Sample records for graphical markov model

  1. GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models

    PubMed Central

    Mukherjee, Chiranjit; Rodriguez, Abel

    2016-01-01

    Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful. PMID:28626348

  2. GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.

    PubMed

    Mukherjee, Chiranjit; Rodriguez, Abel

    2016-01-01

    Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.

  3. Parametric inference for biological sequence analysis.

    PubMed

    Pachter, Lior; Sturmfels, Bernd

    2004-11-16

    One of the major successes in computational biology has been the unification, by using the graphical model formalism, of a multitude of algorithms for annotating and comparing biological sequences. Graphical models that have been applied to these problems include hidden Markov models for annotation, tree models for phylogenetics, and pair hidden Markov models for alignment. A single algorithm, the sum-product algorithm, solves many of the inference problems that are associated with different statistical models. This article introduces the polytope propagation algorithm for computing the Newton polytope of an observation from a graphical model. This algorithm is a geometric version of the sum-product algorithm and is used to analyze the parametric behavior of maximum a posteriori inference calculations for graphical models.

  4. A graphical language for reliability model generation

    NASA Technical Reports Server (NTRS)

    Howell, Sandra V.; Bavuso, Salvatore J.; Haley, Pamela J.

    1990-01-01

    A graphical interface capability of the hybrid automated reliability predictor (HARP) is described. The graphics-oriented (GO) module provides the user with a graphical language for modeling system failure modes through the selection of various fault tree gates, including sequence dependency gates, or by a Markov chain. With this graphical input language, a fault tree becomes a convenient notation for describing a system. In accounting for any sequence dependencies, HARP converts the fault-tree notation to a complex stochastic process that is reduced to a Markov chain which it can then solve for system reliability. The graphics capability is available for use on an IBM-compatible PC, a Sun, and a VAX workstation. The GO module is written in the C programming language and uses the Graphical Kernel System (GKS) standard for graphics implementation. The PC, VAX, and Sun versions of the HARP GO module are currently in beta-testing.

  5. Graphical workstation capability for reliability modeling

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.; Koppen, Sandra V.; Haley, Pamela J.

    1992-01-01

    In addition to computational capabilities, software tools for estimating the reliability of fault-tolerant digital computer systems must also provide a means of interfacing with the user. Described here is the new graphical interface capability of the hybrid automated reliability predictor (HARP), a software package that implements advanced reliability modeling techniques. The graphics oriented (GO) module provides the user with a graphical language for modeling system failure modes through the selection of various fault-tree gates, including sequence-dependency gates, or by a Markov chain. By using this graphical input language, a fault tree becomes a convenient notation for describing a system. In accounting for any sequence dependencies, HARP converts the fault-tree notation to a complex stochastic process that is reduced to a Markov chain, which it can then solve for system reliability. The graphics capability is available for use on an IBM-compatible PC, a Sun, and a VAX workstation. The GO module is written in the C programming language and uses the graphical kernal system (GKS) standard for graphics implementation. The PC, VAX, and Sun versions of the HARP GO module are currently in beta-testing stages.

  6. Tropical geometry of statistical models.

    PubMed

    Pachter, Lior; Sturmfels, Bernd

    2004-11-16

    This article presents a unified mathematical framework for inference in graphical models, building on the observation that graphical models are algebraic varieties. From this geometric viewpoint, observations generated from a model are coordinates of a point in the variety, and the sum-product algorithm is an efficient tool for evaluating specific coordinates. Here, we address the question of how the solutions to various inference problems depend on the model parameters. The proposed answer is expressed in terms of tropical algebraic geometry. The Newton polytope of a statistical model plays a key role. Our results are applied to the hidden Markov model and the general Markov model on a binary tree.

  7. Advanced techniques in reliability model representation and solution

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Nicol, David M.

    1992-01-01

    The current tendency of flight control system designs is towards increased integration of applications and increased distribution of computational elements. The reliability analysis of such systems is difficult because subsystem interactions are increasingly interdependent. Researchers at NASA Langley Research Center have been working for several years to extend the capability of Markov modeling techniques to address these problems. This effort has been focused in the areas of increased model abstraction and increased computational capability. The reliability model generator (RMG) is a software tool that uses as input a graphical object-oriented block diagram of the system. RMG uses a failure-effects algorithm to produce the reliability model from the graphical description. The ASSURE software tool is a parallel processing program that uses the semi-Markov unreliability range evaluator (SURE) solution technique and the abstract semi-Markov specification interface to the SURE tool (ASSIST) modeling language. A failure modes-effects simulation is used by ASSURE. These tools were used to analyze a significant portion of a complex flight control system. The successful combination of the power of graphical representation, automated model generation, and parallel computation leads to the conclusion that distributed fault-tolerant system architectures can now be analyzed.

  8. A general graphical user interface for automatic reliability modeling

    NASA Technical Reports Server (NTRS)

    Liceaga, Carlos A.; Siewiorek, Daniel P.

    1991-01-01

    Reported here is a general Graphical User Interface (GUI) for automatic reliability modeling of Processor Memory Switch (PMS) structures using a Markov model. This GUI is based on a hierarchy of windows. One window has graphical editing capabilities for specifying the system's communication structure, hierarchy, reconfiguration capabilities, and requirements. Other windows have field texts, popup menus, and buttons for specifying parameters and selecting actions. An example application of the GUI is given.

  9. ModFossa: A library for modeling ion channels using Python.

    PubMed

    Ferneyhough, Gareth B; Thibealut, Corey M; Dascalu, Sergiu M; Harris, Frederick C

    2016-06-01

    The creation and simulation of ion channel models using continuous-time Markov processes is a powerful and well-used tool in the field of electrophysiology and ion channel research. While several software packages exist for the purpose of ion channel modeling, most are GUI based, and none are available as a Python library. In an attempt to provide an easy-to-use, yet powerful Markov model-based ion channel simulator, we have developed ModFossa, a Python library supporting easy model creation and stimulus definition, complete with a fast numerical solver, and attractive vector graphics plotting.

  10. Quantum Graphical Models and Belief Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leifer, M.S.; Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo Ont., N2L 2Y5; Poulin, D.

    Belief Propagation algorithms acting on Graphical Models of classical probability distributions, such as Markov Networks, Factor Graphs and Bayesian Networks, are amongst the most powerful known methods for deriving probabilistic inferences amongst large numbers of random variables. This paper presents a generalization of these concepts and methods to the quantum case, based on the idea that quantum theory can be thought of as a noncommutative, operator-valued, generalization of classical probability theory. Some novel characterizations of quantum conditional independence are derived, and definitions of Quantum n-Bifactor Networks, Markov Networks, Factor Graphs and Bayesian Networks are proposed. The structure of Quantum Markovmore » Networks is investigated and some partial characterization results are obtained, along the lines of the Hammersley-Clifford theorem. A Quantum Belief Propagation algorithm is presented and is shown to converge on 1-Bifactor Networks and Markov Networks when the underlying graph is a tree. The use of Quantum Belief Propagation as a heuristic algorithm in cases where it is not known to converge is discussed. Applications to decoding quantum error correcting codes and to the simulation of many-body quantum systems are described.« less

  11. Sparse covariance estimation in heterogeneous samples*

    PubMed Central

    Rodríguez, Abel; Lenkoski, Alex; Dobra, Adrian

    2015-01-01

    Standard Gaussian graphical models implicitly assume that the conditional independence among variables is common to all observations in the sample. However, in practice, observations are usually collected from heterogeneous populations where such an assumption is not satisfied, leading in turn to nonlinear relationships among variables. To address such situations we explore mixtures of Gaussian graphical models; in particular, we consider both infinite mixtures and infinite hidden Markov models where the emission distributions correspond to Gaussian graphical models. Such models allow us to divide a heterogeneous population into homogenous groups, with each cluster having its own conditional independence structure. As an illustration, we study the trends in foreign exchange rate fluctuations in the pre-Euro era. PMID:26925189

  12. Estimating a graphical intra-class correlation coefficient (GICC) using multivariate probit-linear mixed models.

    PubMed

    Yue, Chen; Chen, Shaojie; Sair, Haris I; Airan, Raag; Caffo, Brian S

    2015-09-01

    Data reproducibility is a critical issue in all scientific experiments. In this manuscript, the problem of quantifying the reproducibility of graphical measurements is considered. The image intra-class correlation coefficient (I2C2) is generalized and the graphical intra-class correlation coefficient (GICC) is proposed for such purpose. The concept for GICC is based on multivariate probit-linear mixed effect models. A Markov Chain Monte Carlo EM (mcm-cEM) algorithm is used for estimating the GICC. Simulation results with varied settings are demonstrated and our method is applied to the KIRBY21 test-retest dataset.

  13. Data Analysis with Graphical Models: Software Tools

    NASA Technical Reports Server (NTRS)

    Buntine, Wray L.

    1994-01-01

    Probabilistic graphical models (directed and undirected Markov fields, and combined in chain graphs) are used widely in expert systems, image processing and other areas as a framework for representing and reasoning with probabilities. They come with corresponding algorithms for performing probabilistic inference. This paper discusses an extension to these models by Spiegelhalter and Gilks, plates, used to graphically model the notion of a sample. This offers a graphical specification language for representing data analysis problems. When combined with general methods for statistical inference, this also offers a unifying framework for prototyping and/or generating data analysis algorithms from graphical specifications. This paper outlines the framework and then presents some basic tools for the task: a graphical version of the Pitman-Koopman Theorem for the exponential family, problem decomposition, and the calculation of exact Bayes factors. Other tools already developed, such as automatic differentiation, Gibbs sampling, and use of the EM algorithm, make this a broad basis for the generation of data analysis software.

  14. Forecasting land-cover growth using remotely sensed data: a case study of the Igneada protection area in Turkey.

    PubMed

    Bozkaya, A Gonca; Balcik, Filiz Bektas; Goksel, Cigdem; Esbah, Hayriye

    2015-03-01

    Human activities in many parts of the world have greatly affected natural areas. Therefore, monitoring and forecasting of land-cover changes are important components for sustainable utilization, conservation, and development of these areas. This research has been conducted on Igneada, a legally protected area on the northwest coast of Turkey, which is famous for its unique, mangrove forests. The main focus of this study was to apply a land use and cover model that could quantitatively and graphically present the changes and its impacts on Igneada landscapes in the future. In this study, a Markov chain-based, stochastic Markov model and cellular automata Markov model were used. These models were calibrated using a time series of developed areas derived from Landsat Thematic Mapper (TM) imagery between 1990 and 2010 that also projected future growth to 2030. The results showed that CA Markov yielded reliable information better than St. Markov model. The findings displayed constant but overall slight increase of settlement and forest cover, and slight decrease of agricultural lands. However, even the slightest unsustainable change can put a significant pressure on the sensitive ecosystems of Igneada. Therefore, the management of the protected area should not only focus on the landscape composition but also pay attention to landscape configuration.

  15. Self-Organizing Hidden Markov Model Map (SOHMMM): Biological Sequence Clustering and Cluster Visualization.

    PubMed

    Ferles, Christos; Beaufort, William-Scott; Ferle, Vanessa

    2017-01-01

    The present study devises mapping methodologies and projection techniques that visualize and demonstrate biological sequence data clustering results. The Sequence Data Density Display (SDDD) and Sequence Likelihood Projection (SLP) visualizations represent the input symbolical sequences in a lower-dimensional space in such a way that the clusters and relations of data elements are depicted graphically. Both operate in combination/synergy with the Self-Organizing Hidden Markov Model Map (SOHMMM). The resulting unified framework is in position to analyze automatically and directly raw sequence data. This analysis is carried out with little, or even complete absence of, prior information/domain knowledge.

  16. Modular techniques for dynamic fault-tree analysis

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, F. A.; Dugan, Joanne B.

    1992-01-01

    It is noted that current approaches used to assess the dependability of complex systems such as Space Station Freedom and the Air Traffic Control System are incapable of handling the size and complexity of these highly integrated designs. A novel technique for modeling such systems which is built upon current techniques in Markov theory and combinatorial analysis is described. It enables the development of a hierarchical representation of system behavior which is more flexible than either technique alone. A solution strategy which is based on an object-oriented approach to model representation and evaluation is discussed. The technique is virtually transparent to the user since the fault tree models can be built graphically and the objects defined automatically. The tree modularization procedure allows the two model types, Markov and combinatoric, to coexist and does not require that the entire fault tree be translated to a Markov chain for evaluation. This effectively reduces the size of the Markov chain required and enables solutions with less truncation, making analysis of longer mission times possible. Using the fault-tolerant parallel processor as an example, a model is built and solved for a specific mission scenario and the solution approach is illustrated in detail.

  17. Mapping eQTL Networks with Mixed Graphical Markov Models

    PubMed Central

    Tur, Inma; Roverato, Alberto; Castelo, Robert

    2014-01-01

    Expression quantitative trait loci (eQTL) mapping constitutes a challenging problem due to, among other reasons, the high-dimensional multivariate nature of gene-expression traits. Next to the expression heterogeneity produced by confounding factors and other sources of unwanted variation, indirect effects spread throughout genes as a result of genetic, molecular, and environmental perturbations. From a multivariate perspective one would like to adjust for the effect of all of these factors to end up with a network of direct associations connecting the path from genotype to phenotype. In this article we approach this challenge with mixed graphical Markov models, higher-order conditional independences, and q-order correlation graphs. These models show that additive genetic effects propagate through the network as function of gene–gene correlations. Our estimation of the eQTL network underlying a well-studied yeast data set leads to a sparse structure with more direct genetic and regulatory associations that enable a straightforward comparison of the genetic control of gene expression across chromosomes. Interestingly, it also reveals that eQTLs explain most of the expression variability of network hub genes. PMID:25271303

  18. Automatic specification of reliability models for fault-tolerant computers

    NASA Technical Reports Server (NTRS)

    Liceaga, Carlos A.; Siewiorek, Daniel P.

    1993-01-01

    The calculation of reliability measures using Markov models is required for life-critical processor-memory-switch structures that have standby redundancy or that are subject to transient or intermittent faults or repair. The task of specifying these models is tedious and prone to human error because of the large number of states and transitions required in any reasonable system. Therefore, model specification is a major analysis bottleneck, and model verification is a major validation problem. The general unfamiliarity of computer architects with Markov modeling techniques further increases the necessity of automating the model specification. Automation requires a general system description language (SDL). For practicality, this SDL should also provide a high level of abstraction and be easy to learn and use. The first attempt to define and implement an SDL with those characteristics is presented. A program named Automated Reliability Modeling (ARM) was constructed as a research vehicle. The ARM program uses a graphical interface as its SDL, and it outputs a Markov reliability model specification formulated for direct use by programs that generate and evaluate the model.

  19. Gene network inference by fusing data from diverse distributions

    PubMed Central

    Žitnik, Marinka; Zupan, Blaž

    2015-01-01

    Motivation: Markov networks are undirected graphical models that are widely used to infer relations between genes from experimental data. Their state-of-the-art inference procedures assume the data arise from a Gaussian distribution. High-throughput omics data, such as that from next generation sequencing, often violates this assumption. Furthermore, when collected data arise from multiple related but otherwise nonidentical distributions, their underlying networks are likely to have common features. New principled statistical approaches are needed that can deal with different data distributions and jointly consider collections of datasets. Results: We present FuseNet, a Markov network formulation that infers networks from a collection of nonidentically distributed datasets. Our approach is computationally efficient and general: given any number of distributions from an exponential family, FuseNet represents model parameters through shared latent factors that define neighborhoods of network nodes. In a simulation study, we demonstrate good predictive performance of FuseNet in comparison to several popular graphical models. We show its effectiveness in an application to breast cancer RNA-sequencing and somatic mutation data, a novel application of graphical models. Fusion of datasets offers substantial gains relative to inference of separate networks for each dataset. Our results demonstrate that network inference methods for non-Gaussian data can help in accurate modeling of the data generated by emergent high-throughput technologies. Availability and implementation: Source code is at https://github.com/marinkaz/fusenet. Contact: blaz.zupan@fri.uni-lj.si Supplementary information: Supplementary information is available at Bioinformatics online. PMID:26072487

  20. Beyond Markov: Accounting for independence violations in causal reasoning.

    PubMed

    Rehder, Bob

    2018-06-01

    Although many theories of causal cognition are based on causal graphical models, a key property of such models-the independence relations stipulated by the Markov condition-is routinely violated by human reasoners. This article presents three new accounts of those independence violations, accounts that share the assumption that people's understanding of the correlational structure of data generated from a causal graph differs from that stipulated by causal graphical model framework. To distinguish these models, experiments assessed how people reason with causal graphs that are larger than those tested in previous studies. A traditional common cause network (Y 1 ←X→Y 2 ) was extended so that the effects themselves had effects (Z 1 ←Y 1 ←X→Y 2 →Z 2 ). A traditional common effect network (Y 1 →X←Y 2 ) was extended so that the causes themselves had causes (Z 1 →Y 1 →X←Y 2 ←Z 2 ). Subjects' inferences were most consistent with the beta-Q model in which consistent states of the world-those in which variables are either mostly all present or mostly all absent-are viewed as more probable than stipulated by the causal graphical model framework. Substantial variability in subjects' inferences was also observed, with the result that substantial minorities of subjects were best fit by one of the other models (the dual prototype or a leaky gate models). The discrepancy between normative and human causal cognition stipulated by these models is foundational in the sense that they locate the error not in people's causal reasoning but rather in their causal representations. As a result, they are applicable to any cognitive theory grounded in causal graphical models, including theories of analogy, learning, explanation, categorization, decision-making, and counterfactual reasoning. Preliminary evidence that independence violations indeed generalize to other judgment types is presented. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. An outline of graphical Markov models in dentistry.

    PubMed

    Helfenstein, U; Steiner, M; Menghini, G

    1999-12-01

    In the usual multiple regression model there is one response variable and one block of several explanatory variables. In contrast, in reality there may be a block of several possibly interacting response variables one would like to explain. In addition, the explanatory variables may split into a sequence of several blocks, each block containing several interacting variables. The variables in the second block are explained by those in the first block; the variables in the third block by those in the first and the second block etc. During recent years methods have been developed allowing analysis of problems where the data set has the above complex structure. The models involved are called graphical models or graphical Markov models. The main result of an analysis is a picture, a conditional independence graph with precise statistical meaning, consisting of circles representing variables and lines or arrows representing significant conditional associations. The absence of a line between two circles signifies that the corresponding two variables are independent conditional on the presence of other variables in the model. An example from epidemiology is presented in order to demonstrate application and use of the models. The data set in the example has a complex structure consisting of successive blocks: the variable in the first block is year of investigation; the variables in the second block are age and gender; the variables in the third block are indices of calculus, gingivitis and mutans streptococci and the final response variables in the fourth block are different indices of caries. Since the statistical methods may not be easily accessible to dentists, this article presents them in an introductory form. Graphical models may be of great value to dentists in allowing analysis and visualisation of complex structured multivariate data sets consisting of a sequence of blocks of interacting variables and, in particular, several possibly interacting responses in the final block.

  2. HiRel: Hybrid Automated Reliability Predictor (HARP) integrated reliability tool system, (version 7.0). Volume 3: HARP Graphics Oriented (GO) input user's guide

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.; Rothmann, Elizabeth; Mittal, Nitin; Koppen, Sandra Howell

    1994-01-01

    The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of highly reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed at the outset to be compatible with most computing platforms and operating systems, and some programs have been beta tested within the aerospace community for over 8 years. This document is a user's guide for the HiRel graphical preprocessor Graphics Oriented (GO) program. GO is a graphical user interface for the HARP engine that enables the drawing of reliability/availability models on a monitor. A mouse is used to select fault tree gates or Markov graphical symbols from a menu for drawing.

  3. Structure-based Markov random field model for representing evolutionary constraints on functional sites.

    PubMed

    Jeong, Chan-Seok; Kim, Dongsup

    2016-02-24

    Elucidating the cooperative mechanism of interconnected residues is an important component toward understanding the biological function of a protein. Coevolution analysis has been developed to model the coevolutionary information reflecting structural and functional constraints. Recently, several methods have been developed based on a probabilistic graphical model called the Markov random field (MRF), which have led to significant improvements for coevolution analysis; however, thus far, the performance of these models has mainly been assessed by focusing on the aspect of protein structure. In this study, we built an MRF model whose graphical topology is determined by the residue proximity in the protein structure, and derived a novel positional coevolution estimate utilizing the node weight of the MRF model. This structure-based MRF method was evaluated for three data sets, each of which annotates catalytic site, allosteric site, and comprehensively determined functional site information. We demonstrate that the structure-based MRF architecture can encode the evolutionary information associated with biological function. Furthermore, we show that the node weight can more accurately represent positional coevolution information compared to the edge weight. Lastly, we demonstrate that the structure-based MRF model can be reliably built with only a few aligned sequences in linear time. The results show that adoption of a structure-based architecture could be an acceptable approximation for coevolution modeling with efficient computation complexity.

  4. Suicidal Ideation, Parent-Child Relationships, and Adverse Childhood Experiences: A Cross-Validation Study Using a Graphical Markov Model

    ERIC Educational Resources Information Center

    Hardt, Jochen; Herke, Max; Schier, Katarzyna

    2011-01-01

    Suicide is one of the leading causes of death in many Western countries. An exploration of factors associated with suicidality may help to understand the mechanisms that lead to suicide. Two samples in Germany (n = 500 and n = 477) were examined via Internet regarding suicidality, depression, alcohol abuse, adverse childhood experiences, and…

  5. Bayes Nets and Babies: Infants' Developing Statistical Reasoning Abilities and Their Representation of Causal Knowledge

    ERIC Educational Resources Information Center

    Sobel, David M.; Kirkham, Natasha Z.

    2007-01-01

    A fundamental assumption of the causal graphical model framework is the Markov assumption, which posits that learners can discriminate between two events that are dependent because of a direct causal relation between them and two events that are independent conditional on the value of another event(s). Sobel and Kirkham (2006) demonstrated that…

  6. Exponential series approaches for nonparametric graphical models

    NASA Astrophysics Data System (ADS)

    Janofsky, Eric

    Markov Random Fields (MRFs) or undirected graphical models are parsimonious representations of joint probability distributions. This thesis studies high-dimensional, continuous-valued pairwise Markov Random Fields. We are particularly interested in approximating pairwise densities whose logarithm belongs to a Sobolev space. For this problem we propose the method of exponential series which approximates the log density by a finite-dimensional exponential family with the number of sufficient statistics increasing with the sample size. We consider two approaches to estimating these models. The first is regularized maximum likelihood. This involves optimizing the sum of the log-likelihood of the data and a sparsity-inducing regularizer. We then propose a variational approximation to the likelihood based on tree-reweighted, nonparametric message passing. This approximation allows for upper bounds on risk estimates, leverages parallelization and is scalable to densities on hundreds of nodes. We show how the regularized variational MLE may be estimated using a proximal gradient algorithm. We then consider estimation using regularized score matching. This approach uses an alternative scoring rule to the log-likelihood, which obviates the need to compute the normalizing constant of the distribution. For general continuous-valued exponential families, we provide parameter and edge consistency results. As a special case we detail a new approach to sparse precision matrix estimation which has statistical performance competitive with the graphical lasso and computational performance competitive with the state-of-the-art glasso algorithm. We then describe results for model selection in the nonparametric pairwise model using exponential series. The regularized score matching problem is shown to be a convex program; we provide scalable algorithms based on consensus alternating direction method of multipliers (ADMM) and coordinate-wise descent. We use simulations to compare our method to others in the literature as well as the aforementioned TRW estimator.

  7. pytc: Open-Source Python Software for Global Analyses of Isothermal Titration Calorimetry Data.

    PubMed

    Duvvuri, Hiranmayi; Wheeler, Lucas C; Harms, Michael J

    2018-05-08

    Here we describe pytc, an open-source Python package for global fits of thermodynamic models to multiple isothermal titration calorimetry experiments. Key features include simplicity, the ability to implement new thermodynamic models, a robust maximum likelihood fitter, a fast Bayesian Markov-Chain Monte Carlo sampler, rigorous implementation, extensive documentation, and full cross-platform compatibility. pytc fitting can be done using an application program interface or via a graphical user interface. It is available for download at https://github.com/harmslab/pytc .

  8. Faster Mass Spectrometry-based Protein Inference: Junction Trees are More Efficient than Sampling and Marginalization by Enumeration

    PubMed Central

    Serang, Oliver; Noble, William Stafford

    2012-01-01

    The problem of identifying the proteins in a complex mixture using tandem mass spectrometry can be framed as an inference problem on a graph that connects peptides to proteins. Several existing protein identification methods make use of statistical inference methods for graphical models, including expectation maximization, Markov chain Monte Carlo, and full marginalization coupled with approximation heuristics. We show that, for this problem, the majority of the cost of inference usually comes from a few highly connected subgraphs. Furthermore, we evaluate three different statistical inference methods using a common graphical model, and we demonstrate that junction tree inference substantially improves rates of convergence compared to existing methods. The python code used for this paper is available at http://noble.gs.washington.edu/proj/fido. PMID:22331862

  9. Markov vs. Hurst-Kolmogorov behaviour identification in hydroclimatic processes

    NASA Astrophysics Data System (ADS)

    Dimitriadis, Panayiotis; Gournari, Naya; Koutsoyiannis, Demetris

    2016-04-01

    Hydroclimatic processes are usually modelled either by exponential decay of the autocovariance function, i.e., Markovian behaviour, or power type decay, i.e., long-term persistence (or else Hurst-Kolmogorov behaviour). For the identification and quantification of such behaviours several graphical stochastic tools can be used such as the climacogram (i.e., plot of the variance of the averaged process vs. scale), autocovariance, variogram, power spectrum etc. with the former usually exhibiting smaller statistical uncertainty as compared to the others. However, most methodologies including these tools are based on the expected value of the process. In this analysis, we explore a methodology that combines both the practical use of a graphical representation of the internal structure of the process as well as the statistical robustness of the maximum-likelihood estimation. For validation and illustration purposes, we apply this methodology to fundamental stochastic processes, such as Markov and Hurst-Kolmogorov type ones. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  10. Markov Networks of Collateral Resistance: National Antimicrobial Resistance Monitoring System Surveillance Results from Escherichia coli Isolates, 2004-2012

    PubMed Central

    Love, William J.; Zawack, Kelson A.; Booth, James G.; Grӧhn, Yrjo T.

    2016-01-01

    Surveillance of antimicrobial resistance (AMR) is an important component of public health. Antimicrobial drug use generates selective pressure that may lead to resistance against to the administered drug, and may also select for collateral resistances to other drugs. Analysis of AMR surveillance data has focused on resistance to individual drugs but joint distributions of resistance in bacterial populations are infrequently analyzed and reported. New methods are needed to characterize and communicate joint resistance distributions. Markov networks are a class of graphical models that define connections, or edges, between pairs of variables with non-zero partial correlations and are used here to describe AMR resistance relationships. The graphical least absolute shrinkage and selection operator is used to estimate sparse Markov networks from AMR surveillance data. The method is demonstrated using a subset of Escherichia coli isolates collected by the National Antimicrobial Resistance Monitoring System between 2004 and 2012 which included AMR results for 16 drugs from 14418 isolates. Of the 119 possible unique edges, 33 unique edges were identified at least once during the study period and graphical density ranged from 16.2% to 24.8%. Two frequent dense subgraphs were noted, one containing the five β-lactam drugs and the other containing both sulfonamides, three aminoglycosides, and tetracycline. Density did not appear to change over time (p = 0.71). Unweighted modularity did not appear to change over time (p = 0.18), but a significant decreasing trend was noted in the modularity of the weighted networks (p < 0.005) indicating relationships between drugs of different classes tended to increase in strength and frequency over time compared to relationships between drugs of the same class. The current method provides a novel method to study the joint resistance distribution, but additional work is required to unite the underlying biological and genetic characteristics of the isolates with the current results derived from phenotypic data. PMID:27851767

  11. Markov Networks of Collateral Resistance: National Antimicrobial Resistance Monitoring System Surveillance Results from Escherichia coli Isolates, 2004-2012.

