IVisTMSA: Interactive Visual Tools for Multiple Sequence Alignments.
Pervez, Muhammad Tariq; Babar, Masroor Ellahi; Nadeem, Asif; Aslam, Naeem; Naveed, Nasir; Ahmad, Sarfraz; Muhammad, Shah; Qadri, Salman; Shahid, Muhammad; Hussain, Tanveer; Javed, Maryam
2015-01-01
IVisTMSA is a software package of seven graphical tools for multiple sequence alignments. MSApad is an editing and analysis tool. It can load 409% more data than Jalview, STRAP, CINEMA, and Base-by-Base. MSA comparator allows the user to visualize consistent and inconsistent regions of reference and test alignments of more than 21-MB size in less than 12 seconds. MSA comparator is 5,200% efficient and more than 40% efficient as compared to BALiBASE c program and FastSP, respectively. MSA reconstruction tool provides graphical user interfaces for four popular aligners and allows the user to load several sequence files at a time. FASTA generator converts seven formats of alignments of unlimited size into FASTA format in a few seconds. MSA ID calculator calculates identity matrix of more than 11,000 sequences with a sequence length of 2,696 base pairs in less than 100 seconds. Tree and Distance Matrix calculation tools generate phylogenetic tree and distance matrix, respectively, using neighbor joining% identity and BLOSUM 62 matrix.
Accelerating large-scale protein structure alignments with graphics processing units
2012-01-01
Background Large-scale protein structure alignment, an indispensable tool to structural bioinformatics, poses a tremendous challenge on computational resources. To ensure structure alignment accuracy and efficiency, efforts have been made to parallelize traditional alignment algorithms in grid environments. However, these solutions are costly and of limited accessibility. Others trade alignment quality for speedup by using high-level characteristics of structure fragments for structure comparisons. Findings We present ppsAlign, a parallel protein structure Alignment framework designed and optimized to exploit the parallelism of Graphics Processing Units (GPUs). As a general-purpose GPU platform, ppsAlign could take many concurrent methods, such as TM-align and Fr-TM-align, into the parallelized algorithm design. We evaluated ppsAlign on an NVIDIA Tesla C2050 GPU card, and compared it with existing software solutions running on an AMD dual-core CPU. We observed a 36-fold speedup over TM-align, a 65-fold speedup over Fr-TM-align, and a 40-fold speedup over MAMMOTH. Conclusions ppsAlign is a high-performance protein structure alignment tool designed to tackle the computational complexity issues from protein structural data. The solution presented in this paper allows large-scale structure comparisons to be performed using massive parallel computing power of GPU. PMID:22357132
TU-D-209-03: Alignment of the Patient Graphic Model Using Fluoroscopic Images for Skin Dose Mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oines, A; Oines, A; Kilian-Meneghin, J
2016-06-15
Purpose: The Dose Tracking System (DTS) was developed to provide realtime feedback of skin dose and dose rate during interventional fluoroscopic procedures. A color map on a 3D graphic of the patient represents the cumulative dose distribution on the skin. Automated image correlation algorithms are described which use the fluoroscopic procedure images to align and scale the patient graphic for more accurate dose mapping. Methods: Currently, the DTS employs manual patient graphic selection and alignment. To improve the accuracy of dose mapping and automate the software, various methods are explored to extract information about the beam location and patient morphologymore » from the procedure images. To match patient anatomy with a reference projection image, preprocessing is first used, including edge enhancement, edge detection, and contour detection. Template matching algorithms from OpenCV are then employed to find the location of the beam. Once a match is found, the reference graphic is scaled and rotated to fit the patient, using image registration correlation functions in Matlab. The algorithm runs correlation functions for all points and maps all correlation confidences to a surface map. The highest point of correlation is used for alignment and scaling. The transformation data is saved for later model scaling. Results: Anatomic recognition is used to find matching features between model and image and image registration correlation provides for alignment and scaling at any rotation angle with less than onesecond runtime, and at noise levels in excess of 150% of those found in normal procedures. Conclusion: The algorithm provides the necessary scaling and alignment tools to improve the accuracy of dose distribution mapping on the patient graphic with the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
High-throughput sequence alignment using Graphics Processing Units
Schatz, Michael C; Trapnell, Cole; Delcher, Arthur L; Varshney, Amitabh
2007-01-01
Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs) in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA) from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU. PMID:18070356
GPU-BSM: A GPU-Based Tool to Map Bisulfite-Treated Reads
Manconi, Andrea; Orro, Alessandro; Manca, Emanuele; Armano, Giuliano; Milanesi, Luciano
2014-01-01
Cytosine DNA methylation is an epigenetic mark implicated in several biological processes. Bisulfite treatment of DNA is acknowledged as the gold standard technique to study methylation. This technique introduces changes in the genomic DNA by converting cytosines to uracils while 5-methylcytosines remain nonreactive. During PCR amplification 5-methylcytosines are amplified as cytosine, whereas uracils and thymines as thymine. To detect the methylation levels, reads treated with the bisulfite must be aligned against a reference genome. Mapping these reads to a reference genome represents a significant computational challenge mainly due to the increased search space and the loss of information introduced by the treatment. To deal with this computational challenge we devised GPU-BSM, a tool based on modern Graphics Processing Units. Graphics Processing Units are hardware accelerators that are increasingly being used successfully to accelerate general-purpose scientific applications. GPU-BSM is a tool able to map bisulfite-treated reads from whole genome bisulfite sequencing and reduced representation bisulfite sequencing, and to estimate methylation levels, with the goal of detecting methylation. Due to the massive parallelization obtained by exploiting graphics cards, GPU-BSM aligns bisulfite-treated reads faster than other cutting-edge solutions, while outperforming most of them in terms of unique mapped reads. PMID:24842718
mcaGUI: microbial community analysis R-Graphical User Interface (GUI).
Copeland, Wade K; Krishnan, Vandhana; Beck, Daniel; Settles, Matt; Foster, James A; Cho, Kyu-Chul; Day, Mitch; Hickey, Roxana; Schütte, Ursel M E; Zhou, Xia; Williams, Christopher J; Forney, Larry J; Abdo, Zaid
2012-08-15
Microbial communities have an important role in natural ecosystems and have an impact on animal and human health. Intuitive graphic and analytical tools that can facilitate the study of these communities are in short supply. This article introduces Microbial Community Analysis GUI, a graphical user interface (GUI) for the R-programming language (R Development Core Team, 2010). With this application, researchers can input aligned and clustered sequence data to create custom abundance tables and perform analyses specific to their needs. This GUI provides a flexible modular platform, expandable to include other statistical tools for microbial community analysis in the future. The mcaGUI package and source are freely available as part of Bionconductor at http://www.bioconductor.org/packages/release/bioc/html/mcaGUI.html
GapBlaster-A Graphical Gap Filler for Prokaryote Genomes.
de Sá, Pablo H C G; Miranda, Fábio; Veras, Adonney; de Melo, Diego Magalhães; Soares, Siomar; Pinheiro, Kenny; Guimarães, Luis; Azevedo, Vasco; Silva, Artur; Ramos, Rommel T J
2016-01-01
The advent of NGS (Next Generation Sequencing) technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer.
An image guidance system for positioning robotic cochlear implant insertion tools
NASA Astrophysics Data System (ADS)
Bruns, Trevor L.; Webster, Robert J.
2017-03-01
Cochlear implants must be inserted carefully to avoid damaging the delicate anatomical structures of the inner ear. This has motivated several approaches to improve the safety and efficacy of electrode array insertion by automating the process with specialized robotic or manual insertion tools. When such tools are used, they must be positioned at the entry point to the cochlea and aligned with the desired entry vector. This paper presents an image guidance system capable of accurately positioning a cochlear implant insertion tool. An optical tracking system localizes the insertion tool in physical space while a graphical user interface incorporates this with patient- specific anatomical data to provide error information to the surgeon in real-time. Guided by this interface, novice users successfully aligned the tool with an mean accuracy of 0.31 mm.
The UCSC genome browser and associated tools
Haussler, David; Kent, W. James
2013-01-01
The UCSC Genome Browser (http://genome.ucsc.edu) is a graphical viewer for genomic data now in its 13th year. Since the early days of the Human Genome Project, it has presented an integrated view of genomic data of many kinds. Now home to assemblies for 58 organisms, the Browser presents visualization of annotations mapped to genomic coordinates. The ability to juxtapose annotations of many types facilitates inquiry-driven data mining. Gene predictions, mRNA alignments, epigenomic data from the ENCODE project, conservation scores from vertebrate whole-genome alignments and variation data may be viewed at any scale from a single base to an entire chromosome. The Browser also includes many other widely used tools, including BLAT, which is useful for alignments from high-throughput sequencing experiments. Private data uploaded as Custom Tracks and Data Hubs in many formats may be displayed alongside the rich compendium of precomputed data in the UCSC database. The Table Browser is a full-featured graphical interface, which allows querying, filtering and intersection of data tables. The Saved Session feature allows users to store and share customized views, enhancing the utility of the system for organizing multiple trains of thought. Binary Alignment/Map (BAM), Variant Call Format and the Personal Genome Single Nucleotide Polymorphisms (SNPs) data formats are useful for visualizing a large sequencing experiment (whole-genome or whole-exome), where the differences between the data set and the reference assembly may be displayed graphically. Support for high-throughput sequencing extends to compact, indexed data formats, such as BAM, bigBed and bigWig, allowing rapid visualization of large datasets from RNA-seq and ChIP-seq experiments via local hosting. PMID:22908213
The UCSC genome browser and associated tools.
Kuhn, Robert M; Haussler, David; Kent, W James
2013-03-01
The UCSC Genome Browser (http://genome.ucsc.edu) is a graphical viewer for genomic data now in its 13th year. Since the early days of the Human Genome Project, it has presented an integrated view of genomic data of many kinds. Now home to assemblies for 58 organisms, the Browser presents visualization of annotations mapped to genomic coordinates. The ability to juxtapose annotations of many types facilitates inquiry-driven data mining. Gene predictions, mRNA alignments, epigenomic data from the ENCODE project, conservation scores from vertebrate whole-genome alignments and variation data may be viewed at any scale from a single base to an entire chromosome. The Browser also includes many other widely used tools, including BLAT, which is useful for alignments from high-throughput sequencing experiments. Private data uploaded as Custom Tracks and Data Hubs in many formats may be displayed alongside the rich compendium of precomputed data in the UCSC database. The Table Browser is a full-featured graphical interface, which allows querying, filtering and intersection of data tables. The Saved Session feature allows users to store and share customized views, enhancing the utility of the system for organizing multiple trains of thought. Binary Alignment/Map (BAM), Variant Call Format and the Personal Genome Single Nucleotide Polymorphisms (SNPs) data formats are useful for visualizing a large sequencing experiment (whole-genome or whole-exome), where the differences between the data set and the reference assembly may be displayed graphically. Support for high-throughput sequencing extends to compact, indexed data formats, such as BAM, bigBed and bigWig, allowing rapid visualization of large datasets from RNA-seq and ChIP-seq experiments via local hosting.
Alview: Portable Software for Viewing Sequence Reads in BAM Formatted Files.
Finney, Richard P; Chen, Qing-Rong; Nguyen, Cu V; Hsu, Chih Hao; Yan, Chunhua; Hu, Ying; Abawi, Massih; Bian, Xiaopeng; Meerzaman, Daoud M
2015-01-01
The name Alview is a contraction of the term Alignment Viewer. Alview is a compiled to native architecture software tool for visualizing the alignment of sequencing data. Inputs are files of short-read sequences aligned to a reference genome in the SAM/BAM format and files containing reference genome data. Outputs are visualizations of these aligned short reads. Alview is written in portable C with optional graphical user interface (GUI) code written in C, C++, and Objective-C. The application can run in three different ways: as a web server, as a command line tool, or as a native, GUI program. Alview is compatible with Microsoft Windows, Linux, and Apple OS X. It is available as a web demo at https://cgwb.nci.nih.gov/cgi-bin/alview. The source code and Windows/Mac/Linux executables are available via https://github.com/NCIP/alview.
Fröhlich, K U
1994-04-01
A new method for the presentation of alignments of long sequences is described. The degree of identity for the aligned sequences is averaged for sections of a fixed number of residues. The resulting values are converted to shades of gray, with white corresponding to lack of identity and black corresponding to perfect identity. A sequence alignment is represented as a bar filled with varying shades of gray. The display is compact and allows for a fast and intuitive recognition of the distribution of regions with a high similarity. It is well suited for the presentation of alignments of long sequences, e.g. of protein superfamilies, in plenary lectures. The method is implemented as a HyperCard stack for Apple Macintosh computers. Several options for the modification of the output are available (e.g. background reduction, size of the summation window, consideration of amino acid similarity, inclusion of graphic markers to indicate specific domains). The output is a PostScript file which can be printed, imported as EPS or processed further with Adobe Illustrator.
enoLOGOS: a versatile web tool for energy normalized sequence logos
Workman, Christopher T.; Yin, Yutong; Corcoran, David L.; Ideker, Trey; Stormo, Gary D.; Benos, Panayiotis V.
2005-01-01
enoLOGOS is a web-based tool that generates sequence logos from various input sources. Sequence logos have become a popular way to graphically represent DNA and amino acid sequence patterns from a set of aligned sequences. Each position of the alignment is represented by a column of stacked symbols with its total height reflecting the information content in this position. Currently, the available web servers are able to create logo images from a set of aligned sequences, but none of them generates weighted sequence logos directly from energy measurements or other sources. With the advent of high-throughput technologies for estimating the contact energy of different DNA sequences, tools that can create logos directly from binding affinity data are useful to researchers. enoLOGOS generates sequence logos from a variety of input data, including energy measurements, probability matrices, alignment matrices, count matrices and aligned sequences. Furthermore, enoLOGOS can represent the mutual information of different positions of the consensus sequence, a unique feature of this tool. Another web interface for our software, C2H2-enoLOGOS, generates logos for the DNA-binding preferences of the C2H2 zinc-finger transcription factor family members. enoLOGOS and C2H2-enoLOGOS are accessible over the web at . PMID:15980495
KISS for STRAP: user extensions for a protein alignment editor.
Gille, Christoph; Lorenzen, Stephan; Michalsky, Elke; Frömmel, Cornelius
2003-12-12
The Structural Alignment Program STRAP is a comfortable comprehensive editor and analyzing tool for protein alignments. A wide range of functions related to protein sequences and protein structures are accessible with an intuitive graphical interface. Recent features include mapping of mutations and polymorphisms onto structures and production of high quality figures for publication. Here we address the general problem of multi-purpose program packages to keep up with the rapid development of bioinformatical methods and the demand for specific program functions. STRAP was remade implementing a novel design which aims at Keeping Interfaces in STRAP Simple (KISS). KISS renders STRAP extendable to bio-scientists as well as to bio-informaticians. Scientists with basic computer skills are capable of implementing statistical methods or embedding existing bioinformatical tools in STRAP themselves. For bio-informaticians STRAP may serve as an environment for rapid prototyping and testing of complex algorithms such as automatic alignment algorithms or phylogenetic methods. Further, STRAP can be applied as an interactive web applet to present data related to a particular protein family and as a teaching tool. JAVA-1.4 or higher. http://www.charite.de/bioinf/strap/
Xu, Duo; Jaber, Yousef; Pavlidis, Pavlos; Gokcumen, Omer
2017-09-26
Constructing alignments and phylogenies for a given locus from large genome sequencing studies with relevant outgroups allow novel evolutionary and anthropological insights. However, no user-friendly tool has been developed to integrate thousands of recently available and anthropologically relevant genome sequences to construct complete sequence alignments and phylogenies. Here, we provide VCFtoTree, a user friendly tool with a graphical user interface that directly accesses online databases to download, parse and analyze genome variation data for regions of interest. Our pipeline combines popular sequence datasets and tree building algorithms with custom data parsing to generate accurate alignments and phylogenies using all the individuals from the 1000 Genomes Project, Neanderthal and Denisovan genomes, as well as reference genomes of Chimpanzee and Rhesus Macaque. It can also be applied to other phased human genomes, as well as genomes from other species. The output of our pipeline includes an alignment in FASTA format and a tree file in newick format. VCFtoTree fulfills the increasing demand for constructing alignments and phylogenies for a given loci from thousands of available genomes. Our software provides a user friendly interface for a wider audience without prerequisite knowledge in programming. VCFtoTree can be accessed from https://github.com/duoduoo/VCFtoTree_3.0.0 .
Parallel Implementation of MAFFT on CUDA-Enabled Graphics Hardware.
Zhu, Xiangyuan; Li, Kenli; Salah, Ahmad; Shi, Lin; Li, Keqin
2015-01-01
Multiple sequence alignment (MSA) constitutes an extremely powerful tool for many biological applications including phylogenetic tree estimation, secondary structure prediction, and critical residue identification. However, aligning large biological sequences with popular tools such as MAFFT requires long runtimes on sequential architectures. Due to the ever increasing sizes of sequence databases, there is increasing demand to accelerate this task. In this paper, we demonstrate how graphic processing units (GPUs), powered by the compute unified device architecture (CUDA), can be used as an efficient computational platform to accelerate the MAFFT algorithm. To fully exploit the GPU's capabilities for accelerating MAFFT, we have optimized the sequence data organization to eliminate the bandwidth bottleneck of memory access, designed a memory allocation and reuse strategy to make full use of limited memory of GPUs, proposed a new modified-run-length encoding (MRLE) scheme to reduce memory consumption, and used high-performance shared memory to speed up I/O operations. Our implementation tested in three NVIDIA GPUs achieves speedup up to 11.28 on a Tesla K20m GPU compared to the sequential MAFFT 7.015.
Wright, Imogen A.; Travers, Simon A.
2014-01-01
The challenge presented by high-throughput sequencing necessitates the development of novel tools for accurate alignment of reads to reference sequences. Current approaches focus on using heuristics to map reads quickly to large genomes, rather than generating highly accurate alignments in coding regions. Such approaches are, thus, unsuited for applications such as amplicon-based analysis and the realignment phase of exome sequencing and RNA-seq, where accurate and biologically relevant alignment of coding regions is critical. To facilitate such analyses, we have developed a novel tool, RAMICS, that is tailored to mapping large numbers of sequence reads to short lengths (<10 000 bp) of coding DNA. RAMICS utilizes profile hidden Markov models to discover the open reading frame of each sequence and aligns to the reference sequence in a biologically relevant manner, distinguishing between genuine codon-sized indels and frameshift mutations. This approach facilitates the generation of highly accurate alignments, accounting for the error biases of the sequencing machine used to generate reads, particularly at homopolymer regions. Performance improvements are gained through the use of graphics processing units, which increase the speed of mapping through parallelization. RAMICS substantially outperforms all other mapping approaches tested in terms of alignment quality while maintaining highly competitive speed performance. PMID:24861618
CLAST: CUDA implemented large-scale alignment search tool.
Yano, Masahiro; Mori, Hiroshi; Akiyama, Yutaka; Yamada, Takuji; Kurokawa, Ken
2014-12-11
Metagenomics is a powerful methodology to study microbial communities, but it is highly dependent on nucleotide sequence similarity searching against sequence databases. Metagenomic analyses with next-generation sequencing technologies produce enormous numbers of reads from microbial communities, and many reads are derived from microbes whose genomes have not yet been sequenced, limiting the usefulness of existing sequence similarity search tools. Therefore, there is a clear need for a sequence similarity search tool that can rapidly detect weak similarity in large datasets. We developed a tool, which we named CLAST (CUDA implemented large-scale alignment search tool), that enables analyses of millions of reads and thousands of reference genome sequences, and runs on NVIDIA Fermi architecture graphics processing units. CLAST has four main advantages over existing alignment tools. First, CLAST was capable of identifying sequence similarities ~80.8 times faster than BLAST and 9.6 times faster than BLAT. Second, CLAST executes global alignment as the default (local alignment is also an option), enabling CLAST to assign reads to taxonomic and functional groups based on evolutionarily distant nucleotide sequences with high accuracy. Third, CLAST does not need a preprocessed sequence database like Burrows-Wheeler Transform-based tools, and this enables CLAST to incorporate large, frequently updated sequence databases. Fourth, CLAST requires <2 GB of main memory, making it possible to run CLAST on a standard desktop computer or server node. CLAST achieved very high speed (similar to the Burrows-Wheeler Transform-based Bowtie 2 for long reads) and sensitivity (equal to BLAST, BLAT, and FR-HIT) without the need for extensive database preprocessing or a specialized computing platform. Our results demonstrate that CLAST has the potential to be one of the most powerful and realistic approaches to analyze the massive amount of sequence data from next-generation sequencing technologies.
Ibarra, Ignacio L; Melo, Francisco
2010-07-01
Dynamic programming (DP) is a general optimization strategy that is successfully used across various disciplines of science. In bioinformatics, it is widely applied in calculating the optimal alignment between pairs of protein or DNA sequences. These alignments form the basis of new, verifiable biological hypothesis. Despite its importance, there are no interactive tools available for training and education on understanding the DP algorithm. Here, we introduce an interactive computer application with a graphical interface, for the purpose of educating students about DP. The program displays the DP scoring matrix and the resulting optimal alignment(s), while allowing the user to modify key parameters such as the values in the similarity matrix, the sequence alignment algorithm version and the gap opening/extension penalties. We hope that this software will be useful to teachers and students of bioinformatics courses, as well as researchers who implement the DP algorithm for diverse applications. The software is freely available at: http:/melolab.org/sat. The software is written in the Java computer language, thus it runs on all major platforms and operating systems including Windows, Mac OS X and LINUX. All inquiries or comments about this software should be directed to Francisco Melo at fmelo@bio.puc.cl.
Advanced computer graphic techniques for laser range finder (LRF) simulation
NASA Astrophysics Data System (ADS)
Bedkowski, Janusz; Jankowski, Stanislaw
2008-11-01
This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.
Wright, Imogen A; Travers, Simon A
2014-07-01
The challenge presented by high-throughput sequencing necessitates the development of novel tools for accurate alignment of reads to reference sequences. Current approaches focus on using heuristics to map reads quickly to large genomes, rather than generating highly accurate alignments in coding regions. Such approaches are, thus, unsuited for applications such as amplicon-based analysis and the realignment phase of exome sequencing and RNA-seq, where accurate and biologically relevant alignment of coding regions is critical. To facilitate such analyses, we have developed a novel tool, RAMICS, that is tailored to mapping large numbers of sequence reads to short lengths (<10 000 bp) of coding DNA. RAMICS utilizes profile hidden Markov models to discover the open reading frame of each sequence and aligns to the reference sequence in a biologically relevant manner, distinguishing between genuine codon-sized indels and frameshift mutations. This approach facilitates the generation of highly accurate alignments, accounting for the error biases of the sequencing machine used to generate reads, particularly at homopolymer regions. Performance improvements are gained through the use of graphics processing units, which increase the speed of mapping through parallelization. RAMICS substantially outperforms all other mapping approaches tested in terms of alignment quality while maintaining highly competitive speed performance. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
MollDE: a homology modeling framework you can click with.
Canutescu, Adrian A; Dunbrack, Roland L
2005-06-15
Molecular Integrated Development Environment (MolIDE) is an integrated application designed to provide homology modeling tools and protocols under a uniform, user-friendly graphical interface. Its main purpose is to combine the most frequent modeling steps in a semi-automatic, interactive way, guiding the user from the target protein sequence to the final three-dimensional protein structure. The typical basic homology modeling process is composed of building sequence profiles of the target sequence family, secondary structure prediction, sequence alignment with PDB structures, assisted alignment editing, side-chain prediction and loop building. All of these steps are available through a graphical user interface. MolIDE's user-friendly and streamlined interactive modeling protocol allows the user to focus on the important modeling questions, hiding from the user the raw data generation and conversion steps. MolIDE was designed from the ground up as an open-source, cross-platform, extensible framework. This allows developers to integrate additional third-party programs to MolIDE. http://dunbrack.fccc.edu/molide/molide.php rl_dunbrack@fccc.edu.
GATA: A graphic alignment tool for comparative sequenceanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nix, David A.; Eisen, Michael B.
2005-01-01
Several problems exist with current methods used to align DNA sequences for comparative sequence analysis. Most dynamic programming algorithms assume that conserved sequence elements are collinear. This assumption appears valid when comparing orthologous protein coding sequences. Functional constraints on proteins provide strong selective pressure against sequence inversions, and minimize sequence duplications and feature shuffling. For non-coding sequences this collinearity assumption is often invalid. For example, enhancers contain clusters of transcription factor binding sites that change in number, orientation, and spacing during evolution yet the enhancer retains its activity. Dotplot analysis is often used to estimate non-coding sequence relatedness. Yet dotmore » plots do not actually align sequences and thus cannot account well for base insertions or deletions. Moreover, they lack an adequate statistical framework for comparing sequence relatedness and are limited to pairwise comparisons. Lastly, dot plots and dynamic programming text outputs fail to provide an intuitive means for visualizing DNA alignments.« less
iPARTS2: an improved tool for pairwise alignment of RNA tertiary structures, version 2.
Yang, Chung-Han; Shih, Cheng-Ting; Chen, Kun-Tze; Lee, Po-Han; Tsai, Ping-Han; Lin, Jian-Cheng; Yen, Ching-Yu; Lin, Tiao-Yin; Lu, Chin Lung
2016-07-08
Since its first release in 2010, iPARTS has become a valuable tool for globally or locally aligning two RNA 3D structures. It was implemented by a structural alphabet (SA)-based approach, which uses an SA of 23 letters to reduce RNA 3D structures into 1D sequences of SA letters and applies traditional sequence alignment to these SA-encoded sequences for determining their global or local similarity. In this version, we have re-implemented iPARTS into a new web server iPARTS2 by constructing a totally new SA, which consists of 92 elements with each carrying both information of base and backbone geometry for a representative nucleotide. This SA is significantly different from the one used in iPARTS, because the latter consists of only 23 elements with each carrying only the backbone geometry information of a representative nucleotide. Our experimental results have shown that iPARTS2 outperforms its previous version iPARTS and also achieves better accuracy than other popular tools, such as SARA, SETTER and RASS, in RNA alignment quality and function prediction. iPARTS2 takes as input two RNA 3D structures in the PDB format and outputs their global or local alignments with graphical display. iPARTS2 is now available online at http://genome.cs.nthu.edu.tw/iPARTS2/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Applications of the pipeline environment for visual informatics and genomics computations
2011-01-01
Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client-server model provides computational power to a broad spectrum of informatics investigators - experienced developers and novice users, user with or without access to advanced computational-resources (e.g., Grid, data), as well as basic and translational scientists. The open development, validation and dissemination of computational networks (pipeline workflows) facilitates the sharing of knowledge, tools, protocols and best practices, and enables the unbiased validation and replication of scientific findings by the entire community. PMID:21791102
2014-01-01
Background RNA sequencing (RNA-seq) is emerging as a critical approach in biological research. However, its high-throughput advantage is significantly limited by the capacity of bioinformatics tools. The research community urgently needs user-friendly tools to efficiently analyze the complicated data generated by high throughput sequencers. Results We developed a standalone tool with graphic user interface (GUI)-based analytic modules, known as eRNA. The capacity of performing parallel processing and sample management facilitates large data analyses by maximizing hardware usage and freeing users from tediously handling sequencing data. The module miRNA identification” includes GUIs for raw data reading, adapter removal, sequence alignment, and read counting. The module “mRNA identification” includes GUIs for reference sequences, genome mapping, transcript assembling, and differential expression. The module “Target screening” provides expression profiling analyses and graphic visualization. The module “Self-testing” offers the directory setups, sample management, and a check for third-party package dependency. Integration of other GUIs including Bowtie, miRDeep2, and miRspring extend the program’s functionality. Conclusions eRNA focuses on the common tools required for the mapping and quantification analysis of miRNA-seq and mRNA-seq data. The software package provides an additional choice for scientists who require a user-friendly computing environment and high-throughput capacity for large data analysis. eRNA is available for free download at https://sourceforge.net/projects/erna/?source=directory. PMID:24593312
Yuan, Tiezheng; Huang, Xiaoyi; Dittmar, Rachel L; Du, Meijun; Kohli, Manish; Boardman, Lisa; Thibodeau, Stephen N; Wang, Liang
2014-03-05
RNA sequencing (RNA-seq) is emerging as a critical approach in biological research. However, its high-throughput advantage is significantly limited by the capacity of bioinformatics tools. The research community urgently needs user-friendly tools to efficiently analyze the complicated data generated by high throughput sequencers. We developed a standalone tool with graphic user interface (GUI)-based analytic modules, known as eRNA. The capacity of performing parallel processing and sample management facilitates large data analyses by maximizing hardware usage and freeing users from tediously handling sequencing data. The module miRNA identification" includes GUIs for raw data reading, adapter removal, sequence alignment, and read counting. The module "mRNA identification" includes GUIs for reference sequences, genome mapping, transcript assembling, and differential expression. The module "Target screening" provides expression profiling analyses and graphic visualization. The module "Self-testing" offers the directory setups, sample management, and a check for third-party package dependency. Integration of other GUIs including Bowtie, miRDeep2, and miRspring extend the program's functionality. eRNA focuses on the common tools required for the mapping and quantification analysis of miRNA-seq and mRNA-seq data. The software package provides an additional choice for scientists who require a user-friendly computing environment and high-throughput capacity for large data analysis. eRNA is available for free download at https://sourceforge.net/projects/erna/?source=directory.
MatchGUI: A Graphical MATLAB-Based Tool for Automatic Image Co-Registration
NASA Technical Reports Server (NTRS)
Ansar, Adnan I.
2011-01-01
MatchGUI software, based on MATLAB, automatically matches two images and displays the match result by superimposing one image on the other. A slider bar allows focus to shift between the two images. There are tools for zoom, auto-crop to overlap region, and basic image markup. Given a pair of ortho-rectified images (focused primarily on Mars orbital imagery for now), this software automatically co-registers the imagery so that corresponding image pixels are aligned. MatchGUI requires minimal user input, and performs a registration over scale and inplane rotation fully automatically
Dastane, A; Vaidyanathan, T K; Vaidyanathan, J; Mehra, R; Hesby, R
1996-01-01
It is necessary to visualize and reconstruct tissue anatomic surfaces accurately for a variety of oral rehabilitation applications such as surface wear characterization and automated fabrication of dental restorations, accuracy of reproduction of impression and die materials, etc. In this investigation, a 3-D digitization and computer-graphic system was developed for surface characterization. The hardware consists of a profiler assembly for digitization in an MTS biomechanical test system with an artificial mouth, an IBM PS/2 computer model 70 for data processing and a Hewlett-Packard laser printer for hardcopy outputs. The software used includes a commercially available Surfer 3-D graphics package, a public domain data-fitting alignment software and an inhouse Pascal program for intercommunication plus some other limited tasks. Surfaces were digitized before and after rotation by angular displacement, the digital data were interpolated by Surfer to provide a data grid and the surfaces were computer graphically reconstructed: Misaligned surfaces were aligned by the data-fitting alignment software under different choices of parameters. The effect of different interpolation parameters (e.g. grid size, method of interpolation) and extent of rotation on the alignment accuracy was determined. The results indicate that improved alignment accuracy results from optimization of interpolation parameters and minimization of the initial misorientation between the digitized surfaces. The method provides important advantages for surface reconstruction and visualization, such as overlay of sequentially generated surfaces and accurate alignment of pairs of surfaces with small misalignment.
Volumetric neuroimage analysis extensions for the MIPAV software package.
Bazin, Pierre-Louis; Cuzzocreo, Jennifer L; Yassa, Michael A; Gandler, William; McAuliffe, Matthew J; Bassett, Susan S; Pham, Dzung L
2007-09-15
We describe a new collection of publicly available software tools for performing quantitative neuroimage analysis. The tools perform semi-automatic brain extraction, tissue classification, Talairach alignment, and atlas-based measurements within a user-friendly graphical environment. They are implemented as plug-ins for MIPAV, a freely available medical image processing software package from the National Institutes of Health. Because the plug-ins and MIPAV are implemented in Java, both can be utilized on nearly any operating system platform. In addition to the software plug-ins, we have also released a digital version of the Talairach atlas that can be used to perform regional volumetric analyses. Several studies are conducted applying the new tools to simulated and real neuroimaging data sets.
Base-By-Base: single nucleotide-level analysis of whole viral genome alignments.
Brodie, Ryan; Smith, Alex J; Roper, Rachel L; Tcherepanov, Vasily; Upton, Chris
2004-07-14
With ever increasing numbers of closely related virus genomes being sequenced, it has become desirable to be able to compare two genomes at a level more detailed than gene content because two strains of an organism may share the same set of predicted genes but still differ in their pathogenicity profiles. For example, detailed comparison of multiple isolates of the smallpox virus genome (each approximately 200 kb, with 200 genes) is not feasible without new bioinformatics tools. A software package, Base-By-Base, has been developed that provides visualization tools to enable researchers to 1) rapidly identify and correct alignment errors in large, multiple genome alignments; and 2) generate tabular and graphical output of differences between the genomes at the nucleotide level. Base-By-Base uses detailed annotation information about the aligned genomes and can list each predicted gene with nucleotide differences, display whether variations occur within promoter regions or coding regions and whether these changes result in amino acid substitutions. Base-By-Base can connect to our mySQL database (Virus Orthologous Clusters; VOCs) to retrieve detailed annotation information about the aligned genomes or use information from text files. Base-By-Base enables users to quickly and easily compare large viral genomes; it highlights small differences that may be responsible for important phenotypic differences such as virulence. It is available via the Internet using Java Web Start and runs on Macintosh, PC and Linux operating systems with the Java 1.4 virtual machine.
2014-01-01
Background Logos are commonly used in molecular biology to provide a compact graphical representation of the conservation pattern of a set of sequences. They render the information contained in sequence alignments or profile hidden Markov models by drawing a stack of letters for each position, where the height of the stack corresponds to the conservation at that position, and the height of each letter within a stack depends on the frequency of that letter at that position. Results We present a new tool and web server, called Skylign, which provides a unified framework for creating logos for both sequence alignments and profile hidden Markov models. In addition to static image files, Skylign creates a novel interactive logo plot for inclusion in web pages. These interactive logos enable scrolling, zooming, and inspection of underlying values. Skylign can avoid sampling bias in sequence alignments by down-weighting redundant sequences and by combining observed counts with informed priors. It also simplifies the representation of gap parameters, and can optionally scale letter heights based on alternate calculations of the conservation of a position. Conclusion Skylign is available as a website, a scriptable web service with a RESTful interface, and as a software package for download. Skylign’s interactive logos are easily incorporated into a web page with just a few lines of HTML markup. Skylign may be found at http://skylign.org. PMID:24410852
Sequence Diversity Diagram for comparative analysis of multiple sequence alignments.
Sakai, Ryo; Aerts, Jan
2014-01-01
The sequence logo is a graphical representation of a set of aligned sequences, commonly used to depict conservation of amino acid or nucleotide sequences. Although it effectively communicates the amount of information present at every position, this visual representation falls short when the domain task is to compare between two or more sets of aligned sequences. We present a new visual presentation called a Sequence Diversity Diagram and validate our design choices with a case study. Our software was developed using the open-source program called Processing. It loads multiple sequence alignment FASTA files and a configuration file, which can be modified as needed to change the visualization. The redesigned figure improves on the visual comparison of two or more sets, and it additionally encodes information on sequential position conservation. In our case study of the adenylate kinase lid domain, the Sequence Diversity Diagram reveals unexpected patterns and new insights, for example the identification of subgroups within the protein subfamily. Our future work will integrate this visual encoding into interactive visualization tools to support higher level data exploration tasks.
BarraCUDA - a fast short read sequence aligner using graphics processing units
2012-01-01
Background With the maturation of next-generation DNA sequencing (NGS) technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU), extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC) clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence. Findings Using the NVIDIA Compute Unified Device Architecture (CUDA) software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput. Conclusions BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology. BarraCUDA is currently available from http://seqbarracuda.sf.net PMID:22244497
Comparative genome analysis in the integrated microbial genomes (IMG) system.
Markowitz, Victor M; Kyrpides, Nikos C
2007-01-01
Comparative genome analysis is critical for the effective exploration of a rapidly growing number of complete and draft sequences for microbial genomes. The Integrated Microbial Genomes (IMG) system (img.jgi.doe.gov) has been developed as a community resource that provides support for comparative analysis of microbial genomes in an integrated context. IMG allows users to navigate the multidimensional microbial genome data space and focus their analysis on a subset of genes, genomes, and functions of interest. IMG provides graphical viewers, summaries, and occurrence profile tools for comparing genes, pathways, and functions (terms) across specific genomes. Genes can be further examined using gene neighborhoods and compared with sequence alignment tools.
Aligning the unalignable: bacteriophage whole genome alignments.
Bérard, Sèverine; Chateau, Annie; Pompidor, Nicolas; Guertin, Paul; Bergeron, Anne; Swenson, Krister M
2016-01-13
In recent years, many studies focused on the description and comparison of large sets of related bacteriophage genomes. Due to the peculiar mosaic structure of these genomes, few informative approaches for comparing whole genomes exist: dot plots diagrams give a mostly qualitative assessment of the similarity/dissimilarity between two or more genomes, and clustering techniques are used to classify genomes. Multiple alignments are conspicuously absent from this scene. Indeed, whole genome aligners interpret lack of similarity between sequences as an indication of rearrangements, insertions, or losses. This behavior makes them ill-prepared to align bacteriophage genomes, where even closely related strains can accomplish the same biological function with highly dissimilar sequences. In this paper, we propose a multiple alignment strategy that exploits functional collinearity shared by related strains of bacteriophages, and uses partial orders to capture mosaicism of sets of genomes. As classical alignments do, the computed alignments can be used to predict that genes have the same biological function, even in the absence of detectable similarity. The Alpha aligner implements these ideas in visual interactive displays, and is used to compute several examples of alignments of Staphylococcus aureus and Mycobacterium bacteriophages, involving up to 29 genomes. Using these datasets, we prove that Alpha alignments are at least as good as those computed by standard aligners. Comparison with the progressive Mauve aligner - which implements a partial order strategy, but whose alignments are linearized - shows a greatly improved interactive graphic display, while avoiding misalignments. Multiple alignments of whole bacteriophage genomes work, and will become an important conceptual and visual tool in comparative genomics of sets of related strains. A python implementation of Alpha, along with installation instructions for Ubuntu and OSX, is available on bitbucket (https://bitbucket.org/thekswenson/alpha).
Fan, Long; Hui, Jerome H L; Yu, Zu Guo; Chu, Ka Hou
2014-07-01
Species identification based on short sequences of DNA markers, that is, DNA barcoding, has emerged as an integral part of modern taxonomy. However, software for the analysis of large and multilocus barcoding data sets is scarce. The Basic Local Alignment Search Tool (BLAST) is currently the fastest tool capable of handling large databases (e.g. >5000 sequences), but its accuracy is a concern and has been criticized for its local optimization. However, current more accurate software requires sequence alignment or complex calculations, which are time-consuming when dealing with large data sets during data preprocessing or during the search stage. Therefore, it is imperative to develop a practical program for both accurate and scalable species identification for DNA barcoding. In this context, we present VIP Barcoding: a user-friendly software in graphical user interface for rapid DNA barcoding. It adopts a hybrid, two-stage algorithm. First, an alignment-free composition vector (CV) method is utilized to reduce searching space by screening a reference database. The alignment-based K2P distance nearest-neighbour method is then employed to analyse the smaller data set generated in the first stage. In comparison with other software, we demonstrate that VIP Barcoding has (i) higher accuracy than Blastn and several alignment-free methods and (ii) higher scalability than alignment-based distance methods and character-based methods. These results suggest that this platform is able to deal with both large-scale and multilocus barcoding data with accuracy and can contribute to DNA barcoding for modern taxonomy. VIP Barcoding is free and available at http://msl.sls.cuhk.edu.hk/vipbarcoding/. © 2014 John Wiley & Sons Ltd.
cuBLASTP: Fine-Grained Parallelization of Protein Sequence Search on CPU+GPU.
Zhang, Jing; Wang, Hao; Feng, Wu-Chun
2017-01-01
BLAST, short for Basic Local Alignment Search Tool, is a ubiquitous tool used in the life sciences for pairwise sequence search. However, with the advent of next-generation sequencing (NGS), whether at the outset or downstream from NGS, the exponential growth of sequence databases is outstripping our ability to analyze the data. While recent studies have utilized the graphics processing unit (GPU) to speedup the BLAST algorithm for searching protein sequences (i.e., BLASTP), these studies use coarse-grained parallelism, where one sequence alignment is mapped to only one thread. Such an approach does not efficiently utilize the capabilities of a GPU, particularly due to the irregularity of BLASTP in both execution paths and memory-access patterns. To address the above shortcomings, we present a fine-grained approach to parallelize BLASTP, where each individual phase of sequence search is mapped to many threads on a GPU. This approach, which we refer to as cuBLASTP, reorders data-access patterns and reduces divergent branches of the most time-consuming phases (i.e., hit detection and ungapped extension). In addition, cuBLASTP optimizes the remaining phases (i.e., gapped extension and alignment with trace back) on a multicore CPU and overlaps their execution with the phases running on the GPU.
2010-01-01
Background Multiple sequence alignments are used to study gene or protein function, phylogenetic relations, genome evolution hypotheses and even gene polymorphisms. Virtually without exception, all available tools focus on conserved segments or residues. Small divergent regions, however, are biologically important for specific quantitative polymerase chain reaction, genotyping, molecular markers and preparation of specific antibodies, and yet have received little attention. As a consequence, they must be selected empirically by the researcher. AlignMiner has been developed to fill this gap in bioinformatic analyses. Results AlignMiner is a Web-based application for detection of conserved and divergent regions in alignments of conserved sequences, focusing particularly on divergence. It accepts alignments (protein or nucleic acid) obtained using any of a variety of algorithms, which does not appear to have a significant impact on the final results. AlignMiner uses different scoring methods for assessing conserved/divergent regions, Entropy being the method that provides the highest number of regions with the greatest length, and Weighted being the most restrictive. Conserved/divergent regions can be generated either with respect to the consensus sequence or to one master sequence. The resulting data are presented in a graphical interface developed in AJAX, which provides remarkable user interaction capabilities. Users do not need to wait until execution is complete and can.even inspect their results on a different computer. Data can be downloaded onto a user disk, in standard formats. In silico and experimental proof-of-concept cases have shown that AlignMiner can be successfully used to designing specific polymerase chain reaction primers as well as potential epitopes for antibodies. Primer design is assisted by a module that deploys several oligonucleotide parameters for designing primers "on the fly". Conclusions AlignMiner can be used to reliably detect divergent regions via several scoring methods that provide different levels of selectivity. Its predictions have been verified by experimental means. Hence, it is expected that its usage will save researchers' time and ensure an objective selection of the best-possible divergent region when closely related sequences are analysed. AlignMiner is freely available at http://www.scbi.uma.es/alignminer. PMID:20525162
Flexible, fast and accurate sequence alignment profiling on GPGPU with PaSWAS.
Warris, Sven; Yalcin, Feyruz; Jackson, Katherine J L; Nap, Jan Peter
2015-01-01
To obtain large-scale sequence alignments in a fast and flexible way is an important step in the analyses of next generation sequencing data. Applications based on the Smith-Waterman (SW) algorithm are often either not fast enough, limited to dedicated tasks or not sufficiently accurate due to statistical issues. Current SW implementations that run on graphics hardware do not report the alignment details necessary for further analysis. With the Parallel SW Alignment Software (PaSWAS) it is possible (a) to have easy access to the computational power of NVIDIA-based general purpose graphics processing units (GPGPUs) to perform high-speed sequence alignments, and (b) retrieve relevant information such as score, number of gaps and mismatches. The software reports multiple hits per alignment. The added value of the new SW implementation is demonstrated with two test cases: (1) tag recovery in next generation sequence data and (2) isotype assignment within an immunoglobulin 454 sequence data set. Both cases show the usability and versatility of the new parallel Smith-Waterman implementation.
An Interior Signage System for the USAF Academy Hospital
1979-08-01
manner. Graphic Design - Graphic design is a design for visual communication . Graphic Design Tools - There are four basic graphic design tools available...specializes in the design of two dimensional visual communication components. The graphic designer utilizes the four graphic design tools in developing
Nanofiber alignment of a small diameter elastic electrospun scaffold
NASA Astrophysics Data System (ADS)
Patel, Jignesh
Cardiovascular disease is the leading cause of death in western countries with coronary heart disease making up 50% of these deaths. As a treatment option, tissue engineered grafts have great potential. Elastic scaffolds that mimic arterial extracellular matrix (ECM) may hold the key to creating viable vascular grafts. Electrospinning is a widely used scaffold fabrication technique to engineer tubular scaffolds. In this study, we investigated how the collector rotation speed altered the nanofiber alignment which may improve mechanical characteristics making the scaffold more suitable for arterial grafts. The scaffold was fabricated from a blend of PCL/Elastin. 2D Fast Fourier Transform (FFT) image processing tool and MatLab were used to quantitatively analyze nanofiber orientation at different collector speeds (13500 to 15500 rpm). Both Image J and MatLab showed graphical peaks indicating predominant fiber orientation angles. A collector speed of 15000 rpm was found to produce the best nanofiber alignment with narrow peaks at 90 and 270 degrees, and a relative amplitude of 200. This indicates a narrow distribution of circumferentially aligned nanofibers. Collector speeds below and above 15000 rpm caused a decrease in fiber alignment with a broader orientation distribution. Uniformity of fiber diameter was also measured. Of 600 measures from the 15000 rpm scaffolds, the fiber diameter range from 500 nm to 899 nm was most prevalent. This diameter range was slightly larger than native ECM which ranges from 50 nm to 500 nm. The second most prevalent diameter range had an average of 404 nm which is within the diameter range of collagen. This study concluded that with proper electrospinning technique and collector speed, it is possible to fabricate highly aligned small diameter elastic scaffolds. Image J 2D FFT results confirmed MatLab findings for the analyses of circumferentially aligned nanofibers. In addition, MatLab analyses simplified the FFT orientation data providing an accurate, user friendly orientation measurement tool.
An MHD Code for the Study of Magnetic Structures in the Solar Wind
NASA Technical Reports Server (NTRS)
Allred, J. C.; MacNeice, P. J.
2015-01-01
We have developed a 2.5D MHD code designed to study how the solar wind influences the evolution of transient events in the solar corona and inner heliosphere. The code includes thermal conduction, coronal heating and radiative cooling. Thermal conduction is assumed to be magnetic field-aligned in the inner corona and transitions to a collisionless formulation in the outer corona. We have developed a stable method to handle field-aligned conduction around magnetic null points. The inner boundary is placed in the upper transition region, and the mass flux across the boundary is determined from 1D field-aligned characteristics and a 'radiative energy balance' condition. The 2.5D nature of this code makes it ideal for parameter studies not yet possible with 3D codes. We have made this code publicly available as a tool for the community. To this end we have developed a graphical interface to aid in the selection of appropriate options and a graphical interface that can process and visualize the data produced by the simulation. As an example, we show a simulation of a dipole field stretched into a helmet streamer by the solar wind. Plasmoids periodically erupt from the streamer, and we perform a parameter study of how the frequency and location of these eruptions changed in response to different levels of coronal heating. As a further example, we show the solar wind stretching a compact multi-polar flux system. This flux system will be used to study breakout coronal mass ejections in the presence of the solar wind.
QuickProbs—A Fast Multiple Sequence Alignment Algorithm Designed for Graphics Processors
Gudyś, Adam; Deorowicz, Sebastian
2014-01-01
Multiple sequence alignment is a crucial task in a number of biological analyses like secondary structure prediction, domain searching, phylogeny, etc. MSAProbs is currently the most accurate alignment algorithm, but its effectiveness is obtained at the expense of computational time. In the paper we present QuickProbs, the variant of MSAProbs customised for graphics processors. We selected the two most time consuming stages of MSAProbs to be redesigned for GPU execution: the posterior matrices calculation and the consistency transformation. Experiments on three popular benchmarks (BAliBASE, PREFAB, OXBench-X) on quad-core PC equipped with high-end graphics card show QuickProbs to be 5.7 to 9.7 times faster than original CPU-parallel MSAProbs. Additional tests performed on several protein families from Pfam database give overall speed-up of 6.7. Compared to other algorithms like MAFFT, MUSCLE, or ClustalW, QuickProbs proved to be much more accurate at similar speed. Additionally we introduce a tuned variant of QuickProbs which is significantly more accurate on sets of distantly related sequences than MSAProbs without exceeding its computation time. The GPU part of QuickProbs was implemented in OpenCL, thus the package is suitable for graphics processors produced by all major vendors. PMID:24586435
2014-01-01
Background Ambiscript is a graphically-designed nucleic acid notation that uses symbol symmetries to support sequence complementation, highlight biologically-relevant palindromes, and facilitate the analysis of consensus sequences. Although the original Ambiscript notation was designed to easily represent consensus sequences for multiple sequence alignments, the notation’s black-on-white ambiguity characters are unable to reflect the statistical distribution of nucleotides found at each position. We now propose a color-augmented ambigraphic notation to encode the frequency of positional polymorphisms in these consensus sequences. Results We have implemented this color-coding approach by creating an Adobe Flash® application ( http://www.ambiscript.org) that shades and colors modified Ambiscript characters according to the prevalence of the encoded nucleotide at each position in the alignment. The resulting graphic helps viewers perceive biologically-relevant patterns in multiple sequence alignments by uniquely combining color, shading, and character symmetries to highlight palindromes and inverted repeats in conserved DNA motifs. Conclusion Juxtaposing an intuitive color scheme over the deliberate character symmetries of an ambigraphic nucleic acid notation yields a highly-functional nucleic acid notation that maximizes information content and successfully embodies key principles of graphic excellence put forth by the statistician and graphic design theorist, Edward Tufte. PMID:24447494
Grade-Aligned Math Instruction for Secondary Students with Moderate Intellectual Disability
ERIC Educational Resources Information Center
Browder, Diane M.; Jimenez, Bree A.; Trela, Katherine
2012-01-01
The purpose of this study was to examine the effects of grade-aligned math instruction on math skill acquisition of four middle schools with moderate intellectual disability. Teachers were trained to follow a task analysis to teach grade-aligned math to middle school students using adapted math problem stories and graphic organizers. The teacher…
GuiTope: an application for mapping random-sequence peptides to protein sequences.
Halperin, Rebecca F; Stafford, Phillip; Emery, Jack S; Navalkar, Krupa Arun; Johnston, Stephen Albert
2012-01-03
Random-sequence peptide libraries are a commonly used tool to identify novel ligands for binding antibodies, other proteins, and small molecules. It is often of interest to compare the selected peptide sequences to the natural protein binding partners to infer the exact binding site or the importance of particular residues. The ability to search a set of sequences for similarity to a set of peptides may sometimes enable the prediction of an antibody epitope or a novel binding partner. We have developed a software application designed specifically for this task. GuiTope provides a graphical user interface for aligning peptide sequences to protein sequences. All alignment parameters are accessible to the user including the ability to specify the amino acid frequency in the peptide library; these frequencies often differ significantly from those assumed by popular alignment programs. It also includes a novel feature to align di-peptide inversions, which we have found improves the accuracy of antibody epitope prediction from peptide microarray data and shows utility in analyzing phage display datasets. Finally, GuiTope can randomly select peptides from a given library to estimate a null distribution of scores and calculate statistical significance. GuiTope provides a convenient method for comparing selected peptide sequences to protein sequences, including flexible alignment parameters, novel alignment features, ability to search a database, and statistical significance of results. The software is available as an executable (for PC) at http://www.immunosignature.com/software and ongoing updates and source code will be available at sourceforge.net.
Graphic arts techniques and equipment: A compilation
NASA Technical Reports Server (NTRS)
1974-01-01
Technology utilization of NASA sponsored projects involving graphic arts techniques and equipment is discussed. The subjects considered are: (1) modification to graphics tools, (1) new graphics tools, (3) visual aids for graphics, and (4) graphic arts shop hints. Photographs and diagrams are included to support the written material.
Aspey, R A; McDermid, I S; Leblanc, T; Howe, J W; Walsh, T D
2008-09-01
The Jet Propulsion Laboratory operates lidar systems at Table Mountain Facility (TMF), California (34.4 degrees N, 117.7 degrees W) and Mauna Loa Observatory, Hawaii (19.5 degrees N, 155.6 degrees W) under the framework of the Network for the Detection of Atmospheric Composition Change. To complement these systems a new Raman lidar has been developed at TMF with particular attention given to optimizing water vapor profile measurements up to the tropopause and lower stratosphere. The lidar has been designed for accuracies of 5% up to 12 km in the free troposphere and a detection capability of <5 ppmv. One important feature of the lidar is a precision alignment system using range resolved data from eight Licel transient recorders, allowing fully configurable alignment via a LABVIEW/C++ graphical user interface (GUI). This allows the lidar to be aligned on any channel while simultaneously displaying signals from other channels at configurable altitude/bin combinations. The general lidar instrumental setup and the details of the alignment control system, data acquisition, and GUI alignment software are described. Preliminary validation results using radiosonde and lidar intercomparisons are briefly presented.
Photoshop tips and tricks every facial plastic surgeon should know.
Hamilton, Grant S
2010-05-01
Postprocessing of patient photographs is an important skill for the facial plastic surgeon. Postprocessing is intended to optimize the image, not change the surgical result. This article refers to use of Photoshop CS3 (Adobe Systems Incorporated, San Jose, CA, USA) for descriptions, but any recent version of Photoshop is sufficiently similar. Topics covered are types of camera, shooting formats, color balance, alignment of preoperative and postoperative photographs, and preparing figures for publication. Each section presents step-by-step guidance and instructions along with a graphic depiction of the computer screen and Photoshop tools under discussion. Copyright 2010 Elsevier Inc. All rights reserved.
JCoDA: a tool for detecting evolutionary selection.
Steinway, Steven N; Dannenfelser, Ruth; Laucius, Christopher D; Hayes, James E; Nayak, Sudhir
2010-05-27
The incorporation of annotated sequence information from multiple related species in commonly used databases (Ensembl, Flybase, Saccharomyces Genome Database, Wormbase, etc.) has increased dramatically over the last few years. This influx of information has provided a considerable amount of raw material for evaluation of evolutionary relationships. To aid in the process, we have developed JCoDA (Java Codon Delimited Alignment) as a simple-to-use visualization tool for the detection of site specific and regional positive/negative evolutionary selection amongst homologous coding sequences. JCoDA accepts user-inputted unaligned or pre-aligned coding sequences, performs a codon-delimited alignment using ClustalW, and determines the dN/dS calculations using PAML (Phylogenetic Analysis Using Maximum Likelihood, yn00 and codeml) in order to identify regions and sites under evolutionary selection. The JCoDA package includes a graphical interface for Phylip (Phylogeny Inference Package) to generate phylogenetic trees, manages formatting of all required file types, and streamlines passage of information between underlying programs. The raw data are output to user configurable graphs with sliding window options for straightforward visualization of pairwise or gene family comparisons. Additionally, codon-delimited alignments are output in a variety of common formats and all dN/dS calculations can be output in comma-separated value (CSV) format for downstream analysis. To illustrate the types of analyses that are facilitated by JCoDA, we have taken advantage of the well studied sex determination pathway in nematodes as well as the extensive sequence information available to identify genes under positive selection, examples of regional positive selection, and differences in selection based on the role of genes in the sex determination pathway. JCoDA is a configurable, open source, user-friendly visualization tool for performing evolutionary analysis on homologous coding sequences. JCoDA can be used to rapidly screen for genes and regions of genes under selection using PAML. It can be freely downloaded at http://www.tcnj.edu/~nayaklab/jcoda.
JCoDA: a tool for detecting evolutionary selection
2010-01-01
Background The incorporation of annotated sequence information from multiple related species in commonly used databases (Ensembl, Flybase, Saccharomyces Genome Database, Wormbase, etc.) has increased dramatically over the last few years. This influx of information has provided a considerable amount of raw material for evaluation of evolutionary relationships. To aid in the process, we have developed JCoDA (Java Codon Delimited Alignment) as a simple-to-use visualization tool for the detection of site specific and regional positive/negative evolutionary selection amongst homologous coding sequences. Results JCoDA accepts user-inputted unaligned or pre-aligned coding sequences, performs a codon-delimited alignment using ClustalW, and determines the dN/dS calculations using PAML (Phylogenetic Analysis Using Maximum Likelihood, yn00 and codeml) in order to identify regions and sites under evolutionary selection. The JCoDA package includes a graphical interface for Phylip (Phylogeny Inference Package) to generate phylogenetic trees, manages formatting of all required file types, and streamlines passage of information between underlying programs. The raw data are output to user configurable graphs with sliding window options for straightforward visualization of pairwise or gene family comparisons. Additionally, codon-delimited alignments are output in a variety of common formats and all dN/dS calculations can be output in comma-separated value (CSV) format for downstream analysis. To illustrate the types of analyses that are facilitated by JCoDA, we have taken advantage of the well studied sex determination pathway in nematodes as well as the extensive sequence information available to identify genes under positive selection, examples of regional positive selection, and differences in selection based on the role of genes in the sex determination pathway. Conclusions JCoDA is a configurable, open source, user-friendly visualization tool for performing evolutionary analysis on homologous coding sequences. JCoDA can be used to rapidly screen for genes and regions of genes under selection using PAML. It can be freely downloaded at http://www.tcnj.edu/~nayaklab/jcoda. PMID:20507581
Genovar: a detection and visualization tool for genomic variants.
