussions would be important in experimental and theoretical research related to plasma physics and/or quantum dots.

  10. Resistive switching effect in the planar structure of all-printed, flexible and rewritable memory device based on advanced 2D nanocomposite of graphene quantum dots and white graphene flakes

    NASA Astrophysics Data System (ADS)

    Muqeet Rehman, Muhammad; Uddin Siddiqui, Ghayas; Kim, Sowon; Choi, Kyung Hyun

    2017-08-01

    Pursuit of the most appropriate materials and fabrication methods is essential for developing a reliable, rewritable and flexible memory device. In this study, we have proposed an advanced 2D nanocomposite of white graphene (hBN) flakes embedded with graphene quantum dots (GQDs) as the functional layer of a flexible memory device owing to their unique electrical, chemical and mechanical properties. Unlike the typical sandwich type structure of a memory device, we developed a cost effective planar structure, to simplify device fabrication and prevent sneak current. The entire device fabrication was carried out using printing technology followed by encapsulation in an atomically thin layer of aluminum oxide (Al2O3) for protection against environmental humidity. The proposed memory device exhibited attractive bipolar switching characteristics of high switching ratio, large electrical endurance and enhanced lifetime, without any crosstalk between adjacent memory cells. The as-fabricated device showed excellent durability for several bending cycles at various bending diameters without any degradation in bistable resistive states. The memory mechanism was deduced to be conductive filamentary; this was validated by illustrating the temperature dependence of bistable resistive states. Our obtained results pave the way for the execution of promising 2D material based next generation flexible and non-volatile memory (NVM) applications.

  11. Lateral excitonic switching in vertically stacked quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarzynka, Jarosław R.; McDonald, Peter G.; Galbraith, Ian

    2016-06-14

    We show that the application of a vertical electric field to the Coulomb interacting system in stacked quantum dots leads to a 90° in-plane switching of charge probability distribution in contrast to a single dot, where no such switching exists. Results are obtained using path integral quantum Monte Carlo with realistic dot geometry, alloy composition, and piezo-electric potential profiles. The origin of the switching lies in the strain interactions between the stacked dots hence the need for more than one layer of dots. The lateral polarization and electric field dependence of the radiative lifetimes of the excitonic switch are alsomore » discussed.« less

  12. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushwaha, Manvir S.

    2014-12-15

    Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorptionmore » in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level

  13. Ultrafast optical control of individual quantum dot spin qubits.

    PubMed

    De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

    2013-09-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled

  14. L-Cysteine Capped CdSe Quantum Dots Synthesized by Photochemical Route.

    PubMed

    Singh, Avinash; Kunwar, Amit; Rath, M C

    2018-05-01

    L-cysteine capped CdSe quantum dots were synthesized via photochemical route in aqueous solution under UV photo-irradiation. The as grown CdSe quantum dots exhibit broad fluorescence at room temperature. The CdSe quantum dots were found to be formed only through the reactions of the precursors, i.e., Cd(NH3)2+4 and SeSO2-3 with the photochemically generated 1-hydroxy-2-propyl radicals, (CH3)2COH radicals, which are formed through the process of H atom abstraction by the photoexcited acetone from 2-propanol. L-Cysteine was found to act as a suitable capping agent for the CdSe quantum dots and increases their biocompatability. Cytotoxicty effects of these quantum dots were evaluated in Chinese Hamster Ovary (CHO) epithelial cells, indicated a significant lower level for the L-cysteine capped CdSe quantum dots as compare to the bare ones.

  15. Autonomous quantum Maxwell's demon based on two exchange-coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Ptaszyński, Krzysztof

    2018-01-01

    I study an autonomous quantum Maxwell's demon based on two exchange-coupled quantum dots attached to the spin-polarized leads. The principle of operation of the demon is based on the coherent oscillations between the spin states of the system which act as a quantum iSWAP gate. Due to the operation of the iSWAP gate, one of the dots acts as a feedback controller which blocks the transport with the bias in the other dot, thus inducing the electron pumping against the bias; this leads to the locally negative entropy production. Operation of the demon is associated with the information transfer between the dots, which is studied quantitatively by mapping the analyzed setup onto the thermodynamically equivalent auxiliary system. The calculated entropy production in a single subsystem and information flow between the subsystems are shown to obey a local form of the second law of thermodynamics, similar to the one previously derived for classical bipartite systems.

  16. Magnon cotunneling through a quantum dot

    NASA Astrophysics Data System (ADS)

    Karwacki, Łukasz

    2017-11-01

    I consider a single-level quantum dot coupled to two reservoirs of spin waves (magnons). Such systems have been studied recently from the point of view of possible coupling between electronic and magnonic spin currents. However, usually weakly coupled systems were investigated. When coupling between the dot and reservoirs is not weak, then higher order processes play a role and have to be included. Here I consider cotunneling of magnons through a spin-occupied quantum dot, which can be understood as a magnon (spin) leakage current in analogy to leakage currents in charge-based electronics. Particular emphasis has been put on investigating the effect of magnetic field and temperature difference between the magnonic reservoirs.

  17. A Quantum Dot with Spin-Orbit Interaction--Analytical Solution

    ERIC Educational Resources Information Center

    Basu, B.; Roy, B.

    2009-01-01

    The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.

  18. Facile synthesis of analogous graphene quantum dots with sp(2) hybridized carbon atom dominant structures and their photovoltaic application.

    PubMed

    Huang, Zhengcheng; Shen, Yongtao; Li, Yu; Zheng, Wenjun; Xue, Yunjia; Qin, Chengqun; Zhang, Bo; Hao, Jingxiang; Feng, Wei

    2014-11-07

    Graphene quantum dot (GQD) is an emerging class of zero-dimensional nanocarbon material with many novel applications. It is of scientific importance to prepare GQDs with more perfect structures, that is, GQDs containing negligible oxygenous defects, for both optimizing their optical properties and helping in their photovoltaic applications. Herein, a new strategy for the facile preparation of "pristine" GQDs is reported. The method we presented is a combination of a bottom-up synthetic and a solvent-induced interface separation process, during which the target products with highly crystalline structure were selected by the organic solvent. The obtained organic soluble GQDs (O-GQDs) showed a significant difference in structure and composition compared with ordinary aqueous soluble GQDs, thus leading to a series of novel properties. Furthermore, O-GQDs were applied as electron-acceptors in a poly(3-hexylthiophene) (P3HT)-based organic photovoltaic device. The performance highlights that O-GQD has potential to be a novel electron-acceptor material due to the sp(2) hybridized carbon atom dominant structure and good solubility in organic solvents.

  19. Synthesis and characterization of graphene quantum dots/CoNiAl-layered double-hydroxide nanocomposite: Application as a glucose sensor.

    PubMed

    Samuei, Sara; Fakkar, Jila; Rezvani, Zolfaghar; Shomali, Ashkan; Habibi, Biuck

    2017-03-15

    In the present work, a novel nanocomposite based on the graphene quantum dots and CoNiAl-layered double-hydroxide was successfully synthesized by co-precipitation method. To achieve the morphological, structural and compositional information, the resulted nanocomposite was characterized by scanning electron microscopy X-ray diffraction, thermal gravimetric analysis, Fourier transform infrared spectroscopy, and photoluminescence. Then, the nanocomposite was used as a modifier to fabricate a modified carbon paste electrode as a non-enzymatic sensor for glucose determination. Electrochemical behavior and determination of glucose at the nanocomposite modified carbon paste electrode were investigated by cyclic voltammetry and chronoamperometry methods, respectively. The prepared sensor offered good electrocatalytic properties, fast response time, high reproducibility and stability. At the optimum conditions, the constructed sensor exhibits wide linear range; 0.01-14.0 mM with a detection limit of 6 μM (S/N = 3) and high sensitivity of 48.717 μAmM -1 . Finally, the sensor was successfully applied to determine the glucose in real samples which demonstrated its applicability. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Heparin conjugated quantum dots for in vitro imaging applications.

    PubMed

    Maguire, Ciaran Manus; Mahfoud, Omar Kazem; Rakovich, Tatsiana; Gerard, Valerie Anne; Prina-Mello, Adriele; Gun'ko, Yurii; Volkov, Yuri

    2014-11-01

    In this work heparin-gelatine multi-layered cadmium telluride quantum dots (QDgel/hep) were synthesised using a novel 'one-pot' method. The QDs produced were characterised using various spectroscopic and physiochemical techniques. Suitable QDs were then selected and compared to thioglycolic acid stabilised quantum dots (QDTGA) and gelatine coated quantum dots (QDgel) for utilisation in in vitro imaging experiments on live and fixed permeabilised THP-1, A549 and Caco-2 cell lines. Exposure of live THP-1 cells to QDgel/hep resulted in localisation of the QDs to the nucleus of the cells. QDgel/hep show affinity for the nuclear compartment of fixed permeabilised THP-1 and A549 cells but remain confined to cytoplasm of fixed permeabilised Caco-2 cells. It is postulated that heparin binding to the CD11b receptor facilitates the internalisation of the QDs into the nucleus of THP-1 cells. In addition, the heparin layer may reduce the unfavourable thrombogenic nature of quantum dots observed in vivo. In this study, heparin conjugated quantum dots were found to have superior imaging properties compared to its native counterparts. The authors postulate that heparin binding to the CD11b receptor facilitates QD internalization to the nucleus, and the heparin layer may reduce the in vivo thrombogenic properties of quantum dots. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Hot-electron transfer in quantum-dot heterojunction films.

    PubMed

    Grimaldi, Gianluca; Crisp, Ryan W; Ten Brinck, Stephanie; Zapata, Felipe; van Ouwendorp, Michiko; Renaud, Nicolas; Kirkwood, Nicholas; Evers, Wiel H; Kinge, Sachin; Infante, Ivan; Siebbeles, Laurens D A; Houtepen, Arjan J

    2018-06-13

    Thermalization losses limit the photon-to-power conversion of solar cells at the high-energy side of the solar spectrum, as electrons quickly lose their energy relaxing to the band edge. Hot-electron transfer could reduce these losses. Here, we demonstrate fast and efficient hot-electron transfer between lead selenide and cadmium selenide quantum dots assembled in a quantum-dot heterojunction solid. In this system, the energy structure of the absorber material and of the electron extracting material can be easily tuned via a variation of quantum-dot size, allowing us to tailor the energetics of the transfer process for device applications. The efficiency of the transfer process increases with excitation energy as a result of the more favorable competition between hot-electron transfer and electron cooling. The experimental picture is supported by time-domain density functional theory calculations, showing that electron density is transferred from lead selenide to cadmium selenide quantum dots on the sub-picosecond timescale.

  2. Controlling the Properties of Matter with Quantum Dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimov, Victor

    2017-03-22

    Solar cells and photodetectors could soon be made from new types of materials based on semiconductor quantum dots, thanks to new insights based on ultrafast measurements capturing real-time photoconversion processes. Photoconversion is a process wherein the energy of a photon, or quantum of light, is converted into other forms of energy, for example, chemical or electrical. Semiconductor quantum dots are chemically synthesized crystalline nanoparticles that have been studied for more than three decades in the context of various photoconversion schemes including photovoltaics (generation of photo-electricity) and photo-catalysis (generation of “solar fuels”). The appeal of quantum dots comes from the unmatchedmore » tunability of their physical properties, which can be adjusted by controlling the size, shape and composition of the dots. At Los Alamos, the research connects to the institutional mission of solving national security challenges through scientific excellence, in this case focusing on novel physical principles for highly efficient photoconversion, charge manipulation in exploratory device structures and novel nanomaterials.« less

  3. Entanglement of Electron Spins in Two Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Chen, Yuanzhen; Webb, Richard

    2004-03-01

    We study the entanglement of electron spins in a coupled quantum dots system at 70 mK. Two quantum dots are fabricated in a GaAs/AlGaAs heterostructure containing a high mobility 2-D electron gas. The two dots can be tuned independently and the electron spins in the dots are coupled through an exchange interaction between them. An exchange gate is used to vary the height and width of a potential barrier between the two dots, thus controlling the strength of the exchange interaction. Electrons are injected to the coupled dots by two independent DC currents and the output of the dots is incident on a beam splitter, which introduces quantum interferences. Cross-correlations of the shot noise of currents from the two output channels are measured and compared with theory (1). *Work supported by LPS and ARDA under MDA90401C0903 and NSF under DMR 0103223. (1) Burkard, Loss, & Sukhorukov, Phys. Rev. B61, R16303 (2000).

  4. Spin fine structure of optically excited quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Scheibner, M.; Doty, M. F.; Ponomarev, I. V.; Bracker, A. S.; Stinaff, E. A.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.

    2007-06-01

    The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin-exchange interactions, Pauli exclusion, and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals but also spins.

  5. Exciton Energy Transfer from Halide Terminated Nanocrystals to Graphene in Solar Photovoltaics

    NASA Astrophysics Data System (ADS)

    Ajayi, Obafunso; Abramson, Justin; Anderson, Nicholas; Owen, Jonathan; Zhao, Yue; Kim, Phillip; Gesuele, Felice; Wong, Chee Wei

    2011-03-01

    Graphene, a zero-gap semiconductor, has been identified as an ideal electrode for nanocrystal solar cell photovoltaic applications due to its high carrier mobility. Further advances in efficient current extraction are required towards this end. We investigate the resonant energy transfer dynamics between photoexcited nanocrystals and graphene, where the energy transfer rate is characterized by the fluorescent quenching of the quantum dots in the presence of graphene. Energy transfer has been shown to have a d -4 dependence on the nanocrystal distance from the graphene surface, with a correction due to blinking statistics. We investigate this relationship with single and few layer graphene. We study halide-terminated CdSe quantum dots; where the absence of the insulating outershell improves the electronic coupling of the donor-acceptor system leads to improved electron transfer. We observe quenching of the halide terminated nanocrystals on graphene, with the quenching factor ρ defined as IQ /IG (the relative intensities on quartz and graphene).