    PubMed

    Love, William J; Zawack, Kelson A; Booth, James G; Grӧhn, Yrjo T; Lanzas, Cristina

    2016-11-01

    Surveillance of antimicrobial resistance (AMR) is an important component of public health. Antimicrobial drug use generates selective pressure that may lead to resistance against to the administered drug, and may also select for collateral resistances to other drugs. Analysis of AMR surveillance data has focused on resistance to individual drugs but joint distributions of resistance in bacterial populations are infrequently analyzed and reported. New methods are needed to characterize and communicate joint resistance distributions. Markov networks are a class of graphical models that define connections, or edges, between pairs of variables with non-zero partial correlations and are used here to describe AMR resistance relationships. The graphical least absolute shrinkage and selection operator is used to estimate sparse Markov networks from AMR surveillance data. The method is demonstrated using a subset of Escherichia coli isolates collected by the National Antimicrobial Resistance Monitoring System between 2004 and 2012 which included AMR results for 16 drugs from 14418 isolates. Of the 119 possible unique edges, 33 unique edges were identified at least once during the study period and graphical density ranged from 16.2% to 24.8%. Two frequent dense subgraphs were noted, one containing the five β-lactam drugs and the other containing both sulfonamides, three aminoglycosides, and tetracycline. Density did not appear to change over time (p = 0.71). Unweighted modularity did not appear to change over time (p = 0.18), but a significant decreasing trend was noted in the modularity of the weighted networks (p < 0.005) indicating relationships between drugs of different classes tended to increase in strength and frequency over time compared to relationships between drugs of the same class. The current method provides a novel method to study the joint resistance distribution, but additional work is required to unite the underlying biological and genetic characteristics of the isolates with the current results derived from phenotypic data.

  12. Optimizing Likelihood Models for Particle Trajectory Segmentation in Multi-State Systems.

    PubMed

    Young, Dylan Christopher; Scrimgeour, Jan

    2018-06-19

    Particle tracking offers significant insight into the molecular mechanics that govern the behav- ior of living cells. The analysis of molecular trajectories that transition between different motive states, such as diffusive, driven and tethered modes, is of considerable importance, with even single trajectories containing significant amounts of information about a molecule's environment and its interactions with cellular structures. Hidden Markov models (HMM) have been widely adopted to perform the segmentation of such complex tracks. In this paper, we show that extensive analysis of hidden Markov model outputs using data derived from multi-state Brownian dynamics simulations can be used both for the optimization of the likelihood models used to describe the states of the system and for characterization of the technique's failure mechanisms. This analysis was made pos- sible by the implementation of parallelized adaptive direct search algorithm on a Nvidia graphics processing unit. This approach provides critical information for the visualization of HMM failure and successful design of particle tracking experiments where trajectories contain multiple mobile states. © 2018 IOP Publishing Ltd.

  13. Hand gesture recognition in confined spaces with partial observability and occultation constraints

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen

    2016-05-01

    Human activity detection and recognition capabilities have broad applications for military and homeland security. These tasks are very complicated, however, especially when multiple persons are performing concurrent activities in confined spaces that impose significant obstruction, occultation, and observability uncertainty. In this paper, our primary contribution is to present a dedicated taxonomy and kinematic ontology that are developed for in-vehicle group human activities (IVGA). Secondly, we describe a set of hand-observable patterns that represents certain IVGA examples. Thirdly, we propose two classifiers for hand gesture recognition and compare their performance individually and jointly. Finally, we present a variant of Hidden Markov Model for Bayesian tracking, recognition, and annotation of hand motions, which enables spatiotemporal inference to human group activity perception and understanding. To validate our approach, synthetic (graphical data from virtual environment) and real physical environment video imagery are employed to verify the performance of these hand gesture classifiers, while measuring their efficiency and effectiveness based on the proposed Hidden Markov Model for tracking and interpreting dynamic spatiotemporal IVGA scenarios.

  14. Figure-Ground Segmentation Using Factor Graphs

    PubMed Central

    Shen, Huiying; Coughlan, James; Ivanchenko, Volodymyr

    2009-01-01

    Foreground-background segmentation has recently been applied [26,12] to the detection and segmentation of specific objects or structures of interest from the background as an efficient alternative to techniques such as deformable templates [27]. We introduce a graphical model (i.e. Markov random field)-based formulation of structure-specific figure-ground segmentation based on simple geometric features extracted from an image, such as local configurations of linear features, that are characteristic of the desired figure structure. Our formulation is novel in that it is based on factor graphs, which are graphical models that encode interactions among arbitrary numbers of random variables. The ability of factor graphs to express interactions higher than pairwise order (the highest order encountered in most graphical models used in computer vision) is useful for modeling a variety of pattern recognition problems. In particular, we show how this property makes factor graphs a natural framework for performing grouping and segmentation, and demonstrate that the factor graph framework emerges naturally from a simple maximum entropy model of figure-ground segmentation. We cast our approach in a learning framework, in which the contributions of multiple grouping cues are learned from training data, and apply our framework to the problem of finding printed text in natural scenes. Experimental results are described, including a performance analysis that demonstrates the feasibility of the approach. PMID:20160994

  15. Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models

    PubMed Central

    2014-01-01

    Background Logos are commonly used in molecular biology to provide a compact graphical representation of the conservation pattern of a set of sequences. They render the information contained in sequence alignments or profile hidden Markov models by drawing a stack of letters for each position, where the height of the stack corresponds to the conservation at that position, and the height of each letter within a stack depends on the frequency of that letter at that position. Results We present a new tool and web server, called Skylign, which provides a unified framework for creating logos for both sequence alignments and profile hidden Markov models. In addition to static image files, Skylign creates a novel interactive logo plot for inclusion in web pages. These interactive logos enable scrolling, zooming, and inspection of underlying values. Skylign can avoid sampling bias in sequence alignments by down-weighting redundant sequences and by combining observed counts with informed priors. It also simplifies the representation of gap parameters, and can optionally scale letter heights based on alternate calculations of the conservation of a position. Conclusion Skylign is available as a website, a scriptable web service with a RESTful interface, and as a software package for download. Skylign’s interactive logos are easily incorporated into a web page with just a few lines of HTML markup. Skylign may be found at http://skylign.org. PMID:24410852

  16. Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikkagoudar, Satish; Chatterjee, Samrat; Thomas, Dennis G.

    The absence of a robust and unified theory of cyber dynamics presents challenges and opportunities for using machine learning based data-driven approaches to further the understanding of the behavior of such complex systems. Analysts can also use machine learning approaches to gain operational insights. In order to be operationally beneficial, cybersecurity machine learning based models need to have the ability to: (1) represent a real-world system, (2) infer system properties, and (3) learn and adapt based on expert knowledge and observations. Probabilistic models and Probabilistic graphical models provide these necessary properties and are further explored in this chapter. Bayesian Networksmore » and Hidden Markov Models are introduced as an example of a widely used data driven classification/modeling strategy.« less

  17. The reliability analysis of a separated, dual fail operational redundant strapdown IMU. [inertial measurement unit

    NASA Technical Reports Server (NTRS)

    Motyka, P.

    1983-01-01

    A methodology for quantitatively analyzing the reliability of redundant avionics systems, in general, and the dual, separated Redundant Strapdown Inertial Measurement Unit (RSDIMU), in particular, is presented. The RSDIMU is described and a candidate failure detection and isolation system presented. A Markov reliability model is employed. The operational states of the system are defined and the single-step state transition diagrams discussed. Graphical results, showing the impact of major system parameters on the reliability of the RSDIMU system, are presented and discussed.

  18. On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods

    PubMed Central

    Lee, Anthony; Yau, Christopher; Giles, Michael B.; Doucet, Arnaud; Holmes, Christopher C.

    2011-01-01

    We present a case-study on the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units (GPUs), are self-contained parallel computational devices that can be housed in conventional desktop and laptop computers and can be thought of as prototypes of the next generation of many-core processors. For certain classes of population-based Monte Carlo algorithms they offer massively parallel simulation, with the added advantage over conventional distributed multi-core processors that they are cheap, easily accessible, easy to maintain, easy to code, dedicated local devices with low power consumption. On a canonical set of stochastic simulation examples including population-based Markov chain Monte Carlo methods and Sequential Monte Carlo methods, we nd speedups from 35 to 500 fold over conventional single-threaded computer code. Our findings suggest that GPUs have the potential to facilitate the growth of statistical modelling into complex data rich domains through the availability of cheap and accessible many-core computation. We believe the speedup we observe should motivate wider use of parallelizable simulation methods and greater methodological attention to their design. PMID:22003276

  19. Modelling the Interplay between Lifestyle Factors and Genetic Predisposition on Markers of Type 2 Diabetes Mellitus Risk.

    PubMed

    Walker, Celia G; Solis-Trapala, Ivonne; Holzapfel, Christina; Ambrosini, Gina L; Fuller, Nicholas R; Loos, Ruth J F; Hauner, Hans; Caterson, Ian D; Jebb, Susan A

    2015-01-01

    The risk of developing type 2 diabetes mellitus (T2DM) is determined by a complex interplay involving lifestyle factors and genetic predisposition. Despite this, many studies do not consider the relative contributions of this complex array of factors to identify relationships which are important in progression or prevention of complex diseases. We aimed to describe the integrated effect of a number of lifestyle changes (weight, diet and physical activity) in the context of genetic susceptibility, on changes in glycaemic traits in overweight or obese participants following 12-months of a weight management programme. A sample of 353 participants from a behavioural weight management intervention were included in this study. A graphical Markov model was used to describe the impact of the intervention, by dividing the effects into various pathways comprising changes in proportion of dietary saturated fat, physical activity and weight loss, and a genetic predisposition score (T2DM-GPS), on changes in insulin sensitivity (HOMA-IR), insulin secretion (HOMA-B) and short and long term glycaemia (glucose and HbA1c). We demonstrated the use of graphical Markov modelling to identify the importance and interrelationships of a number of possible variables changed as a result of a lifestyle intervention, whilst considering fixed factors such as genetic predisposition, on changes in traits. Paths which led to weight loss and change in dietary saturated fat were important factors in the change of all glycaemic traits, whereas the T2DM-GPS only made a significant direct contribution to changes in HOMA-IR and plasma glucose after considering the effects of lifestyle factors. This analysis shows that modifiable factors relating to body weight, diet, and physical activity are more likely to impact on glycaemic traits than genetic predisposition during a behavioural intervention.

  20. Spatial-temporal modeling of malware propagation in networks.

    PubMed

    Chen, Zesheng; Ji, Chuanyi

    2005-09-01

    Network security is an important task of network management. One threat to network security is malware (malicious software) propagation. One type of malware is called topological scanning that spreads based on topology information. The focus of this work is on modeling the spread of topological malwares, which is important for understanding their potential damages, and for developing countermeasures to protect the network infrastructure. Our model is motivated by probabilistic graphs, which have been widely investigated in machine learning. We first use a graphical representation to abstract the propagation of malwares that employ different scanning methods. We then use a spatial-temporal random process to describe the statistical dependence of malware propagation in arbitrary topologies. As the spatial dependence is particularly difficult to characterize, the problem becomes how to use simple (i.e., biased) models to approximate the spatially dependent process. In particular, we propose the independent model and the Markov model as simple approximations. We conduct both theoretical analysis and extensive simulations on large networks using both real measurements and synthesized topologies to test the performance of the proposed models. Our results show that the independent model can capture temporal dependence and detailed topology information and, thus, outperforms the previous models, whereas the Markov model incorporates a certain spatial dependence and, thus, achieves a greater accuracy in characterizing both transient and equilibrium behaviors of malware propagation.

  1. Improving ontology matching with propagation strategy and user feedback

    NASA Astrophysics Data System (ADS)

    Li, Chunhua; Cui, Zhiming; Zhao, Pengpeng; Wu, Jian; Xin, Jie; He, Tianxu

    2015-07-01

    Markov logic networks which unify probabilistic graphical model and first-order logic provide an excellent framework for ontology matching. The existing approach requires a threshold to produce matching candidates and use a small set of constraints acting as filter to select the final alignments. We introduce novel match propagation strategy to model the influences between potential entity mappings across ontologies, which can help to identify the correct correspondences and produce missed correspondences. The estimation of appropriate threshold is a difficult task. We propose an interactive method for threshold selection through which we obtain an additional measurable improvement. Running experiments on a public dataset has demonstrated the effectiveness of proposed approach in terms of the quality of result alignment.

  2. Sequence2Vec: a novel embedding approach for modeling transcription factor binding affinity landscape.

    PubMed

    Dai, Hanjun; Umarov, Ramzan; Kuwahara, Hiroyuki; Li, Yu; Song, Le; Gao, Xin

    2017-11-15

    An accurate characterization of transcription factor (TF)-DNA affinity landscape is crucial to a quantitative understanding of the molecular mechanisms underpinning endogenous gene regulation. While recent advances in biotechnology have brought the opportunity for building binding affinity prediction methods, the accurate characterization of TF-DNA binding affinity landscape still remains a challenging problem. Here we propose a novel sequence embedding approach for modeling the transcription factor binding affinity landscape. Our method represents DNA binding sequences as a hidden Markov model which captures both position specific information and long-range dependency in the sequence. A cornerstone of our method is a novel message passing-like embedding algorithm, called Sequence2Vec, which maps these hidden Markov models into a common nonlinear feature space and uses these embedded features to build a predictive model. Our method is a novel combination of the strength of probabilistic graphical models, feature space embedding and deep learning. We conducted comprehensive experiments on over 90 large-scale TF-DNA datasets which were measured by different high-throughput experimental technologies. Sequence2Vec outperforms alternative machine learning methods as well as the state-of-the-art binding affinity prediction methods. Our program is freely available at https://github.com/ramzan1990/sequence2vec. xin.gao@kaust.edu.sa or lsong@cc.gatech.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  3. Passage relevance models for genomics search.

    PubMed

    Urbain, Jay; Frieder, Ophir; Goharian, Nazli

    2009-03-19

    We present a passage relevance model for integrating syntactic and semantic evidence of biomedical concepts and topics using a probabilistic graphical model. Component models of topics, concepts, terms, and document are represented as potential functions within a Markov Random Field. The probability of a passage being relevant to a biologist's information need is represented as the joint distribution across all potential functions. Relevance model feedback of top ranked passages is used to improve distributional estimates of query concepts and topics in context, and a dimensional indexing strategy is used for efficient aggregation of concept and term statistics. By integrating multiple sources of evidence including dependencies between topics, concepts, and terms, we seek to improve genomics literature passage retrieval precision. Using this model, we are able to demonstrate statistically significant improvements in retrieval precision using a large genomics literature corpus.

  4. Artificial Intelligence Software for Assessing Postural Stability

    NASA Technical Reports Server (NTRS)

    Lieberman, Erez; Forth, Katharine; Paloski, William

    2013-01-01

    A software package reads and analyzes pressure distributions from sensors mounted under a person's feet. Pressure data from sensors mounted in shoes, or in a platform, can be used to provide a description of postural stability (assessing competence to deficiency) and enables the determination of the person's present activity (running, walking, squatting, falling). This package has three parts: a preprocessing algorithm for reading input from pressure sensors; a Hidden Markov Model (HMM), which is used to determine the person's present activity and level of sensing-motor competence; and a suite of graphical algorithms, which allows visual representation of the person's activity and vestibular function over time.

  5. Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zuwei; Zhao, Haibo, E-mail: klinsmannzhb@163.com; Zheng, Chuguang

    2015-01-15

    This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule providesmore » a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance–rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are demonstrated in a physically realistic Brownian coagulation case. The computational accuracy is validated with benchmark solution of discrete-sectional method. The simulation results show that the comprehensive approach can attain very favorable improvement in cost without sacrificing computational accuracy.« less

  6. Markov blanket-based approach for learning multi-dimensional Bayesian network classifiers: an application to predict the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39).

    PubMed

    Borchani, Hanen; Bielza, Concha; Martı Nez-Martı N, Pablo; Larrañaga, Pedro

    2012-12-01

    Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket around each class variable using the HITON algorithm, then specifying the directionality over the MBC subgraphs. Our approach is applied to the prediction problem of the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39) in order to estimate the health-related quality of life of Parkinson's patients. Fivefold cross-validation experiments were carried out on randomly generated synthetic data sets, Yeast data set, as well as on a real-world Parkinson's disease data set containing 488 patients. The experimental study, including comparison with additional Bayesian network-based approaches, back propagation for multi-label learning, multi-label k-nearest neighbor, multinomial logistic regression, ordinary least squares, and censored least absolute deviations, shows encouraging results in terms of predictive accuracy as well as the identification of dependence relationships among class and feature variables. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. An Overview of Markov Chain Methods for the Study of Stage-Sequential Developmental Processes

    ERIC Educational Resources Information Center

    Kapland, David

    2008-01-01

    This article presents an overview of quantitative methodologies for the study of stage-sequential development based on extensions of Markov chain modeling. Four methods are presented that exemplify the flexibility of this approach: the manifest Markov model, the latent Markov model, latent transition analysis, and the mixture latent Markov model.…

  8. Zipf exponent of trajectory distribution in the hidden Markov model

    NASA Astrophysics Data System (ADS)

    Bochkarev, V. V.; Lerner, E. Yu

    2014-03-01

    This paper is the first step of generalization of the previously obtained full classification of the asymptotic behavior of the probability for Markov chain trajectories for the case of hidden Markov models. The main goal is to study the power (Zipf) and nonpower asymptotics of the frequency list of trajectories of hidden Markov frequencys and to obtain explicit formulae for the exponent of the power asymptotics. We consider several simple classes of hidden Markov models. We prove that the asymptotics for a hidden Markov model and for the corresponding Markov chain can be essentially different.

  9. Communication: Introducing prescribed biases in out-of-equilibrium Markov models

    NASA Astrophysics Data System (ADS)

    Dixit, Purushottam D.

    2018-03-01

    Markov models are often used in modeling complex out-of-equilibrium chemical and biochemical systems. However, many times their predictions do not agree with experiments. We need a systematic framework to update existing Markov models to make them consistent with constraints that are derived from experiments. Here, we present a framework based on the principle of maximum relative path entropy (minimum Kullback-Leibler divergence) to update Markov models using stationary state and dynamical trajectory-based constraints. We illustrate the framework using a biochemical model network of growth factor-based signaling. We also show how to find the closest detailed balanced Markov model to a given Markov model. Further applications and generalizations are discussed.

  10. Continuous-Time Semi-Markov Models in Health Economic Decision Making: An Illustrative Example in Heart Failure Disease Management.

    PubMed

    Cao, Qi; Buskens, Erik; Feenstra, Talitha; Jaarsma, Tiny; Hillege, Hans; Postmus, Douwe

    2016-01-01

    Continuous-time state transition models may end up having large unwieldy structures when trying to represent all relevant stages of clinical disease processes by means of a standard Markov model. In such situations, a more parsimonious, and therefore easier-to-grasp, model of a patient's disease progression can often be obtained by assuming that the future state transitions do not depend only on the present state (Markov assumption) but also on the past through time since entry in the present state. Despite that these so-called semi-Markov models are still relatively straightforward to specify and implement, they are not yet routinely applied in health economic evaluation to assess the cost-effectiveness of alternative interventions. To facilitate a better understanding of this type of model among applied health economic analysts, the first part of this article provides a detailed discussion of what the semi-Markov model entails and how such models can be specified in an intuitive way by adopting an approach called vertical modeling. In the second part of the article, we use this approach to construct a semi-Markov model for assessing the long-term cost-effectiveness of 3 disease management programs for heart failure. Compared with a standard Markov model with the same disease states, our proposed semi-Markov model fitted the observed data much better. When subsequently extrapolating beyond the clinical trial period, these relatively large differences in goodness-of-fit translated into almost a doubling in mean total cost and a 60-d decrease in mean survival time when using the Markov model instead of the semi-Markov model. For the disease process considered in our case study, the semi-Markov model thus provided a sensible balance between model parsimoniousness and computational complexity. © The Author(s) 2015.

  11. Semi-Markov adjunction to the Computer-Aided Markov Evaluator (CAME)

    NASA Technical Reports Server (NTRS)

    Rosch, Gene; Hutchins, Monica A.; Leong, Frank J.; Babcock, Philip S., IV

    1988-01-01

    The rule-based Computer-Aided Markov Evaluator (CAME) program was expanded in its ability to incorporate the effect of fault-handling processes into the construction of a reliability model. The fault-handling processes are modeled as semi-Markov events and CAME constructs and appropriate semi-Markov model. To solve the model, the program outputs it in a form which can be directly solved with the Semi-Markov Unreliability Range Evaluator (SURE) program. As a means of evaluating the alterations made to the CAME program, the program is used to model the reliability of portions of the Integrated Airframe/Propulsion Control System Architecture (IAPSA 2) reference configuration. The reliability predictions are compared with a previous analysis. The results bear out the feasibility of utilizing CAME to generate appropriate semi-Markov models to model fault-handling processes.

  12. Harnessing graphical structure in Markov chain Monte Carlo learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolorz, P.E.; Chew P.C.

    1996-12-31

    The Monte Carlo method is recognized as a useful tool in learning and probabilistic inference methods common to many datamining problems. Generalized Hidden Markov Models and Bayes nets are especially popular applications. However, the presence of multiple modes in many relevant integrands and summands often renders the method slow and cumbersome. Recent mean field alternatives designed to speed things up have been inspired by experience gleaned from physics. The current work adopts an approach very similar to this in spirit, but focusses instead upon dynamic programming notions as a basis for producing systematic Monte Carlo improvements. The idea is tomore » approximate a given model by a dynamic programming-style decomposition, which then forms a scaffold upon which to build successively more accurate Monte Carlo approximations. Dynamic programming ideas alone fail to account for non-local structure, while standard Monte Carlo methods essentially ignore all structure. However, suitably-crafted hybrids can successfully exploit the strengths of each method, resulting in algorithms that combine speed with accuracy. The approach relies on the presence of significant {open_quotes}local{close_quotes} information in the problem at hand. This turns out to be a plausible assumption for many important applications. Example calculations are presented, and the overall strengths and weaknesses of the approach are discussed.« less

  13. Theoretic derivation of directed acyclic subgraph algorithm and comparisons with message passing algorithm

    NASA Astrophysics Data System (ADS)

    Ha, Jeongmok; Jeong, Hong

    2016-07-01

    This study investigates the directed acyclic subgraph (DAS) algorithm, which is used to solve discrete labeling problems much more rapidly than other Markov-random-field-based inference methods but at a competitive accuracy. However, the mechanism by which the DAS algorithm simultaneously achieves competitive accuracy and fast execution speed, has not been elucidated by a theoretical derivation. We analyze the DAS algorithm by comparing it with a message passing algorithm. Graphical models, inference methods, and energy-minimization frameworks are compared between DAS and message passing algorithms. Moreover, the performances of DAS and other message passing methods [sum-product belief propagation (BP), max-product BP, and tree-reweighted message passing] are experimentally compared.

  14. Derivation of Markov processes that violate detailed balance

    NASA Astrophysics Data System (ADS)

    Lee, Julian

    2018-03-01

    Time-reversal symmetry of the microscopic laws dictates that the equilibrium distribution of a stochastic process must obey the condition of detailed balance. However, cyclic Markov processes that do not admit equilibrium distributions with detailed balance are often used to model systems driven out of equilibrium by external agents. I show that for a Markov model without detailed balance, an extended Markov model can be constructed, which explicitly includes the degrees of freedom for the driving agent and satisfies the detailed balance condition. The original cyclic Markov model for the driven system is then recovered as an approximation at early times by summing over the degrees of freedom for the driving agent. I also show that the widely accepted expression for the entropy production in a cyclic Markov model is actually a time derivative of an entropy component in the extended model. Further, I present an analytic expression for the entropy component that is hidden in the cyclic Markov model.

  15. On Markov parameters in system identification

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Longman, Richard W.

    1991-01-01

    A detailed discussion of Markov parameters in system identification is given. Different forms of input-output representation of linear discrete-time systems are reviewed and discussed. Interpretation of sampled response data as Markov parameters is presented. Relations between the state-space model and particular linear difference models via the Markov parameters are formulated. A generalization of Markov parameters to observer and Kalman filter Markov parameters for system identification is explained. These extended Markov parameters play an important role in providing not only a state-space realization, but also an observer/Kalman filter for the system of interest.

  16. Data assimilation using a GPU accelerated path integral Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Quinn, John C.; Abarbanel, Henry D. I.

    2011-09-01

    The answers to data assimilation questions can be expressed as path integrals over all possible state and parameter histories. We show how these path integrals can be evaluated numerically using a Markov Chain Monte Carlo method designed to run in parallel on a graphics processing unit (GPU). We demonstrate the application of the method to an example with a transmembrane voltage time series of a simulated neuron as an input, and using a Hodgkin-Huxley neuron model. By taking advantage of GPU computing, we gain a parallel speedup factor of up to about 300, compared to an equivalent serial computation on a CPU, with performance increasing as the length of the observation time used for data assimilation increases.

  17. Statistical Analysis of Notational AFL Data Using Continuous Time Markov Chains

    PubMed Central

    Meyer, Denny; Forbes, Don; Clarke, Stephen R.

    2006-01-01

    Animal biologists commonly use continuous time Markov chain models to describe patterns of animal behaviour. In this paper we consider the use of these models for describing AFL football. In particular we test the assumptions for continuous time Markov chain models (CTMCs), with time, distance and speed values associated with each transition. Using a simple event categorisation it is found that a semi-Markov chain model is appropriate for this data. This validates the use of Markov Chains for future studies in which the outcomes of AFL matches are simulated. Key Points A comparison of four AFL matches suggests similarity in terms of transition probabilities for events and the mean times, distances and speeds associated with each transition. The Markov assumption appears to be valid. However, the speed, time and distance distributions associated with each transition are not exponential suggesting that semi-Markov model can be used to model and simulate play. Team identified events and directions associated with transitions are required to develop the model into a tool for the prediction of match outcomes. PMID:24357946

  18. Statistical Analysis of Notational AFL Data Using Continuous Time Markov Chains.

    PubMed

    Meyer, Denny; Forbes, Don; Clarke, Stephen R

    2006-01-01

    Animal biologists commonly use continuous time Markov chain models to describe patterns of animal behaviour. In this paper we consider the use of these models for describing AFL football. In particular we test the assumptions for continuous time Markov chain models (CTMCs), with time, distance and speed values associated with each transition. Using a simple event categorisation it is found that a semi-Markov chain model is appropriate for this data. This validates the use of Markov Chains for future studies in which the outcomes of AFL matches are simulated. Key PointsA comparison of four AFL matches suggests similarity in terms of transition probabilities for events and the mean times, distances and speeds associated with each transition.The Markov assumption appears to be valid.However, the speed, time and distance distributions associated with each transition are not exponential suggesting that semi-Markov model can be used to model and simulate play.Team identified events and directions associated with transitions are required to develop the model into a tool for the prediction of match outcomes.

  19. Modeling Hubble Space Telescope flight data by Q-Markov cover identification

    NASA Technical Reports Server (NTRS)

    Liu, K.; Skelton, R. E.; Sharkey, J. P.

    1992-01-01

    A state space model for the Hubble Space Telescope under the influence of unknown disturbances in orbit is presented. This model was obtained from flight data by applying the Q-Markov covariance equivalent realization identification algorithm. This state space model guarantees the match of the first Q-Markov parameters and covariance parameters of the Hubble system. The flight data were partitioned into high- and low-frequency components for more efficient Q-Markov cover modeling, to reduce some computational difficulties of the Q-Markov cover algorithm. This identification revealed more than 20 lightly damped modes within the bandwidth of the attitude control system. Comparisons with the analytical (TREETOPS) model are also included.

  20. A dynamic multi-scale Markov model based methodology for remaining life prediction

    NASA Astrophysics Data System (ADS)

    Yan, Jihong; Guo, Chaozhong; Wang, Xing

    2011-05-01

    The ability to accurately predict the remaining life of partially degraded components is crucial in prognostics. In this paper, a performance degradation index is designed using multi-feature fusion techniques to represent deterioration severities of facilities. Based on this indicator, an improved Markov model is proposed for remaining life prediction. Fuzzy C-Means (FCM) algorithm is employed to perform state division for Markov model in order to avoid the uncertainty of state division caused by the hard division approach. Considering the influence of both historical and real time data, a dynamic prediction method is introduced into Markov model by a weighted coefficient. Multi-scale theory is employed to solve the state division problem of multi-sample prediction. Consequently, a dynamic multi-scale Markov model is constructed. An experiment is designed based on a Bently-RK4 rotor testbed to validate the dynamic multi-scale Markov model, experimental results illustrate the effectiveness of the methodology.