Jung, Kwang Su; Moon, Sanghoon; Kim, Young Jin; Kim, Bong-Jo; Park, Kiejung
2012-05-08
Along with single nucleotide polymorphisms (SNPs), copy number variation (CNV) is considered an important source of genetic variation associated with disease susceptibility. Despite the importance of CNV, the tools currently available for its analysis often produce false positive results due to limitations such as low resolution of array platforms, platform specificity, and the type of CNV. To resolve this problem, spurious signals must be separated from true signals by visual inspection. None of the previously reported CNV analysis tools support this function and the simultaneous visualization of comparative genomic hybridization arrays (aCGH) and sequence alignment. The purpose of the present study was to develop a useful program for the efficient detection and visualization of CNV regions that enables the manual exclusion of erroneous signals. A JAVA-based stand-alone program called Genovar was developed. To ascertain whether a detected CNV region is a novel variant, Genovar compares the detected CNV regions with previously reported CNV regions using the Database of Genomic Variants (DGV, http://projects.tcag.ca/variation) and the Single Nucleotide Polymorphism Database (dbSNP). The current version of Genovar is capable of visualizing genomic data from sources such as the aCGH data file and sequence alignment format files. Genovar is freely accessible and provides a user-friendly graphic user interface (GUI) to facilitate the detection of CNV regions. The program also provides comprehensive information to help in the elimination of spurious signals by visual inspection, making Genovar a valuable tool for reducing false positive CNV results. http://genovar.sourceforge.net/.
Li, Ying; Shi, Xiaohu; Liang, Yanchun; Xie, Juan; Zhang, Yu; Ma, Qin
2017-01-21
RNAs have been found to carry diverse functionalities in nature. Inferring the similarity between two given RNAs is a fundamental step to understand and interpret their functional relationship. The majority of functional RNAs show conserved secondary structures, rather than sequence conservation. Those algorithms relying on sequence-based features usually have limitations in their prediction performance. Hence, integrating RNA structure features is very critical for RNA analysis. Existing algorithms mainly fall into two categories: alignment-based and alignment-free. The alignment-free algorithms of RNA comparison usually have lower time complexity than alignment-based algorithms. An alignment-free RNA comparison algorithm was proposed, in which novel numerical representations RNA-TVcurve (triple vector curve representation) of RNA sequence and corresponding secondary structure features are provided. Then a multi-scale similarity score of two given RNAs was designed based on wavelet decomposition of their numerical representation. In support of RNA mutation and phylogenetic analysis, a web server (RNA-TVcurve) was designed based on this alignment-free RNA comparison algorithm. It provides three functional modules: 1) visualization of numerical representation of RNA secondary structure; 2) detection of single-point mutation based on secondary structure; and 3) comparison of pairwise and multiple RNA secondary structures. The inputs of the web server require RNA primary sequences, while corresponding secondary structures are optional. For the primary sequences alone, the web server can compute the secondary structures using free energy minimization algorithm in terms of RNAfold tool from Vienna RNA package. RNA-TVcurve is the first integrated web server, based on an alignment-free method, to deliver a suite of RNA analysis functions, including visualization, mutation analysis and multiple RNAs structure comparison. The comparison results with two popular RNA comparison tools, RNApdist and RNAdistance, showcased that RNA-TVcurve can efficiently capture subtle relationships among RNAs for mutation detection and non-coding RNA classification. All the relevant results were shown in an intuitive graphical manner, and can be freely downloaded from this server. RNA-TVcurve, along with test examples and detailed documents, are available at: http://ml.jlu.edu.cn/tvcurve/ .
Koch, Stefan; Bueschl, Christoph; Doppler, Maria; Simader, Alexandra; Meng-Reiterer, Jacqueline; Lemmens, Marc; Schuhmacher, Rainer
2016-01-01
Due to its unsurpassed sensitivity and selectivity, LC-HRMS is one of the major analytical techniques in metabolomics research. However, limited stability of experimental and instrument parameters may cause shifts and drifts of retention time and mass accuracy or the formation of different ion species, thus complicating conclusive interpretation of the raw data, especially when generated in different analytical batches. Here, a novel software tool for the semi-automated alignment of different measurement sequences is presented. The tool is implemented in the Java programming language, it features an intuitive user interface and its main goal is to facilitate the comparison of data obtained from different metabolomics experiments. Based on a feature list (i.e., processed LC-HRMS chromatograms with mass-to-charge ratio (m/z) values and retention times) that serves as a reference, the tool recognizes both m/z and retention time shifts of single or multiple analytical datafiles/batches of interest. MetMatch is also designed to account for differently formed ion species of detected metabolites. Corresponding ions and metabolites are matched and chromatographic peak areas, m/z values and retention times are combined into a single data matrix. The convenient user interface allows for easy manipulation of processing results and graphical illustration of the raw data as well as the automatically matched ions and metabolites. The software tool is exemplified with LC-HRMS data from untargeted metabolomics experiments investigating phenylalanine-derived metabolites in wheat and T-2 toxin/HT-2 toxin detoxification products in barley. PMID:27827849
Koch, Stefan; Bueschl, Christoph; Doppler, Maria; Simader, Alexandra; Meng-Reiterer, Jacqueline; Lemmens, Marc; Schuhmacher, Rainer
2016-11-02
Due to its unsurpassed sensitivity and selectivity, LC-HRMS is one of the major analytical techniques in metabolomics research. However, limited stability of experimental and instrument parameters may cause shifts and drifts of retention time and mass accuracy or the formation of different ion species, thus complicating conclusive interpretation of the raw data, especially when generated in different analytical batches. Here, a novel software tool for the semi-automated alignment of different measurement sequences is presented. The tool is implemented in the Java programming language, it features an intuitive user interface and its main goal is to facilitate the comparison of data obtained from different metabolomics experiments. Based on a feature list (i.e., processed LC-HRMS chromatograms with mass-to-charge ratio ( m / z ) values and retention times) that serves as a reference, the tool recognizes both m / z and retention time shifts of single or multiple analytical datafiles/batches of interest. MetMatch is also designed to account for differently formed ion species of detected metabolites. Corresponding ions and metabolites are matched and chromatographic peak areas, m / z values and retention times are combined into a single data matrix. The convenient user interface allows for easy manipulation of processing results and graphical illustration of the raw data as well as the automatically matched ions and metabolites. The software tool is exemplified with LC-HRMS data from untargeted metabolomics experiments investigating phenylalanine-derived metabolites in wheat and T-2 toxin/HT-2 toxin detoxification products in barley.
The mission events graphic generator software: A small tool with big results
NASA Technical Reports Server (NTRS)
Lupisella, Mark; Leibee, Jack; Scaffidi, Charles
1993-01-01
Utilization of graphics has long been a useful methodology for many aspects of spacecraft operations. A personal computer based software tool that implements straight-forward graphics and greatly enhances spacecraft operations is presented. This unique software tool is the Mission Events Graphic Generator (MEGG) software which is used in support of the Hubble Space Telescope (HST) Project. MEGG reads the HST mission schedule and generates a graphical timeline.
An integrated SNP mining and utilization (ISMU) pipeline for next generation sequencing data.
Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A V S K; Varshney, Rajeev K
2014-01-01
Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone free software.
Multiple DNA and protein sequence alignment on a workstation and a supercomputer.
Tajima, K
1988-11-01
This paper describes a multiple alignment method using a workstation and supercomputer. The method is based on the alignment of a set of aligned sequences with the new sequence, and uses a recursive procedure of such alignment. The alignment is executed in a reasonable computation time on diverse levels from a workstation to a supercomputer, from the viewpoint of alignment results and computational speed by parallel processing. The application of the algorithm is illustrated by several examples of multiple alignment of 12 amino acid and DNA sequences of HIV (human immunodeficiency virus) env genes. Colour graphic programs on a workstation and parallel processing on a supercomputer are discussed.
Biswas, Ambarish; Brown, Chris M
2014-06-08
Gene expression in vertebrate cells may be controlled post-transcriptionally through regulatory elements in mRNAs. These are usually located in the untranslated regions (UTRs) of mRNA sequences, particularly the 3'UTRs. Scan for Motifs (SFM) simplifies the process of identifying a wide range of regulatory elements on alignments of vertebrate 3'UTRs. SFM includes identification of both RNA Binding Protein (RBP) sites and targets of miRNAs. In addition to searching pre-computed alignments, the tool provides users the flexibility to search their own sequences or alignments. The regulatory elements may be filtered by expected value cutoffs and are cross-referenced back to their respective sources and literature. The output is an interactive graphical representation, highlighting potential regulatory elements and overlaps between them. The output also provides simple statistics and links to related resources for complementary analyses. The overall process is intuitive and fast. As SFM is a free web-application, the user does not need to install any software or databases. Visualisation of the binding sites of different classes of effectors that bind to 3'UTRs will facilitate the study of regulatory elements in 3' UTRs.
GenPlay Multi-Genome, a tool to compare and analyze multiple human genomes in a graphical interface.
Lajugie, Julien; Fourel, Nicolas; Bouhassira, Eric E
2015-01-01
Parallel visualization of multiple individual human genomes is a complex endeavor that is rapidly gaining importance with the increasing number of personal, phased and cancer genomes that are being generated. It requires the display of variants such as SNPs, indels and structural variants that are unique to specific genomes and the introduction of multiple overlapping gaps in the reference sequence. Here, we describe GenPlay Multi-Genome, an application specifically written to visualize and analyze multiple human genomes in parallel. GenPlay Multi-Genome is ideally suited for the comparison of allele-specific expression and functional genomic data obtained from multiple phased genomes in a graphical interface with access to multiple-track operation. It also allows the analysis of data that have been aligned to custom genomes rather than to a standard reference and can be used as a variant calling format file browser and as a tool to compare different genome assembly, such as hg19 and hg38. GenPlay is available under the GNU public license (GPL-3) from http://genplay.einstein.yu.edu. The source code is available at https://github.com/JulienLajugie/GenPlay. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
CrocoBLAST: Running BLAST efficiently in the age of next-generation sequencing.
Tristão Ramos, Ravi José; de Azevedo Martins, Allan Cézar; da Silva Delgado, Gabrielle; Ionescu, Crina-Maria; Ürményi, Turán Peter; Silva, Rosane; Koca, Jaroslav
2017-11-15
CrocoBLAST is a tool for dramatically speeding up BLAST+ execution on any computer. Alignments that would take days or weeks with NCBI BLAST+ can be run overnight with CrocoBLAST. Additionally, CrocoBLAST provides features critical for NGS data analysis, including: results identical to those of BLAST+; compatibility with any BLAST+ version; real-time information regarding calculation progress and remaining run time; access to partial alignment results; queueing, pausing, and resuming BLAST+ calculations without information loss. CrocoBLAST is freely available online, with ample documentation (webchem.ncbr.muni.cz/Platform/App/CrocoBLAST). No installation or user registration is required. CrocoBLAST is implemented in C, while the graphical user interface is implemented in Java. CrocoBLAST is supported under Linux and Windows, and can be run under Mac OS X in a Linux virtual machine. jkoca@ceitec.cz. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
A powerful graphical pulse sequence programming tool for magnetic resonance imaging.
Jie, Shen; Ying, Liu; Jianqi, Li; Gengying, Li
2005-12-01
A powerful graphical pulse sequence programming tool has been designed for creating magnetic resonance imaging (MRI) applications. It allows rapid development of pulse sequences in graphical mode (allowing for the visualization of sequences), and consists of three modules which include a graphical sequence editor, a parameter management module and a sequence compiler. Its key features are ease to use, flexibility and hardware independence. When graphic elements are combined with a certain text expressions, the graphical pulse sequence programming is as flexible as text-based programming tool. In addition, a hardware-independent design is implemented by using the strategy of two step compilations. To demonstrate the flexibility and the capability of this graphical sequence programming tool, a multi-slice fast spin echo experiment is performed on our home-made 0.3 T permanent magnet MRI system.
Bhasi, Ashwini; Philip, Philge; Manikandan, Vinu; Senapathy, Periannan
2009-01-01
We have developed ExDom, a unique database for the comparative analysis of the exon–intron structures of 96 680 protein domains from seven eukaryotic organisms (Homo sapiens, Mus musculus, Bos taurus, Rattus norvegicus, Danio rerio, Gallus gallus and Arabidopsis thaliana). ExDom provides integrated access to exon-domain data through a sophisticated web interface which has the following analytical capabilities: (i) intergenomic and intragenomic comparative analysis of exon–intron structure of domains; (ii) color-coded graphical display of the domain architecture of proteins correlated with their corresponding exon-intron structures; (iii) graphical analysis of multiple sequence alignments of amino acid and coding nucleotide sequences of homologous protein domains from seven organisms; (iv) comparative graphical display of exon distributions within the tertiary structures of protein domains; and (v) visualization of exon–intron structures of alternative transcripts of a gene correlated to variations in the domain architecture of corresponding protein isoforms. These novel analytical features are highly suited for detailed investigations on the exon–intron structure of domains and make ExDom a powerful tool for exploring several key questions concerning the function, origin and evolution of genes and proteins. ExDom database is freely accessible at: http://66.170.16.154/ExDom/. PMID:18984624
DAMBE7: New and Improved Tools for Data Analysis in Molecular Biology and Evolution.
Xia, Xuhua
2018-06-01
DAMBE is a comprehensive software package for genomic and phylogenetic data analysis on Windows, Linux, and Macintosh computers. New functions include imputing missing distances and phylogeny simultaneously (paving the way to build large phage and transposon trees), new bootstrapping/jackknifing methods for PhyPA (phylogenetics from pairwise alignments), and an improved function for fast and accurate estimation of the shape parameter of the gamma distribution for fitting rate heterogeneity over sites. Previous method corrects multiple hits for each site independently. DAMBE's new method uses all sites simultaneously for correction. DAMBE, featuring a user-friendly graphic interface, is freely available from http://dambe.bio.uottawa.ca (last accessed, April 17, 2018).
Louis, Alexandra; Nguyen, Nga Thi Thuy; Muffato, Matthieu; Roest Crollius, Hugues
2015-01-01
The Genomicus web server (http://www.genomicus.biologie.ens.fr/genomicus) is a visualization tool allowing comparative genomics in four different phyla (Vertebrate, Fungi, Metazoan and Plants). It provides access to genomic information from extant species, as well as ancestral gene content and gene order for vertebrates and flowering plants. Here we present the new features available for vertebrate genome with a focus on new graphical tools. The interface to enter the database has been improved, two pairwise genome comparison tools are now available (KaryoView and MatrixView) and the multiple genome comparison tools (PhyloView and AlignView) propose three new kinds of representation and a more intuitive menu. These new developments have been implemented for Genomicus portal dedicated to vertebrates. This allows the analysis of 68 extant animal genomes, as well as 58 ancestral reconstructed genomes. The Genomicus server also provides access to ancestral gene orders, to facilitate evolutionary and comparative genomics studies, as well as computationally predicted regulatory interactions, thanks to the representation of conserved non-coding elements with their putative gene targets. PMID:25378326
Bioinformatics and molecular modeling in glycobiology
Schloissnig, Siegfried
2010-01-01
The field of glycobiology is concerned with the study of the structure, properties, and biological functions of the family of biomolecules called carbohydrates. Bioinformatics for glycobiology is a particularly challenging field, because carbohydrates exhibit a high structural diversity and their chains are often branched. Significant improvements in experimental analytical methods over recent years have led to a tremendous increase in the amount of carbohydrate structure data generated. Consequently, the availability of databases and tools to store, retrieve and analyze these data in an efficient way is of fundamental importance to progress in glycobiology. In this review, the various graphical representations and sequence formats of carbohydrates are introduced, and an overview of newly developed databases, the latest developments in sequence alignment and data mining, and tools to support experimental glycan analysis are presented. Finally, the field of structural glycoinformatics and molecular modeling of carbohydrates, glycoproteins, and protein–carbohydrate interaction are reviewed. PMID:20364395
Interactive graphic editing tools in bioluminescent imaging simulation
NASA Astrophysics Data System (ADS)
Li, Hui; Tian, Jie; Luo, Jie; Wang, Ge; Cong, Wenxiang
2005-04-01
It is a challenging task to accurately describe complicated biological tissues and bioluminescent sources in bioluminescent imaging simulation. Several graphic editing tools have been developed to efficiently model each part of the bioluminescent simulation environment and to interactively correct or improve the initial models of anatomical structures or bioluminescent sources. There are two major types of graphic editing tools: non-interactive tools and interactive tools. Geometric building blocks (i.e. regular geometric graphics and superquadrics) are applied as non-interactive tools. To a certain extent, complicated anatomical structures and bioluminescent sources can be approximately modeled by combining a sufficient large number of geometric building blocks with Boolean operators. However, those models are too simple to describe the local features and fine changes in 2D/3D irregular contours. Therefore, interactive graphic editing tools have been developed to facilitate the local modifications of any initial surface model. With initial models composed of geometric building blocks, interactive spline mode is applied to conveniently perform dragging and compressing operations on 2D/3D local surface of biological tissues and bioluminescent sources inside the region/volume of interest. Several applications of the interactive graphic editing tools will be presented in this article.
Protein alignment algorithms with an efficient backtracking routine on multiple GPUs.
Blazewicz, Jacek; Frohmberg, Wojciech; Kierzynka, Michal; Pesch, Erwin; Wojciechowski, Pawel
2011-05-20
Pairwise sequence alignment methods are widely used in biological research. The increasing number of sequences is perceived as one of the upcoming challenges for sequence alignment methods in the nearest future. To overcome this challenge several GPU (Graphics Processing Unit) computing approaches have been proposed lately. These solutions show a great potential of a GPU platform but in most cases address the problem of sequence database scanning and computing only the alignment score whereas the alignment itself is omitted. Thus, the need arose to implement the global and semiglobal Needleman-Wunsch, and Smith-Waterman algorithms with a backtracking procedure which is needed to construct the alignment. In this paper we present the solution that performs the alignment of every given sequence pair, which is a required step for progressive multiple sequence alignment methods, as well as for DNA recognition at the DNA assembly stage. Performed tests show that the implementation, with performance up to 6.3 GCUPS on a single GPU for affine gap penalties, is very efficient in comparison to other CPU and GPU-based solutions. Moreover, multiple GPUs support with load balancing makes the application very scalable. The article shows that the backtracking procedure of the sequence alignment algorithms may be designed to fit in with the GPU architecture. Therefore, our algorithm, apart from scores, is able to compute pairwise alignments. This opens a wide range of new possibilities, allowing other methods from the area of molecular biology to take advantage of the new computational architecture. Performed tests show that the efficiency of the implementation is excellent. Moreover, the speed of our GPU-based algorithms can be almost linearly increased when using more than one graphics card.
Automated Ontology Alignment with Fuselets for Community of Interest (COI) Integration
2008-09-01
Search Example ............................................................................... 22 Figure 8 - Federated Search Example Revisited...integrating information from various sources through a single query. This is the traditional federated search problem, where the sources don’t...Figure 7 - Federated Search Example For the data sources in the graphic above, the ontologies align in a fairly straightforward manner
Applications of graphics to support a testbed for autonomous space vehicle operations
NASA Technical Reports Server (NTRS)
Schmeckpeper, K. R.; Aldridge, J. P.; Benson, S.; Horner, S.; Kullman, A.; Mulder, T.; Parrott, W.; Roman, D.; Watts, G.; Bochsler, Daniel C.
1989-01-01
Researchers describe their experience using graphics tools and utilities while building an application, AUTOPS, that uses a graphical Machintosh (TM)-like interface for the input and display of data, and animation graphics to enhance the presentation of results of autonomous space vehicle operations simulations. AUTOPS is a test bed for evaluating decisions for intelligent control systems for autonomous vehicles. Decisions made by an intelligent control system, e.g., a revised mission plan, might be displayed to the user in textual format or he can witness the effects of those decisions via out of window graphics animations. Although a textual description conveys essentials, a graphics animation conveys the replanning results in a more convincing way. Similarily, iconic and menu-driven screen interfaces provide the user with more meaningful options and displays. Presented here are experiences with the SunView and TAE Plus graphics tools used for interface design, and the Johnson Space Center Interactive Graphics Laboratory animation graphics tools used for generating out out of the window graphics.
Role of Graphics Tools in the Learning Design Process
ERIC Educational Resources Information Center
Laisney, Patrice; Brandt-Pomares, Pascale
2015-01-01
This paper discusses the design activities of students in secondary school in France. Graphics tools are now part of the capacity of design professionals. It is therefore apt to reflect on their integration into the technological education. Has the use of intermediate graphical tools changed students' performance, and if so in what direction, in…
Workflow and web application for annotating NCBI BioProject transcriptome data
Vera Alvarez, Roberto; Medeiros Vidal, Newton; Garzón-Martínez, Gina A.; Barrero, Luz S.; Landsman, David
2017-01-01
Abstract The volume of transcriptome data is growing exponentially due to rapid improvement of experimental technologies. In response, large central resources such as those of the National Center for Biotechnology Information (NCBI) are continually adapting their computational infrastructure to accommodate this large influx of data. New and specialized databases, such as Transcriptome Shotgun Assembly Sequence Database (TSA) and Sequence Read Archive (SRA), have been created to aid the development and expansion of centralized repositories. Although the central resource databases are under continual development, they do not include automatic pipelines to increase annotation of newly deposited data. Therefore, third-party applications are required to achieve that aim. Here, we present an automatic workflow and web application for the annotation of transcriptome data. The workflow creates secondary data such as sequencing reads and BLAST alignments, which are available through the web application. They are based on freely available bioinformatics tools and scripts developed in-house. The interactive web application provides a search engine and several browser utilities. Graphical views of transcript alignments are available through SeqViewer, an embedded tool developed by NCBI for viewing biological sequence data. The web application is tightly integrated with other NCBI web applications and tools to extend the functionality of data processing and interconnectivity. We present a case study for the species Physalis peruviana with data generated from BioProject ID 67621. Database URL: http://www.ncbi.nlm.nih.gov/projects/physalis/ PMID:28605765
DNA Translator and Aligner: HyperCard utilities to aid phylogenetic analysis of molecules.
Eernisse, D J
1992-04-01
DNA Translator and Aligner are molecular phylogenetics HyperCard stacks for Macintosh computers. They manipulate sequence data to provide graphical gene mapping, conversions, translations and manual multiple-sequence alignment editing. DNA Translator is able to convert documented GenBank or EMBL documented sequences into linearized, rescalable gene maps whose gene sequences are extractable by clicking on the corresponding map button or by selection from a scrolling list. Provided gene maps, complete with extractable sequences, consist of nine metazoan, one yeast, and one ciliate mitochondrial DNAs and three green plant chloroplast DNAs. Single or multiple sequences can be manipulated to aid in phylogenetic analysis. Sequences can be translated between nucleic acids and proteins in either direction with flexible support of alternate genetic codes and ambiguous nucleotide symbols. Multiple aligned sequence output from diverse sources can be converted to Nexus, Hennig86 or PHYLIP format for subsequent phylogenetic analysis. Input or output alignments can be examined with Aligner, a convenient accessory stack included in the DNA Translator package. Aligner is an editor for the manual alignment of up to 100 sequences that toggles between display of matched characters and normal unmatched sequences. DNA Translator also generates graphic displays of amino acid coding and codon usage frequency relative to all other, or only synonymous, codons for approximately 70 select organism-organelle combinations. Codon usage data is compatible with spreadsheet or UWGCG formats for incorporation of additional molecules of interest. The complete package is available via anonymous ftp and is free for non-commercial uses.
PC graphics generation and management tool for real-time applications
NASA Technical Reports Server (NTRS)
Truong, Long V.
1992-01-01
A graphics tool was designed and developed for easy generation and management of personal computer graphics. It also provides methods and 'run-time' software for many common artificial intelligence (AI) or expert system (ES) applications.
Using a graphical programming language to write CAMAC/GPIB instrument drivers
NASA Technical Reports Server (NTRS)
Zambrana, Horacio; Johanson, William
1991-01-01
To reduce the complexities of conventional programming, graphical software was used in the development of instrumentation drivers. The graphical software provides a standard set of tools (graphical subroutines) which are sufficient to program the most sophisticated CAMAC/GPIB drivers. These tools were used and instrumentation drivers were successfully developed for operating CAMAC/GPIB hardware from two different manufacturers: LeCroy and DSP. The use of these tools is presented for programming a LeCroy A/D Waveform Analyzer.
ERIC Educational Resources Information Center
Guerra, Norma S.
2009-01-01
Graphic organizers are powerful visual tools. The representation provides dimension and relationship to ideas and a framework for organization and elaboration. The LIBRE Stick Figure Tool is a graphic organizer for the problem-solving application of the LIBRE Model counseling approach. It resembles a "stick person" and offers the teacher and…
Evaluating Texts for Graphical Literacy Instruction: The Graphic Rating Tool
ERIC Educational Resources Information Center
Roberts, Kathryn L.; Brugar, Kristy A.; Norman, Rebecca R.
2015-01-01
In this article, we present the Graphical Rating Tool (GRT), which is designed to evaluate the graphical devices that are commonly found in content-area, non-fiction texts, in order to identify books that are well suited for teaching about those devices. We also present a "best of" list of science and social studies books, which includes…
IMGT, the International ImMunoGeneTics database.
Lefranc, M P; Giudicelli, V; Busin, C; Bodmer, J; Müller, W; Bontrop, R; Lemaitre, M; Malik, A; Chaume, D
1998-01-01
IMGT, the international ImMunoGeneTics database, is an integrated database specialising in Immunoglobulins (Ig), T cell Receptors (TcR) and Major Histocompatibility Complex (MHC) of all vertebrate species, created by Marie-Paule Lefranc, CNRS, Montpellier II University, Montpellier, France (lefranc@ligm.crbm.cnrs-mop.fr). IMGT includes three databases: LIGM-DB (for Ig and TcR), MHC/HLA-DB and PRIMER-DB (the last two in development). IMGT comprises expertly annotated sequences and alignment tables. LIGM-DB contains more than 23 000 Immunoglobulin and T cell Receptor sequences from 78 species. MHC/HLA-DB contains Class I and Class II Human Leucocyte Antigen alignment tables. An IMGT tool, DNAPLOT, developed for Ig, TcR and MHC sequence alignments, is also available. IMGT works in close collaboration with the EMBL database. IMGT goals are to establish a common data access to all immunogenetics data, including nucleotide and protein sequences, oligonucleotide primers, gene maps and other genetic data of Ig, TcR and MHC molecules, and to provide a graphical user friendly data access. IMGT has important implications in medical research (repertoire in autoimmune diseases, AIDS, leukemias, lymphomas), therapeutical approaches (antibody engineering), genome diversity and genome evolution studies. IMGT is freely available at http://imgt.cnusc.fr:8104 PMID:9399859
Liu, Yu; Hong, Yang; Lin, Chun-Yuan; Hung, Che-Lun
2015-01-01
The Smith-Waterman (SW) algorithm has been widely utilized for searching biological sequence databases in bioinformatics. Recently, several works have adopted the graphic card with Graphic Processing Units (GPUs) and their associated CUDA model to enhance the performance of SW computations. However, these works mainly focused on the protein database search by using the intertask parallelization technique, and only using the GPU capability to do the SW computations one by one. Hence, in this paper, we will propose an efficient SW alignment method, called CUDA-SWfr, for the protein database search by using the intratask parallelization technique based on a CPU-GPU collaborative system. Before doing the SW computations on GPU, a procedure is applied on CPU by using the frequency distance filtration scheme (FDFS) to eliminate the unnecessary alignments. The experimental results indicate that CUDA-SWfr runs 9.6 times and 96 times faster than the CPU-based SW method without and with FDFS, respectively.
Living Color Frame System: PC graphics tool for data visualization
NASA Technical Reports Server (NTRS)
Truong, Long V.
1993-01-01
Living Color Frame System (LCFS) is a personal computer software tool for generating real-time graphics applications. It is highly applicable for a wide range of data visualization in virtual environment applications. Engineers often use computer graphics to enhance the interpretation of data under observation. These graphics become more complicated when 'run time' animations are required, such as found in many typical modern artificial intelligence and expert systems. Living Color Frame System solves many of these real-time graphics problems.
An Integrated SNP Mining and Utilization (ISMU) Pipeline for Next Generation Sequencing Data
Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M.; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A. V. S. K.; Varshney, Rajeev K.
2014-01-01
Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone free software. PMID:25003610
Tool post modification allows easy turret lathe cutting-tool alignment
NASA Technical Reports Server (NTRS)
Fouts, L.
1966-01-01
Modified tool holder and tool post permit alignment of turret lathe cutting tools on the center of the spindle. The tool is aligned with the spindle by the holder which is kept in position by a hydraulic lock in feature of the tool post. The tool post is used on horizontal and vertical turret lathes and other engine lathes.
GeneWiz browser: An Interactive Tool for Visualizing Sequenced Chromosomes.
Hallin, Peter F; Stærfeldt, Hans-Henrik; Rotenberg, Eva; Binnewies, Tim T; Benham, Craig J; Ussery, David W
2009-09-25
We present an interactive web application for visualizing genomic data of prokaryotic chromosomes. The tool (GeneWiz browser) allows users to carry out various analyses such as mapping alignments of homologous genes to other genomes, mapping of short sequencing reads to a reference chromosome, and calculating DNA properties such as curvature or stacking energy along the chromosome. The GeneWiz browser produces an interactive graphic that enables zooming from a global scale down to single nucleotides, without changing the size of the plot. Its ability to disproportionally zoom provides optimal readability and increased functionality compared to other browsers. The tool allows the user to select the display of various genomic features, color setting and data ranges. Custom numerical data can be added to the plot allowing, for example, visualization of gene expression and regulation data. Further, standard atlases are pre-generated for all prokaryotic genomes available in GenBank, providing a fast overview of all available genomes, including recently deposited genome sequences. The tool is available online from http://www.cbs.dtu.dk/services/gwBrowser. Supplemental material including interactive atlases is available online at http://www.cbs.dtu.dk/services/gwBrowser/suppl/.
Louis, Alexandra; Nguyen, Nga Thi Thuy; Muffato, Matthieu; Roest Crollius, Hugues
2015-01-01
The Genomicus web server (http://www.genomicus.biologie.ens.fr/genomicus) is a visualization tool allowing comparative genomics in four different phyla (Vertebrate, Fungi, Metazoan and Plants). It provides access to genomic information from extant species, as well as ancestral gene content and gene order for vertebrates and flowering plants. Here we present the new features available for vertebrate genome with a focus on new graphical tools. The interface to enter the database has been improved, two pairwise genome comparison tools are now available (KaryoView and MatrixView) and the multiple genome comparison tools (PhyloView and AlignView) propose three new kinds of representation and a more intuitive menu. These new developments have been implemented for Genomicus portal dedicated to vertebrates. This allows the analysis of 68 extant animal genomes, as well as 58 ancestral reconstructed genomes. The Genomicus server also provides access to ancestral gene orders, to facilitate evolutionary and comparative genomics studies, as well as computationally predicted regulatory interactions, thanks to the representation of conserved non-coding elements with their putative gene targets. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Castaño-Díez, Daniel
2017-01-01
Dynamo is a package for the processing of tomographic data. As a tool for subtomogram averaging, it includes different alignment and classification strategies. Furthermore, its data-management module allows experiments to be organized in groups of tomograms, while offering specialized three-dimensional tomographic browsers that facilitate visualization, location of regions of interest, modelling and particle extraction in complex geometries. Here, a technical description of the package is presented, focusing on its diverse strategies for optimizing computing performance. Dynamo is built upon mbtools (middle layer toolbox), a general-purpose MATLAB library for object-oriented scientific programming specifically developed to underpin Dynamo but usable as an independent tool. Its structure intertwines a flexible MATLAB codebase with precompiled C++ functions that carry the burden of numerically intensive operations. The package can be delivered as a precompiled standalone ready for execution without a MATLAB license. Multicore parallelization on a single node is directly inherited from the high-level parallelization engine provided for MATLAB, automatically imparting a balanced workload among the threads in computationally intense tasks such as alignment and classification, but also in logistic-oriented tasks such as tomogram binning and particle extraction. Dynamo supports the use of graphical processing units (GPUs), yielding considerable speedup factors both for native Dynamo procedures (such as the numerically intensive subtomogram alignment) and procedures defined by the user through its MATLAB-based GPU library for three-dimensional operations. Cloud-based virtual computing environments supplied with a pre-installed version of Dynamo can be publicly accessed through the Amazon Elastic Compute Cloud (EC2), enabling users to rent GPU computing time on a pay-as-you-go basis, thus avoiding upfront investments in hardware and longterm software maintenance. PMID:28580909
Castaño-Díez, Daniel
2017-06-01
Dynamo is a package for the processing of tomographic data. As a tool for subtomogram averaging, it includes different alignment and classification strategies. Furthermore, its data-management module allows experiments to be organized in groups of tomograms, while offering specialized three-dimensional tomographic browsers that facilitate visualization, location of regions of interest, modelling and particle extraction in complex geometries. Here, a technical description of the package is presented, focusing on its diverse strategies for optimizing computing performance. Dynamo is built upon mbtools (middle layer toolbox), a general-purpose MATLAB library for object-oriented scientific programming specifically developed to underpin Dynamo but usable as an independent tool. Its structure intertwines a flexible MATLAB codebase with precompiled C++ functions that carry the burden of numerically intensive operations. The package can be delivered as a precompiled standalone ready for execution without a MATLAB license. Multicore parallelization on a single node is directly inherited from the high-level parallelization engine provided for MATLAB, automatically imparting a balanced workload among the threads in computationally intense tasks such as alignment and classification, but also in logistic-oriented tasks such as tomogram binning and particle extraction. Dynamo supports the use of graphical processing units (GPUs), yielding considerable speedup factors both for native Dynamo procedures (such as the numerically intensive subtomogram alignment) and procedures defined by the user through its MATLAB-based GPU library for three-dimensional operations. Cloud-based virtual computing environments supplied with a pre-installed version of Dynamo can be publicly accessed through the Amazon Elastic Compute Cloud (EC2), enabling users to rent GPU computing time on a pay-as-you-go basis, thus avoiding upfront investments in hardware and longterm software maintenance.
Workflow and web application for annotating NCBI BioProject transcriptome data.
Vera Alvarez, Roberto; Medeiros Vidal, Newton; Garzón-Martínez, Gina A; Barrero, Luz S; Landsman, David; Mariño-Ramírez, Leonardo
2017-01-01
The volume of transcriptome data is growing exponentially due to rapid improvement of experimental technologies. In response, large central resources such as those of the National Center for Biotechnology Information (NCBI) are continually adapting their computational infrastructure to accommodate this large influx of data. New and specialized databases, such as Transcriptome Shotgun Assembly Sequence Database (TSA) and Sequence Read Archive (SRA), have been created to aid the development and expansion of centralized repositories. Although the central resource databases are under continual development, they do not include automatic pipelines to increase annotation of newly deposited data. Therefore, third-party applications are required to achieve that aim. Here, we present an automatic workflow and web application for the annotation of transcriptome data. The workflow creates secondary data such as sequencing reads and BLAST alignments, which are available through the web application. They are based on freely available bioinformatics tools and scripts developed in-house. The interactive web application provides a search engine and several browser utilities. Graphical views of transcript alignments are available through SeqViewer, an embedded tool developed by NCBI for viewing biological sequence data. The web application is tightly integrated with other NCBI web applications and tools to extend the functionality of data processing and interconnectivity. We present a case study for the species Physalis peruviana with data generated from BioProject ID 67621. URL: http://www.ncbi.nlm.nih.gov/projects/physalis/. Published by Oxford University Press 2017. This work is written by US Government employees and is in the public domain in the US.
CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment
Manavski, Svetlin A; Valle, Giorgio
2008-01-01
Background Searching for similarities in protein and DNA databases has become a routine procedure in Molecular Biology. The Smith-Waterman algorithm has been available for more than 25 years. It is based on a dynamic programming approach that explores all the possible alignments between two sequences; as a result it returns the optimal local alignment. Unfortunately, the computational cost is very high, requiring a number of operations proportional to the product of the length of two sequences. Furthermore, the exponential growth of protein and DNA databases makes the Smith-Waterman algorithm unrealistic for searching similarities in large sets of sequences. For these reasons heuristic approaches such as those implemented in FASTA and BLAST tend to be preferred, allowing faster execution times at the cost of reduced sensitivity. The main motivation of our work is to exploit the huge computational power of commonly available graphic cards, to develop high performance solutions for sequence alignment. Results In this paper we present what we believe is the fastest solution of the exact Smith-Waterman algorithm running on commodity hardware. It is implemented in the recently released CUDA programming environment by NVidia. CUDA allows direct access to the hardware primitives of the last-generation Graphics Processing Units (GPU) G80. Speeds of more than 3.5 GCUPS (Giga Cell Updates Per Second) are achieved on a workstation running two GeForce 8800 GTX. Exhaustive tests have been done to compare our implementation to SSEARCH and BLAST, running on a 3 GHz Intel Pentium IV processor. Our solution was also compared to a recently published GPU implementation and to a Single Instruction Multiple Data (SIMD) solution. These tests show that our implementation performs from 2 to 30 times faster than any other previous attempt available on commodity hardware. Conclusions The results show that graphic cards are now sufficiently advanced to be used as efficient hardware accelerators for sequence alignment. Their performance is better than any alternative available on commodity hardware platforms. The solution presented in this paper allows large scale alignments to be performed at low cost, using the exact Smith-Waterman algorithm instead of the largely adopted heuristic approaches. PMID:18387198
Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools.
Cer, Regina Z; Donohue, Duncan E; Mudunuri, Uma S; Temiz, Nuri A; Loss, Michael A; Starner, Nathan J; Halusa, Goran N; Volfovsky, Natalia; Yi, Ming; Luke, Brian T; Bacolla, Albino; Collins, Jack R; Stephens, Robert M
2013-01-01
The non-B DB, available at http://nonb.abcc.ncifcrf.gov, catalogs predicted non-B DNA-forming sequence motifs, including Z-DNA, G-quadruplex, A-phased repeats, inverted repeats, mirror repeats, direct repeats and their corresponding subsets: cruciforms, triplexes and slipped structures, in several genomes. Version 2.0 of the database revises and re-implements the motif discovery algorithms to better align with accepted definitions and thresholds for motifs, expands the non-B DNA-forming motifs coverage by including short tandem repeats and adds key visualization tools to compare motif locations relative to other genomic annotations. Non-B DB v2.0 extends the ability for comparative genomics by including re-annotation of the five organisms reported in non-B DB v1.0, human, chimpanzee, dog, macaque and mouse, and adds seven additional organisms: orangutan, rat, cow, pig, horse, platypus and Arabidopsis thaliana. Additionally, the non-B DB v2.0 provides an overall improved graphical user interface and faster query performance.
Parametric inference for biological sequence analysis.
Pachter, Lior; Sturmfels, Bernd
2004-11-16
One of the major successes in computational biology has been the unification, by using the graphical model formalism, of a multitude of algorithms for annotating and comparing biological sequences. Graphical models that have been applied to these problems include hidden Markov models for annotation, tree models for phylogenetics, and pair hidden Markov models for alignment. A single algorithm, the sum-product algorithm, solves many of the inference problems that are associated with different statistical models. This article introduces the polytope propagation algorithm for computing the Newton polytope of an observation from a graphical model. This algorithm is a geometric version of the sum-product algorithm and is used to analyze the parametric behavior of maximum a posteriori inference calculations for graphical models.
Learning Layouts for Single-Page Graphic Designs.
O'Donovan, Peter; Agarwala, Aseem; Hertzmann, Aaron
2014-08-01
This paper presents an approach for automatically creating graphic design layouts using a new energy-based model derived from design principles. The model includes several new algorithms for analyzing graphic designs, including the prediction of perceived importance, alignment detection, and hierarchical segmentation. Given the model, we use optimization to synthesize new layouts for a variety of single-page graphic designs. Model parameters are learned with Nonlinear Inverse Optimization (NIO) from a small number of example layouts. To demonstrate our approach, we show results for applications including generating design layouts in various styles, retargeting designs to new sizes, and improving existing designs. We also compare our automatic results with designs created using crowdsourcing and show that our approach performs slightly better than novice designers.
3D Graphics Through the Internet: A "Shoot-Out"
NASA Technical Reports Server (NTRS)
Watson, Val; Lasinski, T. A. (Technical Monitor)
1995-01-01
3D graphics through the Internet needs to move beyond the current lowest common denominator of pre-computed movies, which consume bandwidth and are non-interactive. Panelists will demonstrate and compare 3D graphical tools for accessing, analyzing, and collaborating on information through the Internet and World-wide web. The "shoot-out" will illustrate which tools are likely to be the best for the various types of information, including dynamic scientific data, 3-D objects, and virtual environments. The goal of the panel is to encourage more effective use of the Internet by encouraging suppliers and users of information to adopt the next generation of graphical tools.
MICA: Multiple interval-based curve alignment
NASA Astrophysics Data System (ADS)
Mann, Martin; Kahle, Hans-Peter; Beck, Matthias; Bender, Bela Johannes; Spiecker, Heinrich; Backofen, Rolf
2018-01-01
MICA enables the automatic synchronization of discrete data curves. To this end, characteristic points of the curves' shapes are identified. These landmarks are used within a heuristic curve registration approach to align profile pairs by mapping similar characteristics onto each other. In combination with a progressive alignment scheme, this enables the computation of multiple curve alignments. Multiple curve alignments are needed to derive meaningful representative consensus data of measured time or data series. MICA was already successfully applied to generate representative profiles of tree growth data based on intra-annual wood density profiles or cell formation data. The MICA package provides a command-line and graphical user interface. The R interface enables the direct embedding of multiple curve alignment computation into larger analyses pipelines. Source code, binaries and documentation are freely available at https://github.com/BackofenLab/MICA
An Overview of the National Shipbuilding Industrial Base,
1982-04-01
increased use of modular construction. In the near future, laser welding and alignment, plasma cutting, air-cushion and water bearing materials handling...of computer graphics for design and lofting, laser alignment and welding , and robotization also will be adoptable by shipyards in the near future...introduced the "roll over" ship construction technique to maximize the use of down-hand welding with smooth production flow; modular construction
Acceleration of the Smith-Waterman algorithm using single and multiple graphics processors
NASA Astrophysics Data System (ADS)
Khajeh-Saeed, Ali; Poole, Stephen; Blair Perot, J.
2010-06-01
Finding regions of similarity between two very long data streams is a computationally intensive problem referred to as sequence alignment. Alignment algorithms must allow for imperfect sequence matching with different starting locations and some gaps and errors between the two data sequences. Perhaps the most well known application of sequence matching is the testing of DNA or protein sequences against genome databases. The Smith-Waterman algorithm is a method for precisely characterizing how well two sequences can be aligned and for determining the optimal alignment of those two sequences. Like many applications in computational science, the Smith-Waterman algorithm is constrained by the memory access speed and can be accelerated significantly by using graphics processors (GPUs) as the compute engine. In this work we show that effective use of the GPU requires a novel reformulation of the Smith-Waterman algorithm. The performance of this new version of the algorithm is demonstrated using the SSCA#1 (Bioinformatics) benchmark running on one GPU and on up to four GPUs executing in parallel. The results indicate that for large problems a single GPU is up to 45 times faster than a CPU for this application, and the parallel implementation shows linear speed up on up to 4 GPUs.
1, 2, 3, 4: infusing quantitative literacy into introductory biology.
Speth, Elena Bray; Momsen, Jennifer L; Moyerbrailean, Gregory A; Ebert-May, Diane; Long, Tammy M; Wyse, Sara; Linton, Debra
2010-01-01
Biology of the twenty-first century is an increasingly quantitative science. Undergraduate biology education therefore needs to provide opportunities for students to develop fluency in the tools and language of quantitative disciplines. Quantitative literacy (QL) is important for future scientists as well as for citizens, who need to interpret numeric information and data-based claims regarding nearly every aspect of daily life. To address the need for QL in biology education, we incorporated quantitative concepts throughout a semester-long introductory biology course at a large research university. Early in the course, we assessed the quantitative skills that students bring to the introductory biology classroom and found that students had difficulties in performing simple calculations, representing data graphically, and articulating data-driven arguments. In response to students' learning needs, we infused the course with quantitative concepts aligned with the existing course content and learning objectives. The effectiveness of this approach is demonstrated by significant improvement in the quality of students' graphical representations of biological data. Infusing QL in introductory biology presents challenges. Our study, however, supports the conclusion that it is feasible in the context of an existing course, consistent with the goals of college biology education, and promotes students' development of important quantitative skills.
Povey, Josie; Mills, Patj Patj Janama Robert; Dingwall, Kylie Maree; Lowell, Anne; Singer, Judy; Rotumah, Darlene; Bennett-Levy, James; Nagel, Tricia
2016-03-11
Aboriginal and Torres Strait Islander Australians experience high rates of mental illness and psychological distress compared to their non-Indigenous counterparts. E-mental health tools offer an opportunity for accessible, effective, and acceptable treatment. The AIMhi Stay Strong app and the ibobbly suicide prevention app are treatment tools designed to combat the disproportionately high levels of mental illness and stress experienced within the Aboriginal and Torres Strait Islander community. This study aimed to explore Aboriginal and Torres Strait Islander community members' experiences of using two culturally responsive e-mental health apps and identify factors that influence the acceptability of these approaches. Using qualitative methods aligned with a phenomenological approach, we explored the acceptability of two culturally responsive e-mental health apps through a series of three 3-hour focus groups with nine Aboriginal and Torres Strait Islander community members. Thematic analysis was conducted and coresearcher and member checking were used to verify findings. Findings suggest strong support for the concept of e-mental health apps and optimism for their potential. Factors that influenced acceptability related to three key themes: personal factors (eg, motivation, severity and awareness of illness, technological competence, and literacy and language differences), environmental factors (eg, community awareness, stigma, and availability of support), and app characteristics (eg, ease of use, content, graphics, access, and security and information sharing). Specific adaptations, such as local production, culturally relevant content and graphics, a purposeful journey, clear navigation, meaningful language, options to assist people with language differences, offline use, and password protection may aid uptake. When designed to meet the needs of Aboriginal and Torres Strait Islander Australians, e-mental health tools add an important element to public health approaches for improving the well-being of Aboriginal and Torres Strait Islander people.
Aligning Plasma-Arc Welding Oscillations
NASA Technical Reports Server (NTRS)
Norris, Jeff; Fairley, Mike
1989-01-01
Tool aids in alignment of oscillator probe on variable-polarity plasma-arc welding torch. Probe magnetically pulls arc from side to side as it moves along joint. Tensile strength of joint depends on alignment of weld bead and on alignment of probe. Operator installs new tool on front of torch body, levels it with built-in bubble glass, inserts probe in slot on tool, and locks probe in place. Procedure faster and easier and resulting alignment more accurate and repeatable.
O'Callaghan, Sean; De Souza, David P; Isaac, Andrew; Wang, Qiao; Hodkinson, Luke; Olshansky, Moshe; Erwin, Tim; Appelbe, Bill; Tull, Dedreia L; Roessner, Ute; Bacic, Antony; McConville, Malcolm J; Likić, Vladimir A
2012-05-30
Gas chromatography-mass spectrometry (GC-MS) is a technique frequently used in targeted and non-targeted measurements of metabolites. Most existing software tools for processing of raw instrument GC-MS data tightly integrate data processing methods with graphical user interface facilitating interactive data processing. While interactive processing remains critically important in GC-MS applications, high-throughput studies increasingly dictate the need for command line tools, suitable for scripting of high-throughput, customized processing pipelines. PyMS comprises a library of functions for processing of instrument GC-MS data developed in Python. PyMS currently provides a complete set of GC-MS processing functions, including reading of standard data formats (ANDI- MS/NetCDF and JCAMP-DX), noise smoothing, baseline correction, peak detection, peak deconvolution, peak integration, and peak alignment by dynamic programming. A novel common ion single quantitation algorithm allows automated, accurate quantitation of GC-MS electron impact (EI) fragmentation spectra when a large number of experiments are being analyzed. PyMS implements parallel processing for by-row and by-column data processing tasks based on Message Passing Interface (MPI), allowing processing to scale on multiple CPUs in distributed computing environments. A set of specifically designed experiments was performed in-house and used to comparatively evaluate the performance of PyMS and three widely used software packages for GC-MS data processing (AMDIS, AnalyzerPro, and XCMS). PyMS is a novel software package for the processing of raw GC-MS data, particularly suitable for scripting of customized processing pipelines and for data processing in batch mode. PyMS provides limited graphical capabilities and can be used both for routine data processing and interactive/exploratory data analysis. In real-life GC-MS data processing scenarios PyMS performs as well or better than leading software packages. We demonstrate data processing scenarios simple to implement in PyMS, yet difficult to achieve with many conventional GC-MS data processing software. Automated sample processing and quantitation with PyMS can provide substantial time savings compared to more traditional interactive software systems that tightly integrate data processing with the graphical user interface.
Methodologie experimentale pour evaluer les caracteristiques des plateformes graphiques avioniques
NASA Astrophysics Data System (ADS)
Legault, Vincent
Within a context where the aviation industry intensifies the development of new visually appealing features and where time-to-market must be as short as possible, rapid graphics processing benchmarking in a certified avionics environment becomes an important issue. With this work we intend to demonstrate that it is possible to deploy a high-performance graphics application on an avionics platform that uses certified graphical COTS components. Moreover, we would like to bring to the avionics community a methodology which will allow developers to identify the needed elements for graphics system optimisation and provide them tools that can measure the complexity of this type of application and measure the amount of resources to properly scale a graphics system according to their needs. As far as we know, no graphics performance profiling tool dedicated to critical embedded architectures has been proposed. We thus had the idea of implementing a specialized benchmarking tool that would be an appropriate and effective solution to this problem. Our solution resides in the extraction of the key graphics specifications from an inherited application to use them afterwards in a 3D image generation application.
Kim, Jane Paik; Roberts, Laura Weiss
Empirical ethics inquiry works from the notion that stakeholder perspectives are necessary for gauging the ethical acceptability of human studies and assuring that research aligns with societal expectations. Although common, studies involving different populations often entail comparisons of trends that problematize the interpretation of results. Using graphical model selection - a technique aimed at transcending limitations of conventional methods - this report presents data on the ethics of clinical research with two objectives: (1) to display the patterns of views held by ill and healthy individuals in clinical research as a test of the study's original hypothesis and (2) to introduce graphical model selection as a key analytic tool for ethics research. In this IRB-approved, NIH-funded project, data were collected from 60 mentally ill and 43 physically ill clinical research protocol volunteers, 47 healthy protocol-consented participants, and 29 healthy individuals without research protocol experience. Respondents were queried on the ethical acceptability of research involving people with mental and physical illness (i.e., cancer, HIV, depression, schizophrenia, and post-traumatic stress disorder) and non-illness related sources of vulnerability (e.g., age, class, gender, ethnicity). Using a statistical algorithm, we selected graphical models to display interrelationships among responses to questions. Both mentally and physically ill protocol volunteers revealed a high degree of connectivity among ethically-salient perspectives. Healthy participants, irrespective of research protocol experience, revealed patterns of views that were not highly connected. Between ill and healthy protocol participants, the pattern of views is vastly different. Experience with illness was tied to dense connectivity, whereas healthy individuals expressed views with sparse connections. In offering a nuanced perspective on the interrelation of ethically relevant responses, graphical model selection has the potential to bring new insights to the field of ethics.
Making Conjectures in Dynamic Geometry: The Potential of a Particular Way of Dragging
ERIC Educational Resources Information Center
Mariotti, Maria Alessandra; Baccaglini-Frank, Anna
2011-01-01
When analyzing what has changed in the geometry scenario with the advent of dynamic geometry systems (DGS), one can notice a transition from the traditional graphic environment made of paper-and-pencil, and the classical construction tools like the ruler and compass, to a virtual graphic space, made of a computer screen, graphical tools that are…
Data Analysis with Graphical Models: Software Tools
NASA Technical Reports Server (NTRS)
Buntine, Wray L.
1994-01-01
Probabilistic graphical models (directed and undirected Markov fields, and combined in chain graphs) are used widely in expert systems, image processing and other areas as a framework for representing and reasoning with probabilities. They come with corresponding algorithms for performing probabilistic inference. This paper discusses an extension to these models by Spiegelhalter and Gilks, plates, used to graphically model the notion of a sample. This offers a graphical specification language for representing data analysis problems. When combined with general methods for statistical inference, this also offers a unifying framework for prototyping and/or generating data analysis algorithms from graphical specifications. This paper outlines the framework and then presents some basic tools for the task: a graphical version of the Pitman-Koopman Theorem for the exponential family, problem decomposition, and the calculation of exact Bayes factors. Other tools already developed, such as automatic differentiation, Gibbs sampling, and use of the EM algorithm, make this a broad basis for the generation of data analysis software.
DspaceOgre 3D Graphics Visualization Tool
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Myin, Steven; Pomerantz, Marc I.
2011-01-01
This general-purpose 3D graphics visualization C++ tool is designed for visualization of simulation and analysis data for articulated mechanisms. Examples of such systems are vehicles, robotic arms, biomechanics models, and biomolecular structures. DspaceOgre builds upon the open-source Ogre3D graphics visualization library. It provides additional classes to support the management of complex scenes involving multiple viewpoints and different scene groups, and can be used as a remote graphics server. This software provides improved support for adding programs at the graphics processing unit (GPU) level for improved performance. It also improves upon the messaging interface it exposes for use as a visualization server.
Modelling raw water quality: development of a drinking water management tool.
Kübeck, Ch; van Berk, W; Bergmann, A
2009-01-01
Ensuring future drinking water supply requires a tough management of groundwater resources. However, recent practices of economic resource control often does not involve aspects of the hydrogeochemical and geohydraulical groundwater system. In respect of analysing the available quantity and quality of future raw water, an effective resource management requires a full understanding of the hydrogeochemical and geohydraulical processes within the aquifer. For example, the knowledge of raw water quality development within the time helps to work out strategies of water treatment as well as planning finance resources. On the other hand, the effectiveness of planed measurements reducing the infiltration of harmful substances such as nitrate can be checked and optimized by using hydrogeochemical modelling. Thus, within the framework of the InnoNet program funded by Federal Ministry of Economics and Technology, a network of research institutes and water suppliers work in close cooperation developing a planning and management tool particularly oriented on water management problems. The tool involves an innovative material flux model that calculates the hydrogeochemical processes under consideration of the dynamics in agricultural land use. The program integrated graphical data evaluation is aligned on the needs of water suppliers.
NASA Technical Reports Server (NTRS)
Desautel, Richard
1993-01-01
The objectives of this research include supporting the Aerothermodynamics Branch's research by developing graphical visualization tools for both the branch's adaptive grid code and flow field ray tracing code. The completed research for the reporting period includes development of a graphical user interface (GUI) and its implementation into the NAS Flowfield Analysis Software Tool kit (FAST), for both the adaptive grid code (SAGE) and the flow field ray tracing code (CISS).
Semantically Grounded Briefings
2005-12-01
cascading interface, mirroring the class inheritance of the ontologies. Clicking on one of these tools, like PowerPoint’s native autoshape tools...connections are their graphic templates. This determines the appearance of an instance of that concept. Any of PowerPoint’s native autoshapes , formatted...which can be any PowerPoint autoshape , group shape, or image • Identification of a modulated component of C’s graphic template. If C’s graphic
Graphic Design Is Not a Medium.
ERIC Educational Resources Information Center
Gruber, John Edward, Jr.
2001-01-01
Discusses graphic design and reviews its development from analog processes to a digital tool with the use of computers. Topics include graphical user interfaces; the need for visual communication concepts; transmedia as opposed to repurposing; and graphic design instruction in higher education. (LRW)
Budavari, Tamas; Langmead, Ben; Wheelan, Sarah J.; Salzberg, Steven L.; Szalay, Alexander S.
2015-01-01
When computing alignments of DNA sequences to a large genome, a key element in achieving high processing throughput is to prioritize locations in the genome where high-scoring mappings might be expected. We formulated this task as a series of list-processing operations that can be efficiently performed on graphics processing unit (GPU) hardware.We followed this approach in implementing a read aligner called Arioc that uses GPU-based parallel sort and reduction techniques to identify high-priority locations where potential alignments may be found. We then carried out a read-by-read comparison of Arioc’s reported alignments with the alignments found by several leading read aligners. With simulated reads, Arioc has comparable or better accuracy than the other read aligners we tested. With human sequencing reads, Arioc demonstrates significantly greater throughput than the other aligners we evaluated across a wide range of sensitivity settings. The Arioc software is available at https://github.com/RWilton/Arioc. It is released under a BSD open-source license. PMID:25780763
GRASP - A Prototype Interactive Graphic Sawing Program - (Forest Products Journal)
Luis G. Occeña; Daniel L. Schmoldt
1996-01-01
A versatile microcomputer-based interactive graphics sawing program has been developed as a tool for modeling various hardwood processes, from bucking and topping to log sawing, lumber edging, secondary processing, and even veneering. The microcomputer platform makes the tool affordable and accessible. A solid modeling basis provides the tool with a sound geometrical...
GRASP - A Prototype Interactive Graphic Sawing Program - (MU-IE Technical Report)
Luis G. Occeña; Daniel L. Schmoldt
1995-01-01
A versatile microcomputer-based interactive graphics program has been developed as a tool for modeling various hardwood processes, from bucking and topping to log sawing, lumber edging, secondary processing, even veneering. The microcomputer platform makes the tool affordable and accessible.A solid modeling basis provides the tool with a sound geometrical and...
Image stack alignment in full-field X-ray absorption spectroscopy using SIFT_PyOCL.
Paleo, Pierre; Pouyet, Emeline; Kieffer, Jérôme
2014-03-01
Full-field X-ray absorption spectroscopy experiments allow the acquisition of millions of spectra within minutes. However, the construction of the hyperspectral image requires an image alignment procedure with sub-pixel precision. While the image correlation algorithm has originally been used for image re-alignment using translations, the Scale Invariant Feature Transform (SIFT) algorithm (which is by design robust versus rotation, illumination change, translation and scaling) presents an additional advantage: the alignment can be limited to a region of interest of any arbitrary shape. In this context, a Python module, named SIFT_PyOCL, has been developed. It implements a parallel version of the SIFT algorithm in OpenCL, providing high-speed image registration and alignment both on processors and graphics cards. The performance of the algorithm allows online processing of large datasets.