  6. Functional Carbon Quantum Dots: A Versatile Platform for Chemosensing and Biosensing.

    PubMed

    Feng, Hui; Qian, Zhaosheng

    2018-05-01

    Carbon quantum dot has emerged as a new promising fluorescent nanomaterial due to its excellent optical properties, outstanding biocompatibility and accessible fabrication methods, and has shown huge application perspective in a variety of areas, especially in chemosensing and biosensing applications. In this personal account, we give a brief overview of carbon quantum dots from its origin and preparation methods, present some advance on fluorescence origin of carbon quantum dots, and focus on development of chemosensors and biosensors based on functional carbon quantum dots. Comprehensive advances on functional carbon quantum dots as a versatile platform for sensing from our group are included and summarized as well as some typical examples from the other groups. The biosensing applications of functional carbon quantum dots are highlighted from selective assays of enzyme activity to fluorescent identification of cancer cells and bacteria. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Silicon based quantum dot hybrid qubits

    NASA Astrophysics Data System (ADS)

    Kim, Dohun

    2015-03-01

    The charge and spin degrees of freedom of an electron constitute natural bases for constructing quantum two level systems, or qubits, in semiconductor quantum dots. The quantum dot charge qubit offers a simple architecture and high-speed operation, but generally suffers from fast dephasing due to strong coupling of the environment to the electron's charge. On the other hand, quantum dot spin qubits have demonstrated long coherence times, but their manipulation is often slower than desired for important future applications. This talk will present experimental progress of a `hybrid' qubit, formed by three electrons in a Si/SiGe double quantum dot, which combines desirable characteristics (speed and coherence) in the past found separately in qubits based on either charge or spin degrees of freedom. Using resonant microwaves, we first discuss qubit operations near the `sweet spot' for charge qubit operation. Along with fast (>GHz) manipulation rates for any rotation axis on the Bloch sphere, we implement two independent tomographic characterization schemes in the charge qubit regime: traditional quantum process tomography (QPT) and gate set tomography (GST). We also present resonant qubit operations of the hybrid qubit performed on the same device, DC pulsed gate operations of which were recently demonstrated. We demonstrate three-axis control and the implementation of dynamic decoupling pulse sequences. Performing QPT on the hybrid qubit, we show that AC gating yields π rotation process fidelities higher than 93% for X-axis and 96% for Z-axis rotations, which demonstrates efficient quantum control of semiconductor qubits using resonant microwaves. We discuss a path forward for achieving fidelities better than the threshold for quantum error correction using surface codes. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), DOE (DE-FG02-03ER46028), and by the Laboratory Directed Research and Development program at Sandia National Laboratories

  8. A fabrication guide for planar silicon quantum dot heterostructures

    NASA Astrophysics Data System (ADS)

    Spruijtenburg, Paul C.; Amitonov, Sergey V.; van der Wiel, Wilfred G.; Zwanenburg, Floris A.

    2018-04-01

    We describe important considerations to create top-down fabricated planar quantum dots in silicon, often not discussed in detail in literature. The subtle interplay between intrinsic material properties, interfaces and fabrication processes plays a crucial role in the formation of electrostatically defined quantum dots. Processes such as oxidation, physical vapor deposition and atomic-layer deposition must be tailored in order to prevent unwanted side effects such as defects, disorder and dewetting. In two directly related manuscripts written in parallel we use techniques described in this work to create depletion-mode quantum dots in intrinsic silicon, and low-disorder silicon quantum dots defined with palladium gates. While we discuss three different planar gate structures, the general principles also apply to 0D and 1D systems, such as self-assembled islands and nanowires.

  9. Quantum Dots in the Therapy: Current Trends and Perspectives.

    PubMed

    Pohanka, Miroslav

    2017-01-01

    Quantum dots are an emerging nanomaterial with broad use in technical disciplines; however, their application in the field of biomedicine becomes also relevant and significant possibilities have appeared since the discovery in 1980s. The current review is focused on the therapeutic applications of quantum dots which become an emerging use of the particles. They are introduced as potent carriers of drugs and as a material well suited for the diagnosis of disparate pathologies like visualization of cancer cells or pathogenic microorganisms. Quantum dots toxicity and modifications for the toxicity reduction are discussed here as well. Survey of actual papers and patents in the field of quantum dots use in the biomedicine is provided. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Quantum dot conjugates in a sub-micrometer fluidic channel

    DOEpatents

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2010-04-13

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  11. Quantum dot conjugates in a sub-micrometer fluidic channel

    DOEpatents

    Stavis, Samuel M [Ithaca, NY; Edel, Joshua B [Brookline, MA; Samiee, Kevan T [Ithaca, NY; Craighead, Harold G [Ithaca, NY

    2008-07-29

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  12. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    See, Gloria G.; Xu, Lu; Nuzzo, Ralph G.

    2015-08-03

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from themore » photonic crystal structure.« less

  13. Towards a feasible implementation of quantum neural networks using quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altaisky, Mikhail V., E-mail: altaisky@mx.iki.rssi.ru, E-mail: nzolnik@iki.rssi.ru; Zolnikova, Nadezhda N., E-mail: altaisky@mx.iki.rssi.ru, E-mail: nzolnik@iki.rssi.ru; Kaputkina, Natalia E., E-mail: nataly@misis.ru

    2016-03-07

    We propose an implementation of quantum neural networks using an array of quantum dots with dipole-dipole interactions. We demonstrate that this implementation is both feasible and versatile by studying it within the framework of GaAs based quantum dot qubits coupled to a reservoir of acoustic phonons. Using numerically exact Feynman integral calculations, we have found that the quantum coherence in our neural networks survive for over a hundred ps even at liquid nitrogen temperatures (77 K), which is three orders of magnitude higher than current implementations, which are based on SQUID-based systems operating at temperatures in the mK range.

  14. Intermediate-band photosensitive device with quantum dots having tunneling barrier embedded in organic matrix

    DOEpatents

    Forrest, Stephen R.

    2008-08-19

    A plurality of quantum dots each have a shell. The quantum dots are embedded in an organic matrix. At least the quantum dots and the organic matrix are photoconductive semiconductors. The shell of each quantum dot is arranged as a tunneling barrier to require a charge carrier (an electron or a hole) at a base of the tunneling barrier in the organic matrix to perform quantum mechanical tunneling to reach the respective quantum dot. A first quantum state in each quantum dot is between a lowest unoccupied molecular orbital (LUMO) and a highest occupied molecular orbital (HOMO) of the organic matrix. Wave functions of the first quantum state of the plurality of quantum dots may overlap to form an intermediate band.

  15. Charge Carrier Hopping Dynamics in Homogeneously Broadened PbS Quantum Dot Solids.

    PubMed

    Gilmore, Rachel H; Lee, Elizabeth M Y; Weidman, Mark C; Willard, Adam P; Tisdale, William A

    2017-02-08

    Energetic disorder in quantum dot solids adversely impacts charge carrier transport in quantum dot solar cells and electronic devices. Here, we use ultrafast transient absorption spectroscopy to show that homogeneously broadened PbS quantum dot arrays (σ hom 2 :σ inh 2 > 19:1, σ inh /k B T < 0.4) can be realized if quantum dot batches are sufficiently monodisperse (δ ≲ 3.3%). The homogeneous line width is found to be an inverse function of quantum dot size, monotonically increasing from ∼25 meV for the largest quantum dots (5.8 nm diameter/0.92 eV energy) to ∼55 meV for the smallest (4.1 nm/1.3 eV energy). Furthermore, we show that intrinsic charge carrier hopping rates are faster for smaller quantum dots. This finding is the opposite of the mobility trend commonly observed in device measurements but is consistent with theoretical predictions. Fitting our data to a kinetic Monte Carlo model, we extract charge carrier hopping times ranging from 80 ps for the smallest quantum dots to over 1 ns for the largest, with the same ethanethiol ligand treatment. Additionally, we make the surprising observation that, in slightly polydisperse (δ ≲ 4%) quantum dot solids, structural disorder has a greater impact than energetic disorder in inhibiting charge carrier transport. These findings emphasize how small improvements in batch size dispersity can have a dramatic impact on intrinsic charge carrier hopping behavior and will stimulate further improvements in quantum dot device performance.

  16. Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide.

    PubMed

    Thyrrestrup, Henri; Kiršanskė, Gabija; Le Jeannic, Hanna; Pregnolato, Tommaso; Zhai, Liang; Raahauge, Laust; Midolo, Leonardo; Rotenberg, Nir; Javadi, Alisa; Schott, Rüdiger; Wieck, Andreas D; Ludwig, Arne; Löbl, Matthias C; Söllner, Immo; Warburton, Richard J; Lodahl, Peter

    2018-03-14

    Establishing a highly efficient photon-emitter interface where the intrinsic linewidth broadening is limited solely by spontaneous emission is a key step in quantum optics. It opens a pathway to coherent light-matter interaction for, e.g., the generation of highly indistinguishable photons, few-photon optical nonlinearities, and photon-emitter quantum gates. However, residual broadening mechanisms are ubiquitous and need to be combated. For solid-state emitters charge and nuclear spin noise are of importance, and the influence of photonic nanostructures on the broadening has not been clarified. We present near-lifetime-limited linewidths for quantum dots embedded in nanophotonic waveguides through a resonant transmission experiment. It is found that the scattering of single photons from the quantum dot can be obtained with an extinction of 66 ± 4%, which is limited by the coupling of the quantum dot to the nanostructure rather than the linewidth broadening. This is obtained by embedding the quantum dot in an electrically contacted nanophotonic membrane. A clear pathway to obtaining even larger single-photon extinction is laid out; i.e., the approach enables a fully deterministic and coherent photon-emitter interface in the solid state that is operated at optical frequencies.

  17. Combined atomic force microscopy and photoluminescence imaging to select single InAs/GaAs quantum dots for quantum photonic devices.

    PubMed

    Sapienza, Luca; Liu, Jin; Song, Jin Dong; Fält, Stefan; Wegscheider, Werner; Badolato, Antonio; Srinivasan, Kartik

    2017-07-24

    We report on a combined photoluminescence imaging and atomic force microscopy study of single, isolated self-assembled InAs quantum dots. The motivation of this work is to determine an approach that allows to assess single quantum dots as candidates for quantum nanophotonic devices. By combining optical and scanning probe characterization techniques, we find that single quantum dots often appear in the vicinity of comparatively large topographic features. Despite this, the quantum dots generally do not exhibit significant differences in their non-resonantly pumped emission spectra in comparison to quantum dots appearing in defect-free regions, and this behavior is observed across multiple wafers produced in different growth chambers. Such large surface features are nevertheless a detriment to applications in which single quantum dots are embedded within nanofabricated photonic devices: they are likely to cause large spectral shifts in the wavelength of cavity modes designed to resonantly enhance the quantum dot emission, thereby resulting in a nominally perfectly-fabricated single quantum dot device failing to behave in accordance with design. We anticipate that the approach of screening quantum dots not only based on their optical properties, but also their surrounding surface topographies, will be necessary to improve the yield of single quantum dot nanophotonic devices.

  18. Preparation and characterization of multi stimuli-responsive photoluminescent nanocomposites of graphene quantum dots with hyperbranched polyethylenimine derivatives

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Liu, Hua-Ji; Cheng, Fa; Chen, Yu

    2014-06-01

    Oxidized graphene sheets (OGS) were treated with a hyperbranched polyethylenimine (PEI) under hydrothermal conditions to generate nanocomposites of graphene quantum dots (GQDs) functionalized with PEI (GQD-PEIs). The influence of the reaction temperature and the PEI/OGS feed ratio on the photoluminescence properties of the GQD-PEIs was studied. The obtained GQD-PEIs were characterized by TEM, dynamic light scattering, elemental analysis, FTIR, zeta potential measurements and 1H NMR spectroscopy, from which their structural information was inferred. Subsequently, isobutyric amide (IBAm) groups were attached to the GQD-PEIs through the amidation reaction of isobutyric anhydride with the PEI moieties, which resulted in GQD-PEI-IBAm nanocomposites. GQD-PEI-IBAm was not only thermoresponsive, but also responded to other stimuli, including inorganic salts, pH, and loaded organic guests. The cloud point temperature (Tcp) of aqueous solutions of GQD-PEI-IBAm could be modulated through changing the number of IBAm units in GQD-PEI-IBAm, by varying the type and concentration of the inorganic salts and loaded organic guests, or by varying the pH. All the obtained GQD-PEI-IBAm nanocomposites were photoluminescent, and their maximum emission wavelengths were not influenced by outside stimuli. Their emission intensities were influenced a little or negligibly by pH, traditional salting-out anions (Cl- and SO42-), and the relatively polar aspirin guest. However, the traditional salting-in I- anion and the more hydrophobic 1-pyrenebutyric acid (PBA) guest could effectively quench their fluorescence. 2D NOESY 1H NMR spectra verified that GQD-PEI-IBAm accommodated the relatively polar aspirin guest using the PEI-IBAm shell, but adsorbed the relatively hydrophobic PBA guest through the nanographene core. The release rate of the guest encapsulated by the thermoresponsive GQD is different below and above Tcp.Oxidized graphene sheets (OGS) were treated with a hyperbranched

  19. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, Stan; Williams, Phillip; Burke, Eric

    2015-01-01

    Microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide are presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dot application technique are discussed.

  20. Strain-induced formation of fourfold symmetric SiGe quantum dot molecules.

    PubMed

    Zinovyev, V A; Dvurechenskii, A V; Kuchinskaya, P A; Armbrister, V A

    2013-12-27

    The strain field distribution at the surface of a multilayer structure with disklike SiGe nanomounds formed by heteroepitaxy is exploited to arrange the symmetric quantum dot molecules typically consisting of four elongated quantum dots ordered along the [010] and [100] directions. The morphological transition from fourfold quantum dot molecules to continuous fortresslike quantum rings with an increasing amount of deposited Ge is revealed. We examine key mechanisms underlying the formation of lateral quantum dot molecules by using scanning tunneling microscopy and numerical calculations of the strain energy distribution on the top of disklike SiGe nanomounds. Experimental data are well described by a simple thermodynamic model based on the accurate evaluation of the strain dependent part of the surface chemical potential. The spatial arrangement of quantum dots inside molecules is attributed to the effect of elastic property anisotropy.

  1. Periodic scarred States in open quantum dots as evidence of quantum Darwinism.

    PubMed

    Burke, A M; Akis, R; Day, T E; Speyer, Gil; Ferry, D K; Bennett, B R

    2010-04-30

    Scanning gate microscopy (SGM) is used to image scar structures in an open quantum dot, which is created in an InAs quantum well by electron-beam lithography and wet etching. The scanned images demonstrate periodicities in magnetic field that correlate to those found in the conductance fluctuations. Simulations have shown that these magnetic transform images bear a strong resemblance to actual scars found in the dot that replicate through the modes in direct agreement with quantum Darwinism.

  2. Periodic Scarred States in Open Quantum Dots as Evidence of Quantum Darwinism

    NASA Astrophysics Data System (ADS)

    Burke, A. M.; Akis, R.; Day, T. E.; Speyer, Gil; Ferry, D. K.; Bennett, B. R.

    2010-04-01

    Scanning gate microscopy (SGM) is used to image scar structures in an open quantum dot, which is created in an InAs quantum well by electron-beam lithography and wet etching. The scanned images demonstrate periodicities in magnetic field that correlate to those found in the conductance fluctuations. Simulations have shown that these magnetic transform images bear a strong resemblance to actual scars found in the dot that replicate through the modes in direct agreement with quantum Darwinism.

  3. Gate-controlled electromechanical backaction induced by a quantum dot

    NASA Astrophysics Data System (ADS)

    Okazaki, Yuma; Mahboob, Imran; Onomitsu, Koji; Sasaki, Satoshi; Yamaguchi, Hiroshi

    2016-04-01

    Semiconductor-based quantum structures integrated into mechanical resonators have emerged as a unique platform for generating entanglement between macroscopic phononic and mesocopic electronic degrees of freedom. A key challenge to realizing this is the ability to create and control the coupling between two vastly dissimilar systems. Here, such coupling is demonstrated in a hybrid device composed of a gate-defined quantum dot integrated into a piezoelectricity-based mechanical resonator enabling milli-Kelvin phonon states to be detected via charge fluctuations in the quantum dot. Conversely, the single electron transport in the quantum dot can induce a backaction onto the mechanics where appropriate bias of the quantum dot can enable damping and even current-driven amplification of the mechanical motion. Such electron transport induced control of the mechanical resonator dynamics paves the way towards a new class of hybrid semiconductor devices including a current injected phonon laser and an on-demand single phonon emitter.