  1. Data-driven confounder selection via Markov and Bayesian networks.

    PubMed

    Häggström, Jenny

    2018-06-01

    To unbiasedly estimate a causal effect on an outcome unconfoundedness is often assumed. If there is sufficient knowledge on the underlying causal structure then existing confounder selection criteria can be used to select subsets of the observed pretreatment covariates, X, sufficient for unconfoundedness, if such subsets exist. Here, estimation of these target subsets is considered when the underlying causal structure is unknown. The proposed method is to model the causal structure by a probabilistic graphical model, for example, a Markov or Bayesian network, estimate this graph from observed data and select the target subsets given the estimated graph. The approach is evaluated by simulation both in a high-dimensional setting where unconfoundedness holds given X and in a setting where unconfoundedness only holds given subsets of X. Several common target subsets are investigated and the selected subsets are compared with respect to accuracy in estimating the average causal effect. The proposed method is implemented with existing software that can easily handle high-dimensional data, in terms of large samples and large number of covariates. The results from the simulation study show that, if unconfoundedness holds given X, this approach is very successful in selecting the target subsets, outperforming alternative approaches based on random forests and LASSO, and that the subset estimating the target subset containing all causes of outcome yields smallest MSE in the average causal effect estimation. © 2017, The International Biometric Society.

  2. Markov switching multinomial logit model: An application to accident-injury severities.

    PubMed

    Malyshkina, Nataliya V; Mannering, Fred L

    2009-07-01

    In this study, two-state Markov switching multinomial logit models are proposed for statistical modeling of accident-injury severities. These models assume Markov switching over time between two unobserved states of roadway safety as a means of accounting for potential unobserved heterogeneity. The states are distinct in the sense that in different states accident-severity outcomes are generated by separate multinomial logit processes. To demonstrate the applicability of the approach, two-state Markov switching multinomial logit models are estimated for severity outcomes of accidents occurring on Indiana roads over a four-year time period. Bayesian inference methods and Markov Chain Monte Carlo (MCMC) simulations are used for model estimation. The estimated Markov switching models result in a superior statistical fit relative to the standard (single-state) multinomial logit models for a number of roadway classes and accident types. It is found that the more frequent state of roadway safety is correlated with better weather conditions and that the less frequent state is correlated with adverse weather conditions.

  3. Grey-Markov prediction model based on background value optimization and central-point triangular whitenization weight function

    NASA Astrophysics Data System (ADS)

    Ye, Jing; Dang, Yaoguo; Li, Bingjun

    2018-01-01

    Grey-Markov forecasting model is a combination of grey prediction model and Markov chain which show obvious optimization effects for data sequences with characteristics of non-stationary and volatility. However, the state division process in traditional Grey-Markov forecasting model is mostly based on subjective real numbers that immediately affects the accuracy of forecasting values. To seek the solution, this paper introduces the central-point triangular whitenization weight function in state division to calculate possibilities of research values in each state which reflect preference degrees in different states in an objective way. On the other hand, background value optimization is applied in the traditional grey model to generate better fitting data. By this means, the improved Grey-Markov forecasting model is built. Finally, taking the grain production in Henan Province as an example, it verifies this model's validity by comparing with GM(1,1) based on background value optimization and the traditional Grey-Markov forecasting model.

  4. Markov models in dentistry: application to resin-bonded bridges and review of the literature.

    PubMed

    Mahl, Dominik; Marinello, Carlo P; Sendi, Pedram

    2012-10-01

    Markov models are mathematical models that can be used to describe disease progression and evaluate the cost-effectiveness of medical interventions. Markov models allow projecting clinical and economic outcomes into the future and are therefore frequently used to estimate long-term outcomes of medical interventions. The purpose of this paper is to demonstrate its use in dentistry, using the example of resin-bonded bridges to replace missing teeth, and to review the literature. We used literature data and a four-state Markov model to project long-term outcomes of resin-bonded bridges over a time horizon of 60 years. In addition, the literature was searched in PubMed Medline for research articles on the application of Markov models in dentistry.

  5. Decoding and modelling of time series count data using Poisson hidden Markov model and Markov ordinal logistic regression models.

    PubMed

    Sebastian, Tunny; Jeyaseelan, Visalakshi; Jeyaseelan, Lakshmanan; Anandan, Shalini; George, Sebastian; Bangdiwala, Shrikant I

    2018-01-01

    Hidden Markov models are stochastic models in which the observations are assumed to follow a mixture distribution, but the parameters of the components are governed by a Markov chain which is unobservable. The issues related to the estimation of Poisson-hidden Markov models in which the observations are coming from mixture of Poisson distributions and the parameters of the component Poisson distributions are governed by an m-state Markov chain with an unknown transition probability matrix are explained here. These methods were applied to the data on Vibrio cholerae counts reported every month for 11-year span at Christian Medical College, Vellore, India. Using Viterbi algorithm, the best estimate of the state sequence was obtained and hence the transition probability matrix. The mean passage time between the states were estimated. The 95% confidence interval for the mean passage time was estimated via Monte Carlo simulation. The three hidden states of the estimated Markov chain are labelled as 'Low', 'Moderate' and 'High' with the mean counts of 1.4, 6.6 and 20.2 and the estimated average duration of stay of 3, 3 and 4 months, respectively. Environmental risk factors were studied using Markov ordinal logistic regression analysis. No significant association was found between disease severity levels and climate components.

  6. Caliber Corrected Markov Modeling (C2M2): Correcting Equilibrium Markov Models.

    PubMed

    Dixit, Purushottam D; Dill, Ken A

    2018-02-13

    Rate processes are often modeled using Markov State Models (MSMs). Suppose you know a prior MSM and then learn that your prediction of some particular observable rate is wrong. What is the best way to correct the whole MSM? For example, molecular dynamics simulations of protein folding may sample many microstates, possibly giving correct pathways through them while also giving the wrong overall folding rate when compared to experiment. Here, we describe Caliber Corrected Markov Modeling (C 2 M 2 ), an approach based on the principle of maximum entropy for updating a Markov model by imposing state- and trajectory-based constraints. We show that such corrections are equivalent to asserting position-dependent diffusion coefficients in continuous-time continuous-space Markov processes modeled by a Smoluchowski equation. We derive the functional form of the diffusion coefficient explicitly in terms of the trajectory-based constraints. We illustrate with examples of 2D particle diffusion and an overdamped harmonic oscillator.

  7. Building Simple Hidden Markov Models. Classroom Notes

    ERIC Educational Resources Information Center

    Ching, Wai-Ki; Ng, Michael K.

    2004-01-01

    Hidden Markov models (HMMs) are widely used in bioinformatics, speech recognition and many other areas. This note presents HMMs via the framework of classical Markov chain models. A simple example is given to illustrate the model. An estimation method for the transition probabilities of the hidden states is also discussed.

  8. Classification of customer lifetime value models using Markov chain

    NASA Astrophysics Data System (ADS)

    Permana, Dony; Pasaribu, Udjianna S.; Indratno, Sapto W.; Suprayogi

    2017-10-01

    A firm’s potential reward in future time from a customer can be determined by customer lifetime value (CLV). There are some mathematic methods to calculate it. One method is using Markov chain stochastic model. Here, a customer is assumed through some states. Transition inter the states follow Markovian properties. If we are given some states for a customer and the relationships inter states, then we can make some Markov models to describe the properties of the customer. As Markov models, CLV is defined as a vector contains CLV for a customer in the first state. In this paper we make a classification of Markov Models to calculate CLV. Start from two states of customer model, we make develop in many states models. The development a model is based on weaknesses in previous model. Some last models can be expected to describe how real characters of customers in a firm.

  9. Estimating Causal Effects with Ancestral Graph Markov Models

    PubMed Central

    Malinsky, Daniel; Spirtes, Peter

    2017-01-01

    We present an algorithm for estimating bounds on causal effects from observational data which combines graphical model search with simple linear regression. We assume that the underlying system can be represented by a linear structural equation model with no feedback, and we allow for the possibility of latent variables. Under assumptions standard in the causal search literature, we use conditional independence constraints to search for an equivalence class of ancestral graphs. Then, for each model in the equivalence class, we perform the appropriate regression (using causal structure information to determine which covariates to include in the regression) to estimate a set of possible causal effects. Our approach is based on the “IDA” procedure of Maathuis et al. (2009), which assumes that all relevant variables have been measured (i.e., no unmeasured confounders). We generalize their work by relaxing this assumption, which is often violated in applied contexts. We validate the performance of our algorithm on simulated data and demonstrate improved precision over IDA when latent variables are present. PMID:28217244

  10. GUI to Facilitate Research on Biological Damage from Radiation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Frances A.; Ponomarev, Artem Lvovich

    2010-01-01

    A graphical-user-interface (GUI) computer program has been developed to facilitate research on the damage caused by highly energetic particles and photons impinging on living organisms. The program brings together, into one computational workspace, computer codes that have been developed over the years, plus codes that will be developed during the foreseeable future, to address diverse aspects of radiation damage. These include codes that implement radiation-track models, codes for biophysical models of breakage of deoxyribonucleic acid (DNA) by radiation, pattern-recognition programs for extracting quantitative information from biological assays, and image-processing programs that aid visualization of DNA breaks. The radiation-track models are based on transport models of interactions of radiation with matter and solution of the Boltzmann transport equation by use of both theoretical and numerical models. The biophysical models of breakage of DNA by radiation include biopolymer coarse-grained and atomistic models of DNA, stochastic- process models of deposition of energy, and Markov-based probabilistic models of placement of double-strand breaks in DNA. The program is designed for use in the NT, 95, 98, 2000, ME, and XP variants of the Windows operating system.

  11. Estimation of sojourn time in chronic disease screening without data on interval cases.

    PubMed

    Chen, T H; Kuo, H S; Yen, M F; Lai, M S; Tabar, L; Duffy, S W

    2000-03-01

    Estimation of the sojourn time on the preclinical detectable period in disease screening or transition rates for the natural history of chronic disease usually rely on interval cases (diagnosed between screens). However, to ascertain such cases might be difficult in developing countries due to incomplete registration systems and difficulties in follow-up. To overcome this problem, we propose three Markov models to estimate parameters without using interval cases. A three-state Markov model, a five-state Markov model related to regional lymph node spread, and a five-state Markov model pertaining to tumor size are applied to data on breast cancer screening in female relatives of breast cancer cases in Taiwan. Results based on a three-state Markov model give mean sojourn time (MST) 1.90 (95% CI: 1.18-4.86) years for this high-risk group. Validation of these models on the basis of data on breast cancer screening in the age groups 50-59 and 60-69 years from the Swedish Two-County Trial shows the estimates from a three-state Markov model that does not use interval cases are very close to those from previous Markov models taking interval cancers into account. For the five-state Markov model, a reparameterized procedure using auxiliary information on clinically detected cancers is performed to estimate relevant parameters. A good fit of internal and external validation demonstrates the feasibility of using these models to estimate parameters that have previously required interval cancers. This method can be applied to other screening data in which there are no data on interval cases.

  12. Driving style recognition method using braking characteristics based on hidden Markov model

    PubMed Central

    Wu, Chaozhong; Lyu, Nengchao; Huang, Zhen

    2017-01-01

    Since the advantage of hidden Markov model in dealing with time series data and for the sake of identifying driving style, three driving style (aggressive, moderate and mild) are modeled reasonably through hidden Markov model based on driver braking characteristics to achieve efficient driving style. Firstly, braking impulse and the maximum braking unit area of vacuum booster within a certain time are collected from braking operation, and then general braking and emergency braking characteristics are extracted to code the braking characteristics. Secondly, the braking behavior observation sequence is used to describe the initial parameters of hidden Markov model, and the generation of the hidden Markov model for differentiating and an observation sequence which is trained and judged by the driving style is introduced. Thirdly, the maximum likelihood logarithm could be implied from the observable parameters. The recognition accuracy of algorithm is verified through experiments and two common pattern recognition algorithms. The results showed that the driving style discrimination based on hidden Markov model algorithm could realize effective discriminant of driving style. PMID:28837580

  13. Observation uncertainty in reversible Markov chains.

    PubMed

    Metzner, Philipp; Weber, Marcus; Schütte, Christof

    2010-09-01

    In many applications one is interested in finding a simplified model which captures the essential dynamical behavior of a real life process. If the essential dynamics can be assumed to be (approximately) memoryless then a reasonable choice for a model is a Markov model whose parameters are estimated by means of Bayesian inference from an observed time series. We propose an efficient Monte Carlo Markov chain framework to assess the uncertainty of the Markov model and related observables. The derived Gibbs sampler allows for sampling distributions of transition matrices subject to reversibility and/or sparsity constraints. The performance of the suggested sampling scheme is demonstrated and discussed for a variety of model examples. The uncertainty analysis of functions of the Markov model under investigation is discussed in application to the identification of conformations of the trialanine molecule via Robust Perron Cluster Analysis (PCCA+) .

  14. Phasic Triplet Markov Chains.

    PubMed

    El Yazid Boudaren, Mohamed; Monfrini, Emmanuel; Pieczynski, Wojciech; Aïssani, Amar

    2014-11-01

    Hidden Markov chains have been shown to be inadequate for data modeling under some complex conditions. In this work, we address the problem of statistical modeling of phenomena involving two heterogeneous system states. Such phenomena may arise in biology or communications, among other fields. Namely, we consider that a sequence of meaningful words is to be searched within a whole observation that also contains arbitrary one-by-one symbols. Moreover, a word may be interrupted at some site to be carried on later. Applying plain hidden Markov chains to such data, while ignoring their specificity, yields unsatisfactory results. The Phasic triplet Markov chain, proposed in this paper, overcomes this difficulty by means of an auxiliary underlying process in accordance with the triplet Markov chains theory. Related Bayesian restoration techniques and parameters estimation procedures according to the new model are then described. Finally, to assess the performance of the proposed model against the conventional hidden Markov chain model, experiments are conducted on synthetic and real data.

  15. Educational Aspirations: Markov and Poisson Models. Rural Industrial Development Project Working Paper Number 14, August 1971.

    ERIC Educational Resources Information Center

    Kayser, Brian D.

    The fit of educational aspirations of Illinois rural high school youths to 3 related one-parameter mathematical models was investigated. The models used were the continuous-time Markov chain model, the discrete-time Markov chain, and the Poisson distribution. The sample of 635 students responded to questionnaires from 1966 to 1969 as part of an…

  16. A stochastic model for tumor geometry evolution during radiation therapy in cervical cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yifang; Lee, Chi-Guhn; Chan, Timothy C. Y., E-mail: tcychan@mie.utoronto.ca

    2014-02-15

    Purpose: To develop mathematical models to predict the evolution of tumor geometry in cervical cancer undergoing radiation therapy. Methods: The authors develop two mathematical models to estimate tumor geometry change: a Markov model and an isomorphic shrinkage model. The Markov model describes tumor evolution by investigating the change in state (either tumor or nontumor) of voxels on the tumor surface. It assumes that the evolution follows a Markov process. Transition probabilities are obtained using maximum likelihood estimation and depend on the states of neighboring voxels. The isomorphic shrinkage model describes tumor shrinkage or growth in terms of layers of voxelsmore » on the tumor surface, instead of modeling individual voxels. The two proposed models were applied to data from 29 cervical cancer patients treated at Princess Margaret Cancer Centre and then compared to a constant volume approach. Model performance was measured using sensitivity and specificity. Results: The Markov model outperformed both the isomorphic shrinkage and constant volume models in terms of the trade-off between sensitivity (target coverage) and specificity (normal tissue sparing). Generally, the Markov model achieved a few percentage points in improvement in either sensitivity or specificity compared to the other models. The isomorphic shrinkage model was comparable to the Markov approach under certain parameter settings. Convex tumor shapes were easier to predict. Conclusions: By modeling tumor geometry change at the voxel level using a probabilistic model, improvements in target coverage and normal tissue sparing are possible. Our Markov model is flexible and has tunable parameters to adjust model performance to meet a range of criteria. Such a model may support the development of an adaptive paradigm for radiation therapy of cervical cancer.« less

  17. Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model.

    PubMed

    Sampid, Marius Galabe; Hasim, Haslifah M; Dai, Hongsheng

    2018-01-01

    In this paper, we propose a model for forecasting Value-at-Risk (VaR) using a Bayesian Markov-switching GJR-GARCH(1,1) model with skewed Student's-t innovation, copula functions and extreme value theory. A Bayesian Markov-switching GJR-GARCH(1,1) model that identifies non-constant volatility over time and allows the GARCH parameters to vary over time following a Markov process, is combined with copula functions and EVT to formulate the Bayesian Markov-switching GJR-GARCH(1,1) copula-EVT VaR model, which is then used to forecast the level of risk on financial asset returns. We further propose a new method for threshold selection in EVT analysis, which we term the hybrid method. Empirical and back-testing results show that the proposed VaR models capture VaR reasonably well in periods of calm and in periods of crisis.

  18. Network inference using informative priors

    PubMed Central

    Mukherjee, Sach; Speed, Terence P.

    2008-01-01

    Recent years have seen much interest in the study of systems characterized by multiple interacting components. A class of statistical models called graphical models, in which graphs are used to represent probabilistic relationships between variables, provides a framework for formal inference regarding such systems. In many settings, the object of inference is the network structure itself. This problem of “network inference” is well known to be a challenging one. However, in scientific settings there is very often existing information regarding network connectivity. A natural idea then is to take account of such information during inference. This article addresses the question of incorporating prior information into network inference. We focus on directed models called Bayesian networks, and use Markov chain Monte Carlo to draw samples from posterior distributions over network structures. We introduce prior distributions on graphs capable of capturing information regarding network features including edges, classes of edges, degree distributions, and sparsity. We illustrate our approach in the context of systems biology, applying our methods to network inference in cancer signaling. PMID:18799736

  19. Network inference using informative priors.

    PubMed

    Mukherjee, Sach; Speed, Terence P

    2008-09-23

    Recent years have seen much interest in the study of systems characterized by multiple interacting components. A class of statistical models called graphical models, in which graphs are used to represent probabilistic relationships between variables, provides a framework for formal inference regarding such systems. In many settings, the object of inference is the network structure itself. This problem of "network inference" is well known to be a challenging one. However, in scientific settings there is very often existing information regarding network connectivity. A natural idea then is to take account of such information during inference. This article addresses the question of incorporating prior information into network inference. We focus on directed models called Bayesian networks, and use Markov chain Monte Carlo to draw samples from posterior distributions over network structures. We introduce prior distributions on graphs capable of capturing information regarding network features including edges, classes of edges, degree distributions, and sparsity. We illustrate our approach in the context of systems biology, applying our methods to network inference in cancer signaling.

  20. Indexed semi-Markov process for wind speed modeling.

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. In a previous work we proposed different semi-Markov models, showing their ability to reproduce the autocorrelation structures of wind speed data. In that paper we showed also that the autocorrelation is higher with respect to the Markov model. Unfortunately this autocorrelation was still too small compared to the empirical one. In order to overcome the problem of low autocorrelation, in this paper we propose an indexed semi-Markov model. More precisely we assume that wind speed is described by a discrete time homogeneous semi-Markov process. We introduce a memory index which takes into account the periods of different wind activities. With this model the statistical characteristics of wind speed are faithfully reproduced. The wind is a very unstable phenomenon characterized by a sequence of lulls and sustained speeds, and a good wind generator must be able to reproduce such sequences. To check the validity of the predictive semi-Markovian model, the persistence of synthetic winds were calculated, then averaged and computed. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Renewable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribution, Renewable Energy 28 (2003) 1787-1802.

  1. Markov models of genome segmentation

    NASA Astrophysics Data System (ADS)

    Thakur, Vivek; Azad, Rajeev K.; Ramaswamy, Ram

    2007-01-01

    We introduce Markov models for segmentation of symbolic sequences, extending a segmentation procedure based on the Jensen-Shannon divergence that has been introduced earlier. Higher-order Markov models are more sensitive to the details of local patterns and in application to genome analysis, this makes it possible to segment a sequence at positions that are biologically meaningful. We show the advantage of higher-order Markov-model-based segmentation procedures in detecting compositional inhomogeneity in chimeric DNA sequences constructed from genomes of diverse species, and in application to the E. coli K12 genome, boundaries of genomic islands, cryptic prophages, and horizontally acquired regions are accurately identified.

  2. Modeling haplotype block variation using Markov chains.

    PubMed

    Greenspan, G; Geiger, D

    2006-04-01

    Models of background variation in genomic regions form the basis of linkage disequilibrium mapping methods. In this work we analyze a background model that groups SNPs into haplotype blocks and represents the dependencies between blocks by a Markov chain. We develop an error measure to compare the performance of this model against the common model that assumes that blocks are independent. By examining data from the International Haplotype Mapping project, we show how the Markov model over haplotype blocks is most accurate when representing blocks in strong linkage disequilibrium. This contrasts with the independent model, which is rendered less accurate by linkage disequilibrium. We provide a theoretical explanation for this surprising property of the Markov model and relate its behavior to allele diversity.

  3. Modeling Haplotype Block Variation Using Markov Chains

    PubMed Central

    Greenspan, G.; Geiger, D.

    2006-01-01

    Models of background variation in genomic regions form the basis of linkage disequilibrium mapping methods. In this work we analyze a background model that groups SNPs into haplotype blocks and represents the dependencies between blocks by a Markov chain. We develop an error measure to compare the performance of this model against the common model that assumes that blocks are independent. By examining data from the International Haplotype Mapping project, we show how the Markov model over haplotype blocks is most accurate when representing blocks in strong linkage disequilibrium. This contrasts with the independent model, which is rendered less accurate by linkage disequilibrium. We provide a theoretical explanation for this surprising property of the Markov model and relate its behavior to allele diversity. PMID:16361244

  4. Modeling the coupled return-spread high frequency dynamics of large tick assets

    NASA Astrophysics Data System (ADS)

    Curato, Gianbiagio; Lillo, Fabrizio

    2015-01-01

    Large tick assets, i.e. assets where one tick movement is a significant fraction of the price and bid-ask spread is almost always equal to one tick, display a dynamics in which price changes and spread are strongly coupled. We present an approach based on the hidden Markov model, also known in econometrics as the Markov switching model, for the dynamics of price changes, where the latent Markov process is described by the transitions between spreads. We then use a finite Markov mixture of logit regressions on past squared price changes to describe temporal dependencies in the dynamics of price changes. The model can thus be seen as a double chain Markov model. We show that the model describes the shape of the price change distribution at different time scales, volatility clustering, and the anomalous decrease of kurtosis. We calibrate our models based on Nasdaq stocks and we show that this model reproduces remarkably well the statistical properties of real data.

  5. Markov-modulated Markov chains and the covarion process of molecular evolution.

    PubMed

    Galtier, N; Jean-Marie, A

    2004-01-01

    The covarion (or site specific rate variation, SSRV) process of biological sequence evolution is a process by which the evolutionary rate of a nucleotide/amino acid/codon position can change in time. In this paper, we introduce time-continuous, space-discrete, Markov-modulated Markov chains as a model for representing SSRV processes, generalizing existing theory to any model of rate change. We propose a fast algorithm for diagonalizing the generator matrix of relevant Markov-modulated Markov processes. This algorithm makes phylogeny likelihood calculation tractable even for a large number of rate classes and a large number of states, so that SSRV models become applicable to amino acid or codon sequence datasets. Using this algorithm, we investigate the accuracy of the discrete approximation to the Gamma distribution of evolutionary rates, widely used in molecular phylogeny. We show that a relatively large number of classes is required to achieve accurate approximation of the exact likelihood when the number of analyzed sequences exceeds 20, both under the SSRV and among site rate variation (ASRV) models.

  6. Fast-slow asymptotics for a Markov chain model of fast sodium current

    NASA Astrophysics Data System (ADS)

    Starý, Tomáš; Biktashev, Vadim N.

    2017-09-01

    We explore the feasibility of using fast-slow asymptotics to eliminate the computational stiffness of discrete-state, continuous-time deterministic Markov chain models of ionic channels underlying cardiac excitability. We focus on a Markov chain model of fast sodium current, and investigate its asymptotic behaviour with respect to small parameters identified in different ways.

  7. Revisiting Temporal Markov Chains for Continuum modeling of Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Delgoshaie, A. H.; Jenny, P.; Tchelepi, H.

    2017-12-01

    The transport of fluids in porous media is dominated by flow­-field heterogeneity resulting from the underlying permeability field. Due to the high uncertainty in the permeability field, many realizations of the reference geological model are used to describe the statistics of the transport phenomena in a Monte Carlo (MC) framework. There has been strong interest in working with stochastic formulations of the transport that are different from the standard MC approach. Several stochastic models based on a velocity process for tracer particle trajectories have been proposed. Previous studies have shown that for high variances of the log-conductivity, the stochastic models need to account for correlations between consecutive velocity transitions to predict dispersion accurately. The correlated velocity models proposed in the literature can be divided into two general classes of temporal and spatial Markov models. Temporal Markov models have been applied successfully to tracer transport in both the longitudinal and transverse directions. These temporal models are Stochastic Differential Equations (SDEs) with very specific drift and diffusion terms tailored for a specific permeability correlation structure. The drift and diffusion functions devised for a certain setup would not necessarily be suitable for a different scenario, (e.g., a different permeability correlation structure). The spatial Markov models are simple discrete Markov chains that do not require case specific assumptions. However, transverse spreading of contaminant plumes has not been successfully modeled with the available correlated spatial models. Here, we propose a temporal discrete Markov chain to model both the longitudinal and transverse dispersion in a two-dimensional domain. We demonstrate that these temporal Markov models are valid for different correlation structures without modification. Similar to the temporal SDEs, the proposed model respects the limited asymptotic transverse spreading of the plume in two-dimensional problems.

  8. Irreversible Local Markov Chains with Rapid Convergence towards Equilibrium.

    PubMed

    Kapfer, Sebastian C; Krauth, Werner

    2017-12-15

    We study the continuous one-dimensional hard-sphere model and present irreversible local Markov chains that mix on faster time scales than the reversible heat bath or Metropolis algorithms. The mixing time scales appear to fall into two distinct universality classes, both faster than for reversible local Markov chains. The event-chain algorithm, the infinitesimal limit of one of these Markov chains, belongs to the class presenting the fastest decay. For the lattice-gas limit of the hard-sphere model, reversible local Markov chains correspond to the symmetric simple exclusion process (SEP) with periodic boundary conditions. The two universality classes for irreversible Markov chains are realized by the totally asymmetric SEP (TASEP), and by a faster variant (lifted TASEP) that we propose here. We discuss how our irreversible hard-sphere Markov chains generalize to arbitrary repulsive pair interactions and carry over to higher dimensions through the concept of lifted Markov chains and the recently introduced factorized Metropolis acceptance rule.

  9. Irreversible Local Markov Chains with Rapid Convergence towards Equilibrium

    NASA Astrophysics Data System (ADS)

    Kapfer, Sebastian C.; Krauth, Werner

    2017-12-01

    We study the continuous one-dimensional hard-sphere model and present irreversible local Markov chains that mix on faster time scales than the reversible heat bath or Metropolis algorithms. The mixing time scales appear to fall into two distinct universality classes, both faster than for reversible local Markov chains. The event-chain algorithm, the infinitesimal limit of one of these Markov chains, belongs to the class presenting the fastest decay. For the lattice-gas limit of the hard-sphere model, reversible local Markov chains correspond to the symmetric simple exclusion process (SEP) with periodic boundary conditions. The two universality classes for irreversible Markov chains are realized by the totally asymmetric SEP (TASEP), and by a faster variant (lifted TASEP) that we propose here. We discuss how our irreversible hard-sphere Markov chains generalize to arbitrary repulsive pair interactions and carry over to higher dimensions through the concept of lifted Markov chains and the recently introduced factorized Metropolis acceptance rule.

  10. A mathematical approach for evaluating Markov models in continuous time without discrete-event simulation.

    PubMed

    van Rosmalen, Joost; Toy, Mehlika; O'Mahony, James F

    2013-08-01

    Markov models are a simple and powerful tool for analyzing the health and economic effects of health care interventions. These models are usually evaluated in discrete time using cohort analysis. The use of discrete time assumes that changes in health states occur only at the end of a cycle period. Discrete-time Markov models only approximate the process of disease progression, as clinical events typically occur in continuous time. The approximation can yield biased cost-effectiveness estimates for Markov models with long cycle periods and if no half-cycle correction is made. The purpose of this article is to present an overview of methods for evaluating Markov models in continuous time. These methods use mathematical results from stochastic process theory and control theory. The methods are illustrated using an applied example on the cost-effectiveness of antiviral therapy for chronic hepatitis B. The main result is a mathematical solution for the expected time spent in each state in a continuous-time Markov model. It is shown how this solution can account for age-dependent transition rates and discounting of costs and health effects, and how the concept of tunnel states can be used to account for transition rates that depend on the time spent in a state. The applied example shows that the continuous-time model yields more accurate results than the discrete-time model but does not require much computation time and is easily implemented. In conclusion, continuous-time Markov models are a feasible alternative to cohort analysis and can offer several theoretical and practical advantages.