NASA Technical Reports Server (NTRS)
Barrett, Joe H., III; Lafosse, Richard; Hood, Doris; Hoeth, Brian
2007-01-01
Graphical overlays can be created in real-time in the Advanced Weather Interactive Processing System (AWIPS) using shapefiles or DARE Graphics Metafile (DGM) files. This presentation describes how to create graphical overlays on-the-fly for AWIPS, by using two examples of AWIPS applications that were created by the Applied Meteorology Unit (AMU). The first example is the Anvil Threat Corridor Forecast Tool, which produces a shapefile that depicts a graphical threat corridor of the forecast movement of thunderstorm anvil clouds, based on the observed or forecast upper-level winds. This tool is used by the Spaceflight Meteorology Group (SMG) and 45th Weather Squadron (45 WS) to analyze the threat of natural or space vehicle-triggered lightning over a location. The second example is a launch and landing trajectory tool that produces a DGM file that plots the ground track of space vehicles during launch or landing. The trajectory tool can be used by SMG and the 45 WS forecasters to analyze weather radar imagery along a launch or landing trajectory. Advantages of both file types will be listed.
NASA Technical Reports Server (NTRS)
Bavuso, Salvatore J.; Rothmann, Elizabeth; Mittal, Nitin; Koppen, Sandra Howell
1994-01-01
The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of highly reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed at the outset to be compatible with most computing platforms and operating systems, and some programs have been beta tested within the aerospace community for over 8 years. This document is a user's guide for the HiRel graphical preprocessor Graphics Oriented (GO) program. GO is a graphical user interface for the HARP engine that enables the drawing of reliability/availability models on a monitor. A mouse is used to select fault tree gates or Markov graphical symbols from a menu for drawing.
Enhanced Lighting Techniques and Augmented Reality to Improve Human Task Performance
NASA Technical Reports Server (NTRS)
Maida, James C.; Bowen, Charles K.; Pace, John W.
2005-01-01
One of the most versatile tools designed for use on the International Space Station (ISS) is the Special Purpose Dexterous Manipulator (SPDM) robot. Operators for this system are trained at NASA Johnson Space Center (JSC) using a robotic simulator, the Dexterous Manipulator Trainer (DMT), which performs most SPDM functions under normal static Earth gravitational forces. The SPDM is controlled from a standard Robotic Workstation. A key feature of the SPDM and DMT is the Force/Moment Accommodation (FMA) system, which limits the contact forces and moments acting on the robot components, on its payload, an Orbital Replaceable Unit (ORU), and on the receptacle for the ORU. The FMA system helps to automatically alleviate any binding of the ORU as it is inserted or withdrawn from a receptacle, but it is limited in its correction capability. A successful ORU insertion generally requires that the reference axes of the ORU and receptacle be aligned to within approximately 0.25 inch and 0.5 degree of nominal values. The only guides available for the operator to achieve these alignment tolerances are views from any available video cameras. No special registration markings are provided on the ORU or receptacle, so the operator must use their intrinsic features in the video display to perform the pre-insertion alignment task. Since optimum camera views may not be available, and dynamic orbital lighting conditions may limit viewing periods, long times are anticipated for performing some ORU insertion or extraction operations. This study explored the feasibility of using augmented reality (AR) to assist with SPDM operations. Geometric graphical symbols were overlaid on the end effector (EE) camera view to afford cues to assist the operator in attaining adequate pre-insertion ORU alignment.
Plots, Calculations and Graphics Tools (PCG2). Software Transfer Request Presentation
NASA Technical Reports Server (NTRS)
Richardson, Marilou R.
2010-01-01
This slide presentation reviews the development of the Plots, Calculations and Graphics Tools (PCG2) system. PCG2 is an easy to use tool that provides a single user interface to view data in a pictorial, tabular or graphical format. It allows the user to view the same display and data in the Control Room, engineering office area, or remote sites. PCG2 supports extensive and regular engineering needs that are both planned and unplanned and it supports the ability to compare, contrast and perform ad hoc data mining over the entire domain of a program's test data.
Scribl: an HTML5 Canvas-based graphics library for visualizing genomic data over the web.
Miller, Chase A; Anthony, Jon; Meyer, Michelle M; Marth, Gabor
2013-02-01
High-throughput biological research requires simultaneous visualization as well as analysis of genomic data, e.g. read alignments, variant calls and genomic annotations. Traditionally, such integrative analysis required desktop applications operating on locally stored data. Many current terabyte-size datasets generated by large public consortia projects, however, are already only feasibly stored at specialist genome analysis centers. As even small laboratories can afford very large datasets, local storage and analysis are becoming increasingly limiting, and it is likely that most such datasets will soon be stored remotely, e.g. in the cloud. These developments will require web-based tools that enable users to access, analyze and view vast remotely stored data with a level of sophistication and interactivity that approximates desktop applications. As rapidly dropping cost enables researchers to collect data intended to answer questions in very specialized contexts, developers must also provide software libraries that empower users to implement customized data analyses and data views for their particular application. Such specialized, yet lightweight, applications would empower scientists to better answer specific biological questions than possible with general-purpose genome browsers currently available. Using recent advances in core web technologies (HTML5), we developed Scribl, a flexible genomic visualization library specifically targeting coordinate-based data such as genomic features, DNA sequence and genetic variants. Scribl simplifies the development of sophisticated web-based graphical tools that approach the dynamism and interactivity of desktop applications. Software is freely available online at http://chmille4.github.com/Scribl/ and is implemented in JavaScript with all modern browsers supported.
Grohar: Automated Visualization of Genome-Scale Metabolic Models and Their Pathways.
Moškon, Miha; Zimic, Nikolaj; Mraz, Miha
2018-05-01
Genome-scale metabolic models (GEMs) have become a powerful tool for the investigation of the entire metabolism of the organism in silico. These models are, however, often extremely hard to reconstruct and also difficult to apply to the selected problem. Visualization of the GEM allows us to easier comprehend the model, to perform its graphical analysis, to find and correct the faulty relations, to identify the parts of the system with a designated function, etc. Even though several approaches for the automatic visualization of GEMs have been proposed, metabolic maps are still manually drawn or at least require large amount of manual curation. We present Grohar, a computational tool for automatic identification and visualization of GEM (sub)networks and their metabolic fluxes. These (sub)networks can be specified directly by listing the metabolites of interest or indirectly by providing reference metabolic pathways from different sources, such as KEGG, SBML, or Matlab file. These pathways are identified within the GEM using three different pathway alignment algorithms. Grohar also supports the visualization of the model adjustments (e.g., activation or inhibition of metabolic reactions) after perturbations are induced.
CHROMA: consensus-based colouring of multiple alignments for publication.
Goodstadt, L; Ponting, C P
2001-09-01
CHROMA annotates multiple protein sequence alignments by consensus to produce formatted and coloured text suitable for incorporation into other documents for publication. The package is designed to be flexible and reliable, and has a simple-to-use graphical user interface running under Microsoft Windows. Both the executables and source code for CHROMA running under Windows and Linux (portable command-line only) are freely available at http://www.lg.ndirect.co.uk/chroma. Software enquiries should be directed to CHROMA@lg.ndirect.co.uk.
Designer: A Knowledge-Based Graphic Design Assistant.
ERIC Educational Resources Information Center
Weitzman, Louis
This report describes Designer, an interactive tool for assisting with the design of two-dimensional graphic interfaces for instructional systems. The system, which consists of a color graphics interface to a mathematical simulation, provides enhancements to the Graphics Editor component of Steamer (a computer-based training system designed to aid…
Engineering Graphics Educational Outcomes for the Global Engineer: An Update
ERIC Educational Resources Information Center
Barr, R. E.
2012-01-01
This paper discusses the formulation of educational outcomes for engineering graphics that span the global enterprise. Results of two repeated faculty surveys indicate that new computer graphics tools and techniques are now the preferred mode of engineering graphical communication. Specifically, 3-D computer modeling, assembly modeling, and model…
Writing from behind the Fence: Incarcerated Youths and a Graphic Novel on HIV/AIDS
ERIC Educational Resources Information Center
Gavigan, Karen; Albright, Kendra
2015-01-01
Graphic novels are an increasingly popular format that educators can use as a tool to teach reading and writing skills across the K-12 curriculum. This article describes a project in which incarcerated youths collaborated with a graphic illustrator to create a graphic novel about teens dealing with issues related to HIV/AIDS. The graphic novel is…
A Monthly Water-Balance Model Driven By a Graphical User Interface
McCabe, Gregory J.; Markstrom, Steven L.
2007-01-01
This report describes a monthly water-balance model driven by a graphical user interface, referred to as the Thornthwaite monthly water-balance program. Computations of monthly water-balance components of the hydrologic cycle are made for a specified location. The program can be used as a research tool, an assessment tool, and a tool for classroom instruction.
1, 2, 3, 4: Infusing Quantitative Literacy into Introductory Biology
Momsen, Jennifer L.; Moyerbrailean, Gregory A.; Ebert-May, Diane; Long, Tammy M.; Wyse, Sara; Linton, Debra
2010-01-01
Biology of the twenty-first century is an increasingly quantitative science. Undergraduate biology education therefore needs to provide opportunities for students to develop fluency in the tools and language of quantitative disciplines. Quantitative literacy (QL) is important for future scientists as well as for citizens, who need to interpret numeric information and data-based claims regarding nearly every aspect of daily life. To address the need for QL in biology education, we incorporated quantitative concepts throughout a semester-long introductory biology course at a large research university. Early in the course, we assessed the quantitative skills that students bring to the introductory biology classroom and found that students had difficulties in performing simple calculations, representing data graphically, and articulating data-driven arguments. In response to students' learning needs, we infused the course with quantitative concepts aligned with the existing course content and learning objectives. The effectiveness of this approach is demonstrated by significant improvement in the quality of students' graphical representations of biological data. Infusing QL in introductory biology presents challenges. Our study, however, supports the conclusion that it is feasible in the context of an existing course, consistent with the goals of college biology education, and promotes students' development of important quantitative skills. PMID:20810965
The graphics calculator in mathematics education: A critical review of recent research
NASA Astrophysics Data System (ADS)
Penglase, Marina; Arnold, Stephen
1996-04-01
The graphics calculator, sometimes referred to as the "super calculator," has sparked great interest among mathematics educators. Considered by many to be a tool which has the potential to revolutionise mathematics education, a significant amount of research has been conducted into its effectiveness as a tool for instruction and learning within precalculus and calculus courses, specifically in the study of functions, graphing and modelling. Some results suggest that these devices (a) can facilitate the learning of functions and graphing concepts and the development of spatial visualisation skills; (b) promote mathematical investigation and exploration; and (c) encourage a shift in emphasis from algebraic manipulation and proof to graphical investigation and examination of the relationship between graphical, algebraic and geometric representations. Other studies, however, indicate that there is still a need for manipulative techniques in the learning of function and graphing concepts, that the use of graphics calculators may not facilitate the learning of particular precalculus topics, and that some "de-skilling" may occur, especially among males. It is the contention of this paper, however, that much of the research in this new and important field fails to provide clear guidance or even to inform debate in adequate ways regarding the role of graphics calculators in mathematics teaching and learning. By failing to distinguish the role of the tool from that of the instructional process, many studies reviewed could be more appropriately classified as "program evaluations" rather than as research on the graphics calculator per se. Further, claims regarding the effectiveness of the graphics calculator as a tool for learning frequently fail to recognise that judgments of effectiveness result directly from existing assumptions regarding both assessment practice and student "achievement."
PC Software graphics tool for conceptual design of space/planetary electrical power systems
NASA Technical Reports Server (NTRS)
Truong, Long V.
1995-01-01
This paper describes the Decision Support System (DSS), a personal computer software graphics tool for designing conceptual space and/or planetary electrical power systems. By using the DSS, users can obtain desirable system design and operating parameters, such as system weight, electrical distribution efficiency, and bus power. With this tool, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. The DSS is a user-friendly, menu-driven tool with online help and a custom graphical user interface. An example design and results are illustrated for a typical space power system with multiple types of power sources, frequencies, energy storage systems, and loads.
The Development of a Concept Inventory for Engineering Graphics
ERIC Educational Resources Information Center
Nozaki, Steven Yasuto
2017-01-01
Graphics education has been a central component in the engineering course of study. As technology advances, so have the methods in which graphics are expressed and practiced. Though the of media of graphics education have evolved, the concepts of the field remain relatively consistent. Tools are needed to measure students' comprehension,…
Graphics Tablet Technology in Second Year Thermal Engineering Teaching
ERIC Educational Resources Information Center
Carrillo, Antonio; Cejudo, José Manuel; Domínguez, Fernando; Rodríguez, Eduardo
2013-01-01
Graphics tablet technology is well known in markets such as manufacturing, graphics arts and design but it has not yet found widespread acceptance for university teaching. A graphics tablet is an affordable teaching tool that combines the best features from traditional and new media. It allows developing a progressive, interactive lecture (as a…
Alcantara, Luiz Carlos Junior; Cassol, Sharon; Libin, Pieter; Deforche, Koen; Pybus, Oliver G; Van Ranst, Marc; Galvão-Castro, Bernardo; Vandamme, Anne-Mieke; de Oliveira, Tulio
2009-07-01
Human immunodeficiency virus type-1 (HIV-1), hepatitis B and C and other rapidly evolving viruses are characterized by extremely high levels of genetic diversity. To facilitate diagnosis and the development of prevention and treatment strategies that efficiently target the diversity of these viruses, and other pathogens such as human T-lymphotropic virus type-1 (HTLV-1), human herpes virus type-8 (HHV8) and human papillomavirus (HPV), we developed a rapid high-throughput-genotyping system. The method involves the alignment of a query sequence with a carefully selected set of pre-defined reference strains, followed by phylogenetic analysis of multiple overlapping segments of the alignment using a sliding window. Each segment of the query sequence is assigned the genotype and sub-genotype of the reference strain with the highest bootstrap (>70%) and bootscanning (>90%) scores. Results from all windows are combined and displayed graphically using color-coded genotypes. The new Virus-Genotyping Tools provide accurate classification of recombinant and non-recombinant viruses and are currently being assessed for their diagnostic utility. They have incorporated into several HIV drug resistance algorithms including the Stanford (http://hivdb.stanford.edu) and two European databases (http://www.umcutrecht.nl/subsite/spread-programme/ and http://www.hivrdb.org.uk/) and have been successfully used to genotype a large number of sequences in these and other databases. The tools are a PHP/JAVA web application and are freely accessible on a number of servers including: http://bioafrica.mrc.ac.za/rega-genotype/html/, http://lasp.cpqgm.fiocruz.br/virus-genotype/html/, http://jose.med.kuleuven.be/genotypetool/html/.
Pairwise Sequence Alignment Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Daily, PNNL
2015-05-20
Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, amore » novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.« less
Using a Theory of Change to Guide Grant Monitoring and Grantmaking.
Glasgow, LaShawn; Adams, Elizabeth; Joshi, Sandhya; Curry, Laurel; Schmitt, Carol L; Rogers, Todd; Willett, Jeffrey; Van Hersh, Deanna
Charitable foundations play a significant role in advancing public health, funding billions of dollars in health grants each year. Evaluation is an important accountability tool for foundations and helps ensure that philanthropic investments contribute to the broader public health evidence base. While commitment to evaluation has increased among foundations over the past few decades, effective use of evaluation findings remains challenging. To facilitate use of evaluation findings among philanthropic organizations, evaluators can incorporate the foundation's theory of change-an illustration of the presumed causal pathways between a program's activities and its intended outcomes-into user-friendly products that summarize evaluation findings and recommendations. Using examples from the evaluation of the Kansas Health Foundation's Healthy Living Focus Area, we present a mapping technique that can be applied to assess and graphically depict alignment between program theory and program reality, refine the theory of change, and inform grantmaking.
PDBFlex: exploring flexibility in protein structures
Hrabe, Thomas; Li, Zhanwen; Sedova, Mayya; Rotkiewicz, Piotr; Jaroszewski, Lukasz; Godzik, Adam
2016-01-01
The PDBFlex database, available freely and with no login requirements at http://pdbflex.org, provides information on flexibility of protein structures as revealed by the analysis of variations between depositions of different structural models of the same protein in the Protein Data Bank (PDB). PDBFlex collects information on all instances of such depositions, identifying them by a 95% sequence identity threshold, performs analysis of their structural differences and clusters them according to their structural similarities for easy analysis. The PDBFlex contains tools and viewers enabling in-depth examination of structural variability including: 2D-scaling visualization of RMSD distances between structures of the same protein, graphs of average local RMSD in the aligned structures of protein chains, graphical presentation of differences in secondary structure and observed structural disorder (unresolved residues), difference distance maps between all sets of coordinates and 3D views of individual structures and simulated transitions between different conformations, the latter displayed using JSMol visualization software. PMID:26615193
Hegger, Ingrid; Marks, Lisanne K; Janssen, Susan W J; Schuit, Albertine J; Keijsers, Jolanda F M; van Oers, Hans A M
2016-09-30
To improve knowledge utilization in policymaking, alignment between researchers and policymakers during knowledge production is essential, but difficult to maintain. In three previously reported case studies, we extensively evaluated complex research projects commissioned by policymakers to investigate how alignment is achieved in a research process and to discover ways to enhance knowledge contributions to health policy. In the present study, we investigated how the findings of these three research projects could be integrated into a practical tool for researchers to enhance their contribution to evidence-based policy. A cross-case analysis was conducted to integrate the findings of the evaluation of the three research projects and to identify important alignment areas in these projects. By means of an iterative process, we prepared a tool that includes reflection questions for researchers. The "Research for Policy" tool was tested with input from the project managers of three new research projects. Based on the findings, the final version of the Research for Policy tool was prepared. By cross-case analysis of the three case studies, the following important alignment areas were identified: the goal, quality, relevance, timing, and presentation of research, the tasks and authorities of actors, the consultative structure and vertical alignment within organizations, and the organizational environment. The project managers regarded the Research for Policy tool as a useful checklist for addressing the important alignment areas in a research project. Based on their feedback, the illustrative examples from the case studies were added to the reflection questions. The project managers suggested making the tool accessible not only to researchers but also to policymakers. The format of the Research for Policy tool was further adjusted to users' needs by adding clickable links. Alignment between research and policymaking requires continuous efforts and a clear understanding of process issues in the research project. The Research for Policy tool offers practical alignment guidance and facilitates reflection on process issues, which supports researchers in aligning with policymakers and in acting in a context-sensitive way.
VTGRAPH - GRAPHIC SOFTWARE TOOL FOR VT TERMINALS
NASA Technical Reports Server (NTRS)
Wang, C.
1994-01-01
VTGRAPH is a graphics software tool for DEC/VT or VT compatible terminals which are widely used by government and industry. It is a FORTRAN or C-language callable library designed to allow the user to deal with many computer environments which use VT terminals for window management and graphic systems. It also provides a PLOT10-like package plus color or shade capability for VT240, VT241, and VT300 terminals. The program is transportable to many different computers which use VT terminals. With this graphics package, the user can easily design more friendly user interface programs and design PLOT10 programs on VT terminals with different computer systems. VTGRAPH was developed using the ReGis Graphics set which provides a full range of graphics capabilities. The basic VTGRAPH capabilities are as follows: window management, PLOT10 compatible drawing, generic program routines for two and three dimensional plotting, and color graphics or shaded graphics capability. The program was developed in VAX FORTRAN in 1988. VTGRAPH requires a ReGis graphics set terminal and a FORTRAN compiler. The program has been run on a DEC MicroVAX 3600 series computer operating under VMS 5.0, and has a virtual memory requirement of 5KB.
Graphical Interfaces for Simulation.
ERIC Educational Resources Information Center
Hollan, J. D.; And Others
This document presents a discussion of the development of a set of software tools to assist in the construction of interfaces to simulations and real-time systems. Presuppositions to the approach to interface design that was used are surveyed, the tools are described, and the conclusions drawn from these experiences in graphical interface design…
Chips: A Tool for Developing Software Interfaces Interactively.
ERIC Educational Resources Information Center
Cunningham, Robert E.; And Others
This report provides a detailed description of Chips, an interactive tool for developing software employing graphical/computer interfaces on Xerox Lisp machines. It is noted that Chips, which is implemented as a collection of customizable classes, provides the programmer with a rich graphical interface for the creation of rich graphical…
SFESA: a web server for pairwise alignment refinement by secondary structure shifts.
Tong, Jing; Pei, Jimin; Grishin, Nick V
2015-09-03
Protein sequence alignment is essential for a variety of tasks such as homology modeling and active site prediction. Alignment errors remain the main cause of low-quality structure models. A bioinformatics tool to refine alignments is needed to make protein alignments more accurate. We developed the SFESA web server to refine pairwise protein sequence alignments. Compared to the previous version of SFESA, which required a set of 3D coordinates for a protein, the new server will search a sequence database for the closest homolog with an available 3D structure to be used as a template. For each alignment block defined by secondary structure elements in the template, SFESA evaluates alignment variants generated by local shifts and selects the best-scoring alignment variant. A scoring function that combines the sequence score of profile-profile comparison and the structure score of template-derived contact energy is used for evaluation of alignments. PROMALS pairwise alignments refined by SFESA are more accurate than those produced by current advanced alignment methods such as HHpred and CNFpred. In addition, SFESA also improves alignments generated by other software. SFESA is a web-based tool for alignment refinement, designed for researchers to compute, refine, and evaluate pairwise alignments with a combined sequence and structure scoring of alignment blocks. To our knowledge, the SFESA web server is the only tool that refines alignments by evaluating local shifts of secondary structure elements. The SFESA web server is available at http://prodata.swmed.edu/sfesa.
2012-01-01
Background Gas chromatography–mass spectrometry (GC-MS) is a technique frequently used in targeted and non-targeted measurements of metabolites. Most existing software tools for processing of raw instrument GC-MS data tightly integrate data processing methods with graphical user interface facilitating interactive data processing. While interactive processing remains critically important in GC-MS applications, high-throughput studies increasingly dictate the need for command line tools, suitable for scripting of high-throughput, customized processing pipelines. Results PyMS comprises a library of functions for processing of instrument GC-MS data developed in Python. PyMS currently provides a complete set of GC-MS processing functions, including reading of standard data formats (ANDI- MS/NetCDF and JCAMP-DX), noise smoothing, baseline correction, peak detection, peak deconvolution, peak integration, and peak alignment by dynamic programming. A novel common ion single quantitation algorithm allows automated, accurate quantitation of GC-MS electron impact (EI) fragmentation spectra when a large number of experiments are being analyzed. PyMS implements parallel processing for by-row and by-column data processing tasks based on Message Passing Interface (MPI), allowing processing to scale on multiple CPUs in distributed computing environments. A set of specifically designed experiments was performed in-house and used to comparatively evaluate the performance of PyMS and three widely used software packages for GC-MS data processing (AMDIS, AnalyzerPro, and XCMS). Conclusions PyMS is a novel software package for the processing of raw GC-MS data, particularly suitable for scripting of customized processing pipelines and for data processing in batch mode. PyMS provides limited graphical capabilities and can be used both for routine data processing and interactive/exploratory data analysis. In real-life GC-MS data processing scenarios PyMS performs as well or better than leading software packages. We demonstrate data processing scenarios simple to implement in PyMS, yet difficult to achieve with many conventional GC-MS data processing software. Automated sample processing and quantitation with PyMS can provide substantial time savings compared to more traditional interactive software systems that tightly integrate data processing with the graphical user interface. PMID:22647087
Design and validation of an improved graphical user interface with the 'Tool ball'.
Lee, Kuo-Wei; Lee, Ying-Chu
2012-01-01
The purpose of this research is introduce the design of an improved graphical user interface (GUI) and verifies the operational efficiency of the proposed interface. Until now, clicking the toolbar with the mouse is the usual way to operate software functions. In our research, we designed an improved graphical user interface - a tool ball that is operated by a mouse wheel to perform software functions. Several experiments are conducted to measure the time needed to operate certain software functions with the traditional combination of "mouse click + tool button" and the proposed integration of "mouse wheel + tool ball". The results indicate that the tool ball design can accelerate the speed of operating software functions, decrease the number of icons on the screen, and enlarge the applications of the mouse wheel. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
PSAT: A web tool to compare genomic neighborhoods of multiple prokaryotic genomes
Fong, Christine; Rohmer, Laurence; Radey, Matthew; Wasnick, Michael; Brittnacher, Mitchell J
2008-01-01
Background The conservation of gene order among prokaryotic genomes can provide valuable insight into gene function, protein interactions, or events by which genomes have evolved. Although some tools are available for visualizing and comparing the order of genes between genomes of study, few support an efficient and organized analysis between large numbers of genomes. The Prokaryotic Sequence homology Analysis Tool (PSAT) is a web tool for comparing gene neighborhoods among multiple prokaryotic genomes. Results PSAT utilizes a database that is preloaded with gene annotation, BLAST hit results, and gene-clustering scores designed to help identify regions of conserved gene order. Researchers use the PSAT web interface to find a gene of interest in a reference genome and efficiently retrieve the sequence homologs found in other bacterial genomes. The tool generates a graphic of the genomic neighborhood surrounding the selected gene and the corresponding regions for its homologs in each comparison genome. Homologs in each region are color coded to assist users with analyzing gene order among various genomes. In contrast to common comparative analysis methods that filter sequence homolog data based on alignment score cutoffs, PSAT leverages gene context information for homologs, including those with weak alignment scores, enabling a more sensitive analysis. Features for constraining or ordering results are designed to help researchers browse results from large numbers of comparison genomes in an organized manner. PSAT has been demonstrated to be useful for helping to identify gene orthologs and potential functional gene clusters, and detecting genome modifications that may result in loss of function. Conclusion PSAT allows researchers to investigate the order of genes within local genomic neighborhoods of multiple genomes. A PSAT web server for public use is available for performing analyses on a growing set of reference genomes through any web browser with no client side software setup or installation required. Source code is freely available to researchers interested in setting up a local version of PSAT for analysis of genomes not available through the public server. Access to the public web server and instructions for obtaining source code can be found at . PMID:18366802
NASA Technical Reports Server (NTRS)
Truong, L. V.
1994-01-01
Computer graphics are often applied for better understanding and interpretation of data under observation. These graphics become more complicated when animation is required during "run-time", as found in many typical modern artificial intelligence and expert systems. Living Color Frame Maker is a solution to many of these real-time graphics problems. Living Color Frame Maker (LCFM) is a graphics generation and management tool for IBM or IBM compatible personal computers. To eliminate graphics programming, the graphic designer can use LCFM to generate computer graphics frames. The graphical frames are then saved as text files, in a readable and disclosed format, which can be easily accessed and manipulated by user programs for a wide range of "real-time" visual information applications. For example, LCFM can be implemented in a frame-based expert system for visual aids in management of systems. For monitoring, diagnosis, and/or controlling purposes, circuit or systems diagrams can be brought to "life" by using designated video colors and intensities to symbolize the status of hardware components (via real-time feedback from sensors). Thus status of the system itself can be displayed. The Living Color Frame Maker is user friendly with graphical interfaces, and provides on-line help instructions. All options are executed using mouse commands and are displayed on a single menu for fast and easy operation. LCFM is written in C++ using the Borland C++ 2.0 compiler for IBM PC series computers and compatible computers running MS-DOS. The program requires a mouse and an EGA/VGA display. A minimum of 77K of RAM is also required for execution. The documentation is provided in electronic form on the distribution medium in WordPerfect format. A sample MS-DOS executable is provided on the distribution medium. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. The Living Color Frame Maker tool was developed in 1992.
NASA Technical Reports Server (NTRS)
Thomas, N. L.; Chisel, D. M.
1976-01-01
The success of a rocket-borne experiment depends not only on the pointing of the attitude control system, but on the alignment of the attitude control system to the payload. To ensure proper alignment, special optical tools and alignment techniques are required. Those that were used in the SPARCS program are described and discussed herein. These tools include theodolites, autocollimators, a 38-cm diameter solar simulator, a high-performance 1-m heliostat to provide a stable solar source during the integration of the rocket payload, a portable 75-cm sun tracker for use at the launch site, and an innovation called the Solar Alignment Prism. Using the real sun as the primary reference under field conditions, the Solar Alignment Prism facilitates the coalignment of the attitude sun sensor with the payload. The alignment techniques were developed to ensure the precise alignment of the solar payloads to the SPARCS attitude sensors during payload integration and to verify the required alignment under field conditions just prior to launch.
Tools for computer graphics applications
NASA Technical Reports Server (NTRS)
Phillips, R. L.
1976-01-01
Extensive research in computer graphics has produced a collection of basic algorithms and procedures whose utility spans many disciplines. These tools are described in terms of their fundamental aspects, implementations, applications, and availability. Programs which are discussed include basic data plotting, curve smoothing, and depiction of three dimensional surfaces. As an aid to potential users of these tools, particular attention is given to discussing their availability and, where applicable, their cost.
Designing stereoscopic information visualization for 3D-TV: What can we can learn from S3D gaming?
NASA Astrophysics Data System (ADS)
Schild, Jonas; Masuch, Maic
2012-03-01
This paper explores graphical design and spatial alignment of visual information and graphical elements into stereoscopically filmed content, e.g. captions, subtitles, and especially more complex elements in 3D-TV productions. The method used is a descriptive analysis of existing computer- and video games that have been adapted for stereoscopic display using semi-automatic rendering techniques (e.g. Nvidia 3D Vision) or games which have been specifically designed for stereoscopic vision. Digital games often feature compelling visual interfaces that combine high usability with creative visual design. We explore selected examples of game interfaces in stereoscopic vision regarding their stereoscopic characteristics, how they draw attention, how we judge effect and comfort and where the interfaces fail. As a result, we propose a list of five aspects which should be considered when designing stereoscopic visual information: explicit information, implicit information, spatial reference, drawing attention, and vertical alignment. We discuss possible consequences, opportunities and challenges for integrating visual information elements into 3D-TV content. This work shall further help to improve current editing systems and identifies a need for future editing systems for 3DTV, e.g., live editing and real-time alignment of visual information into 3D footage.
Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) Version 3.0 User Guide
User Guide to describe the complete functionality of the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) Version 3.0 online tool. The US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility tool (SeqAPASS; https://seqa...
SimHap GUI: an intuitive graphical user interface for genetic association analysis.
Carter, Kim W; McCaskie, Pamela A; Palmer, Lyle J
2008-12-25
Researchers wishing to conduct genetic association analysis involving single nucleotide polymorphisms (SNPs) or haplotypes are often confronted with the lack of user-friendly graphical analysis tools, requiring sophisticated statistical and informatics expertise to perform relatively straightforward tasks. Tools, such as the SimHap package for the R statistics language, provide the necessary statistical operations to conduct sophisticated genetic analysis, but lacks a graphical user interface that allows anyone but a professional statistician to effectively utilise the tool. We have developed SimHap GUI, a cross-platform integrated graphical analysis tool for conducting epidemiological, single SNP and haplotype-based association analysis. SimHap GUI features a novel workflow interface that guides the user through each logical step of the analysis process, making it accessible to both novice and advanced users. This tool provides a seamless interface to the SimHap R package, while providing enhanced functionality such as sophisticated data checking, automated data conversion, and real-time estimations of haplotype simulation progress. SimHap GUI provides a novel, easy-to-use, cross-platform solution for conducting a range of genetic and non-genetic association analyses. This provides a free alternative to commercial statistics packages that is specifically designed for genetic association analysis.
Mills, Patj Patj Janama Robert; Dingwall, Kylie Maree; Lowell, Anne; Singer, Judy; Rotumah, Darlene; Bennett-Levy, James; Nagel, Tricia
2016-01-01
Background Aboriginal and Torres Strait Islander Australians experience high rates of mental illness and psychological distress compared to their non-Indigenous counterparts. E-mental health tools offer an opportunity for accessible, effective, and acceptable treatment. The AIMhi Stay Strong app and the ibobbly suicide prevention app are treatment tools designed to combat the disproportionately high levels of mental illness and stress experienced within the Aboriginal and Torres Strait Islander community. Objective This study aimed to explore Aboriginal and Torres Strait Islander community members’ experiences of using two culturally responsive e-mental health apps and identify factors that influence the acceptability of these approaches. Methods Using qualitative methods aligned with a phenomenological approach, we explored the acceptability of two culturally responsive e-mental health apps through a series of three 3-hour focus groups with nine Aboriginal and Torres Strait Islander community members. Thematic analysis was conducted and coresearcher and member checking were used to verify findings. Results Findings suggest strong support for the concept of e-mental health apps and optimism for their potential. Factors that influenced acceptability related to three key themes: personal factors (eg, motivation, severity and awareness of illness, technological competence, and literacy and language differences), environmental factors (eg, community awareness, stigma, and availability of support), and app characteristics (eg, ease of use, content, graphics, access, and security and information sharing). Specific adaptations, such as local production, culturally relevant content and graphics, a purposeful journey, clear navigation, meaningful language, options to assist people with language differences, offline use, and password protection may aid uptake. Conclusions When designed to meet the needs of Aboriginal and Torres Strait Islander Australians, e-mental health tools add an important element to public health approaches for improving the well-being of Aboriginal and Torres Strait Islander people. PMID:26969043
Development and application of an algorithm to compute weighted multiple glycan alignments.
Hosoda, Masae; Akune, Yukie; Aoki-Kinoshita, Kiyoko F
2017-05-01
A glycan consists of monosaccharides linked by glycosidic bonds, has branches and forms complex molecular structures. Databases have been developed to store large amounts of glycan-binding experiments, including glycan arrays with glycan-binding proteins. However, there are few bioinformatics techniques to analyze large amounts of data for glycans because there are few tools that can handle the complexity of glycan structures. Thus, we have developed the MCAW (Multiple Carbohydrate Alignment with Weights) tool that can align multiple glycan structures, to aid in the understanding of their function as binding recognition molecules. We have described in detail the first algorithm to perform multiple glycan alignments by modeling glycans as trees. To test our tool, we prepared several data sets, and as a result, we found that the glycan motif could be successfully aligned without any prior knowledge applied to the tool, and the known recognition binding sites of glycans could be aligned at a high rate amongst all our datasets tested. We thus claim that our tool is able to find meaningful glycan recognition and binding patterns using data obtained by glycan-binding experiments. The development and availability of an effective multiple glycan alignment tool opens possibilities for many other glycoinformatics analysis, making this work a big step towards furthering glycomics analysis. http://www.rings.t.soka.ac.jp. kkiyoko@soka.ac.jp. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
Engineering computer graphics in gas turbine engine design, analysis and manufacture
NASA Technical Reports Server (NTRS)
Lopatka, R. S.
1975-01-01
A time-sharing and computer graphics facility designed to provide effective interactive tools to a large number of engineering users with varied requirements was described. The application of computer graphics displays at several levels of hardware complexity and capability is discussed, with examples of graphics systems tracing gas turbine product development, beginning with preliminary design through manufacture. Highlights of an operating system stylized for interactive engineering graphics is described.
The MATH--Open Source Application for Easier Learning of Numerical Mathematics
ERIC Educational Resources Information Center
Glaser-Opitz, Henrich; Budajová, Kristina
2016-01-01
The article introduces a software application (MATH) supporting an education of Applied Mathematics, with focus on Numerical Mathematics. The MATH is an easy to use tool supporting various numerical methods calculations with graphical user interface and integrated plotting tool for graphical representation written in Qt with extensive use of Qwt…
ERIC Educational Resources Information Center
Selva, Ana Coelho Vieira; Falcao, Jorge Tarcisio da Rocha; Nunes, Terezinha
2005-01-01
This research offers empirical evidence of the importance of supplying diverse symbolic representations in order to support concept development in mathematics. Graphical representation can be a helpful symbolic tool for concept development in the conceptual field of additive structures. Nevertheless, this symbolic tool has specific difficulties…
Scribl: an HTML5 Canvas-based graphics library for visualizing genomic data over the web
Miller, Chase A.; Anthony, Jon; Meyer, Michelle M.; Marth, Gabor
2013-01-01
Motivation: High-throughput biological research requires simultaneous visualization as well as analysis of genomic data, e.g. read alignments, variant calls and genomic annotations. Traditionally, such integrative analysis required desktop applications operating on locally stored data. Many current terabyte-size datasets generated by large public consortia projects, however, are already only feasibly stored at specialist genome analysis centers. As even small laboratories can afford very large datasets, local storage and analysis are becoming increasingly limiting, and it is likely that most such datasets will soon be stored remotely, e.g. in the cloud. These developments will require web-based tools that enable users to access, analyze and view vast remotely stored data with a level of sophistication and interactivity that approximates desktop applications. As rapidly dropping cost enables researchers to collect data intended to answer questions in very specialized contexts, developers must also provide software libraries that empower users to implement customized data analyses and data views for their particular application. Such specialized, yet lightweight, applications would empower scientists to better answer specific biological questions than possible with general-purpose genome browsers currently available. Results: Using recent advances in core web technologies (HTML5), we developed Scribl, a flexible genomic visualization library specifically targeting coordinate-based data such as genomic features, DNA sequence and genetic variants. Scribl simplifies the development of sophisticated web-based graphical tools that approach the dynamism and interactivity of desktop applications. Availability and implementation: Software is freely available online at http://chmille4.github.com/Scribl/ and is implemented in JavaScript with all modern browsers supported. Contact: gabor.marth@bc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23172864
Alignment-Annotator web server: rendering and annotating sequence alignments.
Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas
2014-07-01
Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Alignment-Annotator web server: rendering and annotating sequence alignments
Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas
2014-01-01
Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. Availability: http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. PMID:24813445
HSA: a heuristic splice alignment tool.
Bu, Jingde; Chi, Xuebin; Jin, Zhong
2013-01-01
RNA-Seq methodology is a revolutionary transcriptomics sequencing technology, which is the representative of Next generation Sequencing (NGS). With the high throughput sequencing of RNA-Seq, we can acquire much more information like differential expression and novel splice variants from deep sequence analysis and data mining. But the short read length brings a great challenge to alignment, especially when the reads span two or more exons. A two steps heuristic splice alignment tool is generated in this investigation. First, map raw reads to reference with unspliced aligner--BWA; second, split initial unmapped reads into three equal short reads (seeds), align each seed to the reference, filter hits, search possible split position of read and extend hits to a complete match. Compare with other splice alignment tools like SOAPsplice and Tophat2, HSA has a better performance in call rate and efficiency, but its results do not as accurate as the other software to some extent. HSA is an effective spliced aligner of RNA-Seq reads mapping, which is available at https://github.com/vlcc/HSA.
Specialized Computer Systems for Environment Visualization
NASA Astrophysics Data System (ADS)
Al-Oraiqat, Anas M.; Bashkov, Evgeniy A.; Zori, Sergii A.
2018-06-01
The need for real time image generation of landscapes arises in various fields as part of tasks solved by virtual and augmented reality systems, as well as geographic information systems. Such systems provide opportunities for collecting, storing, analyzing and graphically visualizing geographic data. Algorithmic and hardware software tools for increasing the realism and efficiency of the environment visualization in 3D visualization systems are proposed. This paper discusses a modified path tracing algorithm with a two-level hierarchy of bounding volumes and finding intersections with Axis-Aligned Bounding Box. The proposed algorithm eliminates the branching and hence makes the algorithm more suitable to be implemented on the multi-threaded CPU and GPU. A modified ROAM algorithm is used to solve the qualitative visualization of reliefs' problems and landscapes. The algorithm is implemented on parallel systems—cluster and Compute Unified Device Architecture-networks. Results show that the implementation on MPI clusters is more efficient than Graphics Processing Unit/Graphics Processing Clusters and allows real-time synthesis. The organization and algorithms of the parallel GPU system for the 3D pseudo stereo image/video synthesis are proposed. With realizing possibility analysis on a parallel GPU-architecture of each stage, 3D pseudo stereo synthesis is performed. An experimental prototype of a specialized hardware-software system 3D pseudo stereo imaging and video was developed on the CPU/GPU. The experimental results show that the proposed adaptation of 3D pseudo stereo imaging to the architecture of GPU-systems is efficient. Also it accelerates the computational procedures of 3D pseudo-stereo synthesis for the anaglyph and anamorphic formats of the 3D stereo frame without performing optimization procedures. The acceleration is on average 11 and 54 times for test GPUs.
Konc, Janez; Cesnik, Tomo; Konc, Joanna Trykowska; Penca, Matej; Janežič, Dušanka
2012-02-27
ProBiS-Database is a searchable repository of precalculated local structural alignments in proteins detected by the ProBiS algorithm in the Protein Data Bank. Identification of functionally important binding regions of the protein is facilitated by structural similarity scores mapped to the query protein structure. PDB structures that have been aligned with a query protein may be rapidly retrieved from the ProBiS-Database, which is thus able to generate hypotheses concerning the roles of uncharacterized proteins. Presented with uncharacterized protein structure, ProBiS-Database can discern relationships between such a query protein and other better known proteins in the PDB. Fast access and a user-friendly graphical interface promote easy exploration of this database of over 420 million local structural alignments. The ProBiS-Database is updated weekly and is freely available online at http://probis.cmm.ki.si/database.
STELLAR: fast and exact local alignments
2011-01-01
Background Large-scale comparison of genomic sequences requires reliable tools for the search of local alignments. Practical local aligners are in general fast, but heuristic, and hence sometimes miss significant matches. Results We present here the local pairwise aligner STELLAR that has full sensitivity for ε-alignments, i.e. guarantees to report all local alignments of a given minimal length and maximal error rate. The aligner is composed of two steps, filtering and verification. We apply the SWIFT algorithm for lossless filtering, and have developed a new verification strategy that we prove to be exact. Our results on simulated and real genomic data confirm and quantify the conjecture that heuristic tools like BLAST or BLAT miss a large percentage of significant local alignments. Conclusions STELLAR is very practical and fast on very long sequences which makes it a suitable new tool for finding local alignments between genomic sequences under the edit distance model. Binaries are freely available for Linux, Windows, and Mac OS X at http://www.seqan.de/projects/stellar. The source code is freely distributed with the SeqAn C++ library version 1.3 and later at http://www.seqan.de. PMID:22151882
Tool for Inspecting Alignment of Twinaxial Connectors
NASA Technical Reports Server (NTRS)
Smith, Christopher R.
2008-01-01
A proposed tool would be used to inspect alignments of mating twinaxial-connector assemblies on interconnecting wiring harnesses. More specifically, the tool would be used to inspect the alignment of each contact pin of each connector on one assembly with the corresponding socket in the corresponding connector on the other assembly. It is necessary to inspect the alignment because if mating of the assemblies is attempted when any pin/socket pair is misaligned beyond tolerance, the connection will not be completed and the dielectric material in the socket will be damaged (see Figure 1). Although the basic principle of the tool is applicable to almost any type of mating connector assemblies, the specific geometry of the tool must match the pin-and-socket geometry of the specific mating assemblies to be inspected. In the original application for which the tool was conceived, each of the mating assemblies contains eight twinaxial connectors; the pin diameter is 0.014 in. (.0.35 mm), and the maximum allowable pin/socket misalignment is 0.007 in. (.0.18 mm). Incomplete connections can result in loss of flight data within the functional path to the space shuttle crew cockpit displays. The tool (see Figure 2) would consist mainly of a transparent disk with alignment clocking tabs that can be fitted onto either connector assembly. Sets of circles or equivalent reference markings are affixed to the face of the tool, located at the desired positions of the mating contact pairs. An inspector would simply fit the tool onto a connector assembly, engaging the clocking tabs until the tool fits tightly. The inspector would then align one set of circles positioning a line of sight perpendicular to one contact within the connector assembly. Mis alignments would be evidenced by the tip of a pin contact straying past the inner edge of the circle. Socket contact misalignments would be evidenced by a crescent-shaped portion of the white dielectric appearing within the circle. The tool could include a variable magnifier plus an illuminator that could be configured so as not to cast shadows.
Graphical Representations of Electronic Search Patterns.
ERIC Educational Resources Information Center
Lin, Xia; And Others
1991-01-01
Discussion of search behavior in electronic environments focuses on the development of GRIP (Graphic Representor of Interaction Patterns), a graphing tool based on HyperCard that produces graphic representations of search patterns. Search state spaces are explained, and forms of data available from electronic searches are described. (34…
Geometrically Evident: Framing Studies Using the Graphic Appraisal Tool for Epidemiology (GATE)
ERIC Educational Resources Information Center
Martin, Andres; Srihari, Vinod
2006-01-01
Educators in evidence-based medicine (EBM) have noted that the core set of epidemiological concepts outlined in standard sources are sometimes put to use as oversimplified checklists for the appraisal of research reports. In this article, the authors present the Graphic Appraisal Tool for Epidemiology which was designed as a way combat, by visual…
Graphical Requirements for Force Level Planning. Volume 2
1991-09-01
technology review includes graphics algorithms, computer hardware, computer software, and design methodologies. The technology can either exist today or...level graphics language. 7.4 User Interface Design Tools As user interfaces have become more sophisticated, they have become harder to develop. Xl...Setphen M. Pizer, editors. Proceedings 1986 Workshop on Interactive 31) Graphics , October 1986. 18 J. S. Dumas. Designing User Interface Software. Prentice
SimHap GUI: An intuitive graphical user interface for genetic association analysis
Carter, Kim W; McCaskie, Pamela A; Palmer, Lyle J
2008-01-01
Background Researchers wishing to conduct genetic association analysis involving single nucleotide polymorphisms (SNPs) or haplotypes are often confronted with the lack of user-friendly graphical analysis tools, requiring sophisticated statistical and informatics expertise to perform relatively straightforward tasks. Tools, such as the SimHap package for the R statistics language, provide the necessary statistical operations to conduct sophisticated genetic analysis, but lacks a graphical user interface that allows anyone but a professional statistician to effectively utilise the tool. Results We have developed SimHap GUI, a cross-platform integrated graphical analysis tool for conducting epidemiological, single SNP and haplotype-based association analysis. SimHap GUI features a novel workflow interface that guides the user through each logical step of the analysis process, making it accessible to both novice and advanced users. This tool provides a seamless interface to the SimHap R package, while providing enhanced functionality such as sophisticated data checking, automated data conversion, and real-time estimations of haplotype simulation progress. Conclusion SimHap GUI provides a novel, easy-to-use, cross-platform solution for conducting a range of genetic and non-genetic association analyses. This provides a free alternative to commercial statistics packages that is specifically designed for genetic association analysis. PMID:19109877
Honda, Satoshi; Tsunoda, Hiroko; Fukuda, Wataru; Saida, Yukihisa
2014-12-01
The purpose is to develop a new image toggle tool with automatic density normalization (ADN) and automatic alignment (AA) for comparing serial digital mammograms (DMGs). We developed an ADN and AA process to compare the images of serial DMGs. In image density normalization, a linear interpolation was applied by taking two points of high- and low-brightness areas. The alignment was calculated by determining the point of the greatest correlation while shifting the alignment between the current and prior images. These processes were performed on a PC with a 3.20-GHz Xeon processor and 8 GB of main memory. We selected 12 suspected breast cancer patients who had undergone screening DMGs in the past. Automatic processing was retrospectively performed on these images. Two radiologists subjectively evaluated them. The process of the developed algorithm took approximately 1 s per image. In our preliminary experience, two images could not be aligned approximately. When they were aligned, image toggling allowed detection of differences between examinations easily. We developed a new tool to facilitate comparative reading of DMGs on a mammography viewing system. Using this tool for toggling comparisons might improve the interpretation efficiency of serial DMGs.
Image-guided laser projection for port placement in minimally invasive surgery.
Marmurek, Jonathan; Wedlake, Chris; Pardasani, Utsav; Eagleson, Roy; Peters, Terry
2006-01-01
We present an application of an augmented reality laser projection system in which procedure-specific optimal incision sites, computed from pre-operative image acquisition, are superimposed on a patient to guide port placement in minimally invasive surgery. Tests were conducted to evaluate the fidelity of computed and measured port configurations, and to validate the accuracy with which a surgical tool-tip can be placed at an identified virtual target. A high resolution volumetric image of a thorax phantom was acquired using helical computed tomography imaging. Oriented within the thorax, a phantom organ with marked targets was visualized in a virtual environment. A graphical interface enabled marking the locations of target anatomy, and calculation of a grid of potential port locations along the intercostal rib lines. Optimal configurations of port positions and tool orientations were determined by an objective measure reflecting image-based indices of surgical dexterity, hand-eye alignment, and collision detection. Intra-operative registration of the computed virtual model and the phantom anatomy was performed using an optical tracking system. Initial trials demonstrated that computed and projected port placement provided direct access to target anatomy with an accuracy of 2 mm.
Graphics; For Regional Policy Making, a Preliminary Study.
ERIC Educational Resources Information Center
Ewald, William R., Jr.
The use of graphics (maps, charts, diagrams, renderings, photographs) for regional policy formulation and decision making is discussed at length. The report identifies the capabilities of a number of tools for analysis/synthesis/communication, especially computer assisted graphics to assist in community self-education and the management of change.…
Mage: A Tool for Developing Interactive Instructional Graphics
ERIC Educational Resources Information Center
Pavkovic, Stephen F.
2005-01-01
Mage is a graphics program developed for visualization of three-dimensional structures of proteins and other macromolecules. An application of the Mage program is reported here for developing interactive instructional graphics files (kinemages) of much smaller scale. Examples are given illustrating features of VSEPR models, permanent dipoles,…
Enhancing Comprehension through Graphic Organizers.
ERIC Educational Resources Information Center
Ben-David, Renee
The purpose of this study was to determine whether graphic organizers serve as a better tool for comprehension assessment than traditional tests. Subjects, 16 seventh-grade learning disabled students, were given 8 weeks of instruction and assessments using both graphic organizer and linear note forms. Tests were graded, compared and contrasted to…
ERIC Educational Resources Information Center
Rau, Martina A.
2013-01-01
Most learning environments in the STEM disciplines use multiple graphical representations along with textual descriptions and symbolic representations. Multiple graphical representations are powerful learning tools because they can emphasize complementary aspects of complex learning contents. However, to benefit from multiple graphical…
SEURAT: visual analytics for the integrated analysis of microarray data.
Gribov, Alexander; Sill, Martin; Lück, Sonja; Rücker, Frank; Döhner, Konstanze; Bullinger, Lars; Benner, Axel; Unwin, Antony
2010-06-03
In translational cancer research, gene expression data is collected together with clinical data and genomic data arising from other chip based high throughput technologies. Software tools for the joint analysis of such high dimensional data sets together with clinical data are required. We have developed an open source software tool which provides interactive visualization capability for the integrated analysis of high-dimensional gene expression data together with associated clinical data, array CGH data and SNP array data. The different data types are organized by a comprehensive data manager. Interactive tools are provided for all graphics: heatmaps, dendrograms, barcharts, histograms, eventcharts and a chromosome browser, which displays genetic variations along the genome. All graphics are dynamic and fully linked so that any object selected in a graphic will be highlighted in all other graphics. For exploratory data analysis the software provides unsupervised data analytics like clustering, seriation algorithms and biclustering algorithms. The SEURAT software meets the growing needs of researchers to perform joint analysis of gene expression, genomical and clinical data.
SpineCreator: a Graphical User Interface for the Creation of Layered Neural Models.
Cope, A J; Richmond, P; James, S S; Gurney, K; Allerton, D J
2017-01-01
There is a growing requirement in computational neuroscience for tools that permit collaborative model building, model sharing, combining existing models into a larger system (multi-scale model integration), and are able to simulate models using a variety of simulation engines and hardware platforms. Layered XML model specification formats solve many of these problems, however they are difficult to write and visualise without tools. Here we describe a new graphical software tool, SpineCreator, which facilitates the creation and visualisation of layered models of point spiking neurons or rate coded neurons without requiring the need for programming. We demonstrate the tool through the reproduction and visualisation of published models and show simulation results using code generation interfaced directly into SpineCreator. As a unique application for the graphical creation of neural networks, SpineCreator represents an important step forward for neuronal modelling.
EasyModeller: A graphical interface to MODELLER
2010-01-01
Background MODELLER is a program for automated protein Homology Modeling. It is one of the most widely used tool for homology or comparative modeling of protein three-dimensional structures, but most users find it a bit difficult to start with MODELLER as it is command line based and requires knowledge of basic Python scripting to use it efficiently. Findings The study was designed with an aim to develop of "EasyModeller" tool as a frontend graphical interface to MODELLER using Perl/Tk, which can be used as a standalone tool in windows platform with MODELLER and Python preinstalled. It helps inexperienced users to perform modeling, assessment, visualization, and optimization of protein models in a simple and straightforward way. Conclusion EasyModeller provides a graphical straight forward interface and functions as a stand-alone tool which can be used in a standard personal computer with Microsoft Windows as the operating system. PMID:20712861
NASA Technical Reports Server (NTRS)
Szczur, Martha R.
1991-01-01
The Transportable Applications Environment (TAE) Plus, developed at GSFC, is an advanced portable user interface development environment which simplifies the process of creating and managing complex application graphical user interfaces (GUI's), supports prototyping, allows applications to be ported easily between different platforms and encourages appropriate levels of user interface consistency between applications. The following topics are discussed: the capabilities of the TAE Plus tool; how the implementation has utilized state-of-the-art technologies within graphic workstations; and how it has been used both within and outside of NASA.
Hybrid vehicle motor alignment
Levin, Michael Benjamin
2001-07-03
A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.
Historian: accurate reconstruction of ancestral sequences and evolutionary rates.
Holmes, Ian H
2017-04-15
Reconstruction of ancestral sequence histories, and estimation of parameters like indel rates, are improved by using explicit evolutionary models and summing over uncertain alignments. The previous best tool for this purpose (according to simulation benchmarks) was ProtPal, but this tool was too slow for practical use. Historian combines an efficient reimplementation of the ProtPal algorithm with performance-improving heuristics from other alignment tools. Simulation results on fidelity of rate estimation via ancestral reconstruction, along with evaluations on the structurally informed alignment dataset BAliBase 3.0, recommend Historian over other alignment tools for evolutionary applications. Historian is available at https://github.com/evoldoers/historian under the Creative Commons Attribution 3.0 US license. ihholmes+historian@gmail.com. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Hu, Jialu; Kehr, Birte; Reinert, Knut
2014-02-15
Owing to recent advancements in high-throughput technologies, protein-protein interaction networks of more and more species become available in public databases. The question of how to identify functionally conserved proteins across species attracts a lot of attention in computational biology. Network alignments provide a systematic way to solve this problem. However, most existing alignment tools encounter limitations in tackling this problem. Therefore, the demand for faster and more efficient alignment tools is growing. We present a fast and accurate algorithm, NetCoffee, which allows to find a global alignment of multiple protein-protein interaction networks. NetCoffee searches for a global alignment by maximizing a target function using simulated annealing on a set of weighted bipartite graphs that are constructed using a triplet approach similar to T-Coffee. To assess its performance, NetCoffee was applied to four real datasets. Our results suggest that NetCoffee remedies several limitations of previous algorithms, outperforms all existing alignment tools in terms of speed and nevertheless identifies biologically meaningful alignments. The source code and data are freely available for download under the GNU GPL v3 license at https://code.google.com/p/netcoffee/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, R.C.
This thesis involved the construction of (1) a grammar that incorporates knowledge on base invariancy and secondary structure in a molecule and (2) a parser engine that uses the grammar to position bases into the structural subunits of the molecule. These concepts were combined with a novel pinning technique to form a tool that semi-automates insertion of a new species into the alignment for the 16S rRNA molecule (a component of the ribosome) maintained by Dr. Carl Woese's group at the University of Illinois at Urbana. The tool was tested on species extracted from the alignment and on a groupmore » of entirely new species. The results were very encouraging, and the tool should be substantial aid to the curators of the 16S alignment. The construction of the grammar was itself automated, allowing application of the tool to alignments for other molecules. The logic programming language Prolog was used to construct all programs involved. The computational linguistics approach used here was found to be a useful way to attach the problem of insertion into an alignment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Ronald C.
This thesis involved the construction of (1) a grammar that incorporates knowledge on base invariancy and secondary structure in a molecule and (2) a parser engine that uses the grammar to position bases into the structural subunits of the molecule. These concepts were combined with a novel pinning technique to form a tool that semi-automates insertion of a new species into the alignment for the 16S rRNA molecule (a component of the ribosome) maintained by Dr. Carl Woese`s group at the University of Illinois at Urbana. The tool was tested on species extracted from the alignment and on a groupmore » of entirely new species. The results were very encouraging, and the tool should be substantial aid to the curators of the 16S alignment. The construction of the grammar was itself automated, allowing application of the tool to alignments for other molecules. The logic programming language Prolog was used to construct all programs involved. The computational linguistics approach used here was found to be a useful way to attach the problem of insertion into an alignment.« less
Use of Cloud-Based Graphic Narrative Software in Medical Ethics Teaching
ERIC Educational Resources Information Center
Weber, Alan S.
2015-01-01
Although used as a common pedagogical tool in K-12 education, online graphic narrative ("comics") software has not generally been incorporated into advanced professional or technical education. This contribution reports preliminary data from a study on the use of cloud-based graphics software Pixton.com to teach basic medical ethics…
COINGRAD; Control Oriented Interactive Graphical Analysis and Design.