  4. A highly sensitive biosensing platform based on upconversion nanoparticles and graphene quantum dots for the detection of Ag+

    NASA Astrophysics Data System (ADS)

    He, Lu; Yang, Lin; Zhu, Hao; Dong, Wenkui; Ding, Yujie; Zhu, Jun-Jie

    2017-06-01

    A novel luminescence ‘Turn-On’ nanoplatform for the sensitive sensing of Ag+ was fabricated based on luminescence resonance energy transfer technique between sodium citrate functionalized upconversion nanoparticles (Cit-UCNPs, energy donor) and graphene quantum dots (GQDs, energy acceptor). Amino-labeled single-stranded DNA (NH2-ssDNA) containing a number of cytosine (C) was conjugated on the surface of the Cit-UCNPs to capture Ag+ ions. Due to the π-π stacking interaction between NH2-ssDNA and GQDs, the upconversion luminescence can be quenched. However, upon the addition of Ag+, the π-π stacking interaction weakens due to the formation of the hairpin structure of C-Ag+-C on the UCNPs. As a result, GQDs will leave the surface of the UCNPs and the upconversion luminescence can be enhanced (Turn-On). Based on this fact, the sensor was developed for the detection of Ag+ with a linear concentration range from 2 × 10-4 to 1 μM and a detection limit as low as 60 pM. The assay method is fairly simple with high selectivity and sensitivity, which can be used for the determination of Ag+ in environmental water samples.

  5. Surface treatment of nanocrystal quantum dots after film deposition

    DOEpatents

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  6. Electrostatically defined silicon quantum dots with counted antimony donor implants

    NASA Astrophysics Data System (ADS)

    Singh, M.; Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Luhman, D. R.; Bielejec, E.; Lilly, M. P.; Carroll, M. S.

    2016-02-01

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  7. Local Gate Control of a Carbon Nanotube Double Quantum Dot

    DTIC Science & Technology

    2016-04-04

    Nanotube Double Quantum Dot N. Mason,*† M. J. Biercuk,* C. M. Marcus† We have measured carbon nanotube quantum dots with multiple electro- static gates and...computation. Carbon nanotubes have been considered lead- ing candidates for nanoscale electronic applica- tions (1, 2). Previous measurements of nano- tube...electronics have shown electron confine- ment (quantum dot) effects such as single- electron charging and energy-level quantization (3–5). Nanotube

  8. Synthetic Control of Exciton Behavior in Colloidal Quantum Dots.

    PubMed

    Pu, Chaodan; Qin, Haiyan; Gao, Yuan; Zhou, Jianhai; Wang, Peng; Peng, Xiaogang

    2017-03-08

    Colloidal quantum dots are promising optical and optoelectronic materials for various applications, whose performance is dominated by their excited-state properties. This article illustrates synthetic control of their excited states. Description of the excited states of quantum-dot emitters can be centered around exciton. We shall discuss that, different from conventional molecular emitters, ground-state structures of quantum dots are not necessarily correlated with their excited states. Synthetic control of exciton behavior heavily relies on convenient and affordable monitoring tools. For synthetic development of ideal optical and optoelectronic emitters, the key process is decay of band-edge excitons, which renders transient photoluminescence as important monitoring tool. On the basis of extensive synthetic developments in the past 20-30 years, synthetic control of exciton behavior implies surface engineering of quantum dots, including surface cation/anion stoichiometry, organic ligands, inorganic epitaxial shells, etc. For phosphors based on quantum dots doped with transition metal ions, concentration and location of the dopant ions within a nanocrystal lattice are found to be as important as control of the surface states in order to obtain bright dopant emission with monoexponential yet tunable photoluminescence decay dynamics.

  9. Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper

    NASA Astrophysics Data System (ADS)

    Isnaeni, Yulianto, Nursidik; Suliyanti, Maria Margaretha

    2016-03-01

    We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantum dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.

  10. A real-time spectrum acquisition system design based on quantum dots-quantum well detector

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Guo, F. M.

    2016-01-01

    In this paper, we studied the structure characteristics of quantum dots-quantum well photodetector with response wavelength range from 400 nm to 1000 nm. It has the characteristics of high sensitivity, low dark current and the high conductance gain. According to the properties of the quantum dots-quantum well photodetectors, we designed a new type of capacitive transimpedence amplifier (CTIA) readout circuit structure with the advantages of adjustable gain, wide bandwidth and high driving ability. We have implemented the chip packaging between CTIA-CDS structure readout circuit and quantum dots detector and tested the readout response characteristics. According to the timing signals requirements of our readout circuit, we designed a real-time spectral data acquisition system based on FPGA and ARM. Parallel processing mode of programmable devices makes the system has high sensitivity and high transmission rate. In addition, we realized blind pixel compensation and smoothing filter algorithm processing to the real time spectrum data by using C++. Through the fluorescence spectrum measurement of carbon quantum dots and the signal acquisition system and computer software system to realize the collection of the spectrum signal processing and analysis, we verified the excellent characteristics of detector. It meets the design requirements of quantum dot spectrum acquisition system with the characteristics of short integration time, real-time and portability.

  11. Internalization of targeted quantum dots by brain capillary endothelial cells in vivo.

    PubMed

    Paris-Robidas, Sarah; Brouard, Danny; Emond, Vincent; Parent, Martin; Calon, Frédéric

    2016-04-01

    Receptors located on brain capillary endothelial cells forming the blood-brain barrier are the target of most brain drug delivery approaches. Yet, direct subcellular evidence of vectorized transport of nanoformulations into the brain is lacking. To resolve this question, quantum dots were conjugated to monoclonal antibodies (Ri7) targeting the murine transferrin receptor. Specific transferrin receptor-mediated endocytosis of Ri7-quantum dots was first confirmed in N2A and bEnd5 cells. After intravenous injection in mice, Ri7-quantum dots exhibited a fourfold higher volume of distribution in brain tissues, compared to controls. Immunofluorescence analysis showed that Ri7-quantum dots were sequestered throughout the cerebral vasculature 30 min, 1 h, and 4 h post injection, with a decline of signal intensity after 24 h. Transmission electron microscopic studies confirmed that Ri7-quantum dots were massively internalized by brain capillary endothelial cells, averaging 37 ± 4 Ri7-quantum dots/cell 1 h after injection. Most quantum dots within brain capillary endothelial cells were observed in small vesicles (58%), with a smaller proportion detected in tubular structures or in multivesicular bodies. Parenchymal penetration of Ri7-quantum dots was extremely low and comparable to control IgG. Our results show that systemically administered Ri7-quantum dots complexes undergo extensive endocytosis by brain capillary endothelial cells and open the door for novel therapeutic approaches based on brain endothelial cell drug delivery. © The Author(s) 2015.

  12. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, S. L.; Williams, P. A.; Burke, E. R.

    2015-01-01

    A novel concept for the detection of x-rays with microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide is presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dots application technique are discussed.

  13. Suppression of low-frequency charge noise in gates-defined GaAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Jie; Li, Hai-Ou, E-mail: haiouli@ustc.edu.cn, E-mail: gpguo@ustc.edu.cn; Wang, Ke

    To reduce the charge noise of a modulation-doped GaAs/AlGaAs quantum dot, we have fabricated shallow-etched GaAs/AlGaAs quantum dots using the wet-etching method to study the effects of two-dimensional electron gas (2DEG) underneath the metallic gates. The low-frequency 1/f noise in the Coulomb blockade region of the shallow-etched quantum dot is compared with a non-etched quantum dot on the same wafer. The average values of the gate noise are approximately 0.5 μeV in the shallow-etched quantum dot and 3 μeV in the regular quantum dot. Our results show the quantum dot low-frequency charge noise can be suppressed by the removal ofmore » the 2DEG underneath the metallic gates, which provides an architecture for noise reduction.« less

  14. Magneto-conductance fingerprints of purely quantum states in the open quantum dot limit

    NASA Astrophysics Data System (ADS)

    Mendoza, Michel; Ujevic, Sebastian

    2012-06-01

    We present quantum magneto-conductance simulations, at the quantum low energy condition, to study the open quantum dot limit. The longitudinal conductance G(E,B) of spinless and non-interacting electrons is mapped as a function of the magnetic field B and the energy E of the electrons. The quantum dot linked to the semi-infinite leads is tuned by quantum point contacts of variable width w. We analyze the transition from a quantum wire to an open quantum dot and then to an effective closed system. The transition, as a function of w, occurs in the following sequence: evolution of quasi-Landau levels to Fano resonances and quasi-bound states between the quasi-Landau levels, followed by the formation of crossings that evolve to anti-crossings inside the quasi-Landau level region. After that, Fano resonances are created between the quasi-Landau states with the final generation of resonant tunneling peaks. By comparing the G(E,B) maps, we identify the closed and open-like limits of the system as a function of the applied magnetic field. These results were used to build quantum openness diagrams G(w,B). Also, these maps allow us to determine the w-limit value from which we can qualitatively relate the closed system properties to the open one. The above analysis can be used to identify single spinless particle effects in experimental measurements of the open quantum dot limit.

  15. The photosensitivity of carbon quantum dots/CuAlO2 films composites.

    PubMed

    Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Wei, Jumeng; Huang, Peng; Zhang, Xin; Feng, Boxue

    2015-07-31

    Carbon quantum dots/CuAlO2 films were prepared by a simple route through which CuAlO2 films prepared by sol-gel on crystal quartz substrates were composited with carbon quantum dots on their surface. The characterization results indicated that CuAlO2 films were well combined with carbon quantum dots. The photoconductivity of carbon quantum dots/CuAlO2 films was investigated under illumination and darkness switching, and was demonstrated to be significantly enhanced compared with CuAlO2 films. Through analysis, this enhancement of photoconductivity was attributed to the carbon quantum dots with unique up-converted photoluminescence behavior.

  16. The photosensitivity of carbon quantum dots/CuAlO2 films composites

    NASA Astrophysics Data System (ADS)

    Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Wei, Jumeng; Huang, Peng; Zhang, Xin; Feng, Boxue

    2015-07-01

    Carbon quantum dots/CuAlO2 films were prepared by a simple route through which CuAlO2 films prepared by sol-gel on crystal quartz substrates were composited with carbon quantum dots on their surface. The characterization results indicated that CuAlO2 films were well combined with carbon quantum dots. The photoconductivity of carbon quantum dots/CuAlO2 films was investigated under illumination and darkness switching, and was demonstrated to be significantly enhanced compared with CuAlO2 films. Through analysis, this enhancement of photoconductivity was attributed to the carbon quantum dots with unique up-converted photoluminescence behavior.

  17. RKKY interaction in a chirally coupled double quantum dot system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heine, A. W.; Tutuc, D.; Haug, R. J.

    2013-12-04

    The competition between the Kondo effect and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction is investigated in a double quantum dots system, coupled via a central open conducting region. A perpendicular magnetic field induces the formation of Landau Levels which in turn give rise to the so-called Kondo chessboard pattern in the transport through the quantum dots. The two quantum dots become therefore chirally coupled via the edge channels formed in the open conducting area. In regions where both quantum dots exhibit Kondo transport the presence of the RKKY exchange interaction is probed by an analysis of the temperature dependence. The thus obtainedmore » Kondo temperature of one dot shows an abrupt increase at the onset of Kondo transport in the other, independent of the magnetic field polarity, i.e. edge state chirality in the central region.« less

  18. Tuning Electrostatic Potentials for Imaging the Quantum Properties of Massless Dirac Fermions in Graphene

    NASA Astrophysics Data System (ADS)

    Wong, Dillon

    dissertation focuses on the ultra-relativistic harmonic oscillator. We developed a method for manipulating charged defects inside the boron nitride (BN) substrate underneath graphene to construct circular graphene p-n junctions. These p-n junctions were effectively quantum dots that electrostatically trapped graphene's relativistic charge carriers, and we imaged the interference patterns corresponding to this quantum confinement. The observed energy-level spectra in our p-n junctions closely matched a theoretical spectrum obtained by solving the 2D massless Dirac equation with a quadratic potential, allowing us to identify each observed state with principal and angular momentum quantum numbers. The results discussed here provide insight into fundamental aspects of relativistic quantum mechanics and into graphene properties pertinent to technological applications. In particular, graphene's response to electrostatic potentials determines the scope in which its charge carriers can be directed and harnessed for useful purposes. Furthermore, many of the results contained in this dissertation are expected to generalize to other Dirac materials.

  19. A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays

    PubMed Central

    Illera, S.; Prades, J. D.; Cirera, A.; Cornet, A.

    2015-01-01

    We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide. PMID:25879055

  20. A transfer hamiltonian model for devices based on quantum dot arrays.

    PubMed

    Illera, S; Prades, J D; Cirera, A; Cornet, A

    2015-01-01

    We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.

  1. Electrical control of single hole spins in nanowire quantum dots.

    PubMed

    Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P

    2013-03-01

    The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.

  2. Magneto-exciton transitions in laterally coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Barticevic, Zdenka; Pacheco, Monica; Duque, Carlos A.; Oliveira, Luiz E.

    2008-03-01

    We present a study of the electronic and optical properties of laterally coupled quantum dots. The excitonic spectra of this system under the effects of an external magnetic field applied perpendicular to the plane of the dots is obtained, with the potential of every individual dot taken as the superposition of a quantum well potential along the axial direction with a lateral parabolic confinement potential, and the coupled two- dot system then modeled by a superposition of the potentials of each dot, with their minima at different positions and truncated at the intersection plane. The wave functions and eigenvalues are obtained in the effective-mass approximation by using an extended variational approach in which the magneto- exciton states are simultaneously obtained [1]. The allowed magneto-exciton transitions are investigated by using circularly polarized radiation in the plane perpendicular to the magnetic field. We present results on the excitonic absorption coefficient as a function of the photon energy for different geometric quantum-dot confinement and magnetic-field values. Reference: [1] Z. Barticevic, M. Pacheco, C. A. Duque and L. E. Oliveira, Phys. Rev. B 68, 073312 (2003).

  3. Spectral properties of finite two dimensional quantum dot arrays.

    NASA Astrophysics Data System (ADS)

    Cota, Ernesto; Ramírez, Felipe; Ulloa, Sergio E.

    1997-08-01

    Motivated by recent proposed geometries in cellular automata, we study arrays of four or five coupled quantum dots located at the corners and at the center of a square. We calculate the addition spectrum for dots with equal or different sizes at each site and compare with the case of linear arrays. We obtain the numerically exact solution for arrays with two electrons and study the properties of this system as a cell or building block of quantum dot cellular automata. We obtain the ``polarization" for each state and discuss its possible use as a two-state system or ``qubit," as proposed recently(C. S. Lent, P. D. Tougaw, and W. Porod, Appl. Phys. Lett. 62) 714, (1993). An extended Hubbard Hamiltonian is used which takes into account quantum confinement, intra- an inter-dot Coulomb interaction as well as tunneling between neighboring dots.

  4. Spectral properties of finite two dimensional quantum dot arrays.

    NASA Astrophysics Data System (ADS)

    Ramirez, Felipe; Cota, Ernesto; Ulloa, Sergio E.