  11. Performance and state-space analyses of systems using Petri nets

    NASA Technical Reports Server (NTRS)

    Watson, James Francis, III

    1992-01-01

    The goal of any modeling methodology is to develop a mathematical description of a system that is accurate in its representation and also permits analysis of structural and/or performance properties. Inherently, trade-offs exist between the level detail in the model and the ease with which analysis can be performed. Petri nets (PN's), a highly graphical modeling methodology for Discrete Event Dynamic Systems, permit representation of shared resources, finite capacities, conflict, synchronization, concurrency, and timing between state changes. By restricting the state transition time delays to the family of exponential density functions, Markov chain analysis of performance problems is possible. One major drawback of PN's is the tendency for the state-space to grow rapidly (exponential complexity) compared to increases in the PN constructs. It is the state space, or the Markov chain obtained from it, that is needed in the solution of many problems. The theory of state-space size estimation for PN's is introduced. The problem of state-space size estimation is defined, its complexities are examined, and estimation algorithms are developed. Both top-down and bottom-up approaches are pursued, and the advantages and disadvantages of each are described. Additionally, the author's research in non-exponential transition modeling for PN's is discussed. An algorithm for approximating non-exponential transitions is developed. Since only basic PN constructs are used in the approximation, theory already developed for PN's remains applicable. Comparison to results from entropy theory show the transition performance is close to the theoretic optimum. Inclusion of non-exponential transition approximations improves performance results at the expense of increased state-space size. The state-space size estimation theory provides insight and algorithms for evaluating this trade-off.

  12. [Application of Markov model in post-marketing pharmacoeconomic evaluation of traditional Chinese medicine].

    PubMed

    Wang, Xin; Su, Xia; Sun, Wentao; Xie, Yanming; Wang, Yongyan

    2011-10-01

    In post-marketing study of traditional Chinese medicine (TCM), pharmacoeconomic evaluation has an important applied significance. However, the economic literatures of TCM have been unable to fully and accurately reflect the unique overall outcomes of treatment with TCM. For the special nature of TCM itself, we recommend that Markov model could be introduced into post-marketing pharmacoeconomic evaluation of TCM, and also explore the feasibility of model application. Markov model can extrapolate the study time horizon, suit with effectiveness indicators of TCM, and provide measurable comprehensive outcome. In addition, Markov model can promote the development of TCM quality of life scale and the methodology of post-marketing pharmacoeconomic evaluation.

  13. A Lagrangian Transport Eulerian Reaction Spatial (LATERS) Markov Model for Prediction of Effective Bimolecular Reactive Transport

    NASA Astrophysics Data System (ADS)

    Sund, Nicole; Porta, Giovanni; Bolster, Diogo; Parashar, Rishi

    2017-11-01

    Prediction of effective transport for mixing-driven reactive systems at larger scales, requires accurate representation of mixing at small scales, which poses a significant upscaling challenge. Depending on the problem at hand, there can be benefits to using a Lagrangian framework, while in others an Eulerian might have advantages. Here we propose and test a novel hybrid model which attempts to leverage benefits of each. Specifically, our framework provides a Lagrangian closure required for a volume-averaging procedure of the advection diffusion reaction equation. This hybrid model is a LAgrangian Transport Eulerian Reaction Spatial Markov model (LATERS Markov model), which extends previous implementations of the Lagrangian Spatial Markov model and maps concentrations to an Eulerian grid to quantify closure terms required to calculate the volume-averaged reaction terms. The advantage of this approach is that the Spatial Markov model is known to provide accurate predictions of transport, particularly at preasymptotic early times, when assumptions required by traditional volume-averaging closures are least likely to hold; likewise, the Eulerian reaction method is efficient, because it does not require calculation of distances between particles. This manuscript introduces the LATERS Markov model and demonstrates by example its ability to accurately predict bimolecular reactive transport in a simple benchmark 2-D porous medium.

  14. Markov and semi-Markov switching linear mixed models used to identify forest tree growth components.

    PubMed

    Chaubert-Pereira, Florence; Guédon, Yann; Lavergne, Christian; Trottier, Catherine

    2010-09-01

    Tree growth is assumed to be mainly the result of three components: (i) an endogenous component assumed to be structured as a succession of roughly stationary phases separated by marked change points that are asynchronous among individuals, (ii) a time-varying environmental component assumed to take the form of synchronous fluctuations among individuals, and (iii) an individual component corresponding mainly to the local environment of each tree. To identify and characterize these three components, we propose to use semi-Markov switching linear mixed models, i.e., models that combine linear mixed models in a semi-Markovian manner. The underlying semi-Markov chain represents the succession of growth phases and their lengths (endogenous component) whereas the linear mixed models attached to each state of the underlying semi-Markov chain represent-in the corresponding growth phase-both the influence of time-varying climatic covariates (environmental component) as fixed effects, and interindividual heterogeneity (individual component) as random effects. In this article, we address the estimation of Markov and semi-Markov switching linear mixed models in a general framework. We propose a Monte Carlo expectation-maximization like algorithm whose iterations decompose into three steps: (i) sampling of state sequences given random effects, (ii) prediction of random effects given state sequences, and (iii) maximization. The proposed statistical modeling approach is illustrated by the analysis of successive annual shoots along Corsican pine trunks influenced by climatic covariates. © 2009, The International Biometric Society.

  15. Modeling of dialogue regimes of distance robot control

    NASA Astrophysics Data System (ADS)

    Larkin, E. V.; Privalov, A. N.

    2017-02-01

    Process of distance control of mobile robots is investigated. Petri-Markov net for modeling of dialogue regime is worked out. It is shown, that sequence of operations of next subjects: a human operator, a dialogue computer and an onboard computer may be simulated with use the theory of semi-Markov processes. From the semi-Markov process of the general form Markov process was obtained, which includes only states of transaction generation. It is shown, that a real transaction flow is the result of «concurrency» in states of Markov process. Iteration procedure for evaluation of transaction flow parameters, which takes into account effect of «concurrency», is proposed.

  16. Multiensemble Markov models of molecular thermodynamics and kinetics.

    PubMed

    Wu, Hao; Paul, Fabian; Wehmeyer, Christoph; Noé, Frank

    2016-06-07

    We introduce the general transition-based reweighting analysis method (TRAM), a statistically optimal approach to integrate both unbiased and biased molecular dynamics simulations, such as umbrella sampling or replica exchange. TRAM estimates a multiensemble Markov model (MEMM) with full thermodynamic and kinetic information at all ensembles. The approach combines the benefits of Markov state models-clustering of high-dimensional spaces and modeling of complex many-state systems-with those of the multistate Bennett acceptance ratio of exploiting biased or high-temperature ensembles to accelerate rare-event sampling. TRAM does not depend on any rate model in addition to the widely used Markov state model approximation, but uses only fundamental relations such as detailed balance and binless reweighting of configurations between ensembles. Previous methods, including the multistate Bennett acceptance ratio, discrete TRAM, and Markov state models are special cases and can be derived from the TRAM equations. TRAM is demonstrated by efficiently computing MEMMs in cases where other estimators break down, including the full thermodynamics and rare-event kinetics from high-dimensional simulation data of an all-atom protein-ligand binding model.

  17. Master equation for She-Leveque scaling and its classification in terms of other Markov models of developed turbulence

    NASA Astrophysics Data System (ADS)

    Nickelsen, Daniel

    2017-07-01

    The statistics of velocity increments in homogeneous and isotropic turbulence exhibit universal features in the limit of infinite Reynolds numbers. After Kolmogorov’s scaling law from 1941, many turbulence models aim for capturing these universal features, some are known to have an equivalent formulation in terms of Markov processes. We derive the Markov process equivalent to the particularly successful scaling law postulated by She and Leveque. The Markov process is a jump process for velocity increments u(r) in scale r in which the jumps occur randomly but with deterministic width in u. From its master equation we establish a prescription to simulate the She-Leveque process and compare it with Kolmogorov scaling. To put the She-Leveque process into the context of other established turbulence models on the Markov level, we derive a diffusion process for u(r) using two properties of the Navier-Stokes equation. This diffusion process already includes Kolmogorov scaling, extended self-similarity and a class of random cascade models. The fluctuation theorem of this Markov process implies a ‘second law’ that puts a loose bound on the multipliers of the random cascade models. This bound explicitly allows for instances of inverse cascades, which are necessary to satisfy the fluctuation theorem. By adding a jump process to the diffusion process, we go beyond Kolmogorov scaling and formulate the most general scaling law for the class of Markov processes having both diffusion and jump parts. This Markov scaling law includes She-Leveque scaling and a scaling law derived by Yakhot.

  18. Myokit: A simple interface to cardiac cellular electrophysiology.

    PubMed

    Clerx, Michael; Collins, Pieter; de Lange, Enno; Volders, Paul G A

    2016-01-01

    Myokit is a new powerful and versatile software tool for modeling and simulation of cardiac cellular electrophysiology. Myokit consists of an easy-to-read modeling language, a graphical user interface, single and multi-cell simulation engines and a library of advanced analysis tools accessible through a Python interface. Models can be loaded from Myokit's native file format or imported from CellML. Model export is provided to C, MATLAB, CellML, CUDA and OpenCL. Patch-clamp data can be imported and used to estimate model parameters. In this paper, we review existing tools to simulate the cardiac cellular action potential to find that current tools do not cater specifically to model development and that there is a gap between easy-to-use but limited software and powerful tools that require strong programming skills from their users. We then describe Myokit's capabilities, focusing on its model description language, simulation engines and import/export facilities in detail. Using three examples, we show how Myokit can be used for clinically relevant investigations, multi-model testing and parameter estimation in Markov models, all with minimal programming effort from the user. This way, Myokit bridges a gap between performance, versatility and user-friendliness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Multiensemble Markov models of molecular thermodynamics and kinetics

    PubMed Central

    Wu, Hao; Paul, Fabian; Noé, Frank

    2016-01-01

    We introduce the general transition-based reweighting analysis method (TRAM), a statistically optimal approach to integrate both unbiased and biased molecular dynamics simulations, such as umbrella sampling or replica exchange. TRAM estimates a multiensemble Markov model (MEMM) with full thermodynamic and kinetic information at all ensembles. The approach combines the benefits of Markov state models—clustering of high-dimensional spaces and modeling of complex many-state systems—with those of the multistate Bennett acceptance ratio of exploiting biased or high-temperature ensembles to accelerate rare-event sampling. TRAM does not depend on any rate model in addition to the widely used Markov state model approximation, but uses only fundamental relations such as detailed balance and binless reweighting of configurations between ensembles. Previous methods, including the multistate Bennett acceptance ratio, discrete TRAM, and Markov state models are special cases and can be derived from the TRAM equations. TRAM is demonstrated by efficiently computing MEMMs in cases where other estimators break down, including the full thermodynamics and rare-event kinetics from high-dimensional simulation data of an all-atom protein–ligand binding model. PMID:27226302

  20. Markov stochasticity coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliazar, Iddo, E-mail: iddo.eliazar@intel.com

    Markov dynamics constitute one of the most fundamental models of random motion between the states of a system of interest. Markov dynamics have diverse applications in many fields of science and engineering, and are particularly applicable in the context of random motion in networks. In this paper we present a two-dimensional gauging method of the randomness of Markov dynamics. The method–termed Markov Stochasticity Coordinates–is established, discussed, and exemplified. Also, the method is tweaked to quantify the stochasticity of the first-passage-times of Markov dynamics, and the socioeconomic equality and mobility in human societies.

  1. Markov modeling for the neurosurgeon: a review of the literature and an introduction to cost-effectiveness research.

    PubMed

    Wali, Arvin R; Brandel, Michael G; Santiago-Dieppa, David R; Rennert, Robert C; Steinberg, Jeffrey A; Hirshman, Brian R; Murphy, James D; Khalessi, Alexander A

    2018-05-01

    OBJECTIVE Markov modeling is a clinical research technique that allows competing medical strategies to be mathematically assessed in order to identify the optimal allocation of health care resources. The authors present a review of the recently published neurosurgical literature that employs Markov modeling and provide a conceptual framework with which to evaluate, critique, and apply the findings generated from health economics research. METHODS The PubMed online database was searched to identify neurosurgical literature published from January 2010 to December 2017 that had utilized Markov modeling for neurosurgical cost-effectiveness studies. Included articles were then assessed with regard to year of publication, subspecialty of neurosurgery, decision analytical techniques utilized, and source information for model inputs. RESULTS A total of 55 articles utilizing Markov models were identified across a broad range of neurosurgical subspecialties. Sixty-five percent of the papers were published within the past 3 years alone. The majority of models derived health transition probabilities, health utilities, and cost information from previously published studies or publicly available information. Only 62% of the studies incorporated indirect costs. Ninety-three percent of the studies performed a 1-way or 2-way sensitivity analysis, and 67% performed a probabilistic sensitivity analysis. A review of the conceptual framework of Markov modeling and an explanation of the different terminology and methodology are provided. CONCLUSIONS As neurosurgeons continue to innovate and identify novel treatment strategies for patients, Markov modeling will allow for better characterization of the impact of these interventions on a patient and societal level. The aim of this work is to equip the neurosurgical readership with the tools to better understand, critique, and apply findings produced from cost-effectiveness research.

  2. Three real-time architectures - A study using reward models

    NASA Technical Reports Server (NTRS)

    Sjogren, J. A.; Smith, R. M.

    1990-01-01

    Numerous applications in the area of computer system analysis can be effectively studied with Markov reward models. These models describe the evolutionary behavior of the computer system by a continuous-time Markov chain, and a reward rate is associated with each state. In reliability/availability models, upstates have reward rate 1, and down states have reward rate zero associated with them. In a combined model of performance and reliability, the reward rate of a state may be the computational capacity, or a related performance measure. Steady-state expected reward rate and expected instantaneous reward rate are clearly useful measures which can be extracted from the Markov reward model. The diversity of areas where Markov reward models may be used is illustrated with a comparative study of three examples of interest to the fault tolerant computing community.

  3. Markov chains and semi-Markov models in time-to-event analysis.

    PubMed

    Abner, Erin L; Charnigo, Richard J; Kryscio, Richard J

    2013-10-25

    A variety of statistical methods are available to investigators for analysis of time-to-event data, often referred to as survival analysis. Kaplan-Meier estimation and Cox proportional hazards regression are commonly employed tools but are not appropriate for all studies, particularly in the presence of competing risks and when multiple or recurrent outcomes are of interest. Markov chain models can accommodate censored data, competing risks (informative censoring), multiple outcomes, recurrent outcomes, frailty, and non-constant survival probabilities. Markov chain models, though often overlooked by investigators in time-to-event analysis, have long been used in clinical studies and have widespread application in other fields.

  4. Markov chains and semi-Markov models in time-to-event analysis

    PubMed Central

    Abner, Erin L.; Charnigo, Richard J.; Kryscio, Richard J.

    2014-01-01

    A variety of statistical methods are available to investigators for analysis of time-to-event data, often referred to as survival analysis. Kaplan-Meier estimation and Cox proportional hazards regression are commonly employed tools but are not appropriate for all studies, particularly in the presence of competing risks and when multiple or recurrent outcomes are of interest. Markov chain models can accommodate censored data, competing risks (informative censoring), multiple outcomes, recurrent outcomes, frailty, and non-constant survival probabilities. Markov chain models, though often overlooked by investigators in time-to-event analysis, have long been used in clinical studies and have widespread application in other fields. PMID:24818062

  5. Orbit Determination for the Lunar Reconnaissance Orbiter Using an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven; Lowe, Jonathan; Woodburn, James

    2015-01-01

    Orbit determination (OD) analysis results are presented for the Lunar Reconnaissance Orbiter (LRO) using a commercially available Extended Kalman Filter, Analytical Graphics' Orbit Determination Tool Kit (ODTK). Process noise models for lunar gravity and solar radiation pressure (SRP) are described and OD results employing the models are presented. Definitive accuracy using ODTK meets mission requirements and is better than that achieved using the operational LRO OD tool, the Goddard Trajectory Determination System (GTDS). Results demonstrate that a Vasicek stochastic model produces better estimates of the coefficient of solar radiation pressure than a Gauss-Markov model, and prediction accuracy using a Vasicek model meets mission requirements over the analysis span. Modeling the effect of antenna motion on range-rate tracking considerably improves residuals and filter-smoother consistency. Inclusion of off-axis SRP process noise and generalized process noise improves filter performance for both definitive and predicted accuracy. Definitive accuracy from the smoother is better than achieved using GTDS and is close to that achieved by precision OD methods used to generate definitive science orbits. Use of a multi-plate dynamic spacecraft area model with ODTK's force model plugin capability provides additional improvements in predicted accuracy.

  6. [Development of Markov models for economics evaluation of strategies on hepatitis B vaccination and population-based antiviral treatment in China].

    PubMed

    Yang, P C; Zhang, S X; Sun, P P; Cai, Y L; Lin, Y; Zou, Y H

    2017-07-10

    Objective: To construct the Markov models to reflect the reality of prevention and treatment interventions against hepatitis B virus (HBV) infection, simulate the natural history of HBV infection in different age groups and provide evidence for the economics evaluations of hepatitis B vaccination and population-based antiviral treatment in China. Methods: According to the theory and techniques of Markov chain, the Markov models of Chinese HBV epidemic were developed based on the national data and related literature both at home and abroad, including the settings of Markov model states, allowable transitions and initial and transition probabilities. The model construction, operation and verification were conducted by using software TreeAge Pro 2015. Results: Several types of Markov models were constructed to describe the disease progression of HBV infection in neonatal period, perinatal period or adulthood, the progression of chronic hepatitis B after antiviral therapy, hepatitis B prevention and control in adults, chronic hepatitis B antiviral treatment and the natural progression of chronic hepatitis B in general population. The model for the newborn was fundamental which included ten states, i.e . susceptiblity to HBV, HBsAg clearance, immune tolerance, immune clearance, low replication, HBeAg negative CHB, compensated cirrhosis, decompensated cirrhosis, hepatocellular carcinoma (HCC) and death. The susceptible state to HBV was excluded in the perinatal period model, and the immune tolerance state was excluded in the adulthood model. The model for general population only included two states, survive and death. Among the 5 types of models, there were 9 initial states assigned with initial probabilities, and 27 states for transition probabilities. The results of model verifications showed that the probability curves were basically consistent with the situation of HBV epidemic in China. Conclusion: The Markov models developed can be used in economics evaluation of hepatitis B vaccination and treatment for the elimination of HBV infection in China though the structures and parameters in the model have uncertainty with dynamic natures.

  7. Nonparametric model validations for hidden Markov models with applications in financial econometrics.

    PubMed

    Zhao, Zhibiao

    2011-06-01

    We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise.

  8. Enhancement of Markov chain model by integrating exponential smoothing: A case study on Muslims marriage and divorce

    NASA Astrophysics Data System (ADS)

    Jamaluddin, Fadhilah; Rahim, Rahela Abdul

    2015-12-01

    Markov Chain has been introduced since the 1913 for the purpose of studying the flow of data for a consecutive number of years of the data and also forecasting. The important feature in Markov Chain is obtaining the accurate Transition Probability Matrix (TPM). However to obtain the suitable TPM is hard especially in involving long-term modeling due to unavailability of data. This paper aims to enhance the classical Markov Chain by introducing Exponential Smoothing technique in developing the appropriate TPM.

  9. Fuzzy Markov random fields versus chains for multispectral image segmentation.

    PubMed

    Salzenstein, Fabien; Collet, Christophe

    2006-11-01

    This paper deals with a comparison of recent statistical models based on fuzzy Markov random fields and chains for multispectral image segmentation. The fuzzy scheme takes into account discrete and continuous classes which model the imprecision of the hidden data. In this framework, we assume the dependence between bands and we express the general model for the covariance matrix. A fuzzy Markov chain model is developed in an unsupervised way. This method is compared with the fuzzy Markovian field model previously proposed by one of the authors. The segmentation task is processed with Bayesian tools, such as the well-known MPM (Mode of Posterior Marginals) criterion. Our goal is to compare the robustness and rapidity for both methods (fuzzy Markov fields versus fuzzy Markov chains). Indeed, such fuzzy-based procedures seem to be a good answer, e.g., for astronomical observations when the patterns present diffuse structures. Moreover, these approaches allow us to process missing data in one or several spectral bands which correspond to specific situations in astronomy. To validate both models, we perform and compare the segmentation on synthetic images and raw multispectral astronomical data.

  10. Developing a Markov Model for Forecasting End Strength of Selected Marine Corps Reserve (SMCR) Officers

    DTIC Science & Technology

    2013-03-01

    moving average ( ARIMA ) model because the data is not a times series. The best a manpower planner can do at this point is to make an educated assumption...MARKOV MODEL FOR FORECASTING END STRENGTH OF SELECTED MARINE CORPS RESERVE (SMCR) OFFICERS by Anthony D. Licari March 2013 Thesis Advisor...March 2013 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE DEVELOPING A MARKOV MODEL FOR FORECASTING END STRENGTH OF

  11. Markov chains for testing redundant software

    NASA Technical Reports Server (NTRS)

    White, Allan L.; Sjogren, Jon A.

    1988-01-01

    A preliminary design for a validation experiment has been developed that addresses several problems unique to assuring the extremely high quality of multiple-version programs in process-control software. The procedure uses Markov chains to model the error states of the multiple version programs. The programs are observed during simulated process-control testing, and estimates are obtained for the transition probabilities between the states of the Markov chain. The experimental Markov chain model is then expanded into a reliability model that takes into account the inertia of the system being controlled. The reliability of the multiple version software is computed from this reliability model at a given confidence level using confidence intervals obtained for the transition probabilities during the experiment. An example demonstrating the method is provided.

  12. Markov reward processes

    NASA Technical Reports Server (NTRS)

    Smith, R. M.

    1991-01-01

    Numerous applications in the area of computer system analysis can be effectively studied with Markov reward models. These models describe the behavior of the system with a continuous-time Markov chain, where a reward rate is associated with each state. In a reliability/availability model, upstates may have reward rate 1 and down states may have reward rate zero associated with them. In a queueing model, the number of jobs of certain type in a given state may be the reward rate attached to that state. In a combined model of performance and reliability, the reward rate of a state may be the computational capacity, or a related performance measure. Expected steady-state reward rate and expected instantaneous reward rate are clearly useful measures of the Markov reward model. More generally, the distribution of accumulated reward or time-averaged reward over a finite time interval may be determined from the solution of the Markov reward model. This information is of great practical significance in situations where the workload can be well characterized (deterministically, or by continuous functions e.g., distributions). The design process in the development of a computer system is an expensive and long term endeavor. For aerospace applications the reliability of the computer system is essential, as is the ability to complete critical workloads in a well defined real time interval. Consequently, effective modeling of such systems must take into account both performance and reliability. This fact motivates our use of Markov reward models to aid in the development and evaluation of fault tolerant computer systems.

  13. Modelisation de l'historique d'operation de groupes turbine-alternateur

    NASA Astrophysics Data System (ADS)

    Szczota, Mickael

    Because of their ageing fleet, the utility managers are increasingly in needs of tools that can help them to plan efficiently maintenance operations. Hydro-Quebec started a project that aim to foresee the degradation of their hydroelectric runner, and use that information to classify the generating unit. That classification will help to know which generating unit is more at risk to undergo a major failure. Cracks linked to the fatigue phenomenon are a predominant degradation mode and the loading sequences applied to the runner is a parameter impacting the crack growth. So, the aim of this memoir is to create a generator able to generate synthetic loading sequences that are statistically equivalent to the observed history. Those simulated sequences will be used as input in a life assessment model. At first, we describe how the generating units are operated by Hydro-Quebec and analyse the available data, the analysis shows that the data are non-stationnary. Then, we review modelisation and validation methods. In the following chapter a particular attention is given to a precise description of the validation and comparison procedure. Then, we present the comparison of three kind of model : Discrete Time Markov Chains, Discrete Time Semi-Markov Chains and the Moving Block Bootstrap. For the first two models, we describe how to take account for the non-stationnarity. Finally, we show that the Markov Chain is not adapted for our case, and that the Semi-Markov chains are better when they include the non-stationnarity. The final choice between Semi-Markov Chains and the Moving Block Bootstrap depends of the user. But, with a long term vision we recommend the use of Semi-Markov chains for their flexibility. Keywords: Stochastic models, Models validation, Reliability, Semi-Markov Chains, Markov Chains, Bootstrap

  14. Development and Testing of Data Mining Algorithms for Earth Observation

    NASA Technical Reports Server (NTRS)

    Glymour, Clark

    2005-01-01

    The new algorithms developed under this project included a principled procedure for classification of objects, events or circumstances according to a target variable when a very large number of potential predictor variables is available but the number of cases that can be used for training a classifier is relatively small. These "high dimensional" problems require finding a minimal set of variables -called the Markov Blanket-- sufficient for predicting the value of the target variable. An algorithm, the Markov Blanket Fan Search, was developed, implemented and tested on both simulated and real data in conjunction with a graphical model classifier, which was also implemented. Another algorithm developed and implemented in TETRAD IV for time series elaborated on work by C. Granger and N. Swanson, which in turn exploited some of our earlier work. The algorithms in question learn a linear time series model from data. Given such a time series, the simultaneous residual covariances, after factoring out time dependencies, may provide information about causal processes that occur more rapidly than the time series representation allow, so called simultaneous or contemporaneous causal processes. Working with A. Monetta, a graduate student from Italy, we produced the correct statistics for estimating the contemporaneous causal structure from time series data using the TETRAD IV suite of algorithms. Two economists, David Bessler and Kevin Hoover, have independently published applications using TETRAD style algorithms to the same purpose. These implementations and algorithmic developments were separately used in two kinds of studies of climate data: Short time series of geographically proximate climate variables predicting agricultural effects in California, and longer duration climate measurements of temperature teleconnections.

  15. Machine learning in sentiment reconstruction of the simulated stock market

    NASA Astrophysics Data System (ADS)

    Goykhman, Mikhail; Teimouri, Ali

    2018-02-01

    In this paper we continue the study of the simulated stock market framework defined by the driving sentiment processes. We focus on the market environment driven by the buy/sell trading sentiment process of the Markov chain type. We apply the methodology of the Hidden Markov Models and the Recurrent Neural Networks to reconstruct the transition probabilities matrix of the Markov sentiment process and recover the underlying sentiment states from the observed stock price behavior. We demonstrate that the Hidden Markov Model can successfully recover the transition probabilities matrix for the hidden sentiment process of the Markov Chain type. We also demonstrate that the Recurrent Neural Network can successfully recover the hidden sentiment states from the observed simulated stock price time series.

  16. First and second order semi-Markov chains for wind speed modeling

    NASA Astrophysics Data System (ADS)

    Prattico, F.; Petroni, F.; D'Amico, G.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [3] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [1], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. Semi-Markov processes (SMP) are a wide class of stochastic processes which generalize at the same time both Markov chains and renewal processes. Their main advantage is that of using whatever type of waiting time distribution for modeling the time to have a transition from one state to another one. This major flexibility has a price to pay: availability of data to estimate the parameters of the model which are more numerous. Data availability is not an issue in wind speed studies, therefore, semi-Markov models can be used in a statistical efficient way. In this work we present three different semi-Markov chain models: the first one is a first-order SMP where the transition probabilities from two speed states (at time Tn and Tn-1) depend on the initial state (the state at Tn-1), final state (the state at Tn) and on the waiting time (given by t=Tn-Tn-1), the second model is a second order SMP where we consider the transition probabilities as depending also on the state the wind speed was before the initial state (which is the state at Tn-2) and the last one is still a second order SMP where the transition probabilities depends on the three states at Tn-2,Tn-1 and Tn and on the waiting times t_1=Tn-1-Tn-2 and t_2=Tn-Tn-1. The three models are used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribution, Renewable Energy, 28/2003 1787-1802. [2] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30/2005 693-708. [3] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Renewable Energy 29/2004, 1407-1418.

  17. Computing rates of Markov models of voltage-gated ion channels by inverting partial differential equations governing the probability density functions of the conducting and non-conducting states.