ERIC Educational Resources Information Center
Volz, Richard A.; And Others
The computer is currently a vital tool in engineering analysis and design. With the introduction of moderately priced graphics terminals, it will become even more important in the future as rapid graphic interaction between the engineer and the computer becomes more feasible in computer-aided design (CAD). To provide a vehicle for introducing…
ERIC Educational Resources Information Center
Barry, Elaine
2016-01-01
Struggling readers, or students who read below grade level but have strong phonological awareness, may benefit from using instructional tools like graphic organizers (GOs) while reading. The purpose of this study was to investigate the relationship between reading comprehension and teacher-generated graphic organizers (GOs) as they support…
Mittal, Varun; Hung, Ling-Hong; Keswani, Jayant; Kristiyanto, Daniel; Lee, Sung Bong
2017-01-01
Abstract Background: Software container technology such as Docker can be used to package and distribute bioinformatics workflows consisting of multiple software implementations and dependencies. However, Docker is a command line–based tool, and many bioinformatics pipelines consist of components that require a graphical user interface. Results: We present a container tool called GUIdock-VNC that uses a graphical desktop sharing system to provide a browser-based interface for containerized software. GUIdock-VNC uses the Virtual Network Computing protocol to render the graphics within most commonly used browsers. We also present a minimal image builder that can add our proposed graphical desktop sharing system to any Docker packages, with the end result that any Docker packages can be run using a graphical desktop within a browser. In addition, GUIdock-VNC uses the Oauth2 authentication protocols when deployed on the cloud. Conclusions: As a proof-of-concept, we demonstrated the utility of GUIdock-noVNC in gene network inference. We benchmarked our container implementation on various operating systems and showed that our solution creates minimal overhead. PMID:28327936
Mittal, Varun; Hung, Ling-Hong; Keswani, Jayant; Kristiyanto, Daniel; Lee, Sung Bong; Yeung, Ka Yee
2017-04-01
Software container technology such as Docker can be used to package and distribute bioinformatics workflows consisting of multiple software implementations and dependencies. However, Docker is a command line-based tool, and many bioinformatics pipelines consist of components that require a graphical user interface. We present a container tool called GUIdock-VNC that uses a graphical desktop sharing system to provide a browser-based interface for containerized software. GUIdock-VNC uses the Virtual Network Computing protocol to render the graphics within most commonly used browsers. We also present a minimal image builder that can add our proposed graphical desktop sharing system to any Docker packages, with the end result that any Docker packages can be run using a graphical desktop within a browser. In addition, GUIdock-VNC uses the Oauth2 authentication protocols when deployed on the cloud. As a proof-of-concept, we demonstrated the utility of GUIdock-noVNC in gene network inference. We benchmarked our container implementation on various operating systems and showed that our solution creates minimal overhead. © The Authors 2017. Published by Oxford University Press.
HC StratoMineR: A Web-Based Tool for the Rapid Analysis of High-Content Datasets.
Omta, Wienand A; van Heesbeen, Roy G; Pagliero, Romina J; van der Velden, Lieke M; Lelieveld, Daphne; Nellen, Mehdi; Kramer, Maik; Yeong, Marley; Saeidi, Amir M; Medema, Rene H; Spruit, Marco; Brinkkemper, Sjaak; Klumperman, Judith; Egan, David A
2016-10-01
High-content screening (HCS) can generate large multidimensional datasets and when aligned with the appropriate data mining tools, it can yield valuable insights into the mechanism of action of bioactive molecules. However, easy-to-use data mining tools are not widely available, with the result that these datasets are frequently underutilized. Here, we present HC StratoMineR, a web-based tool for high-content data analysis. It is a decision-supportive platform that guides even non-expert users through a high-content data analysis workflow. HC StratoMineR is built by using My Structured Query Language for storage and querying, PHP: Hypertext Preprocessor as the main programming language, and jQuery for additional user interface functionality. R is used for statistical calculations, logic and data visualizations. Furthermore, C++ and graphical processor unit power is diffusely embedded in R by using the rcpp and rpud libraries for operations that are computationally highly intensive. We show that we can use HC StratoMineR for the analysis of multivariate data from a high-content siRNA knock-down screen and a small-molecule screen. It can be used to rapidly filter out undesirable data; to select relevant data; and to perform quality control, data reduction, data exploration, morphological hit picking, and data clustering. Our results demonstrate that HC StratoMineR can be used to functionally categorize HCS hits and, thus, provide valuable information for hit prioritization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kyung Eun; Oh, Jung Jae; Yun, Taeyeong
Graphene is an emerging graphitic carbon materials, consisting of sp{sup 2} hybridized two dimensinal honeycomb structure. It has been widely studied to incorporate graphene with polymer to utilize unique property of graphene and reinforce electrical, mechanical and thermal property of polymer. In composite materials, orientation control of graphene significantly influences the property of composite. Until now, a few method has been developed for orientation control of graphene within polymer matrix. Here, we demonstrate facile fabrication of high aligned large graphene oxide (LGO) composites in polydimethylsiloxane (PDMS) matrix exploiting liquid crystallinity. Liquid crystalline aqueous dispersion of LGO is parallel oriented withinmore » flat confinement geometry. Freeze-drying of the aligned LGO dispersion and subsequent infiltration with PDMS produce highly aligned LGO/PDMS composites. Owing to the large shape anisotropy of LGO, liquid crystalline alignment occurred at low concentration of 2 mg/ml in aqueous dispersion, which leads to the 0.2 wt% LGO loaded composites. - Graphical abstract: Liquid crystalline LGO aqueous dispersions are spontaneous parallel aligned between geometric confinement for highly aligned LGO/polymer composite fabrication. - Highlights: • A simple fabrication method for highly aligned LGO/PDMS composites is proposed. • LGO aqueous dispersion shows nematic liquid crystalline phase at 0.8 mg/ml. • In nematic phase, LGO flakes are highly aligned by geometric confinement. • Infiltration of PDMS into freeze-dried LGO allows highly aligned LGO/PDMS composites.« less
B-MIC: An Ultrafast Three-Level Parallel Sequence Aligner Using MIC.
Cui, Yingbo; Liao, Xiangke; Zhu, Xiaoqian; Wang, Bingqiang; Peng, Shaoliang
2016-03-01
Sequence alignment is the central process for sequence analysis, where mapping raw sequencing data to reference genome. The large amount of data generated by NGS is far beyond the process capabilities of existing alignment tools. Consequently, sequence alignment becomes the bottleneck of sequence analysis. Intensive computing power is required to address this challenge. Intel recently announced the MIC coprocessor, which can provide massive computing power. The Tianhe-2 is the world's fastest supercomputer now equipped with three MIC coprocessors each compute node. A key feature of sequence alignment is that different reads are independent. Considering this property, we proposed a MIC-oriented three-level parallelization strategy to speed up BWA, a widely used sequence alignment tool, and developed our ultrafast parallel sequence aligner: B-MIC. B-MIC contains three levels of parallelization: firstly, parallelization of data IO and reads alignment by a three-stage parallel pipeline; secondly, parallelization enabled by MIC coprocessor technology; thirdly, inter-node parallelization implemented by MPI. In this paper, we demonstrate that B-MIC outperforms BWA by a combination of those techniques using Inspur NF5280M server and the Tianhe-2 supercomputer. To the best of our knowledge, B-MIC is the first sequence alignment tool to run on Intel MIC and it can achieve more than fivefold speedup over the original BWA while maintaining the alignment precision.
Shih, Arthur Chun-Chieh; Lee, DT; Peng, Chin-Lin; Wu, Yu-Wei
2007-01-01
Background When aligning several hundreds or thousands of sequences, such as epidemic virus sequences or homologous/orthologous sequences of some big gene families, to reconstruct the epidemiological history or their phylogenies, how to analyze and visualize the alignment results of many sequences has become a new challenge for computational biologists. Although there are several tools available for visualization of very long sequence alignments, few of them are applicable to the alignments of many sequences. Results A multiple-logo alignment visualization tool, called Phylo-mLogo, is presented in this paper. Phylo-mLogo calculates the variabilities and homogeneities of alignment sequences by base frequencies or entropies. Different from the traditional representations of sequence logos, Phylo-mLogo not only displays the global logo patterns of the whole alignment of multiple sequences, but also demonstrates their local homologous logos for each clade hierarchically. In addition, Phylo-mLogo also allows the user to focus only on the analysis of some important, structurally or functionally constrained sites in the alignment selected by the user or by built-in automatic calculation. Conclusion With Phylo-mLogo, the user can symbolically and hierarchically visualize hundreds of aligned sequences simultaneously and easily check the changes of their amino acid sites when analyzing many homologous/orthologous or influenza virus sequences. More information of Phylo-mLogo can be found at URL . PMID:17319966
Photo-Elicitation: Reflexivity on Method, Analysis, and Graphic Portraits
ERIC Educational Resources Information Center
Richard, Veronica M.; Lahman, Maria K. E.
2015-01-01
In this methodological discussion, the authors detail and reflect on the processes of using photo-elicitation interviewing as a way to align with positive qualitative methodologies, to gain access to participant beliefs and values, and to highlight participant voices through their choices of words and visuals. A review of the literature and an…
Top Ten Reasons To Use InDesign for Scholastic Media.
ERIC Educational Resources Information Center
Communication: Journalism Education Today, 2003
2003-01-01
Explains that Adobe InDesign 2.0 moves desktop to new possibilities because it combines the best of modern graphics techniques. Provides explanations of the following aspects of InDesign: drop shadow; align objects; define styles; type on a path; grids; accessible patterns; gradients; create outlines; indexing; and shows missing point. (PM)
NASA Technical Reports Server (NTRS)
Stockwell, Alan E.; Cooper, Paul A.
1991-01-01
The Integrated Multidisciplinary Analysis Tool (IMAT) consists of a menu driven executive system coupled with a relational database which links commercial structures, structural dynamics and control codes. The IMAT graphics system, a key element of the software, provides a common interface for storing, retrieving, and displaying graphical information. The IMAT Graphics Manual shows users of commercial analysis codes (MATRIXx, MSC/NASTRAN and I-DEAS) how to use the IMAT graphics system to obtain high quality graphical output using familiar plotting procedures. The manual explains the key features of the IMAT graphics system, illustrates their use with simple step-by-step examples, and provides a reference for users who wish to take advantage of the flexibility of the software to customize their own applications.
Graphical User Interface Development and Design to Support Airport Runway Configuration Management
NASA Technical Reports Server (NTRS)
Jones, Debra G.; Lenox, Michelle; Onal, Emrah; Latorella, Kara A.; Lohr, Gary W.; Le Vie, Lisa
2015-01-01
The objective of this effort was to develop a graphical user interface (GUI) for the National Aeronautics and Space Administration's (NASA) System Oriented Runway Management (SORM) decision support tool to support runway management. This tool is expected to be used by traffic flow managers and supervisors in the Airport Traffic Control Tower (ATCT) and Terminal Radar Approach Control (TRACON) facilities.
ERIC Educational Resources Information Center
Kissi, Philip Siaw; Opoku, Gyabaah; Boateng, Sampson Kwadwo
2016-01-01
The aim of the study was to investigate the effect of Microsoft Math Tool (graphical calculator) on students' achievement in the linear function. The study employed Quasi-experimental research design (Pre-test Post-test two group designs). A total of ninety-eight (98) students were selected for the study from two different Senior High Schools…
2D-dynamic representation of DNA sequences as a graphical tool in bioinformatics
NASA Astrophysics Data System (ADS)
Bielińska-Wa̧Ż, D.; Wa̧Ż, P.
2016-10-01
2D-dynamic representation of DNA sequences is briefly reviewed. Some new examples of 2D-dynamic graphs which are the graphical tool of the method are shown. Using the examples of the complete genome sequences of the Zika virus it is shown that the present method can be applied for the study of the evolution of viral genomes.
ERIC Educational Resources Information Center
Valiquette, Christine; Sutton, Ann; Ska, Bernadette
2010-01-01
This article reports on the views of individuals with learning disability (LD) on their use of their speech generating devices (SGDs), their satisfaction about their communication, and their priorities. The development of an interview tool made of graphic symbols and entitled Communication, Satisfaction and Priorities of SGD Users (CSPU) is…
High-performance computing in image registration
NASA Astrophysics Data System (ADS)
Zanin, Michele; Remondino, Fabio; Dalla Mura, Mauro
2012-10-01
Thanks to the recent technological advances, a large variety of image data is at our disposal with variable geometric, radiometric and temporal resolution. In many applications the processing of such images needs high performance computing techniques in order to deliver timely responses e.g. for rapid decisions or real-time actions. Thus, parallel or distributed computing methods, Digital Signal Processor (DSP) architectures, Graphical Processing Unit (GPU) programming and Field-Programmable Gate Array (FPGA) devices have become essential tools for the challenging issue of processing large amount of geo-data. The article focuses on the processing and registration of large datasets of terrestrial and aerial images for 3D reconstruction, diagnostic purposes and monitoring of the environment. For the image alignment procedure, sets of corresponding feature points need to be automatically extracted in order to successively compute the geometric transformation that aligns the data. The feature extraction and matching are ones of the most computationally demanding operations in the processing chain thus, a great degree of automation and speed is mandatory. The details of the implemented operations (named LARES) exploiting parallel architectures and GPU are thus presented. The innovative aspects of the implementation are (i) the effectiveness on a large variety of unorganized and complex datasets, (ii) capability to work with high-resolution images and (iii) the speed of the computations. Examples and comparisons with standard CPU processing are also reported and commented.
Xu, Yi-Hua; Manoharan, Herbert T; Pitot, Henry C
2007-09-01
The bisulfite genomic sequencing technique is one of the most widely used techniques to study sequence-specific DNA methylation because of its unambiguous ability to reveal DNA methylation status to the order of a single nucleotide. One characteristic feature of the bisulfite genomic sequencing technique is that a number of sample sequence files will be produced from a single DNA sample. The PCR products of bisulfite-treated DNA samples cannot be sequenced directly because they are heterogeneous in nature; therefore they should be cloned into suitable plasmids and then sequenced. This procedure generates an enormous number of sample DNA sequence files as well as adding extra bases belonging to the plasmids to the sequence, which will cause problems in the final sequence comparison. Finding the methylation status for each CpG in each sample sequence is not an easy job. As a result CpG PatternFinder was developed for this purpose. The main functions of the CpG PatternFinder are: (i) to analyze the reference sequence to obtain CpG and non-CpG-C residue position information. (ii) To tailor sample sequence files (delete insertions and mark deletions from the sample sequence files) based on a configuration of ClustalW multiple alignment. (iii) To align sample sequence files with a reference file to obtain bisulfite conversion efficiency and CpG methylation status. And, (iv) to produce graphics, highlighted aligned sequence text and a summary report which can be easily exported to Microsoft Office suite. CpG PatternFinder is designed to operate cooperatively with BioEdit, a freeware on the internet. It can handle up to 100 files of sample DNA sequences simultaneously, and the total CpG pattern analysis process can be finished in minutes. CpG PatternFinder is an ideal software tool for DNA methylation studies to determine the differential methylation pattern in a large number of individuals in a population. Previously we developed the CpG Analyzer program; CpG PatternFinder is our further effort to create software tools for DNA methylation studies.
Alaskan RTMA Graphics This page displays Alaskan Real-Time Mesoscale Analyses and compares them to DISCLAIMER: The Alaskan Real-Time Mesoscale Analysis tool is in its developmental stage, and there is much
NASA Astrophysics Data System (ADS)
Eichenlaub, Jesse B.
1995-03-01
Mounting a lenticular lens in front of a flat panel display is a well known, inexpensive, and easy way to create an autostereoscopic system. Such a lens produces half resolution 3D images because half the pixels on the LCD are seen by the left eye and half by the right eye. This may be acceptable for graphics, but it makes full resolution text, as displayed by common software, nearly unreadable. Very fine alignment tolerances normally preclude the possibility of removing and replacing the lens in order to switch between 2D and 3D applications. Lenticular lens based displays are therefore limited to use as dedicated 3D devices. DTI has devised a technique which removes this limitation, allowing switching between full resolution 2D and half resolution 3D imaging modes. A second element, in the form of a concave lenticular lens array whose shape is exactly the negative of the first lens, is mounted on a hinge so that it can be swung down over the first lens array. When so positioned the two lenses cancel optically, allowing the user to see full resolution 2D for text or numerical applications. The two lenses, having complementary shapes, naturally tend to nestle together and snap into perfect alignment when pressed together--thus obviating any need for user operated alignment mechanisms. This system represents an ideal solution for laptop and notebook computer applications. It was devised to meet the stringent requirements of a laptop computer manufacturer including very compact size, very low cost, little impact on existing manufacturing or assembly procedures, and compatibility with existing full resolution 2D text- oriented software as well as 3D graphics. Similar requirements apply to high and electronic calculators, several models of which now use LCDs for the display of graphics.
Accurate estimation of short read mapping quality for next-generation genome sequencing
Ruffalo, Matthew; Koyutürk, Mehmet; Ray, Soumya; LaFramboise, Thomas
2012-01-01
Motivation: Several software tools specialize in the alignment of short next-generation sequencing reads to a reference sequence. Some of these tools report a mapping quality score for each alignment—in principle, this quality score tells researchers the likelihood that the alignment is correct. However, the reported mapping quality often correlates weakly with actual accuracy and the qualities of many mappings are underestimated, encouraging the researchers to discard correct mappings. Further, these low-quality mappings tend to correlate with variations in the genome (both single nucleotide and structural), and such mappings are important in accurately identifying genomic variants. Approach: We develop a machine learning tool, LoQuM (LOgistic regression tool for calibrating the Quality of short read mappings, to assign reliable mapping quality scores to mappings of Illumina reads returned by any alignment tool. LoQuM uses statistics on the read (base quality scores reported by the sequencer) and the alignment (number of matches, mismatches and deletions, mapping quality score returned by the alignment tool, if available, and number of mappings) as features for classification and uses simulated reads to learn a logistic regression model that relates these features to actual mapping quality. Results: We test the predictions of LoQuM on an independent dataset generated by the ART short read simulation software and observe that LoQuM can ‘resurrect’ many mappings that are assigned zero quality scores by the alignment tools and are therefore likely to be discarded by researchers. We also observe that the recalibration of mapping quality scores greatly enhances the precision of called single nucleotide polymorphisms. Availability: LoQuM is available as open source at http://compbio.case.edu/loqum/. Contact: matthew.ruffalo@case.edu. PMID:22962451
NASA Technical Reports Server (NTRS)
Panthaki, Malcolm J.
1987-01-01
Three general tasks on general-purpose, interactive color graphics postprocessing for three-dimensional computational mechanics were accomplished. First, the existing program (POSTPRO3D) is ported to a high-resolution device. In the course of this transfer, numerous enhancements are implemented in the program. The performance of the hardware was evaluated from the point of view of engineering postprocessing, and the characteristics of future hardware were discussed. Second, interactive graphical tools implemented to facilitate qualitative mesh evaluation from a single analysis. The literature was surveyed and a bibliography compiled. Qualitative mesh sensors were examined, and the use of two-dimensional plots of unaveraged responses on the surface of three-dimensional continua was emphasized in an interactive color raster graphics environment. Finally, a postprocessing environment was designed for state-of-the-art workstation technology. Modularity, personalization of the environment, integration of the engineering design processes, and the development and use of high-level graphics tools are some of the features of the intended environment.
Liu, Yongchao; Wirawan, Adrianto; Schmidt, Bertil
2013-04-04
The maximal sensitivity for local alignments makes the Smith-Waterman algorithm a popular choice for protein sequence database search based on pairwise alignment. However, the algorithm is compute-intensive due to a quadratic time complexity. Corresponding runtimes are further compounded by the rapid growth of sequence databases. We present CUDASW++ 3.0, a fast Smith-Waterman protein database search algorithm, which couples CPU and GPU SIMD instructions and carries out concurrent CPU and GPU computations. For the CPU computation, this algorithm employs SSE-based vector execution units as accelerators. For the GPU computation, we have investigated for the first time a GPU SIMD parallelization, which employs CUDA PTX SIMD video instructions to gain more data parallelism beyond the SIMT execution model. Moreover, sequence alignment workloads are automatically distributed over CPUs and GPUs based on their respective compute capabilities. Evaluation on the Swiss-Prot database shows that CUDASW++ 3.0 gains a performance improvement over CUDASW++ 2.0 up to 2.9 and 3.2, with a maximum performance of 119.0 and 185.6 GCUPS, on a single-GPU GeForce GTX 680 and a dual-GPU GeForce GTX 690 graphics card, respectively. In addition, our algorithm has demonstrated significant speedups over other top-performing tools: SWIPE and BLAST+. CUDASW++ 3.0 is written in CUDA C++ and PTX assembly languages, targeting GPUs based on the Kepler architecture. This algorithm obtains significant speedups over its predecessor: CUDASW++ 2.0, by benefiting from the use of CPU and GPU SIMD instructions as well as the concurrent execution on CPUs and GPUs. The source code and the simulated data are available at http://cudasw.sourceforge.net.
Slide shows vs graphic tablet live drawing for anatomy teaching.
Alsaid, B
2016-12-01
Blackboard drawing is the traditional and still widely learned method for anatomy teachers. However, for practical reasons, more and more lessons are done using slide shows. New digital learning tools are developed to create a more attractive teaching method. The objective of this study was to compare the use of graphic tablet live drawing versus slide shows. Sixty-five second-year students of the Faculty of Medicine participated in this study during their first semester of 2013-2014 academic year. The selected lecture dealt about neuroanatomy; two brain sections were taught: median sagittal and transverse. The sagittal section was presented via a slide show. The transverse section was taught using a graphics tablet using drawing software. Students were evaluated three times: before the lecture, immediately after the lecture and 8 weeks later. Means were compared using a t-test. Scores were significantly higher immediately after the lecture and 8 weeks later tests in comparing the transverse section (using the graphics tablet) versus the sagittal section (using PowerPoint ® ). Student satisfaction regarding the use of the tablet was high. The graphics tablet is a usable and efficient drawing tool in anatomy teaching. This tool requires a specific teacher training and preparation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
[Is there life beyond SPSS? Discover R].
Elosua Oliden, Paula
2009-11-01
R is a GNU statistical and programming environment with very high graphical capabilities. It is very powerful for research purposes, but it is also an exceptional tool for teaching. R is composed of more than 1400 packages that allow using it for simple statistics and applying the most complex and most recent formal models. Using graphical interfaces like the Rcommander package, permits working in user-friendly environments which are similar to the graphical environment used by SPSS. This last characteristic allows non-statisticians to overcome the obstacle of accessibility, and it makes R the best tool for teaching. Is there anything better? Open, free, affordable, accessible and always on the cutting edge.
ERIC Educational Resources Information Center
Agus, Mirian; Penna, Maria Pietronilla; Peró-Cebollero, Maribel; Guàrdia-Olmos, Joan
2016-01-01
Research on the graphical facilitation of probabilistic reasoning has been characterised by the effort expended to identify valid assessment tools. The authors developed an assessment instrument to compare reasoning performances when problems were presented in verbal-numerical and graphical-pictorial formats. A sample of undergraduate psychology…
Pre-Service Science Teachers' Construction and Interpretation of Graphs
ERIC Educational Resources Information Center
Ergül, N. Remziye
2018-01-01
Data and graphic analysis and interpretation are important parts of science process skills and science curriculum. So it refers to visual display of data using relevant graphical representations. One of the tools used in science courses is graphics for explain the relationship among each of the concepts and therefore it is important to know data…
2-D Animation's Not Just for Mickey Mouse.
ERIC Educational Resources Information Center
Weinman, Lynda
1995-01-01
Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)
HiRel - Reliability/availability integrated workstation tool
NASA Technical Reports Server (NTRS)
Bavuso, Salvatore J.; Dugan, Joanne B.
1992-01-01
The HiRel software tool is described and demonstrated by application to the mission avionics subsystem of the Advanced System Integration Demonstrations (ASID) system that utilizes the PAVE PILLAR approach. HiRel marks another accomplishment toward the goal of producing a totally integrated computer-aided design (CAD) workstation design capability. Since a reliability engineer generally represents a reliability model graphically before it can be solved, the use of a graphical input description language increases productivity and decreases the incidence of error. The graphical postprocessor module HARPO makes it possible for reliability engineers to quickly analyze huge amounts of reliability/availability data to observe trends due to exploratory design changes. The addition of several powerful HARP modeling engines provides the user with a reliability/availability modeling capability for a wide range of system applications all integrated under a common interactive graphical input-output capability.
SEURAT: Visual analytics for the integrated analysis of microarray data
2010-01-01
Background In translational cancer research, gene expression data is collected together with clinical data and genomic data arising from other chip based high throughput technologies. Software tools for the joint analysis of such high dimensional data sets together with clinical data are required. Results We have developed an open source software tool which provides interactive visualization capability for the integrated analysis of high-dimensional gene expression data together with associated clinical data, array CGH data and SNP array data. The different data types are organized by a comprehensive data manager. Interactive tools are provided for all graphics: heatmaps, dendrograms, barcharts, histograms, eventcharts and a chromosome browser, which displays genetic variations along the genome. All graphics are dynamic and fully linked so that any object selected in a graphic will be highlighted in all other graphics. For exploratory data analysis the software provides unsupervised data analytics like clustering, seriation algorithms and biclustering algorithms. Conclusions The SEURAT software meets the growing needs of researchers to perform joint analysis of gene expression, genomical and clinical data. PMID:20525257
Developing a Graphical User Interface for the ALSS Crop Planning Tool
NASA Technical Reports Server (NTRS)
Koehlert, Erik
1997-01-01
The goal of my project was to create a graphical user interface for a prototype crop scheduler. The crop scheduler was developed by Dr. Jorge Leon and Laura Whitaker for the ALSS (Advanced Life Support System) program. The addition of a system-independent graphical user interface to the crop planning tool will make the application more accessible to a wider range of users and enhance its value as an analysis, design, and planning tool. My presentation will demonstrate the form and functionality of this interface. This graphical user interface allows users to edit system parameters stored in the file system. Data on the interaction of the crew, crops, and waste processing system with the available system resources is organized and labeled. Program output, which is stored in the file system, is also presented to the user in performance-time plots and organized charts. The menu system is designed to guide the user through analysis and decision making tasks, providing some help if necessary. The Java programming language was used to develop this interface in hopes of providing portability and remote operation.
Transputer parallel processing at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Ellis, Graham K.
1989-01-01
The transputer parallel processing lab at NASA Lewis Research Center (LeRC) consists of 69 processors (transputers) that can be connected into various networks for use in general purpose concurrent processing applications. The main goal of the lab is to develop concurrent scientific and engineering application programs that will take advantage of the computational speed increases available on a parallel processor over the traditional sequential processor. Current research involves the development of basic programming tools. These tools will help standardize program interfaces to specific hardware by providing a set of common libraries for applications programmers. The thrust of the current effort is in developing a set of tools for graphics rendering/animation. The applications programmer currently has two options for on-screen plotting. One option can be used for static graphics displays and the other can be used for animated motion. The option for static display involves the use of 2-D graphics primitives that can be called from within an application program. These routines perform the standard 2-D geometric graphics operations in real-coordinate space as well as allowing multiple windows on a single screen.
Modeling biochemical transformation processes and information processing with Narrator.
Mandel, Johannes J; Fuss, Hendrik; Palfreyman, Niall M; Dubitzky, Werner
2007-03-27
Software tools that model and simulate the dynamics of biological processes and systems are becoming increasingly important. Some of these tools offer sophisticated graphical user interfaces (GUIs), which greatly enhance their acceptance by users. Such GUIs are based on symbolic or graphical notations used to describe, interact and communicate the developed models. Typically, these graphical notations are geared towards conventional biochemical pathway diagrams. They permit the user to represent the transport and transformation of chemical species and to define inhibitory and stimulatory dependencies. A critical weakness of existing tools is their lack of supporting an integrative representation of transport, transformation as well as biological information processing. Narrator is a software tool facilitating the development and simulation of biological systems as Co-dependence models. The Co-dependence Methodology complements the representation of species transport and transformation together with an explicit mechanism to express biological information processing. Thus, Co-dependence models explicitly capture, for instance, signal processing structures and the influence of exogenous factors or events affecting certain parts of a biological system or process. This combined set of features provides the system biologist with a powerful tool to describe and explore the dynamics of life phenomena. Narrator's GUI is based on an expressive graphical notation which forms an integral part of the Co-dependence Methodology. Behind the user-friendly GUI, Narrator hides a flexible feature which makes it relatively easy to map models defined via the graphical notation to mathematical formalisms and languages such as ordinary differential equations, the Systems Biology Markup Language or Gillespie's direct method. This powerful feature facilitates reuse, interoperability and conceptual model development. Narrator is a flexible and intuitive systems biology tool. It is specifically intended for users aiming to construct and simulate dynamic models of biology without recourse to extensive mathematical detail. Its design facilitates mappings to different formal languages and frameworks. The combined set of features makes Narrator unique among tools of its kind. Narrator is implemented as Java software program and available as open-source from http://www.narrator-tool.org.
Instruments of scientific visual representation in atomic databases
NASA Astrophysics Data System (ADS)
Kazakov, V. V.; Kazakov, V. G.; Meshkov, O. I.
2017-10-01
Graphic tools of spectral data representation provided by operating information systems on atomic spectroscopy—ASD NIST, VAMDC, SPECTR-W3, and Electronic Structure of Atoms—for the support of scientific-research and human-resource development are presented. Such tools of visual representation of scientific data as those of the spectrogram and Grotrian diagram plotting are considered. The possibility of comparative analysis of the experimentally obtained spectra and reference spectra of atomic systems formed according to the database of a resource is described. The access techniques to the mentioned graphic tools are presented.
Kumar, Sudhir; Stecher, Glen; Peterson, Daniel; Tamura, Koichiro
2012-10-15
There is a growing need in the research community to apply the molecular evolutionary genetics analysis (MEGA) software tool for batch processing a large number of datasets and to integrate it into analysis workflows. Therefore, we now make available the computing core of the MEGA software as a stand-alone executable (MEGA-CC), along with an analysis prototyper (MEGA-Proto). MEGA-CC provides users with access to all the computational analyses available through MEGA's graphical user interface version. This includes methods for multiple sequence alignment, substitution model selection, evolutionary distance estimation, phylogeny inference, substitution rate and pattern estimation, tests of natural selection and ancestral sequence inference. Additionally, we have upgraded the source code for phylogenetic analysis using the maximum likelihood methods for parallel execution on multiple processors and cores. Here, we describe MEGA-CC and outline the steps for using MEGA-CC in tandem with MEGA-Proto for iterative and automated data analysis. http://www.megasoftware.net/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirby, M.J.; Kramer, S.R.; Pittard, G.T.
Jason Consultants International, Inc., under the sponsorship of the Gas Research Institute (GRI), has developed guidelines, procedures and software, which are described in this paper, for the installation of polyethylene gas pipe using guided horizontal drilling. Jason was aided in this development by two key subcontractors; Maurer Engineering who wrote the software and NICOR Technologies who reviewed the software and guidelines from a utility perspective. This program resulted in the development of commerically viable software for utilities, contractors, engineering firms, and others involved with the installation of pipes using guided horizontal drilling. The software is an interactive design tool thatmore » allows the user to enter ground elevation data, alignment information and pipe data. The software aides the engineer in designing a drill path and provides plan and profile views along with tabular data for pipe depth and surface profile. Finally, the software calculates installation loads and pipe stresses, compares these values against pipe manufacturer`s recommendations, and provides this information graphically and in tabular form. 5 refs., 18 figs., 2 tabs.« less
An integrative approach to ortholog prediction for disease-focused and other functional studies.
Hu, Yanhui; Flockhart, Ian; Vinayagam, Arunachalam; Bergwitz, Clemens; Berger, Bonnie; Perrimon, Norbert; Mohr, Stephanie E
2011-08-31
Mapping of orthologous genes among species serves an important role in functional genomics by allowing researchers to develop hypotheses about gene function in one species based on what is known about the functions of orthologs in other species. Several tools for predicting orthologous gene relationships are available. However, these tools can give different results and identification of predicted orthologs is not always straightforward. We report a simple but effective tool, the Drosophila RNAi Screening Center Integrative Ortholog Prediction Tool (DIOPT; http://www.flyrnai.org/diopt), for rapid identification of orthologs. DIOPT integrates existing approaches, facilitating rapid identification of orthologs among human, mouse, zebrafish, C. elegans, Drosophila, and S. cerevisiae. As compared to individual tools, DIOPT shows increased sensitivity with only a modest decrease in specificity. Moreover, the flexibility built into the DIOPT graphical user interface allows researchers with different goals to appropriately 'cast a wide net' or limit results to highest confidence predictions. DIOPT also displays protein and domain alignments, including percent amino acid identity, for predicted ortholog pairs. This helps users identify the most appropriate matches among multiple possible orthologs. To facilitate using model organisms for functional analysis of human disease-associated genes, we used DIOPT to predict high-confidence orthologs of disease genes in Online Mendelian Inheritance in Man (OMIM) and genes in genome-wide association study (GWAS) data sets. The results are accessible through the DIOPT diseases and traits query tool (DIOPT-DIST; http://www.flyrnai.org/diopt-dist). DIOPT and DIOPT-DIST are useful resources for researchers working with model organisms, especially those who are interested in exploiting model organisms such as Drosophila to study the functions of human disease genes.
Kann, Maricel G.; Sheetlin, Sergey L.; Park, Yonil; Bryant, Stephen H.; Spouge, John L.
2007-01-01
The sequencing of complete genomes has created a pressing need for automated annotation of gene function. Because domains are the basic units of protein function and evolution, a gene can be annotated from a domain database by aligning domains to the corresponding protein sequence. Ideally, complete domains are aligned to protein subsequences, in a ‘semi-global alignment’. Local alignment, which aligns pieces of domains to subsequences, is common in high-throughput annotation applications, however. It is a mature technique, with the heuristics and accurate E-values required for screening large databases and evaluating the screening results. Hidden Markov models (HMMs) provide an alternative theoretical framework for semi-global alignment, but their use is limited because they lack heuristic acceleration and accurate E-values. Our new tool, GLOBAL, overcomes some limitations of previous semi-global HMMs: it has accurate E-values and the possibility of the heuristic acceleration required for high-throughput applications. Moreover, according to a standard of truth based on protein structure, two semi-global HMM alignment tools (GLOBAL and HMMer) had comparable performance in identifying complete domains, but distinctly outperformed two tools based on local alignment. When searching for complete protein domains, therefore, GLOBAL avoids disadvantages commonly associated with HMMs, yet maintains their superior retrieval performance. PMID:17596268
The Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to address needs for rapid, cost effective methods of species extrapolation of chemical susceptibility. Specifically, the SeqAPASS tool compares the primary sequence (Level 1), functiona...
ERIC Educational Resources Information Center
Kriston, Levente; Melchior, Hanne; Hergert, Anika; Bergelt, Corinna; Watzke, Birgit; Schulz, Holger; von Wolff, Alessa
2011-01-01
The aim of our study was to develop a graphical tool that can be used in addition to standard statistical criteria to support decisions on the number of classes in explorative categorical latent variable modeling for rehabilitation research. Data from two rehabilitation research projects were used. In the first study, a latent profile analysis was…
Graphical Acoustic Liner Design and Analysis Tool
NASA Technical Reports Server (NTRS)
Howerton, Brian M. (Inventor); Jones, Michael G. (Inventor)
2016-01-01
An interactive liner design and impedance modeling tool comprises software utilized to design acoustic liners for use in constrained spaces, both regularly and irregularly shaped. A graphical user interface allows the acoustic channel geometry to be drawn in a liner volume while the surface impedance calculations are updated and displayed in real-time. A one-dimensional transmission line model may be used as the basis for the impedance calculations.
Graphical Contingency Analysis for the Nation's Electric Grid
Zhenyu (Henry) Huang
2017-12-09
PNNL has developed a new tool to manage the electric grid more effectively, helping prevent blackouts and brownouts--and possibly avoiding millions of dollars in fines for system violations. The Graphical Contingency Analysis tool monitors grid performance, shows prioritized lists of problems, provides visualizations of potential consequences, and helps operators identify the most effective courses of action. This technology yields faster, better decisions and a more stable and reliable power grid.
Global Alignment of Pairwise Protein Interaction Networks for Maximal Common Conserved Patterns
Tian, Wenhong; Samatova, Nagiza F.
2013-01-01
A number of tools for the alignment of protein-protein interaction (PPI) networks have laid the foundation for PPI network analysis. Most of alignment tools focus on finding conserved interaction regions across the PPI networks through either local or global mapping of similar sequences. Researchers are still trying to improve the speed, scalability, and accuracy of network alignment. In view of this, we introduce a connected-components based fast algorithm, HopeMap, for network alignment. Observing that the size of true orthologs across species is small comparing to the total number of proteins in all species, we take a different approach based onmore » a precompiled list of homologs identified by KO terms. Applying this approach to S. cerevisiae (yeast) and D. melanogaster (fly), E. coli K12 and S. typhimurium , E. coli K12 and C. crescenttus , we analyze all clusters identified in the alignment. The results are evaluated through up-to-date known gene annotations, gene ontology (GO), and KEGG ortholog groups (KO). Comparing to existing tools, our approach is fast with linear computational cost, highly accurate in terms of KO and GO terms specificity and sensitivity, and can be extended to multiple alignments easily.« less
On the Impact of Widening Vector Registers on Sequence Alignment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, Jeffrey A.; Kalyanaraman, Anantharaman; Krishnamoorthy, Sriram
2016-09-22
Vector extensions, such as SSE, have been part of the x86 since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. In this paper, we demonstrate that the trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based onmore » striped data layouts. We present a practically efficient SIMD implementation of a parallel scan based sequence alignment algorithm that can better exploit wider SIMD units. We conduct comprehensive workload and use case analyses to characterize the relative behavior of the striped and scan approaches and identify the best choice of algorithm based on input length and SIMD width.« less
NAM Smart Init Graphics This page displays 5km NAM forecast output made from the "smartinit DISCLAIMER: The Smart Init tool is in its developmental stage, and there is much work to be done. Feedback is
Symbolic-Graphical Calculators: Teaching Tools for Mathematics.
ERIC Educational Resources Information Center
Dick, Thomas P.
1992-01-01
Explores the role that symbolic-graphical calculators can play in the current calls for reform in the mathematics curriculum. Discusses symbolic calculators and graphing calculators in relation to problem solving, computational skills, and mathematics instruction. (MDH)
ERIC Educational Resources Information Center
DeBay, Dennis J.
2013-01-01
To explore student mathematical self-efficacy and understanding of graphical data, this dissertation examines students solving real-world problems in their neighborhood, mediated by professional urban planning technologies. As states and schools are working on the alignment of the Common Core State Standards for Mathematics (CCSSM), traditional…
ERIC Educational Resources Information Center
Louisiana State Dept. of Education, Baton Rouge.
The tentative guide in graphic arts technology for senior high schools is part of a series of industrial arts curriculum materials developed by the State of Louisiana. The course is designed to provide "hands-on" experience with tools and materials along with a study of the industrial processes in graphic arts technology. In addition,…
The use of graphics in the design of the human-telerobot interface
NASA Technical Reports Server (NTRS)
Stuart, Mark A.; Smith, Randy L.
1989-01-01
The Man-Systems Telerobotics Laboratory (MSTL) of NASA's Johnson Space Center employs computer graphics tools in their design and evaluation of the Flight Telerobotic Servicer (FTS) human/telerobot interface on the Shuttle and on the Space Station. It has been determined by the MSTL that the use of computer graphics can promote more expedient and less costly design endeavors. Several specific examples of computer graphics applied to the FTS user interface by the MSTL are described.
Continuation of research into language concepts for the mission support environment
NASA Technical Reports Server (NTRS)
1991-01-01
A concept for a more intuitive and graphically based Computation (Comp) Builder was developed. The Graphical Comp Builder Prototype was developed, which is an X Window based graphical tool that allows the user to build Comps using graphical symbols. Investigation was conducted to determine the availability and suitability of the Ada programming language for the development of future control center type software. The Space Station Freedom Project identified Ada as the desirable programming language for the development of Space Station Control Center software systems.
Gross, Arnd; Ziepert, Marita; Scholz, Markus
2012-01-01
Analysis of clinical studies often necessitates multiple graphical representations of the results. Many professional software packages are available for this purpose. Most packages are either only commercially available or hard to use especially if one aims to generate or customize a huge number of similar graphical outputs. We developed a new, freely available software tool called KMWin (Kaplan-Meier for Windows) facilitating Kaplan-Meier survival time analysis. KMWin is based on the statistical software environment R and provides an easy to use graphical interface. Survival time data can be supplied as SPSS (sav), SAS export (xpt) or text file (dat), which is also a common export format of other applications such as Excel. Figures can directly be exported in any graphical file format supported by R. On the basis of a working example, we demonstrate how to use KMWin and present its main functions. We show how to control the interface, customize the graphical output, and analyse survival time data. A number of comparisons are performed between KMWin and SPSS regarding graphical output, statistical output, data management and development. Although the general functionality of SPSS is larger, KMWin comprises a number of features useful for survival time analysis in clinical trials and other applications. These are for example number of cases and number of cases under risk within the figure or provision of a queue system for repetitive analyses of updated data sets. Moreover, major adjustments of graphical settings can be performed easily on a single window. We conclude that our tool is well suited and convenient for repetitive analyses of survival time data. It can be used by non-statisticians and provides often used functions as well as functions which are not supplied by standard software packages. The software is routinely applied in several clinical study groups.
Gross, Arnd; Ziepert, Marita; Scholz, Markus
2012-01-01
Background Analysis of clinical studies often necessitates multiple graphical representations of the results. Many professional software packages are available for this purpose. Most packages are either only commercially available or hard to use especially if one aims to generate or customize a huge number of similar graphical outputs. We developed a new, freely available software tool called KMWin (Kaplan-Meier for Windows) facilitating Kaplan-Meier survival time analysis. KMWin is based on the statistical software environment R and provides an easy to use graphical interface. Survival time data can be supplied as SPSS (sav), SAS export (xpt) or text file (dat), which is also a common export format of other applications such as Excel. Figures can directly be exported in any graphical file format supported by R. Results On the basis of a working example, we demonstrate how to use KMWin and present its main functions. We show how to control the interface, customize the graphical output, and analyse survival time data. A number of comparisons are performed between KMWin and SPSS regarding graphical output, statistical output, data management and development. Although the general functionality of SPSS is larger, KMWin comprises a number of features useful for survival time analysis in clinical trials and other applications. These are for example number of cases and number of cases under risk within the figure or provision of a queue system for repetitive analyses of updated data sets. Moreover, major adjustments of graphical settings can be performed easily on a single window. Conclusions We conclude that our tool is well suited and convenient for repetitive analyses of survival time data. It can be used by non-statisticians and provides often used functions as well as functions which are not supplied by standard software packages. The software is routinely applied in several clinical study groups. PMID:22723912
eShadow: A tool for comparing closely related sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovcharenko, Ivan; Boffelli, Dario; Loots, Gabriela G.
2004-01-15
Primate sequence comparisons are difficult to interpret due to the high degree of sequence similarity shared between such closely related species. Recently, a novel method, phylogenetic shadowing, has been pioneered for predicting functional elements in the human genome through the analysis of multiple primate sequence alignments. We have expanded this theoretical approach to create a computational tool, eShadow, for the identification of elements under selective pressure in multiple sequence alignments of closely related genomes, such as in comparisons of human to primate or mouse to rat DNA. This tool integrates two different statistical methods and allows for the dynamic visualizationmore » of the resulting conservation profile. eShadow also includes a versatile optimization module capable of training the underlying Hidden Markov Model to differentially predict functional sequences. This module grants the tool high flexibility in the analysis of multiple sequence alignments and in comparing sequences with different divergence rates. Here, we describe the eShadow comparative tool and its potential uses for analyzing both multiple nucleotide and protein alignments to predict putative functional elements. The eShadow tool is publicly available at http://eshadow.dcode.org/« less
Chiapello, Hélène; Gendrault, Annie; Caron, Christophe; Blum, Jérome; Petit, Marie-Agnès; El Karoui, Meriem
2008-11-27
The recent availability of complete sequences for numerous closely related bacterial genomes opens up new challenges in comparative genomics. Several methods have been developed to align complete genomes at the nucleotide level but their use and the biological interpretation of results are not straightforward. It is therefore necessary to develop new resources to access, analyze, and visualize genome comparisons. Here we present recent developments on MOSAIC, a generalist comparative bacterial genome database. This database provides the bacteriologist community with easy access to comparisons of complete bacterial genomes at the intra-species level. The strategy we developed for comparison allows us to define two types of regions in bacterial genomes: backbone segments (i.e., regions conserved in all compared strains) and variable segments (i.e., regions that are either specific to or variable in one of the aligned genomes). Definition of these segments at the nucleotide level allows precise comparative and evolutionary analyses of both coding and non-coding regions of bacterial genomes. Such work is easily performed using the MOSAIC Web interface, which allows browsing and graphical visualization of genome comparisons. The MOSAIC database now includes 493 pairwise comparisons and 35 multiple maximal comparisons representing 78 bacterial species. Genome conserved regions (backbones) and variable segments are presented in various formats for further analysis. A graphical interface allows visualization of aligned genomes and functional annotations. The MOSAIC database is available online at http://genome.jouy.inra.fr/mosaic.
Tips for better visual elements in posters and podium presentations.
Zerwic, J J; Grandfield, K; Kavanaugh, K; Berger, B; Graham, L; Mershon, M
2010-08-01
The ability to effectively communicate through posters and podium presentations using appropriate visual content and style is essential for health care educators. To offer suggestions for more effective visual elements of posters and podium presentations. We present the experiences of our multidisciplinary publishing group, whose combined experiences and collaboration have provided us with an understanding of what works and how to achieve success when working on presentations and posters. Many others would offer similar advice, as these guidelines are consistent with effective presentation. FINDINGS/SUGGESTIONS: Certain visual elements should be attended to in any visual presentation: consistency, alignment, contrast and repetition. Presentations should be consistent in font size and type, line spacing, alignment of graphics and text, and size of graphics. All elements should be aligned with at least one other element. Contrasting light background with dark text (and vice versa) helps an audience read the text more easily. Standardized formatting lets viewers know when they are looking at similar things (tables, headings, etc.). Using a minimal number of colors (four at most) helps the audience more easily read text. For podium presentations, have one slide for each minute allotted for speaking. The speaker is also a visual element; one should not allow the audience's view of either the presentation or presenter to be blocked. Making eye contact with the audience also keeps them visually engaged. Health care educators often share information through posters and podium presentations. These tips should help the visual elements of presentations be more effective.
Graphics Software Packages as Instructional Tools.
ERIC Educational Resources Information Center
Chiavaroli, Julius J.; Till, Ronald J.
1985-01-01
Graphics software can assist hearing-impaired students in visualizing and comparing ideas and can also demonstrate spatial relations and encourage creativity. Teachers and students can create and present data, diagrams, drawings, or charts quickly and accurately. (Author/CL)
Editing of EIA coded, numerically controlled, machine tool tapes
NASA Technical Reports Server (NTRS)
Weiner, J. M.
1975-01-01
Editing of numerically controlled (N/C) machine tool tapes (8-level paper tape) using an interactive graphic display processor is described. A rapid technique required for correcting production errors in N/C tapes was developed using the interactive text editor on the IMLAC PDS-ID graphic display system and two special programs resident on disk. The correction technique and special programs for processing N/C tapes coded to EIA specifications are discussed.
Spatial Modeling Tools for Cell Biology
2006-10-01
multiphysics modeling expertise. A graphical user interface (GUI) for CoBi, JCoBi, was written in Java and interactive 3D graphics. CoBi has been...tools (C++ and Java ) to simulate complex cell and organ biology problems. CoBi has been designed to interact with the other Bio-SPICE software...fall of 2002. VisIt supports C++, Python and Java interfaces. The C++ and Java interfaces make it possible to provide alternate user interfaces for
Gnome View: A tool for visual representation of human genome data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelkey, J.E.; Thomas, G.S.; Thurman, D.A.
1993-02-01
GnomeView is a tool for exploring data generated by the Human Gemone Project. GnomeView provides both graphical and textural styles of data presentation: employs an intuitive window-based graphical query interface: and integrates its underlying genome databases in such a way that the user can navigate smoothly across databases and between different levels of data. This paper describes GnomeView and discusses how it addresses various genome informatics issues.
Development of a User Interface for a Regression Analysis Software Tool
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert Manfred; Volden, Thomas R.
2010-01-01
An easy-to -use user interface was implemented in a highly automated regression analysis tool. The user interface was developed from the start to run on computers that use the Windows, Macintosh, Linux, or UNIX operating system. Many user interface features were specifically designed such that a novice or inexperienced user can apply the regression analysis tool with confidence. Therefore, the user interface s design minimizes interactive input from the user. In addition, reasonable default combinations are assigned to those analysis settings that influence the outcome of the regression analysis. These default combinations will lead to a successful regression analysis result for most experimental data sets. The user interface comes in two versions. The text user interface version is used for the ongoing development of the regression analysis tool. The official release of the regression analysis tool, on the other hand, has a graphical user interface that is more efficient to use. This graphical user interface displays all input file names, output file names, and analysis settings for a specific software application mode on a single screen which makes it easier to generate reliable analysis results and to perform input parameter studies. An object-oriented approach was used for the development of the graphical user interface. This choice keeps future software maintenance costs to a reasonable limit. Examples of both the text user interface and graphical user interface are discussed in order to illustrate the user interface s overall design approach.
Licari, Daniele; Baiardi, Alberto; Biczysko, Malgorzata; Egidi, Franco; Latouche, Camille; Barone, Vincenzo
2015-02-15
This article presents the setup and implementation of a graphical user interface (VMS-Draw) for a virtual multifrequency spectrometer. Special attention is paid to ease of use, generality and robustness for a panel of spectroscopic techniques and quantum mechanical approaches. Depending on the kind of data to be analyzed, VMS-Draw produces different types of graphical representations, including two-dimensional or three-dimesional (3D) plots, bar charts, or heat maps. Among other integrated features, one may quote the convolution of stick spectra to obtain realistic line-shapes. It is also possible to analyze and visualize, together with the structure, the molecular orbitals and/or the vibrational motions of molecular systems thanks to 3D interactive tools. On these grounds, VMS-Draw could represent a useful additional tool for spectroscopic studies integrating measurements and computer simulations. Copyright © 2014 Wiley Periodicals, Inc.
Improve homology search sensitivity of PacBio data by correcting frameshifts.
Du, Nan; Sun, Yanni
2016-09-01
Single-molecule, real-time sequencing (SMRT) developed by Pacific BioSciences produces longer reads than secondary generation sequencing technologies such as Illumina. The long read length enables PacBio sequencing to close gaps in genome assembly, reveal structural variations, and identify gene isoforms with higher accuracy in transcriptomic sequencing. However, PacBio data has high sequencing error rate and most of the errors are insertion or deletion errors. During alignment-based homology search, insertion or deletion errors in genes will cause frameshifts and may only lead to marginal alignment scores and short alignments. As a result, it is hard to distinguish true alignments from random alignments and the ambiguity will incur errors in structural and functional annotation. Existing frameshift correction tools are designed for data with much lower error rate and are not optimized for PacBio data. As an increasing number of groups are using SMRT, there is an urgent need for dedicated homology search tools for PacBio data. In this work, we introduce Frame-Pro, a profile homology search tool for PacBio reads. Our tool corrects sequencing errors and also outputs the profile alignments of the corrected sequences against characterized protein families. We applied our tool to both simulated and real PacBio data. The results showed that our method enables more sensitive homology search, especially for PacBio data sets of low sequencing coverage. In addition, we can correct more errors when comparing with a popular error correction tool that does not rely on hybrid sequencing. The source code is freely available at https://sourceforge.net/projects/frame-pro/ yannisun@msu.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Noordmans, Herke J.; de Roode, Rowland; Verdaasdonk, Rudolf
2007-02-01
Multi-spectral images of human tissue taken in-vivo often contain image alignment problems as patients have difficulty in retaining their posture during the acquisition time of 20 seconds. Previously, it has been attempted to correct motion errors with image registration software developed for MR or CT data but these algorithms have been proven to be too slow and erroneous for practical use with multi-spectral images. A new software package has been developed which allows the user to play a decisive role in the registration process as the user can monitor the progress of the registration continuously and force it in the right direction when it starts to fail. The software efficiently exploits videocard hardware to gain speed and to provide a perfect subvoxel correspondence between registration field and display. An 8 bit graphic card was used to efficiently register and resample 12 bit images using the hardware interpolation modes present on the graphic card. To show the feasibility of this new registration process, the software was applied in clinical practice evaluating the dosimetry for psoriasis and KTP laser treatment. The microscopic differences between images of normal skin and skin exposed to UV light proved that an affine registration step including zooming and slanting is critical for a subsequent elastic match to have success. The combination of user interactive registration software with optimal addressing the potentials of PC video card hardware greatly improves the speed of multi spectral image registration.
Virtual tape measure for the operating microscope: system specifications and performance evaluation.
Kim, M Y; Drake, J M; Milgram, P
2000-01-01
The Virtual Tape Measure for the Operating Microscope (VTMOM) was created to assist surgeons in making accurate 3D measurements of anatomical structures seen in the surgical field under the operating microscope. The VTMOM employs augmented reality techniques by combining stereoscopic video images with stereoscopic computer graphics, and functions by relying on an operator's ability to align a 3D graphic pointer, which serves as the end-point of the virtual tape measure, with designated locations on the anatomical structure being measured. The VTMOM was evaluated for its baseline and application performances as well as its application efficacy. Baseline performance was determined by measuring the mean error (bias) and standard deviation of error (imprecision) in measurements of non-anatomical objects. Application performance was determined by comparing the error in measuring the dimensions of aneurysm models with and without the VTMOM. Application efficacy was determined by comparing the error in selecting the appropriate aneurysm clip size with and without the VTMOM. Baseline performance indicated a bias of 0.3 mm and an imprecision of 0.6 mm. Application bias was 3.8 mm and imprecision was 2.8 mm for aneurysm diameter. The VTMOM did not improve aneurysm clip size selection accuracy. The VTMOM is a potentially accurate tool for use under the operating microscope. However, its performance when measuring anatomical objects is highly dependent on complex visual features of the object surfaces. Copyright 2000 Wiley-Liss, Inc.
Modeling biochemical transformation processes and information processing with Narrator
Mandel, Johannes J; Fuß, Hendrik; Palfreyman, Niall M; Dubitzky, Werner
2007-01-01
Background Software tools that model and simulate the dynamics of biological processes and systems are becoming increasingly important. Some of these tools offer sophisticated graphical user interfaces (GUIs), which greatly enhance their acceptance by users. Such GUIs are based on symbolic or graphical notations used to describe, interact and communicate the developed models. Typically, these graphical notations are geared towards conventional biochemical pathway diagrams. They permit the user to represent the transport and transformation of chemical species and to define inhibitory and stimulatory dependencies. A critical weakness of existing tools is their lack of supporting an integrative representation of transport, transformation as well as biological information processing. Results Narrator is a software tool facilitating the development and simulation of biological systems as Co-dependence models. The Co-dependence Methodology complements the representation of species transport and transformation together with an explicit mechanism to express biological information processing. Thus, Co-dependence models explicitly capture, for instance, signal processing structures and the influence of exogenous factors or events affecting certain parts of a biological system or process. This combined set of features provides the system biologist with a powerful tool to describe and explore the dynamics of life phenomena. Narrator's GUI is based on an expressive graphical notation which forms an integral part of the Co-dependence Methodology. Behind the user-friendly GUI, Narrator hides a flexible feature which makes it relatively easy to map models defined via the graphical notation to mathematical formalisms and languages such as ordinary differential equations, the Systems Biology Markup Language or Gillespie's direct method. This powerful feature facilitates reuse, interoperability and conceptual model development. Conclusion Narrator is a flexible and intuitive systems biology tool. It is specifically intended for users aiming to construct and simulate dynamic models of biology without recourse to extensive mathematical detail. Its design facilitates mappings to different formal languages and frameworks. The combined set of features makes Narrator unique among tools of its kind. Narrator is implemented as Java software program and available as open-source from . PMID:17389034
The effect of using graphic organizers in the teaching of standard biology
NASA Astrophysics Data System (ADS)
Pepper, Wade Louis, Jr.
This study was conducted to determine if the use of graphic organizers in the teaching of standard biology would increase student achievement, involvement and quality of activities. The subjects were 10th grade standard biology students in a large southern inner city high school. The study was conducted over a six-week period in an instructional setting using action research as the investigative format. After calculation of the homogeneity between classes, random selection was used to determine the graphic organizer class and the control class. The graphic organizer class was taught unit material through a variety of instructional methods along with the use of teacher generated graphic organizers. The control class was taught the same unit material using the same instructional methods, but without the use of graphic organizers. Data for the study were gathered from in-class written assignments, teacher-generated tests and text-generated tests, and rubric scores of an out-of-class written assignment and project. Also, data were gathered from student reactions, comments, observations and a teacher's research journal. Results were analyzed using descriptive statistics and qualitative interpretation. By comparing statistical results, it was determined that the use of graphic organizers did not make a statistically significant difference in the understanding of biological concepts and retention of factual information. Furthermore, the use of graphic organizers did not make a significant difference in motivating students to fulfill all class assignments with quality efforts and products. However, based upon student reactions and comments along with observations by the researcher, graphic organizers were viewed by the students as a favorable and helpful instructional tool. In lieu of statistical results, student gains from instructional activities using graphic organizers were positive and merit the continuation of their use as an instructional tool.
Alignment Pins for Assembling and Disassembling Structures
NASA Technical Reports Server (NTRS)
Campbell, Oliver C.