    1997-03-01

    Motivated by recent proposed geometries in cellular automata, we study arrays of four or five coupled quantum dots located at the corners and at the center of a square. We calculate the addition spectrum for dots with equal or different sizes at each site and compare with the case of linear arrays. We obtain the numerically exact solution for arrays with two electrons and study the properties of this system as a cell or building block of quantum dot cellular automata. We obtain the ``polarization" for each state and discuss its possible use as a two-state system or ``qubit," as proposed recently(C. S. Lent, P. D. Tougaw, and W. Porod, Appl. Phys. Lett. 62) 714, (1993). An extended Hubbard Hamiltonian is used which takes into account quantum confinement, intra- an inter-dot Coulomb interaction as well as tunneling between neighboring dots.

  5. Magnetic control of dipolaritons in quantum dots.

    PubMed

    Rojas-Arias, J S; Rodríguez, B A; Vinck-Posada, H

    2016-12-21

    Dipolaritons are quasiparticles that arise in coupled quantum wells embedded in a microcavity, they are a superposition of a photon, a direct exciton and an indirect exciton. We propose the existence of dipolaritons in a system of two coupled quantum dots inside a microcavity in direct analogy with the quantum well case and find that, despite some similarities, dipolaritons in quantum dots have different properties and can lead to true dark polariton states. We use a finite system theory to study the effects of the magnetic field on the system, including the emission, and find that it can be used as a control parameter of the properties of excitons and dipolaritons, and the overall magnetic behaviour of the structure.

  6. The thermoelectric efficiency of quantum dots in indium arsenide/indium phosphide nanowires

    NASA Astrophysics Data System (ADS)

    Hoffmann, Eric A.

    State of the art semiconductor materials engineering provides the possibility to fabricate devices on the lower end of the mesoscopic scale and confine only a handful of electrons to a region of space. When the thermal energy is reduced below the energetic quantum level spacing, the confined electrons assume energy levels akin to the core-shell structure of natural atoms. Such "artificial atoms", also known as quantum dots, can be loaded with electrons, one-by-one, and subsequently unloaded using source and drain electrical contacts. As such, quantum dots are uniquely tunable platforms for performing quantum transport and quantum control experiments. Voltage-biased electron transport through quantum dots has been studied extensively. Far less attention has been given to thermoelectric effects in quantum dots, that is, electron transport induced by a temperature gradient. This dissertation focuses on the efficiency of direct thermal-to-electric energy conversion in InAs/InP quantum dots embedded in nanowires. The efficiency of thermoelectric heat engines is bounded by the same maximum efficiency as cyclic heat engines; namely, by Carnot efficiency. The efficiency of bulk thermoelectric materials suffers from their inability to transport charge carriers selectively based on energy. Owing to their three-dimensional momentum quantization, quantum dots operate as electron energy filters---a property which can be harnessed to minimize entropy production and therefore maximize efficiency. This research was motivated by the possibility to realize experimentally a thermodynamic heat engine operating with near-Carnot efficiency using the unique behavior of quantum dots. To this end, a microscopic heating scheme for the application of a temperature difference across a quantum dot was developed in conjunction with a novel quantum-dot thermometry technique used for quantifying the magnitude of the applied temperature difference. While pursuing high-efficiency thermoelectric

  7. Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isnaeni,, E-mail: isnaeni@lipi.go.id; Yulianto, Nursidik; Suliyanti, Maria Margaretha

    We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantummore » dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.« less

  8. Multi-bit dark state memory: Double quantum dot as an electronic quantum memory

    NASA Astrophysics Data System (ADS)

    Aharon, Eran; Pozner, Roni; Lifshitz, Efrat; Peskin, Uri

    2016-12-01

    Quantum dot clusters enable the creation of dark states which preserve electrons or holes in a coherent superposition of dot states for a long time. Various quantum logic devices can be envisioned to arise from the possibility of storing such trapped particles for future release on demand. In this work, we consider a double quantum dot memory device, which enables the preservation of a coherent state to be released as multiple classical bits. Our unique device architecture uses an external gating for storing (writing) the coherent state and for retrieving (reading) the classical bits, in addition to exploiting an internal gating effect for the preservation of the coherent state.

  9. Colloidal graphene quantum dots incorporated with a Cobalt electrolyte in a dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Lim, Hyuna

    The utilization of sun light as a renewable energy source has been pursued for a long time, but the ultimate goal of developing inexpensive and highly efficient photovoltaic devices remains elusive. To address this problem, colloidal graphene quantum dots (GQDs) were synthesized and used as a new sensitizer in dye sensitized solar cells (DSCs). Not only do the GQDs have a well-defined structure, but their large absorptivity, tunable bandgap, and size- and functional group-dependent redox potentials make them promising candidates for photovoltaic applications. Because volatile organic solvents in electrolyte solutions hinder long-term use and mass production of DSC devices, imidazolium based ionic liquids (ILs) were investigated. Cobalt-bipyridine complexes were successfully synthesized and characterized for use as new redox shuttles in DSCs. In the tested DSCs, J-V (current density-voltage) curves illustrate that the short circuit current and fill factor decrease significantly as the active area in the TiO2 photo anode increases. Dark current measurement indicated that the diode factor is bigger than one, which is different from the conventional p-n junction type solar cells, due to the high efficiency of photoelectron injection. The variation of the diode factor in dark and in light would show various types of recombination behaviors in DSCs. The performance of the DSC stained by GQDs incorporated with the cobalt redox couple was tested, but further study to improve the efficiency and to understand photochemical reaction in the DSCs is needed.

  10. Using graphene-based plasmonic nanocomposites to quench energy from quantum dots for signal-on photoelectrochemical aptasensing.

    PubMed

    Zeng, Xianxiang; Ma, Shishi; Bao, Jianchun; Tu, Wenwen; Dai, Zhihui

    2013-12-17

    On the basis of the absorption and emission spectra overlap, an enhanced resonance energy transfer caused by excition-plasmon resonance between reduced graphene oxide (RGO)-Au nanoparticles (AuNPs) and CdTe quantum dots (QDs) was obtained. With the synergy of AuNPs and RGO as a planelike energy acceptor, it resulted in the enhancement of energy transfer between excited CdTe QDs and RGO-AuNPs nanocomposites. Upon the novel sandwichlike structure formed via DNA hybridization, the exciton produced in CdTe QDs was annihilated. A damped photocurrent was obtained, which was acted as the background signal for the development of a universal photoelectrochemical (PEC) platform. With the use of carcinoembryonic antigen (CEA) as a model which bonded to its specific aptamer and destroyed the sandwichlike structure, the energy transfer efficiency was lowered, leading to PEC response augment. Thus a signal-on PEC aptasensor was constructed. Under 470 nm irradiation at -0.05 V, the PEC aptasensor for CEA determination exhibited a linear range from 0.001 to 2.0 ng mL(-1) with a detection limit of 0.47 pg mL(-1) at a signal-to-noise ratio of 3 and was satisfactory for clinical sample detection. Since different aptamers can specifically bind to different target molecules, the designed strategy has an expansive application for the construction of versatile PEC platforms.

  11. Multi-mode application of graphene quantum dots bonded silica stationary phase for high performance liquid chromatography.

    PubMed

    Wu, Qi; Sun, Yaming; Zhang, Xiaoli; Zhang, Xia; Dong, Shuqing; Qiu, Hongdeng; Wang, Litao; Zhao, Liang

    2017-04-07

    Graphene quantum dots (GQDs), which possess hydrophobic, hydrophilic, π-π stacking and hydrogen bonding properties, have great prospect in HPLC. In this study, a novel GQDs bonded silica stationary phase was prepared and applied in multiple separation modes including normal phase, reversed phase and hydrophilic chromatography mode. Alkaloids, nucleosides and nucleobases were chosen as test compounds to evaluate the separation performance of this column in hydrophilic chromatographic mode. The tested polar compounds achieved baseline separation and the resolutions reached 2.32, 4.62, 7.79, 1.68 for thymidine, uridine, adenosine, cytidine and guanosine. This new column showed satisfactory chromatographic performance for anilines, phenols and polycyclic aromatic hydrocarbons in normal and reversed phase mode. Five anilines were completely separated within 10min under the condition of mobile phase containing only 10% methanol. The effect of water content, buffer concentration and pH on chromatographic separation was further investigated, founding that this new stationary phase showed a complex retention mechanism of partitioning, adsorption and electrostatic interaction in hydrophilic chromatography mode, and the multiple retention interactions such as π-π stacking and π-π electron-donor-acceptor interaction played an important role during the separation process. This GQDs bonded column, which allows us to adjust appropriate chromatography mode according to the properties of analytes, has possibility in actual application after further research. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Electrostatically defined silicon quantum dots with counted antimony donor implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, M., E-mail: msingh@sandia.gov; Luhman, D. R.; Lilly, M. P.

    2016-02-08

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  13. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.

    PubMed

    Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K

    2017-08-02

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  14. Quantum dot lasers: From promise to high-performance devices

    NASA Astrophysics Data System (ADS)

    Bhattacharya, P.; Mi, Z.; Yang, J.; Basu, D.; Saha, D.

    2009-03-01

    Ever since self-organized In(Ga)As/Ga(AI)As quantum dots were realized by molecular beam epitaxy, it became evident that these coherently strained nanostructures could be used as the active media in devices. While the expected advantages stemming from three-dimensional quantum confinement were clearly outlined, these were not borne out by the early experiments. It took a very detailed understanding of the unique carrier dynamics in the quantum dots to exploit their full potential. As a result, we now have lasers with emission wavelengths ranging from 0.7 to 1.54 μm, on GaAs, which demonstrate ultra-low threshold currents, near-zero chip and α-factor and large modulation bandwidth. State-of-the-art performance characteristics of these lasers are briefly reviewed. The growth, fabrication and characteristics of quantum dot lasers on silicon substrates are also described. With the incorporation of multiple quantum dot layers as a dislocation filter, we demonstrate lasers with Jth=900 A/cm 2. The monolithic integration of the lasers with guided wave modulators on silicon is also described. Finally, the properties of spin-polarized lasers with quantum dot active regions are described. Spin injection of electrons is done with a MnAs/GaAs tunnel barrier. Laser operation at 200 K is demonstrated, with the possibility of room temperature operation in the near future.

  15. Study of CdTe quantum dots grown using a two-step annealing method

    NASA Astrophysics Data System (ADS)

    Sharma, Kriti; Pandey, Praveen K.; Nagpal, Swati; Bhatnagar, P. K.; Mathur, P. C.

    2006-02-01

    High size dispersion, large average radius of quantum dot and low-volume ratio has been a major hurdle in the development of quantum dot based devices. In the present paper, we have grown CdTe quantum dots in a borosilicate glass matrix using a two-step annealing method. Results of optical characterization and the theoretical model of absorption spectra have shown that quantum dots grown using two-step annealing have lower average radius, lesser size dispersion, higher volume ratio and higher decrease in bulk free energy as compared to quantum dots grown conventionally.

  16. Resonance fluorescence revival in a voltage-controlled semiconductor quantum dot

    NASA Astrophysics Data System (ADS)

    Reigue, Antoine; Lemaître, Aristide; Gomez Carbonell, Carmen; Ulysse, Christian; Merghem, Kamel; Guilet, Stéphane; Hostein, Richard; Voliotis, Valia

    2018-02-01

    We demonstrate systematic resonance fluorescence recovery with near-unity emission efficiency in single quantum dots embedded in a charge-tunable device in a wave-guiding geometry. The quantum dot charge state is controlled by a gate voltage, through carrier tunneling from a close-lying Fermi sea, stabilizing the resonantly photocreated electron-hole pair. The electric field cancels out the charging/discharging mechanisms from nearby traps toward the quantum dots, responsible for the usually observed inhibition of the resonant fluorescence. Fourier transform spectroscopy as a function of the applied voltage shows a strong increase in the coherence time though not reaching the radiative limit. These charge controlled quantum dots can act as quasi-perfect deterministic single-photon emitters, with one laser pulse converted into one emitted single photon.

  17. Detection of viral infections using colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Bentzen, Elizabeth L.; House, Frances S.; Utley, Thomas J.; Crowe, James E., Jr.; Wright, David W.

    2006-02-01

    Fluorescence is a tool widely employed in biological assays. Fluorescent semiconducting nanocrystals, quantum dots (QDs), are beginning to find their way into the tool box of many biologist, chemist and biochemist. These quantum dots are an attractive alternative to the traditional organic dyes due to their broad excitation spectra, narrow emission spectra and photostability. Quantum dots were used to detect and monitor the progession of viral glycoproteins, F (fusion) and G (attachment), from Respiratory Syncytial Virus (RSV) in HEp-2 cells. Additionally, oligo-Qdot RNA probes have been developed for identification and detection of mRNA of the N(nucleocapsid) protein for RSV. The use of quantum dot-FISH probes provides another confirmatory route to diagnostics as well as a new class of probes for monitoring the flux and fate of viral RNA RSV is the most common cause of lower respiratory tract infection in children worldwide and the most common cause of hospitalization of infants in the US. Antiviral therapy is available for treatment of RSV but is only effective if given within the first 48 hours of infection. Existing test methods require a virus level of at least 1000-fold of the amount needed for infection of most children and require several days to weeks to obtain results. The use of quantum dots may provide an early, rapid method for detection and provide insight into the trafficking of viral proteins during the course of infection.

  18. Observation of the fractional quantum Hall effect in graphene.

    PubMed

    Bolotin, Kirill I; Ghahari, Fereshte; Shulman, Michael D; Stormer, Horst L; Kim, Philip

    2009-11-12

    When electrons are confined in two dimensions and subject to strong magnetic fields, the Coulomb interactions between them can become very strong, leading to the formation of correlated states of matter, such as the fractional quantum Hall liquid. In this strong quantum regime, electrons and magnetic flux quanta bind to form complex composite quasiparticles with fractional electronic charge; these are manifest in transport measurements of the Hall conductivity as rational fractions of the elementary conductance quantum. The experimental discovery of an anomalous integer quantum Hall effect in graphene has enabled the study of a correlated two-dimensional electronic system, in which the interacting electrons behave like massless chiral fermions. However, owing to the prevailing disorder, graphene has so far exhibited only weak signatures of correlated electron phenomena, despite intense experimental and theoretical efforts. Here we report the observation of the fractional quantum Hall effect in ultraclean, suspended graphene. In addition, we show that at low carrier density graphene becomes an insulator with a magnetic-field-tunable energy gap. These newly discovered quantum states offer the opportunity to study correlated Dirac fermions in graphene in the presence of large magnetic fields.

  19. The classical and quantum dynamics of molecular spins on graphene

    PubMed Central

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2015-01-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic1 and quantum computing2 devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics3,4, and electrical spin-manipulation4-11. However, the influence of the graphene environment on the spin systems has yet to be unraveled12. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets13 on graphene. While the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly-developed model. Coupling to Dirac electrons introduces a dominant quantum-relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully-coherent, resonant spin tunneling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin-manipulation in graphene nanodevices. PMID:26641019

  20. The classical and quantum dynamics of molecular spins on graphene.

    PubMed

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2016-02-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain's threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.

  1. The classical and quantum dynamics of molecular spins on graphene

    NASA Astrophysics Data System (ADS)

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2016-02-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.