    PubMed

    Tveito, Aslak; Lines, Glenn T; Edwards, Andrew G; McCulloch, Andrew

    2016-07-01

    Markov models are ubiquitously used to represent the function of single ion channels. However, solving the inverse problem to construct a Markov model of single channel dynamics from bilayer or patch-clamp recordings remains challenging, particularly for channels involving complex gating processes. Methods for solving the inverse problem are generally based on data from voltage clamp measurements. Here, we describe an alternative approach to this problem based on measurements of voltage traces. The voltage traces define probability density functions of the functional states of an ion channel. These probability density functions can also be computed by solving a deterministic system of partial differential equations. The inversion is based on tuning the rates of the Markov models used in the deterministic system of partial differential equations such that the solution mimics the properties of the probability density function gathered from (pseudo) experimental data as well as possible. The optimization is done by defining a cost function to measure the difference between the deterministic solution and the solution based on experimental data. By evoking the properties of this function, it is possible to infer whether the rates of the Markov model are identifiable by our method. We present applications to Markov model well-known from the literature. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Markov Chain Estimation of Avian Seasonal Fecundity

    EPA Science Inventory

    To explore the consequences of modeling decisions on inference about avian seasonal fecundity we generalize previous Markov chain (MC) models of avian nest success to formulate two different MC models of avian seasonal fecundity that represent two different ways to model renestin...

  19. Massively parallel multicanonical simulations

    NASA Astrophysics Data System (ADS)

    Gross, Jonathan; Zierenberg, Johannes; Weigel, Martin; Janke, Wolfhard

    2018-03-01

    Generalized-ensemble Monte Carlo simulations such as the multicanonical method and similar techniques are among the most efficient approaches for simulations of systems undergoing discontinuous phase transitions or with rugged free-energy landscapes. As Markov chain methods, they are inherently serial computationally. It was demonstrated recently, however, that a combination of independent simulations that communicate weight updates at variable intervals allows for the efficient utilization of parallel computational resources for multicanonical simulations. Implementing this approach for the many-thread architecture provided by current generations of graphics processing units (GPUs), we show how it can be efficiently employed with of the order of 104 parallel walkers and beyond, thus constituting a versatile tool for Monte Carlo simulations in the era of massively parallel computing. We provide the fully documented source code for the approach applied to the paradigmatic example of the two-dimensional Ising model as starting point and reference for practitioners in the field.

  20. Nonparametric model validations for hidden Markov models with applications in financial econometrics

    PubMed Central

    Zhao, Zhibiao

    2011-01-01

    We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise. PMID:21750601

  1. VAMPnets for deep learning of molecular kinetics.

    PubMed

    Mardt, Andreas; Pasquali, Luca; Wu, Hao; Noé, Frank

    2018-01-02

    There is an increasing demand for computing the relevant structures, equilibria, and long-timescale kinetics of biomolecular processes, such as protein-drug binding, from high-throughput molecular dynamics simulations. Current methods employ transformation of simulated coordinates into structural features, dimension reduction, clustering the dimension-reduced data, and estimation of a Markov state model or related model of the interconversion rates between molecular structures. This handcrafted approach demands a substantial amount of modeling expertise, as poor decisions at any step will lead to large modeling errors. Here we employ the variational approach for Markov processes (VAMP) to develop a deep learning framework for molecular kinetics using neural networks, dubbed VAMPnets. A VAMPnet encodes the entire mapping from molecular coordinates to Markov states, thus combining the whole data processing pipeline in a single end-to-end framework. Our method performs equally or better than state-of-the-art Markov modeling methods and provides easily interpretable few-state kinetic models.

  2. A reward semi-Markov process with memory for wind speed modeling

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. The primary goal of this analysis is the study of the time history of the wind in order to assess its reliability as a source of power and to determine the associated storage levels required. In order to assess this issue we use a probabilistic model based on indexed semi-Markov process [4] to which a reward structure is attached. Our model is used to calculate the expected energy produced by a given turbine and its variability expressed by the variance of the process. Our results can be used to compare different wind farms based on their reward and also on the risk of missed production due to the intrinsic variability of the wind speed process. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and backtesting procedure is used to compare results on first and second oder moments of rewards between real and synthetic data. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic gen- eration of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Re- newable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribu- tion, Renewable Energy 28 (2003) 1787-1802. [4]F. Petroni, G. D'Amico, F. Prattico, Indexed semi-Markov process for wind speed modeling. To be submitted.

  3. Bayesian analysis of non-homogeneous Markov chains: application to mental health data.

    PubMed

    Sung, Minje; Soyer, Refik; Nhan, Nguyen

    2007-07-10

    In this paper we present a formal treatment of non-homogeneous Markov chains by introducing a hierarchical Bayesian framework. Our work is motivated by the analysis of correlated categorical data which arise in assessment of psychiatric treatment programs. In our development, we introduce a Markovian structure to describe the non-homogeneity of transition patterns. In doing so, we introduce a logistic regression set-up for Markov chains and incorporate covariates in our model. We present a Bayesian model using Markov chain Monte Carlo methods and develop inference procedures to address issues encountered in the analyses of data from psychiatric treatment programs. Our model and inference procedures are implemented to some real data from a psychiatric treatment study. Copyright 2006 John Wiley & Sons, Ltd.

  4. Validation of the SURE Program, phase 1

    NASA Technical Reports Server (NTRS)

    Dotson, Kelly J.

    1987-01-01

    Presented are the results of the first phase in the validation of the SURE (Semi-Markov Unreliability Range Evaluator) program. The SURE program gives lower and upper bounds on the death-state probabilities of a semi-Markov model. With these bounds, the reliability of a semi-Markov model of a fault-tolerant computer system can be analyzed. For the first phase in the validation, fifteen semi-Markov models were solved analytically for the exact death-state probabilities and these solutions compared to the corresponding bounds given by SURE. In every case, the SURE bounds covered the exact solution. The bounds, however, had a tendency to separate in cases where the recovery rate was slow or the fault arrival rate was fast.

  5. Influence of credit scoring on the dynamics of Markov chain

    NASA Astrophysics Data System (ADS)

    Galina, Timofeeva

    2015-11-01

    Markov processes are widely used to model the dynamics of a credit portfolio and forecast the portfolio risk and profitability. In the Markov chain model the loan portfolio is divided into several groups with different quality, which determined by presence of indebtedness and its terms. It is proposed that dynamics of portfolio shares is described by a multistage controlled system. The article outlines mathematical formalization of controls which reflect the actions of the bank's management in order to improve the loan portfolio quality. The most important control is the organization of approval procedure of loan applications. The credit scoring is studied as a control affecting to the dynamic system. Different formalizations of "good" and "bad" consumers are proposed in connection with the Markov chain model.

  6. Zero-state Markov switching count-data models: an empirical assessment.

    PubMed

    Malyshkina, Nataliya V; Mannering, Fred L

    2010-01-01

    In this study, a two-state Markov switching count-data model is proposed as an alternative to zero-inflated models to account for the preponderance of zeros sometimes observed in transportation count data, such as the number of accidents occurring on a roadway segment over some period of time. For this accident-frequency case, zero-inflated models assume the existence of two states: one of the states is a zero-accident count state, which has accident probabilities that are so low that they cannot be statistically distinguished from zero, and the other state is a normal-count state, in which counts can be non-negative integers that are generated by some counting process, for example, a Poisson or negative binomial. While zero-inflated models have come under some criticism with regard to accident-frequency applications - one fact is undeniable - in many applications they provide a statistically superior fit to the data. The Markov switching approach we propose seeks to overcome some of the criticism associated with the zero-accident state of the zero-inflated model by allowing individual roadway segments to switch between zero and normal-count states over time. An important advantage of this Markov switching approach is that it allows for the direct statistical estimation of the specific roadway-segment state (i.e., zero-accident or normal-count state) whereas traditional zero-inflated models do not. To demonstrate the applicability of this approach, a two-state Markov switching negative binomial model (estimated with Bayesian inference) and standard zero-inflated negative binomial models are estimated using five-year accident frequencies on Indiana interstate highway segments. It is shown that the Markov switching model is a viable alternative and results in a superior statistical fit relative to the zero-inflated models.

  7. Discrete Latent Markov Models for Normally Distributed Response Data

    ERIC Educational Resources Information Center

    Schmittmann, Verena D.; Dolan, Conor V.; van der Maas, Han L. J.; Neale, Michael C.

    2005-01-01

    Van de Pol and Langeheine (1990) presented a general framework for Markov modeling of repeatedly measured discrete data. We discuss analogical single indicator models for normally distributed responses. In contrast to discrete models, which have been studied extensively, analogical continuous response models have hardly been considered. These…

  8. A simplified parsimonious higher order multivariate Markov chain model

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yang, Chuan-sheng

    2017-09-01

    In this paper, a simplified parsimonious higher-order multivariate Markov chain model (SPHOMMCM) is presented. Moreover, parameter estimation method of TPHOMMCM is give. Numerical experiments shows the effectiveness of TPHOMMCM.

  9. A tridiagonal parsimonious higher order multivariate Markov chain model

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yang, Chuan-sheng

    2017-09-01

    In this paper, we present a tridiagonal parsimonious higher-order multivariate Markov chain model (TPHOMMCM). Moreover, estimation method of the parameters in TPHOMMCM is give. Numerical experiments illustrate the effectiveness of TPHOMMCM.

  10. Hideen Markov Models and Neural Networks for Fault Detection in Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic

    1994-01-01

    None given. (From conclusion): Neural networks plus Hidden Markov Models(HMM)can provide excellene detection and false alarm rate performance in fault detection applications. Modified models allow for novelty detection. Also covers some key contributions of neural network model, and application status.

  11. Effect of Clustering Algorithm on Establishing Markov State Model for Molecular Dynamics Simulations.

    PubMed

    Li, Yan; Dong, Zigang

    2016-06-27

    Recently, the Markov state model has been applied for kinetic analysis of molecular dynamics simulations. However, discretization of the conformational space remains a primary challenge in model building, and it is not clear how the space decomposition by distinct clustering strategies exerts influence on the model output. In this work, different clustering algorithms are employed to partition the conformational space sampled in opening and closing of fatty acid binding protein 4 as well as inactivation and activation of the epidermal growth factor receptor. Various classifications are achieved, and Markov models are set up accordingly. On the basis of the models, the total net flux and transition rate are calculated between two distinct states. Our results indicate that geometric and kinetic clustering perform equally well. The construction and outcome of Markov models are heavily dependent on the data traits. Compared to other methods, a combination of Bayesian and hierarchical clustering is feasible in identification of metastable states.

  12. Invited commentary: Lost in estimation--searching for alternatives to markov chains to fit complex Bayesian models.

    PubMed

    Molitor, John

    2012-03-01

    Bayesian methods have seen an increase in popularity in a wide variety of scientific fields, including epidemiology. One of the main reasons for their widespread application is the power of the Markov chain Monte Carlo (MCMC) techniques generally used to fit these models. As a result, researchers often implicitly associate Bayesian models with MCMC estimation procedures. However, Bayesian models do not always require Markov-chain-based methods for parameter estimation. This is important, as MCMC estimation methods, while generally quite powerful, are complex and computationally expensive and suffer from convergence problems related to the manner in which they generate correlated samples used to estimate probability distributions for parameters of interest. In this issue of the Journal, Cole et al. (Am J Epidemiol. 2012;175(5):368-375) present an interesting paper that discusses non-Markov-chain-based approaches to fitting Bayesian models. These methods, though limited, can overcome some of the problems associated with MCMC techniques and promise to provide simpler approaches to fitting Bayesian models. Applied researchers will find these estimation approaches intuitively appealing and will gain a deeper understanding of Bayesian models through their use. However, readers should be aware that other non-Markov-chain-based methods are currently in active development and have been widely published in other fields.

  13. A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites

    NASA Astrophysics Data System (ADS)

    Wang, Q. J.; Robertson, D. E.; Chiew, F. H. S.

    2009-05-01

    Seasonal forecasting of streamflows can be highly valuable for water resources management. In this paper, a Bayesian joint probability (BJP) modeling approach for seasonal forecasting of streamflows at multiple sites is presented. A Box-Cox transformed multivariate normal distribution is proposed to model the joint distribution of future streamflows and their predictors such as antecedent streamflows and El Niño-Southern Oscillation indices and other climate indicators. Bayesian inference of model parameters and uncertainties is implemented using Markov chain Monte Carlo sampling, leading to joint probabilistic forecasts of streamflows at multiple sites. The model provides a parametric structure for quantifying relationships between variables, including intersite correlations. The Box-Cox transformed multivariate normal distribution has considerable flexibility for modeling a wide range of predictors and predictands. The Bayesian inference formulated allows the use of data that contain nonconcurrent and missing records. The model flexibility and data-handling ability means that the BJP modeling approach is potentially of wide practical application. The paper also presents a number of statistical measures and graphical methods for verification of probabilistic forecasts of continuous variables. Results for streamflows at three river gauges in the Murrumbidgee River catchment in southeast Australia show that the BJP modeling approach has good forecast quality and that the fitted model is consistent with observed data.

  14. Tracking Skill Acquisition with Cognitive Diagnosis Models: A Higher-Order, Hidden Markov Model with Covariates

    ERIC Educational Resources Information Center

    Wang, Shiyu; Yang, Yan; Culpepper, Steven Andrew; Douglas, Jeffrey A.

    2018-01-01

    A family of learning models that integrates a cognitive diagnostic model and a higher-order, hidden Markov model in one framework is proposed. This new framework includes covariates to model skill transition in the learning environment. A Bayesian formulation is adopted to estimate parameters from a learning model. The developed methods are…

  15. Markov chain model for demersal fish catch analysis in Indonesia

    NASA Astrophysics Data System (ADS)

    Firdaniza; Gusriani, N.

    2018-03-01

    As an archipelagic country, Indonesia has considerable potential fishery resources. One of the fish resources that has high economic value is demersal fish. Demersal fish is a fish with a habitat in the muddy seabed. Demersal fish scattered throughout the Indonesian seas. Demersal fish production in each Indonesia’s Fisheries Management Area (FMA) varies each year. In this paper we have discussed the Markov chain model for demersal fish yield analysis throughout all Indonesia’s Fisheries Management Area. Data of demersal fish catch in every FMA in 2005-2014 was obtained from Directorate of Capture Fisheries. From this data a transition probability matrix is determined by the number of transitions from the catch that lie below the median or above the median. The Markov chain model of demersal fish catch data was an ergodic Markov chain model, so that the limiting probability of the Markov chain model can be determined. The predictive value of demersal fishing yields was obtained by calculating the combination of limiting probability with average catch results below the median and above the median. The results showed that for 2018 and long-term demersal fishing results in most of FMA were below the median value.

  16. Two Aspects of the Simplex Model: Goodness of Fit to Linear Growth Curve Structures and the Analysis of Mean Trends.

    ERIC Educational Resources Information Center

    Mandys, Frantisek; Dolan, Conor V.; Molenaar, Peter C. M.

    1994-01-01

    Studied the conditions under which the quasi-Markov simplex model fits a linear growth curve covariance structure and determined when the model is rejected. Presents a quasi-Markov simplex model with structured means and gives an example. (SLD)

  17. Efficient Learning of Continuous-Time Hidden Markov Models for Disease Progression

    PubMed Central

    Liu, Yu-Ying; Li, Shuang; Li, Fuxin; Song, Le; Rehg, James M.

    2016-01-01

    The Continuous-Time Hidden Markov Model (CT-HMM) is an attractive approach to modeling disease progression due to its ability to describe noisy observations arriving irregularly in time. However, the lack of an efficient parameter learning algorithm for CT-HMM restricts its use to very small models or requires unrealistic constraints on the state transitions. In this paper, we present the first complete characterization of efficient EM-based learning methods for CT-HMM models. We demonstrate that the learning problem consists of two challenges: the estimation of posterior state probabilities and the computation of end-state conditioned statistics. We solve the first challenge by reformulating the estimation problem in terms of an equivalent discrete time-inhomogeneous hidden Markov model. The second challenge is addressed by adapting three approaches from the continuous time Markov chain literature to the CT-HMM domain. We demonstrate the use of CT-HMMs with more than 100 states to visualize and predict disease progression using a glaucoma dataset and an Alzheimer’s disease dataset. PMID:27019571

  18. A comparison between MS-VECM and MS-VECMX on economic time series data

    NASA Astrophysics Data System (ADS)

    Phoong, Seuk-Wai; Ismail, Mohd Tahir; Sek, Siok-Kun

    2014-07-01

    Multivariate Markov switching models able to provide useful information on the study of structural change data since the regime switching model can analyze the time varying data and capture the mean and variance in the series of dependence structure. This paper will investigates the oil price and gold price effects on Malaysia, Singapore, Thailand and Indonesia stock market returns. Two forms of Multivariate Markov switching models are used namely the mean adjusted heteroskedasticity Markov Switching Vector Error Correction Model (MSMH-VECM) and the mean adjusted heteroskedasticity Markov Switching Vector Error Correction Model with exogenous variable (MSMH-VECMX). The reason for using these two models are to capture the transition probabilities of the data since real financial time series data always exhibit nonlinear properties such as regime switching, cointegrating relations, jumps or breaks passing the time. A comparison between these two models indicates that MSMH-VECM model able to fit the time series data better than the MSMH-VECMX model. In addition, it was found that oil price and gold price affected the stock market changes in the four selected countries.

  19. Multiscale hidden Markov models for photon-limited imaging

    NASA Astrophysics Data System (ADS)

    Nowak, Robert D.

    1999-06-01

    Photon-limited image analysis is often hindered by low signal-to-noise ratios. A novel Bayesian multiscale modeling and analysis method is developed in this paper to assist in these challenging situations. In addition to providing a very natural and useful framework for modeling an d processing images, Bayesian multiscale analysis is often much less computationally demanding compared to classical Markov random field models. This paper focuses on a probabilistic graph model called the multiscale hidden Markov model (MHMM), which captures the key inter-scale dependencies present in natural image intensities. The MHMM framework presented here is specifically designed for photon-limited imagin applications involving Poisson statistics, and applications to image intensity analysis are examined.

  20. Markovian prediction of future values for food grains in the economic survey

    NASA Astrophysics Data System (ADS)

    Sathish, S.; Khadar Babu, S. K.

    2017-11-01

    Now-a-days prediction and forecasting are plays a vital role in research. For prediction, regression is useful to predict the future value and current value on production process. In this paper, we assume food grain production exhibit Markov chain dependency and time homogeneity. The economic generative performance evaluation the balance time artificial fertilization different level in Estrusdetection using a daily Markov chain model. Finally, Markov process prediction gives better performance compare with Regression model.

  1. Building Higher-Order Markov Chain Models with EXCEL

    ERIC Educational Resources Information Center

    Ching, Wai-Ki; Fung, Eric S.; Ng, Michael K.

    2004-01-01

    Categorical data sequences occur in many applications such as forecasting, data mining and bioinformatics. In this note, we present higher-order Markov chain models for modelling categorical data sequences with an efficient algorithm for solving the model parameters. The algorithm can be implemented easily in a Microsoft EXCEL worksheet. We give a…

  2. Policy Transfer via Markov Logic Networks

    NASA Astrophysics Data System (ADS)

    Torrey, Lisa; Shavlik, Jude

    We propose using a statistical-relational model, the Markov Logic Network, for knowledge transfer in reinforcement learning. Our goal is to extract relational knowledge from a source task and use it to speed up learning in a related target task. We show that Markov Logic Networks are effective models for capturing both source-task Q-functions and source-task policies. We apply them via demonstration, which involves using them for decision making in an initial stage of the target task before continuing to learn. Through experiments in the RoboCup simulated-soccer domain, we show that transfer via Markov Logic Networks can significantly improve early performance in complex tasks, and that transferring policies is more effective than transferring Q-functions.

  3. Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics.

    PubMed

    Wu, Xiao-Lin; Sun, Chuanyu; Beissinger, Timothy M; Rosa, Guilherme Jm; Weigel, Kent A; Gatti, Natalia de Leon; Gianola, Daniel

    2012-09-25

    Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs.

  4. Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics

    PubMed Central

    2012-01-01

    Background Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Results Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Conclusions Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs. PMID:23009363

  5. Stochastic modelling of a single ion channel: an alternating renewal approach with application to limited time resolution.

    PubMed

    Milne, R K; Yeo, G F; Edeson, R O; Madsen, B W

    1988-04-22

    Stochastic models of ion channels have been based largely on Markov theory where individual states and transition rates must be specified, and sojourn-time densities for each state are constrained to be exponential. This study presents an approach based on random-sum methods and alternating-renewal theory, allowing individual states to be grouped into classes provided the successive sojourn times in a given class are independent and identically distributed. Under these conditions Markov models form a special case. The utility of the approach is illustrated by considering the effects of limited time resolution (modelled by using a discrete detection limit, xi) on the properties of observable events, with emphasis on the observed open-time (xi-open-time). The cumulants and Laplace transform for a xi-open-time are derived for a range of Markov and non-Markov models; several useful approximations to the xi-open-time density function are presented. Numerical studies show that the effects of limited time resolution can be extreme, and also highlight the relative importance of the various model parameters. The theory could form a basis for future inferential studies in which parameter estimation takes account of limited time resolution in single channel records. Appendixes include relevant results concerning random sums and a discussion of the role of exponential distributions in Markov models.

  6. Analyzing chromatographic data using multilevel modeling.

    PubMed

    Wiczling, Paweł

    2018-06-01

    It is relatively easy to collect chromatographic measurements for a large number of analytes, especially with gradient chromatographic methods coupled with mass spectrometry detection. Such data often have a hierarchical or clustered structure. For example, analytes with similar hydrophobicity and dissociation constant tend to be more alike in their retention than a randomly chosen set of analytes. Multilevel models recognize the existence of such data structures by assigning a model for each parameter, with its parameters also estimated from data. In this work, a multilevel model is proposed to describe retention time data obtained from a series of wide linear organic modifier gradients of different gradient duration and different mobile phase pH for a large set of acids and bases. The multilevel model consists of (1) the same deterministic equation describing the relationship between retention time and analyte-specific and instrument-specific parameters, (2) covariance relationships relating various physicochemical properties of the analyte to chromatographically specific parameters through quantitative structure-retention relationship based equations, and (3) stochastic components of intra-analyte and interanalyte variability. The model was implemented in Stan, which provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods. Graphical abstract Relationships between log k and MeOH content for acidic, basic, and neutral compounds with different log P. CI credible interval, PSA polar surface area.

  7. Development and validation of a Markov microsimulation model for the economic evaluation of treatments in osteoporosis.

    PubMed

    Hiligsmann, Mickaël; Ethgen, Olivier; Bruyère, Olivier; Richy, Florent; Gathon, Henry-Jean; Reginster, Jean-Yves

    2009-01-01

    Markov models are increasingly used in economic evaluations of treatments for osteoporosis. Most of the existing evaluations are cohort-based Markov models missing comprehensive memory management and versatility. In this article, we describe and validate an original Markov microsimulation model to accurately assess the cost-effectiveness of prevention and treatment of osteoporosis. We developed a Markov microsimulation model with a lifetime horizon and a direct health-care cost perspective. The patient history was recorded and was used in calculations of transition probabilities, utilities, and costs. To test the internal consistency of the model, we carried out an example calculation for alendronate therapy. Then, external consistency was investigated by comparing absolute lifetime risk of fracture estimates with epidemiologic data. For women at age 70 years, with a twofold increase in the fracture risk of the average population, the costs per quality-adjusted life-year gained for alendronate therapy versus no treatment were estimated at €9105 and €15,325, respectively, under full and realistic adherence assumptions. All the sensitivity analyses in terms of model parameters and modeling assumptions were coherent with expected conclusions and absolute lifetime risk of fracture estimates were within the range of previous estimates, which confirmed both internal and external consistency of the model. Microsimulation models present some major advantages over cohort-based models, increasing the reliability of the results and being largely compatible with the existing state of the art, evidence-based literature. The developed model appears to be a valid model for use in economic evaluations in osteoporosis.

  8. Hidden Markov models and other machine learning approaches in computational molecular biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldi, P.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. Computational tools are increasingly needed to process the massive amounts of data, to organize and classify sequences, to detect weak similarities, to separate coding from non-coding regions, and reconstruct the underlying evolutionary history. The fundamental problem in machine learning is the same as in scientific reasoning in general, as well as statistical modeling: to come up with a good model for the data. In thismore » tutorial four classes of models are reviewed. They are: Hidden Markov models; artificial Neural Networks; Belief Networks; and Stochastic Grammars. When dealing with DNA and protein primary sequences, Hidden Markov models are one of the most flexible and powerful alignments and data base searches. In this tutorial, attention is focused on the theory of Hidden Markov Models, and how to apply them to problems in molecular biology.« less

  9. Markov Chain Model with Catastrophe to Determine Mean Time to Default of Credit Risky Assets

    NASA Astrophysics Data System (ADS)

    Dharmaraja, Selvamuthu; Pasricha, Puneet; Tardelli, Paola

    2017-11-01

    This article deals with the problem of probabilistic prediction of the time distance to default for a firm. To model the credit risk, the dynamics of an asset is described as a function of a homogeneous discrete time Markov chain subject to a catastrophe, the default. The behaviour of the Markov chain is investigated and the mean time to the default is expressed in a closed form. The methodology to estimate the parameters is given. Numerical results are provided to illustrate the applicability of the proposed model on real data and their analysis is discussed.

  10. LECTURES ON GAME THEORY, MARKOV CHAINS, AND RELATED TOPICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, G L

    1958-03-01

    Notes on nine lectures delivered at Sandin Corporation in August 1957 are given. Part one contains the manuscript of a paper concerning a judging problem. Part two is concerned with finite Markov-chain theory amd discusses regular Markov chains, absorbing Markov chains, the classification of states, application to the Leontief input-output model, and semimartingales. Part three contains notes on game theory and covers matrix games, the effect of psychological attitudes on the outcomes of games, extensive games, amd matrix theory applied to mathematical economics. (auth)

  11. An intelligent agent for optimal river-reservoir system management

    NASA Astrophysics Data System (ADS)

    Rieker, Jeffrey D.; Labadie, John W.

    2012-09-01

    A generalized software package is presented for developing an intelligent agent for stochastic optimization of complex river-reservoir system management and operations. Reinforcement learning is an approach to artificial intelligence for developing a decision-making agent that learns the best operational policies without the need for explicit probabilistic models of hydrologic system behavior. The agent learns these strategies experientially in a Markov decision process through observational interaction with the environment and simulation of the river-reservoir system using well-calibrated models. The graphical user interface for the reinforcement learning process controller includes numerous learning method options and dynamic displays for visualizing the adaptive behavior of the agent. As a case study, the generalized reinforcement learning software is applied to developing an intelligent agent for optimal management of water stored in the Truckee river-reservoir system of California and Nevada for the purpose of streamflow augmentation for water quality enhancement. The intelligent agent successfully learns long-term reservoir operational policies that specifically focus on mitigating water temperature extremes during persistent drought periods that jeopardize the survival of threatened and endangered fish species.

  12. High-throughput Bayesian Network Learning using Heterogeneous Multicore Computers

    PubMed Central

    Linderman, Michael D.; Athalye, Vivek; Meng, Teresa H.; Asadi, Narges Bani; Bruggner, Robert; Nolan, Garry P.

    2017-01-01

    Aberrant intracellular signaling plays an important role in many diseases. The causal structure of signal transduction networks can be modeled as Bayesian Networks (BNs), and computationally learned from experimental data. However, learning the structure of Bayesian Networks (BNs) is an NP-hard problem that, even with fast heuristics, is too time consuming for large, clinically important networks (20–50 nodes). In this paper, we present a novel graphics processing unit (GPU)-accelerated implementation of a Monte Carlo Markov Chain-based algorithm for learning BNs that is up to 7.5-fold faster than current general-purpose processor (GPP)-based implementations. The GPU-based implementation is just one of several implementations within the larger application, each optimized for a different input or machine configuration. We describe the methodology we use to build an extensible application, assembled from these variants, that can target a broad range of heterogeneous systems, e.g., GPUs, multicore GPPs. Specifically we show how we use the Merge programming model to efficiently integrate, test and intelligently select among the different potential implementations. PMID:28819655

  13. Discrete time Markov chains (DTMC) susceptible infected susceptible (SIS) epidemic model with two pathogens in two patches

    NASA Astrophysics Data System (ADS)

    Lismawati, Eka; Respatiwulan; Widyaningsih, Purnami

    2017-06-01

    The SIS epidemic model describes the pattern of disease spread with characteristics that recovered individuals can be infected more than once. The number of susceptible and infected individuals every time follows the discrete time Markov process. It can be represented by the discrete time Markov chains (DTMC) SIS. The DTMC SIS epidemic model can be developed for two pathogens in two patches. The aims of this paper are to reconstruct and to apply the DTMC SIS epidemic model with two pathogens in two patches. The model was presented as transition probabilities. The application of the model obtain that the number of susceptible individuals decreases while the number of infected individuals increases for each pathogen in each patch.