2008-01-01
Simple, easy-to-use, highly effective tooling has been devised for maintaining alignment of bolt holes in mating structures during assembly and disassembly of the structures. The tooling was originally used during removal of a body flap from the space shuttle Atlantis, in which misalignments during removal of the last few bolts could cause the bolts to bind in their holes. By suitably modifying the dimensions of the tooling components, the basic design of the tooling can readily be adapted to other structures that must be maintained in alignment. The tooling includes tapered, internally threaded alignment pins designed to fit in the bolt holes in one of the mating structures, plus a draw bolt and a cup that are used to install or remove each alignment pin. In preparation for disassembly of two mating structures, external supports are provided to prevent unintended movement of the structures. During disassembly of the structures, as each bolt that joins the structures is removed, an alignment pin is installed in its place. Once all the bolts have been removed and replaced with pins, the pins maintain alignment as the structures are gently pushed or pulled apart on the supports. In assembling the two structures, one reverses the procedure described above: pins are installed in the bolt holes, the structures are pulled or pushed together on the supports, then the pins are removed and replaced with bolts. The figure depicts the tooling and its use. To install an alignment pin in a bolt hole in a structural panel, the tapered end of the pin is inserted from one side of the panel, the cup is placed over the pin on the opposite side of the panel, the draw bolt is inserted through the cup and threaded into the pin, the draw bolt is tightened to pull the pin until the pin is seated firmly in the hole, then the draw bolt and cup are removed, leaving the pin in place. To remove an alignment pin, the cup is placed over the pin on the first-mentioned side of the panel, the draw bolt is inserted through the cup and threaded into the pin, then the draw bolt is tightened to pull the pin out of the hole.
Self-learning computers for surgical planning and prediction of postoperative alignment.
Lafage, Renaud; Pesenti, Sébastien; Lafage, Virginie; Schwab, Frank J
2018-02-01
In past decades, the role of sagittal alignment has been widely demonstrated in the setting of spinal conditions. As several parameters can be affected, identifying the driver of the deformity is the cornerstone of a successful treatment approach. Despite the importance of restoring sagittal alignment for optimizing outcome, this task remains challenging. Self-learning computers and optimized algorithms are of great interest in spine surgery as in that they facilitate better planning and prediction of postoperative alignment. Nowadays, computer-assisted tools are part of surgeons' daily practice; however, the use of such tools remains to be time-consuming. NARRATIVE REVIEW AND RESULTS: Computer-assisted methods for the prediction of postoperative alignment consist of a three step analysis: identification of anatomical landmark, definition of alignment objectives, and simulation of surgery. Recently, complex rules for the prediction of alignment have been proposed. Even though this kind of work leads to more personalized objectives, the number of parameters involved renders it difficult for clinical use, stressing the importance of developing computer-assisted tools. The evolution of our current technology, including machine learning and other types of advanced algorithms, will provide powerful tools that could be useful in improving surgical outcomes and alignment prediction. These tools can combine different types of advanced technologies, such as image recognition and shape modeling, and using this technique, computer-assisted methods are able to predict spinal shape. The development of powerful computer-assisted methods involves the integration of several sources of information such as radiographic parameters (X-rays, MRI, CT scan, etc.), demographic information, and unusual non-osseous parameters (muscle quality, proprioception, gait analysis data). In using a larger set of data, these methods will aim to mimic what is actually done by spine surgeons, leading to real tailor-made solutions. Integrating newer technology can change the current way of planning/simulating surgery. The use of powerful computer-assisted tools that are able to integrate several parameters and learn from experience can change the traditional way of selecting treatment pathways and counseling patients. However, there is still much work to be done to reach a desired level as noted in other orthopedic fields, such as hip surgery. Many of these tools already exist in non-medical fields and their adaptation to spine surgery is of considerable interest.
The pits and falls of graphical presentation.
Sperandei, Sandro
2014-01-01
Graphics are powerful tools to communicate research results and to gain information from data. However, researchers should be careful when deciding which data to plot and the type of graphic to use, as well as other details. The consequence of bad decisions in these features varies from making research results unclear to distortions of these results, through the creation of "chartjunk" with useless information. This paper is not another tutorial about "good graphics" and "bad graphics". Instead, it presents guidelines for graphic presentation of research results and some uncommon, but useful examples to communicate basic and complex data types, especially multivariate model results, which are commonly presented only by tables. By the end, there are no answers here, just ideas meant to inspire others on how to create their own graphics.
Designing a Graphical Decision Support Tool to Improve System Acquisition Decisions
2009-06-01
relationships within the data [9]. Displaying acquisition data in a graphical manner was chosen because graphical formats, in general, have been...acquisition plan which includes information pertaining to the acquisition objectives, the required capability of the system, design trade-off, budgeting...which introduce artificial neural networks to approximate the real world experience of an acquisition manager [8]. However, these strategies lack a
Three varieties of realism in computer graphics
NASA Astrophysics Data System (ADS)
Ferwerda, James A.
2003-06-01
This paper describes three varieties of realism that need to be considered in evaluating computer graphics images and defines the criteria that need to be met if each kind of realism is to be achieved. The paper introduces a conceptual framework for thinking about realism in images, and describes a set of research tools for measuring image realism and assessing its value in graphics applications.
ADOMA: A Command Line Tool to Modify ClustalW Multiple Alignment Output.
Zaal, Dionne; Nota, Benjamin
2016-01-01
We present ADOMA, a command line tool that produces alternative outputs from ClustalW multiple alignments of nucleotide or protein sequences. ADOMA can simplify the output of alignments by showing only the different residues between sequences, which is often desirable when only small differences such as single nucleotide polymorphisms are present (e.g., between different alleles). Another feature of ADOMA is that it can enhance the ClustalW output by coloring the residues in the alignment. This tool is easily integrated into automated Linux pipelines for next-generation sequencing data analysis, and may be useful for researchers in a broad range of scientific disciplines including evolutionary biology and biomedical sciences. The source code is freely available at https://sourceforge. net/projects/adoma/. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Paterra, Frank; Bailin, Sidney
1993-01-01
The old maxim goes: 'A picture is worth a thousand words'. The objective of the research reported in this paper is to demonstrate this idea as it relates to the knowledge acquisition process and the automated development of an expert system's rule base. A prototype tool, the Knowledge From Pictures (KFP) tool, has been developed which configures an expert system's rule base by an automated analysis of and reasoning about a 'picture', i.e., a graphical representation of some target system to be supported by the diagnostic capabilities of the expert system under development. This rule base, when refined, could then be used by the expert system for target system monitoring and fault analysis in an operational setting. Most people, when faced with the problem of understanding the behavior of a complicated system, resort to the use of some picture or graphical representation of the system as an aid in thinking about it. This depiction provides a means of helping the individual to visualize the bahavior and dynamics of the system under study. An analysis of the picture augmented with the individual's background information, allows the problem solver to codify knowledge about the system. This knowledge can, in turn, be used to develop computer programs to automatically monitor the system's performance. The approach taken is this research was to mimic this knowledge acquisition paradigm. A prototype tool was developed which provides the user: (1) a mechanism for graphically representing sample system-configurations appropriate for the domain, and (2) a linguistic device for annotating the graphical representation with the behaviors and mutual influences of the components depicted in the graphic. The KFP tool, reasoning from the graphical depiction along with user-supplied annotations of component behaviors and inter-component influences, generates a rule base that could be used in automating the fault detection, isolation, and repair of the system.
Global Precipitation Mission Visualization Tool
NASA Technical Reports Server (NTRS)
Schwaller, Mathew
2011-01-01
The Global Precipitation Mission (GPM) software provides graphic visualization tools that enable easy comparison of ground- and space-based radar observations. It was initially designed to compare ground radar reflectivity from operational, ground-based, S- and C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite's precipitation radar instrument. This design is also applicable to other groundbased and space-based radars, and allows both ground- and space-based radar data to be compared for validation purposes. The tool creates an operational system that routinely performs several steps. It ingests satellite radar data (precipitation radar data from TRMM) and groundbased meteorological radar data from a number of sources. Principally, the ground radar data comes from national networks of weather radars (see figure). The data ingested by the visualization tool must conform to the data formats used in GPM Validation Network Geometry-matched data product generation. The software also performs match-ups of the radar volume data for the ground- and space-based data, as well as statistical and graphical analysis (including two-dimensional graphical displays) on the match-up data. The visualization tool software is written in IDL, and can be operated either in the IDL development environment or as a stand-alone executable function.
xGDBvm: A Web GUI-Driven Workflow for Annotating Eukaryotic Genomes in the Cloud[OPEN
Merchant, Nirav
2016-01-01
Genome-wide annotation of gene structure requires the integration of numerous computational steps. Currently, annotation is arguably best accomplished through collaboration of bioinformatics and domain experts, with broad community involvement. However, such a collaborative approach is not scalable at today’s pace of sequence generation. To address this problem, we developed the xGDBvm software, which uses an intuitive graphical user interface to access a number of common genome analysis and gene structure tools, preconfigured in a self-contained virtual machine image. Once their virtual machine instance is deployed through iPlant’s Atmosphere cloud services, users access the xGDBvm workflow via a unified Web interface to manage inputs, set program parameters, configure links to high-performance computing (HPC) resources, view and manage output, apply analysis and editing tools, or access contextual help. The xGDBvm workflow will mask the genome, compute spliced alignments from transcript and/or protein inputs (locally or on a remote HPC cluster), predict gene structures and gene structure quality, and display output in a public or private genome browser complete with accessory tools. Problematic gene predictions are flagged and can be reannotated using the integrated yrGATE annotation tool. xGDBvm can also be configured to append or replace existing data or load precomputed data. Multiple genomes can be annotated and displayed, and outputs can be archived for sharing or backup. xGDBvm can be adapted to a variety of use cases including de novo genome annotation, reannotation, comparison of different annotations, and training or teaching. PMID:27020957
xGDBvm: A Web GUI-Driven Workflow for Annotating Eukaryotic Genomes in the Cloud.
Duvick, Jon; Standage, Daniel S; Merchant, Nirav; Brendel, Volker P
2016-04-01
Genome-wide annotation of gene structure requires the integration of numerous computational steps. Currently, annotation is arguably best accomplished through collaboration of bioinformatics and domain experts, with broad community involvement. However, such a collaborative approach is not scalable at today's pace of sequence generation. To address this problem, we developed the xGDBvm software, which uses an intuitive graphical user interface to access a number of common genome analysis and gene structure tools, preconfigured in a self-contained virtual machine image. Once their virtual machine instance is deployed through iPlant's Atmosphere cloud services, users access the xGDBvm workflow via a unified Web interface to manage inputs, set program parameters, configure links to high-performance computing (HPC) resources, view and manage output, apply analysis and editing tools, or access contextual help. The xGDBvm workflow will mask the genome, compute spliced alignments from transcript and/or protein inputs (locally or on a remote HPC cluster), predict gene structures and gene structure quality, and display output in a public or private genome browser complete with accessory tools. Problematic gene predictions are flagged and can be reannotated using the integrated yrGATE annotation tool. xGDBvm can also be configured to append or replace existing data or load precomputed data. Multiple genomes can be annotated and displayed, and outputs can be archived for sharing or backup. xGDBvm can be adapted to a variety of use cases including de novo genome annotation, reannotation, comparison of different annotations, and training or teaching. © 2016 American Society of Plant Biologists. All rights reserved.
Improved alignment evaluation and optimization : final report.
DOT National Transportation Integrated Search
2007-09-11
This report outlines the development of an enhanced highway alignment evaluation and optimization : model. A GIS-based software tool is prepared for alignment optimization that uses genetic algorithms for : optimal search. The software is capable of ...
EGenBio: A Data Management System for Evolutionary Genomics and Biodiversity
Nahum, Laila A; Reynolds, Matthew T; Wang, Zhengyuan O; Faith, Jeremiah J; Jonna, Rahul; Jiang, Zhi J; Meyer, Thomas J; Pollock, David D
2006-01-01
Background Evolutionary genomics requires management and filtering of large numbers of diverse genomic sequences for accurate analysis and inference on evolutionary processes of genomic and functional change. We developed Evolutionary Genomics and Biodiversity (EGenBio; ) to begin to address this. Description EGenBio is a system for manipulation and filtering of large numbers of sequences, integrating curated sequence alignments and phylogenetic trees, managing evolutionary analyses, and visualizing their output. EGenBio is organized into three conceptual divisions, Evolution, Genomics, and Biodiversity. The Genomics division includes tools for selecting pre-aligned sequences from different genes and species, and for modifying and filtering these alignments for further analysis. Species searches are handled through queries that can be modified based on a tree-based navigation system and saved. The Biodiversity division contains tools for analyzing individual sequences or sequence alignments, whereas the Evolution division contains tools involving phylogenetic trees. Alignments are annotated with analytical results and modification history using our PRAED format. A miscellaneous Tools section and Help framework are also available. EGenBio was developed around our comparative genomic research and a prototype database of mtDNA genomes. It utilizes MySQL-relational databases and dynamic page generation, and calls numerous custom programs. Conclusion EGenBio was designed to serve as a platform for tools and resources to ease combined analysis in evolution, genomics, and biodiversity. PMID:17118150
Process for making carbon foam
Klett, James W.
2000-01-01
The process obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
Web-Beagle: a web server for the alignment of RNA secondary structures.
Mattei, Eugenio; Pietrosanto, Marco; Ferrè, Fabrizio; Helmer-Citterich, Manuela
2015-07-01
Web-Beagle (http://beagle.bio.uniroma2.it) is a web server for the pairwise global or local alignment of RNA secondary structures. The server exploits a new encoding for RNA secondary structure and a substitution matrix of RNA structural elements to perform RNA structural alignments. The web server allows the user to compute up to 10 000 alignments in a single run, taking as input sets of RNA sequences and structures or primary sequences alone. In the latter case, the server computes the secondary structure prediction for the RNAs on-the-fly using RNAfold (free energy minimization). The user can also compare a set of input RNAs to one of five pre-compiled RNA datasets including lncRNAs and 3' UTRs. All types of comparison produce in output the pairwise alignments along with structural similarity and statistical significance measures for each resulting alignment. A graphical color-coded representation of the alignments allows the user to easily identify structural similarities between RNAs. Web-Beagle can be used for finding structurally related regions in two or more RNAs, for the identification of homologous regions or for functional annotation. Benchmark tests show that Web-Beagle has lower computational complexity, running time and better performances than other available methods. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Interactive Video Courseware for Graphic Communications Teachers and Students.
ERIC Educational Resources Information Center
Sanders, Mark
1985-01-01
At Virginia Polytechnic Institute and State University, interactive video serves both as an instructional tool and a project for creative students in graphic communications. The package facilitates courseware development and teaches students simultaneously about microcomputer and video technology. (SK)
Graphics Software For VT Terminals
NASA Technical Reports Server (NTRS)
Wang, Caroline
1991-01-01
VTGRAPH graphics software tool for DEC/VT computer terminal or terminals compatible with it, widely used by government and industry. Callable in FORTRAN or C language, library program enabling user to cope with many computer environments in which VT terminals used for window management and graphic systems. Provides PLOT10-like package plus color or shade capability for VT240, VT241, and VT300 terminals. User can easily design more-friendly user-interface programs and design PLOT10 programs on VT terminals with different computer systems. Requires ReGis graphics set terminal and FORTRAN compiler.
NASA Technical Reports Server (NTRS)
Kerr, R. A.
1983-01-01
In a three dimensional simulation higher order derivative correlations, including skewness and flatness factors, are calculated for velocity and passive scalar fields and are compared with structures in the flow. The equations are forced to maintain steady state turbulence and collect statistics. It is found that the scalar derivative flatness increases much faster with Reynolds number than the velocity derivative flatness, and the velocity and mixed derivative skewness do not increase with Reynolds number. Separate exponents are found for the various fourth order velocity derivative correlations, with the vorticity flatness exponent the largest. Three dimensional graphics show strong alignment between the vorticity, rate of strain, and scalar-gradient fields. The vorticity is concentrated in tubes with the scalar gradient and the largest principal rate of strain aligned perpendicular to the tubes. Velocity spectra, in Kolmogorov variables, collapse to a single curve and a short minus 5/3 spectral regime is observed.
Diffraction phase microscopy realized with an automatic digital pinhole
NASA Astrophysics Data System (ADS)
Zheng, Cheng; Zhou, Renjie; Kuang, Cuifang; Zhao, Guangyuan; Zhang, Zhimin; Liu, Xu
2017-12-01
We report a novel approach to diffraction phase microscopy (DPM) with automatic pinhole alignment. The pinhole, which serves as a spatial low-pass filter to generate a uniform reference beam, is made out of a liquid crystal display (LCD) device that allows for electrical control. We have made DPM more accessible to users, while maintaining high phase measurement sensitivity and accuracy, through exploring low cost optical components and replacing the tedious pinhole alignment process with an automatic pinhole optical alignment procedure. Due to its flexibility in modifying the size and shape, this LCD device serves as a universal filter, requiring no future replacement. Moreover, a graphic user interface for real-time phase imaging has been also developed by using a USB CMOS camera. Experimental results of height maps of beads sample and live red blood cells (RBCs) dynamics are also presented, making this system ready for broad adaption to biological imaging and material metrology.
Lommen, Arjen
2009-04-15
Hyphenated full-scan MS technology creates large amounts of data. A versatile easy to handle automation tool aiding in the data analysis is very important in handling such a data stream. MetAlign softwareas described in this manuscripthandles a broad range of accurate mass and nominal mass GC/MS and LC/MS data. It is capable of automatic format conversions, accurate mass calculations, baseline corrections, peak-picking, saturation and mass-peak artifact filtering, as well as alignment of up to 1000 data sets. A 100 to 1000-fold data reduction is achieved. MetAlign software output is compatible with most multivariate statistics programs.
Ranwez, Vincent
2016-01-01
Multiple sequence alignment (MSA) is a crucial step in many molecular analyses and many MSA tools have been developed. Most of them use a greedy approach to construct a first alignment that is then refined by optimizing the sum of pair score (SP-score). The SP-score estimation is thus a bottleneck for most MSA tools since it is repeatedly required and is time consuming. Given an alignment of n sequences and L sites, I introduce here optimized solutions reaching O(nL) time complexity for affine gap cost, instead of O(n2L), which are easy to implement.
FusionAnalyser: a new graphical, event-driven tool for fusion rearrangements discovery
Piazza, Rocco; Pirola, Alessandra; Spinelli, Roberta; Valletta, Simona; Redaelli, Sara; Magistroni, Vera; Gambacorti-Passerini, Carlo
2012-01-01
Gene fusions are common driver events in leukaemias and solid tumours; here we present FusionAnalyser, a tool dedicated to the identification of driver fusion rearrangements in human cancer through the analysis of paired-end high-throughput transcriptome sequencing data. We initially tested FusionAnalyser by using a set of in silico randomly generated sequencing data from 20 known human translocations occurring in cancer and subsequently using transcriptome data from three chronic and three acute myeloid leukaemia samples. in all the cases our tool was invariably able to detect the presence of the correct driver fusion event(s) with high specificity. In one of the acute myeloid leukaemia samples, FusionAnalyser identified a novel, cryptic, in-frame ETS2–ERG fusion. A fully event-driven graphical interface and a flexible filtering system allow complex analyses to be run in the absence of any a priori programming or scripting knowledge. Therefore, we propose FusionAnalyser as an efficient and robust graphical tool for the identification of functional rearrangements in the context of high-throughput transcriptome sequencing data. PMID:22570408
FusionAnalyser: a new graphical, event-driven tool for fusion rearrangements discovery.
Piazza, Rocco; Pirola, Alessandra; Spinelli, Roberta; Valletta, Simona; Redaelli, Sara; Magistroni, Vera; Gambacorti-Passerini, Carlo
2012-09-01
Gene fusions are common driver events in leukaemias and solid tumours; here we present FusionAnalyser, a tool dedicated to the identification of driver fusion rearrangements in human cancer through the analysis of paired-end high-throughput transcriptome sequencing data. We initially tested FusionAnalyser by using a set of in silico randomly generated sequencing data from 20 known human translocations occurring in cancer and subsequently using transcriptome data from three chronic and three acute myeloid leukaemia samples. in all the cases our tool was invariably able to detect the presence of the correct driver fusion event(s) with high specificity. In one of the acute myeloid leukaemia samples, FusionAnalyser identified a novel, cryptic, in-frame ETS2-ERG fusion. A fully event-driven graphical interface and a flexible filtering system allow complex analyses to be run in the absence of any a priori programming or scripting knowledge. Therefore, we propose FusionAnalyser as an efficient and robust graphical tool for the identification of functional rearrangements in the context of high-throughput transcriptome sequencing data.
NASA Technical Reports Server (NTRS)
Nguyen, Lac; Kenney, Patrick J.
1993-01-01
Development of interactive virtual environments (VE) has typically consisted of three primary activities: model (object) development, model relationship tree development, and environment behavior definition and coding. The model and relationship tree development activities are accomplished with a variety of well-established graphic library (GL) based programs - most utilizing graphical user interfaces (GUI) with point-and-click interactions. Because of this GUI format, little programming expertise on the part of the developer is necessary to create the 3D graphical models or to establish interrelationships between the models. However, the third VE development activity, environment behavior definition and coding, has generally required the greatest amount of time and programmer expertise. Behaviors, characteristics, and interactions between objects and the user within a VE must be defined via command line C coding prior to rendering the environment scenes. In an effort to simplify this environment behavior definition phase for non-programmers, and to provide easy access to model and tree tools, a graphical interface and development tool has been created. The principal thrust of this research is to effect rapid development and prototyping of virtual environments. This presentation will discuss the 'Visual Interface for Virtual Interaction Development' (VIVID) tool; an X-Windows based system employing drop-down menus for user selection of program access, models, and trees, behavior editing, and code generation. Examples of these selection will be highlighted in this presentation, as will the currently available program interfaces. The functionality of this tool allows non-programming users access to all facets of VE development while providing experienced programmers with a collection of pre-coded behaviors. In conjunction with its existing, interfaces and predefined suite of behaviors, future development plans for VIVID will be described. These include incorporation of dual user virtual environment enhancements, tool expansion, and additional behaviors.
piri, Zakieh; Raef, Behnaz; moftian, Nazila; dehghani, Mohamad; khara, Rouhallah
2017-01-01
Background and aims Business-IT Alignment Evaluation is One of the most important issues that managers should monitor and make decisions about it. Dashboard software combines data and graphical indicators to deliver at-a-glance summaries of information for users to view the state of their business and quickly respond. The aim of this study was to design a dashboard to assess the business-IT alignment strategies for hospitals organizations in Tehran University of Medical Sciences. Methods This is a functional-developmental study. Initially, we searched related databases (PubMed and ProQuest) to determine the key performance indicators of business-IT alignment for selecting the best model for dashboard designing. After selecting the Luftman model, the key indicators were extracted for designing the dashboard model. In the next stage, an electronic questionnaire was designed based on extracted indicators. This questionnaire sends to Hospital managers and IT administrators. Collected data were analyzed by Excel 2015 and displayed in dashboard page. Results The number of key performance indicators was 39. After recognition the technical requirements the dashboard was designed in Excel. The overall business-IT alignment rate in hospitals was 3.12. Amir-aalam hospital has the highest business-IT alignment rate (3.55) and vali-asr hospital has the lowest business-IT alignment rat (2.80). Conclusion Using dashboard software improves the alignment and reduces the time and energy compared with doing this process manually.
Optical alignment of electrodes on electrical discharge machines
NASA Technical Reports Server (NTRS)
Boissevain, A. G.; Nelson, B. W.
1972-01-01
Shadowgraph system projects magnified image on screen so that alignment of small electrodes mounted on electrical discharge machines can be corrected and verified. Technique may be adapted to other machine tool equipment where physical contact cannot be made during inspection and access to tool limits conventional runout checking procedures.
GPFrontend and GPGraphics: graphical analysis tools for genetic association studies.
Uebe, Steffen; Pasutto, Francesca; Krumbiegel, Mandy; Schanze, Denny; Ekici, Arif B; Reis, André
2010-09-21
Most software packages for whole genome association studies are non-graphical, purely text based programs originally designed to run with UNIX-like operating systems. Graphical output is often not intended or supposed to be performed with other command line tools, e.g. gnuplot. Using the Microsoft .NET 2.0 platform and Visual Studio 2005, we have created a graphical software package to analyze data from microarray whole genome association studies, both for a DNA-pooling based approach as well as regular single sample data. Part of this package was made to integrate with GenePool 0.8.2, a previously existing software suite for GNU/Linux systems, which we have modified to run in a Microsoft Windows environment. Further modifications cause it to generate some additional data. This enables GenePool to interact with the .NET parts created by us. The programs we developed are GPFrontend, a graphical user interface and frontend to use GenePool and create metadata files for it, and GPGraphics, a program to further analyze and graphically evaluate output of different WGA analysis programs, among them also GenePool. Our programs enable regular MS Windows users without much experience in bioinformatics to easily visualize whole genome data from a variety of sources.
Software For Graphical Representation Of A Network
NASA Technical Reports Server (NTRS)
Mcallister, R. William; Mclellan, James P.
1993-01-01
System Visualization Tool (SVT) computer program developed to provide systems engineers with means of graphically representing networks. Generates diagrams illustrating structures and states of networks defined by users. Provides systems engineers powerful tool simplifing analysis of requirements and testing and maintenance of complex software-controlled systems. Employs visual models supporting analysis of chronological sequences of requirements, simulation data, and related software functions. Applied to pneumatic, hydraulic, and propellant-distribution networks. Used to define and view arbitrary configurations of such major hardware components of system as propellant tanks, valves, propellant lines, and engines. Also graphically displays status of each component. Advantage of SVT: utilizes visual cues to represent configuration of each component within network. Written in Turbo Pascal(R), version 5.0.
G2H--graphics-to-haptic virtual environment development tool for PC's.
Acosta, E; Temkin, B; Krummel, T M; Heinrichs, W L
2000-01-01
For surgical training and preparations, the existing surgical virtual environments have shown great improvement. However, these improvements are more in the visual aspect. The incorporation of haptics into virtual reality base surgical simulations would enhance the sense of realism greatly. To aid in the development of the haptic surgical virtual environment we have created a graphics to haptic, G2H, virtual environment developer tool. G2H transforms graphical virtual environments (created or imported) to haptic virtual environments without programming. The G2H capability has been demonstrated using the complex 3D pelvic model of Lucy 2.0, the Stanford Visible Female. The pelvis was made haptic using G2H without any further programming effort.
Cloud BioLinux: pre-configured and on-demand bioinformatics computing for the genomics community.
Krampis, Konstantinos; Booth, Tim; Chapman, Brad; Tiwari, Bela; Bicak, Mesude; Field, Dawn; Nelson, Karen E
2012-03-19
A steep drop in the cost of next-generation sequencing during recent years has made the technology affordable to the majority of researchers, but downstream bioinformatic analysis still poses a resource bottleneck for smaller laboratories and institutes that do not have access to substantial computational resources. Sequencing instruments are typically bundled with only the minimal processing and storage capacity required for data capture during sequencing runs. Given the scale of sequence datasets, scientific value cannot be obtained from acquiring a sequencer unless it is accompanied by an equal investment in informatics infrastructure. Cloud BioLinux is a publicly accessible Virtual Machine (VM) that enables scientists to quickly provision on-demand infrastructures for high-performance bioinformatics computing using cloud platforms. Users have instant access to a range of pre-configured command line and graphical software applications, including a full-featured desktop interface, documentation and over 135 bioinformatics packages for applications including sequence alignment, clustering, assembly, display, editing, and phylogeny. Each tool's functionality is fully described in the documentation directly accessible from the graphical interface of the VM. Besides the Amazon EC2 cloud, we have started instances of Cloud BioLinux on a private Eucalyptus cloud installed at the J. Craig Venter Institute, and demonstrated access to the bioinformatic tools interface through a remote connection to EC2 instances from a local desktop computer. Documentation for using Cloud BioLinux on EC2 is available from our project website, while a Eucalyptus cloud image and VirtualBox Appliance is also publicly available for download and use by researchers with access to private clouds. Cloud BioLinux provides a platform for developing bioinformatics infrastructures on the cloud. An automated and configurable process builds Virtual Machines, allowing the development of highly customized versions from a shared code base. This shared community toolkit enables application specific analysis platforms on the cloud by minimizing the effort required to prepare and maintain them.
Cloud BioLinux: pre-configured and on-demand bioinformatics computing for the genomics community
2012-01-01
Background A steep drop in the cost of next-generation sequencing during recent years has made the technology affordable to the majority of researchers, but downstream bioinformatic analysis still poses a resource bottleneck for smaller laboratories and institutes that do not have access to substantial computational resources. Sequencing instruments are typically bundled with only the minimal processing and storage capacity required for data capture during sequencing runs. Given the scale of sequence datasets, scientific value cannot be obtained from acquiring a sequencer unless it is accompanied by an equal investment in informatics infrastructure. Results Cloud BioLinux is a publicly accessible Virtual Machine (VM) that enables scientists to quickly provision on-demand infrastructures for high-performance bioinformatics computing using cloud platforms. Users have instant access to a range of pre-configured command line and graphical software applications, including a full-featured desktop interface, documentation and over 135 bioinformatics packages for applications including sequence alignment, clustering, assembly, display, editing, and phylogeny. Each tool's functionality is fully described in the documentation directly accessible from the graphical interface of the VM. Besides the Amazon EC2 cloud, we have started instances of Cloud BioLinux on a private Eucalyptus cloud installed at the J. Craig Venter Institute, and demonstrated access to the bioinformatic tools interface through a remote connection to EC2 instances from a local desktop computer. Documentation for using Cloud BioLinux on EC2 is available from our project website, while a Eucalyptus cloud image and VirtualBox Appliance is also publicly available for download and use by researchers with access to private clouds. Conclusions Cloud BioLinux provides a platform for developing bioinformatics infrastructures on the cloud. An automated and configurable process builds Virtual Machines, allowing the development of highly customized versions from a shared code base. This shared community toolkit enables application specific analysis platforms on the cloud by minimizing the effort required to prepare and maintain them. PMID:22429538
Hestand, Matthew S; van Galen, Michiel; Villerius, Michel P; van Ommen, Gert-Jan B; den Dunnen, Johan T; 't Hoen, Peter AC
2008-01-01
Background The identification of transcription factor binding sites is difficult since they are only a small number of nucleotides in size, resulting in large numbers of false positives and false negatives in current approaches. Computational methods to reduce false positives are to look for over-representation of transcription factor binding sites in a set of similarly regulated promoters or to look for conservation in orthologous promoter alignments. Results We have developed a novel tool, "CORE_TF" (Conserved and Over-REpresented Transcription Factor binding sites) that identifies common transcription factor binding sites in promoters of co-regulated genes. To improve upon existing binding site predictions, the tool searches for position weight matrices from the TRANSFACR database that are over-represented in an experimental set compared to a random set of promoters and identifies cross-species conservation of the predicted transcription factor binding sites. The algorithm has been evaluated with expression and chromatin-immunoprecipitation on microarray data. We also implement and demonstrate the importance of matching the random set of promoters to the experimental promoters by GC content, which is a unique feature of our tool. Conclusion The program CORE_TF is accessible in a user friendly web interface at . It provides a table of over-represented transcription factor binding sites in the users input genes' promoters and a graphical view of evolutionary conserved transcription factor binding sites. In our test data sets it successfully predicts target transcription factors and their binding sites. PMID:19036135
Improving ontology matching with propagation strategy and user feedback
NASA Astrophysics Data System (ADS)
Li, Chunhua; Cui, Zhiming; Zhao, Pengpeng; Wu, Jian; Xin, Jie; He, Tianxu
2015-07-01
Markov logic networks which unify probabilistic graphical model and first-order logic provide an excellent framework for ontology matching. The existing approach requires a threshold to produce matching candidates and use a small set of constraints acting as filter to select the final alignments. We introduce novel match propagation strategy to model the influences between potential entity mappings across ontologies, which can help to identify the correct correspondences and produce missed correspondences. The estimation of appropriate threshold is a difficult task. We propose an interactive method for threshold selection through which we obtain an additional measurable improvement. Running experiments on a public dataset has demonstrated the effectiveness of proposed approach in terms of the quality of result alignment.
Artwork Interactive Design System (AIDS) program description
NASA Technical Reports Server (NTRS)
Johnson, B. T.; Taylor, J. F.
1976-01-01
An artwork interactive design system is described which provides the microelectronic circuit designer/engineer a tool to perform circuit design, automatic layout modification, standard cell design, and artwork verification at a graphics computer terminal using a graphics tablet at the designer/computer interface.
Graphic Organizers for Secondary Students with Learning Disabilities
ERIC Educational Resources Information Center
Singleton, Sabrina M.; Filce, Hollie Gabler
2015-01-01
Research suggests students with learning disabilities often have trouble connecting new and prior knowledge, distinguishing essential and nonessential information, and applying comprehension strategies (DiCecco & Gleason, 2002; Vaughn & Edmonds, 2006). Graphic organizers have been suggested as tools educators can use to facilitate critical…
Concentration solar power optimization system and method of using the same
Andraka, Charles E
2014-03-18
A system and method for optimizing at least one mirror of at least one CSP system is provided. The system has a screen for displaying light patterns for reflection by the mirror, a camera for receiving a reflection of the light patterns from the mirror, and a solar characterization tool. The solar characterization tool has a characterizing unit for determining at least one mirror parameter of the mirror based on an initial position of the camera and the screen, and a refinement unit for refining the determined parameter(s) based on an adjusted position of the camera and screen whereby the mirror is characterized. The system may also be provided with a solar alignment tool for comparing at least one mirror parameter of the mirror to a design geometry whereby an alignment error is defined, and at least one alignment unit for adjusting the mirror to reduce the alignment error.
Model Evaluation of Continuous Data Pharmacometric Models: Metrics and Graphics
Nguyen, THT; Mouksassi, M‐S; Holford, N; Al‐Huniti, N; Freedman, I; Hooker, AC; John, J; Karlsson, MO; Mould, DR; Pérez Ruixo, JJ; Plan, EL; Savic, R; van Hasselt, JGC; Weber, B; Zhou, C; Comets, E
2017-01-01
This article represents the first in a series of tutorials on model evaluation in nonlinear mixed effect models (NLMEMs), from the International Society of Pharmacometrics (ISoP) Model Evaluation Group. Numerous tools are available for evaluation of NLMEM, with a particular emphasis on visual assessment. This first basic tutorial focuses on presenting graphical evaluation tools of NLMEM for continuous data. It illustrates graphs for correct or misspecified models, discusses their pros and cons, and recalls the definition of metrics used. PMID:27884052
la Cour, L. T.; Stone, B. W.; Hopkins, W.; Menzel, C.; Fragaszy, D.
2013-01-01
Perceptuomotor functions that support using hand tools can be examined in other manipulation tasks, such as alignment of objects to surfaces. We examined tufted capuchin monkeys’ and chimpanzees’ performance at aligning objects to surfaces while managing one or two spatial relations to do so. We presented 6 subjects of each species with a single stick to place into a groove, two sticks of equal length to place into two grooves, or two sticks joined as a T to place into a T-shaped groove. Tufted capuchins and chimpanzees performed equivalently on these tasks, aligning the straight stick to within 22.5° of parallel to the groove in approximately half of their attempts to place it, and taking more attempts to place the T stick than two straight sticks. The findings provide strong evidence that tufted capuchins and chimpanzees do not reliably align even one prominent axial feature of an object to a surface, and that managing two concurrent allocentric spatial relations in an alignment problem is significantly more challenging to them than managing two sequential relations. In contrast, humans from two years of age display very different perceptuomotor abilities in a similar task: they align sticks to a groove reliably on each attempt, and they readily manage two allocentric spatial relations concurrently. Limitations in aligning objects and in managing two or more relations at a time significantly constrain how nonhuman primates can use hand tools. PMID:23820935
Integrating Commercial Off-The-Shelf (COTS) graphics and extended memory packages with CLIPS
NASA Technical Reports Server (NTRS)
Callegari, Andres C.
1990-01-01
This paper addresses the question of how to mix CLIPS with graphics and how to overcome PC's memory limitations by using the extended memory available in the computer. By adding graphics and extended memory capabilities, CLIPS can be converted into a complete and powerful system development tool, on the other most economical and popular computer platform. New models of PCs have amazing processing capabilities and graphic resolutions that cannot be ignored and should be used to the fullest of their resources. CLIPS is a powerful expert system development tool, but it cannot be complete without the support of a graphics package needed to create user interfaces and general purpose graphics, or without enough memory to handle large knowledge bases. Now, a well known limitation on the PC's is the usage of real memory which limits CLIPS to use only 640 Kb of real memory, but now that problem can be solved by developing a version of CLIPS that uses extended memory. The user has access of up to 16 MB of memory on 80286 based computers and, practically, all the available memory (4 GB) on computers that use the 80386 processor. So if we give CLIPS a self-configuring graphics package that will automatically detect the graphics hardware and pointing device present in the computer, and we add the availability of the extended memory that exists in the computer (with no special hardware needed), the user will be able to create more powerful systems at a fraction of the cost and on the most popular, portable, and economic platform available such as the PC platform.
An isocenter estimation tool for proton gantry alignment
NASA Astrophysics Data System (ADS)
Hansen, Peter; Hu, Dongming
2017-12-01
A novel tool has been developed to automate the process of locating the isocenter, center of rotation, and sphere of confusion of a proton therapy gantry. The tool uses a Radian laser tracker to estimate how the coordinate frame of the front-end beam-line components changes as the gantry rotates. The coordinate frames serve as an empirical model of gantry flexing. Using this model, the alignment of the front and back-end beam-line components can be chosen to minimize the sphere of confusion, improving the overall beam positioning accuracy of the gantry. This alignment can be performed without the beam active, improving the efficiency of installing new systems at customer sites.
Buttarazzi, Davide; Pandolfo, Giuseppe; Porzio, Giovanni C
2018-05-21
The box-and-whiskers plot is an extraordinary graphical tool that provides a quick visual summary of an observed distribution. In spite of its many extensions, a really suitable boxplot to display circular data is not yet available. Thanks to its simplicity and strong visual impact, such a tool would be especially useful in all fields where circular measures arise: biometrics, astronomy, environmetrics, Earth sciences, to cite just a few. For this reason, in line with Tukey's original idea, a Tukey-like circular boxplot is introduced. Several simulated and real datasets arising in biology are used to illustrate the proposed graphical tool. © 2018, The International Biometric Society.
A parallel approach of COFFEE objective function to multiple sequence alignment
NASA Astrophysics Data System (ADS)
Zafalon, G. F. D.; Visotaky, J. M. V.; Amorim, A. R.; Valêncio, C. R.; Neves, L. A.; de Souza, R. C. G.; Machado, J. M.
2015-09-01
The computational tools to assist genomic analyzes show even more necessary due to fast increasing of data amount available. With high computational costs of deterministic algorithms for sequence alignments, many works concentrate their efforts in the development of heuristic approaches to multiple sequence alignments. However, the selection of an approach, which offers solutions with good biological significance and feasible execution time, is a great challenge. Thus, this work aims to show the parallelization of the processing steps of MSA-GA tool using multithread paradigm in the execution of COFFEE objective function. The standard objective function implemented in the tool is the Weighted Sum of Pairs (WSP), which produces some distortions in the final alignments when sequences sets with low similarity are aligned. Then, in studies previously performed we implemented the COFFEE objective function in the tool to smooth these distortions. Although the nature of COFFEE objective function implies in the increasing of execution time, this approach presents points, which can be executed in parallel. With the improvements implemented in this work, we can verify the execution time of new approach is 24% faster than the sequential approach with COFFEE. Moreover, the COFFEE multithreaded approach is more efficient than WSP, because besides it is slightly fast, its biological results are better.
W-curve alignments for HIV-1 genomic comparisons.
Cork, Douglas J; Lembark, Steven; Tovanabutra, Sodsai; Robb, Merlin L; Kim, Jerome H
2010-06-01
The W-curve was originally developed as a graphical visualization technique for viewing DNA and RNA sequences. Its ability to render features of DNA also makes it suitable for computational studies. Its main advantage in this area is utilizing a single-pass algorithm for comparing the sequences. Avoiding recursion during sequence alignments offers advantages for speed and in-process resources. The graphical technique also allows for multiple models of comparison to be used depending on the nucleotide patterns embedded in similar whole genomic sequences. The W-curve approach allows us to compare large numbers of samples quickly. We are currently tuning the algorithm to accommodate quirks specific to HIV-1 genomic sequences so that it can be used to aid in diagnostic and vaccine efforts. Tracking the molecular evolution of the virus has been greatly hampered by gap associated problems predominantly embedded within the envelope gene of the virus. Gaps and hypermutation of the virus slow conventional string based alignments of the whole genome. This paper describes the W-curve algorithm itself, and how we have adapted it for comparison of similar HIV-1 genomes. A treebuilding method is developed with the W-curve that utilizes a novel Cylindrical Coordinate distance method and gap analysis method. HIV-1 C2-V5 env sequence regions from a Mother/Infant cohort study are used in the comparison. The output distance matrix and neighbor results produced by the W-curve are functionally equivalent to those from Clustal for C2-V5 sequences in the mother/infant pairs infected with CRF01_AE. Significant potential exists for utilizing this method in place of conventional string based alignment of HIV-1 genomes, such as Clustal X. With W-curve heuristic alignment, it may be possible to obtain clinically useful results in a short time-short enough to affect clinical choices for acute treatment. A description of the W-curve generation process, including a comparison technique of aligning extremes of the curves to effectively phase-shift them past the HIV-1 gap problem, is presented. Besides yielding similar neighbor-joining phenogram topologies, most Mother and Infant C2-V5 sequences in the cohort pairs geometrically map closest to each other, indicating that W-curve heuristics overcame any gap problem.
An Interactive Educational Tool for Compressible Aerodynamics
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1994-01-01
A workstation-based interactive educational tool was developed to aid in the teaching of undergraduate compressible aerodynamics. The tool solves for the supersonic flow past a wedge using the equations found in NACA 1135. The student varies the geometry or flow conditions through a graphical user interface and the new conditions are calculated immediately. Various graphical formats present the variation of flow results to the student. One such format leads the student to the generation of some of the graphs found in NACA-1135. The tool includes interactive questions and answers to aid in both the use of the tool and to develop an understanding of some of the complexities of compressible aerodynamics. A series of help screens make the simulator easy to learn and use. This paper will detail the numerical methods used in the tool and describe how it can be used and modified.
The use of interpractive graphic displays for interpretation of surface design parameters
NASA Technical Reports Server (NTRS)
Talcott, N. A., Jr.
1981-01-01
An interactive computer graphics technique known as the Graphic Display Data method has been developed to provide a convenient means for rapidly interpreting large amounts of surface design data. The display technique should prove valuable in such disciplines as aerodynamic analysis, structural analysis, and experimental data analysis. To demonstrate the system's features, an example is presented of the Graphic Data Display method used as an interpretive tool for radiation equilibrium temperature distributions over the surface of an aerodynamic vehicle. Color graphic displays were also examined as a logical extension of the technique to improve its clarity and to allow the presentation of greater detail in a single display.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coble, Jamie B.; Fraga, Carlos G.
2014-07-07
Preprocessing software is crucial for the discovery of chemical signatures in metabolomics, chemical forensics, and other signature-focused disciplines that involve analyzing large data sets from chemical instruments. Here, four freely available and published preprocessing tools known as metAlign, MZmine, SpectConnect, and XCMS were evaluated for impurity profiling using nominal mass GC/MS data and accurate mass LC/MS data. Both data sets were previously collected from the analysis of replicate samples from multiple stocks of a nerve-agent precursor. Each of the four tools had their parameters set for the untargeted detection of chromatographic peaks from impurities present in the stocks. The peakmore » table generated by each preprocessing tool was analyzed to determine the number of impurity components detected in all replicate samples per stock. A cumulative set of impurity components was then generated using all available peak tables and used as a reference to calculate the percent of component detections for each tool, in which 100% indicated the detection of every component. For the nominal mass GC/MS data, metAlign performed the best followed by MZmine, SpectConnect, and XCMS with detection percentages of 83, 60, 47, and 42%, respectively. For the accurate mass LC/MS data, the order was metAlign, XCMS, and MZmine with detection percentages of 80, 45, and 35%, respectively. SpectConnect did not function for the accurate mass LC/MS data. Larger detection percentages were obtained by combining the top performer with at least one of the other tools such as 96% by combining metAlign with MZmine for the GC/MS data and 93% by combining metAlign with XCMS for the LC/MS data. In terms of quantitative performance, the reported peak intensities had average absolute biases of 41, 4.4, 1.3 and 1.3% for SpectConnect, metAlign, XCMS, and MZmine, respectively, for the GC/MS data. For the LC/MS data, the average absolute biases were 22, 4.5, and 3.1% for metAlign, MZmine, and XCMS, respectively. In summary, metAlign performed the best in terms of peak discovery; however, more than one preprocessing tool should be considered to avoid missing potential chemical signatures.« less
Simulation of Robot Kinematics Using Interactive Computer Graphics.
ERIC Educational Resources Information Center
Leu, M. C.; Mahajan, R.
1984-01-01
Development of a robot simulation program based on geometric transformation softwares available in most computer graphics systems and program features are described. The program can be extended to simulate robots coordinating with external devices (such as tools, fixtures, conveyors) using geometric transformations to describe the…
Design and Implementation of a Tool for Teaching Programming.
ERIC Educational Resources Information Center
Goktepe, Mesut; And Others
1989-01-01
Discussion of the use of computers in education focuses on a graphics-based system for teaching the Pascal programing language for problem solving. Topics discussed include user interface; notification based systems; communication processes; object oriented programing; workstations; graphics architecture; and flowcharts. (18 references) (LRW)
Graphic Representations as Tools for Decision Making.
ERIC Educational Resources Information Center
Howard, Judith
2001-01-01
Focuses on the use of graphic representations to enable students to improve their decision making skills in the social studies. Explores three visual aids used in assisting students with decision making: (1) the force field; (2) the decision tree; and (3) the decision making grid. (CMK)
Visualizing Practice with Children and Families.
ERIC Educational Resources Information Center
Mattaini, Mark A.
1995-01-01
Argues that graphic images and technologies can be of substantial help to social work practitioners for assessment and intervention with children and families. Suggests a range of graphic tools and techniques, including profiles, ecomaps, sequential ecomaps, contingency diagrams, concurrent graphing, and computerized Visual EcoScan. (DR)
A graphics approach in the design of the dual air density Explorer satellites
NASA Technical Reports Server (NTRS)
Mcdougal, D. S.
1975-01-01
A computer program was developed to generate a graphics display of the Dual Air Density (DAD) Explorer satellites which aids in the engineering and scientific design. The program displays a two-dimensional view of both spacecraft and their surface features from any direction. The graphics have been an indispensable tool in the design, analysis, and understanding of the critical locations of the various surface features for both satellites.
Tips for Better Visual Elements in Posters and Podium Presentations
Zerwic, JJ; Grandfield, K; Kavanaugh, K; Berger, B; Graham, L; Mershon, M
2010-01-01
Context The ability to effectively communicate through posters and podium presentations using appropriate visual content and style is essential for health care educators. Objectives To offer suggestions for more effective visual elements of posters and podium presentations. Methods We present the experiences of our multidisciplinary publishing group, whose combined experiences and collaboration have provided us with an understanding of what works and how to achieve success when working on presentations and posters. Many others would offer similar advice, as these guidelines are consistent with effective presentation. Findings/Suggestions Certain visual elements should be attended to in any visual presentation: consistency, alignment, contrast and repetition. Presentations should be consistent in font size and type, line spacing, alignment of graphics and text, and size of graphics. All elements should be aligned with at least one other element. Contrasting light background with dark text (and vice versa) helps an audience read the text more easily. Standardized formatting lets viewers know when they are looking at similar things (tables, headings, etc.). Using a minimal number of colors (four at most) helps the audience more easily read text. For podium presentations, have one slide for each minute allotted for speaking. The speaker is also a visual element; one should not allow the audience’s view of either the presentation or presenter to be blocked. Making eye contact with the audience also keeps them visually engaged. Conclusions Health care educators often share information through posters and podium presentations. These tips should help the visual elements of presentations be more effective. PMID:20853236
The Real Time Display Builder (RTDB)
NASA Technical Reports Server (NTRS)
Kindred, Erick D.; Bailey, Samuel A., Jr.
1989-01-01
The Real Time Display Builder (RTDB) is a prototype interactive graphics tool that builds logic-driven displays. These displays reflect current system status, implement fault detection algorithms in real time, and incorporate the operational knowledge of experienced flight controllers. RTDB utilizes an object-oriented approach that integrates the display symbols with the underlying operational logic. This approach allows the user to specify the screen layout and the driving logic as the display is being built. RTDB is being developed under UNIX in C utilizing the MASSCOMP graphics environment with appropriate functional separation to ease portability to other graphics environments. RTDB grew from the need to develop customized real-time data-driven Space Shuttle systems displays. One display, using initial functionality of the tool, was operational during the orbit phase of STS-26 Discovery. RTDB is being used to produce subsequent displays for the Real Time Data System project currently under development within the Mission Operations Directorate at NASA/JSC. The features of the tool, its current state of development, and its applications are discussed.
Method of casting pitch based foam
Klett, James W.
2002-01-01
A process for producing molded pitch based foam is disclosed which minimizes cracking. The process includes forming a viscous pitch foam in a container, and then transferring the viscous pitch foam from the container into a mold. The viscous pitch foam in the mold is hardened to provide a carbon foam having a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts.
Super miniaturization of film capacitor dielectrics
NASA Technical Reports Server (NTRS)
Lavene, B.
1981-01-01
The alignment of the stable electrical characteristics of film capacitors in the physical dimensions of ceramic and tantalum capacitors are discussed. The reliability of polycarbonate and mylar capacitors are described with respect to their compatibility with military specifications. Graphic illustrations are presented which show electrical and physical comparisons of film, ceramic, and tantalum capacitors. The major focus is on volumetric efficiency, weight reduction, and electrical stability.
AMAS: a fast tool for alignment manipulation and computing of summary statistics.
Borowiec, Marek L
2016-01-01
The amount of data used in phylogenetics has grown explosively in the recent years and many phylogenies are inferred with hundreds or even thousands of loci and many taxa. These modern phylogenomic studies often entail separate analyses of each of the loci in addition to multiple analyses of subsets of genes or concatenated sequences. Computationally efficient tools for handling and computing properties of thousands of single-locus or large concatenated alignments are needed. Here I present AMAS (Alignment Manipulation And Summary), a tool that can be used either as a stand-alone command-line utility or as a Python package. AMAS works on amino acid and nucleotide alignments and combines capabilities of sequence manipulation with a function that calculates basic statistics. The manipulation functions include conversions among popular formats, concatenation, extracting sites and splitting according to a pre-defined partitioning scheme, creation of replicate data sets, and removal of taxa. The statistics calculated include the number of taxa, alignment length, total count of matrix cells, overall number of undetermined characters, percent of missing data, AT and GC contents (for DNA alignments), count and proportion of variable sites, count and proportion of parsimony informative sites, and counts of all characters relevant for a nucleotide or amino acid alphabet. AMAS is particularly suitable for very large alignments with hundreds of taxa and thousands of loci. It is computationally efficient, utilizes parallel processing, and performs better at concatenation than other popular tools. AMAS is a Python 3 program that relies solely on Python's core modules and needs no additional dependencies. AMAS source code and manual can be downloaded from http://github.com/marekborowiec/AMAS/ under GNU General Public License.
Shah, Prakesh S; Ye, Xiang Y; Synnes, Anne; Rouvinez-Bouali, Nicole; Yee, Wendy; Lee, Shoo K
2012-03-01
To develop models and a graphical tool for predicting survival to discharge without major morbidity for infants with a gestational age (GA) at birth of 22-32 weeks using infant information at birth. Retrospective cohort study. Canadian Neonatal Network data for 2003-2008 were utilised. Neonates born between 22 and 32 weeks gestation admitted to neonatal intensive care units in Canada. Survival to discharge without major morbidity defined as survival without severe neurological injury (intraventricular haemorrhage grade 3 or 4 or periventricular leukomalacia), severe retinopathy (stage 3 or higher), necrotising enterocolitis (stage 2 or 3) or chronic lung disease. Of the 17 148 neonates who met the eligibility criteria, 65% survived without major morbidity. Sex and GA at birth were significant predictors. Birth weight (BW) had a significant but non-linear effect on survival without major morbidity. Although maternal information characteristics such as steroid use, improved the prediction of survival without major morbidity, sex, GA at birth and BW for GA predicted survival without major morbidity almost as accurately (area under the curve: 0.84). The graphical tool based on the models showed how the GA and BW for GA interact, to enable prediction of outcomes especially for small and large for GA infants. This graphical tool provides an improved and easily interpretable method to predict survival without major morbidity for very preterm infants at the time of birth. These curves are especially useful for small and large for GA infants.
NASA Technical Reports Server (NTRS)
Szczur, Martha R.
1992-01-01
The Transportable Applications Environment (TAE) Plus was built to support the construction of graphical user interfaces (GUI's) for highly interactive applications, such as real-time processing systems and scientific analysis systems. It is a general purpose portable tool that includes a 'What You See Is What You Get' WorkBench that allows user interface designers to layout and manipulate windows and interaction objects. The WorkBench includes both user entry objects (e.g., radio buttons, menus) and data-driven objects (e.g., dials, gages, stripcharts), which dynamically change based on values of realtime data. Discussed here is what TAE Plus provides, how the implementation has utilized state-of-the-art technologies within graphic workstations, and how it has been used both within and without NASA.
Preparing Colorful Astronomical Images and Illustrations
NASA Astrophysics Data System (ADS)
Levay, Z. G.; Frattare, L. M.
2001-12-01
We present techniques for using mainstream graphics software, specifically Adobe Photoshop and Illustrator, for producing composite color images and illustrations from astronomical data. These techniques have been used with numerous images from the Hubble Space Telescope to produce printed and web-based news, education and public presentation products as well as illustrations for technical publication. While Photoshop is not intended for quantitative analysis of full dynamic range data (as are IRAF or IDL, for example), we have had much success applying Photoshop's numerous, versatile tools to work with scaled images, masks, text and graphics in multiple semi-transparent layers and channels. These features, along with its user-oriented, visual interface, provide convenient tools to produce high-quality, full-color images and graphics for printed and on-line publication and presentation.
Data visualization, bar naked: A free tool for creating interactive graphics.
Weissgerber, Tracey L; Savic, Marko; Winham, Stacey J; Stanisavljevic, Dejana; Garovic, Vesna D; Milic, Natasa M
2017-12-15
Although bar graphs are designed for categorical data, they are routinely used to present continuous data in studies that have small sample sizes. This presentation is problematic, as many data distributions can lead to the same bar graph, and the actual data may suggest different conclusions from the summary statistics. To address this problem, many journals have implemented new policies that require authors to show the data distribution. This paper introduces a free, web-based tool for creating an interactive alternative to the bar graph (http://statistika.mfub.bg.ac.rs/interactive-dotplot/). This tool allows authors with no programming expertise to create customized interactive graphics, including univariate scatterplots, box plots, and violin plots, for comparing values of a continuous variable across different study groups. Individual data points may be overlaid on the graphs. Additional features facilitate visualization of subgroups or clusters of non-independent data. A second tool enables authors to create interactive graphics from data obtained with repeated independent experiments (http://statistika.mfub.bg.ac.rs/interactive-repeated-experiments-dotplot/). These tools are designed to encourage exploration and critical evaluation of the data behind the summary statistics and may be valuable for promoting transparency, reproducibility, and open science in basic biomedical research. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Novel presentational approaches were developed for reporting network meta-analysis.
Tan, Sze Huey; Cooper, Nicola J; Bujkiewicz, Sylwia; Welton, Nicky J; Caldwell, Deborah M; Sutton, Alexander J
2014-06-01
To present graphical tools for reporting network meta-analysis (NMA) results aiming to increase the accessibility, transparency, interpretability, and acceptability of NMA analyses. The key components of NMA results were identified based on recommendations by agencies such as the National Institute for Health and Care Excellence (United Kingdom). Three novel graphs were designed to amalgamate the identified components using familiar graphical tools such as the bar, line, or pie charts and adhering to good graphical design principles. Three key components for presentation of NMA results were identified, namely relative effects and their uncertainty, probability of an intervention being best, and between-study heterogeneity. Two of the three graphs developed present results (for each pairwise comparison of interventions in the network) obtained from both NMA and standard pairwise meta-analysis for easy comparison. They also include options to display the probability best, ranking statistics, heterogeneity, and prediction intervals. The third graph presents rankings of interventions in terms of their effectiveness to enable clinicians to easily identify "top-ranking" interventions. The graphical tools presented can display results tailored to the research question of interest, and targeted at a whole spectrum of users from the technical analyst to the nontechnical clinician. Copyright © 2014 Elsevier Inc. All rights reserved.
Alignment Tool For Inertia Welding
NASA Technical Reports Server (NTRS)
Snyder, Gary L.
1991-01-01
Compact, easy-to-use tool aligns drive bar of inertia welder over hole in stub. Ensures drive bar concentric to hole within 0.002 in. (0.051 mm.). Holds two batteries and light bulb. Electrical circuit completed, providing current to bulb when pin in contact with post. When pin centered in post hole, it does not touch post, and lamp turns off. Built for use in making repair welds on liquid-oxygen-injector posts in Space Shuttle main engine. Version having suitably modified dimensions used to facilitate alignment in other forests of post.
ERIC Educational Resources Information Center
Nemirovsky, Ricardo; Tierney, Cornelia; Wright, Tracy
1998-01-01
Analyzed two children's use of a computer-based motion detector to make sense of symbolic expressions (Cartesian graphs). Found three themes: (1) tool perspectives, efforts to understand graphical responses to body motion; (2) fusion, emergent ways of talking and behaving that merge symbols and referents; and (3) graphical spaces, when changing…
Reducing beam shaper alignment complexity: diagnostic techniques for alignment and tuning
NASA Astrophysics Data System (ADS)
Lizotte, Todd E.