  2. Quantum Dot Nanobioelectronics and Selective Antimicrobial Redox Interventions

    NASA Astrophysics Data System (ADS)

    Goodman, Samuel Martin

    The unique properties of nanomaterials have engendered a great deal of interest in applying them for applications ranging from solid state physics to bio-imaging. One class of nanomaterials, known collectively as quantum dots, are defined as semiconducting crystals which have a characteristic dimension smaller than the excitonic radius of the bulk material which leads to quantum confinement effects. In this size regime, excited charge carriers behave like prototypical particles in a box, with their energy levels defined by the dimensions of the constituent particle. This is the source of the tunable optical properties which have drawn a great deal of attention with regards to finding appropriate applications for these materials. This dissertation is divided into multiple sections grouped by the type of application explored. The first sectoin investigates the energetic interactions of physically-coupled quantum dots and DNA, with the goal of gaining insight into how self-assembled molecular wires can bridge the energetic states of physically separated nanocrystals. Chapter 1 begins with an introduction to the properties of quantum dots, the conductive properties of DNA, and the common characterization methods used to characterize materials on the nanoscale. In Chapter 2 scanning tunneling measurements of QD-DNA constructs on the single particle level are presented which show the tunable coupling between the two materials and their resulting hybrid electronic structure. This is expanded upon in Chapter 3 where the conduction of photogenerated charges in QD-DNA hybrid thin films are characterized, which exhibit different charge transfer pathways through the constituent nucleobases depending on the energy of the incident light and resulting electrons. Complementary investigations of energy transfer mediated through DNA are presented in Chapter 4, with confirmation of Dexter-like transfer being facilitated through the oligonucleotides. The second section quantifies the

  3. Generation of heralded entanglement between distant quantum dot hole spins

    NASA Astrophysics Data System (ADS)

    Delteil, Aymeric

    Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.I will report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of

  4. Nuclear Spin Nanomagnet in an Optically Excited Quantum Dot

    NASA Astrophysics Data System (ADS)

    Korenev, V. L.

    2007-12-01

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins—the nuclear spin nanomagnet.

  5. Nuclear spin nanomagnet in an optically excited quantum dot.

    PubMed

    Korenev, V L

    2007-12-21

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins-the nuclear spin nanomagnet.

  6. Effects of Shape and Strain Distribution of Quantum Dots on Optical Transition in the Quantum Dot Infrared Photodetectors

    PubMed Central

    2008-01-01

    We present a systemic theoretical study of the electronic properties of the quantum dots inserted in quantum dot infrared photodetectors (QDIPs). The strain distribution of three different shaped quantum dots (QDs) with a same ratio of the base to the vertical aspect is calculated by using the short-range valence-force-field (VFF) approach. The calculated results show that the hydrostatic strain ɛHvaries little with change of the shape, while the biaxial strain ɛBchanges a lot for different shapes of QDs. The recursion method is used to calculate the energy levels of the bound states in QDs. Compared with the strain, the shape plays a key role in the difference of electronic bound energy levels. The numerical results show that the deference of bound energy levels of lenslike InAs QD matches well with the experimental results. Moreover, the pyramid-shaped QD has the greatest difference from the measured experimental data. PMID:20596318

  7. Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%

    PubMed Central

    2015-01-01

    Multiple exciton generation (MEG) in semiconducting quantum dots is a process that produces multiple charge-carrier pairs from a single excitation. MEG is a possible route to bypass the Shockley-Queisser limit in single-junction solar cells but it remains challenging to harvest charge-carrier pairs generated by MEG in working photovoltaic devices. Initial yields of additional carrier pairs may be reduced due to ultrafast intraband relaxation processes that compete with MEG at early times. Quantum dots of materials that display reduced carrier cooling rates (e.g., PbTe) are therefore promising candidates to increase the impact of MEG in photovoltaic devices. Here we demonstrate PbTe quantum dot-based solar cells, which produce extractable charge carrier pairs with an external quantum efficiency above 120%, and we estimate an internal quantum efficiency exceeding 150%. Resolving the charge carrier kinetics on the ultrafast time scale with pump–probe transient absorption and pump–push–photocurrent measurements, we identify a delayed cooling effect above the threshold energy for MEG. PMID:26488847

  8. Towards Violation of Classical Inequalities using Quantum Dot Resonance Fluorescence

    NASA Astrophysics Data System (ADS)

    Peiris, Manoj

    Self-assembled semiconductor quantum dots have attracted considerable interest recently, ranging from fundamental studies of quantum optics to advanced applications in the field of quantum information science. With their atom-like properties, quantum dot based nanophotonic devices may also substantially contribute to the development of quantum computers. This work presents experimental progress towards the understanding of light-matter interactions that occur beyond well-understood monochromatic resonant light scattering processes in semiconductor quantum dots. First, we report measurements of resonance fluorescence under bichromatic laser excitation. With the inclusion of a second laser, both first-order and second-order correlation functions are substantially altered. Under these conditions, the scattered light exhibits a rich spectrum containing many spectral features that lead to a range of nonlinear multiphoton dynamics. These observations are discussed and compared with a theoretical model. Second, we investigated the light scattered by a quantum dot in the presence of spectral filtering. By scanning the tunable filters placed in front of each detector of a Hanbury-Brown and Twiss setup and recording coincidence measurements, a \\two-photon spectrum" has been experimentally reconstructed for the first time. The two-photon spectrum contains a wealth of information about the cascaded emission involved in the scattering process, such as transitions occurring via virtual intermediate states. Our measurements also reveal that the scattered frequency-filtered light from a quantum dot violates the Cauchy-Schwarz inequality. Finally, Franson-interferometry has been performed using spectrally filtered light from quantum dot resonance fluorescence. Visibilities exceeding the classical limit were demonstrated by using a pair of folded Mach-Zehnder interferometers, paving the way for producing single time-energy entangled photon pairs that could violate Bell

  9. Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices.

    PubMed

    Walravens, Willem; De Roo, Jonathan; Drijvers, Emile; Ten Brinck, Stephanie; Solano, Eduardo; Dendooven, Jolien; Detavernier, Christophe; Infante, Ivan; Hens, Zeger

    2016-07-26

    Two dimensional superlattices of epitaxially connected quantum dots enable size-quantization effects to be combined with high charge carrier mobilities, an essential prerequisite for highly performing QD devices based on charge transport. Here, we demonstrate that surface active additives known to restore nanocrystal stoichiometry can trigger the formation of epitaxial superlattices of PbSe and PbS quantum dots. More specifically, we show that both chalcogen-adding (sodium sulfide) and lead oleate displacing (amines) additives induce small area epitaxial superlattices of PbSe quantum dots. In the latter case, the amine basicity is a sensitive handle to tune the superlattice symmetry, with strong and weak bases yielding pseudohexagonal or quasi-square lattices, respectively. Through density functional theory calculations and in situ titrations monitored by nuclear magnetic resonance spectroscopy, we link this observation to the concomitantly different coordination enthalpy and ligand displacement potency of the amine. Next to that, an initial ∼10% reduction of the initial ligand density prior to monolayer formation and addition of a mild, lead oleate displacing chemical trigger such as aniline proved key to induce square superlattices with long-range, square micrometer order; an effect that is the more pronounced the larger the quantum dots. Because the approach applies to PbS quantum dots as well, we conclude that it offers a reproducible and rational method for the formation of highly ordered epitaxial quantum dot superlattices.

  10. Electrochemical Study and Applications of Selective Electrodeposition of Silver on Quantum Dots.

    PubMed

    Martín-Yerga, Daniel; Rama, Estefanía Costa; Costa-García, Agustín

    2016-04-05

    In this work, selective electrodeposition of silver on quantum dots is described. The particular characteristics of the nanostructured silver thus obtained are studied by electrochemical and microscopic techniques. On one hand, quantum dots were found to catalyze the silver electrodeposition, and on the other hand, a strong adsorption between electrodeposited silver and quantum dots was observed, indicated by two silver stripping processes. Nucleation of silver nanoparticles followed different mechanisms depending on the surface (carbon or quantum dots). Voltammetric and confocal microscopy studies showed the great influence of electrodeposition time on surface coating, and high-resolution transmission electron microscopy (HRTEM) imaging confirmed the initial formation of Janus-like Ag@QD nanoparticles in this process. By use of moderate electrodeposition conditions such as 50 μM silver, -0.1 V, and 60 s, the silver was deposited only on quantum dots, allowing the generation of localized nanostructured electrode surfaces. This methodology can also be employed for sensing applications, showing a promising ultrasensitive electrochemical method for quantum dot detection.

  11. Helical quantum states in HgTe quantum dots with inverted band structures.

    PubMed

    Chang, Kai; Lou, Wen-Kai

    2011-05-20

    We investigate theoretically the electron states in HgTe quantum dots (QDs) with inverted band structures. In sharp contrast to conventional semiconductor quantum dots, the quantum states in the gap of the HgTe QD are fully spin-polarized and show ringlike density distributions near the boundary of the QD and spin-angular momentum locking. The persistent charge currents and magnetic moments, i.e., the Aharonov-Bohm effect, can be observed in such a QD structure. This feature offers us a practical way to detect these exotic ringlike edge states by using the SQUID technique.

  12. Toward the in vivo study of captopril-conjugated quantum dots

    NASA Astrophysics Data System (ADS)

    Manabe, Noriyoshi; Hoshino, Akiyoshi; Liang, Yi-qiang; Goto, Tomomasa; Kato, Norihiro; Yamamoto, Kenji

    2005-04-01

    Photo-luminescent semiconductor quantum dots are nanometer-size probes that have the potential to be applied to the fields of the bio-imaging and the study of the cell mobility inside the body. At the same time, on the other hand, quantum dots are expected to carry some kind of molecules to the local organ inside of the animal body, which leads to the expectation that they can be used as a medicine-carrier. For this purpose, we conjugate (2S)-1-[(2s)-2-Methyl-3-sulfanylpropionyl]pyrrolidine-2-carboxylic acid (cap) with the quantum dot. Cap has the effect as an anti-hypertension drug, which inhibits angiotensin 1 converting enzyme. We conjugated the quantum dot with cap by the exchange reaction avoiding the regions which holds medicinal effect. Quantum dot conjugated with cap (QD-cap) were 3-times brighter than thioglycerol-coated quantum dots (QD-OH). The particle size of cap was 1.1nm and that of QD-cap was 12nm. QD-cap was permeated into the HeLa cells, while QD-MUA were taken into the HeLa cells by endocytosis. In addition, no apoptosis was detected against the cells that permeated QD-cap, because there was no damage to DNA. These results indicated that QD-conjugated medicines (QD-medicine) could be safe in the experiment on the level of the cell. More over, when QD-cap was intravenously injected into Stroke-prone Spontaneously Hypertensive Rats (SHRSP), they reduced blood pressure at systole. Therefore, the anti-hypertension effect of cap remained after conjugated with the quantum dot. These results suggested that QD-medicine were effective on the animal level.

  13. Luminescent behavior of cadmium sulfide quantum dots for gallic acid estimation

    NASA Astrophysics Data System (ADS)

    Singh, Suman; Garg, Sourav; Chahal, Jitender; Raheja, Khushboo; Singh, Deepak; Singla, M. L.

    2013-03-01

    Thioglycolic acid capped cadmium sulfide (CdS/T) quantum dots have been synthesized using wet chemistry and their optical behavior has been investigated using UV-visible absorption and fluorescence spectroscopy. The role of the capping agent, sulfide source concentration, pH and temperature has been studied and discussed. Studies showed that alkaline pH leads to a decrease in the size of quantum dots and reflux temperature above 70 °C resulted in red-shift of emission spectra which is due to narrowing of the bandgap. Further, to reduce the toxicity and photochemical instability of quantum dots, the quantum dots have been functionalized with polyethylene glycol (PEG), which resulted in a 20% enhancement of the fluorescence intensity. The application potential of CdS/T-PEG quantum dots was further studied using gallic acid as a model compound. The sensing is based on fluorescence quenching of quantum dots in the presence of gallic acid, and this study showed linearity in the range from 1.3 × 10-8 to 46.5 × 10-8 mM, with a detection limit of 3.6 × 10-8 mM.

  14. Room-temperature lasing in a single nanowire with quantum dots

    NASA Astrophysics Data System (ADS)

    Tatebayashi, Jun; Kako, Satoshi; Ho, Jinfa; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2015-08-01

    Semiconductor nanowire lasers are promising as ultrasmall, highly efficient coherent light emitters in the fields of nanophotonics, nano-optics and nanobiotechnology. Although there have been several demonstrations of nanowire lasers using homogeneous bulk gain materials or multi-quantum-wells/disks, it is crucial to incorporate lower-dimensional quantum nanostructures into the nanowire to achieve superior device performance in relation to threshold current, differential gain, modulation bandwidth and temperature sensitivity. The quantum dot is a useful and essential nanostructure that can meet these requirements. However, difficulties in forming stacks of quantum dots in a single nanowire hamper the realization of lasing operation. Here, we demonstrate room-temperature lasing of a single nanowire containing 50 quantum dots by properly designing the nanowire cavity and tailoring the emission energy of each dot to enhance the optical gain. Our demonstration paves the way toward ultrasmall lasers with extremely low power consumption for integrated photonic systems.

  15. Quantum Dots: Proteomics characterization of the impact on biological systems

    NASA Astrophysics Data System (ADS)

    Pozzi-Mucelli, Stefano; Boschi, F.; Calderan, L.; Sbarbati, A.; Osculati, F.

    2009-05-01

    Over the past few years, Quantum Dots have been tested in most biotechnological applications that use fluorescence, including DNA array technology, immunofluorescence assays, cell and animal biology. Quantum Dots tend to be brighter than conventional dyes, because of the compounded effects of extinction coefficients that are an order of magnitude larger than those of most dyes. Their main advantage resides in their resistance to bleaching over long periods of time (minutes to hours), allowing the acquisition of images that are crisp and well contrasted. This increased photostability is especially useful for three-dimensional (3D) optical sectioning, where a major issue is bleaching of fluorophores during acquisition of successive z-sections, which compromises the correct reconstruction of 3D structures. The long-term stability and brightness of Quantum Dots make them ideal candidates also for live animal targeting and imaging. The vast majority of the papers published to date have shown no relevant effects on cells viability at the concentration used for imaging applications; higher concentrations, however, caused some issues on embryonic development. Adverse effects are due to be caused by the release of cadmium, as surface PEGylation of the Quantum Dots reduces these issues. A recently published paper shows evidences of an epigenetic effect of Quantum Dots treatment, with general histones hypoacetylation, and a translocation to the nucleus of p53. In this study, mice treated with Quantum Dots for imaging purposes were analyzed to investigate the impact on protein expression and networking. Differential mono-and bidimensional electrophoresis assays were performed, with the individuation of differentially expressed proteins after intravenous injection and imaging analysis; further, as several authors indicate an increase in reactive oxygen species as a possible mean of damage due to the Quantum Dots treatment, we investigated the signalling pathway of APE1/Ref1, a

  16. Resonant tunneling spectroscopy of valley eigenstates on a donor-quantum dot coupled system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, T., E-mail: t.kobayashi@unsw.edu.au; Heijden, J. van der; House, M. G.