  14. Identifying and correcting non-Markov states in peptide conformational dynamics

    NASA Astrophysics Data System (ADS)

    Nerukh, Dmitry; Jensen, Christian H.; Glen, Robert C.

    2010-02-01

    Conformational transitions in proteins define their biological activity and can be investigated in detail using the Markov state model. The fundamental assumption on the transitions between the states, their Markov property, is critical in this framework. We test this assumption by analyzing the transitions obtained directly from the dynamics of a molecular dynamics simulated peptide valine-proline-alanine-leucine and states defined phenomenologically using clustering in dihedral space. We find that the transitions are Markovian at the time scale of ≈50 ps and longer. However, at the time scale of 30-40 ps the dynamics loses its Markov property. Our methodology reveals the mechanism that leads to non-Markov behavior. It also provides a way of regrouping the conformations into new states that now possess the required Markov property of their dynamics.

  15. Detecting memory and structure in human navigation patterns using Markov chain models of varying order.

    PubMed

    Singer, Philipp; Helic, Denis; Taraghi, Behnam; Strohmaier, Markus

    2014-01-01

    One of the most frequently used models for understanding human navigation on the Web is the Markov chain model, where Web pages are represented as states and hyperlinks as probabilities of navigating from one page to another. Predominantly, human navigation on the Web has been thought to satisfy the memoryless Markov property stating that the next page a user visits only depends on her current page and not on previously visited ones. This idea has found its way in numerous applications such as Google's PageRank algorithm and others. Recently, new studies suggested that human navigation may better be modeled using higher order Markov chain models, i.e., the next page depends on a longer history of past clicks. Yet, this finding is preliminary and does not account for the higher complexity of higher order Markov chain models which is why the memoryless model is still widely used. In this work we thoroughly present a diverse array of advanced inference methods for determining the appropriate Markov chain order. We highlight strengths and weaknesses of each method and apply them for investigating memory and structure of human navigation on the Web. Our experiments reveal that the complexity of higher order models grows faster than their utility, and thus we confirm that the memoryless model represents a quite practical model for human navigation on a page level. However, when we expand our analysis to a topical level, where we abstract away from specific page transitions to transitions between topics, we find that the memoryless assumption is violated and specific regularities can be observed. We report results from experiments with two types of navigational datasets (goal-oriented vs. free form) and observe interesting structural differences that make a strong argument for more contextual studies of human navigation in future work.

  16. Detecting Memory and Structure in Human Navigation Patterns Using Markov Chain Models of Varying Order

    PubMed Central

    Singer, Philipp; Helic, Denis; Taraghi, Behnam; Strohmaier, Markus

    2014-01-01

    One of the most frequently used models for understanding human navigation on the Web is the Markov chain model, where Web pages are represented as states and hyperlinks as probabilities of navigating from one page to another. Predominantly, human navigation on the Web has been thought to satisfy the memoryless Markov property stating that the next page a user visits only depends on her current page and not on previously visited ones. This idea has found its way in numerous applications such as Google's PageRank algorithm and others. Recently, new studies suggested that human navigation may better be modeled using higher order Markov chain models, i.e., the next page depends on a longer history of past clicks. Yet, this finding is preliminary and does not account for the higher complexity of higher order Markov chain models which is why the memoryless model is still widely used. In this work we thoroughly present a diverse array of advanced inference methods for determining the appropriate Markov chain order. We highlight strengths and weaknesses of each method and apply them for investigating memory and structure of human navigation on the Web. Our experiments reveal that the complexity of higher order models grows faster than their utility, and thus we confirm that the memoryless model represents a quite practical model for human navigation on a page level. However, when we expand our analysis to a topical level, where we abstract away from specific page transitions to transitions between topics, we find that the memoryless assumption is violated and specific regularities can be observed. We report results from experiments with two types of navigational datasets (goal-oriented vs. free form) and observe interesting structural differences that make a strong argument for more contextual studies of human navigation in future work. PMID:25013937

  17. Markov Modeling of Component Fault Growth over a Derived Domain of Feasible Output Control Effort Modifications

    NASA Technical Reports Server (NTRS)

    Bole, Brian; Goebel, Kai; Vachtsevanos, George

    2012-01-01

    This paper introduces a novel Markov process formulation of stochastic fault growth modeling, in order to facilitate the development and analysis of prognostics-based control adaptation. A metric representing the relative deviation between the nominal output of a system and the net output that is actually enacted by an implemented prognostics-based control routine, will be used to define the action space of the formulated Markov process. The state space of the Markov process will be defined in terms of an abstracted metric representing the relative health remaining in each of the system s components. The proposed formulation of component fault dynamics will conveniently relate feasible system output performance modifications to predictions of future component health deterioration.

  18. Scalable approximate policies for Markov decision process models of hospital elective admissions.

    PubMed

    Zhu, George; Lizotte, Dan; Hoey, Jesse

    2014-05-01

    To demonstrate the feasibility of using stochastic simulation methods for the solution of a large-scale Markov decision process model of on-line patient admissions scheduling. The problem of admissions scheduling is modeled as a Markov decision process in which the states represent numbers of patients using each of a number of resources. We investigate current state-of-the-art real time planning methods to compute solutions to this Markov decision process. Due to the complexity of the model, traditional model-based planners are limited in scalability since they require an explicit enumeration of the model dynamics. To overcome this challenge, we apply sample-based planners along with efficient simulation techniques that given an initial start state, generate an action on-demand while avoiding portions of the model that are irrelevant to the start state. We also propose a novel variant of a popular sample-based planner that is particularly well suited to the elective admissions problem. Results show that the stochastic simulation methods allow for the problem size to be scaled by a factor of almost 10 in the action space, and exponentially in the state space. We have demonstrated our approach on a problem with 81 actions, four specialities and four treatment patterns, and shown that we can generate solutions that are near-optimal in about 100s. Sample-based planners are a viable alternative to state-based planners for large Markov decision process models of elective admissions scheduling. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. BMRF-Net: a software tool for identification of protein interaction subnetworks by a bagging Markov random field-based method.

    PubMed

    Shi, Xu; Barnes, Robert O; Chen, Li; Shajahan-Haq, Ayesha N; Hilakivi-Clarke, Leena; Clarke, Robert; Wang, Yue; Xuan, Jianhua

    2015-07-15

    Identification of protein interaction subnetworks is an important step to help us understand complex molecular mechanisms in cancer. In this paper, we develop a BMRF-Net package, implemented in Java and C++, to identify protein interaction subnetworks based on a bagging Markov random field (BMRF) framework. By integrating gene expression data and protein-protein interaction data, this software tool can be used to identify biologically meaningful subnetworks. A user friendly graphic user interface is developed as a Cytoscape plugin for the BMRF-Net software to deal with the input/output interface. The detailed structure of the identified networks can be visualized in Cytoscape conveniently. The BMRF-Net package has been applied to breast cancer data to identify significant subnetworks related to breast cancer recurrence. The BMRF-Net package is available at http://sourceforge.net/projects/bmrfcjava/. The package is tested under Ubuntu 12.04 (64-bit), Java 7, glibc 2.15 and Cytoscape 3.1.0. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Towards automatic Markov reliability modeling of computer architectures

    NASA Technical Reports Server (NTRS)

    Liceaga, C. A.; Siewiorek, D. P.

    1986-01-01

    The analysis and evaluation of reliability measures using time-varying Markov models is required for Processor-Memory-Switch (PMS) structures that have competing processes such as standby redundancy and repair, or renewal processes such as transient or intermittent faults. The task of generating these models is tedious and prone to human error due to the large number of states and transitions involved in any reasonable system. Therefore model formulation is a major analysis bottleneck, and model verification is a major validation problem. The general unfamiliarity of computer architects with Markov modeling techniques further increases the necessity of automating the model formulation. This paper presents an overview of the Automated Reliability Modeling (ARM) program, under development at NASA Langley Research Center. ARM will accept as input a description of the PMS interconnection graph, the behavior of the PMS components, the fault-tolerant strategies, and the operational requirements. The output of ARM will be the reliability of availability Markov model formulated for direct use by evaluation programs. The advantages of such an approach are (a) utility to a large class of users, not necessarily expert in reliability analysis, and (b) a lower probability of human error in the computation.

  1. Modelling Faculty Replacement Strategies Using a Time-Dependent Finite Markov-Chain Process.

    ERIC Educational Resources Information Center

    Hackett, E. Raymond; Magg, Alexander A.; Carrigan, Sarah D.

    1999-01-01

    Describes the use of a time-dependent Markov-chain model to develop faculty-replacement strategies within a college at a research university. The study suggests that a stochastic modelling approach can provide valuable insight when planning for personnel needs in the immediate (five-to-ten year) future. (MSE)

  2. The introduction of hydrogen bond and hydrophobicity effects into the rotational isomeric states model for conformational analysis of unfolded peptides.

    PubMed

    Engin, Ozge; Sayar, Mehmet; Erman, Burak

    2009-01-13

    Relative contributions of local and non-local interactions to the unfolded conformations of peptides are examined by using the rotational isomeric states model which is a Markov model based on pairwise interactions of torsion angles. The isomeric states of a residue are well described by the Ramachandran map of backbone torsion angles. The statistical weight matrices for the states are determined by molecular dynamics simulations applied to monopeptides and dipeptides. Conformational properties of tripeptides formed from combinations of alanine, valine, tyrosine and tryptophan are investigated based on the Markov model. Comparison with molecular dynamics simulation results on these tripeptides identifies the sequence-distant long-range interactions that are missing in the Markov model. These are essentially the hydrogen bond and hydrophobic interactions that are obtained between the first and the third residue of a tripeptide. A systematic correction is proposed for incorporating these long-range interactions into the rotational isomeric states model. Preliminary results suggest that the Markov assumption can be improved significantly by renormalizing the statistical weight matrices to include the effects of the long-range correlations.

  3. The introduction of hydrogen bond and hydrophobicity effects into the rotational isomeric states model for conformational analysis of unfolded peptides

    NASA Astrophysics Data System (ADS)

    Engin, Ozge; Sayar, Mehmet; Erman, Burak

    2009-03-01

    Relative contributions of local and non-local interactions to the unfolded conformations of peptides are examined by using the rotational isomeric states model which is a Markov model based on pairwise interactions of torsion angles. The isomeric states of a residue are well described by the Ramachandran map of backbone torsion angles. The statistical weight matrices for the states are determined by molecular dynamics simulations applied to monopeptides and dipeptides. Conformational properties of tripeptides formed from combinations of alanine, valine, tyrosine and tryptophan are investigated based on the Markov model. Comparison with molecular dynamics simulation results on these tripeptides identifies the sequence-distant long-range interactions that are missing in the Markov model. These are essentially the hydrogen bond and hydrophobic interactions that are obtained between the first and the third residue of a tripeptide. A systematic correction is proposed for incorporating these long-range interactions into the rotational isomeric states model. Preliminary results suggest that the Markov assumption can be improved significantly by renormalizing the statistical weight matrices to include the effects of the long-range correlations.

  4. Bacterial genomes lacking long-range correlations may not be modeled by low-order Markov chains: the role of mixing statistics and frame shift of neighboring genes.

    PubMed

    Cocho, Germinal; Miramontes, Pedro; Mansilla, Ricardo; Li, Wentian

    2014-12-01

    We examine the relationship between exponential correlation functions and Markov models in a bacterial genome in detail. Despite the well known fact that Markov models generate sequences with correlation function that decays exponentially, simply constructed Markov models based on nearest-neighbor dimer (first-order), trimer (second-order), up to hexamer (fifth-order), and treating the DNA sequence as being homogeneous all fail to predict the value of exponential decay rate. Even reading-frame-specific Markov models (both first- and fifth-order) could not explain the fact that the exponential decay is very slow. Starting with the in-phase coding-DNA-sequence (CDS), we investigated correlation within a fixed-codon-position subsequence, and in artificially constructed sequences by packing CDSs with out-of-phase spacers, as well as altering CDS length distribution by imposing an upper limit. From these targeted analyses, we conclude that the correlation in the bacterial genomic sequence is mainly due to a mixing of heterogeneous statistics at different codon positions, and the decay of correlation is due to the possible out-of-phase between neighboring CDSs. There are also small contributions to the correlation from bases at the same codon position, as well as by non-coding sequences. These show that the seemingly simple exponential correlation functions in bacterial genome hide a complexity in correlation structure which is not suitable for a modeling by Markov chain in a homogeneous sequence. Other results include: use of the (absolute value) second largest eigenvalue to represent the 16 correlation functions and the prediction of a 10-11 base periodicity from the hexamer frequencies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Analysing grouping of nucleotides in DNA sequences using lumped processes constructed from Markov chains.

    PubMed

    Guédon, Yann; d'Aubenton-Carafa, Yves; Thermes, Claude

    2006-03-01

    The most commonly used models for analysing local dependencies in DNA sequences are (high-order) Markov chains. Incorporating knowledge relative to the possible grouping of the nucleotides enables to define dedicated sub-classes of Markov chains. The problem of formulating lumpability hypotheses for a Markov chain is therefore addressed. In the classical approach to lumpability, this problem can be formulated as the determination of an appropriate state space (smaller than the original state space) such that the lumped chain defined on this state space retains the Markov property. We propose a different perspective on lumpability where the state space is fixed and the partitioning of this state space is represented by a one-to-many probabilistic function within a two-level stochastic process. Three nested classes of lumped processes can be defined in this way as sub-classes of first-order Markov chains. These lumped processes enable parsimonious reparameterizations of Markov chains that help to reveal relevant partitions of the state space. Characterizations of the lumped processes on the original transition probability matrix are derived. Different model selection methods relying either on hypothesis testing or on penalized log-likelihood criteria are presented as well as extensions to lumped processes constructed from high-order Markov chains. The relevance of the proposed approach to lumpability is illustrated by the analysis of DNA sequences. In particular, the use of lumped processes enables to highlight differences between intronic sequences and gene untranslated region sequences.

  6. Linear system identification via backward-time observer models

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh

    1993-01-01

    This paper presents an algorithm to identify a state-space model of a linear system using a backward-time approach. The procedure consists of three basic steps. First, the Markov parameters of a backward-time observer are computed from experimental input-output data. Second, the backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) from which a backward-time state-space model is realized using the Eigensystem Realization Algorithm. Third, the obtained backward-time state space model is converted to the usual forward-time representation. Stochastic properties of this approach will be discussed. Experimental results are given to illustrate when and to what extent this concept works.

  7. Technical manual for basic version of the Markov chain nest productivity model (MCnest)

    EPA Science Inventory

    The Markov Chain Nest Productivity Model (or MCnest) integrates existing toxicity information from three standardized avian toxicity tests with information on species life history and the timing of pesticide applications relative to the timing of avian breeding seasons to quantit...

  8. User’s manual for basic version of MCnest Markov chain nest productivity model

    EPA Science Inventory

    The Markov Chain Nest Productivity Model (or MCnest) integrates existing toxicity information from three standardized avian toxicity tests with information on species life history and the timing of pesticide applications relative to the timing of avian breeding seasons to quantit...

  9. A simplified parsimonious higher order multivariate Markov chain model with new convergence condition

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yang, Chuan-sheng

    2017-09-01

    In this paper, we present a simplified parsimonious higher-order multivariate Markov chain model with new convergence condition. (TPHOMMCM-NCC). Moreover, estimation method of the parameters in TPHOMMCM-NCC is give. Numerical experiments illustrate the effectiveness of TPHOMMCM-NCC.

  10. Linear system identification via backward-time observer models

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh Q.

    1992-01-01

    Presented here is an algorithm to compute the Markov parameters of a backward-time observer for a backward-time model from experimental input and output data. The backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) for the backward-time system identification. The identified backward-time system Markov parameters are used in the Eigensystem Realization Algorithm to identify a backward-time state-space model, which can be easily converted to the usual forward-time representation. If one reverses time in the model to be identified, what were damped true system modes become modes with negative damping, growing as the reversed time increases. On the other hand, the noise modes in the identification still maintain the property that they are stable. The shift from positive damping to negative damping of the true system modes allows one to distinguish these modes from noise modes. Experimental results are given to illustrate when and to what extent this concept works.

  11. Stochastic and Geometric Reasoning for Indoor Building Models with Electric Installations - Bridging the Gap Between GIS and Bim

    NASA Astrophysics Data System (ADS)

    Dehbi, Y.; Haunert, J.-H.; Plümer, L.

    2017-10-01

    3D city and building models according to CityGML encode the geometry, represent the structure and model semantically relevant building parts such as doors, windows and balconies. Building information models support the building design, construction and the facility management. In contrast to CityGML, they include also objects which cannot be observed from the outside. The three dimensional indoor models characterize a missing link between both worlds. Their derivation, however, is expensive. The semantic automatic interpretation of 3D point clouds of indoor environments is a methodically demanding task. The data acquisition is costly and difficult. The laser scanners and image-based methods require the access to every room. Based on an approach which does not require an additional geometry acquisition of building indoors, we propose an attempt for filling the gaps between 3D building models and building information models. Based on sparse observations such as the building footprint and room areas, 3D indoor models are generated using combinatorial and stochastic reasoning. The derived models are expanded by a-priori not observable structures such as electric installation. Gaussian mixtures, linear and bi-linear constraints are used to represent the background knowledge and structural regularities. The derivation of hypothesised models is performed by stochastic reasoning using graphical models, Gauss-Markov models and MAP-estimators.

  12. Techniques for modeling the reliability of fault-tolerant systems with the Markov state-space approach

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Johnson, Sally C.

    1995-01-01

    This paper presents a step-by-step tutorial of the methods and the tools that were used for the reliability analysis of fault-tolerant systems. The approach used in this paper is the Markov (or semi-Markov) state-space method. The paper is intended for design engineers with a basic understanding of computer architecture and fault tolerance, but little knowledge of reliability modeling. The representation of architectural features in mathematical models is emphasized. This paper does not present details of the mathematical solution of complex reliability models. Instead, it describes the use of several recently developed computer programs SURE, ASSIST, STEM, and PAWS that automate the generation and the solution of these models.

  13. Housing Value Projection Model Related to Educational Planning: The Feasibility of a New Methodology. Final Report.

    ERIC Educational Resources Information Center

    Helbock, Richard W.; Marker, Gordon

    This study concerns the feasibility of a Markov chain model for projecting housing values and racial mixes. Such projections could be used in planning the layout of school districts to achieve desired levels of socioeconomic heterogeneity. Based upon the concepts and assumptions underlying a Markov chain model, it is concluded that such a model is…

  14. Noise can speed convergence in Markov chains.

    PubMed

    Franzke, Brandon; Kosko, Bart

    2011-10-01

    A new theorem shows that noise can speed convergence to equilibrium in discrete finite-state Markov chains. The noise applies to the state density and helps the Markov chain explore improbable regions of the state space. The theorem ensures that a stochastic-resonance noise benefit exists for states that obey a vector-norm inequality. Such noise leads to faster convergence because the noise reduces the norm components. A corollary shows that a noise benefit still occurs if the system states obey an alternate norm inequality. This leads to a noise-benefit algorithm that requires knowledge of the steady state. An alternative blind algorithm uses only past state information to achieve a weaker noise benefit. Simulations illustrate the predicted noise benefits in three well-known Markov models. The first model is a two-parameter Ehrenfest diffusion model that shows how noise benefits can occur in the class of birth-death processes. The second model is a Wright-Fisher model of genotype drift in population genetics. The third model is a chemical reaction network of zeolite crystallization. A fourth simulation shows a convergence rate increase of 64% for states that satisfy the theorem and an increase of 53% for states that satisfy the corollary. A final simulation shows that even suboptimal noise can speed convergence if the noise applies over successive time cycles. Noise benefits tend to be sharpest in Markov models that do not converge quickly and that do not have strong absorbing states.

  15. The algebra of the general Markov model on phylogenetic trees and networks.

    PubMed

    Sumner, J G; Holland, B R; Jarvis, P D

    2012-04-01

    It is known that the Kimura 3ST model of sequence evolution on phylogenetic trees can be extended quite naturally to arbitrary split systems. However, this extension relies heavily on mathematical peculiarities of the associated Hadamard transformation, and providing an analogous augmentation of the general Markov model has thus far been elusive. In this paper, we rectify this shortcoming by showing how to extend the general Markov model on trees to include incompatible edges; and even further to more general network models. This is achieved by exploring the algebra of the generators of the continuous-time Markov chain together with the “splitting” operator that generates the branching process on phylogenetic trees. For simplicity, we proceed by discussing the two state case and then show that our results are easily extended to more states with little complication. Intriguingly, upon restriction of the two state general Markov model to the parameter space of the binary symmetric model, our extension is indistinguishable from the Hadamard approach only on trees; as soon as any incompatible splits are introduced the two approaches give rise to differing probability distributions with disparate structure. Through exploration of a simple example, we give an argument that our extension to more general networks has desirable properties that the previous approaches do not share. In particular, our construction allows for convergent evolution of previously divergent lineages; a property that is of significant interest for biological applications.

  16. Analysis and design of a second-order digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Blasche, P. R.

    1979-01-01

    A specific second-order digital phase-locked loop (DPLL) was modeled as a first-order Markov chain with alternatives. From the matrix of transition probabilities of the Markov chain, the steady-state phase error of the DPLL was determined. In a similar manner the loop's response was calculated for a fading input. Additionally, a hardware DPLL was constructed and tested to provide a comparison to the results obtained from the Markov chain model. In all cases tested, good agreement was found between the theoretical predictions and the experimental data.

  17. Reliability Analysis of the Electrical Control System of Subsea Blowout Preventers Using Markov Models

    PubMed Central

    Liu, Zengkai; Liu, Yonghong; Cai, Baoping

    2014-01-01

    Reliability analysis of the electrical control system of a subsea blowout preventer (BOP) stack is carried out based on Markov method. For the subsea BOP electrical control system used in the current work, the 3-2-1-0 and 3-2-0 input voting schemes are available. The effects of the voting schemes on system performance are evaluated based on Markov models. In addition, the effects of failure rates of the modules and repair time on system reliability indices are also investigated. PMID:25409010

  18. Information Entropy Production of Maximum Entropy Markov Chains from Spike Trains

    NASA Astrophysics Data System (ADS)

    Cofré, Rodrigo; Maldonado, Cesar

    2018-01-01

    We consider the maximum entropy Markov chain inference approach to characterize the collective statistics of neuronal spike trains, focusing on the statistical properties of the inferred model. We review large deviations techniques useful in this context to describe properties of accuracy and convergence in terms of sampling size. We use these results to study the statistical fluctuation of correlations, distinguishability and irreversibility of maximum entropy Markov chains. We illustrate these applications using simple examples where the large deviation rate function is explicitly obtained for maximum entropy models of relevance in this field.

  19. Bayesian selection of Markov models for symbol sequences: application to microsaccadic eye movements.

    PubMed

    Bettenbühl, Mario; Rusconi, Marco; Engbert, Ralf; Holschneider, Matthias

    2012-01-01

    Complex biological dynamics often generate sequences of discrete events which can be described as a Markov process. The order of the underlying Markovian stochastic process is fundamental for characterizing statistical dependencies within sequences. As an example for this class of biological systems, we investigate the Markov order of sequences of microsaccadic eye movements from human observers. We calculate the integrated likelihood of a given sequence for various orders of the Markov process and use this in a Bayesian framework for statistical inference on the Markov order. Our analysis shows that data from most participants are best explained by a first-order Markov process. This is compatible with recent findings of a statistical coupling of subsequent microsaccade orientations. Our method might prove to be useful for a broad class of biological systems.

  20. ASSIST user manual

    NASA Technical Reports Server (NTRS)

    Johnson, Sally C.; Boerschlein, David P.

    1995-01-01

    Semi-Markov models can be used to analyze the reliability of virtually any fault-tolerant system. However, the process of delineating all the states and transitions in a complex system model can be devastatingly tedious and error prone. The Abstract Semi-Markov Specification Interface to the SURE Tool (ASSIST) computer program allows the user to describe the semi-Markov model in a high-level language. Instead of listing the individual model states, the user specifies the rules governing the behavior of the system, and these are used to generate the model automatically. A few statements in the abstract language can describe a very large, complex model. Because no assumptions are made about the system being modeled, ASSIST can be used to generate models describing the behavior of any system. The ASSIST program and its input language are described and illustrated by examples.

  1. Generation of intervention strategy for a genetic regulatory network represented by a family of Markov Chains.

    PubMed

    Berlow, Noah; Pal, Ranadip

    2011-01-01

    Genetic Regulatory Networks (GRNs) are frequently modeled as Markov Chains providing the transition probabilities of moving from one state of the network to another. The inverse problem of inference of the Markov Chain from noisy and limited experimental data is an ill posed problem and often generates multiple model possibilities instead of a unique one. In this article, we address the issue of intervention in a genetic regulatory network represented by a family of Markov Chains. The purpose of intervention is to alter the steady state probability distribution of the GRN as the steady states are considered to be representative of the phenotypes. We consider robust stationary control policies with best expected behavior. The extreme computational complexity involved in search of robust stationary control policies is mitigated by using a sequential approach to control policy generation and utilizing computationally efficient techniques for updating the stationary probability distribution of a Markov chain following a rank one perturbation.

  2. Simplification of Markov chains with infinite state space and the mathematical theory of random gene expression bursts.

    PubMed

    Jia, Chen

    2017-09-01

    Here we develop an effective approach to simplify two-time-scale Markov chains with infinite state spaces by removal of states with fast leaving rates, which improves the simplification method of finite Markov chains. We introduce the concept of fast transition paths and show that the effective transitions of the reduced chain can be represented as the superposition of the direct transitions and the indirect transitions via all the fast transition paths. Furthermore, we apply our simplification approach to the standard Markov model of single-cell stochastic gene expression and provide a mathematical theory of random gene expression bursts. We give the precise mathematical conditions for the bursting kinetics of both mRNAs and proteins. It turns out that random bursts exactly correspond to the fast transition paths of the Markov model. This helps us gain a better understanding of the physics behind the bursting kinetics as an emergent behavior from the fundamental multiscale biochemical reaction kinetics of stochastic gene expression.

  3. Simplification of Markov chains with infinite state space and the mathematical theory of random gene expression bursts

    NASA Astrophysics Data System (ADS)

    Jia, Chen

    2017-09-01

    Here we develop an effective approach to simplify two-time-scale Markov chains with infinite state spaces by removal of states with fast leaving rates, which improves the simplification method of finite Markov chains. We introduce the concept of fast transition paths and show that the effective transitions of the reduced chain can be represented as the superposition of the direct transitions and the indirect transitions via all the fast transition paths. Furthermore, we apply our simplification approach to the standard Markov model of single-cell stochastic gene expression and provide a mathematical theory of random gene expression bursts. We give the precise mathematical conditions for the bursting kinetics of both mRNAs and proteins. It turns out that random bursts exactly correspond to the fast transition paths of the Markov model. This helps us gain a better understanding of the physics behind the bursting kinetics as an emergent behavior from the fundamental multiscale biochemical reaction kinetics of stochastic gene expression.

  4. Finding exact constants in a Markov model of Zipfs law generation

    NASA Astrophysics Data System (ADS)

    Bochkarev, V. V.; Lerner, E. Yu.; Nikiforov, A. A.; Pismenskiy, A. A.

    2017-12-01

    According to the classical Zipfs law, the word frequency is a power function of the word rank with an exponent -1. The objective of this work is to find multiplicative constant in a Markov model of word generation. Previously, the case of independent letters was mathematically strictly investigated in [Bochkarev V V and Lerner E Yu 2017 International Journal of Mathematics and Mathematical Sciences Article ID 914374]. Unfortunately, the methods used in this paper cannot be generalized in case of Markov chains. The search of the correct formulation of the Markov generalization of this results was performed using experiments with different ergodic matrices of transition probability P. Combinatory technique allowed taking into account all the words with probability of more than e -300 in case of 2 by 2 matrices. It was experimentally proved that the required constant in the limit is equal to the value reciprocal to conditional entropy of matrix row P with weights presenting the elements of the vector π of the stationary distribution of the Markov chain.