2011-10-01
Safe and efficient optical alignment is a critical requirement for industrial laser systems used in a high volume manufacturing environment. Of specific interest is the development of techniques to align beam shaping optics within a beam line; having the ability to instantly verify by a qualitative means that each element is in its proper position as the beam shaper module is being aligned. There is a need to reduce these types of alignment techniques down to a level where even a newbie to optical alignment will be able to complete the task. Couple this alignment need with the fact that most laser system manufacturers ship their products worldwide and the introduction of a new set of variables including cultural and language barriers, makes this a top priority for manufacturers. Tools and methodologies for alignment of complex optical systems need to be able to cross these barriers to ensure the highest degree of up time and reduce the cost of maintenance on the production floor. Customers worldwide, who purchase production laser equipment, understand that the majority of costs to a manufacturing facility is spent on system maintenance and is typically the largest single controllable expenditure in a production plant. This desire to reduce costs is driving the trend these days towards predictive and proactive, not reactive maintenance of laser based optical beam delivery systems [10]. With proper diagnostic tools, laser system developers can develop proactive approaches to reduce system down time, safe guard operational performance and reduce premature or catastrophic optics failures. Obviously analytical data will provide quantifiable performance standards which are more precise than qualitative standards, but each have a role in determining overall optical system performance [10]. This paper will discuss the use of film and fluorescent mirror devices as diagnostic tools for beam shaper module alignment off line or in-situ. The paper will also provide an overview methodology showing how it is possible to reduce complex alignment directions into a simplified set of instructions for layman service engineers.
Windows .NET Network Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST)
Dowd, Scot E; Zaragoza, Joaquin; Rodriguez, Javier R; Oliver, Melvin J; Payton, Paxton R
2005-01-01
Background BLAST is one of the most common and useful tools for Genetic Research. This paper describes a software application we have termed Windows .NET Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST), which enhances the BLAST utility by improving usability, fault recovery, and scalability in a Windows desktop environment. Our goal was to develop an easy to use, fault tolerant, high-throughput BLAST solution that incorporates a comprehensive BLAST result viewer with curation and annotation functionality. Results W.ND-BLAST is a comprehensive Windows-based software toolkit that targets researchers, including those with minimal computer skills, and provides the ability increase the performance of BLAST by distributing BLAST queries to any number of Windows based machines across local area networks (LAN). W.ND-BLAST provides intuitive Graphic User Interfaces (GUI) for BLAST database creation, BLAST execution, BLAST output evaluation and BLAST result exportation. This software also provides several layers of fault tolerance and fault recovery to prevent loss of data if nodes or master machines fail. This paper lays out the functionality of W.ND-BLAST. W.ND-BLAST displays close to 100% performance efficiency when distributing tasks to 12 remote computers of the same performance class. A high throughput BLAST job which took 662.68 minutes (11 hours) on one average machine was completed in 44.97 minutes when distributed to 17 nodes, which included lower performance class machines. Finally, there is a comprehensive high-throughput BLAST Output Viewer (BOV) and Annotation Engine components, which provides comprehensive exportation of BLAST hits to text files, annotated fasta files, tables, or association files. Conclusion W.ND-BLAST provides an interactive tool that allows scientists to easily utilizing their available computing resources for high throughput and comprehensive sequence analyses. The install package for W.ND-BLAST is freely downloadable from . With registration the software is free, installation, networking, and usage instructions are provided as well as a support forum. PMID:15819992
HIA: a genome mapper using hybrid index-based sequence alignment.
Choi, Jongpill; Park, Kiejung; Cho, Seong Beom; Chung, Myungguen
2015-01-01
A number of alignment tools have been developed to align sequencing reads to the human reference genome. The scale of information from next-generation sequencing (NGS) experiments, however, is increasing rapidly. Recent studies based on NGS technology have routinely produced exome or whole-genome sequences from several hundreds or thousands of samples. To accommodate the increasing need of analyzing very large NGS data sets, it is necessary to develop faster, more sensitive and accurate mapping tools. HIA uses two indices, a hash table index and a suffix array index. The hash table performs direct lookup of a q-gram, and the suffix array performs very fast lookup of variable-length strings by exploiting binary search. We observed that combining hash table and suffix array (hybrid index) is much faster than the suffix array method for finding a substring in the reference sequence. Here, we defined the matching region (MR) is a longest common substring between a reference and a read. And, we also defined the candidate alignment regions (CARs) as a list of MRs that is close to each other. The hybrid index is used to find candidate alignment regions (CARs) between a reference and a read. We found that aligning only the unmatched regions in the CAR is much faster than aligning the whole CAR. In benchmark analysis, HIA outperformed in mapping speed compared with the other aligners, without significant loss of mapping accuracy. Our experiments show that the hybrid of hash table and suffix array is useful in terms of speed for mapping NGS sequencing reads to the human reference genome sequence. In conclusion, our tool is appropriate for aligning massive data sets generated by NGS sequencing.
Engineering graphics data entry for space station data base
NASA Technical Reports Server (NTRS)
Lacovara, R. C.
1986-01-01
The entry of graphical engineering data into the Space Station Data Base was examined. Discussed were: representation of graphics objects; representation of connectivity data; graphics capture hardware; graphics display hardware; site-wide distribution of graphics, and consolidation of tools and hardware. A fundamental assumption was that existing equipment such as IBM based graphics capture software and VAX networked facilities would be exploited. Defensible conclusions reached after study and simulations of use of these systems at the engineering level are: (1) existing IBM based graphics capture software is an adequate and economical means of entry of schematic and block diagram data for present and anticipated electronic systems for Space Station; (2) connectivity data from the aforementioned system may be incorporated into the envisioned Space Station Data Base with modest effort; (3) graphics and connectivity data captured on the IBM based system may be exported to the VAX network in a simple and direct fashion; (4) graphics data may be displayed site-wide on VT-125 terminals and lookalikes; (5) graphics hard-copy may be produced site-wide on various dot-matrix printers; and (6) the system may provide integrated engineering services at both the engineering and engineering management level.
Anvil Forecast Tool in the Advanced Weather Interactive Processing System
NASA Technical Reports Server (NTRS)
Barrett, Joe H., III; Hood, Doris
2009-01-01
Meteorologists from the 45th Weather Squadron (45 WS) and National Weather Service Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the Lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) was tasked to create a graphical overlay tool for the Meteorological Interactive Data Display System (MIDDS) that indicates the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. The tool creates a graphic depicting the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on the average of the upper level observed or forecasted winds. The graphic includes 10 and 20 n mi standoff circles centered at the location of interest, as well as one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 sector width based on a previous AMU study that determined thunderstorm anvils move in a direction plus or minus 15 of the upper-level wind direction. The AMU was then tasked to transition the tool to the Advanced Weather Interactive Processing System (AWIPS). SMG later requested the tool be updated to provide more flexibility and quicker access to model data. This presentation describes the work performed by the AMU to transition the tool into AWIPS, as well as the subsequent improvements made to the tool.
Conservation of a molecular target across species can be used as a line-of-evidence to predict the likelihood of chemical susceptibility. The web-based Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to simplify, streamline, and quantitat...
Boiler: lossy compression of RNA-seq alignments using coverage vectors
Pritt, Jacob; Langmead, Ben
2016-01-01
We describe Boiler, a new software tool for compressing and querying large collections of RNA-seq alignments. Boiler discards most per-read data, keeping only a genomic coverage vector plus a few empirical distributions summarizing the alignments. Since most per-read data is discarded, storage footprint is often much smaller than that achieved by other compression tools. Despite this, the most relevant per-read data can be recovered; we show that Boiler compression has only a slight negative impact on results given by downstream tools for isoform assembly and quantification. Boiler also allows the user to pose fast and useful queries without decompressing the entire file. Boiler is free open source software available from github.com/jpritt/boiler. PMID:27298258
ControlShell: A real-time software framework
NASA Technical Reports Server (NTRS)
Schneider, Stanley A.; Chen, Vincent W.; Pardo-Castellote, Gerardo
1994-01-01
The ControlShell system is a programming environment that enables the development and implementation of complex real-time software. It includes many building tools for complex systems, such as a graphical finite state machine (FSM) tool to provide strategic control. ControlShell has a component-based design, providing interface definitions and mechanisms for building real-time code modules along with providing basic data management. Some of the system-building tools incorporated in ControlShell are a graphical data flow editor, a component data requirement editor, and a state-machine editor. It also includes a distributed data flow package, an execution configuration manager, a matrix package, and an object database and dynamic binding facility. This paper presents an overview of ControlShell's architecture and examines the functions of several of its tools.
Computer-Based Tools for Evaluating Graphical User Interfaces
NASA Technical Reports Server (NTRS)
Moore, Loretta A.
1997-01-01
The user interface is the component of a software system that connects two very complex system: humans and computers. Each of these two systems impose certain requirements on the final product. The user is the judge of the usability and utility of the system; the computer software and hardware are the tools with which the interface is constructed. Mistakes are sometimes made in designing and developing user interfaces because the designers and developers have limited knowledge about human performance (e.g., problem solving, decision making, planning, and reasoning). Even those trained in user interface design make mistakes because they are unable to address all of the known requirements and constraints on design. Evaluation of the user inter-face is therefore a critical phase of the user interface development process. Evaluation should not be considered the final phase of design; but it should be part of an iterative design cycle with the output of evaluation being feed back into design. The goal of this research was to develop a set of computer-based tools for objectively evaluating graphical user interfaces. The research was organized into three phases. The first phase resulted in the development of an embedded evaluation tool which evaluates the usability of a graphical user interface based on a user's performance. An expert system to assist in the design and evaluation of user interfaces based upon rules and guidelines was developed during the second phase. During the final phase of the research an automatic layout tool to be used in the initial design of graphical inter- faces was developed. The research was coordinated with NASA Marshall Space Flight Center's Mission Operations Laboratory's efforts in developing onboard payload display specifications for the Space Station.
Advanced techniques in reliability model representation and solution
NASA Technical Reports Server (NTRS)
Palumbo, Daniel L.; Nicol, David M.
1992-01-01
The current tendency of flight control system designs is towards increased integration of applications and increased distribution of computational elements. The reliability analysis of such systems is difficult because subsystem interactions are increasingly interdependent. Researchers at NASA Langley Research Center have been working for several years to extend the capability of Markov modeling techniques to address these problems. This effort has been focused in the areas of increased model abstraction and increased computational capability. The reliability model generator (RMG) is a software tool that uses as input a graphical object-oriented block diagram of the system. RMG uses a failure-effects algorithm to produce the reliability model from the graphical description. The ASSURE software tool is a parallel processing program that uses the semi-Markov unreliability range evaluator (SURE) solution technique and the abstract semi-Markov specification interface to the SURE tool (ASSIST) modeling language. A failure modes-effects simulation is used by ASSURE. These tools were used to analyze a significant portion of a complex flight control system. The successful combination of the power of graphical representation, automated model generation, and parallel computation leads to the conclusion that distributed fault-tolerant system architectures can now be analyzed.
Piazza, Rocco; Magistroni, Vera; Pirola, Alessandra; Redaelli, Sara; Spinelli, Roberta; Redaelli, Serena; Galbiati, Marta; Valletta, Simona; Giudici, Giovanni; Cazzaniga, Giovanni; Gambacorti-Passerini, Carlo
2013-01-01
Copy number alterations (CNA) are common events occurring in leukaemias and solid tumors. Comparative Genome Hybridization (CGH) is actually the gold standard technique to analyze CNAs; however, CGH analysis requires dedicated instruments and is able to perform only low resolution Loss of Heterozygosity (LOH) analyses. Here we present CEQer (Comparative Exome Quantification analyzer), a new graphical, event-driven tool for CNA/allelic-imbalance (AI) coupled analysis of exome sequencing data. By using case-control matched exome data, CEQer performs a comparative digital exonic quantification to generate CNA data and couples this information with exome-wide LOH and allelic imbalance detection. This data is used to build mixed statistical/heuristic models allowing the identification of CNA/AI events. To test our tool, we initially used in silico generated data, then we performed whole-exome sequencing from 20 leukemic specimens and corresponding matched controls and we analyzed the results using CEQer. Taken globally, these analyses showed that the combined use of comparative digital exon quantification and LOH/AI allows generating very accurate CNA data. Therefore, we propose CEQer as an efficient, robust and user-friendly graphical tool for the identification of CNA/AI in the context of whole-exome sequencing data.
Using reconfigurable hardware to accelerate multiple sequence alignment with ClustalW.
Oliver, Tim; Schmidt, Bertil; Nathan, Darran; Clemens, Ralf; Maskell, Douglas
2005-08-15
Aligning hundreds of sequences using progressive alignment tools such as ClustalW requires several hours on state-of-the-art workstations. We present a new approach to compute multiple sequence alignments in far shorter time using reconfigurable hardware. This results in an implementation of ClustalW with significant runtime savings on a standard off-the-shelf FPGA.
National Centers for Environmental Prediction
Reference List Table of Contents NCEP OPERATIONAL MODEL FORECAST GRAPHICS PARALLEL/EXPERIMENTAL MODEL Developmental Air Quality Forecasts and Verification Back to Table of Contents 2. PARALLEL/EXPERIMENTAL GRAPHICS VERIFICATION (GRID VS.OBS) WEB PAGE (NCEP EXPERIMENTAL PAGE, INTERNAL USE ONLY) Interactive web page tool for
Computer Art--A New Tool in Advertising Graphics.
ERIC Educational Resources Information Center
Wassmuth, Birgit L.
Using computers to produce art began with scientists, mathematicians, and individuals with strong technical backgrounds who used the graphic material as visualizations of data in technical fields. People are using computer art in advertising, as well as in painting; sculpture; music; textile, product, industrial, and interior design; architecture;…
ERIC Educational Resources Information Center
Smirnov, Eugeny; Bogun, Vitali
2011-01-01
New methodologies in science (or mathematics) learning process and scientific thinking in the classroom activity of engineer students with ICT (information and communication technology), including graphic calculator are presented: visual modelling with ICT, action research with graphic calculator, insight in classroom and communications and…
Genome alignment with graph data structures: a comparison
2014-01-01
Background Recent advances in rapid, low-cost sequencing have opened up the opportunity to study complete genome sequences. The computational approach of multiple genome alignment allows investigation of evolutionarily related genomes in an integrated fashion, providing a basis for downstream analyses such as rearrangement studies and phylogenetic inference. Graphs have proven to be a powerful tool for coping with the complexity of genome-scale sequence alignments. The potential of graphs to intuitively represent all aspects of genome alignments led to the development of graph-based approaches for genome alignment. These approaches construct a graph from a set of local alignments, and derive a genome alignment through identification and removal of graph substructures that indicate errors in the alignment. Results We compare the structures of commonly used graphs in terms of their abilities to represent alignment information. We describe how the graphs can be transformed into each other, and identify and classify graph substructures common to one or more graphs. Based on previous approaches, we compile a list of modifications that remove these substructures. Conclusion We show that crucial pieces of alignment information, associated with inversions and duplications, are not visible in the structure of all graphs. If we neglect vertex or edge labels, the graphs differ in their information content. Still, many ideas are shared among all graph-based approaches. Based on these findings, we outline a conceptual framework for graph-based genome alignment that can assist in the development of future genome alignment tools. PMID:24712884
Laser entertainment and light shows in education
NASA Astrophysics Data System (ADS)
Sabaratnam, Andrew T.; Symons, Charles
2002-05-01
Laser shows and beam effects have been a source of entertainment since its first public performance May 9, 1969, at Mills College in Oakland, California. Since 1997, the Photonics Center, NgeeAnn Polytechnic, Singapore, has been using laser shows as a teaching tool. Students are able to exhibit their creative skills and learn at the same time how lasers are used in the entertainment industry. Students will acquire a number of skills including handling three- phase power supply, operation of cooling system, and laser alignment. Students also acquire an appreciation of the arts, learning about shapes and contours as they develop graphics for the shows. After holography, laser show animation provides a combination of the arts and technology. This paper aims to briefly describe how a krypton-argon laser, galvanometer scanners, a polychromatic acousto-optic modulator and related electronics are put together to develop a laser projector. The paper also describes how students are trained to make their own laser animation and beam effects with music, and at the same time have an appreciation of the operation of a Class IV laser and the handling of optical components.
Foldit Standalone: a video game-derived protein structure manipulation interface using Rosetta
Kleffner, Robert; Flatten, Jeff; Leaver-Fay, Andrew; Baker, David; Siegel, Justin B.; Khatib, Firas; Cooper, Seth
2017-01-01
Abstract Summary: Foldit Standalone is an interactive graphical interface to the Rosetta molecular modeling package. In contrast to most command-line or batch interactions with Rosetta, Foldit Standalone is designed to allow easy, real-time, direct manipulation of protein structures, while also giving access to the extensive power of Rosetta computations. Derived from the user interface of the scientific discovery game Foldit (itself based on Rosetta), Foldit Standalone has added more advanced features and removed the competitive game elements. Foldit Standalone was built from the ground up with a custom rendering and event engine, configurable visualizations and interactions driven by Rosetta. Foldit Standalone contains, among other features: electron density and contact map visualizations, multiple sequence alignment tools for template-based modeling, rigid body transformation controls, RosettaScripts support and an embedded Lua interpreter. Availability and Implementation: Foldit Standalone is available for download at https://fold.it/standalone, under the Rosetta license, which is free for academic and non-profit users. It is implemented in cross-platform C ++ and binary executables are available for Windows, macOS and Linux. Contact: scooper@ccs.neu.edu PMID:28481970
NASA Astrophysics Data System (ADS)
Yepes-Calderon, Fernando; Brun, Caroline; Sant, Nishita; Thompson, Paul; Lepore, Natasha
2015-01-01
Tensor-Based Morphometry (TBM) is an increasingly popular method for group analysis of brain MRI data. The main steps in the analysis consist of a nonlinear registration to align each individual scan to a common space, and a subsequent statistical analysis to determine morphometric differences, or difference in fiber structure between groups. Recently, we implemented the Statistically-Assisted Fluid Registration Algorithm or SAFIRA,1 which is designed for tracking morphometric differences among populations. To this end, SAFIRA allows the inclusion of statistical priors extracted from the populations being studied as regularizers in the registration. This flexibility and degree of sophistication limit the tool to expert use, even more so considering that SAFIRA was initially implemented in command line mode. Here, we introduce a new, intuitive, easy to use, Matlab-based graphical user interface for SAFIRA's multivariate TBM. The interface also generates different choices for the TBM statistics, including both the traditional univariate statistics on the Jacobian matrix, and comparison of the full deformation tensors.2 This software will be freely disseminated to the neuroimaging research community.
Colossal Tooling Design: 3D Simulation for Ergonomic Analysis
NASA Technical Reports Server (NTRS)
Hunter, Steve L.; Dischinger, Charles; Thomas, Robert E.; Babai, Majid
2003-01-01
The application of high-level 3D simulation software to the design phase of colossal mandrel tooling for composite aerospace fuel tanks was accomplished to discover and resolve safety and human engineering problems. The analyses were conducted to determine safety, ergonomic and human engineering aspects of the disassembly process of the fuel tank composite shell mandrel. Three-dimensional graphics high-level software, incorporating various ergonomic analysis algorithms, was utilized to determine if the process was within safety and health boundaries for the workers carrying out these tasks. In addition, the graphical software was extremely helpful in the identification of material handling equipment and devices for the mandrel tooling assembly/disassembly process.
Graphic Pathographies and the Ethical Practice of Person-Centered Medicine.
Myers, Kimberly R; Goldenberg, Michael D F
2018-02-01
Graphic medicine is a swiftly growing movement that explores, theoretically and practically, the use of comics in medical education and patient care. At the heart of graphic medicine are graphic pathographies, stories of illness conveyed in comic form. These stories are helpful tools for health care professionals who seek new insight into the personal, lived experience of illness and for patients who want to learn more about their disease from others who have actually experienced it. Featuring excerpts from five graphic pathographies, this essay illustrates how the medium can be used to educate patients and enhance empathy in health care professionals, particularly with regard to informed consent and end-of-life issues. © 2018 American Medical Association. All Rights Reserved.
Gillam, Barbara; Marlow, Phillip J
2014-01-01
One current view is that subjective contours may involve high-level detection of a salient shape with back propagation to early visual areas where small receptive fields allow for scrutiny of relevant details. This idea applies to Kanizsa-type figures. However, Gillam and Chan (2002 Psychological Science, 13, 279-282) using figures based on Gillam's graphic 'New York Titanic' (Gillam, 1997 Thresholds: Limits of perception. New York: Arts Magazine) showed that strong subjective contours can be seen along the linearly aligned edges of a set of shapes if occlusion cues of 'extrinsic edge' and 'entropy contrast' are strong. Here we compared ratings of the strength of subjective contours along linear alignments with those seen in Kanizsa figures. The strongest subjective contour for a single set of linearly aligned shapes was similar in strength to the edges of a Kanizsa square (controlling for support ratio) despite the lack of a salient region. The addition of a second set of linearly aligned inducers consistent with a common surface increased subjective-contour strength, as did having four rather than two 'pacmen' in the Kanizsa figure, indicating a role for surface support. We argue that linear subjective contours allow for the investigation of certain occlusion cues and the interactions between them that are not easily explored with Kanizsa figures.
WASP: a Web-based Allele-Specific PCR assay designing tool for detecting SNPs and mutations
Wangkumhang, Pongsakorn; Chaichoompu, Kridsadakorn; Ngamphiw, Chumpol; Ruangrit, Uttapong; Chanprasert, Juntima; Assawamakin, Anunchai; Tongsima, Sissades
2007-01-01
Background Allele-specific (AS) Polymerase Chain Reaction is a convenient and inexpensive method for genotyping Single Nucleotide Polymorphisms (SNPs) and mutations. It is applied in many recent studies including population genetics, molecular genetics and pharmacogenomics. Using known AS primer design tools to create primers leads to cumbersome process to inexperience users since information about SNP/mutation must be acquired from public databases prior to the design. Furthermore, most of these tools do not offer the mismatch enhancement to designed primers. The available web applications do not provide user-friendly graphical input interface and intuitive visualization of their primer results. Results This work presents a web-based AS primer design application called WASP. This tool can efficiently design AS primers for human SNPs as well as mutations. To assist scientists with collecting necessary information about target polymorphisms, this tool provides a local SNP database containing over 10 million SNPs of various populations from public domain databases, namely NCBI dbSNP, HapMap and JSNP respectively. This database is tightly integrated with the tool so that users can perform the design for existing SNPs without going off the site. To guarantee specificity of AS primers, the proposed system incorporates a primer specificity enhancement technique widely used in experiment protocol. In particular, WASP makes use of different destabilizing effects by introducing one deliberate 'mismatch' at the penultimate (second to last of the 3'-end) base of AS primers to improve the resulting AS primers. Furthermore, WASP offers graphical user interface through scalable vector graphic (SVG) draw that allow users to select SNPs and graphically visualize designed primers and their conditions. Conclusion WASP offers a tool for designing AS primers for both SNPs and mutations. By integrating the database for known SNPs (using gene ID or rs number), this tool facilitates the awkward process of getting flanking sequences and other related information from public SNP databases. It takes into account the underlying destabilizing effect to ensure the effectiveness of designed primers. With user-friendly SVG interface, WASP intuitively presents resulting designed primers, which assist users to export or to make further adjustment to the design. This software can be freely accessed at . PMID:17697334
Linear positioning laser calibration setup of CNC machine tools
NASA Astrophysics Data System (ADS)
Sui, Xiulin; Yang, Congjing
2002-10-01
The linear positioning laser calibration setup of CNC machine tools is capable of executing machine tool laser calibraiotn and backlash compensation. Using this setup, hole locations on CNC machien tools will be correct and machien tool geometry will be evaluated and adjusted. Machien tool laser calibration and backlash compensation is a simple and straightforward process. First the setup is to 'find' the stroke limits of the axis. Then the laser head is then brought into correct alignment. Second is to move the machine axis to the other extreme, the laser head is now aligned, using rotation and elevation adjustments. Finally the machine is moved to the start position and final alignment is verified. The stroke of the machine, and the machine compensation interval dictate the amount of data required for each axis. These factors determine the amount of time required for a through compensation of the linear positioning accuracy. The Laser Calibrator System monitors the material temperature and the air density; this takes into consideration machine thermal growth and laser beam frequency. This linear positioning laser calibration setup can be used on CNC machine tools, CNC lathes, horizontal centers and vertical machining centers.
Ahrens, Brandon R [Albuquerque, NM; Todd, Steven N [Rio Rancho, NM
2009-04-28
A precision laser aiming system comprises a disrupter tool, a reflector, and a laser fixture. The disrupter tool, the reflector and the laser fixture are configurable for iterative alignment and aiming toward an explosive device threat. The invention enables a disrupter to be quickly and accurately set up, aligned, and aimed in order to render safe or to disrupt a target from a standoff position.
rVISTA 2.0: Evolutionary Analysis of Transcription Factor Binding Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loots, G G; Ovcharenko, I
2004-01-28
Identifying and characterizing the patterns of DNA cis-regulatory modules represents a challenge that has the potential to reveal the regulatory language the genome uses to dictate transcriptional dynamics. Several studies have demonstrated that regulatory modules are under positive selection and therefore are often conserved between related species. Using this evolutionary principle we have created a comparative tool, rVISTA, for analyzing the regulatory potential of noncoding sequences. The rVISTA tool combines transcription factor binding site (TFBS) predictions, sequence comparisons and cluster analysis to identify noncoding DNA regions that are highly conserved and present in a specific configuration within an alignment. Heremore » we present the newly developed version 2.0 of the rVISTA tool that can process alignments generated by both zPicture and PipMaker alignment programs or use pre-computed pairwise alignments of seven vertebrate genomes available from the ECR Browser. The rVISTA web server is closely interconnected with the TRANSFAC database, allowing users to either search for matrices present in the TRANSFAC library collection or search for user-defined consensus sequences. rVISTA tool is publicly available at http://rvista.dcode.org/.« less
Flight Telerobotic Servicer prototype simulator
NASA Astrophysics Data System (ADS)
Schein, Rob; Krauze, Linda; Hartley, Craig; Dickenson, Alan; Lavecchia, Tom; Working, Bob
A prototype simulator for the Flight Telerobotic Servicer (FTS) system is described for use in the design development of the FTS, emphasizing the hand controller and user interface. The simulator utilizes a graphics workstation based on rapid prototyping tools for systems analyses of the use of the user interface and the hand controller. Kinematic modeling, manipulator-control algorithms, and communications programs are contained in the software for the simulator. The hardwired FTS panels and operator interface for use on the STS Orbiter are represented graphically, and the simulated controls function as the final FTS system configuration does. The robotic arm moves based on the user hand-controller interface, and the joint angles and other data are given on the prototype of the user interface. This graphics simulation tool provides the means for familiarizing crewmembers with the FTS system operation, displays, and controls.
CONFIG: Qualitative simulation tool for analyzing behavior of engineering devices
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Basham, Bryan D.; Harris, Richard A.
1987-01-01
To design failure management expert systems, engineers mentally analyze the effects of failures and procedures as they propagate through device configurations. CONFIG is a generic device modeling tool for use in discrete event simulation, to support such analyses. CONFIG permits graphical modeling of device configurations and qualitative specification of local operating modes of device components. Computation requirements are reduced by focussing the level of component description on operating modes and failure modes, and specifying qualitative ranges of variables relative to mode transition boundaries. Simulation processing occurs only when modes change or variables cross qualitative boundaries. Device models are built graphically, using components from libraries. Components are connected at ports by graphical relations that define data flow. The core of a component model is its state transition diagram, which specifies modes of operation and transitions among them.
Initial steps towards a production platform for DNA sequence analysis on the grid.
Luyf, Angela C M; van Schaik, Barbera D C; de Vries, Michel; Baas, Frank; van Kampen, Antoine H C; Olabarriaga, Silvia D
2010-12-14
Bioinformatics is confronted with a new data explosion due to the availability of high throughput DNA sequencers. Data storage and analysis becomes a problem on local servers, and therefore it is needed to switch to other IT infrastructures. Grid and workflow technology can help to handle the data more efficiently, as well as facilitate collaborations. However, interfaces to grids are often unfriendly to novice users. In this study we reused a platform that was developed in the VL-e project for the analysis of medical images. Data transfer, workflow execution and job monitoring are operated from one graphical interface. We developed workflows for two sequence alignment tools (BLAST and BLAT) as a proof of concept. The analysis time was significantly reduced. All workflows and executables are available for the members of the Dutch Life Science Grid and the VL-e Medical virtual organizations All components are open source and can be transported to other grid infrastructures. The availability of in-house expertise and tools facilitates the usage of grid resources by new users. Our first results indicate that this is a practical, powerful and scalable solution to address the capacity and collaboration issues raised by the deployment of next generation sequencers. We currently adopt this methodology on a daily basis for DNA sequencing and other applications. More information and source code is available via http://www.bioinformaticslaboratory.nl/
A Robust Method to Integrate End-to-End Mission Architecture Optimization Tools
NASA Technical Reports Server (NTRS)
Lugo, Rafael; Litton, Daniel; Qu, Min; Shidner, Jeremy; Powell, Richard
2016-01-01
End-to-end mission simulations include multiple phases of flight. For example, an end-to-end Mars mission simulation may include launch from Earth, interplanetary transit to Mars and entry, descent and landing. Each phase of flight is optimized to meet specified constraints and often depend on and impact subsequent phases. The design and optimization tools and methodologies used to combine different aspects of end-to-end framework and their impact on mission planning are presented. This work focuses on a robust implementation of a Multidisciplinary Design Analysis and Optimization (MDAO) method that offers the flexibility to quickly adapt to changing mission design requirements. Different simulations tailored to the liftoff, ascent, and atmospheric entry phases of a trajectory are integrated and optimized in the MDAO program Isight, which provides the user a graphical interface to link simulation inputs and outputs. This approach provides many advantages to mission planners, as it is easily adapted to different mission scenarios and can improve the understanding of the integrated system performance within a particular mission configuration. A Mars direct entry mission using the Space Launch System (SLS) is presented as a generic end-to-end case study. For the given launch period, the SLS launch performance is traded for improved orbit geometry alignment, resulting in an optimized a net payload that is comparable to that in the SLS Mission Planner's Guide.
G-CNV: A GPU-Based Tool for Preparing Data to Detect CNVs with Read-Depth Methods.
Manconi, Andrea; Manca, Emanuele; Moscatelli, Marco; Gnocchi, Matteo; Orro, Alessandro; Armano, Giuliano; Milanesi, Luciano
2015-01-01
Copy number variations (CNVs) are the most prevalent types of structural variations (SVs) in the human genome and are involved in a wide range of common human diseases. Different computational methods have been devised to detect this type of SVs and to study how they are implicated in human diseases. Recently, computational methods based on high-throughput sequencing (HTS) are increasingly used. The majority of these methods focus on mapping short-read sequences generated from a donor against a reference genome to detect signatures distinctive of CNVs. In particular, read-depth based methods detect CNVs by analyzing genomic regions with significantly different read-depth from the other ones. The pipeline analysis of these methods consists of four main stages: (i) data preparation, (ii) data normalization, (iii) CNV regions identification, and (iv) copy number estimation. However, available tools do not support most of the operations required at the first two stages of this pipeline. Typically, they start the analysis by building the read-depth signal from pre-processed alignments. Therefore, third-party tools must be used to perform most of the preliminary operations required to build the read-depth signal. These data-intensive operations can be efficiently parallelized on graphics processing units (GPUs). In this article, we present G-CNV, a GPU-based tool devised to perform the common operations required at the first two stages of the analysis pipeline. G-CNV is able to filter low-quality read sequences, to mask low-quality nucleotides, to remove adapter sequences, to remove duplicated read sequences, to map the short-reads, to resolve multiple mapping ambiguities, to build the read-depth signal, and to normalize it. G-CNV can be efficiently used as a third-party tool able to prepare data for the subsequent read-depth signal generation and analysis. Moreover, it can also be integrated in CNV detection tools to generate read-depth signals.
Mounting arrangement for the drive system of an air-bearing spindle on a machine tool
Lunsford, J.S.; Crisp, D.W.; Petrowski, P.L.
1987-12-07
The present invention is directed to a mounting arrangement for the drive system of an air-bearing spindle utilized on a machine tool such as a lathe. The mounting arrangement of the present invention comprises a housing which is secured to the casing of the air bearing in such a manner that the housing position can be selectively adjusted to provide alignment of the air-bearing drive shaft supported by the housing and the air-bearing spindle. Once this alignment is achieved the air between spindle and the drive arrangement is maintained in permanent alignment so as to overcome misalignment problems encountered in the operation of the machine tool between the air-bearing spindle and the shaft utilized for driving the air-bearing spindle.
2014-01-01
Background DNA repeats, such as transposable elements, minisatellites and palindromic sequences, are abundant in sequences and have been shown to have significant and functional roles in the evolution of the host genomes. In a previous study, we introduced the concept of a repeat DNA module, a flexible motif present in at least two occurences in the sequences. This concept was embedded into ModuleOrganizer, a tool allowing the detection of repeat modules in a set of sequences. However, its implementation remains difficult for larger sequences. Results Here we present Visual ModuleOrganizer, a Java graphical interface that enables a new and optimized version of the ModuleOrganizer tool. To implement this version, it was recoded in C++ with compressed suffix tree data structures. This leads to less memory usage (at least 120-fold decrease in average) and decreases by at least four the computation time during the module detection process in large sequences. Visual ModuleOrganizer interface allows users to easily choose ModuleOrganizer parameters and to graphically display the results. Moreover, Visual ModuleOrganizer dynamically handles graphical results through four main parameters: gene annotations, overlapping modules with known annotations, location of the module in a minimal number of sequences, and the minimal length of the modules. As a case study, the analysis of FoldBack4 sequences clearly demonstrated that our tools can be extended to comparative and evolutionary analyses of any repeat sequence elements in a set of genomic sequences. With the increasing number of sequences available in public databases, it is now possible to perform comparative analyses of repeated DNA modules in a graphic and friendly manner within a reasonable time period. Availability Visual ModuleOrganizer interface and the new version of the ModuleOrganizer tool are freely available at: http://lcb.cnrs-mrs.fr/spip.php?rubrique313. PMID:24678954
Fragaszy, Dorothy M.; Stone, Brian; Scott, Nicole M.; Menzel, Charles
2011-01-01
This report addresses phylogenetic variation in a spatial skill that underlies tool use: aligning objects to a feature of a surface. Fragaszy and Cummins-Sebree’s [2005] model of relational spatial reasoning and Skill Development and Perception-Action theories guided the design of the study. We examined how capuchins and chimpanzees place stick objects of varying shapes into matching grooves on a flat surface. Although most individuals aligned the long axis of the object with the matching groove more often than expected by chance, all typically did so with poor precision. Some individuals managed to align a second feature, and only one (a capuchin monkey) achieved above-chance success at aligning three features with matching grooves. Our findings suggest that capuchins and chimpanzees do not reliably align objects along even one axis, and that neither species can reliably or easily master object placement tasks that require managing two or more spatial relations concurrently. Moreover, they did not systematically vary their behavior in a manner that would aid discovery of the affordances of the stick-surface combination beyond sliding the stick along the surface (which may have provided haptic information about the location of the groove). These limitations have profound consequences for the forms of tool use we can expect these individuals to master. PMID:21608008
Shavit Grievink, Liat; Penny, David; Holland, Barbara R.
2013-01-01
Phylogenetic studies based on molecular sequence alignments are expected to become more accurate as the number of sites in the alignments increases. With the advent of genomic-scale data, where alignments have very large numbers of sites, bootstrap values close to 100% and posterior probabilities close to 1 are the norm, suggesting that the number of sites is now seldom a limiting factor on phylogenetic accuracy. This provokes the question, should we be fussy about the sites we choose to include in a genomic-scale phylogenetic analysis? If some sites contain missing data, ambiguous character states, or gaps, then why not just throw them away before conducting the phylogenetic analysis? Indeed, this is exactly the approach taken in many phylogenetic studies. Here, we present an example where the decision on how to treat sites with missing data is of equal importance to decisions on taxon sampling and model choice, and we introduce a graphical method for illustrating this. PMID:23471508
Design and implementation of a hybrid MPI-CUDA model for the Smith-Waterman algorithm.
Khaled, Heba; Faheem, Hossam El Deen Mostafa; El Gohary, Rania
2015-01-01
This paper provides a novel hybrid model for solving the multiple pair-wise sequence alignment problem combining message passing interface and CUDA, the parallel computing platform and programming model invented by NVIDIA. The proposed model targets homogeneous cluster nodes equipped with similar Graphical Processing Unit (GPU) cards. The model consists of the Master Node Dispatcher (MND) and the Worker GPU Nodes (WGN). The MND distributes the workload among the cluster working nodes and then aggregates the results. The WGN performs the multiple pair-wise sequence alignments using the Smith-Waterman algorithm. We also propose a modified implementation to the Smith-Waterman algorithm based on computing the alignment matrices row-wise. The experimental results demonstrate a considerable reduction in the running time by increasing the number of the working GPU nodes. The proposed model achieved a performance of about 12 Giga cell updates per second when we tested against the SWISS-PROT protein knowledge base running on four nodes.
Circumventing Graphical User Interfaces in Chemical Engineering Plant Design
ERIC Educational Resources Information Center
Romey, Noel; Schwartz, Rachel M.; Behrend, Douglas; Miao, Peter; Cheung, H. Michael; Beitle, Robert
2007-01-01
Graphical User Interfaces (GUIs) are pervasive elements of most modern technical software and represent a convenient tool for student instruction. For example, GUIs are used for [chemical] process design software (e.g., CHEMCAD, PRO/II and ASPEN) typically encountered in the senior capstone course. Drag and drop aspects of GUIs are challenging for…
Chemical Engineering and Instructional Computing: Are They in Step? (Part 2).
ERIC Educational Resources Information Center
Seider, Warren D.
1988-01-01
Describes the use of "CACHE IBM PC Lessons for Courses Other than Design and Control" as open-ended design oriented problems. Presents graphics from some of the software and discusses high-resolution graphics workstations. Concludes that computing tools are in line with design and control practice in chemical engineering. (MVL)
An interactive interface for NCAR Graphics
NASA Technical Reports Server (NTRS)
Buzbee, Bill; Lackman, Bob; Alpert, Ethan
1994-01-01
The NCAR Graphics package has been a valuable research tool for over 20 years. As a low level Fortran library, however, it was difficult to use for nonprogramming researchers. With this grant and NSF support, an interactive interface has been created which greatly facilitates use of the package by researchers of diverse computer skill levels.
Hear My Voice! Teaching Difficult Subjects with Graphic Organizers
ERIC Educational Resources Information Center
Barbieri, Kim E.
2011-01-01
Graphic organizers are immensely popular--and much utilized--in many classrooms, particularly at the elementary level. These creative and innovate teaching tools are a very effective addition to the teaching repertoire and may be designed to maximize precious class time. For the secondary social studies teacher, their instant appeal and universal…
Joyce, Brendan; Lee, Danny; Rubio, Alex; Ogurtsov, Aleksey; Alves, Gelio; Yu, Yi-Kuo
2018-03-15
RAId is a software package that has been actively developed for the past 10 years for computationally and visually analyzing MS/MS data. Founded on rigorous statistical methods, RAId's core program computes accurate E-values for peptides and proteins identified during database searches. Making this robust tool readily accessible for the proteomics community by developing a graphical user interface (GUI) is our main goal here. We have constructed a graphical user interface to facilitate the use of RAId on users' local machines. Written in Java, RAId_GUI not only makes easy executions of RAId but also provides tools for data/spectra visualization, MS-product analysis, molecular isotopic distribution analysis, and graphing the retrieval versus the proportion of false discoveries. The results viewer displays and allows the users to download the analyses results. Both the knowledge-integrated organismal databases and the code package (containing source code, the graphical user interface, and a user manual) are available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads/raid.html .
Methodology to assess clinical liver safety data.
Merz, Michael; Lee, Kwan R; Kullak-Ublick, Gerd A; Brueckner, Andreas; Watkins, Paul B
2014-11-01
Analysis of liver safety data has to be multivariate by nature and needs to take into account time dependency of observations. Current standard tools for liver safety assessment such as summary tables, individual data listings, and narratives address these requirements to a limited extent only. Using graphics in the context of a systematic workflow including predefined graph templates is a valuable addition to standard instruments, helping to ensure completeness of evaluation, and supporting both hypothesis generation and testing. Employing graphical workflows interactively allows analysis in a team-based setting and facilitates identification of the most suitable graphics for publishing and regulatory reporting. Another important tool is statistical outlier detection, accounting for the fact that for assessment of Drug-Induced Liver Injury, identification and thorough evaluation of extreme values has much more relevance than measures of central tendency in the data. Taken together, systematical graphical data exploration and statistical outlier detection may have the potential to significantly improve assessment and interpretation of clinical liver safety data. A workshop was convened to discuss best practices for the assessment of drug-induced liver injury (DILI) in clinical trials.
NASA Technical Reports Server (NTRS)
Sproles, Darrell W.; Bavuso, Salvatore J.
1994-01-01
The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of highly reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed at the outset to be compatible with most computing platforms and operating systems and some programs have been beta tested within the aerospace community for over 8 years. This document is a user's guide for the HiRel graphical postprocessor program HARPO (HARP Output). HARPO reads ASCII files generated by HARP. It provides an interactive plotting capability that can be used to display alternate model data for trade-off analyses. File data can also be imported to other commercial software programs.
Interactive navigation system for shock wave applications.
Hagelauer, U; Russo, S; Gigliotti, S; de Durante, C; Corrado, E M
2001-01-01
The latest generation of shock wave lithotripters, with therapy heads mounted on articulated arms, have found widespread application in the treatment of orthopedic diseases. Currently, integration of an ultrasound probe in the therapy head is the dominant modality for positioning the shock wave focus on the treatment area. For orthopedic applications, however, X-ray imaging is often preferred. This article describes a new method to locate the therapy head of a lithotripter. In the first step, the surgeon positions the tissue to be treated at the isocenter of a C-arc. This is achieved using AP and 30-degree lateral projections, with corresponding horizontal and vertical movements of the patient under fluoroscopic guidance. These movements register the anatomic location in the coordinate system of the C-arc. In the second step, the therapy head is navigated to align the shock wave focus with the isocenter. Position data are reported from an optical tracker mounted on the X-ray system, which tracks an array of infrared LEDs on the therapy head. The accuracy of the tracking system was determined on a test bench, and was calculated to be 1.55 mm (RMS) for an angular movement of +/-15 degrees around a calibrated position. Free-hand navigation and precise alignment are performed with a single virtual reality display. The display is calculated by a computer system in real time, and uses graphical symbols to represent the shock wave path and isocenter. In an interactive process, the physician observes the display while navigating the therapy head towards the isocenter. Precise alignment is achieved by displaying an enlarged view of the intersecting graphical symbols. Results from the first tests on 100 patients demonstrate the feasibility of this approach in a clinical environment. Copyright 2001 Wiley-Liss, Inc.
A Java-Enabled Interactive Graphical Gas Turbine Propulsion System Simulator
NASA Technical Reports Server (NTRS)
Reed, John A.; Afjeh, Abdollah A.
1997-01-01
This paper describes a gas turbine simulation system which utilizes the newly developed Java language environment software system. The system provides an interactive graphical environment which allows the quick and efficient construction and analysis of arbitrary gas turbine propulsion systems. The simulation system couples a graphical user interface, developed using the Java Abstract Window Toolkit, and a transient, space- averaged, aero-thermodynamic gas turbine analysis method, both entirely coded in the Java language. The combined package provides analytical, graphical and data management tools which allow the user to construct and control engine simulations by manipulating graphical objects on the computer display screen. Distributed simulations, including parallel processing and distributed database access across the Internet and World-Wide Web (WWW), are made possible through services provided by the Java environment.
The pits and falls of graphical presentation
Sperandei, Sandro
2014-01-01
Graphics are powerful tools to communicate research results and to gain information from data. However, researchers should be careful when deciding which data to plot and the type of graphic to use, as well as other details. The consequence of bad decisions in these features varies from making research results unclear to distortions of these results, through the creation of “chartjunk” with useless information. This paper is not another tutorial about “good graphics” and “bad graphics”. Instead, it presents guidelines for graphic presentation of research results and some uncommon, but useful examples to communicate basic and complex data types, especially multivariate model results, which are commonly presented only by tables. By the end, there are no answers here, just ideas meant to inspire others on how to create their own graphics. PMID:25351349
Overlay Tolerances For VLSI Using Wafer Steppers
NASA Astrophysics Data System (ADS)
Levinson, Harry J.; Rice, Rory
1988-01-01
In order for VLSI circuits to function properly, the masking layers used in the fabrication of those devices must overlay each other to within the manufacturing tolerance incorporated in the circuit design. The capabilities of the alignment tools used in the masking process determine the overlay tolerances to which circuits can be designed. It is therefore of considerable importance that these capabilities be well characterized. Underestimation of the overlay accuracy results in unnecessarily large devices, resulting in poor utilization of wafer area and possible degradation of device performance. Overestimation will result in significant yield loss because of the failure to conform to the tolerances of the design rules. The proper methodology for determining the overlay capabilities of wafer steppers, the most commonly used alignment tool for the production of VLSI circuits, is the subject of this paper. Because cost-effective manufacturing process technology has been the driving force of VLSI, the impact on productivity is a primary consideration in all discussions. Manufacturers of alignment tools advertise the capabilities of their equipment. It is notable that no manufacturer currently characterizes his aligners in a manner consistent with the requirements of producing very large integrated circuits, as will be discussed. This has resulted in the situation in which the evaluation and comparison of the capabilities of alignment tools require the attention of a lithography specialist. Unfortunately, lithographic capabilities must be known by many other people, particularly the circuit designers and the managers responsible for the financial consequences of the high prices of modern alignment tools. All too frequently, the designer or manager is confronted with contradictory data, one set coming from his lithography specialist, and the other coming from a sales representative of an equipment manufacturer. Since the latter generally attempts to make his merchandise appear as attractive as possible, the lithographer is frequently placed in the position of having to explain subtle issues in order to justify his decisions. It is the purpose of this paper to provide that explanation.
... Splign Vector Alignment Search Tool (VAST) All Data & Software Resources... Domains & Structures BioSystems Cn3D Conserved Domain Database (CDD) Conserved Domain Search Service (CD Search) Structure (Molecular Modeling Database) Vector Alignment ...
Theoferometer for the Construction of Precision Optomechanical Assemblies
NASA Technical Reports Server (NTRS)
Korzun, Ashley M.
2006-01-01
The increasing difficulty of metrology requirements on projects involving optics and the alignment of instrumentation on spacecraft has reached a turning point. Requirements as low as 0.1 arcseconds for the static, rotational alignment of components within a coordinate system cannot be met with a theodolite, the alignment tool currently in use. A "theoferometer" is an interferometer mounted on a rotation stage with degrees of freedom in azimuth and elevation for metrology and alignment applications. The success of a prototype theoferometer in approaching these metrology requirements led to a redesign stressing mechanical, optical, and software changes to increase the sensitivity and portability of the unit. This paper covers the improvements made to the first prototype theoferometer, characteristic testing, and demonstration of the redesigned theoferometer s capabilities as a "theodolite replacement" and low-uncertainty metrology tool.
A Python Script for Aligning the STIS Echelle Blaze Function
NASA Astrophysics Data System (ADS)
Baer, Malinda; Proffitt, Charles R.; Lockwood, Sean A.
2018-01-01
Accurate flux calibration for the STIS echelle modes is heavily dependent on the proper alignment of the blaze function for each spectral order. However, due to changes in the instrument alignment over time and between exposures, the blaze function can shift in wavelength. This may result in flux calibration inconsistencies of up to 10%. We present the stisblazefix Python module as a tool for STIS users to correct their echelle spectra. The stisblazefix module assumes that the error in the blaze alignment is a linear function of spectral order, and finds the set of shifts that minimizes the flux inconsistencies in the overlap between spectral orders. We discuss the uses and limitations of this tool, and show that its use can provide significant improvements to the default pipeline flux calibration for many observations.
Graphical workstation capability for reliability modeling
NASA Technical Reports Server (NTRS)
Bavuso, Salvatore J.; Koppen, Sandra V.; Haley, Pamela J.
1992-01-01
In addition to computational capabilities, software tools for estimating the reliability of fault-tolerant digital computer systems must also provide a means of interfacing with the user. Described here is the new graphical interface capability of the hybrid automated reliability predictor (HARP), a software package that implements advanced reliability modeling techniques. The graphics oriented (GO) module provides the user with a graphical language for modeling system failure modes through the selection of various fault-tree gates, including sequence-dependency gates, or by a Markov chain. By using this graphical input language, a fault tree becomes a convenient notation for describing a system. In accounting for any sequence dependencies, HARP converts the fault-tree notation to a complex stochastic process that is reduced to a Markov chain, which it can then solve for system reliability. The graphics capability is available for use on an IBM-compatible PC, a Sun, and a VAX workstation. The GO module is written in the C programming language and uses the graphical kernal system (GKS) standard for graphics implementation. The PC, VAX, and Sun versions of the HARP GO module are currently in beta-testing stages.
Purohit, Bharathi M; Singh, Abhinav; Dwivedi, Ashish
2017-03-01
The study aims to assess the reliability of video-graphic method as a tool to screen the dental caries among 12-year-old school children in a rural region of India. A total of 139 school children participated in the study. Visual tactile examinations were conducted using the Decayed, Missing, and Filled Teeth (DMFT) index. Simultaneously, standardized video recording of the oral cavity was performed. Sensitivity and specificity values were calculated for video-graphic assessment of dental caries. Bland-Altman plot was used to assess agreement between the two methods of caries assessment. Likelihood ratio (LR) and receiver-operating characteristic (ROC) curve were used to assess the predictive accuracy of the video-graphic method. Mean DMFT for the study population was 2.47 ± 2.01 and 2.46 ± 1.91 by visual tactile and video-graphic assessment (P = 0.76; > 0.05). Sensitivity and specificity values of 0.86 and 0.58 were established for video-graphic assessment. A fair degree of agreement was noted between the two methods with Intraclass correlation coefficient (ICC) value of 0.56. LR for video-graphic assessment was 2.05. Bland-Altman plot confirmed the level of agreement between the two assessment methods. The area under curve was 0.69 (CI 0.57, 0.80, P = 0.001). Teledentistry examination is comparable to clinical examination when screening for dental caries among school children. This study provides evidence that teledentistry may be used as an alternative screening tool for assessment of dental caries and is viable for remote consultation and treatment planning. Teledentistry offers to change the dynamics of dental care delivery and may effectively bridge the rural-urban oral health divide. © 2016 American Association of Public Health Dentistry.
NASA Access Mechanism - Graphical user interface information retrieval system
NASA Technical Reports Server (NTRS)
Hunter, Judy F.; Generous, Curtis; Duncan, Denise
1993-01-01
Access to online information sources of aerospace, scientific, and engineering data, a mission focus for NASA's Scientific and Technical Information Program, has always been limited by factors such as telecommunications, query language syntax, lack of standardization in the information, and the lack of adequate tools to assist in searching. Today, the NASA STI Program's NASA Access Mechanism (NAM) prototype offers a solution to these problems by providing the user with a set of tools that provide a graphical interface to remote, heterogeneous, and distributed information in a manner adaptable to both casual and expert users. Additionally, the NAM provides access to many Internet-based services such as Electronic Mail, the Wide Area Information Servers system, Peer Locating tools, and electronic bulletin boards.
NASA access mechanism: Graphical user interface information retrieval system
NASA Technical Reports Server (NTRS)
Hunter, Judy; Generous, Curtis; Duncan, Denise
1993-01-01
Access to online information sources of aerospace, scientific, and engineering data, a mission focus for NASA's Scientific and Technical Information Program, has always been limited to factors such as telecommunications, query language syntax, lack of standardization in the information, and the lack of adequate tools to assist in searching. Today, the NASA STI Program's NASA Access Mechanism (NAM) prototype offers a solution to these problems by providing the user with a set of tools that provide a graphical interface to remote, heterogeneous, and distributed information in a manner adaptable to both casual and expert users. Additionally, the NAM provides access to many Internet-based services such as Electronic Mail, the Wide Area Information Servers system, Peer Locating tools, and electronic bulletin boards.
NASA Technical Reports Server (NTRS)
Szczur, Martha R.
1991-01-01
The Transportable Applications Environment (TAE) Plus, developed at NASA's Goddard Space Flight Center, is an advanced portable user interface development environment which simplifies the process of creating and managing complex application graphical user interfaces (GUIs), supports prototyping, allows applications to be oported easily between different platforms, and encourages appropriate levels of user interface consistency between applications. This paper discusses the capabilities of the TAE Plus tool, and how it makes the job of designing and developing GUIs easier for the application developers. The paper also explains how tools like TAE Plus provide for reusability and ensure reliability of UI software components, as well as how they aid in the reduction of development and maintenance costs.
Alignment of dynamic networks.
Vijayan, V; Critchlow, D; Milenkovic, T
2017-07-15
Network alignment (NA) aims to find a node mapping that conserves similar regions between compared networks. NA is applicable to many fields, including computational biology, where NA can guide the transfer of biological knowledge from well- to poorly-studied species across aligned network regions. Existing NA methods can only align static networks. However, most complex real-world systems evolve over time and should thus be modeled as dynamic networks. We hypothesize that aligning dynamic network representations of evolving systems will produce superior alignments compared to aligning the systems' static network representations, as is currently done. For this purpose, we introduce the first ever dynamic NA method, DynaMAGNA ++. This proof-of-concept dynamic NA method is an extension of a state-of-the-art static NA method, MAGNA++. Even though both MAGNA++ and DynaMAGNA++ optimize edge as well as node conservation across the aligned networks, MAGNA++ conserves static edges and similarity between static node neighborhoods, while DynaMAGNA++ conserves dynamic edges (events) and similarity between evolving node neighborhoods. For this purpose, we introduce the first ever measure of dynamic edge conservation and rely on our recent measure of dynamic node conservation. Importantly, the two dynamic conservation measures can be optimized with any state-of-the-art NA method and not just MAGNA++. We confirm our hypothesis that dynamic NA is superior to static NA, on synthetic and real-world networks, in computational biology and social domains. DynaMAGNA++ is parallelized and has a user-friendly graphical interface. http://nd.edu/∼cone/DynaMAGNA++/ . tmilenko@nd.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Vijayan, V.; Critchlow, D.; Milenković, T.
2017-01-01
Abstract Motivation: Network alignment (NA) aims to find a node mapping that conserves similar regions between compared networks. NA is applicable to many fields, including computational biology, where NA can guide the transfer of biological knowledge from well- to poorly-studied species across aligned network regions. Existing NA methods can only align static networks. However, most complex real-world systems evolve over time and should thus be modeled as dynamic networks. We hypothesize that aligning dynamic network representations of evolving systems will produce superior alignments compared to aligning the systems’ static network representations, as is currently done. Results: For this purpose, we introduce the first ever dynamic NA method, DynaMAGNA ++. This proof-of-concept dynamic NA method is an extension of a state-of-the-art static NA method, MAGNA++. Even though both MAGNA++ and DynaMAGNA++ optimize edge as well as node conservation across the aligned networks, MAGNA++ conserves static edges and similarity between static node neighborhoods, while DynaMAGNA++ conserves dynamic edges (events) and similarity between evolving node neighborhoods. For this purpose, we introduce the first ever measure of dynamic edge conservation and rely on our recent measure of dynamic node conservation. Importantly, the two dynamic conservation measures can be optimized with any state-of-the-art NA method and not just MAGNA++. We confirm our hypothesis that dynamic NA is superior to static NA, on synthetic and real-world networks, in computational biology and social domains. DynaMAGNA++ is parallelized and has a user-friendly graphical interface. Availability and implementation: http://nd.edu/∼cone/DynaMAGNA++/. Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881980
Fortuno, Cristina; James, Paul A; Young, Erin L; Feng, Bing; Olivier, Magali; Pesaran, Tina; Tavtigian, Sean V; Spurdle, Amanda B
2018-05-18
Clinical interpretation of germline missense variants represents a major challenge, including those in the TP53 Li-Fraumeni syndrome gene. Bioinformatic prediction is a key part of variant classification strategies. We aimed to optimize the performance of the Align-GVGD tool used for p53 missense variant prediction, and compare its performance to other bioinformatic tools (SIFT, PolyPhen-2) and ensemble methods (REVEL, BayesDel). Reference sets of assumed pathogenic and assumed benign variants were defined using functional and/or clinical data. Area under the curve and Matthews correlation coefficient (MCC) values were used as objective functions to select an optimized protein multi-sequence alignment with best performance for Align-GVGD. MCC comparison of tools using binary categories showed optimized Align-GVGD (C15 cut-off) combined with BayesDel (0.16 cut-off), or with REVEL (0.5 cut-off), to have the best overall performance. Further, a semi-quantitative approach using multiple tiers of bioinformatic prediction, validated using an independent set of non-functional and functional variants, supported use of Align-GVGD and BayesDel prediction for different strength of evidence levels in ACMG/AMP rules. We provide rationale for bioinformatic tool selection for TP53 variant classification, and have also computed relevant bioinformatic predictions for every possible p53 missense variant to facilitate their use by the scientific and medical community. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Customisation of the exome data analysis pipeline using a combinatorial approach.