    We report on electronic transport measurements through a silicon double quantum dot consisting of a donor and a quantum dot. Transport spectra show resonant tunneling peaks involving different valley states, which illustrate the valley splitting in a quantum dot on a Si/SiO{sub 2} interface. The detailed gate bias dependence of double dot transport allows a first direct observation of the valley splitting in the quantum dot, which is controllable between 160 and 240 μeV with an electric field dependence 1.2 ± 0.2 meV/(MV/m). A large valley splitting is an essential requirement for implementing a physical electron spin qubit in a silicon quantum dot.

  17. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barettin, Daniele, E-mail: Daniele.Barettin@uniroma2.it; Auf der Maur, Matthias; De Angelis, Roberta

    2015-03-07

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In{sub 0.48}Ga{sub 0.52 }P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateralmore » quantum-dot molecules. Continuum electromechanical, k{sup →}·p{sup →} bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.« less

  18. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    NASA Astrophysics Data System (ADS)

    Barettin, Daniele; Auf der Maur, Matthias; De Angelis, Roberta; Prosposito, Paolo; Casalboni, Mauro; Pecchia, Alessandro

    2015-03-01

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In0.48Ga0.52P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateral quantum-dot molecules. Continuum electromechanical, k →.p → bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.

  19. Current Application of Quantum Dots (QD) in Cancer Therapy: A Review.

    PubMed

    Babu, Lavanya Thilak; Paira, Priyankar

    2017-01-01

    Semiconductor quantum dots proved themselves as efficient fluorescent probes in cancer detection and treatment. Their size, high stability, non-photobleaching and water solubility made them a unique fluorophore in place of conventional organic dyes. Newly emerged theranostic drug delivery system using quantum dots helped us in better understanding of the drug delivery mechanism inside the cells. Surface modified Quantum dots and their applications became wide in bioimaging, immunohistochemistry, tracking intracellular drug and intracellular molecules target. We have highlighted various applications of quantum dots in cancer treatment, drug delivery, flow cytometry, and theranostics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Slow Auger Relaxation in HgTe Colloidal Quantum Dots.

    PubMed

    Melnychuk, Christopher; Guyot-Sionnest, Philippe

    2018-05-03

    The biexciton lifetimes in HgTe colloidal quantum dots are measured as a function of particle size. Samples produced by two synthetic methods, leading to partially aggregated or well-dispersed particles, exhibit markedly different dynamics. The relaxation characteristics of partially aggregated HgTe inhibit reliable determinations of the Auger lifetime. In well-dispersed HgTe quantum dots, the biexciton lifetime increases approximately linearly with particle volume, confirming trends observed in other systems. The extracted Auger coefficient is three orders of magnitude smaller than that for bulk HgCdTe materials with similar energy gaps. We discuss these findings in the context of understanding Auger relaxation in quantum-confined systems and their relevance to mid-infrared optoelectronic devices based on HgTe colloidal quantum dots.

  1. Evaporation-Induced Assembly of Quantum Dots into Nanorings

    PubMed Central

    Chen, Jixin; Liao, Wei-Ssu; Chen, Xin; Yang, Tinglu; Wark, Stacey E.; Son, Dong Hee; Batteas, James D.; Cremer, Paul S.

    2011-01-01

    Herein, we demonstrate the controlled formation of two-dimensional periodic arrays of ring-shaped nanostructures assembled from CdSe semiconductor quantum dots (QDs). The patterns were fabricated by using an evaporative templating method. This involves the introduction of an aqueous solution containing both quantum dots and polystyrene microspheres onto the surface of a planar hydrophilic glass substrate. The quantum dots became confined to the meniscus of the microspheres during evaporation, which drove ring assembly via capillary forces at the polystyrene sphere/glass substrate interface. The geometric parameters for nanoring formation could be controlled by tuning the size of the microspheres and the concentration of the QDs employed. This allowed hexagonal arrays of nanorings to be formed with thicknesses ranging from single dot necklaces to thick multilayer structures over surface areas of many square millimeters. Moreover, the diameter of the ring structures could be simultaneously controlled. A simple model was employed to explain the forces involved in the formation of nanoparticle nanorings. PMID:19206264

  2. Nanofabrication of Gate-defined GaAs/AlGaAs Lateral Quantum Dots

    PubMed Central

    Bureau-Oxton, Chloé; Camirand Lemyre, Julien; Pioro-Ladrière, Michel

    2013-01-01

    A quantum computer is a computer composed of quantum bits (qubits) that takes advantage of quantum effects, such as superposition of states and entanglement, to solve certain problems exponentially faster than with the best known algorithms on a classical computer. Gate-defined lateral quantum dots on GaAs/AlGaAs are one of many avenues explored for the implementation of a qubit. When properly fabricated, such a device is able to trap a small number of electrons in a certain region of space. The spin states of these electrons can then be used to implement the logical 0 and 1 of the quantum bit. Given the nanometer scale of these quantum dots, cleanroom facilities offering specialized equipment- such as scanning electron microscopes and e-beam evaporators- are required for their fabrication. Great care must be taken throughout the fabrication process to maintain cleanliness of the sample surface and to avoid damaging the fragile gates of the structure. This paper presents the detailed fabrication protocol of gate-defined lateral quantum dots from the wafer to a working device. Characterization methods and representative results are also briefly discussed. Although this paper concentrates on double quantum dots, the fabrication process remains the same for single or triple dots or even arrays of quantum dots. Moreover, the protocol can be adapted to fabricate lateral quantum dots on other substrates, such as Si/SiGe. PMID:24300661

  3. Berry phase jumps and giant nonreciprocity in Dirac quantum dots

    NASA Astrophysics Data System (ADS)

    Rodriguez-Nieva, Joaquin F.; Levitov, Leonid S.

    2016-12-01

    We predict that a strong nonreciprocity in the resonance spectra of Dirac quantum dots can be induced by the Berry phase. The nonreciprocity arises in relatively weak magnetic fields and is manifest in anomalously large field-induced splittings of quantum dot resonances which are degenerate at B =0 due to time-reversal symmetry. This exotic behavior, which is governed by field-induced jumps in the Berry phase of confined electronic states, is unique to quantum dots in Dirac materials and is absent in conventional quantum dots. The effect is strong for gapless Dirac particles and can overwhelm the B -induced orbital and Zeeman splittings. A finite Dirac mass suppresses the effect. The nonreciprocity, predicted for generic two-dimensional Dirac materials, is accessible through Faraday and Kerr optical rotation measurements and scanning tunneling spectroscopy.

  4. Nanoscale patterning of colloidal quantum dots on transparent and metallic planar surfaces.

    PubMed

    Park, Yeonsang; Roh, Young-Geun; Kim, Un Jeong; Chung, Dae-Young; Suh, Hwansoo; Kim, Jineun; Cheon, Sangmo; Lee, Jaesoong; Kim, Tae-Ho; Cho, Kyung-Sang; Lee, Chang-Won

    2012-09-07

    The patterning of colloidal quantum dots with nanometer resolution is essential for their application in photonics and plasmonics. Several patterning approaches, such as the use of polymer composites, molecular lock-and-key methods, inkjet printing and microcontact printing of quantum dots have been recently developed. Herein, we present a simple method of patterning colloidal quantum dots for photonic nanostructures such as straight lines, rings and dot patterns either on transparent or metallic substrates. Sub-10 nm width of the patterned line could be achieved with a well-defined sidewall profile. Using this method, we demonstrate a surface plasmon launcher from a quantum dot cluster in the visible spectrum.

  5. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon.

    PubMed

    Schaibley, J R; Burgers, A P; McCracken, G A; Duan, L-M; Berman, P R; Steel, D G; Bracker, A S; Gammon, D; Sham, L J

    2013-04-19

    The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot's excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×10(3) s(-1). This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.

  6. Quantum-dot cellular automata: Review and recent experiments (invited)

    NASA Astrophysics Data System (ADS)

    Snider, G. L.; Orlov, A. O.; Amlani, I.; Zuo, X.; Bernstein, G. H.; Lent, C. S.; Merz, J. L.; Porod, W.

    1999-04-01

    An introduction to the operation of quantum-dot cellular automata is presented, along with recent experimental results. Quantum-dot cellular automata (QCA) is a transistorless computation paradigm that addresses the issues of device density and interconnection. The basic building blocks of the QCA architecture, such as AND, OR, and NOT are presented. The experimental device is a four-dot QCA cell with two electrometers. The dots are metal islands, which are coupled by capacitors and tunnel junctions. An improved design of the cell is presented in which all four dots of the cell are coupled by tunnel junctions. The operation of this basic cell is confirmed by the externally controlled polarization change of the cell.

  7. Transcending binary logic by gating three coupled quantum dots.

    PubMed

    Klein, Michael; Rogge, S; Remacle, F; Levine, R D

    2007-09-01

    Physical considerations supported by numerical solution of the quantum dynamics including electron repulsion show that three weakly coupled quantum dots can robustly execute a complete set of logic gates for computing using three valued inputs and outputs. Input is coded as gating (up, unchanged, or down) of the terminal dots. A nanosecond time scale switching of the gate voltage requires careful numerical propagation of the dynamics. Readout is the charge (0, 1, or 2 electrons) on the central dot.

  8. Designing artificial 2D crystals with site and size controlled quantum dots.

    PubMed

    Xie, Xuejun; Kang, Jiahao; Cao, Wei; Chu, Jae Hwan; Gong, Yongji; Ajayan, Pulickel M; Banerjee, Kaustav

    2017-08-30

    Ordered arrays of quantum dots in two-dimensional (2D) materials would make promising optical materials, but their assembly could prove challenging. Here we demonstrate a scalable, site and size controlled fabrication of quantum dots in monolayer molybdenum disulfide (MoS 2 ), and quantum dot arrays with nanometer-scale spatial density by focused electron beam irradiation induced local 2H to 1T phase change in MoS 2 . By designing the quantum dots in a 2D superlattice, we show that new energy bands form where the new band gap can be controlled by the size and pitch of the quantum dots in the superlattice. The band gap can be tuned from 1.81 eV to 1.42 eV without loss of its photoluminescence performance, which provides new directions for fabricating lasers with designed wavelengths. Our work constitutes a photoresist-free, top-down method to create large-area quantum dot arrays with nanometer-scale spatial density that allow the quantum dots to interfere with each other and create artificial crystals. This technique opens up new pathways for fabricating light emitting devices with 2D materials at desired wavelengths. This demonstration can also enable the assembly of large scale quantum information systems and open up new avenues for the design of artificial 2D materials.

  9. Three-Dimensional Control of Self-Assembled Quantum Dot Configurations

    DTIC Science & Technology

    2010-06-17

    Lateral Quantum Dot Molecules Around Self-Assembled Nanoholes . Appl. Phys. Lett. 2003, 82, 2892–2894. 7. Alonso-Gonzalez, P.; Martin-Sanchez, J.; Gonzalez...Y.; Alen, B.; Fuster, D.; Gonzalez, L. Formation of Lateral Low Density In(Ga)As Quantum Dot Pairs in GaAs Nanoholes . Cryst. Growth Des. 2009, 9

  10. Energy structure and radiative lifetimes of InxGa1-xN /AlN quantum dots

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Ivan A.; Zhuravlev, Konstantin S.

    2018-01-01

    We report calculations of the ground state transition energies and the radiative lifetimes in InxGa1-xN /AlN quantum dots with different size and indium content. The ground state transition energy and the radiative lifetime of the InxGa1-xN /AlN quantum dots can be varied over a wide range by changing the height of the quantum dot and the indium content. The sizes and compositions for quantum dots emitting in the wavelength range for fiber-optic telecommunications have been found. The radiative lifetime of the InxGa1-xN /AlN quantum dots increases with increase in quantum dot height at a constant indium content, and increases with increase in indium content at constant quantum dot height. For quantum dots with constant ground state transition energy the radiative lifetime decreases with increase in indium content.

  11. Ligand-Asymmetric Janus Quantum Dots for Efficient Blue-Quantum Dot Light-Emitting Diodes.

    PubMed

    Cho, Ikjun; Jung, Heeyoung; Jeong, Byeong Guk; Hahm, Donghyo; Chang, Jun Hyuk; Lee, Taesoo; Char, Kookheon; Lee, Doh C; Lim, Jaehoon; Lee, Changhee; Cho, Jinhan; Bae, Wan Ki

    2018-06-19

    We present ligand-asymmetric Janus quantum dots (QDs) to improve the device performance of quantum dot light-emitting diodes (QLEDs). Specifically, we devise blue QLEDs incorporating blue QDs with asymmetrically modified ligands, in which the bottom ligand of QDs in contact with ZnO electron-transport layer serves as a robust adhesive layer and an effective electron-blocking layer and the top ligand ensures uniform deposition of organic hole transport layers with enhanced hole injection properties. Suppressed electron overflow by the bottom ligand and stimulated hole injection enabled by the top ligand contribute synergistically to boost the balance of charge injection in blue QDs and therefore the device performance of blue QLEDs. As an ultimate achievement, the blue QLED adopting ligand-asymmetric QDs displays 2-fold enhancement in peak external quantum efficiency (EQE = 3.23%) compared to the case of QDs with native ligands (oleic acid) (peak EQE = 1.49%). The present study demonstrates an integrated strategy to control over the charge injection properties into QDs via ligand engineering that enables enhancement of the device performance of blue QLEDs and thus promises successful realization of white light-emitting devices using QDs.

  12. Quantum Phase Transitions in Cavity Coupled Dot systems

    NASA Astrophysics Data System (ADS)

    Kasisomayajula, Vijay; Russo, Onofrio

    2011-03-01

    We investigate a Quantum Dot System, in which the transconductance, in part, is due to spin coupling, with each dot subjected to a biasing voltage. When this system is housed in a QED cavity, the cavity dot coupling alters the spin coupling of the coupled dots significantly via the Purcell Effect. In this paper we show the extent to which one can control the various coupling parameters: the inter dot coupling, the individual dots coupling with the cavity and the coupled dots coupling with the cavity as a single entity. We show that the dots coupled to each other and to the cavity, the spin transport can be controlled selectively. We derive the conditions for such control explicitly. Further, we discuss the Quantum phase transition effects due to the charge and spin transport through the dots. The electron transport through the dots, electron-electron spin interaction and the electron-photon interaction are treated using the Non-equilibrium Green's Function Formalism. http://publish.aps.org/search/field/author/Trif_Mircea (Trif Mircea), http://publish.aps.org/search/field/author/Golovach_Vitaly_N (Vitaly N. Golovach), and http://publish.aps.org/search/field/author/Loss_Daniel (Daniel Loss), Phys. Rev. B 75, 085307 (2007)

  13. Design and Synthesis of Antiblinking and Antibleaching Quantum Dots in Multiple Colors via Wave Function Confinement.