  5. Sampling rare fluctuations of discrete-time Markov chains

    NASA Astrophysics Data System (ADS)

    Whitelam, Stephen

    2018-03-01

    We describe a simple method that can be used to sample the rare fluctuations of discrete-time Markov chains. We focus on the case of Markov chains with well-defined steady-state measures, and derive expressions for the large-deviation rate functions (and upper bounds on such functions) for dynamical quantities extensive in the length of the Markov chain. We illustrate the method using a series of simple examples, and use it to study the fluctuations of a lattice-based model of active matter that can undergo motility-induced phase separation.

  6. Sampling rare fluctuations of discrete-time Markov chains.

    PubMed

    Whitelam, Stephen

    2018-03-01

    We describe a simple method that can be used to sample the rare fluctuations of discrete-time Markov chains. We focus on the case of Markov chains with well-defined steady-state measures, and derive expressions for the large-deviation rate functions (and upper bounds on such functions) for dynamical quantities extensive in the length of the Markov chain. We illustrate the method using a series of simple examples, and use it to study the fluctuations of a lattice-based model of active matter that can undergo motility-induced phase separation.

  7. Free energies from dynamic weighted histogram analysis using unbiased Markov state model.

    PubMed

    Rosta, Edina; Hummer, Gerhard

    2015-01-13

    The weighted histogram analysis method (WHAM) is widely used to obtain accurate free energies from biased molecular simulations. However, WHAM free energies can exhibit significant errors if some of the biasing windows are not fully equilibrated. To account for the lack of full equilibration, we develop the dynamic histogram analysis method (DHAM). DHAM uses a global Markov state model to obtain the free energy along the reaction coordinate. A maximum likelihood estimate of the Markov transition matrix is constructed by joint unbiasing of the transition counts from multiple umbrella-sampling simulations along discretized reaction coordinates. The free energy profile is the stationary distribution of the resulting Markov matrix. For this matrix, we derive an explicit approximation that does not require the usual iterative solution of WHAM. We apply DHAM to model systems, a chemical reaction in water treated using quantum-mechanics/molecular-mechanics (QM/MM) simulations, and the Na(+) ion passage through the membrane-embedded ion channel GLIC. We find that DHAM gives accurate free energies even in cases where WHAM fails. In addition, DHAM provides kinetic information, which we here use to assess the extent of convergence in each of the simulation windows. DHAM may also prove useful in the construction of Markov state models from biased simulations in phase-space regions with otherwise low population.

  8. Detecting critical state before phase transition of complex systems by hidden Markov model

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Chen, Pei; Li, Yongjun; Chen, Luonan

    Identifying the critical state or pre-transition state just before the occurrence of a phase transition is a challenging task, because the state of the system may show little apparent change before this critical transition during the gradual parameter variations. Such dynamics of phase transition is generally composed of three stages, i.e., before-transition state, pre-transition state, and after-transition state, which can be considered as three different Markov processes. Thus, based on this dynamical feature, we present a novel computational method, i.e., hidden Markov model (HMM), to detect the switching point of the two Markov processes from the before-transition state (a stationary Markov process) to the pre-transition state (a time-varying Markov process), thereby identifying the pre-transition state or early-warning signals of the phase transition. To validate the effectiveness, we apply this method to detect the signals of the imminent phase transitions of complex systems based on the simulated datasets, and further identify the pre-transition states as well as their critical modules for three real datasets, i.e., the acute lung injury triggered by phosgene inhalation, MCF-7 human breast cancer caused by heregulin, and HCV-induced dysplasia and hepatocellular carcinoma.

  9. User's Manual MCnest - Markov Chain Nest Productivity Model Version 2.0

    EPA Science Inventory

    The Markov chain nest productivity model, or MCnest, is a set of algorithms for integrating the results of avian toxicity tests with reproductive life-history data to project the relative magnitude of chemical effects on avian reproduction. The mathematical foundation of MCnest i...

  10. Optimized mixed Markov models for motif identification

    PubMed Central

    Huang, Weichun; Umbach, David M; Ohler, Uwe; Li, Leping

    2006-01-01

    Background Identifying functional elements, such as transcriptional factor binding sites, is a fundamental step in reconstructing gene regulatory networks and remains a challenging issue, largely due to limited availability of training samples. Results We introduce a novel and flexible model, the Optimized Mixture Markov model (OMiMa), and related methods to allow adjustment of model complexity for different motifs. In comparison with other leading methods, OMiMa can incorporate more than the NNSplice's pairwise dependencies; OMiMa avoids model over-fitting better than the Permuted Variable Length Markov Model (PVLMM); and OMiMa requires smaller training samples than the Maximum Entropy Model (MEM). Testing on both simulated and actual data (regulatory cis-elements and splice sites), we found OMiMa's performance superior to the other leading methods in terms of prediction accuracy, required size of training data or computational time. Our OMiMa system, to our knowledge, is the only motif finding tool that incorporates automatic selection of the best model. OMiMa is freely available at [1]. Conclusion Our optimized mixture of Markov models represents an alternative to the existing methods for modeling dependent structures within a biological motif. Our model is conceptually simple and effective, and can improve prediction accuracy and/or computational speed over other leading methods. PMID:16749929

  11. Recovery of Graded Response Model Parameters: A Comparison of Marginal Maximum Likelihood and Markov Chain Monte Carlo Estimation

    ERIC Educational Resources Information Center

    Kieftenbeld, Vincent; Natesan, Prathiba

    2012-01-01

    Markov chain Monte Carlo (MCMC) methods enable a fully Bayesian approach to parameter estimation of item response models. In this simulation study, the authors compared the recovery of graded response model parameters using marginal maximum likelihood (MML) and Gibbs sampling (MCMC) under various latent trait distributions, test lengths, and…

  12. Multivariate exploration of non-intrusive load monitoring via spatiotemporal pattern network

    DOE PAGES

    Liu, Chao; Akintayo, Adedotun; Jiang, Zhanhong; ...

    2017-12-18

    Non-intrusive load monitoring (NILM) of electrical demand for the purpose of identifying load components has thus far mostly been studied using univariate data, e.g., using only whole building electricity consumption time series to identify a certain type of end-use such as lighting load. However, using additional variables in the form of multivariate time series data may provide more information in terms of extracting distinguishable features in the context of energy disaggregation. In this work, a novel probabilistic graphical modeling approach, namely the spatiotemporal pattern network (STPN) is proposed for energy disaggregation using multivariate time-series data. The STPN framework is shownmore » to be capable of handling diverse types of multivariate time-series to improve the energy disaggregation performance. The technique outperforms the state of the art factorial hidden Markov models (FHMM) and combinatorial optimization (CO) techniques in multiple real-life test cases. Furthermore, based on two homes' aggregate electric consumption data, a similarity metric is defined for the energy disaggregation of one home using a trained model based on the other home (i.e., out-of-sample case). The proposed similarity metric allows us to enhance scalability via learning supervised models for a few homes and deploying such models to many other similar but unmodeled homes with significantly high disaggregation accuracy.« less

  13. Multivariate exploration of non-intrusive load monitoring via spatiotemporal pattern network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chao; Akintayo, Adedotun; Jiang, Zhanhong

    Non-intrusive load monitoring (NILM) of electrical demand for the purpose of identifying load components has thus far mostly been studied using univariate data, e.g., using only whole building electricity consumption time series to identify a certain type of end-use such as lighting load. However, using additional variables in the form of multivariate time series data may provide more information in terms of extracting distinguishable features in the context of energy disaggregation. In this work, a novel probabilistic graphical modeling approach, namely the spatiotemporal pattern network (STPN) is proposed for energy disaggregation using multivariate time-series data. The STPN framework is shownmore » to be capable of handling diverse types of multivariate time-series to improve the energy disaggregation performance. The technique outperforms the state of the art factorial hidden Markov models (FHMM) and combinatorial optimization (CO) techniques in multiple real-life test cases. Furthermore, based on two homes' aggregate electric consumption data, a similarity metric is defined for the energy disaggregation of one home using a trained model based on the other home (i.e., out-of-sample case). The proposed similarity metric allows us to enhance scalability via learning supervised models for a few homes and deploying such models to many other similar but unmodeled homes with significantly high disaggregation accuracy.« less

  14. Surgical motion characterization in simulated needle insertion procedures

    NASA Astrophysics Data System (ADS)

    Holden, Matthew S.; Ungi, Tamas; Sargent, Derek; McGraw, Robert C.; Fichtinger, Gabor

    2012-02-01

    PURPOSE: Evaluation of surgical performance in image-guided needle insertions is of emerging interest, to both promote patient safety and improve the efficiency and effectiveness of training. The purpose of this study was to determine if a Markov model-based algorithm can more accurately segment a needle-based surgical procedure into its five constituent tasks than a simple threshold-based algorithm. METHODS: Simulated needle trajectories were generated with known ground truth segmentation by a synthetic procedural data generator, with random noise added to each degree of freedom of motion. The respective learning algorithms were trained, and then tested on different procedures to determine task segmentation accuracy. In the threshold-based algorithm, a change in tasks was detected when the needle crossed a position/velocity threshold. In the Markov model-based algorithm, task segmentation was performed by identifying the sequence of Markov models most likely to have produced the series of observations. RESULTS: For amplitudes of translational noise greater than 0.01mm, the Markov model-based algorithm was significantly more accurate in task segmentation than the threshold-based algorithm (82.3% vs. 49.9%, p<0.001 for amplitude 10.0mm). For amplitudes less than 0.01mm, the two algorithms produced insignificantly different results. CONCLUSION: Task segmentation of simulated needle insertion procedures was improved by using a Markov model-based algorithm as opposed to a threshold-based algorithm for procedures involving translational noise.

  15. Markovian Interpretations of Dual Retrieval Processes

    PubMed Central

    Gomes, C. F. A.; Nakamura, K.; Reyna, V. F.

    2013-01-01

    A half-century ago, at the dawn of the all-or-none learning era, Estes showed that finite Markov chains supply a tractable, comprehensive framework for discrete-change data of the sort that he envisioned for shifts in conditioning states in stimulus sampling theory. Shortly thereafter, such data rapidly accumulated in many spheres of human learning and animal conditioning, and Estes’ work stimulated vigorous development of Markov models to handle them. A key outcome was that the data of the workhorse paradigms of episodic memory, recognition and recall, proved to be one- and two-stage Markovian, respectively, to close approximations. Subsequently, Markov modeling of recognition and recall all but disappeared from the literature, but it is now reemerging in the wake of dual-process conceptions of episodic memory. In recall, in particular, Markov models are being used to measure two retrieval operations (direct access and reconstruction) and a slave familiarity operation. In the present paper, we develop this family of models and present the requisite machinery for fit evaluation and significance testing. Results are reviewed from selected experiments in which the recall models were used to understand dual memory processes. PMID:24948840

  16. Prediction and generation of binary Markov processes: Can a finite-state fox catch a Markov mouse?

    NASA Astrophysics Data System (ADS)

    Ruebeck, Joshua B.; James, Ryan G.; Mahoney, John R.; Crutchfield, James P.

    2018-01-01

    Understanding the generative mechanism of a natural system is a vital component of the scientific method. Here, we investigate one of the fundamental steps toward this goal by presenting the minimal generator of an arbitrary binary Markov process. This is a class of processes whose predictive model is well known. Surprisingly, the generative model requires three distinct topologies for different regions of parameter space. We show that a previously proposed generator for a particular set of binary Markov processes is, in fact, not minimal. Our results shed the first quantitative light on the relative (minimal) costs of prediction and generation. We find, for instance, that the difference between prediction and generation is maximized when the process is approximately independently, identically distributed.

  17. Parallel replica dynamics method for bistable stochastic reaction networks: Simulation and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Wang, Ting; Plecháč, Petr

    2017-12-01

    Stochastic reaction networks that exhibit bistable behavior are common in systems biology, materials science, and catalysis. Sampling of stationary distributions is crucial for understanding and characterizing the long-time dynamics of bistable stochastic dynamical systems. However, simulations are often hindered by the insufficient sampling of rare transitions between the two metastable regions. In this paper, we apply the parallel replica method for a continuous time Markov chain in order to improve sampling of the stationary distribution in bistable stochastic reaction networks. The proposed method uses parallel computing to accelerate the sampling of rare transitions. Furthermore, it can be combined with the path-space information bounds for parametric sensitivity analysis. With the proposed methodology, we study three bistable biological networks: the Schlögl model, the genetic switch network, and the enzymatic futile cycle network. We demonstrate the algorithmic speedup achieved in these numerical benchmarks. More significant acceleration is expected when multi-core or graphics processing unit computer architectures and programming tools such as CUDA are employed.

  18. An unsupervised learning approach to find ovarian cancer genes through integration of biological data

    PubMed Central

    2015-01-01

    Cancer is a disease characterized largely by the accumulation of out-of-control somatic mutations during the lifetime of a patient. Distinguishing driver mutations from passenger mutations has posed a challenge in modern cancer research. With the advanced development of microarray experiments and clinical studies, a large numbers of candidate cancer genes have been extracted and distinguishing informative genes out of them is essential. As a matter of fact, we proposed to find the informative genes for cancer by using mutation data from ovarian cancers in our framework. In our model we utilized the patient gene mutation profile, gene expression data and gene gene interactions network to construct a graphical representation of genes and patients. Markov processes for mutation and patients are triggered separately. After this process, cancer genes are prioritized automatically by examining their scores at their stationary distributions in the eigenvector. Extensive experiments demonstrate that the integration of heterogeneous sources of information is essential in finding important cancer genes. PMID:26328548

  19. Markov Mixed Effects Modeling Using Electronic Adherence Monitoring Records Identifies Influential Covariates to HIV Preexposure Prophylaxis.

    PubMed

    Madrasi, Kumpal; Chaturvedula, Ayyappa; Haberer, Jessica E; Sale, Mark; Fossler, Michael J; Bangsberg, David; Baeten, Jared M; Celum, Connie; Hendrix, Craig W

    2017-05-01

    Adherence is a major factor in the effectiveness of preexposure prophylaxis (PrEP) for HIV prevention. Modeling patterns of adherence helps to identify influential covariates of different types of adherence as well as to enable clinical trial simulation so that appropriate interventions can be developed. We developed a Markov mixed-effects model to understand the covariates influencing adherence patterns to daily oral PrEP. Electronic adherence records (date and time of medication bottle cap opening) from the Partners PrEP ancillary adherence study with a total of 1147 subjects were used. This study included once-daily dosing regimens of placebo, oral tenofovir disoproxil fumarate (TDF), and TDF in combination with emtricitabine (FTC), administered to HIV-uninfected members of serodiscordant couples. One-coin and first- to third-order Markov models were fit to the data using NONMEM ® 7.2. Model selection criteria included objective function value (OFV), Akaike information criterion (AIC), visual predictive checks, and posterior predictive checks. Covariates were included based on forward addition (α = 0.05) and backward elimination (α = 0.001). Markov models better described the data than 1-coin models. A third-order Markov model gave the lowest OFV and AIC, but the simpler first-order model was used for covariate model building because no additional benefit on prediction of target measures was observed for higher-order models. Female sex and older age had a positive impact on adherence, whereas Sundays, sexual abstinence, and sex with a partner other than the study partner had a negative impact on adherence. Our findings suggest adherence interventions should consider the role of these factors. © 2016, The American College of Clinical Pharmacology.

  20. An abstract specification language for Markov reliability models

    NASA Technical Reports Server (NTRS)

    Butler, R. W.

    1985-01-01

    Markov models can be used to compute the reliability of virtually any fault tolerant system. However, the process of delineating all of the states and transitions in a model of complex system can be devastatingly tedious and error-prone. An approach to this problem is presented utilizing an abstract model definition language. This high level language is described in a nonformal manner and illustrated by example.

  1. An abstract language for specifying Markov reliability models

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.

    1986-01-01

    Markov models can be used to compute the reliability of virtually any fault tolerant system. However, the process of delineating all of the states and transitions in a model of complex system can be devastatingly tedious and error-prone. An approach to this problem is presented utilizing an abstract model definition language. This high level language is described in a nonformal manner and illustrated by example.

  2. Avian life history profiles for use in the Markov chain nest productivity model (MCnest)

    EPA Science Inventory

    The Markov Chain nest productivity model, or MCnest, quantitatively estimates the effects of pesticides or other toxic chemicals on annual reproductive success of avian species (Bennett and Etterson 2013, Etterson and Bennett 2013). The Basic Version of MCnest was developed as a...

  3. HIPPI: highly accurate protein family classification with ensembles of HMMs.

    PubMed

    Nguyen, Nam-Phuong; Nute, Michael; Mirarab, Siavash; Warnow, Tandy

    2016-11-11

    Given a new biological sequence, detecting membership in a known family is a basic step in many bioinformatics analyses, with applications to protein structure and function prediction and metagenomic taxon identification and abundance profiling, among others. Yet family identification of sequences that are distantly related to sequences in public databases or that are fragmentary remains one of the more difficult analytical problems in bioinformatics. We present a new technique for family identification called HIPPI (Hierarchical Profile Hidden Markov Models for Protein family Identification). HIPPI uses a novel technique to represent a multiple sequence alignment for a given protein family or superfamily by an ensemble of profile hidden Markov models computed using HMMER. An evaluation of HIPPI on the Pfam database shows that HIPPI has better overall precision and recall than blastp, HMMER, and pipelines based on HHsearch, and maintains good accuracy even for fragmentary query sequences and for protein families with low average pairwise sequence identity, both conditions where other methods degrade in accuracy. HIPPI provides accurate protein family identification and is robust to difficult model conditions. Our results, combined with observations from previous studies, show that ensembles of profile Hidden Markov models can better represent multiple sequence alignments than a single profile Hidden Markov model, and thus can improve downstream analyses for various bioinformatic tasks. Further research is needed to determine the best practices for building the ensemble of profile Hidden Markov models. HIPPI is available on GitHub at https://github.com/smirarab/sepp .

  4. A big-data model for multi-modal public transportation with application to macroscopic control and optimisation

    NASA Astrophysics Data System (ADS)

    Faizrahnemoon, Mahsa; Schlote, Arieh; Maggi, Lorenzo; Crisostomi, Emanuele; Shorten, Robert

    2015-11-01

    This paper describes a Markov-chain-based approach to modelling multi-modal transportation networks. An advantage of the model is the ability to accommodate complex dynamics and handle huge amounts of data. The transition matrix of the Markov chain is built and the model is validated using the data extracted from a traffic simulator. A realistic test-case using multi-modal data from the city of London is given to further support the ability of the proposed methodology to handle big quantities of data. Then, we use the Markov chain as a control tool to improve the overall efficiency of a transportation network, and some practical examples are described to illustrate the potentials of the approach.

  5. Inferring Markov chains: Bayesian estimation, model comparison, entropy rate, and out-of-class modeling.

    PubMed

    Strelioff, Christopher C; Crutchfield, James P; Hübler, Alfred W

    2007-07-01

    Markov chains are a natural and well understood tool for describing one-dimensional patterns in time or space. We show how to infer kth order Markov chains, for arbitrary k , from finite data by applying Bayesian methods to both parameter estimation and model-order selection. Extending existing results for multinomial models of discrete data, we connect inference to statistical mechanics through information-theoretic (type theory) techniques. We establish a direct relationship between Bayesian evidence and the partition function which allows for straightforward calculation of the expectation and variance of the conditional relative entropy and the source entropy rate. Finally, we introduce a method that uses finite data-size scaling with model-order comparison to infer the structure of out-of-class processes.

  6. A hierarchical approach to reliability modeling of fault-tolerant systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Gossman, W. E.

    1986-01-01

    A methodology for performing fault tolerant system reliability analysis is presented. The method decomposes a system into its subsystems, evaluates vent rates derived from the subsystem's conditional state probability vector and incorporates those results into a hierarchical Markov model of the system. This is done in a manner that addresses failure sequence dependence associated with the system's redundancy management strategy. The method is derived for application to a specific system definition. Results are presented that compare the hierarchical model's unreliability prediction to that of a more complicated tandard Markov model of the system. The results for the example given indicate that the hierarchical method predicts system unreliability to a desirable level of accuracy while achieving significant computational savings relative to component level Markov model of the system.

  7. Preliminary testing for the Markov property of the fifteen chromatin states of the Broad Histone Track.

    PubMed

    Lee, Kyung-Eun; Park, Hyun-Seok

    2015-01-01

    Epigenetic computational analyses based on Markov chains can integrate dependencies between regions in the genome that are directly adjacent. In this paper, the BED files of fifteen chromatin states of the Broad Histone Track of the ENCODE project are parsed, and comparative nucleotide frequencies of regional chromatin blocks are thoroughly analyzed to detect the Markov property in them. We perform various tests to examine the Markov property embedded in a frequency domain by checking for the presence of the Markov property in the various chromatin states. We apply these tests to each region of the fifteen chromatin states. The results of our simulation indicate that some of the chromatin states possess a stronger Markov property than others. We discuss the significance of our findings in statistical models of nucleotide sequences that are necessary for the computational analysis of functional units in noncoding DNA.

  8. Entanglement revival can occur only when the system-environment state is not a Markov state

    NASA Astrophysics Data System (ADS)

    Sargolzahi, Iman

    2018-06-01

    Markov states have been defined for tripartite quantum systems. In this paper, we generalize the definition of the Markov states to arbitrary multipartite case and find the general structure of an important subset of them, which we will call strong Markov states. In addition, we focus on an important property of the Markov states: If the initial state of the whole system-environment is a Markov state, then each localized dynamics of the whole system-environment reduces to a localized subdynamics of the system. This provides us a necessary condition for entanglement revival in an open quantum system: Entanglement revival can occur only when the system-environment state is not a Markov state. To illustrate (a part of) our results, we consider the case that the environment is modeled as classical. In this case, though the correlation between the system and the environment remains classical during the evolution, the change of the state of the system-environment, from its initial Markov state to a state which is not a Markov one, leads to the entanglement revival in the system. This shows that the non-Markovianity of a state is not equivalent to the existence of non-classical correlation in it, in general.

  9. Survival modeling for the estimation of transition probabilities in model-based economic evaluations in the absence of individual patient data: a tutorial.

    PubMed

    Diaby, Vakaramoko; Adunlin, Georges; Montero, Alberto J

    2014-02-01

    Survival modeling techniques are increasingly being used as part of decision modeling for health economic evaluations. As many models are available, it is imperative for interested readers to know about the steps in selecting and using the most suitable ones. The objective of this paper is to propose a tutorial for the application of appropriate survival modeling techniques to estimate transition probabilities, for use in model-based economic evaluations, in the absence of individual patient data (IPD). An illustration of the use of the tutorial is provided based on the final progression-free survival (PFS) analysis of the BOLERO-2 trial in metastatic breast cancer (mBC). An algorithm was adopted from Guyot and colleagues, and was then run in the statistical package R to reconstruct IPD, based on the final PFS analysis of the BOLERO-2 trial. It should be emphasized that the reconstructed IPD represent an approximation of the original data. Afterwards, we fitted parametric models to the reconstructed IPD in the statistical package Stata. Both statistical and graphical tests were conducted to verify the relative and absolute validity of the findings. Finally, the equations for transition probabilities were derived using the general equation for transition probabilities used in model-based economic evaluations, and the parameters were estimated from fitted distributions. The results of the application of the tutorial suggest that the log-logistic model best fits the reconstructed data from the latest published Kaplan-Meier (KM) curves of the BOLERO-2 trial. Results from the regression analyses were confirmed graphically. An equation for transition probabilities was obtained for each arm of the BOLERO-2 trial. In this paper, a tutorial was proposed and used to estimate the transition probabilities for model-based economic evaluation, based on the results of the final PFS analysis of the BOLERO-2 trial in mBC. The results of our study can serve as a basis for any model (Markov) that needs the parameterization of transition probabilities, and only has summary KM plots available.

  10. Learning a Markov Logic network for supervised gene regulatory network inference

    PubMed Central

    2013-01-01

    Background Gene regulatory network inference remains a challenging problem in systems biology despite the numerous approaches that have been proposed. When substantial knowledge on a gene regulatory network is already available, supervised network inference is appropriate. Such a method builds a binary classifier able to assign a class (Regulation/No regulation) to an ordered pair of genes. Once learnt, the pairwise classifier can be used to predict new regulations. In this work, we explore the framework of Markov Logic Networks (MLN) that combine features of probabilistic graphical models with the expressivity of first-order logic rules. Results We propose to learn a Markov Logic network, e.g. a set of weighted rules that conclude on the predicate “regulates”, starting from a known gene regulatory network involved in the switch proliferation/differentiation of keratinocyte cells, a set of experimental transcriptomic data and various descriptions of genes all encoded into first-order logic. As training data are unbalanced, we use asymmetric bagging to learn a set of MLNs. The prediction of a new regulation can then be obtained by averaging predictions of individual MLNs. As a side contribution, we propose three in silico tests to assess the performance of any pairwise classifier in various network inference tasks on real datasets. A first test consists of measuring the average performance on balanced edge prediction problem; a second one deals with the ability of the classifier, once enhanced by asymmetric bagging, to update a given network. Finally our main result concerns a third test that measures the ability of the method to predict regulations with a new set of genes. As expected, MLN, when provided with only numerical discretized gene expression data, does not perform as well as a pairwise SVM in terms of AUPR. However, when a more complete description of gene properties is provided by heterogeneous sources, MLN achieves the same performance as a black-box model such as a pairwise SVM while providing relevant insights on the predictions. Conclusions The numerical studies show that MLN achieves very good predictive performance while opening the door to some interpretability of the decisions. Besides the ability to suggest new regulations, such an approach allows to cross-validate experimental data with existing knowledge. PMID:24028533

  11. Learning a Markov Logic network for supervised gene regulatory network inference.

    PubMed

    Brouard, Céline; Vrain, Christel; Dubois, Julie; Castel, David; Debily, Marie-Anne; d'Alché-Buc, Florence

    2013-09-12

    Gene regulatory network inference remains a challenging problem in systems biology despite the numerous approaches that have been proposed. When substantial knowledge on a gene regulatory network is already available, supervised network inference is appropriate. Such a method builds a binary classifier able to assign a class (Regulation/No regulation) to an ordered pair of genes. Once learnt, the pairwise classifier can be used to predict new regulations. In this work, we explore the framework of Markov Logic Networks (MLN) that combine features of probabilistic graphical models with the expressivity of first-order logic rules. We propose to learn a Markov Logic network, e.g. a set of weighted rules that conclude on the predicate "regulates", starting from a known gene regulatory network involved in the switch proliferation/differentiation of keratinocyte cells, a set of experimental transcriptomic data and various descriptions of genes all encoded into first-order logic. As training data are unbalanced, we use asymmetric bagging to learn a set of MLNs. The prediction of a new regulation can then be obtained by averaging predictions of individual MLNs. As a side contribution, we propose three in silico tests to assess the performance of any pairwise classifier in various network inference tasks on real datasets. A first test consists of measuring the average performance on balanced edge prediction problem; a second one deals with the ability of the classifier, once enhanced by asymmetric bagging, to update a given network. Finally our main result concerns a third test that measures the ability of the method to predict regulations with a new set of genes. As expected, MLN, when provided with only numerical discretized gene expression data, does not perform as well as a pairwise SVM in terms of AUPR. However, when a more complete description of gene properties is provided by heterogeneous sources, MLN achieves the same performance as a black-box model such as a pairwise SVM while providing relevant insights on the predictions. The numerical studies show that MLN achieves very good predictive performance while opening the door to some interpretability of the decisions. Besides the ability to suggest new regulations, such an approach allows to cross-validate experimental data with existing knowledge.

  12. Real-time antenna fault diagnosis experiments at DSS 13

    NASA Technical Reports Server (NTRS)

    Mellstrom, J.; Pierson, C.; Smyth, P.

    1992-01-01

    Experimental results obtained when a previously described fault diagnosis system was run online in real time at the 34-m beam waveguide antenna at Deep Space Station (DSS) 13 are described. Experimental conditions and the quality of results are described. A neural network model and a maximum-likelihood Gaussian classifier are compared with and without a Markov component to model temporal context. At the rate of a state update every 6.4 seconds, over a period of roughly 1 hour, the neural-Markov system had zero errors (incorrect state estimates) while monitoring both faulty and normal operations. The overall results indicate that the neural-Markov combination is the most accurate model and has significant practical potential.