Pattnaik, Swetansu; Vaidyanathan, Srividya; Pooja, Durgad G; Deepak, Sa; Panda, Binay
2012-01-01
The advent of next generation sequencing (NGS) technologies have revolutionised the way biologists produce, analyse and interpret data. Although NGS platforms provide a cost-effective way to discover genome-wide variants from a single experiment, variants discovered by NGS need follow up validation due to the high error rates associated with various sequencing chemistries. Recently, whole exome sequencing has been proposed as an affordable option compared to whole genome runs but it still requires follow up validation of all the novel exomic variants. Customarily, a consensus approach is used to overcome the systematic errors inherent to the sequencing technology, alignment and post alignment variant detection algorithms. However, the aforementioned approach warrants the use of multiple sequencing chemistry, multiple alignment tools, multiple variant callers which may not be viable in terms of time and money for individual investigators with limited informatics know-how. Biologists often lack the requisite training to deal with the huge amount of data produced by NGS runs and face difficulty in choosing from the list of freely available analytical tools for NGS data analysis. Hence, there is a need to customise the NGS data analysis pipeline to preferentially retain true variants by minimising the incidence of false positives and make the choice of right analytical tools easier. To this end, we have sampled different freely available tools used at the alignment and post alignment stage suggesting the use of the most suitable combination determined by a simple framework of pre-existing metrics to create significant datasets.
Brown, Peter; Pullan, Wayne; Yang, Yuedong; Zhou, Yaoqi
2016-02-01
The three dimensional tertiary structure of a protein at near atomic level resolution provides insight alluding to its function and evolution. As protein structure decides its functionality, similarity in structure usually implies similarity in function. As such, structure alignment techniques are often useful in the classifications of protein function. Given the rapidly growing rate of new, experimentally determined structures being made available from repositories such as the Protein Data Bank, fast and accurate computational structure comparison tools are required. This paper presents SPalignNS, a non-sequential protein structure alignment tool using a novel asymmetrical greedy search technique. The performance of SPalignNS was evaluated against existing sequential and non-sequential structure alignment methods by performing trials with commonly used datasets. These benchmark datasets used to gauge alignment accuracy include (i) 9538 pairwise alignments implied by the HOMSTRAD database of homologous proteins; (ii) a subset of 64 difficult alignments from set (i) that have low structure similarity; (iii) 199 pairwise alignments of proteins with similar structure but different topology; and (iv) a subset of 20 pairwise alignments from the RIPC set. SPalignNS is shown to achieve greater alignment accuracy (lower or comparable root-mean squared distance with increased structure overlap coverage) for all datasets, and the highest agreement with reference alignments from the challenging dataset (iv) above, when compared with both sequentially constrained alignments and other non-sequential alignments. SPalignNS was implemented in C++. The source code, binary executable, and a web server version is freely available at: http://sparks-lab.org yaoqi.zhou@griffith.edu.au. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Interactive Graphics Tools for Analysis of MOLA and Other Data
NASA Technical Reports Server (NTRS)
Frey, H.; Roark, J.; Sakimoto, S.
2000-01-01
We have developed several interactive analysis tools based on the IDL programming language for the analysis of Mars Orbiting Laser Altimeter (MOLA) profile and gridded data which are available to the general community.
3D data processing with advanced computer graphics tools
NASA Astrophysics Data System (ADS)
Zhang, Song; Ekstrand, Laura; Grieve, Taylor; Eisenmann, David J.; Chumbley, L. Scott
2012-09-01
Often, the 3-D raw data coming from an optical profilometer contains spiky noises and irregular grid, which make it difficult to analyze and difficult to store because of the enormously large size. This paper is to address these two issues for an optical profilometer by substantially reducing the spiky noise of the 3-D raw data from an optical profilometer, and by rapidly re-sampling the raw data into regular grids at any pixel size and any orientation with advanced computer graphics tools. Experimental results will be presented to demonstrate the effectiveness of the proposed approach.
Pitch-based carbon foam and composites
Klett, James W.
2001-01-01
A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
Pitch-based carbon foam and composites
Klett, James W.
2003-12-16
A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
Pitch-based carbon foam and composites
Klett, James W.
2003-12-02
A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
Pitch-based carbon foam and composites
Klett, James W.
2002-01-01
A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
DNAAlignEditor: DNA alignment editor tool
Sanchez-Villeda, Hector; Schroeder, Steven; Flint-Garcia, Sherry; Guill, Katherine E; Yamasaki, Masanori; McMullen, Michael D
2008-01-01
Background With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor. Results We have generated a nucleotide sequence alignment editor (DNAAlignEditor) that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected. Conclusion We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism. PMID:18366684
New Navigation Post-Processing Tools for Oceanographic Submersibles
NASA Astrophysics Data System (ADS)
Kinsey, J. C.; Whitcomb, L. L.; Yoerger, D. R.; Howland, J. C.; Ferrini, V. L.; Hegrenas, O.
2006-12-01
We report the development of Navproc, a new set of software tools for post-processing oceanographic submersible navigation data that exploits previously reported improvements in navigation sensing and estimation (e.g. Eos Trans. AGU, 84(46), Fall Meet. Suppl., Abstract OS32A- 0225, 2003). The development of these tools is motivated by the need to have post-processing software that allows users to compensate for errors in vehicle navigation, recompute the vehicle position, and then save the results for use with quantitative science data (e.g. bathymetric sonar data) obtained during the mission. Navproc does not provide real-time navigation or display of data nor is it capable of high-resolution, three dimensional (3D) data display. Navproc supports the ASCII data formats employed by the vehicles of the National Deep Submergence Facility (NDSF) operated by the Woods Hole Oceanographic Institution (WHOI). Post-processing of navigation data with Navproc is comprised of three tasks. First, data is converted from the logged ASCII file to a binary Matlab file. When loaded into Matlab, each sensor has a data structure containing the time stamped data sampled at the native update rate of the sensor. An additional structure contains the real-time vehicle navigation data. Second, the data can be displayed using a Graphical User Interface (GUI), allowing users to visually inspect the quality of the data and graphically extract portions of the data. Third, users can compensate for errors in the real-time vehicle navigation. Corrections include: (i) manual filtering and median filtering of long baseline (LBL) ranges; (ii) estimation of the Doppler/gyro alignment using previously reported methodologies; and (iii) sound velocity, tide, and LBL transponder corrections. Using these corrections, the Doppler and LBL positions can be recomputed to provide improved estimates of the vehicle position compared to those computed in real-time. The data can be saved in either binary or ASCII formats, allowing it to be merged with quantitative scientific data, such as bathymetric data. Navproc is written in the Matlab programming language, and is supported under the Windows, Macintosh, and Unix operating systems. To date, Navproc has been employed for post processing data from the DSV Alvin Human Occupied Vehicle (HOV), the Jason II/Medea Remotely Operated Vehicle (ROV), and the ABE, Seabed, and Sentry Autonomous Underwater Vehicles (AUVs).
Developments in the CCP4 molecular-graphics project.
Potterton, Liz; McNicholas, Stuart; Krissinel, Eugene; Gruber, Jan; Cowtan, Kevin; Emsley, Paul; Murshudov, Garib N; Cohen, Serge; Perrakis, Anastassis; Noble, Martin
2004-12-01
Progress towards structure determination that is both high-throughput and high-value is dependent on the development of integrated and automatic tools for electron-density map interpretation and for the analysis of the resulting atomic models. Advances in map-interpretation algorithms are extending the resolution regime in which fully automatic tools can work reliably, but at present human intervention is required to interpret poor regions of macromolecular electron density, particularly where crystallographic data is only available to modest resolution [for example, I/sigma(I) < 2.0 for minimum resolution 2.5 A]. In such cases, a set of manual and semi-manual model-building molecular-graphics tools is needed. At the same time, converting the knowledge encapsulated in a molecular structure into understanding is dependent upon visualization tools, which must be able to communicate that understanding to others by means of both static and dynamic representations. CCP4 mg is a program designed to meet these needs in a way that is closely integrated with the ongoing development of CCP4 as a program suite suitable for both low- and high-intervention computational structural biology. As well as providing a carefully designed user interface to advanced algorithms of model building and analysis, CCP4 mg is intended to present a graphical toolkit to developers of novel algorithms in these fields.
Piazza, Rocco; Magistroni, Vera; Pirola, Alessandra; Redaelli, Sara; Spinelli, Roberta; Redaelli, Serena; Galbiati, Marta; Valletta, Simona; Giudici, Giovanni; Cazzaniga, Giovanni; Gambacorti-Passerini, Carlo
2013-01-01
Copy number alterations (CNA) are common events occurring in leukaemias and solid tumors. Comparative Genome Hybridization (CGH) is actually the gold standard technique to analyze CNAs; however, CGH analysis requires dedicated instruments and is able to perform only low resolution Loss of Heterozygosity (LOH) analyses. Here we present CEQer (Comparative Exome Quantification analyzer), a new graphical, event-driven tool for CNA/allelic-imbalance (AI) coupled analysis of exome sequencing data. By using case-control matched exome data, CEQer performs a comparative digital exonic quantification to generate CNA data and couples this information with exome-wide LOH and allelic imbalance detection. This data is used to build mixed statistical/heuristic models allowing the identification of CNA/AI events. To test our tool, we initially used in silico generated data, then we performed whole-exome sequencing from 20 leukemic specimens and corresponding matched controls and we analyzed the results using CEQer. Taken globally, these analyses showed that the combined use of comparative digital exon quantification and LOH/AI allows generating very accurate CNA data. Therefore, we propose CEQer as an efficient, robust and user-friendly graphical tool for the identification of CNA/AI in the context of whole-exome sequencing data. PMID:24124457
National Center for Biotechnology Information
... Splign Vector Alignment Search Tool (VAST) All Data & Software Resources... Domains & Structures BioSystems Cn3D Conserved Domain Database (CDD) Conserved Domain Search Service (CD Search) Structure (Molecular Modeling Database) Vector Alignment ...
Anvil Tool in the Advanced Weather Interactive Processing System
NASA Technical Reports Server (NTRS)
Barrett, Joe, III; Bauman, William, III; Keen, Jeremy
2007-01-01
Meteorologists from the 45th Weather Squadron (45 WS) and Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) created a graphical overlay tool for the Meteorological Interactive Data Display Systems (MIDDS) to indicate the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. In order for the Anvil Tool to remain available to the meteorologists, the AMU was tasked to transition the tool to the Advanced Weather interactive Processing System (AWIPS). This report describes the work done by the AMU to develop the Anvil Tool for AWIPS to create a graphical overlay depicting the threat from thunderstorm anvil clouds. The AWIPS Anvil Tool is based on the previously deployed AMU MIDDS Anvil Tool. SMG and 45 WS forecasters have used the MIDDS Anvil Tool during launch and landing operations. SMG's primary weather analysis and display system is now AWIPS and the 45 WS has plans to replace MIDDS with AWIPS. The Anvil Tool creates a graphic that users can overlay on satellite or radar imagery to depict the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on an average of the upper-level observed or forecasted winds. The graphic includes 10 and 20 nm standoff circles centered at the location of interest, in addition to one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 degree sector width based on a previous AMU study which determined thunderstorm anvils move in a direction plus or minus 15 degrees of the upper-level (300- to 150-mb) wind direction. This report briefly describes the history of the MIDDS Anvil Tool and then explains how the initial development of the AWIPS Anvil Tool was carried out. After testing was performed by SMG, 45 WS, and AMU, a number of needed improvements were identified. A bug report document was created that showed the status of each bug and desired improvement. This report lists the improvements that were made to increase the accuracy and user-friendliness of the tool. Final testing was carried out and documented and then the final version of the software and Users Guide was provided to SMG and the 45 WS. Several possible future improvements to the tool are identified that would increase the flexibility of the tool. This report contains a brief history of the development of the Anvil Tool in MIDDS, and then describes the transition and development of software to AWIPS.
Tools of the Courseware Trade: A Comparison of ToolBook 1.0 and HyperCard 2.0.
ERIC Educational Resources Information Center
Brader, Lorinda L.
1990-01-01
Compares two authoring tools that were developed to enable users without programing experience to create and modify software. HyperCard, designed for Macintosh microcomputers, and ToolBook, for microcomputers that run on MS-DOS, are compared in the areas of programing languages, graphics and printing capabilities, user interface, system…
Software Tools on the Peregrine System | High-Performance Computing | NREL
Debugger or performance analysis Tool for understanding the behavior of MPI applications. Intel VTune environment for statistical computing and graphics. VirtualGL/TurboVNC Visualization and analytics Remote Tools on the Peregrine System Software Tools on the Peregrine System NREL has a variety of
Update: Advancement of Contact Dynamics Modeling for Human Spaceflight Simulation Applications
NASA Technical Reports Server (NTRS)
Brain, Thomas A.; Kovel, Erik B.; MacLean, John R.; Quiocho, Leslie J.
2017-01-01
Pong is a new software tool developed at the NASA Johnson Space Center that advances interference-based geometric contact dynamics based on 3D graphics models. The Pong software consists of three parts: a set of scripts to extract geometric data from 3D graphics models, a contact dynamics engine that provides collision detection and force calculations based on the extracted geometric data, and a set of scripts for visualizing the dynamics response with the 3D graphics models. The contact dynamics engine can be linked with an external multibody dynamics engine to provide an integrated multibody contact dynamics simulation. This paper provides a detailed overview of Pong including the overall approach and modeling capabilities, which encompasses force generation from contact primitives and friction to computational performance. Two specific Pong-based examples of International Space Station applications are discussed, and the related verification and validation using this new tool are also addressed.
Graphical Environment Tools for Application to Gamma-Ray Energy Tracking Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, Richard A.; Radford, David C.
2013-12-30
Highly segmented, position-sensitive germanium detector systems are being developed for nuclear physics research where traditional electronic signal processing with mixed analog and digital function blocks would be enormously complex and costly. Future systems will be constructed using pipelined processing of high-speed digitized signals as is done in the telecommunications industry. Techniques which provide rapid algorithm and system development for future systems are desirable. This project has used digital signal processing concepts and existing graphical system design tools to develop a set of re-usable modular functions and libraries targeted for the nuclear physics community. Researchers working with complex nuclear detector arraysmore » such as the Gamma-Ray Energy Tracking Array (GRETA) have been able to construct advanced data processing algorithms for implementation in field programmable gate arrays (FPGAs) through application of these library functions using intuitive graphical interfaces.« less
Boiler: lossy compression of RNA-seq alignments using coverage vectors.
Pritt, Jacob; Langmead, Ben
2016-09-19
We describe Boiler, a new software tool for compressing and querying large collections of RNA-seq alignments. Boiler discards most per-read data, keeping only a genomic coverage vector plus a few empirical distributions summarizing the alignments. Since most per-read data is discarded, storage footprint is often much smaller than that achieved by other compression tools. Despite this, the most relevant per-read data can be recovered; we show that Boiler compression has only a slight negative impact on results given by downstream tools for isoform assembly and quantification. Boiler also allows the user to pose fast and useful queries without decompressing the entire file. Boiler is free open source software available from github.com/jpritt/boiler. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
DUK - A Fast and Efficient Kmer Based Sequence Matching Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingkun; Copeland, Alex; Han, James
2011-03-21
A new tool, DUK, is developed to perform matching task. Matching is to find whether a query sequence partially or totally matches given reference sequences or not. Matching is similar to alignment. Indeed many traditional analysis tasks like contaminant removal use alignment tools. But for matching, there is no need to know which bases of a query sequence matches which position of a reference sequence, it only need know whether there exists a match or not. This subtle difference can make matching task much faster than alignment. DUK is accurate, versatile, fast, and has efficient memory usage. It uses Kmermore » hashing method to index reference sequences and Poisson model to calculate p-value. DUK is carefully implemented in C++ in object oriented design. The resulted classes can also be used to develop other tools quickly. DUK have been widely used in JGI for a wide range of applications such as contaminant removal, organelle genome separation, and assembly refinement. Many real applications and simulated dataset demonstrate its power.« less
A Graphics System for Pole-Zero Map Analysis.
ERIC Educational Resources Information Center
Beyer, William Fred, III
Computer scientists have developed an interactive, graphical display system for pole-zero map analysis. They designed it for use as an educational tool in teaching introductory courses in automatic control systems. The facilities allow the user to specify a control system and an input function in the form of a pole-zero map and then examine the…
A Graphical Journey of Innovative Organic Architectures that Have Improved Our Lives
ERIC Educational Resources Information Center
McGrath, Nicholas A.; Brichacek, Matthew; Njardarson, Jon T.
2010-01-01
A new free graphical teaching tool that highlights the beautiful organic architectures of the top selling pharmaceuticals is detailed on two posters. In addition to the multitude of teaching and data-mining opportunities these posters offer, they were also created to emphasize the central role organic chemists play in the development of new…
Using Graphic Organizers as a Tool for the Development of Scientific Language
ERIC Educational Resources Information Center
Mercuri, Sandra P.
2010-01-01
This observational study examines the effectiveness of graphic organizers two elementary teachers in California, United States use to teach the content and the academic language of science. The study was done during the 2006-2007 school year. The data was collected through field-notes and the audio recording of instructional activities, and they…
A Complete Interactive Graphical Computer-Aided Instruction System.
ERIC Educational Resources Information Center
Abrams, Steven Selby
The use of interactive graphics in computer-aided instruction systems is discussed with emphasis placed on two requirements of such a system. The first is the need to provide the teacher with a useful tool with which to design and modify teaching sessions tailored to the individual needs and capabilities of the students. The second is the…
ResidPlots-2: Computer Software for IRT Graphical Residual Analyses
ERIC Educational Resources Information Center
Liang, Tie; Han, Kyung T.; Hambleton, Ronald K.
2009-01-01
This article discusses the ResidPlots-2, a computer software that provides a powerful tool for IRT graphical residual analyses. ResidPlots-2 consists of two components: a component for computing residual statistics and another component for communicating with users and for plotting the residual graphs. The features of the ResidPlots-2 software are…
Standardization of a Graphic Symbol System as an Alternative Communication Tool for Turkish
ERIC Educational Resources Information Center
Karal, Yasemin; Karal, Hasan; Silbir, Lokman; Altun, Taner
2016-01-01
Graphic symbols are commonly used across countries in order to support individuals with communicative deficiency. The literature review revealed the absence of such a system for Turkish socio-cultural context. In this study, the aim was to develop a symbol system appropriate for the Turkish socio-cultural context. The process began with studies…
NASA Astrophysics Data System (ADS)
Song, Jungki; Heilmann, Ralf K.; Bruccoleri, Alexander R.; Hertz, Edward; Schatternburg, Mark L.
2017-08-01
We report progress toward developing a scanning laser reflection (LR) tool for alignment and period measurement of critical-angle transmission (CAT) gratings. It operates on a similar measurement principle as a tool built in 1994 which characterized period variations of grating facets for the Chandra X-ray Observatory. A specularly reflected beam and a first-order diffracted beam were used to record local period variations, surface slope variations, and grating line orientation. In this work, a normal-incidence beam was added to measure slope variations (instead of the angled-incidence beam). Since normal incidence reflection is not coupled with surface height change, it enables measurement of slope variations more accurately and, along with the angled-incidence beam, helps to reconstruct the surface figure (or tilt) map. The measurement capability of in-grating period variations was demonstrated by measuring test reflection grating (RG) samples that show only intrinsic period variations of the interference lithography process. Experimental demonstration for angular alignment of CAT gratings is also presented along with a custom-designed grating alignment assembly (GAA) testbed. All three angles were aligned to satisfy requirements for the proposed Arcus mission. The final measurement of roll misalignment agrees with the roll measurements performed at the PANTER x-ray test facility.
Sloane, Elliot; Rosow, Eric; Adam, Joe; Shine, Dave
2005-01-01
The Clinical Engineering (a.k.a. Biomedical Engineering) Department has heretofore lagged in adoption of some of the leading-edge information system tools used in other industries. This present application is part of a DOD-funded SBIR grant to improve the overall management of medical technology, and describes the capabilities that Strategic Graphical Dashboards (SGDs) can afford. This SGD is built on top of an Oracle database, and uses custom-written graphic objects like gauges, fuel tanks, and Geographic Information System (GIS) maps to improve and accelerate decision making.
NASA Technical Reports Server (NTRS)
Cross, James H., II
1991-01-01
The main objective is the investigation, formulation, and generation of graphical representations of algorithms, structures, and processes for Ada (GRASP/Ada). The presented task, in which various graphical representations that can be extracted or generated from source code are described and categorized, is focused on reverse engineering. The following subject areas are covered: the system model; control structure diagram generator; object oriented design diagram generator; user interface; and the GRASP library.
The use of computer graphic simulation in the development of on-orbit tele-robotic systems
NASA Technical Reports Server (NTRS)
Fernandez, Ken; Hinman, Elaine
1987-01-01
This paper describes the use of computer graphic simulation techniques to resolve critical design and operational issues for robotic systems used for on-orbit operations. These issues are robot motion control, robot path-planning/verification, and robot dynamics. The major design issues in developing effective telerobotic systems are discussed, and the use of ROBOSIM, a NASA-developed computer graphic simulation tool, to address these issues is presented. Simulation plans for the Space Station and the Orbital Maneuvering Vehicle are presented and discussed.
Pre-calculated protein structure alignments at the RCSB PDB website.
Prlic, Andreas; Bliven, Spencer; Rose, Peter W; Bluhm, Wolfgang F; Bizon, Chris; Godzik, Adam; Bourne, Philip E
2010-12-01
With the continuous growth of the RCSB Protein Data Bank (PDB), providing an up-to-date systematic structure comparison of all protein structures poses an ever growing challenge. Here, we present a comparison tool for calculating both 1D protein sequence and 3D protein structure alignments. This tool supports various applications at the RCSB PDB website. First, a structure alignment web service calculates pairwise alignments. Second, a stand-alone application runs alignments locally and visualizes the results. Third, pre-calculated 3D structure comparisons for the whole PDB are provided and updated on a weekly basis. These three applications allow users to discover novel relationships between proteins available either at the RCSB PDB or provided by the user. A web user interface is available at http://www.rcsb.org/pdb/workbench/workbench.do. The source code is available under the LGPL license from http://www.biojava.org. A source bundle, prepared for local execution, is available from http://source.rcsb.org andreas@sdsc.edu; pbourne@ucsd.edu.
Protein Identification Using Top-Down Spectra*
Liu, Xiaowen; Sirotkin, Yakov; Shen, Yufeng; Anderson, Gordon; Tsai, Yihsuan S.; Ting, Ying S.; Goodlett, David R.; Smith, Richard D.; Bafna, Vineet; Pevzner, Pavel A.
2012-01-01
In the last two years, because of advances in protein separation and mass spectrometry, top-down mass spectrometry moved from analyzing single proteins to analyzing complex samples and identifying hundreds and even thousands of proteins. However, computational tools for database search of top-down spectra against protein databases are still in their infancy. We describe MS-Align+, a fast algorithm for top-down protein identification based on spectral alignment that enables searches for unexpected post-translational modifications. We also propose a method for evaluating statistical significance of top-down protein identifications and further benchmark various software tools on two top-down data sets from Saccharomyces cerevisiae and Salmonella typhimurium. We demonstrate that MS-Align+ significantly increases the number of identified spectra as compared with MASCOT and OMSSA on both data sets. Although MS-Align+ and ProSightPC have similar performance on the Salmonella typhimurium data set, MS-Align+ outperforms ProSightPC on the (more complex) Saccharomyces cerevisiae data set. PMID:22027200
GraphCrunch 2: Software tool for network modeling, alignment and clustering.
Kuchaiev, Oleksii; Stevanović, Aleksandar; Hayes, Wayne; Pržulj, Nataša
2011-01-19
Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI) data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype. We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant extension of GraphCrunch which implements the most popular random network models and compares them with the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner algorithm ("GRAAL") for purely topological network alignment. GRAAL can align any pair of networks and exposes large, dense, contiguous regions of topological and functional similarities far larger than any other existing tool. Finally, GraphCruch 2 implements an algorithm for clustering nodes within a network based solely on their topological similarities. Using GraphCrunch 2, we demonstrate that eukaryotic and viral PPI networks may belong to different graph model families and show that topology-based clustering can reveal important functional similarities between proteins within yeast and human PPI networks. GraphCrunch 2 is a software tool that implements the latest research on biological network analysis. It parallelizes computationally intensive tasks to fully utilize the potential of modern multi-core CPUs. It is open-source and freely available for research use. It runs under the Windows and Linux platforms.
BuddySuite: Command-Line Toolkits for Manipulating Sequences, Alignments, and Phylogenetic Trees.
Bond, Stephen R; Keat, Karl E; Barreira, Sofia N; Baxevanis, Andreas D
2017-06-01
The ability to manipulate sequence, alignment, and phylogenetic tree files has become an increasingly important skill in the life sciences, whether to generate summary information or to prepare data for further downstream analysis. The command line can be an extremely powerful environment for interacting with these resources, but only if the user has the appropriate general-purpose tools on hand. BuddySuite is a collection of four independent yet interrelated command-line toolkits that facilitate each step in the workflow of sequence discovery, curation, alignment, and phylogenetic reconstruction. Most common sequence, alignment, and tree file formats are automatically detected and parsed, and over 100 tools have been implemented for manipulating these data. The project has been engineered to easily accommodate the addition of new tools, is written in the popular programming language Python, and is hosted on the Python Package Index and GitHub to maximize accessibility. Documentation for each BuddySuite tool, including usage examples, is available at http://tiny.cc/buddysuite_wiki. All software is open source and freely available through http://research.nhgri.nih.gov/software/BuddySuite. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanescu, C.
1990-08-01
Complex software for shower reconstruction in DELPHI barrel electromagnetic calorimeter which deals, for each event, with great amounts of information, due to the high spatial resolution of this detector, needs powerful verification tools. An interactive graphics program, running on high performance graphics display system Whizzard 7555 from Megatek, was developed to display the logical steps in showers and their axes reconstruction. The program allows both operations on the image in real-time (rotation, translation and zoom) and the use of non-geometrical criteria to modify it (as the use of energy) thresholds for the representation of the elements that compound the showersmore » (or of the associated lego plots). For this purpose graphics objects associated to user parameters were defined. Instancing and modelling features of the native graphics library were extensively used.« less
SARA-Coffee web server, a tool for the computation of RNA sequence and structure multiple alignments
Di Tommaso, Paolo; Bussotti, Giovanni; Kemena, Carsten; Capriotti, Emidio; Chatzou, Maria; Prieto, Pablo; Notredame, Cedric
2014-01-01
This article introduces the SARA-Coffee web server; a service allowing the online computation of 3D structure based multiple RNA sequence alignments. The server makes it possible to combine sequences with and without known 3D structures. Given a set of sequences SARA-Coffee outputs a multiple sequence alignment along with a reliability index for every sequence, column and aligned residue. SARA-Coffee combines SARA, a pairwise structural RNA aligner with the R-Coffee multiple RNA aligner in a way that has been shown to improve alignment accuracy over most sequence aligners when enough structural data is available. The server can be accessed from http://tcoffee.crg.cat/apps/tcoffee/do:saracoffee. PMID:24972831
NASA Technical Reports Server (NTRS)
Barrett, Joe H., III; Lafosse, Richard; Hood, Doris; Hoeth, Brian
2007-01-01
Graphical overlays can be created in real-time in the Advanced Weather Interactive Processing System (AWIPS) using shapefiles or Denver AWIPS Risk Reduction and Requirements Evaluation (DARE) Graphics Metafile (DGM) files. This presentation describes how to create graphical overlays on-the-fly for AWIPS, by using two examples of AWIPS applications that were created by the Applied Meteorology Unit (AMU) located at Cape Canaveral Air Force Station (CCAFS), Florida. The first example is the Anvil Threat Corridor Forecast Tool, which produces a shapefile that depicts a graphical threat corridor of the forecast movement of thunderstorm anvil clouds, based on the observed or forecast upper-level winds. This tool is used by the Spaceflight Meteorology Group (SMG) at Johnson Space Center, Texas and 45th Weather Squadron (45 WS) at CCAFS to analyze the threat of natural or space vehicle-triggered lightning over a location. The second example is a launch and landing trajectory tool that produces a DGM file that plots the ground track of space vehicles during launch or landing. The trajectory tool can be used by SMG and the 45 WS forecasters to analyze weather radar imagery along a launch or landing trajectory. The presentation will list the advantages and disadvantages of both file types for creating interactive graphical overlays in future AWIPS applications. Shapefiles are a popular format used extensively in Geographical Information Systems. They are usually used in AWIPS to depict static map backgrounds. A shapefile stores the geometry and attribute information of spatial features in a dataset (ESRI 1998). Shapefiles can contain point, line, and polygon features. Each shapefile contains a main file, index file, and a dBASE table. The main file contains a record for each spatial feature, which describes the feature with a list of its vertices. The index file contains the offset of each record from the beginning of the main file. The dBASE table contains records for each attribute. Attributes are commonly used to label spatial features. Shapefiles can be viewed, but not created in AWIPS. As a result, either third-party software can be installed on an AWIPS workstation, or new software must be written to create shapefiles in the correct format.
NASA Technical Reports Server (NTRS)
Rompala, John T.
1992-01-01
Algorithms are presented for determining the size and location of electric charges which model storm systems and lightning strikes. The analysis utilizes readings from a grid of ground level field mills and geometric constraints on parameters to arrive at a representative set of charges. This set is used to generate three dimensional graphical depictions of the set as well as contour maps of the ground level electrical environment over the grid. The composite, analytic and graphic package is demonstrated and evaluated using controlled input data and archived data from a storm system. The results demonstrate the packages utility as: an operational tool in appraising adverse weather conditions; a research tool in studies of topics such as storm structure, storm dynamics, and lightning; and a tool in designing and evaluating grid systems.
NASA Technical Reports Server (NTRS)
Lewis, Clayton; Wilde, Nick
1989-01-01
Space construction will require heavy investment in the development of a wide variety of user interfaces for the computer-based tools that will be involved at every stage of construction operations. Using today's technology, user interface development is very expensive for two reasons: (1) specialized and scarce programming skills are required to implement the necessary graphical representations and complex control regimes for high-quality interfaces; (2) iteration on prototypes is required to meet user and task requirements, since these are difficult to anticipate with current (and foreseeable) design knowledge. We are attacking this problem by building a user interface development tool based on extensions to the spreadsheet model of computation. The tool provides high-level support for graphical user interfaces and permits dynamic modification of interfaces, without requiring conventional programming concepts and skills.
Visualising associations between paired ‘omics’ data sets
2012-01-01
Background Each omics platform is now able to generate a large amount of data. Genomics, proteomics, metabolomics, interactomics are compiled at an ever increasing pace and now form a core part of the fundamental systems biology framework. Recently, several integrative approaches have been proposed to extract meaningful information. However, these approaches lack of visualisation outputs to fully unravel the complex associations between different biological entities. Results The multivariate statistical approaches ‘regularized Canonical Correlation Analysis’ and ‘sparse Partial Least Squares regression’ were recently developed to integrate two types of highly dimensional ‘omics’ data and to select relevant information. Using the results of these methods, we propose to revisit few graphical outputs to better understand the relationships between two ‘omics’ data and to better visualise the correlation structure between the different biological entities. These graphical outputs include Correlation Circle plots, Relevance Networks and Clustered Image Maps. We demonstrate the usefulness of such graphical outputs on several biological data sets and further assess their biological relevance using gene ontology analysis. Conclusions Such graphical outputs are undoubtedly useful to aid the interpretation of these promising integrative analysis tools and will certainly help in addressing fundamental biological questions and understanding systems as a whole. Availability The graphical tools described in this paper are implemented in the freely available R package mixOmics and in its associated web application. PMID:23148523
SystemSketch is a dynamic, graphic visualization tool to help stakeholders better understand system context and access information resources. It is constructed using the Driver-Pressure-State-Impact-Response framework, and functions both as a stand-alone tool and as a component ...
Swain, Timothy D
2018-01-01
The recent rapid proliferation of novel taxon identification in the Zoanthidea has been accompanied by a parallel propagation of gene trees as a tool of species discovery, but not a corresponding increase in our understanding of phylogeny. This disparity is caused by the trade-off between the capabilities of automated DNA sequence alignment and data content of genes applied to phylogenetic inference in this group. Conserved genes or segments are easily aligned across the order, but produce poorly resolved trees; hypervariable genes or segments contain the evolutionary signal necessary for resolution and robust support, but sequence alignment is daunting. Staggered alignments are a form of phylogeny-informed sequence alignment composed of a mosaic of local and universal regions that allow phylogenetic inference to be applied to all nucleotides from both hypervariable and conserved gene segments. Comparisons between species tree phylogenies inferred from all data (staggered alignment) and hypervariable-excluded data (standard alignment) demonstrate improved confidence and greater topological agreement with other sources of data for the complete-data tree. This novel phylogeny is the most comprehensive to date (in terms of taxa and data) and can serve as an expandable tool for evolutionary hypothesis testing in the Zoanthidea. Spanish language abstract available in Text S1. Translation by L. O. Swain, DePaul University, Chicago, Illinois, 60604, USA. Copyright © 2017 Elsevier Inc. All rights reserved.
Sub-cell turning to accomplish micron-level alignment of precision assemblies
NASA Astrophysics Data System (ADS)
Kumler, James J.; Buss, Christian
2017-08-01
Higher performance expectations for complex optical systems demand tighter alignment requirements for lens assembly alignment. In order to meet diffraction limited imaging performance over wide spectral bands across the UV and visible wavebands, new manufacturing approaches and tools must be developed if the optical systems will be produced consistently in volume production. This is especially applicable in the field of precision microscope objectives for life science, semiconductor inspection and laser material processing systems. We observe a rising need for the improvement in the optical imaging performance of objective lenses. The key challenge lies in the micron-level decentration and tilt of each lens element. One solution for the production of high quality lens systems is sub-cell assembly with alignment turning. This process relies on an automatic alignment chuck to align the optical axis of a mounted lens to the spindle axis of the machine. Subsequently, the mount is cut with diamond tools on a lathe with respect to the optical axis of the mount. Software controlled integrated measurement technology ensures highest precision. In addition to traditional production processes, further dimensions can be controlled in a very precise manner, e.g. the air gaps between the lenses. Using alignment turning simplifies further alignment steps and reduces the risk of errors. This paper describes new challenges in microscope objective design and manufacturing, and addresses difficulties with standard production processes. A new measurement and alignment technique is described, and strengths and limitations are outlined.
Simulation environment and graphical visualization environment: a COPD use-case.
Huertas-Migueláñez, Mercedes; Mora, Daniel; Cano, Isaac; Maier, Dieter; Gomez-Cabrero, David; Lluch-Ariet, Magí; Miralles, Felip
2014-11-28
Today, many different tools are developed to execute and visualize physiological models that represent the human physiology. Most of these tools run models written in very specific programming languages which in turn simplify the communication among models. Nevertheless, not all of these tools are able to run models written in different programming languages. In addition, interoperability between such models remains an unresolved issue. In this paper we present a simulation environment that allows, first, the execution of models developed in different programming languages and second the communication of parameters to interconnect these models. This simulation environment, developed within the Synergy-COPD project, aims at helping and supporting bio-researchers and medical students understand the internal mechanisms of the human body through the use of physiological models. This tool is composed of a graphical visualization environment, which is a web interface through which the user can interact with the models, and a simulation workflow management system composed of a control module and a data warehouse manager. The control module monitors the correct functioning of the whole system. The data warehouse manager is responsible for managing the stored information and supporting its flow among the different modules. It has been proved that the simulation environment presented here allows the user to research and study the internal mechanisms of the human physiology by the use of models via a graphical visualization environment. A new tool for bio-researchers is ready for deployment in various use cases scenarios.
Supporting geoscience with graphical-user-interface Internet tools for the Macintosh
NASA Astrophysics Data System (ADS)
Robin, Bernard
1995-07-01
This paper describes a suite of Macintosh graphical-user-interface (GUI) software programs that can be used in conjunction with the Internet to support geoscience education. These software programs allow science educators to access and retrieve a large body of resources from an increasing number of network sites, taking advantage of the intuitive, simple-to-use Macintosh operating system. With these tools, educators easily can locate, download, and exchange not only text files but also sound resources, video movie clips, and software application files from their desktop computers. Another major advantage of these software tools is that they are available at no cost and may be distributed freely. The following GUI software tools are described including examples of how they can be used in an educational setting: ∗ Eudora—an e-mail program ∗ NewsWatcher—a newsreader ∗ TurboGopher—a Gopher program ∗ Fetch—a software application for easy File Transfer Protocol (FTP) ∗ NCSA Mosaic—a worldwide hypertext browsing program. An explosive growth of online archives currently is underway as new electronic sites are being added continuously to the Internet. Many of these resources may be of interest to science educators who learn they can share not only ASCII text files, but also graphic image files, sound resources, QuickTime movie clips, and hypermedia projects with colleagues from locations around the world. These powerful, yet simple to learn GUI software tools are providing a revolution in how knowledge can be accessed, retrieved, and shared.
Initial Navigation Alignment of Optical Instruments on GOES-R
NASA Astrophysics Data System (ADS)
Isaacson, P.; DeLuccia, F.; Reth, A. D.; Igli, D. A.; Carter, D.
2016-12-01
The GOES-R satellite is the first in NOAA's next-generation series of geostationary weather satellites. In addition to a number of space weather sensors, it will carry two principal optical earth-observing instruments, the Advanced Baseline Imager (ABI) and the Geostationary Lightning Mapper (GLM). During launch, currently scheduled for November of 2016, the alignment of these optical instruments is anticipated to shift from that measured during pre-launch characterization. While both instruments have image navigation and registration (INR) processing algorithms to enable automated geolocation of the collected data, the launch-derived misalignment may be too large for these approaches to function without an initial adjustment to calibration parameters. The parameters that may require adjustment are for Line of Sight Motion Compensation (LMC), and the adjustments will be estimated on orbit during the post-launch test (PLT) phase. We have developed approaches to estimate the initial alignment errors for both ABI and GLM image products. Our approaches involve comparison of ABI and GLM images collected during PLT to a set of reference ("truth") images using custom image processing tools and other software (the INR Performance Assessment Tool Set, or "IPATS") being developed for other INR assessments of ABI and GLM data. IPATS is based on image correlation approaches to determine offsets between input and reference images, and these offsets are the fundamental input to our estimate of the initial alignment errors. Initial testing of our alignment algorithms on proxy datasets lends high confidence that their application will determine the initial alignment errors to within sufficient accuracy to enable the operational INR processing approaches to proceed in a nominal fashion. We will report on the algorithms, implementation approach, and status of these initial alignment tools being developed for the GOES-R ABI and GLM instruments.
CTG Analyzer: A graphical user interface for cardiotocography.
Sbrollini, Agnese; Agostinelli, Angela; Burattini, Luca; Morettini, Micaela; Di Nardo, Francesco; Fioretti, Sandro; Burattini, Laura
2017-07-01
Cardiotocography (CTG) is the most commonly used test for establishing the good health of the fetus during pregnancy and labor. CTG consists in the recording of fetal heart rate (FHR; bpm) and maternal uterine contractions (UC; mmHg). FHR is characterized by baseline, baseline variability, tachycardia, bradycardia, acceleration and decelerations. Instead, UC signal is characterized by presence of contractions and contractions period. Such parameters are usually evaluated by visual inspection. However, visual analysis of CTG recordings has a well-demonstrated poor reproducibility, due to the complexity of physiological phenomena affecting fetal heart rhythm and being related to clinician's experience. Computerized tools in support of clinicians represents a possible solution for improving correctness in CTG interpretation. This paper proposes CTG Analyzer as a graphical tool for automatic and objective analysis of CTG tracings. CTG Analyzer was developed under MATLAB®; it is a very intuitive and user friendly graphical user interface. FHR time series and UC signal are represented one under the other, on a grid with reference lines, as usually done for CTG reports printed on paper. Colors help identification of FHR and UC features. Automatic analysis is based on some unchangeable features definitions provided by the FIGO guidelines, and other arbitrary settings whose default values can be changed by the user. Eventually, CTG Analyzer provides a report file listing all the quantitative results of the analysis. Thus, CTG Analyzer represents a potentially useful graphical tool for automatic and objective analysis of CTG tracings.
Next Generation Sequence Analysis and Computational Genomics Using Graphical Pipeline Workflows
Torri, Federica; Dinov, Ivo D.; Zamanyan, Alen; Hobel, Sam; Genco, Alex; Petrosyan, Petros; Clark, Andrew P.; Liu, Zhizhong; Eggert, Paul; Pierce, Jonathan; Knowles, James A.; Ames, Joseph; Kesselman, Carl; Toga, Arthur W.; Potkin, Steven G.; Vawter, Marquis P.; Macciardi, Fabio
2012-01-01
Whole-genome and exome sequencing have already proven to be essential and powerful methods to identify genes responsible for simple Mendelian inherited disorders. These methods can be applied to complex disorders as well, and have been adopted as one of the current mainstream approaches in population genetics. These achievements have been made possible by next generation sequencing (NGS) technologies, which require substantial bioinformatics resources to analyze the dense and complex sequence data. The huge analytical burden of data from genome sequencing might be seen as a bottleneck slowing the publication of NGS papers at this time, especially in psychiatric genetics. We review the existing methods for processing NGS data, to place into context the rationale for the design of a computational resource. We describe our method, the Graphical Pipeline for Computational Genomics (GPCG), to perform the computational steps required to analyze NGS data. The GPCG implements flexible workflows for basic sequence alignment, sequence data quality control, single nucleotide polymorphism analysis, copy number variant identification, annotation, and visualization of results. These workflows cover all the analytical steps required for NGS data, from processing the raw reads to variant calling and annotation. The current version of the pipeline is freely available at http://pipeline.loni.ucla.edu. These applications of NGS analysis may gain clinical utility in the near future (e.g., identifying miRNA signatures in diseases) when the bioinformatics approach is made feasible. Taken together, the annotation tools and strategies that have been developed to retrieve information and test hypotheses about the functional role of variants present in the human genome will help to pinpoint the genetic risk factors for psychiatric disorders. PMID:23139896
ERIC Educational Resources Information Center
Burke, Brian Patrick
2012-01-01
This study evaluated how comic books and graphic novels enhanced the reading comprehension of the students enrolled in the intermediate reading course at Western Pennsylvania Community College. The three research questions are: (1) How can a developmental reading course make use of comics as a learning tool? (2) What impact does reading comics…
An Item Response Unfolding Model for Graphic Rating Scales
ERIC Educational Resources Information Center
Liu, Ying
2009-01-01
The graphic rating scale, a measurement tool used in many areas of psychology, usually takes a form of a fixed-length line segment, with both ends bounded and labeled as extreme responses. The raters mark somewhere on the line, and the length of the line segment from one endpoint to the mark is taken as the measure. An item response unfolding…
ERIC Educational Resources Information Center
de Rooij, Mark; Heiser, Willem J.
2005-01-01
Although RC(M)-association models have become a generally useful tool for the analysis of cross-classified data, the graphical representation resulting from such an analysis can at times be misleading. The relationships present between row category points and column category points cannot be interpreted by inter point distances but only through…
Three Dimensional Display Of Meteorological Scientific Data
NASA Astrophysics Data System (ADS)
Grotch, Stanley L.
1988-01-01
Even a cursory reading of any daily newspaper shows that we are in the midst of a dramatic revolution in computer graphics. Virtually every day some new piece of hardware or software is announced, adding to the tools available to the working scientist. Three dimensional graphics form a significant part of this revolution having become virtually commonplace in advertising and on television.
Get Your Head into the Clouds: Using Word Clouds for Analyzing Qualitative Assessment Data
ERIC Educational Resources Information Center
DePaolo, Concetta A.; Wilkinson, Kelly
2014-01-01
Word clouds (or tag clouds) are popular, fun ways to display text data in graphical form; however, we contend that they can also be useful tools in assessment. Using word clouds, instructors can quickly and easily produce graphical depictions of text representing student knowledge. By investigating the patterns of words or phrases, or lack…
Monitoring an Online Course with the GISMO Tool: A Case Study
ERIC Educational Resources Information Center
Mazza, Riccardo; Botturi, Luca
2007-01-01
This article presents GISMO, a novel, open source, graphic student-tracking tool integrated into Moodle. GISMO represents a further step in information visualization applied to education, and also a novelty in the field of learning management systems applications. The visualizations of the tool, its uses and the benefits it can bring are…
Strategies and tools for whole genome alignments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couronne, Olivier; Poliakov, Alexander; Bray, Nicolas
2002-11-25
The availability of the assembled mouse genome makespossible, for the first time, an alignment and comparison of two largevertebrate genomes. We have investigated different strategies ofalignment for the subsequent analysis of conservation of genomes that areeffective for different quality assemblies. These strategies were appliedto the comparison of the working draft of the human genome with the MouseGenome Sequencing Consortium assembly, as well as other intermediatemouse assemblies. Our methods are fast and the resulting alignmentsexhibit a high degree of sensitivity, covering more than 90 percent ofknown coding exons in the human genome. We have obtained such coveragewhile preserving specificity. With amore » view towards the end user, we havedeveloped a suite of tools and websites for automatically aligning, andsubsequently browsing and working with whole genome comparisons. Wedescribe the use of these tools to identify conserved non-coding regionsbetween the human and mouse genomes, some of which have not beenidentified by other methods.« less
Precision tool holder with flexure-adjustable, three degrees of freedom for a four-axis lathe
Bono, Matthew J [Pleasanton, CA; Hibbard, Robin L [Livermore, CA
2008-03-04
A precision tool holder for precisely positioning a single point cutting tool on 4-axis lathe, such that the center of the radius of the tool nose is aligned with the B-axis of the machine tool, so as to facilitate the machining of precision meso-scale components with complex three-dimensional shapes with sub-.mu.m accuracy on a four-axis lathe. The device is designed to fit on a commercial diamond turning machine and can adjust the cutting tool position in three orthogonal directions with sub-micrometer resolution. In particular, the tool holder adjusts the tool position using three flexure-based mechanisms, with two flexure mechanisms adjusting the lateral position of the tool to align the tool with the B-axis, and a third flexure mechanism adjusting the height of the tool. Preferably, the flexures are driven by manual micrometer adjusters. In this manner, this tool holder simplifies the process of setting a tool with sub-.mu.m accuracy, to substantially reduce the time required to set the tool.
Engineering visualization utilizing advanced animation
NASA Technical Reports Server (NTRS)
Sabionski, Gunter R.; Robinson, Thomas L., Jr.
1989-01-01
Engineering visualization is the use of computer graphics to depict engineering analysis and simulation in visual form from project planning through documentation. Graphics displays let engineers see data represented dynamically which permits the quick evaluation of results. The current state of graphics hardware and software generally allows the creation of two types of 3D graphics. The use of animated video as an engineering visualization tool is presented. The engineering, animation, and videography aspects of animated video production are each discussed. Specific issues include the integration of staffing expertise, hardware, software, and the various production processes. A detailed explanation of the animation process reveals the capabilities of this unique engineering visualization method. Automation of animation and video production processes are covered and future directions are proposed.
NASA Technical Reports Server (NTRS)
Szczur, Martha R.
1993-01-01
The Transportable Applications Environment (TAE) Plus, developed at NASA's Goddard Space Flight Center, is an advanced portable user interface development which simplifies the process of creating and managing complex application graphical user interfaces (GUI's). TAE Plus supports the rapid prototyping of GUI's and allows applications to be ported easily between different platforms. This paper will discuss the capabilities of the TAE Plus tool, and how it makes the job of designing and developing GUI's easier for application developers. TAE Plus is being applied to many types of applications, and this paper discusses how it has been used both within and outside NASA.
Usability analysis of 2D graphics software for designing technical clothing.
Teodoroski, Rita de Cassia Clark; Espíndola, Edilene Zilma; Silva, Enéias; Moro, Antônio Renato Pereira; Pereira, Vera Lucia D V
2012-01-01
With the advent of technology, the computer became a working tool increasingly present in companies. Its purpose is to increase production and reduce the inherent errors in manual production. The aim of this study was to analyze the usability of 2D graphics software in creating clothing designs by a professional during his work. The movements of the mouse, keyboard and graphical tools were monitored in real time by software Camtasia 7® installed on the user's computer. To register the use of mouse and keyboard we used auxiliary software called MouseMeter®, which quantifies the number of times they pressed the right, middle and left mouse's buttons, the keyboard and also the distance traveled in meters by the cursor on the screen. Data was collected in periods of 15 minutes, 1 hour and 8 hours, consecutively. The results showed that the job is considered repetitive and high demands physical efforts, which can lead to the appearance of repetitive strain injuries. Thus, the goal of minimizing operator efforts and thereby enhance the usability of the examined tool, becomes imperative to replace the mouse by a device called tablet, which also offers an electronic pen and a drawing platform for design development.
A prototype of a beam steering assistant tool for accelerator operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Bickley; P. Chevtsov
2006-10-24
The CEBAF accelerator provides nuclear physics experiments at Jefferson Lab with high quality electron beams. Three experimental end stations can simultaneously receive the beams with different energies and intensities. For each operational mode, the accelerator setup procedures are complicated and require very careful checking of beam spot sizes and positions on multiple beam viewers. To simplify these procedures and make them reproducible, a beam steering assistant GUI tool has been created. The tool is implemented as a multi-window control screen. The screen has an interactive graphical object window, which is an overlay on top of a digitized live video imagemore » from a beam viewer. It allows a user to easily create and edit any graphical objects consisting of text, ellipses, and lines, right above the live beam viewer image and then save them in a file that is called a beam steering template. The template can show, for example, the area within which the beam must always be on the viewer. Later, this template can be loaded in the interactive graphical object window to help accelerator operators steer the beam to the specified area on the viewer.« less
NASA Technical Reports Server (NTRS)
Bailin, Sydney; Paterra, Frank; Henderson, Scott; Truszkowski, Walt
1993-01-01
This paper presents a discussion of current work in the area of graphical modeling and model-based reasoning being undertaken by the Automation Technology Section, Code 522.3, at Goddard. The work was initially motivated by the growing realization that the knowledge acquisition process was a major bottleneck in the generation of fault detection, isolation, and repair (FDIR) systems for application in automated Mission Operations. As with most research activities this work started out with a simple objective: to develop a proof-of-concept system demonstrating that a draft rule-base for a FDIR system could be automatically realized by reasoning from a graphical representation of the system to be monitored. This work was called Knowledge From Pictures (KFP) (Truszkowski et. al. 1992). As the work has successfully progressed the KFP tool has become an environment populated by a set of tools that support a more comprehensive approach to model-based reasoning. This paper continues by giving an overview of the graphical modeling objectives of the work, describing the three tools that now populate the KFP environment, briefly presenting a discussion of related work in the field, and by indicating future directions for the KFP environment.
Hierarchical programming for data storage and visualization
Donovan, John M.; Smith, Peter E.; ,
2001-01-01
Graphics software is an essential tool for interpreting, analyzing, and presenting data from multidimensional hydrodynamic models used in estuarine and coastal ocean studies. The post-processing of time-varying three-dimensional model output presents unique requirements for data visualization because of the large volume of data that can be generated and the multitude of time scales that must be examined. Such data can relate to estuarine or coastal ocean environments and come from numerical models or field instruments. One useful software tool for the display, editing, visualization, and printing of graphical data is the Gr application, written by the first author for use in U.S. Geological Survey San Francisco Bay Program. The Gr application has been made available to the public via the Internet since the year 2000. The Gr application is written in the Java (Sun Microsystems, Nov. 29, 2001) programming language and uses the Extensible Markup Language standard for hierarchical data storage. Gr presents a hierarchy of objects to the user that can be edited using a common interface. Java's object-oriented capabilities allow Gr to treat data, graphics, and tools equally and to save them all to a single XML file.
A Novel Partial Sequence Alignment Tool for Finding Large Deletions
Aruk, Taner; Ustek, Duran; Kursun, Olcay
2012-01-01
Finding large deletions in genome sequences has become increasingly more useful in bioinformatics, such as in clinical research and diagnosis. Although there are a number of publically available next generation sequencing mapping and sequence alignment programs, these software packages do not correctly align fragments containing deletions larger than one kb. We present a fast alignment software package, BinaryPartialAlign, that can be used by wet lab scientists to find long structural variations in their experiments. For BinaryPartialAlign, we make use of the Smith-Waterman (SW) algorithm with a binary-search-based approach for alignment with large gaps that we called partial alignment. BinaryPartialAlign implementation is compared with other straight-forward applications of SW. Simulation results on mtDNA fragments demonstrate the effectiveness (runtime and accuracy) of the proposed method. PMID:22566777
ERIC Educational Resources Information Center
Lowe, Karen
2003-01-01
Discusses the process of weeding, updating, and building a school library media collection that supports the state curriculum. Explains resource alignment, a process for using the shelf list as a tool to analyze and align media center resources to state curricula, and describes a five-year plan and its usefulness for additional funding. (LRW)
SeqLib: a C ++ API for rapid BAM manipulation, sequence alignment and sequence assembly
Wala, Jeremiah; Beroukhim, Rameen
2017-01-01
Abstract We present SeqLib, a C ++ API and command line tool that provides a rapid and user-friendly interface to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly. Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indicates that SeqLib has lower CPU and memory requirements than leading C ++ sequence analysis APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and assemble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional capabilities, including chromosome-aware interval queries and read plotting. Command line tools are available for performing integrated error correction, micro-assemblies and alignment. Availability and Implementation: SeqLib is available on Linux and OSX for the C ++98 standard and later at github.com/walaj/SeqLib. SeqLib is released under the Apache2 license. Additional capabilities for BLAT alignment are available under the BLAT license. Contact: jwala@broadinstitue.org; rameen@broadinstitute.org PMID:28011768
SeqLib: a C ++ API for rapid BAM manipulation, sequence alignment and sequence assembly.
Wala, Jeremiah; Beroukhim, Rameen
2017-03-01
We present SeqLib, a C ++ API and command line tool that provides a rapid and user-friendly interface to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly. Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indicates that SeqLib has lower CPU and memory requirements than leading C ++ sequence analysis APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and assemble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional capabilities, including chromosome-aware interval queries and read plotting. Command line tools are available for performing integrated error correction, micro-assemblies and alignment. SeqLib is available on Linux and OSX for the C ++98 standard and later at github.com/walaj/SeqLib. SeqLib is released under the Apache2 license. Additional capabilities for BLAT alignment are available under the BLAT license. jwala@broadinstitue.org ; rameen@broadinstitute.org. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Analog-to-digital clinical data collection on networked workstations with graphic user interface.
Lunt, D
1991-02-01
An innovative respiratory examination system has been developed that combines physiological response measurement, real-time graphic displays, user-driven operating sequences, and networked file archiving and review into a scientific research and clinical diagnosis tool. This newly constructed computer network is being used to enhance the research center's ability to perform patient pulmonary function examinations. Respiratory data are simultaneously acquired and graphically presented during patient breathing maneuvers and rapidly transformed into graphic and numeric reports, suitable for statistical analysis or database access. The environment consists of the hardware (Macintosh computer, MacADIOS converters, analog amplifiers), the software (HyperCard v2.0, HyperTalk, XCMDs), and the network (AppleTalk, fileservers, printers) as building blocks for data acquisition, analysis, editing, and storage. System operation modules include: Calibration, Examination, Reports, On-line Help Library, Graphic/Data Editing, and Network Storage.
High-speed multiple sequence alignment on a reconfigurable platform.
Oliver, Tim; Schmidt, Bertil; Maskell, Douglas; Nathan, Darran; Clemens, Ralf
2006-01-01
Progressive alignment is a widely used approach to compute multiple sequence alignments (MSAs). However, aligning several hundred sequences by popular progressive alignment tools requires hours on sequential computers. Due to the rapid growth of sequence databases biologists have to compute MSAs in a far shorter time. In this paper we present a new approach to MSA on reconfigurable hardware platforms to gain high performance at low cost. We have constructed a linear systolic array to perform pairwise sequence distance computations using dynamic programming. This results in an implementation with significant runtime savings on a standard FPGA.
Dcode.org anthology of comparative genomic tools.
Loots, Gabriela G; Ovcharenko, Ivan
2005-07-01
Comparative genomics provides the means to demarcate functional regions in anonymous DNA sequences. The successful application of this method to identifying novel genes is currently shifting to deciphering the non-coding encryption of gene regulation across genomes. To facilitate the practical application of comparative sequence analysis to genetics and genomics, we have developed several analytical and visualization tools for the analysis of arbitrary sequences and whole genomes. These tools include two alignment tools, zPicture and Mulan; a phylogenetic shadowing tool, eShadow for identifying lineage- and species-specific functional elements; two evolutionary conserved transcription factor analysis tools, rVista and multiTF; a tool for extracting cis-regulatory modules governing the expression of co-regulated genes, Creme 2.0; and a dynamic portal to multiple vertebrate and invertebrate genome alignments, the ECR Browser. Here, we briefly describe each one of these tools and provide specific examples on their practical applications. All the tools are publicly available at the http://www.dcode.org/ website.
NASA Astrophysics Data System (ADS)
Secretan, Y.
A discussion of the modular program Mikado is presented. Mikado was developed with the goal of creating a flexible graphic tool to display and help analyze the results of finite element fluid flow computations. Mikado works on unstructured meshes, with elements of mixed geometric type, but also offers the possibility of using structured meshes. The program can be operated by both menu and mouse (interactive), or by command file (batch). Mikado is written in FORTRAN, except for a few system dependent subroutines which are in C. It runs presently on Silicon Graphics' workstations and could be easily ported to the IBM-RISC System/6000 family of workstations.
A graphic system for telemetry monitoring and procedure performing at the Telecom SCC
NASA Technical Reports Server (NTRS)
Loubeyre, Jean Philippe
1994-01-01
The increasing amount of telemetry parameters and the increasing complexity of procedures used for the in-orbit satellite follow-up has led to the development of new tools for telemetry monitoring and procedures performing. The name of the system presented here is Graphic Server. It provides an advanced graphic representation of the satellite subsystems, including real-time telemetry and alarm displaying, and a powerful help for decision making with on line contingency procedures. Used for 2.5 years at the TELECOM S.C.C. for procedure performing, it has become an essential part of the S.C.C.