    PubMed

    Cao, Hujia; Ma, Junliang; Huang, Lin; Qin, Haiyan; Meng, Renyang; Li, Yang; Peng, Xiaogang

    2016-12-07

    Single-molecular spectroscopy reveals that photoluminescence (PL) of a single quantum dot blinks, randomly switching between bright and dim/dark states under constant photoexcitation, and quantum dots photobleach readily. These facts cast great doubts on potential applications of these promising emitters. After ∼20 years of efforts, synthesis of nonblinking quantum dots is still challenging, with nonblinking quantum dots only available in red-emitting window. Here we report synthesis of nonblinking quantum dots covering most part of the visible window using a new synthetic strategy, i.e., confining the excited-state wave functions of the core/shell quantum dots within the core quantum dot and its inner shells (≤ ∼5 monolayers). For the red-emitting ones, the new synthetic strategy yields nonblinking quantum dots with small sizes (∼8 nm in diameter) and improved nonblinking properties. These new nonblinking quantum dots are found to be antibleaching. Results further imply that the PL blinking and photobleaching of quantum dots are likely related to each other.

  14. A non-genetic approach to labelling acute myeloid leukemia and bone marrow cells with quantum dots.

    PubMed

    Zheng, Yanwen; Tan, Dongming; Chen, Zheng; Hu, Chenxi; Mao, Zhengwei J; Singleton, Timothy P; Zeng, Yan; Shao, Xuejun; Yin, Bin

    2014-06-01

    The difficulty in manipulation of leukemia cells has long hindered the dissection of leukemia pathogenesis. We have introduced a non-genetic approach of marking blood cells, using quantum dots. We compared quantum dots complexed with different vehicles, including a peptide Tat, cationic polymer Turbofect and liposome. Quantum dots-Tat showed the highest efficiency of marking hematopoietic cells among the three vehicles. Quantum dots-Tat could also label a panel of leukemia cell lines at varied efficiencies. More uniform intracellular distributions of quantum dots in mouse bone marrow and leukemia cells were obtained with quantum dots-Tat, compared with the granule-like formation obtained with quantum dots-liposome. Our results suggest that quantum dots have provided a photostable and non-genetic approach that labels normal and malignant hematopoietic cells, in a cell type-, vehicle-, and quantum dot concentration-dependent manner. We expect for potential applications of quantum dots as an easy and fast marking tool assisting investigations of various types of blood cells in the future.

  15. Chiral quantum dot based materials

    NASA Astrophysics Data System (ADS)

    Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

    2014-05-01

    Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

  16. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices.

    PubMed

    Leschkies, Kurtis S; Divakar, Ramachandran; Basu, Joysurya; Enache-Pommer, Emil; Boercker, Janice E; Carter, C Barry; Kortshagen, Uwe R; Norris, David J; Aydil, Eray S

    2007-06-01

    We combine CdSe semiconductor nanocrystals (or quantum dots) and single-crystal ZnO nanowires to demonstrate a new type of quantum-dot-sensitized solar cell. An array of ZnO nanowires was grown vertically from a fluorine-doped tin oxide conducting substrate. CdSe quantum dots, capped with mercaptopropionic acid, were attached to the surface of the nanowires. When illuminated with visible light, the excited CdSe quantum dots injected electrons across the quantum dot-nanowire interface. The morphology of the nanowires then provided the photoinjected electrons with a direct electrical pathway to the photoanode. With a liquid electrolyte as the hole transport medium, quantum-dot-sensitized nanowire solar cells exhibited short-circuit currents ranging from 1 to 2 mA/cm2 and open-circuit voltages of 0.5-0.6 V when illuminated with 100 mW/cm2 simulated AM1.5 spectrum. Internal quantum efficiencies as high as 50-60% were also obtained.

  17. 6.5% efficient perovskite quantum-dot-sensitized solar cell.

    PubMed

    Im, Jeong-Hyeok; Lee, Chang-Ryul; Lee, Jin-Wook; Park, Sang-Won; Park, Nam-Gyu

    2011-10-05

    Highly efficient quantum-dot-sensitized solar cell is fabricated using ca. 2-3 nm sized perovskite (CH(3)NH(3))PbI(3) nanocrystal. Spin-coating of the equimolar mixture of CH(3)NH(3)I and PbI(2) in γ-butyrolactone solution (perovskite precursor solution) leads to (CH(3)NH(3))PbI(3) quantum dots (QDs) on nanocrystalline TiO(2) surface. By electrochemical junction with iodide/iodine based redox electrolyte, perovskite QD-sensitized 3.6 μm-thick TiO(2) film shows maximum external quantum efficiency (EQE) of 78.6% at 530 nm and solar-to-electrical conversion efficiency of 6.54% at AM 1.5G 1 sun intensity (100 mW cm(-2)), which is by far the highest efficiency among the reported inorganic quantum dot sensitizers.

  18. Transient Evolutional Dynamics of Quantum-Dot Molecular Phase Coherence for Sensitive Optical Switching

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi; Gu, Jing

    2018-04-01

    Atomic phase coherence (quantum interference) in a multilevel atomic gas exhibits a number of interesting phenomena. Such an atomic quantum coherence effect can be generalized to a quantum-dot molecular dielectric. Two quantum dots form a quantum-dot molecule, which can be described by a three-level Λ-configuration model { |0> ,|1> ,|2> } , i.e., the ground state of the molecule is the lower level |0> and the highly degenerate electronic states in the two quantum dots are the two upper levels |1> ,|2> . The electromagnetic characteristics due to the |0>-|1> transition can be controllably manipulated by a tunable gate voltage (control field) that drives the |2>-|1> transition. When the gate voltage is switched on, the quantum-dot molecular state can evolve from one steady state (i.e., |0>-|1> two-level dressed state) to another steady state (i.e., three-level coherent-population-trapping state). In this process, the electromagnetic characteristics of a quantum-dot molecular dielectric, which is modified by the gate voltage, will also evolve. In this study, the transient evolutional behavior of the susceptibility of a quantum-dot molecular thin film and its reflection spectrum are treated by using the density matrix formulation of the multilevel systems. The present field-tunable and frequency-sensitive electromagnetic characteristics of a quantum-dot molecular thin film, which are sensitive to the applied gate voltage, can be utilized to design optical switching devices.

  19. Synergistically enhanced photocatalytic hydrogen evolution performance of ZnCdS by co-loading graphene quantum dots and PdS dual cocatalysts under visible light

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Su, Yanhong; Min, Shixiong; Li, Yanan; Lei, Yonggang; Hou, Jianhua

    2018-04-01

    Here, we report that the co-loading of graphene quantum dots (GQDs) and PdS dual cocatalysts on ZnCdS surface achieves a high efficiency photocatalytic H2 evolution under visible light (≥420 nm). The GQDs/ZnCdS/PdS photocatalyst was prepared by a facile two steps: hydrothermal coupling of GQDs on ZnCdS surface followed by an in-situ chemical deposition of PdS. The resulted GQDs/ZnCdS/PdS exhibits a H2 evolution rate of 517 μmol h-1, which is 15, 7, and 1.7 times higher than that of pure ZnCdS, GQDs/ZnCdS, and ZnCdS/PdS, respectively, demonstrating the synergistic effects of GQDs and PdS dual cocatalysts. A high apparent quantum efficiency (AQE) up to 22.4% can be achieved over GQDs/ZnCdS/PdS at 420 nm. GQDs/ZnCdS/PdS also has a relatively good stability. Such a considerable enhancement of photocatalytic activity was attributable to the co-loading of the GQDs and PdS as respective reduction and oxidation cocatalysts, leading to an efficient charge separation and surface reactions.

  20. Cadmium-containing nanoparticles: Perspectives on pharmacology and toxicology of quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rzigalinski, Beverly A.; Strobl, Jeannine S.

    2009-08-01

    The field of nanotechnology is rapidly expanding with the development of novel nanopharmaceuticals that have potential for revolutionizing medical treatment. The rapid pace of expansion in this field has exceeded the pace of pharmacological and toxicological research on the effects of nanoparticles in the biological environment. The development of cadmium-containing nanoparticles, known as quantum dots, show great promise for treatment and diagnosis of cancer and targeted drug delivery, due to their size-tunable fluorescence and ease of functionalization for tissue targeting. However, information on pharmacology and toxicology of quantum dots needs much further development, making it difficult to assess the risksmore » associated with this new nanotechnology. Further, nanotechnology poses yet another risk for toxic cadmium, which will now enter the biological realm in nano-form. In this review, we discuss cadmium-containing quantum dots and their physicochemical properties at the nano-scale. We summarize the existing work on pharmacology and toxicology of cadmium-containing quantum dots and discuss perspectives in their utility in disease treatment. Finally, we identify critical gaps in our knowledge of cadmium quantum dot toxicity, and how these gaps need to be assessed to enable quantum dot nanotechnology to transit safely from bench to bedside.« less

  1. Efficient colorimetric pH sensor based on responsive polymer-quantum dot integrated graphene oxide.

    PubMed

    Paek, Kwanyeol; Yang, Hyunseung; Lee, Junhyuk; Park, Junwoo; Kim, Bumjoon J

    2014-03-25

    In this paper, we report the development of a versatile platform for a highly efficient and stable graphene oxide (GO)-based optical sensor that exhibits distinctive ratiometric color responses. To demonstrate the applicability of the platform, we fabricated a colorimetric, GO-based pH sensor that responds to a wide range of pH changes. Our sensing system is based on responsive polymer and quantum dot (QD) hybrids integrated on a single GO sheet (MQD-GO), with the GO providing an excellent signal-to-noise ratio and high dispersion stability in water. The photoluminescence emissions of the blue and orange color-emitting QDs (BQDs and OQDs) in MQD-GO can be controlled independently by different pH-responsive linkers of poly(acrylic acid) (PAA) (pKa=4.5) and poly(2-vinylpyridine) (P2VP) (pKa=3.0) that can tune the efficiencies of Förster resonance energy transfer from the BQDs to the GO and from the OQDs to the GO, respectively. As a result, the color of MQD-GO changes from orange to near-white to blue over a wide range of pH values. The detailed mechanism of the pH-dependent response of the MQD-GO sensor was elucidated by measurements of time-resolved fluorescence and dynamic light scattering. Furthermore, the MQD-GO sensor showed excellent reversibility and high dispersion stability in pure water, indicating that our system is an ideal platform for biological and environmental applications. Our colorimetric GO-based optical sensor can be expanded easily to various other multifunctional, GO-based sensors by using alternate stimuli-responsive polymers.

  2. Measurements of undoped accumulation-mode SiGe quantum dot devices

    NASA Astrophysics Data System (ADS)

    Eng, Kevin; Borselli, Mathew; Holabird, Kevin; Milosavljevic, Ivan; Schmitz, Adele; Deelman, Peter; Huang, Biqin; Sokolich, Marko; Warren, Leslie; Hazard, Thomas; Kiselev, Andrey; Ross, Richard; Gyure, Mark; Hunter, Andrew

    2012-02-01

    We report transport measurements of undoped single-well accumulation-mode SiGe quantum dot devices with an integrated dot charge sensor. The device is designed so that individual forward-biased circular gates have dominant control of dot charge occupancy, and separate intervening gates have dominant control of tunnel rates and exchange coupling. We have demonstrated controlled loading of the first electron in single and double quantum dots. We used magneto-spectroscopy to measure singlet-triplet splittings in our quantum dots: values are typically ˜0.1 meV. Tunnel rates of single electrons to the baths can be controlled from less than 1 Hz to greater than 10 MHz. We are able to control the (0,2) to (1,1) coupling in a double quantum dot from under-coupled (tc < kT˜ 5μeV) to over-coupled (tc ˜ 0.1 meV) with a bias control of one exchange gate. Sponsored by the United States Department of Defense. Approved for Public Release, Distribution Unlimited. The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

  3. Growth of group II-VI semiconductor quantum dots with strong quantum confinement and low size dispersion

    NASA Astrophysics Data System (ADS)

    Pandey, Praveen K.; Sharma, Kriti; Nagpal, Swati; Bhatnagar, P. K.; Mathur, P. C.

    2003-11-01

    CdTe quantum dots embedded in glass matrix are grown using two-step annealing method. The results for the optical transmission characterization are analysed and compared with the results obtained from CdTe quantum dots grown using conventional single-step annealing method. A theoretical model for the absorption spectra is used to quantitatively estimate the size dispersion in the two cases. In the present work, it is established that the quantum dots grown using two-step annealing method have stronger quantum confinement, reduced size dispersion and higher volume ratio as compared to the single-step annealed samples. (

  4. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    NASA Astrophysics Data System (ADS)

    Nagpal, Swati

    2002-12-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature.

  5. Graphene Oxide Quantum Dots Exfoliated From Carbon Fibers by Microwave Irradiation: Two Photoluminescence Centers and Self-Assembly Behavior.

    PubMed

    Yuan, Jian-Min; Zhao, Rui; Wu, Zhen-Jun; Li, Wei; Yang, Xin-Guo

    2018-04-17

    Graphene oxide quantum dots (GOQDs) attract great attention for their unique properties and promising application potential. The difficulty in the formation of a confined structure, and the numerous and diverse oxygen-containing functional groups results in a low emission yield to GOQDs. Here, GOQDs with a size of about 5 nm, exfoliated from carbon fibers by microwave irradiation, are detected and analyzed. The exfoliated GOQDs are deeply oxidized and induce large numbers of epoxy groups and ether bonds, but only a small amount of carbonyl groups and hydroxyl groups. The subdomains of sp 2 clusters, involving epoxy groups and ether bonds, are responsible for the two strong photoluminescence emissions of GOQDs under different excitation wavelengths. Moreover, GOQDs tend to self-assemble at the edges of their planes to form self-assembly films (SAFs) with the evaporation of water. SAFs can further assemble into different 3D patterns with unique microstructures such as sponge bulk, sponge ball, microsheet, sisal, and schistose coral, which are what applications such as supercapacitors, cells, catalysts, and electrochemical sensors need. This method for preparation of GOQDs is easy, quick, and environmentally friendly, and this work may open up new research interests about GOQDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Mode locking of electron spin coherences in singly charged quantum dots.

    PubMed

    Greilich, A; Yakovlev, D R; Shabaev, A; Efros, Al L; Yugova, I A; Oulton, R; Stavarache, V; Reuter, D; Wieck, A; Bayer, M

    2006-07-21

    The fast dephasing of electron spins in an ensemble of quantum dots is detrimental for applications in quantum information processing. We show here that dephasing can be overcome by using a periodic train of light pulses to synchronize the phases of the precessing spins, and we demonstrate this effect in an ensemble of singly charged (In,Ga)As/GaAs quantum dots. This mode locking leads to constructive interference of contributions to Faraday rotation and presents potential applications based on robust quantum coherence within an ensemble of dots.

  7. Covalent functionalized black phosphorus quantum dots

    NASA Astrophysics Data System (ADS)

    Scotognella, Francesco; Kriegel, Ilka; Sassolini, Simone

    2018-01-01

    Black phosphorus (BP) nanostructures enable a new strategy to tune the electronic and optical properties of this atomically thin material. In this paper we show, via density functional theory calculations, the possibility to modify the optical properties of BP quantum dots via covalent functionalization. The quantum dot selected in this study has chemical formula P24H12 and has been covalent functionalized with one or more benzene rings or anthracene. The effect of functionalization is highlighted in the absorption spectra, where a red shift of the absorption is noticeable. The shift can be ascribed to an electron delocalization in the black phosphorus/organic molecule nanostructure.

  8. Reducing inhomogeneity in the dynamic properties of quantum dots via self-aligned plasmonic cavities

    NASA Astrophysics Data System (ADS)

    Demory, Brandon; Hill, Tyler A.; Teng, Chu-Hsiang; Deng, Hui; Ku, P. C.