NASA Technical Reports Server (NTRS)
Phillips, Shaun
1996-01-01
The Graphical Observation Scheduling System (GROSS) and its functionality and editing capabilities are reported on. The GROSS system was developed as a replacement for a suite of existing programs and associated processes with the aim of: providing a software tool that combines the functionality of several of the existing programs, and provides a Graphical User Interface (GUI) that gives greater data visibility and editing capabilities. It is considered that the improved editing capability provided by this approach enhanced the efficiency of the second astronomical Spacelab mission's (ASTRO-2) mission planning.
GOSSIP: a method for fast and accurate global alignment of protein structures.
Kifer, I; Nussinov, R; Wolfson, H J
2011-04-01
The database of known protein structures (PDB) is increasing rapidly. This results in a growing need for methods that can cope with the vast amount of structural data. To analyze the accumulating data, it is important to have a fast tool for identifying similar structures and clustering them by structural resemblance. Several excellent tools have been developed for the comparison of protein structures. These usually address the task of local structure alignment, an important yet computationally intensive problem due to its complexity. It is difficult to use such tools for comparing a large number of structures to each other at a reasonable time. Here we present GOSSIP, a novel method for a global all-against-all alignment of any set of protein structures. The method detects similarities between structures down to a certain cutoff (a parameter of the program), hence allowing it to detect similar structures at a much higher speed than local structure alignment methods. GOSSIP compares many structures in times which are several orders of magnitude faster than well-known available structure alignment servers, and it is also faster than a database scanning method. We evaluate GOSSIP both on a dataset of short structural fragments and on two large sequence-diverse structural benchmarks. Our conclusions are that for a threshold of 0.6 and above, the speed of GOSSIP is obtained with no compromise of the accuracy of the alignments or of the number of detected global similarities. A server, as well as an executable for download, are available at http://bioinfo3d.cs.tau.ac.il/gossip/.
Intuitive Tools for the Design and Analysis of Communication Payloads for Satellites
NASA Technical Reports Server (NTRS)
Culver, Michael R.; Soong, Christine; Warner, Joseph D.
2014-01-01
In an effort to make future communications satellite payload design more efficient and accessible, two tools were created with intuitive graphical user interfaces (GUIs). The first tool allows payload designers to graphically design their payload by using simple drag and drop of payload components onto a design area within the program. Information about each picked component is pulled from a database of common space-qualified communication components sold by commerical companies. Once a design is completed, various reports can be generated, such as the Master Equipment List. The second tool is a link budget calculator designed specifically for ease of use. Other features of this tool include being able to access a database of NASA ground based apertures for near Earth and Deep Space communication, the Tracking and Data Relay Satellite System (TDRSS) base apertures, and information about the solar system relevant to link budget calculations. The link budget tool allows for over 50 different combinations of user inputs, eliminating the need for multiple spreadsheets and the user errors associated with using them. Both of the aforementioned tools increase the productivity of space communication systems designers, and have the colloquial latitude to allow non-communication experts to design preliminary communication payloads.
2013-01-01
Background Tools to support clinical or patient decision-making in the treatment/management of a health condition are used in a range of clinical settings for numerous preference-sensitive healthcare decisions. Their impact in clinical practice is largely dependent on their quality across a range of domains. We critically analysed currently available tools to support decision making or patient understanding in the treatment of acute ischaemic stroke with intravenous thrombolysis, as an exemplar to provide clinicians/researchers with practical guidance on development, evaluation and implementation of such tools for other preference-sensitive treatment options/decisions in different clinical contexts. Methods Tools were identified from bibliographic databases, Internet searches and a survey of UK and North American stroke networks. Two reviewers critically analysed tools to establish: information on benefits/risks of thrombolysis included in tools, and the methods used to convey probabilistic information (verbal descriptors, numerical and graphical); adherence to guidance on presenting outcome probabilities (IPDASi probabilities items) and information content (Picker Institute Checklist); readability (Fog Index); and the extent that tools had comprehensive development processes. Results Nine tools of 26 identified included information on a full range of benefits/risks of thrombolysis. Verbal descriptors, frequencies and percentages were used to convey probabilistic information in 20, 19 and 18 tools respectively, whilst nine used graphical methods. Shortcomings in presentation of outcome probabilities (e.g. omitting outcomes without treatment) were identified. Patient information tools had an aggregate median Fog index score of 10. None of the tools had comprehensive development processes. Conclusions Tools to support decision making or patient understanding in the treatment of acute stroke with thrombolysis have been sub-optimally developed. Development of tools should utilise mixed methods and strategies to meaningfully involve clinicians, patients and their relatives in an iterative design process; include evidence-based methods to augment interpretability of textual and probabilistic information (e.g. graphical displays showing natural frequencies) on the full range of outcome states associated with available options; and address patients with different levels of health literacy. Implementation of tools will be enhanced when mechanisms are in place to periodically assess the relevance of tools and where necessary, update the mode of delivery, form and information content. PMID:23777368
Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data.
Dunn, Joshua G; Weissman, Jonathan S
2016-11-22
Next-generation sequencing (NGS) informs many biological questions with unprecedented depth and nucleotide resolution. These assays have created a need for analytical tools that enable users to manipulate data nucleotide-by-nucleotide robustly and easily. Furthermore, because many NGS assays encode information jointly within multiple properties of read alignments - for example, in ribosome profiling, the locations of ribosomes are jointly encoded in alignment coordinates and length - analytical tools are often required to extract the biological meaning from the alignments before analysis. Many assay-specific pipelines exist for this purpose, but there remains a need for user-friendly, generalized, nucleotide-resolution tools that are not limited to specific experimental regimes or analytical workflows. Plastid is a Python library designed specifically for nucleotide-resolution analysis of genomics and NGS data. As such, Plastid is designed to extract assay-specific information from read alignments while retaining generality and extensibility to novel NGS assays. Plastid represents NGS and other biological data as arrays of values associated with genomic or transcriptomic positions, and contains configurable tools to convert data from a variety of sources to such arrays. Plastid also includes numerous tools to manipulate even discontinuous genomic features, such as spliced transcripts, with nucleotide precision. Plastid automatically handles conversion between genomic and feature-centric coordinates, accounting for splicing and strand, freeing users of burdensome accounting. Finally, Plastid's data models use consistent and familiar biological idioms, enabling even beginners to develop sophisticated analytical workflows with minimal effort. Plastid is a versatile toolkit that has been used to analyze data from multiple NGS assays, including RNA-seq, ribosome profiling, and DMS-seq. It forms the genomic engine of our ORF annotation tool, ORF-RATER, and is readily adapted to novel NGS assays. Examples, tutorials, and extensive documentation can be found at https://plastid.readthedocs.io .
Ytow, Nozomi
2016-01-01
The Species API of the Global Biodiversity Information Facility (GBIF) provides public access to taxonomic data aggregated from multiple data sources. Each data source follows its own classification which can be inconsistent with classifications from other sources. Even with a reference classification e.g. the GBIF Backbone taxonomy, a comprehensive method to compare classifications in the data aggregation is essential, especially for non-expert users. A Java application was developed to compare multiple taxonomies graphically using classification data acquired from GBIF's ChecklistBank via the GBIF Species API. It uses a table to display taxonomies where each column represents a taxonomy under comparison, with an aligner column to organise taxa by name. Each cell contains the name of a taxon if the classification in that column contains the name. Each column also has a cell showing the hierarchy of the taxonomy by a folder metaphor where taxa are aligned and synchronised in the aligner column. A set of those comparative tables shows taxa categorised by relationship between taxonomies. The result set is also available as tables in an Excel format file.
NUREBASE: database of nuclear hormone receptors.
Duarte, Jorge; Perrière, Guy; Laudet, Vincent; Robinson-Rechavi, Marc
2002-01-01
Nuclear hormone receptors are an abundant class of ligand activated transcriptional regulators, found in varying numbers in all animals. Based on our experience of managing the official nomenclature of nuclear receptors, we have developed NUREBASE, a database containing protein and DNA sequences, reviewed protein alignments and phylogenies, taxonomy and annotations for all nuclear receptors. The reviewed NUREBASE is completed by NUREBASE_DAILY, automatically updated every 24 h. Both databases are organized under a client/server architecture, with a client written in Java which runs on any platform. This client, named FamFetch, integrates a graphical interface allowing selection of families, and manipulation of phylogenies and alignments. NUREBASE sequence data is also accessible through a World Wide Web server, allowing complex queries. All information on accessing and installing NUREBASE may be found at http://www.ens-lyon.fr/LBMC/laudet/nurebase.html.
WebLogo: A Sequence Logo Generator
Crooks, Gavin E.; Hon, Gary; Chandonia, John-Marc; Brenner, Steven E.
2004-01-01
WebLogo generates sequence logos, graphical representations of the patterns within a multiple sequence alignment. Sequence logos provide a richer and more precise description of sequence similarity than consensus sequences and can rapidly reveal significant features of the alignment otherwise difficult to perceive. Each logo consists of stacks of letters, one stack for each position in the sequence. The overall height of each stack indicates the sequence conservation at that position (measured in bits), whereas the height of symbols within the stack reflects the relative frequency of the corresponding amino or nucleic acid at that position. WebLogo has been enhanced recently with additional features and options, to provide a convenient and highly configurable sequence logo generator. A command line interface and the complete, open WebLogo source code are available for local installation and customization. PMID:15173120
Foldit Standalone: a video game-derived protein structure manipulation interface using Rosetta.
Kleffner, Robert; Flatten, Jeff; Leaver-Fay, Andrew; Baker, David; Siegel, Justin B; Khatib, Firas; Cooper, Seth
2017-09-01
Foldit Standalone is an interactive graphical interface to the Rosetta molecular modeling package. In contrast to most command-line or batch interactions with Rosetta, Foldit Standalone is designed to allow easy, real-time, direct manipulation of protein structures, while also giving access to the extensive power of Rosetta computations. Derived from the user interface of the scientific discovery game Foldit (itself based on Rosetta), Foldit Standalone has added more advanced features and removed the competitive game elements. Foldit Standalone was built from the ground up with a custom rendering and event engine, configurable visualizations and interactions driven by Rosetta. Foldit Standalone contains, among other features: electron density and contact map visualizations, multiple sequence alignment tools for template-based modeling, rigid body transformation controls, RosettaScripts support and an embedded Lua interpreter. Foldit Standalone is available for download at https://fold.it/standalone , under the Rosetta license, which is free for academic and non-profit users. It is implemented in cross-platform C ++ and binary executables are available for Windows, macOS and Linux. scooper@ccs.neu.edu. © The Author(s) 2017. Published by Oxford University Press.
Visualization Case Study: Eyjafjallajökull Ash (Invited)
NASA Astrophysics Data System (ADS)
Simmon, R.
2010-12-01
Although data visualization is a powerful tool in Earth science, the resulting imagery is often complex and difficult to interpret for non-experts. Students, journalists, web site visitors, or museum attendees often have difficulty understanding some of the imagery scientists create, particularly false-color imagery and data-driven maps. Many visualizations are designed for data exploration or peer communication, and often follow discipline conventions or are constrained by software defaults. Different techniques are necessary for communication with a broad audience. Data visualization combines ideas from cognitive science, graphic design, and cartography, and applies them to the challenge of presenting data clearly. Visualizers at NASA's Earth Observatory web site (earthobservatory.nasa.gov) use these techniques to craft remote sensing imagery for interested but non-expert readers. Images range from natural-color satellite images and multivariate maps to illustrations of abstract concepts. I will use imagery of the eruption of Iceland's Eyjafjallajökull volcano as a case study, showing specific applications of general design techniques. By using color carefully (including contextual data), precisely aligning disparate data sets, and highlighting important features, we crafted an image that clearly conveys the complex vertical and horizontal distribution of airborne ash.
Prefiltering Model for Homology Detection Algorithms on GPU.
Retamosa, Germán; de Pedro, Luis; González, Ivan; Tamames, Javier
2016-01-01
Homology detection has evolved over the time from heavy algorithms based on dynamic programming approaches to lightweight alternatives based on different heuristic models. However, the main problem with these algorithms is that they use complex statistical models, which makes it difficult to achieve a relevant speedup and find exact matches with the original results. Thus, their acceleration is essential. The aim of this article was to prefilter a sequence database. To make this work, we have implemented a groundbreaking heuristic model based on NVIDIA's graphics processing units (GPUs) and multicore processors. Depending on the sensitivity settings, this makes it possible to quickly reduce the sequence database by factors between 50% and 95%, while rejecting no significant sequences. Furthermore, this prefiltering application can be used together with multiple homology detection algorithms as a part of a next-generation sequencing system. Extensive performance and accuracy tests have been carried out in the Spanish National Centre for Biotechnology (NCB). The results show that GPU hardware can accelerate the execution times of former homology detection applications, such as National Centre for Biotechnology Information (NCBI), Basic Local Alignment Search Tool for Proteins (BLASTP), up to a factor of 4.
DEMO: Sequence Alignment to Predict Across Species Susceptibility
The US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility tool (SeqAPASS; https://seqapass.epa.gov/seqapass/) was developed to comparatively evaluate protein sequence and structural similarity across species as a means to extrapolate toxic...
2011-01-01
Background Comparing biological time series data across different conditions, or different specimens, is a common but still challenging task. Algorithms aligning two time series represent a valuable tool for such comparisons. While many powerful computation tools for time series alignment have been developed, they do not provide significance estimates for time shift measurements. Results Here, we present an extended version of the original DTW algorithm that allows us to determine the significance of time shift estimates in time series alignments, the DTW-Significance (DTW-S) algorithm. The DTW-S combines important properties of the original algorithm and other published time series alignment tools: DTW-S calculates the optimal alignment for each time point of each gene, it uses interpolated time points for time shift estimation, and it does not require alignment of the time-series end points. As a new feature, we implement a simulation procedure based on parameters estimated from real time series data, on a series-by-series basis, allowing us to determine the false positive rate (FPR) and the significance of the estimated time shift values. We assess the performance of our method using simulation data and real expression time series from two published primate brain expression datasets. Our results show that this method can provide accurate and robust time shift estimates for each time point on a gene-by-gene basis. Using these estimates, we are able to uncover novel features of the biological processes underlying human brain development and maturation. Conclusions The DTW-S provides a convenient tool for calculating accurate and robust time shift estimates at each time point for each gene, based on time series data. The estimates can be used to uncover novel biological features of the system being studied. The DTW-S is freely available as an R package TimeShift at http://www.picb.ac.cn/Comparative/data.html. PMID:21851598
Yuan, Yuan; Chen, Yi-Ping Phoebe; Ni, Shengyu; Xu, Augix Guohua; Tang, Lin; Vingron, Martin; Somel, Mehmet; Khaitovich, Philipp
2011-08-18
Comparing biological time series data across different conditions, or different specimens, is a common but still challenging task. Algorithms aligning two time series represent a valuable tool for such comparisons. While many powerful computation tools for time series alignment have been developed, they do not provide significance estimates for time shift measurements. Here, we present an extended version of the original DTW algorithm that allows us to determine the significance of time shift estimates in time series alignments, the DTW-Significance (DTW-S) algorithm. The DTW-S combines important properties of the original algorithm and other published time series alignment tools: DTW-S calculates the optimal alignment for each time point of each gene, it uses interpolated time points for time shift estimation, and it does not require alignment of the time-series end points. As a new feature, we implement a simulation procedure based on parameters estimated from real time series data, on a series-by-series basis, allowing us to determine the false positive rate (FPR) and the significance of the estimated time shift values. We assess the performance of our method using simulation data and real expression time series from two published primate brain expression datasets. Our results show that this method can provide accurate and robust time shift estimates for each time point on a gene-by-gene basis. Using these estimates, we are able to uncover novel features of the biological processes underlying human brain development and maturation. The DTW-S provides a convenient tool for calculating accurate and robust time shift estimates at each time point for each gene, based on time series data. The estimates can be used to uncover novel biological features of the system being studied. The DTW-S is freely available as an R package TimeShift at http://www.picb.ac.cn/Comparative/data.html.
Chromaligner: a web server for chromatogram alignment.
Wang, San-Yuan; Ho, Tsung-Jung; Kuo, Ching-Hua; Tseng, Yufeng J
2010-09-15
Chromaligner is a tool for chromatogram alignment to align retention time for chromatographic methods coupled to spectrophotometers such as high performance liquid chromatography and capillary electrophoresis for metabolomics works. Chromaligner resolves peak shifts by a constrained chromatogram alignment. For a collection of chromatograms and a set of defined peaks, Chromaligner aligns the chromatograms on defined peaks using correlation warping (COW). Chromaligner is faster than the original COW algorithm by k(2) times, where k is the number of defined peaks in a chromatogram. It also provides alignments based on known component peaks to reach the best results for further chemometric analysis. Chromaligner is freely accessible at http://cmdd.csie.ntu.edu.tw/~chromaligner.
The Brain Database: A Multimedia Neuroscience Database for Research and Teaching
Wertheim, Steven L.
1989-01-01
The Brain Database is an information tool designed to aid in the integration of clinical and research results in neuroanatomy and regional biochemistry. It can handle a wide range of data types including natural images, 2 and 3-dimensional graphics, video, numeric data and text. It is organized around three main entities: structures, substances and processes. The database will support a wide variety of graphical interfaces. Two sample interfaces have been made. This tool is intended to serve as one component of a system that would allow neuroscientists and clinicians 1) to represent clinical and experimental data within a common framework 2) to compare results precisely between experiments and among laboratories, 3) to use computing tools as an aid in collaborative work and 4) to contribute to a shared and accessible body of knowledge about the nervous system.
A Visual Tool for Computer Supported Learning: The Robot Motion Planning Example
ERIC Educational Resources Information Center
Elnagar, Ashraf; Lulu, Leena
2007-01-01
We introduce an effective computer aided learning visual tool (CALVT) to teach graph-based applications. We present the robot motion planning problem as an example of such applications. The proposed tool can be used to simulate and/or further to implement practical systems in different areas of computer science such as graphics, computational…
Evaluating the Potential of Commercial GIS for Accelerator Configuration Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
T.L. Larrieu; Y.R. Roblin; K. White
2005-10-10
The Geographic Information System (GIS) is a tool used by industries needing to track information about spatially distributed assets. A water utility, for example, must know not only the precise location of each pipe and pump, but also the respective pressure rating and flow rate of each. In many ways, an accelerator such as CEBAF (Continuous Electron Beam Accelerator Facility) can be viewed as an ''electron utility''. Whereas the water utility uses pipes and pumps, the ''electron utility'' uses magnets and RF cavities. At Jefferson lab we are exploring the possibility of implementing ESRI's ArcGIS as the framework for buildingmore » an all-encompassing accelerator configuration database that integrates location, configuration, maintenance, and connectivity details of all hardware and software. The possibilities of doing so are intriguing. From the GIS, software such as the model server could always extract the most-up-to-date layout information maintained by the Survey & Alignment for lattice modeling. The Mechanical Engineering department could use ArcGIS tools to generate CAD drawings of machine segments from the same database. Ultimately, the greatest benefit of the GIS implementation could be to liberate operators and engineers from the limitations of the current system-by-system view of machine configuration and allow a more integrated regional approach. The commercial GIS package provides a rich set of tools for database-connectivity, versioning, distributed editing, importing and exporting, and graphical analysis and querying, and therefore obviates the need for much custom development. However, formidable challenges to implementation exist and these challenges are not only technical and manpower issues, but also organizational ones. The GIS approach would crosscut organizational boundaries and require departments, which heretofore have had free reign to manage their own data, to cede some control and agree to a centralized framework.« less
miRCat2: accurate prediction of plant and animal microRNAs from next-generation sequencing datasets
Paicu, Claudia; Mohorianu, Irina; Stocks, Matthew; Xu, Ping; Coince, Aurore; Billmeier, Martina; Dalmay, Tamas; Moulton, Vincent; Moxon, Simon
2017-01-01
Abstract Motivation MicroRNAs are a class of ∼21–22 nt small RNAs which are excised from a stable hairpin-like secondary structure. They have important gene regulatory functions and are involved in many pathways including developmental timing, organogenesis and development in eukaryotes. There are several computational tools for miRNA detection from next-generation sequencing datasets. However, many of these tools suffer from high false positive and false negative rates. Here we present a novel miRNA prediction algorithm, miRCat2. miRCat2 incorporates a new entropy-based approach to detect miRNA loci, which is designed to cope with the high sequencing depth of current next-generation sequencing datasets. It has a user-friendly interface and produces graphical representations of the hairpin structure and plots depicting the alignment of sequences on the secondary structure. Results We test miRCat2 on a number of animal and plant datasets and present a comparative analysis with miRCat, miRDeep2, miRPlant and miReap. We also use mutants in the miRNA biogenesis pathway to evaluate the predictions of these tools. Results indicate that miRCat2 has an improved accuracy compared with other methods tested. Moreover, miRCat2 predicts several new miRNAs that are differentially expressed in wild-type versus mutants in the miRNA biogenesis pathway. Availability and Implementation miRCat2 is part of the UEA small RNA Workbench and is freely available from http://srna-workbench.cmp.uea.ac.uk/. Contact v.moulton@uea.ac.uk or s.moxon@uea.ac.uk Supplementary information Supplementary data are available at Bioinformatics online. PMID:28407097
Implementation of a parallel protein structure alignment service on cloud.
Hung, Che-Lun; Lin, Yaw-Ling
2013-01-01
Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform.
Implementation of a Parallel Protein Structure Alignment Service on Cloud
Hung, Che-Lun; Lin, Yaw-Ling
2013-01-01
Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform. PMID:23671842
Collimator with attachment mechanism and system
Kross, Brian J [Yorktown, VA; McKisson, John [Hampton, VA; Stolin, Aleksandr [Morgantown, WV; Weisenberger, Andrew G [Yorktown, VA; Zorn, Carl [Yorktown, VA
2012-07-10
A self-aligning collimator for a radiation imaging device that is secured and aligned through the use of a plurality of small magnets. The collimator allows for the rapid exchange, removal, or addition of collimators for the radiation imaging device without the need for tools. The accompanying method discloses the use of magnets and accompanying magnetic fields to align and secure collimators in a radiation imaging assembly.
Internet MEMS design tools based on component technology
NASA Astrophysics Data System (ADS)
Brueck, Rainer; Schumer, Christian
1999-03-01
The micro electromechanical systems (MEMS) industry in Europe is characterized by small and medium sized enterprises specialized on products to solve problems in specific domains like medicine, automotive sensor technology, etc. In this field of business the technology driven design approach known from micro electronics is not appropriate. Instead each design problem aims at its own, specific technology to be used for the solution. The variety of technologies at hand, like Si-surface, Si-bulk, LIGA, laser, precision engineering requires a huge set of different design tools to be available. No single SME can afford to hold licenses for all these tools. This calls for a new and flexible way of designing, implementing and distributing design software. The Internet provides a flexible manner of offering software access along with methodologies of flexible licensing e.g. on a pay-per-use basis. New communication technologies like ADSL, TV cable of satellites as carriers promise to offer a bandwidth sufficient even for interactive tools with graphical interfaces in the near future. INTERLIDO is an experimental tool suite for process specification and layout verification for lithography based MEMS technologies to be accessed via the Internet. The first version provides a Java implementation even including a graphical editor for process specification. Currently, a new version is brought into operation that is based on JavaBeans component technology. JavaBeans offers the possibility to realize independent interactive design assistants, like a design rule checking assistants, a process consistency checking assistants, a technology definition assistants, a graphical editor assistants, etc. that may reside distributed over the Internet, communicating via Internet protocols. Each potential user thus is able to configure his own dedicated version of a design tool set dedicated to the requirements of the current problem to be solved.
NASA Astrophysics Data System (ADS)
Unemi, Tatsuo
This chapter describes a basic framework of simulated breeding, a type of interactive evolutionary computing to breed artifacts, whose origin is Blind Watchmaker by Dawkins. These methods make it easy for humans to design a complex object adapted to his/her subjective criteria, just similarly to agricultural products we have been developing over thousands of years. Starting from randomly initialized genome, the solution candidates are improved through several generations with artificial selection. The graphical user interface helps the process of breeding with techniques of multifield user interface and partial breeding. The former improves the diversity of individuals that prevents being trapped at local optimum. The latter makes it possible for the user to fix features he/she already satisfied. These methods were examined through artistic applications by the author: SBART for graphics art and SBEAT for music. Combining with a direct genome editor and exportation to another graphical or musical tool on the computer, they can be powerful tools for artistic creation. These systems may contribute to the creation of a type of new culture.
Malhis, Nawar; Butterfield, Yaron S N; Ester, Martin; Jones, Steven J M
2009-01-01
A plethora of alignment tools have been created that are designed to best fit different types of alignment conditions. While some of these are made for aligning Illumina Sequence Analyzer reads, none of these are fully utilizing its probability (prb) output. In this article, we will introduce a new alignment approach (Slider) that reduces the alignment problem space by utilizing each read base's probabilities given in the prb files. Compared with other aligners, Slider has higher alignment accuracy and efficiency. In addition, given that Slider matches bases with probabilities other than the most probable, it significantly reduces the percentage of base mismatches. The result is that its SNP predictions are more accurate than other SNP prediction approaches used today that start from the most probable sequence, including those using base quality.
Mechanized fluid connector and assembly tool system with ball detents
NASA Technical Reports Server (NTRS)
Zentner, Ronald C. (Inventor); Smith, Steven A. (Inventor)
1991-01-01
A fluid connector system is disclosed which includes a modified plumbing union having a rotatable member for drawing said union into a fluid tight condition. A drive tool is electric motor actuated and includes a reduction gear train providing an output gear engaging an integral peripheral spur gear on the rotatable member. Coaxial alignment means are attached to both the connector assembly and the drive tool. A hand lever actuated latching system includes a plurality of circumferentially spaced latching balls selectively wedged against the alignment means attached to the connector assembly or to secure the drive tool with its output gear in mesh with the integral peripheral spur gear. The drive motor is torque, speed, and direction controllable.
Tool holder for preparation and inspection of a radiused edge cutting tool
Asmanes, Charles
1979-01-01
A tool holding fixture is provided for removably holding a radiused edge cutting tool in a tool edge lapping apparatus. The fixture allows the operator to preset the lapping radius and angle before the tool holder is placed in the fixture and the holder may be removed from the lapping apparatus to inspect the tool and simply replaced in the fixture to continue lapping in accordance with a precise alignment without realignment of the tool relative to the lap. The tool holder includes a pair of self aligning bearings in the form of precision formed steel balls connected together by a rigid shaft. The tool is held by an arm extending from the shaft and the balls set in fixed position bearing cups and the holder is oscillated back and forth about a fixed axis of rotation to lap the tool radius by means of a reversibly driven belt-pulley arrangement coupled to the shaft between the bearings. To temporarily remove the holder, the drive belt is slipped over the rearward end of the holder and the holder is lifted out of the bearing cups.
DCODE.ORG Anthology of Comparative Genomic Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loots, G G; Ovcharenko, I
2005-01-11
Comparative genomics provides the means to demarcate functional regions in anonymous DNA sequences. The successful application of this method to identifying novel genes is currently shifting to deciphering the noncoding encryption of gene regulation across genomes. To facilitate the use of comparative genomics to practical applications in genetics and genomics we have developed several analytical and visualization tools for the analysis of arbitrary sequences and whole genomes. These tools include two alignment tools: zPicture and Mulan; a phylogenetic shadowing tool: eShadow for identifying lineage- and species-specific functional elements; two evolutionary conserved transcription factor analysis tools: rVista and multiTF; a toolmore » for extracting cis-regulatory modules governing the expression of co-regulated genes, CREME; and a dynamic portal to multiple vertebrate and invertebrate genome alignments, the ECR Browser. Here we briefly describe each one of these tools and provide specific examples on their practical applications. All the tools are publicly available at the http://www.dcode.org/ web site.« less
Zhou, Yanli; Faber, Tracy L.; Patel, Zenic; Folks, Russell D.; Cheung, Alice A.; Garcia, Ernest V.; Soman, Prem; Li, Dianfu; Cao, Kejiang; Chen, Ji
2013-01-01
Objective Left ventricular (LV) function and dyssynchrony parameters measured from serial gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) using blinded processing had a poorer repeatability than when manual side-by-side processing was used. The objective of this study was to validate whether an automatic alignment tool can reduce the variability of LV function and dyssynchrony parameters in serial gated SPECT MPI. Methods Thirty patients who had undergone serial gated SPECT MPI were prospectively enrolled in this study. Thirty minutes after the first acquisition, each patient was repositioned and a gated SPECT MPI image was reacquired. The two data sets were first processed blinded from each other by the same technologist in different weeks. These processed data were then realigned by the automatic tool, and manual side-by-side processing was carried out. All processing methods used standard iterative reconstruction and Butterworth filtering. The Emory Cardiac Toolbox was used to measure the LV function and dyssynchrony parameters. Results The automatic tool failed in one patient, who had a large, severe scar in the inferobasal wall. In the remaining 29 patients, the repeatability of the LV function and dyssynchrony parameters after automatic alignment was significantly improved from blinded processing and was comparable to manual side-by-side processing. Conclusion The automatic alignment tool can be an alternative method to manual side-by-side processing to improve the repeatability of LV function and dyssynchrony measurements by serial gated SPECT MPI. PMID:23211996
Brown, Alan P; Drew, Philip; Knight, Brian; Marc, Philippe; Troth, Sean; Wuersch, Kuno; Zandee, Joyce
2016-12-01
Histopathology data comprise a critical component of pharmaceutical toxicology studies and are typically presented as finding incidence counts and severity scores per organ, and tabulated on multiple pages which can be challenging for review and aggregation of results. However, the SEND (Standard for Exchange of Nonclinical Data) standard provides a means for collecting and managing histopathology data in a uniform fashion which can allow informatics systems to archive, display and analyze data in novel ways. Various software applications have become available to convert histopathology data into graphical displays for analyses. A subgroup of the FDA-PhUSE Nonclinical Working Group conducted intra-industry surveys regarding the use of graphical displays of histopathology data. Visual cues, use-cases, the value of cross-domain and cross-study visualizations, and limitations were topics for discussion in the context of the surveys. The subgroup came to the following conclusions. Graphical displays appear advantageous as a communication tool to both pathologists and non-pathologists, and provide an efficient means for communicating pathology findings to project teams. Graphics can support hypothesis-generation which could include cross-domain interactive visualizations and/-or aggregating large datasets from multiple studies to observe and/or display patterns and trends. Incorporation of the SEND standard will provide a platform by which visualization tools will be able to aggregate, select and display information from complex and disparate datasets. Copyright © 2016 Elsevier Inc. All rights reserved.
Self-aligning fixture used in lathe chuck jaw refacing
NASA Technical Reports Server (NTRS)
Linn, C. C.
1965-01-01
Self-aligning tool positions and rigidly holds lathe chuck jaws for refacing and truing of the clamping surface. The jaws clamp the fixture in the manner of clamping a workpiece. The fixture can be modified to accommodate four-jawed checks.
Functional Alignment of Metabolic Networks.
Mazza, Arnon; Wagner, Allon; Ruppin, Eytan; Sharan, Roded
2016-05-01
Network alignment has become a standard tool in comparative biology, allowing the inference of protein function, interaction, and orthology. However, current alignment techniques are based on topological properties of networks and do not take into account their functional implications. Here we propose, for the first time, an algorithm to align two metabolic networks by taking advantage of their coupled metabolic models. These models allow us to assess the functional implications of genes or reactions, captured by the metabolic fluxes that are altered following their deletion from the network. Such implications may spread far beyond the region of the network where the gene or reaction lies. We apply our algorithm to align metabolic networks from various organisms, ranging from bacteria to humans, showing that our alignment can reveal functional orthology relations that are missed by conventional topological alignments.
Grasping Reality Through Illusion: Interactive Graphics Serving Science
1988-03-01
SIGGRAPH, or riding techniques to the enhancement of scientific computing. StarTours at Disneyland shows how stunningly far we ........ have come. We need...supercomputer References matching and steering tools. Such tools must be Bergman, L., Fuchs, H., Grant , E., Spach, S. [1986] universal and application
A software tool for analyzing multichannel cochlear implant signals.
Lai, Wai Kong; Bögli, Hans; Dillier, Norbert
2003-10-01
A useful and convenient means to analyze the radio frequency (RF) signals being sent by a speech processor to a cochlear implant would be to actually capture and display them with appropriate software. This is particularly useful for development or diagnostic purposes. sCILab (Swiss Cochlear Implant Laboratory) is such a PC-based software tool intended for the Nucleus family of Multichannel Cochlear Implants. Its graphical user interface provides a convenient and intuitive means for visualizing and analyzing the signals encoding speech information. Both numerical and graphic displays are available for detailed examination of the captured CI signals, as well as an acoustic simulation of these CI signals. sCILab has been used in the design and verification of new speech coding strategies, and has also been applied as an analytical tool in studies of how different parameter settings of existing speech coding strategies affect speech perception. As a diagnostic tool, it is also useful for troubleshooting problems with the external equipment of the cochlear implant systems.
ARX - A Comprehensive Tool for Anonymizing Biomedical Data
Prasser, Fabian; Kohlmayer, Florian; Lautenschläger, Ronald; Kuhn, Klaus A.
2014-01-01
Collaboration and data sharing have become core elements of biomedical research. Especially when sensitive data from distributed sources are linked, privacy threats have to be considered. Statistical disclosure control allows the protection of sensitive data by introducing fuzziness. Reduction of data quality, however, needs to be balanced against gains in protection. Therefore, tools are needed which provide a good overview of the anonymization process to those responsible for data sharing. These tools require graphical interfaces and the use of intuitive and replicable methods. In addition, extensive testing, documentation and openness to reviews by the community are important. Existing publicly available software is limited in functionality, and often active support is lacking. We present ARX, an anonymization tool that i) implements a wide variety of privacy methods in a highly efficient manner, ii) provides an intuitive cross-platform graphical interface, iii) offers a programming interface for integration into other software systems, and iv) is well documented and actively supported. PMID:25954407
Food Web Designer: a flexible tool to visualize interaction networks.
Sint, Daniela; Traugott, Michael
Species are embedded in complex networks of ecological interactions and assessing these networks provides a powerful approach to understand what the consequences of these interactions are for ecosystem functioning and services. This is mandatory to develop and evaluate strategies for the management and control of pests. Graphical representations of networks can help recognize patterns that might be overlooked otherwise. However, there is a lack of software which allows visualizing these complex interaction networks. Food Web Designer is a stand-alone, highly flexible and user friendly software tool to quantitatively visualize trophic and other types of bipartite and tripartite interaction networks. It is offered free of charge for use on Microsoft Windows platforms. Food Web Designer is easy to use without the need to learn a specific syntax due to its graphical user interface. Up to three (trophic) levels can be connected using links cascading from or pointing towards the taxa within each level to illustrate top-down and bottom-up connections. Link width/strength and abundance of taxa can be quantified, allowing generating fully quantitative networks. Network datasets can be imported, saved for later adjustment and the interaction webs can be exported as pictures for graphical display in different file formats. We show how Food Web Designer can be used to draw predator-prey and host-parasitoid food webs, demonstrating that this software is a simple and straightforward tool to graphically display interaction networks for assessing pest control or any other type of interaction in both managed and natural ecosystems from an ecological network perspective.
Graphics simulation and training aids for advanced teleoperation
NASA Technical Reports Server (NTRS)
Kim, Won S.; Schenker, Paul S.; Bejczy, Antal K.
1993-01-01
Graphics displays can be of significant aid in accomplishing a teleoperation task throughout all three phases of off-line task analysis and planning, operator training, and online operation. In the first phase, graphics displays provide substantial aid to investigate work cell layout, motion planning with collision detection and with possible redundancy resolution, and planning for camera views. In the second phase, graphics displays can serve as very useful tools for introductory training of operators before training them on actual hardware. In the third phase, graphics displays can be used for previewing planned motions and monitoring actual motions in any desired viewing angle, or, when communication time delay prevails, for providing predictive graphics overlay on the actual camera view of the remote site to show the non-time-delayed consequences of commanded motions in real time. This paper addresses potential space applications of graphics displays in all three operational phases of advanced teleoperation. Possible applications are illustrated with techniques developed and demonstrated in the Advanced Teleoperation Laboratory at JPL. The examples described include task analysis and planning of a simulated Solar Maximum Satellite Repair task, a novel force-reflecting teleoperation simulator for operator training, and preview and predictive displays for on-line operations.
The design of an intelligent human-computer interface for the test, control and monitor system
NASA Technical Reports Server (NTRS)
Shoaff, William D.
1988-01-01
The graphical intelligence and assistance capabilities of a human-computer interface for the Test, Control, and Monitor System at Kennedy Space Center are explored. The report focuses on how a particular commercial off-the-shelf graphical software package, Data Views, can be used to produce tools that build widgets such as menus, text panels, graphs, icons, windows, and ultimately complete interfaces for monitoring data from an application; controlling an application by providing input data to it; and testing an application by both monitoring and controlling it. A complete set of tools for building interfaces is described in a manual for the TCMS toolkit. Simple tools create primitive widgets such as lines, rectangles and text strings. Intermediate level tools create pictographs from primitive widgets, and connect processes to either text strings or pictographs. Other tools create input objects; Data Views supports output objects directly, thus output objects are not considered. Finally, a set of utilities for executing, monitoring use, editing, and displaying the content of interfaces is included in the toolkit.
NASA Technical Reports Server (NTRS)
Szczur, Martha R.
1989-01-01
The Transportable Applications Environment Plus (TAE Plus), developed by NASA's Goddard Space Flight Center, is a portable User Interface Management System (UIMS), which provides an intuitive WYSIWYG WorkBench for prototyping and designing an application's user interface, integrated with tools for efficiently implementing the designed user interface and effective management of the user interface during an application's active domain. During the development of TAE Plus, many design and implementation decisions were based on the state-of-the-art within graphics workstations, windowing system and object-oriented programming languages. Some of the problems and issues experienced during implementation are discussed. A description of the next development steps planned for TAE Plus is also given.
Using CASE tools to write engineering specifications
NASA Astrophysics Data System (ADS)
Henry, James E.; Howard, Robert W.; Iveland, Scott T.
1993-08-01
There are always a wide variety of obstacles to writing and maintaining engineering documentation. To combat these problems, documentation generation can be linked to the process of engineering development. The same graphics and communication tools used for structured system analysis and design (SSA/SSD) also form the basis for the documentation. The goal is to build a living document, such that as an engineering design changes, the documentation will `automatically' revise. `Automatic' is qualified by the need to maintain textual descriptions associated with the SSA/SSD graphics, and the need to generate new documents. This paper describes a methodology and a computer aided system engineering toolset that enables a relatively seamless transition into document generation for the development engineering team.
A quality assessment tool for markup-based clinical guidelines.
Shalom, Erez; Shahar, Yuval; Taieb-Maimon, Meirav; Lunenfeld, Eitan
2008-11-06
We introduce a tool for quality assessment of procedural and declarative knowledge. We developed this tool for evaluating the specification of mark-up-based clinical GLs. Using this graphical tool, the expert physician and knowledge engineer collaborate to perform scoring, using pre-defined scoring scale, each of the knowledge roles of the mark-ups, comparing it to a gold standard. The tool enables scoring the mark-ups simultaneously at different sites by different users at different locations.
Markov Random Field Based Automatic Image Alignment for ElectronTomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moussavi, Farshid; Amat, Fernando; Comolli, Luis R.
2007-11-30
Cryo electron tomography (cryo-ET) is the primary method for obtaining 3D reconstructions of intact bacteria, viruses, and complex molecular machines ([7],[2]). It first flash freezes a specimen in a thin layer of ice, and then rotates the ice sheet in a transmission electron microscope (TEM) recording images of different projections through the sample. The resulting images are aligned and then back projected to form the desired 3-D model. The typical resolution of biological electron microscope is on the order of 1 nm per pixel which means that small imprecision in the microscope's stage or lenses can cause large alignment errors.more » To enable a high precision alignment, biologists add a small number of spherical gold beads to the sample before it is frozen. These beads generate high contrast dots in the image that can be tracked across projections. Each gold bead can be seen as a marker with a fixed location in 3D, which provides the reference points to bring all the images to a common frame as in the classical structure from motion problem. A high accuracy alignment is critical to obtain a high resolution tomogram (usually on the order of 5-15nm resolution). While some methods try to automate the task of tracking markers and aligning the images ([8],[4]), they require user intervention if the SNR of the image becomes too low. Unfortunately, cryogenic electron tomography (or cryo-ET) often has poor SNR, since the samples are relatively thick (for TEM) and the restricted electron dose usually results in projections with SNR under 0 dB. This paper shows that formulating this problem as a most-likely estimation task yields an approach that is able to automatically align with high precision cryo-ET datasets using inference in graphical models. This approach has been packaged into a publicly available software called RAPTOR-Robust Alignment and Projection estimation for Tomographic Reconstruction.« less
Interactive voxel graphics in virtual reality
NASA Astrophysics Data System (ADS)
Brody, Bill; Chappell, Glenn G.; Hartman, Chris
2002-06-01
Interactive voxel graphics in virtual reality poses significant research challenges in terms of interface, file I/O, and real-time algorithms. Voxel graphics is not so new, as it is the focus of a good deal of scientific visualization. Interactive voxel creation and manipulation is a more innovative concept. Scientists are understandably reluctant to manipulate data. They collect or model data. A scientific analogy to interactive graphics is the generation of initial conditions for some model. It is used as a method to test those models. We, however, are in the business of creating new data in the form of graphical imagery. In our endeavor, science is a tool and not an end. Nevertheless, there is a whole class of interactions and associated data generation scenarios that are natural to our way of working and that are also appropriate to scientific inquiry. Annotation by sketching or painting to point to and distinguish interesting and important information is very significant for science as well as art. Annotation in 3D is difficult without a good 3D interface. Interactive graphics in virtual reality is an appropriate approach to this problem.
Gene Graphics: a genomic neighborhood data visualization web application.
Harrison, Katherine J; Crécy-Lagard, Valérie de; Zallot, Rémi
2018-04-15
The examination of gene neighborhood is an integral part of comparative genomics but no tools to produce publication quality graphics of gene clusters are available. Gene Graphics is a straightforward web application for creating such visuals. Supported inputs include National Center for Biotechnology Information gene and protein identifiers with automatic fetching of neighboring information, GenBank files and data extracted from the SEED database. Gene representations can be customized for many parameters including gene and genome names, colors and sizes. Gene attributes can be copied and pasted for rapid and user-friendly customization of homologous genes between species. In addition to Portable Network Graphics and Scalable Vector Graphics, produced representations can be exported as Tagged Image File Format or Encapsulated PostScript, formats that are standard for publication. Hands-on tutorials with real life examples inspired from publications are available for training. Gene Graphics is freely available at https://katlabs.cc/genegraphics/ and source code is hosted at https://github.com/katlabs/genegraphics. katherinejh@ufl.edu or remizallot@ufl.edu. Supplementary data are available at Bioinformatics online.
Simulation-based comprehensive benchmarking of RNA-seq aligners
Baruzzo, Giacomo; Hayer, Katharina E; Kim, Eun Ji; Di Camillo, Barbara; FitzGerald, Garret A; Grant, Gregory R
2018-01-01
Alignment is the first step in most RNA-seq analysis pipelines, and the accuracy of downstream analyses depends heavily on it. Unlike most steps in the pipeline, alignment is particularly amenable to benchmarking with simulated data. We performed a comprehensive benchmarking of 14 common splice-aware aligners for base, read, and exon junction-level accuracy and compared default with optimized parameters. We found that performance varied by genome complexity, and accuracy and popularity were poorly correlated. The most widely cited tool underperforms for most metrics, particularly when using default settings. PMID:27941783
Interactive cutting path analysis programs
NASA Technical Reports Server (NTRS)
Weiner, J. M.; Williams, D. S.; Colley, S. R.
1975-01-01
The operation of numerically controlled machine tools is interactively simulated. Four programs were developed to graphically display the cutting paths for a Monarch lathe, Cintimatic mill, Strippit sheet metal punch, and the wiring path for a Standard wire wrap machine. These programs are run on a IMLAC PDS-ID graphic display system under the DOS-3 disk operating system. The cutting path analysis programs accept input via both paper tape and disk file.
Western aeronautical test range real-time graphics software package MAGIC
NASA Technical Reports Server (NTRS)
Malone, Jacqueline C.; Moore, Archie L.
1988-01-01
The master graphics interactive console (MAGIC) software package used on the Western Aeronautical Test Range (WATR) of the NASA Ames Research Center is described. MAGIC is a resident real-time research tool available to flight researchers-scientists in the NASA mission control centers of the WATR at the Dryden Flight Research Facility at Edwards, California. The hardware configuration and capabilities of the real-time software package are also discussed.
Viewpoints: A High-Performance High-Dimensional Exploratory Data Analysis Tool
NASA Astrophysics Data System (ADS)
Gazis, P. R.; Levit, C.; Way, M. J.
2010-12-01
Scientific data sets continue to increase in both size and complexity. In the past, dedicated graphics systems at supercomputing centers were required to visualize large data sets, but as the price of commodity graphics hardware has dropped and its capability has increased, it is now possible, in principle, to view large complex data sets on a single workstation. To do this in practice, an investigator will need software that is written to take advantage of the relevant graphics hardware. The Viewpoints visualization package described herein is an example of such software. Viewpoints is an interactive tool for exploratory visual analysis of large high-dimensional (multivariate) data. It leverages the capabilities of modern graphics boards (GPUs) to run on a single workstation or laptop. Viewpoints is minimalist: it attempts to do a small set of useful things very well (or at least very quickly) in comparison with similar packages today. Its basic feature set includes linked scatter plots with brushing, dynamic histograms, normalization, and outlier detection/removal. Viewpoints was originally designed for astrophysicists, but it has since been used in a variety of fields that range from astronomy, quantum chemistry, fluid dynamics, machine learning, bioinformatics, and finance to information technology server log mining. In this article, we describe the Viewpoints package and show examples of its usage.
NASTRAN analysis of Tokamak vacuum vessel using interactive graphics
NASA Technical Reports Server (NTRS)
Miller, A.; Badrian, M.
1978-01-01
Isoparametric quadrilateral and triangular elements were used to represent the vacuum vessel shell structure. For toroidally symmetric loadings, MPCs were employed across model boundaries and rigid format 24 was invoked. Nonsymmetric loadings required the use of the cyclic symmetry analysis available with rigid format 49. NASTRAN served as an important analysis tool in the Tokamak design effort by providing a reliable means for assessing structural integrity. Interactive graphics were employed in the finite element model generation and in the post-processing of results. It was felt that model generation and checkout with interactive graphics reduced the modelling effort and debugging man-hours significantly.
The Traffic Management Advisor
NASA Technical Reports Server (NTRS)
Nedell, William; Erzberger, Heinz; Neuman, Frank
1990-01-01
The traffic management advisor (TMA) is comprised of algorithms, a graphical interface, and interactive tools for controlling the flow of air traffic into the terminal area. The primary algorithm incorporated in it is a real-time scheduler which generates efficient landing sequences and landing times for arrivals within about 200 n.m. from touchdown. A unique feature of the TMA is its graphical interface that allows the traffic manager to modify the computer-generated schedules for specific aircraft while allowing the automatic scheduler to continue generating schedules for all other aircraft. The graphical interface also provides convenient methods for monitoring the traffic flow and changing scheduling parameters during real-time operation.
Software engineering capability for Ada (GRASP/Ada Tool)
NASA Technical Reports Server (NTRS)
Cross, James H., II
1995-01-01
The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped a new algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis has been on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada Source code. A new Motif compliant graphical user interface has been developed for the GRASP/Ada prototype.
User's manual for EZPLOT version 5.5: A FORTRAN program for 2-dimensional graphic display of data
NASA Technical Reports Server (NTRS)
Garbinski, Charles; Redin, Paul C.; Budd, Gerald D.
1988-01-01
EZPLOT is a computer applications program that converts data resident on a file into a plot displayed on the screen of a graphics terminal. This program generates either time history or x-y plots in response to commands entered interactively from a terminal keyboard. Plot parameters consist of a single independent parameter and from one to eight dependent parameters. Various line patterns, symbol shapes, axis scales, text labels, and data modification techniques are available. This user's manual describes EZPLOT as it is implemented on the Ames Research Center, Dryden Research Facility ELXSI computer using DI-3000 graphics software tools.
NASA Technical Reports Server (NTRS)
Douard, Stephane
1994-01-01
Known as a Graphic Server, the system presented was designed for the control ground segment of the Telecom 2 satellites. It is a tool used to dynamically display telemetry data within graphic pages, also known as views. The views are created off-line through various utilities and then, on the operator's request, displayed and animated in real time as data is received. The system was designed as an independent component, and is installed in different Telecom 2 operational control centers. It enables operators to monitor changes in the platform and satellite payloads in real time. It has been in operation since December 1991.
Software for Data Analysis with Graphical Models
NASA Technical Reports Server (NTRS)
Buntine, Wray L.; Roy, H. Scott
1994-01-01
Probabilistic graphical models are being used widely in artificial intelligence and statistics, for instance, in diagnosis and expert systems, as a framework for representing and reasoning with probabilities and independencies. They come with corresponding algorithms for performing statistical inference. This offers a unifying framework for prototyping and/or generating data analysis algorithms from graphical specifications. This paper illustrates the framework with an example and then presents some basic techniques for the task: problem decomposition and the calculation of exact Bayes factors. Other tools already developed, such as automatic differentiation, Gibbs sampling, and use of the EM algorithm, make this a broad basis for the generation of data analysis software.
Human Factors Evaluation of Advanced Electric Power Grid Visualization Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greitzer, Frank L.; Dauenhauer, Peter M.; Wierks, Tamara G.
This report describes initial human factors evaluation of four visualization tools (Graphical Contingency Analysis, Force Directed Graphs, Phasor State Estimator and Mode Meter/ Mode Shapes) developed by PNNL, and proposed test plans that may be implemented to evaluate their utility in scenario-based experiments.
NASA Astrophysics Data System (ADS)
Anderson, R. B.; Finch, N.; Clegg, S. M.; Graff, T.; Morris, R. V.; Laura, J.
2018-04-01
The PySAT point spectra tool provides a flexible graphical interface, enabling scientists to apply a wide variety of preprocessing and machine learning methods to point spectral data, with an emphasis on multivariate regression.
RAFCON: A Graphical Tool for Engineering Complex, Robotic Tasks
2016-10-09
Robotic tasks are becoming increasingly complex, and with this also the robotic systems. This requires new tools to manage this complexity and to...execution of robotic tasks, called RAFCON. These tasks are described in hierarchical state machines supporting concurrency. A formal notation of this concept
WebMeV | Informatics Technology for Cancer Research (ITCR)
Web MeV (Multiple-experiment Viewer) is a web/cloud-based tool for genomic data analysis. Web MeV is being built to meet the challenge of exploring large public genomic data set with intuitive graphical interface providing access to state-of-the-art analytical tools.
Initial Navigation Alignment of Optical Instruments on GOES-R
NASA Technical Reports Server (NTRS)
Isaacson, Peter J.; DeLuccia, Frank J.; Reth, Alan D.; Igli, David A.; Carter, Delano R.
2016-01-01
Post-launch alignment errors for the Advanced Baseline Imager (ABI) and Geospatial Lightning Mapper (GLM) on GOES-R may be too large for the image navigation and registration (INR) processing algorithms to function without an initial adjustment to calibration parameters. We present an approach that leverages a combination of user-selected image-to-image tie points and image correlation algorithms to estimate this initial launch-induced offset and calculate adjustments to the Line of Sight Motion Compensation (LMC) parameters. We also present an approach to generate synthetic test images, to which shifts and rotations of known magnitude are applied. Results of applying the initial alignment tools to a subset of these synthetic test images are presented. The results for both ABI and GLM are within the specifications established for these tools, and indicate that application of these tools during the post-launch test (PLT) phase of GOES-R operations will enable the automated INR algorithms for both instruments to function as intended.
ChromA: signal-based retention time alignment for chromatography-mass spectrometry data.
Hoffmann, Nils; Stoye, Jens
2009-08-15
We describe ChromA, a web-based alignment tool for chromatography-mass spectrometry data from the metabolomics and proteomics domains. Users can supply their data in open and standardized file formats for retention time alignment using dynamic time warping with different configurable local distance and similarity functions. Additionally, user-defined anchors can be used to constrain and speedup the alignment. A neighborhood around each anchor can be added to increase the flexibility of the constrained alignment. ChromA offers different visualizations of the alignment for easier qualitative interpretation and comparison of the data. For the multiple alignment of more than two data files, the center-star approximation is applied to select a reference among input files to align to. ChromA is available at http://bibiserv.techfak.uni-bielefeld.de/chroma. Executables and source code under the L-GPL v3 license are provided for download at the same location.
InteGO2: a web tool for measuring and visualizing gene semantic similarities using Gene Ontology.
Peng, Jiajie; Li, Hongxiang; Liu, Yongzhuang; Juan, Liran; Jiang, Qinghua; Wang, Yadong; Chen, Jin
2016-08-31
The Gene Ontology (GO) has been used in high-throughput omics research as a major bioinformatics resource. The hierarchical structure of GO provides users a convenient platform for biological information abstraction and hypothesis testing. Computational methods have been developed to identify functionally similar genes. However, none of the existing measurements take into account all the rich information in GO. Similarly, using these existing methods, web-based applications have been constructed to compute gene functional similarities, and to provide pure text-based outputs. Without a graphical visualization interface, it is difficult for result interpretation. We present InteGO2, a web tool that allows researchers to calculate the GO-based gene semantic similarities using seven widely used GO-based similarity measurements. Also, we provide an integrative measurement that synergistically integrates all the individual measurements to improve the overall performance. Using HTML5 and cytoscape.js, we provide a graphical interface in InteGO2 to visualize the resulting gene functional association networks. InteGO2 is an easy-to-use HTML5 based web tool. With it, researchers can measure gene or gene product functional similarity conveniently, and visualize the network of functional interactions in a graphical interface. InteGO2 can be accessed via http://mlg.hit.edu.cn:8089/ .
The X-windows interactive navigation data editor
NASA Technical Reports Server (NTRS)
Rinker, G. C.
1992-01-01
A new computer program called the X-Windows Interactive Data Editor (XIDE) was developed and demonstrated as a prototype application for editing radio metric data in the orbit-determination process. The program runs on a variety of workstations and employs pull-down menus and graphical displays, which allow users to easily inspect and edit radio metric data in the orbit data files received from the Deep Space Network (DSN). The XIDE program is based on the Open Software Foundation OSF/Motif Graphical User Interface (GUI) and has proven to be an efficient tool for editing radio metric data in the navigation operations environment. It was adopted by the Magellan Navigation Team as their primary data-editing tool. Because the software was designed from the beginning to be portable, the prototype was successfully moved to new workstation environments. It was also itegrated into the design of the next-generation software tool for DSN multimission navigation interactive launch support.
Dai, Yilin; Guo, Ling; Li, Meng; Chen, Yi-Bu
2012-06-08
Microarray data analysis presents a significant challenge to researchers who are unable to use the powerful Bioconductor and its numerous tools due to their lack of knowledge of R language. Among the few existing software programs that offer a graphic user interface to Bioconductor packages, none have implemented a comprehensive strategy to address the accuracy and reliability issue of microarray data analysis due to the well known probe design problems associated with many widely used microarray chips. There is also a lack of tools that would expedite the functional analysis of microarray results. We present Microarray Я US, an R-based graphical user interface that implements over a dozen popular Bioconductor packages to offer researchers a streamlined workflow for routine differential microarray expression data analysis without the need to learn R language. In order to enable a more accurate analysis and interpretation of microarray data, we incorporated the latest custom probe re-definition and re-annotation for Affymetrix and Illumina chips. A versatile microarray results output utility tool was also implemented for easy and fast generation of input files for over 20 of the most widely used functional analysis software programs. Coupled with a well-designed user interface, Microarray Я US leverages cutting edge Bioconductor packages for researchers with no knowledge in R language. It also enables a more reliable and accurate microarray data analysis and expedites downstream functional analysis of microarray results.
Lenis, Vasileios Panagiotis E; Swain, Martin; Larkin, Denis M
2018-05-01
Cross-species whole-genome sequence alignment is a critical first step for genome comparative analyses, ranging from the detection of sequence variants to studies of chromosome evolution. Animal genomes are large and complex, and whole-genome alignment is a computationally intense process, requiring expensive high-performance computing systems due to the need to explore extensive local alignments. With hundreds of sequenced animal genomes available from multiple projects, there is an increasing demand for genome comparative analyses. Here, we introduce G-Anchor, a new, fast, and efficient pipeline that uses a strictly limited but highly effective set of local sequence alignments to anchor (or map) an animal genome to another species' reference genome. G-Anchor makes novel use of a databank of highly conserved DNA sequence elements. We demonstrate how these elements may be aligned to a pair of genomes, creating anchors. These anchors enable the rapid mapping of scaffolds from a de novo assembled genome to chromosome assemblies of a reference species. Our results demonstrate that G-Anchor can successfully anchor a vertebrate genome onto a phylogenetically related reference species genome using a desktop or laptop computer within a few hours and with comparable accuracy to that achieved by a highly accurate whole-genome alignment tool such as LASTZ. G-Anchor thus makes whole-genome comparisons accessible to researchers with limited computational resources. G-Anchor is a ready-to-use tool for anchoring a pair of vertebrate genomes. It may be used with large genomes that contain a significant fraction of evolutionally conserved DNA sequences and that are not highly repetitive, polypoid, or excessively fragmented. G-Anchor is not a substitute for whole-genome aligning software but can be used for fast and accurate initial genome comparisons. G-Anchor is freely available and a ready-to-use tool for the pairwise comparison of two genomes.