    2018-01-01

    A plasmonic cavity is shown to greatly reduce the inhomogeneity of dynamic optical properties such as quantum efficiency and radiative lifetime of InGaN quantum dots. By using an open-top plasmonic cavity structure, which exhibits a large Purcell factor and antenna quantum efficiency, the resulting quantum efficiency distribution for the quantum dots narrows and is no longer limited by the quantum dot inhomogeneity. The standard deviation of the quantum efficiency can be reduced to 2% while maintaining the overall quantum efficiency at 70%, making InGaN quantum dots a viable candidate for high-speed quantum cryptography and random number generation applications.

  9. Reducing inhomogeneity in the dynamic properties of quantum dots via self-aligned plasmonic cavities.

    PubMed

    Demory, Brandon; Hill, Tyler A; Teng, Chu-Hsiang; Deng, Hui; Ku, P C

    2018-01-05

    A plasmonic cavity is shown to greatly reduce the inhomogeneity of dynamic optical properties such as quantum efficiency and radiative lifetime of InGaN quantum dots. By using an open-top plasmonic cavity structure, which exhibits a large Purcell factor and antenna quantum efficiency, the resulting quantum efficiency distribution for the quantum dots narrows and is no longer limited by the quantum dot inhomogeneity. The standard deviation of the quantum efficiency can be reduced to 2% while maintaining the overall quantum efficiency at 70%, making InGaN quantum dots a viable candidate for high-speed quantum cryptography and random number generation applications.

  10. Quantum Dots for Live Cell and In Vivo Imaging

    PubMed Central

    Walling, Maureen A; Novak, Jennifer A; Shepard, Jason R. E

    2009-01-01

    In the past few decades, technology has made immeasurable strides to enable visualization, identification, and quantitation in biological systems. Many of these technological advancements are occurring on the nanometer scale, where multiple scientific disciplines are combining to create new materials with enhanced properties. The integration of inorganic synthetic methods with a size reduction to the nano-scale has lead to the creation of a new class of optical reporters, called quantum dots. These semiconductor quantum dot nanocrystals have emerged as an alternative to organic dyes and fluorescent proteins, and are brighter and more stable against photobleaching than standard fluorescent indicators. Quantum dots have tunable optical properties that have proved useful in a wide range of applications from multiplexed analysis such as DNA detection and cell sorting and tracking, to most recently demonstrating promise for in vivo imaging and diagnostics. This review provides an in-depth discussion of past, present, and future trends in quantum dot use with an emphasis on in vivo imaging and its related applications. PMID:19333416

  11. Sonocatalytic degradation of methylene blue by a novel graphene quantum dots anchored CdSe nanocatalyst.

    PubMed

    Sajjadi, Saeed; Khataee, Alireza; Kamali, Mehdi

    2017-11-01

    Cadmium selenide/graphene quantum dots (CdSe/GQDs) nanocatalyst with small band gap energy and a large specific surface area was produced via a facile three-step sonochemical-hydrothermal process. The features of the as-prepared CdSe, GQDs and CdSe/GQDs samples were characterized by photoluminescence spectroscopy (PL), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transformed infrared (FT-IR), diffuse-reflectance spectrophotometer (DRS), and Brunauer-Emmett-Teller (BET) analysis. The sonocatalytic activity of the synthesized CdSe/GQDs was effectively accelerated compared with that of pure CdSe nanoparticles in degradation of methylene blue (MB). The influence of the CdSe/GQDs dosage (0.25-1.25g/L), initial MB concentration (20-30mg/L), initial solution pH (3-12), and ultrasonic output power (200-600W/L) were examined on the sonocatalytic treatment of MB aqueous solutions. The degradation efficiency (DE%) of 99% attained at 1g/L of CdSe/GQDs, 20mg/L of MB, pH of 9, and an output power of 200W/L at 90min of ultrasonic irradiation. Furthermore, DE% increased with addition of K 2 S 2 O 8 and H 2 O 2 as the enhancers via producing more free radicals. However, addition of sulfate, carbonate, and chloride as radical sweeper decreased DE%. Furthermore, well-reusability of the CdSe/GQDs sonocatalyst was demonstrated for 5 successive runs and some of the sonocatalytic generated intermediates were indicated by GC-MS analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A fluorescent probe based on nitrogen doped graphene quantum dots for turn off sensing of explosive and detrimental water pollutant, TNP in aqueous medium

    NASA Astrophysics Data System (ADS)

    Kaur, Manjot; Mehta, Surinder K.; Kansal, Sushil Kumar

    2017-06-01

    This paper reports the carbonization assisted green approach for the fabrication of nitrogen doped graphene quantum dots (N-GQDs). The obtained N-GQDs displayed good water dispersibility and stability in the wide pH range. The as synthesized N-GQDs were used as a fluorescent probe for the sensing of explosive 2,4,6-trinitrophenol (TNP) in aqueous medium based on fluorescence resonance energy transfer (FRET), molecular interactions and charge transfer mechanism. The quenching efficiency was found to be linear in proportion to the TNP concentration within the range of 0-16 μM with detection limit (LOD) of 0.92 μM. The presented method was successfully applied to the sensing of TNP in tap and lake water samples with satisfactory results. Thus, N-GQDs were used as a selective, sensitive and turn off fluorescent sensor for the detection of perilous water contaminant i.e. TNP.

  13. A sensor based on blue luminescent graphene quantum dots for analysis of a common explosive substance and an industrial intermediate, 2,4,6-trinitrophenol.

    PubMed

    Li, Zhuo; Wang, Yong; Ni, Yongnian; Kokot, Serge

    2015-02-25

    A rapid and effective sensor for the analysis of nitrophenol-based explosive substances, represented by trinitrophenol (TNP), has been developed with the use of the blue luminescent graphene quantum dots (GQDs); these GQDs are derived from citric acid by a pyrolysis procedure. They emit strong blue fluorescence at 450 nm after excitation at 365 nm, and TNP can quench this fluorescence because a fluorescence resonance energy transfer occurs. The quenching ratio (F0-F)/F0 was related linearly to the concentration of TNP in the range of 0.1-15 μmol L(-1) with a detection limit of 0.091 μmol L(-1) (S/N=3). The developed method exhibits high sensitivity, good linearity and reliable reproducibility for the quantitative analysis of TNP in water samples. The GQDs were used directly without any further treatment or complicated modification. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Facile One-Step Sonochemical Synthesis and Photocatalytic Properties of Graphene/Ag3PO4 Quantum Dots Composites

    NASA Astrophysics Data System (ADS)

    Reheman, Abulajiang; Tursun, Yalkunjan; Dilinuer, Talifu; Halidan, Maimaiti; Kadeer, Kuerbangnisha; Abulizi, Abulikemu

    2018-03-01

    In this study, a novel graphene/Ag3PO4 quantum dot (rGO/Ag3PO4 QD) composite was successfully synthesized via a facile one-step photo-ultrasonic-assisted reduction method for the first time. The composites were analyzed by various techniques. According to the obtained results, Ag3PO4 QDs with a size of 1-4 nm were uniformly dispersed on rGO nanosheets to form rGO/Ag3PO4 QD composites. The photocatalytic activity of rGO/Ag3PO4 QD composites was evaluated by the decomposition of methylene blue (MB). Meanwhile, effects of the surfactant dosage and the amount of rGO on the photocatalytic activity were also investigated. It was found that rGO/Ag3PO4 QDs (WrGO:Wcomposite = 2.3%) composite exhibited better photocatalytic activity and stability with degrading 97.5% of MB within 5 min. The improved photocatalytic activities and stabilities were majorly related to the synergistic effect between Ag3PO4 QDs and rGO with high specific surface area, which gave rise to efficient interfacial transfer of photogenerated electrons and holes on both materials. Moreover, possible formation and photocatalytic mechanisms of rGO/Ag3PO4 QDs were proposed. The obtained rGO/Ag3PO4 QDs photocatalysts would have great potentials in sewage treatment and water splitting.

  15. Transcriptomic response and perturbation of toxicity pathways in zebrafish larvae after exposure to graphene quantum dots (GQDs).

    PubMed

    Deng, Shun; Jia, Pan-Pan; Zhang, Jing-Hui; Junaid, Muhammad; Niu, Aping; Ma, Yan-Bo; Fu, Ailing; Pei, De-Sheng

    2018-05-29

    Graphene quantum dots (GQDs) are widely used for biomedical applications. Previously, the low-level toxicity of GQDs in vivo and in vitro has been elucidated, but the underlying molecular mechanisms remained largely unknown. Here, we employed the Illumina high-throughput RNA-sequencing to explore the whole-transcriptome profiling of zebrafish larvae after exposure to GQDs. Comparative transcriptome analysis identified 2116 differentially expressed genes between GQDs exposed groups and control. Functional classification demonstrated that a large proportion of genes involved in acute inflammatory responses and detoxifying process were significantly up-regulated by GQDs. The inferred gene regulatory network suggested that activator protein 1 (AP-1) was the early-response transcription factor in the linkage of a cascade of downstream (pro-) inflammatory signals with the apoptosis signals. Moreover, hierarchical signaling threshold determined the high sensitivity of complement system in zebrafish when exposed to the sublethal dose of GQDs. Further, 35 candidate genes from various signaling pathways were further validated by qPCR after exposure to 25, 50, and 100 μg/mL of GQDs. Taken together, our study provided a valuable insight into the molecular mechanisms of potential bleeding risks and detoxifying processes in response to GQDs exposure, thereby establishing a mechanistic basis for the biosafety evaluation of GQDs. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Self-assembled InN quantum dots on side facets of GaN nanowires

    NASA Astrophysics Data System (ADS)

    Bi, Zhaoxia; Ek, Martin; Stankevic, Tomas; Colvin, Jovana; Hjort, Martin; Lindgren, David; Lenrick, Filip; Johansson, Jonas; Wallenberg, L. Reine; Timm, Rainer; Feidenhans'l, Robert; Mikkelsen, Anders; Borgström, Magnus T.; Gustafsson, Anders; Ohlsson, B. Jonas; Monemar, Bo; Samuelson, Lars

    2018-04-01

    Self-assembled, atomic diffusion controlled growth of InN quantum dots was realized on the side facets of dislocation-free and c-oriented GaN nanowires having a hexagonal cross-section. The nanowires were synthesized by selective area metal organic vapor phase epitaxy. A 3 Å thick InN wetting layer was observed after growth, on top of which the InN quantum dots formed, indicating self-assembly in the Stranski-Krastanow growth mode. We found that the InN quantum dots can be tuned to nucleate either preferentially at the edges between GaN nanowire side facets, or directly on the side facets by tuning the adatom migration by controlling the precursor supersaturation and growth temperature. Structural characterization by transmission electron microscopy and reciprocal space mapping show that the InN quantum dots are close to be fully relaxed (residual strain below 1%) and that the c-planes of the InN quantum dots are tilted with respect to the GaN core. The strain relaxes mainly by the formation of misfit dislocations, observed with a periodicity of 3.2 nm at the InN and GaN hetero-interface. The misfit dislocations introduce I1 type stacking faults (…ABABCBC…) in the InN quantum dots. Photoluminescence investigations of the InN quantum dots show that the emissions shift to higher energy with reduced quantum dot size, which we attribute to increased quantum confinement.

  17. Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baart, T. A.; Jovanovic, N.; Vandersypen, L. M. K.

    2016-07-25

    The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here, we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called hot spot, we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in, e.g., silicon based quantum dots.more » This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.« less

  18. Atomistic theory of excitonic fine structure in InAs/InP nanowire quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Świderski, M.; Zieliński, M.

    2017-03-01

    Nanowire quantum dots have peculiar electronic and optical properties. In this work we use atomistic tight binding to study excitonic spectra of artificial molecules formed by a double nanowire quantum dot. We demonstrate a key role of atomistic symmetry and nanowire substrate orientation rather than cylindrical shape symmetry of a nanowire and a molecule. In particular for [001 ] nanowire orientation we observe a nonvanishing bright exciton splitting for a quasimolecule formed by two cylindrical quantum dots of different heights. This effect is due to interdot coupling that effectively reduces the overall symmetry, whereas single uncoupled [001 ] quantum dots have zero fine structure splitting. We found that the same double quantum dot system grown on [111 ] nanowire reveals no excitonic fine structure for all considered quantum dot distances and individual quantum dot heights. Further we demonstrate a pronounced, by several orders of magnitude, increase of the dark exciton optical activity in a quantum dot molecule as compared to a single quantum dot. For [111 ] systems we also show spontaneous localization of single particle states in one of nominally identical quantum dots forming a molecule, which is mediated by strain and origins from the lack of the vertical inversion symmetry in [111 ] nanostructures of overall C3 v symmetry. Finally, we study lowering of symmetry due to alloy randomness that triggers nonzero excitonic fine structure and the dark exciton optical activity in realistic nanowire quantum dot molecules of intermixed composition.

  19. Attachment of Quantum Dots on Zinc Oxide Nanorods

    NASA Astrophysics Data System (ADS)

    Seay, Jared; Liang, Huan; Harikumar, Parameswar

    2011-03-01

    ZnO nanorods grown by hydrothermal technique are of great interest for potential applications in photovoltaic and optoelectronic devices. In this study we investigate the optimization of the optical absorption properties by a low temperature, chemical bath deposition technique. Our group fabricated nanorods on indium tin oxide (ITO) substrate with precursor solution of zinc nitrate hexahydrate and hexamethylenetramine (1:1 molar ratio) at 95C for 9 hours. In order to optimize the light absorption characteristics of ZnO nanorods, CdSe/ZnS core-shell quantum dots (QDs) of various diameters were attached to the surface of ZnO nanostructures grown on ITO and gold-coated silicon substrates. Density of quantum dots was varied by controlling the number drops on the surface of the ZnO nanorods. For a 0.1 M concentration of QDs of 10 nm diameter, the PL intensity at 385 nm increased as the density of the quantum dots on ZnO nanostructures was increased. For quantum dots at 1 M concentration, the PL intensity at 385 nm increased at the beginning and then decreased at higher density. We will discuss the observed changes in PL intensity with QD concentration with ZnO-QD band structure and recombination-diffusion processes taking place at the interface.

  20. Polarization control of quantum dot emission by chiral photonic crystal slabs

    NASA Astrophysics Data System (ADS)

    Lobanov, Sergey V.; Weiss, Thomas; Gippius, Nikolay A.; Tikhodeev, Sergei G.; Kulakovskii, Vladimir D.; Konishi, Kuniaki; Kuwata-Gonokami, Makoto

    2015-04-01

    We investigate theoretically the polarization properties of the quantum dot's optical emission from chiral photonic crystal structures made of achiral materials in the absence of external magnetic field at room temperature. The mirror symmetry of the local electromagnetic field is broken in this system due to the decreased symmetry of the chiral modulated layer. As a result, the radiation of randomly polarized quantum dots normal to the structure becomes partially circularly polarized. The sign and degree of circular polarization are determined by the geometry of the chiral modulated structure and depend on the radiation frequency. A degree of circular polarization up to 99% can be achieved for randomly distributed quantum dots, and can be close to 100% for some single quantum dots.