  13. The application of a Grey Markov Model to forecasting annual maximum water levels at hydrological stations

    NASA Astrophysics Data System (ADS)

    Dong, Sheng; Chi, Kun; Zhang, Qiyi; Zhang, Xiangdong

    2012-03-01

    Compared with traditional real-time forecasting, this paper proposes a Grey Markov Model (GMM) to forecast the maximum water levels at hydrological stations in the estuary area. The GMM combines the Grey System and Markov theory into a higher precision model. The GMM takes advantage of the Grey System to predict the trend values and uses the Markov theory to forecast fluctuation values, and thus gives forecast results involving two aspects of information. The procedure for forecasting annul maximum water levels with the GMM contains five main steps: 1) establish the GM (1, 1) model based on the data series; 2) estimate the trend values; 3) establish a Markov Model based on relative error series; 4) modify the relative errors caused in step 2, and then obtain the relative errors of the second order estimation; 5) compare the results with measured data and estimate the accuracy. The historical water level records (from 1960 to 1992) at Yuqiao Hydrological Station in the estuary area of the Haihe River near Tianjin, China are utilized to calibrate and verify the proposed model according to the above steps. Every 25 years' data are regarded as a hydro-sequence. Eight groups of simulated results show reasonable agreement between the predicted values and the measured data. The GMM is also applied to the 10 other hydrological stations in the same estuary. The forecast results for all of the hydrological stations are good or acceptable. The feasibility and effectiveness of this new forecasting model have been proved in this paper.

  14. zipHMMlib: a highly optimised HMM library exploiting repetitions in the input to speed up the forward algorithm.

    PubMed

    Sand, Andreas; Kristiansen, Martin; Pedersen, Christian N S; Mailund, Thomas

    2013-11-22

    Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library. We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models.Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library. We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/.

  15. Markov Chain Models for Stochastic Behavior in Resonance Overlap Regions

    NASA Astrophysics Data System (ADS)

    McCarthy, Morgan; Quillen, Alice

    2018-01-01

    We aim to predict lifetimes of particles in chaotic zoneswhere resonances overlap. A continuous-time Markov chain model isconstructed using mean motion resonance libration timescales toestimate transition times between resonances. The model is applied todiffusion in the co-rotation region of a planet. For particles begunat low eccentricity, the model is effective for early diffusion, butnot at later time when particles experience close encounters to the planet.

  16. Modeling the Distribution of Fingerprint Characteristics. Revision 1.

    DTIC Science & Technology

    1980-09-19

    the details of the print. The ridge-line details are termed Galton characteristics since Sir Francis Galton was among the first to study them...U.S.A. CONTENTS Abstract 1. Introduction 2. Background Information on Fingerprints 2.1. Types 2.2. Ridge counts 2.3. The Galton details 3. Data...The Multinomial Markov Model 7. The Poisson Markov Model 8. The Infinitely Divisible Model Acknowledgements References Appendices A The Galton

  17. Multivariate generalized hidden Markov regression models with random covariates: Physical exercise in an elderly population.

    PubMed

    Punzo, Antonio; Ingrassia, Salvatore; Maruotti, Antonello

    2018-04-22

    A time-varying latent variable model is proposed to jointly analyze multivariate mixed-support longitudinal data. The proposal can be viewed as an extension of hidden Markov regression models with fixed covariates (HMRMFCs), which is the state of the art for modelling longitudinal data, with a special focus on the underlying clustering structure. HMRMFCs are inadequate for applications in which a clustering structure can be identified in the distribution of the covariates, as the clustering is independent from the covariates distribution. Here, hidden Markov regression models with random covariates are introduced by explicitly specifying state-specific distributions for the covariates, with the aim of improving the recovering of the clusters in the data with respect to a fixed covariates paradigm. The hidden Markov regression models with random covariates class is defined focusing on the exponential family, in a generalized linear model framework. Model identifiability conditions are sketched, an expectation-maximization algorithm is outlined for parameter estimation, and various implementation and operational issues are discussed. Properties of the estimators of the regression coefficients, as well as of the hidden path parameters, are evaluated through simulation experiments and compared with those of HMRMFCs. The method is applied to physical activity data. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Image segmentation using hidden Markov Gauss mixture models.

    PubMed

    Pyun, Kyungsuk; Lim, Johan; Won, Chee Sun; Gray, Robert M

    2007-07-01

    Image segmentation is an important tool in image processing and can serve as an efficient front end to sophisticated algorithms and thereby simplify subsequent processing. We develop a multiclass image segmentation method using hidden Markov Gauss mixture models (HMGMMs) and provide examples of segmentation of aerial images and textures. HMGMMs incorporate supervised learning, fitting the observation probability distribution given each class by a Gauss mixture estimated using vector quantization with a minimum discrimination information (MDI) distortion. We formulate the image segmentation problem using a maximum a posteriori criteria and find the hidden states that maximize the posterior density given the observation. We estimate both the hidden Markov parameter and hidden states using a stochastic expectation-maximization algorithm. Our results demonstrate that HMGMM provides better classification in terms of Bayes risk and spatial homogeneity of the classified objects than do several popular methods, including classification and regression trees, learning vector quantization, causal hidden Markov models (HMMs), and multiresolution HMMs. The computational load of HMGMM is similar to that of the causal HMM.

  19. Evaluation of Usability Utilizing Markov Models

    ERIC Educational Resources Information Center

    Penedo, Janaina Rodrigues; Diniz, Morganna; Ferreira, Simone Bacellar Leal; Silveira, Denis S.; Capra, Eliane

    2012-01-01

    Purpose: The purpose of this paper is to analyze the usability of a remote learning system in its initial development phase, using a quantitative usability evaluation method through Markov models. Design/methodology/approach: The paper opted for an exploratory study. The data of interest of the research correspond to the possible accesses of users…

  20. A Test of the Need Hierarchy Concept by a Markov Model of Change in Need Strength.

    ERIC Educational Resources Information Center

    Rauschenberger, John; And Others

    1980-01-01

    In this study of 547 high school graduates, Alderfer's and Maslow's need hierarchy theories were expressed in Markov chain form and were subjected to empirical test. Both models were disconfirmed. Corroborative multiwave correlational analysis also failed to support the need hierarchy concept. (Author/IRT)

  1. Metadynamics Enhanced Markov Modeling of Protein Dynamics.

    PubMed

    Biswas, Mithun; Lickert, Benjamin; Stock, Gerhard

    2018-05-31

    Enhanced sampling techniques represent a versatile approach to account for rare conformational transitions in biomolecules. A particularly promising strategy is to combine massive parallel computing of short molecular dynamics (MD) trajectories (to sample the free energy landscape of the system) with Markov state modeling (to rebuild the kinetics from the sampled data). To obtain well-distributed initial structures for the short trajectories, it is proposed to employ metadynamics MD, which quickly sweeps through the entire free energy landscape of interest. Being only used to generate initial conformations, the implementation of metadynamics can be simple and fast. The conformational dynamics of helical peptide Aib 9 is adopted to discuss various technical issues of the approach, including metadynamics settings, minimal number and length of short MD trajectories, and the validation of the resulting Markov models. Using metadynamics to launch some thousands of nanosecond trajectories, several Markov state models are constructed that reveal that previous unbiased MD simulations of in total 16 μs length cannot provide correct equilibrium populations or qualitative features of the pathway distribution of the short peptide.

  2. Measurement-based reliability/performability models

    NASA Technical Reports Server (NTRS)

    Hsueh, Mei-Chen

    1987-01-01

    Measurement-based models based on real error-data collected on a multiprocessor system are described. Model development from the raw error-data to the estimation of cumulative reward is also described. A workload/reliability model is developed based on low-level error and resource usage data collected on an IBM 3081 system during its normal operation in order to evaluate the resource usage/error/recovery process in a large mainframe system. Thus, both normal and erroneous behavior of the system are modeled. The results provide an understanding of the different types of errors and recovery processes. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model the system behavior. A sensitivity analysis is performed to investigate the significance of using a semi-Markov process, as opposed to a Markov process, to model the measured system.

  3. MARTI: man-machine animation real-time interface

    NASA Astrophysics Data System (ADS)

    Jones, Christian M.; Dlay, Satnam S.

    1997-05-01

    The research introduces MARTI (man-machine animation real-time interface) for the realization of natural human-machine interfacing. The system uses simple vocal sound-tracks of human speakers to provide lip synchronization of computer graphical facial models. We present novel research in a number of engineering disciplines, which include speech recognition, facial modeling, and computer animation. This interdisciplinary research utilizes the latest, hybrid connectionist/hidden Markov model, speech recognition system to provide very accurate phone recognition and timing for speaker independent continuous speech, and expands on knowledge from the animation industry in the development of accurate facial models and automated animation. The research has many real-world applications which include the provision of a highly accurate and 'natural' man-machine interface to assist user interactions with computer systems and communication with one other using human idiosyncrasies; a complete special effects and animation toolbox providing automatic lip synchronization without the normal constraints of head-sets, joysticks, and skilled animators; compression of video data to well below standard telecommunication channel bandwidth for video communications and multi-media systems; assisting speech training and aids for the handicapped; and facilitating player interaction for 'video gaming' and 'virtual worlds.' MARTI has introduced a new level of realism to man-machine interfacing and special effect animation which has been previously unseen.

  4. Operations and support cost modeling using Markov chains

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1989-01-01

    Systems for future missions will be selected with life cycle costs (LCC) as a primary evaluation criterion. This reflects the current realization that only systems which are considered affordable will be built in the future due to the national budget constaints. Such an environment calls for innovative cost modeling techniques which address all of the phases a space system goes through during its life cycle, namely: design and development, fabrication, operations and support; and retirement. A significant portion of the LCC for reusable systems are generated during the operations and support phase (OS). Typically, OS costs can account for 60 to 80 percent of the total LCC. Clearly, OS costs are wholly determined or at least strongly influenced by decisions made during the design and development phases of the project. As a result OS costs need to be considered and estimated early in the conceptual phase. To be effective, an OS cost estimating model needs to account for actual instead of ideal processes by associating cost elements with probabilities. One approach that may be suitable for OS cost modeling is the use of the Markov Chain Process. Markov chains are an important method of probabilistic analysis for operations research analysts but they are rarely used for life cycle cost analysis. This research effort evaluates the use of Markov Chains in LCC analysis by developing OS cost model for a hypothetical reusable space transportation vehicle (HSTV) and suggests further uses of the Markov Chain process as a design-aid tool.

  5. Evaluation of Markov-Decision Model for Instructional Sequence Optimization. Semi-Annual Technical Report for the period 1 July-31 December 1975. Technical Report No. 76.

    ERIC Educational Resources Information Center

    Wollmer, Richard D.; Bond, Nicholas A.

    Two computer-assisted instruction programs were written in electronics and trigonometry to test the Wollmer Markov Model for optimizing hierarchial learning; calibration samples totalling 110 students completed these programs. Since the model postulated that transfer effects would be a function of the amount of practice, half of the students were…

  6. Modeling Dyadic Processes Using Hidden Markov Models: A Time Series Approach to Mother-Infant Interactions during Infant Immunization

    ERIC Educational Resources Information Center

    Stifter, Cynthia A.; Rovine, Michael

    2015-01-01

    The focus of the present longitudinal study, to examine mother-infant interaction during the administration of immunizations at 2 and 6?months of age, used hidden Markov modelling, a time series approach that produces latent states to describe how mothers and infants work together to bring the infant to a soothed state. Results revealed a…

  7. Intelligent classifier for dynamic fault patterns based on hidden Markov model

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Feng, Yuguang; Yu, Jinsong

    2006-11-01

    It's difficult to build precise mathematical models for complex engineering systems because of the complexity of the structure and dynamics characteristics. Intelligent fault diagnosis introduces artificial intelligence and works in a different way without building the analytical mathematical model of a diagnostic object, so it's a practical approach to solve diagnostic problems of complex systems. This paper presents an intelligent fault diagnosis method, an integrated fault-pattern classifier based on Hidden Markov Model (HMM). This classifier consists of dynamic time warping (DTW) algorithm, self-organizing feature mapping (SOFM) network and Hidden Markov Model. First, after dynamic observation vector in measuring space is processed by DTW, the error vector including the fault feature of being tested system is obtained. Then a SOFM network is used as a feature extractor and vector quantization processor. Finally, fault diagnosis is realized by fault patterns classifying with the Hidden Markov Model classifier. The importing of dynamic time warping solves the problem of feature extracting from dynamic process vectors of complex system such as aeroengine, and makes it come true to diagnose complex system by utilizing dynamic process information. Simulating experiments show that the diagnosis model is easy to extend, and the fault pattern classifier is efficient and is convenient to the detecting and diagnosing of new faults.

  8. Markov-switching multifractal models as another class of random-energy-like models in one-dimensional space

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    2012-03-01

    We map the Markov-switching multifractal model (MSM) onto the random energy model (REM). The MSM is, like the REM, an exactly solvable model in one-dimensional space with nontrivial correlation functions. According to our results, four different statistical physics phases are possible in random walks with multifractal behavior. We also introduce the continuous branching version of the model, calculate the moments, and prove multiscaling behavior. Different phases have different multiscaling properties.

  9. Multivariate longitudinal data analysis with mixed effects hidden Markov models.

    PubMed

    Raffa, Jesse D; Dubin, Joel A

    2015-09-01

    Multiple longitudinal responses are often collected as a means to capture relevant features of the true outcome of interest, which is often hidden and not directly measurable. We outline an approach which models these multivariate longitudinal responses as generated from a hidden disease process. We propose a class of models which uses a hidden Markov model with separate but correlated random effects between multiple longitudinal responses. This approach was motivated by a smoking cessation clinical trial, where a bivariate longitudinal response involving both a continuous and a binomial response was collected for each participant to monitor smoking behavior. A Bayesian method using Markov chain Monte Carlo is used. Comparison of separate univariate response models to the bivariate response models was undertaken. Our methods are demonstrated on the smoking cessation clinical trial dataset, and properties of our approach are examined through extensive simulation studies. © 2015, The International Biometric Society.

  10. Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo

    PubMed Central

    Golightly, Andrew; Wilkinson, Darren J.

    2011-01-01

    Computational systems biology is concerned with the development of detailed mechanistic models of biological processes. Such models are often stochastic and analytically intractable, containing uncertain parameters that must be estimated from time course data. In this article, we consider the task of inferring the parameters of a stochastic kinetic model defined as a Markov (jump) process. Inference for the parameters of complex nonlinear multivariate stochastic process models is a challenging problem, but we find here that algorithms based on particle Markov chain Monte Carlo turn out to be a very effective computationally intensive approach to the problem. Approximations to the inferential model based on stochastic differential equations (SDEs) are considered, as well as improvements to the inference scheme that exploit the SDE structure. We apply the methodology to a Lotka–Volterra system and a prokaryotic auto-regulatory network. PMID:23226583

  11. Tracking Problem Solving by Multivariate Pattern Analysis and Hidden Markov Model Algorithms

    ERIC Educational Resources Information Center

    Anderson, John R.

    2012-01-01

    Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application…

  12. A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis

    ERIC Educational Resources Information Center

    Edwards, Michael C.

    2010-01-01

    Item factor analysis has a rich tradition in both the structural equation modeling and item response theory frameworks. The goal of this paper is to demonstrate a novel combination of various Markov chain Monte Carlo (MCMC) estimation routines to estimate parameters of a wide variety of confirmatory item factor analysis models. Further, I show…

  13. Markov Chain Monte Carlo Estimation of Item Parameters for the Generalized Graded Unfolding Model

    ERIC Educational Resources Information Center

    de la Torre, Jimmy; Stark, Stephen; Chernyshenko, Oleksandr S.

    2006-01-01

    The authors present a Markov Chain Monte Carlo (MCMC) parameter estimation procedure for the generalized graded unfolding model (GGUM) and compare it to the marginal maximum likelihood (MML) approach implemented in the GGUM2000 computer program, using simulated and real personality data. In the simulation study, test length, number of response…

  14. Generalization of Faustmann's Formula for Stochastic Forest Growth and Prices with Markov Decision Process Models

    Treesearch

    Joseph Buongiorno

    2001-01-01

    Faustmann's formula gives the land value, or the forest value of land with trees, under deterministic assumptions regarding future stand growth and prices, over an infinite horizon. Markov decision process (MDP) models generalize Faustmann's approach by recognizing that future stand states and prices are known only as probabilistic distributions. The...

  15. The distribution of genome shared identical by descent for a pair of full sibs by means of the continuous time Markov chain

    NASA Astrophysics Data System (ADS)

    Julie, Hongki; Pasaribu, Udjianna S.; Pancoro, Adi

    2015-12-01

    This paper will allow Markov Chain's application in genome shared identical by descent by two individual at full sibs model. The full sibs model was a continuous time Markov Chain with three state. In the full sibs model, we look for the cumulative distribution function of the number of sub segment which have 2 IBD haplotypes from a segment of the chromosome which the length is t Morgan and the cumulative distribution function of the number of sub segment which have at least 1 IBD haplotypes from a segment of the chromosome which the length is t Morgan. This cumulative distribution function will be developed by the moment generating function.

  16. Monte Carlo estimation of total variation distance of Markov chains on large spaces, with application to phylogenetics.

    PubMed

    Herbei, Radu; Kubatko, Laura

    2013-03-26

    Markov chains are widely used for modeling in many areas of molecular biology and genetics. As the complexity of such models advances, it becomes increasingly important to assess the rate at which a Markov chain converges to its stationary distribution in order to carry out accurate inference. A common measure of convergence to the stationary distribution is the total variation distance, but this measure can be difficult to compute when the state space of the chain is large. We propose a Monte Carlo method to estimate the total variation distance that can be applied in this situation, and we demonstrate how the method can be efficiently implemented by taking advantage of GPU computing techniques. We apply the method to two Markov chains on the space of phylogenetic trees, and discuss the implications of our findings for the development of algorithms for phylogenetic inference.

  17. A novel framework to simulating non-stationary, non-linear, non-Normal hydrological time series using Markov Switching Autoregressive Models

    NASA Astrophysics Data System (ADS)

    Birkel, C.; Paroli, R.; Spezia, L.; Tetzlaff, D.; Soulsby, C.

    2012-12-01

    In this paper we present a novel model framework using the class of Markov Switching Autoregressive Models (MSARMs) to examine catchments as complex stochastic systems that exhibit non-stationary, non-linear and non-Normal rainfall-runoff and solute dynamics. Hereby, MSARMs are pairs of stochastic processes, one observed and one unobserved, or hidden. We model the unobserved process as a finite state Markov chain and assume that the observed process, given the hidden Markov chain, is conditionally autoregressive, which means that the current observation depends on its recent past (system memory). The model is fully embedded in a Bayesian analysis based on Markov Chain Monte Carlo (MCMC) algorithms for model selection and uncertainty assessment. Hereby, the autoregressive order and the dimension of the hidden Markov chain state-space are essentially self-selected. The hidden states of the Markov chain represent unobserved levels of variability in the observed process that may result from complex interactions of hydroclimatic variability on the one hand and catchment characteristics affecting water and solute storage on the other. To deal with non-stationarity, additional meteorological and hydrological time series along with a periodic component can be included in the MSARMs as covariates. This extension allows identification of potential underlying drivers of temporal rainfall-runoff and solute dynamics. We applied the MSAR model framework to streamflow and conservative tracer (deuterium and oxygen-18) time series from an intensively monitored 2.3 km2 experimental catchment in eastern Scotland. Statistical time series analysis, in the form of MSARMs, suggested that the streamflow and isotope tracer time series are not controlled by simple linear rules. MSARMs showed that the dependence of current observations on past inputs observed by transport models often in form of the long-tailing of travel time and residence time distributions can be efficiently explained by non-stationarity either of the system input (climatic variability) and/or the complexity of catchment storage characteristics. The statistical model is also capable of reproducing short (event) and longer-term (inter-event) and wet and dry dynamical "hydrological states". These reflect the non-linear transport mechanisms of flow pathways induced by transient climatic and hydrological variables and modified by catchment characteristics. We conclude that MSARMs are a powerful tool to analyze the temporal dynamics of hydrological data, allowing for explicit integration of non-stationary, non-linear and non-Normal characteristics.

  18. A systematic review of Markov models evaluating multicomponent disease management programs in diabetes.

    PubMed

    Kirsch, Florian

    2015-01-01

    Diabetes is the most expensive chronic disease; therefore, disease management programs (DMPs) were introduced. The aim of this review is to determine whether Markov models are adequate to evaluate the cost-effectiveness of complex interventions such as DMPs. Additionally, the quality of the models was evaluated using Philips and Caro quality appraisals. The five reviewed models incorporated the DMP into the model differently: two models integrated effectiveness rates derived from one clinical trial/meta-analysis and three models combined interventions from different sources into a DMP. The results range from cost savings and a QALY gain to costs of US$85,087 per QALY. The Spearman's rank coefficient assesses no correlation between the quality appraisals. With restrictions to the data selection process, Markov models are adequate to determine the cost-effectiveness of DMPs; however, to allow prioritization of medical services, more flexibility in the models is necessary to enable the evaluation of single additional interventions.

  19. Estimation in a semi-Markov transformation model

    PubMed Central

    Dabrowska, Dorota M.

    2012-01-01

    Multi-state models provide a common tool for analysis of longitudinal failure time data. In biomedical applications, models of this kind are often used to describe evolution of a disease and assume that patient may move among a finite number of states representing different phases in the disease progression. Several authors developed extensions of the proportional hazard model for analysis of multi-state models in the presence of covariates. In this paper, we consider a general class of censored semi-Markov and modulated renewal processes and propose the use of transformation models for their analysis. Special cases include modulated renewal processes with interarrival times specified using transformation models, and semi-Markov processes with with one-step transition probabilities defined using copula-transformation models. We discuss estimation of finite and infinite dimensional parameters of the model, and develop an extension of the Gaussian multiplier method for setting confidence bands for transition probabilities. A transplant outcome data set from the Center for International Blood and Marrow Transplant Research is used for illustrative purposes. PMID:22740583

  20. Semi-Markov Approach to the Shipping Safety Modelling

    NASA Astrophysics Data System (ADS)

    Guze, Sambor; Smolarek, Leszek

    2012-02-01

    In the paper the navigational safety model of a ship on the open area has been studied under conditions of incomplete information. Moreover the structure of semi-Markov processes is used to analyse the stochastic ship safety according to the subjective acceptance of risk by the navigator. In addition, the navigator’s behaviour can be analysed by using the numerical simulation to estimate the probability of collision in the safety model.

  1. Three Dimensional Object Recognition Using a Complex Autoregressive Model

    DTIC Science & Technology

    1993-12-01

    3.4.2 Template Matching Algorithm ...................... 3-16 3.4.3 K-Nearest-Neighbor ( KNN ) Techniques ................. 3-25 3.4.4 Hidden Markov Model...Neighbor ( KNN ) Test Results ...................... 4-13 4.2.1 Single-Look 1-NN Testing .......................... 4-14 4.2.2 Multiple-Look 1-NN Testing...4-15 4.2.3 Discussion of KNN Test Results ...................... 4-15 4.3 Hidden Markov Model (HMM) Test Results

  2. A Bayesian model for visual space perception

    NASA Technical Reports Server (NTRS)

    Curry, R. E.

    1972-01-01

    A model for visual space perception is proposed that contains desirable features in the theories of Gibson and Brunswik. This model is a Bayesian processor of proximal stimuli which contains three important elements: an internal model of the Markov process describing the knowledge of the distal world, the a priori distribution of the state of the Markov process, and an internal model relating state to proximal stimuli. The universality of the model is discussed and it is compared with signal detection theory models. Experimental results of Kinchla are used as a special case.

  3. An Evaluation of a Markov Chain Monte Carlo Method for the Two-Parameter Logistic Model.

    ERIC Educational Resources Information Center

    Kim, Seock-Ho; Cohen, Allan S.

    The accuracy of the Markov Chain Monte Carlo (MCMC) procedure Gibbs sampling was considered for estimation of item parameters of the two-parameter logistic model. Data for the Law School Admission Test (LSAT) Section 6 were analyzed to illustrate the MCMC procedure. In addition, simulated data sets were analyzed using the MCMC, marginal Bayesian…

  4. Causal Latent Markov Model for the Comparison of Multiple Treatments in Observational Longitudinal Studies

    ERIC Educational Resources Information Center

    Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio

    2016-01-01

    We extend to the longitudinal setting a latent class approach that was recently introduced by Lanza, Coffman, and Xu to estimate the causal effect of a treatment. The proposed approach enables an evaluation of multiple treatment effects on subpopulations of individuals from a dynamic perspective, as it relies on a latent Markov (LM) model that is…

  5. Recovery of Item Parameters in the Nominal Response Model: A Comparison of Marginal Maximum Likelihood Estimation and Markov Chain Monte Carlo Estimation.

    ERIC Educational Resources Information Center

    Wollack, James A.; Bolt, Daniel M.; Cohen, Allan S.; Lee, Young-Sun

    2002-01-01

    Compared the quality of item parameter estimates for marginal maximum likelihood (MML) and Markov Chain Monte Carlo (MCMC) with the nominal response model using simulation. The quality of item parameter recovery was nearly identical for MML and MCMC, and both methods tended to produce good estimates. (SLD)

  6. An NCME Instructional Module on Estimating Item Response Theory Models Using Markov Chain Monte Carlo Methods

    ERIC Educational Resources Information Center

    Kim, Jee-Seon; Bolt, Daniel M.

    2007-01-01

    The purpose of this ITEMS module is to provide an introduction to Markov chain Monte Carlo (MCMC) estimation for item response models. A brief description of Bayesian inference is followed by an overview of the various facets of MCMC algorithms, including discussion of prior specification, sampling procedures, and methods for evaluating chain…

  7. Multidimensional Latent Markov Models in a Developmental Study of Inhibitory Control and Attentional Flexibility in Early Childhood

    ERIC Educational Resources Information Center

    Bartolucci, Francesco; Solis-Trapala, Ivonne L.

    2010-01-01

    We demonstrate the use of a multidimensional extension of the latent Markov model to analyse data from studies with repeated binary responses in developmental psychology. In particular, we consider an experiment based on a battery of tests which was administered to pre-school children, at three time periods, in order to measure their inhibitory…

  8. Hidden Markov models for character recognition.

    PubMed

    Vlontzos, J A; Kung, S Y

    1992-01-01

    A hierarchical system for character recognition with hidden Markov model knowledge sources which solve both the context sensitivity problem and the character instantiation problem is presented. The system achieves 97-99% accuracy using a two-level architecture and has been implemented using a systolic array, thus permitting real-time (1 ms per character) multifont and multisize printed character recognition as well as handwriting recognition.

  9. Identification of linear system models and state estimators for controls

    NASA Technical Reports Server (NTRS)

    Chen, Chung-Wen

    1992-01-01

    The following paper is presented in viewgraph format and covers topics including: (1) linear state feedback control system; (2) Kalman filter state estimation; (3) relation between residual and stochastic part of output; (4) obtaining Kalman filter gain; (5) state estimation under unknown system model and unknown noises; and (6) relationship between filter Markov parameters and system Markov parameters.

  10. Markov model plus k-word distributions: a synergy that produces novel statistical measures for sequence comparison.

    PubMed

    Dai, Qi; Yang, Yanchun; Wang, Tianming

    2008-10-15

    Many proposed statistical measures can efficiently compare biological sequences to further infer their structures, functions and evolutionary information. They are related in spirit because all the ideas for sequence comparison try to use the information on the k-word distributions, Markov model or both. Motivated by adding k-word distributions to Markov model directly, we investigated two novel statistical measures for sequence comparison, called wre.k.r and S2.k.r. The proposed measures were tested by similarity search, evaluation on functionally related regulatory sequences and phylogenetic analysis. This offers the systematic and quantitative experimental assessment of our measures. Moreover, we compared our achievements with these based on alignment or alignment-free. We grouped our experiments into two sets. The first one, performed via ROC (receiver operating curve) analysis, aims at assessing the intrinsic ability of our statistical measures to search for similar sequences from a database and discriminate functionally related regulatory sequences from unrelated sequences. The second one aims at assessing how well our statistical measure is used for phylogenetic analysis. The experimental assessment demonstrates that our similarity measures intending to incorporate k-word distributions into Markov model are more efficient.

  11. Copula-based prediction of economic movements

    NASA Astrophysics Data System (ADS)

    García, J. E.; González-López, V. A.; Hirsh, I. D.

    2016-06-01

    In this paper we model the discretized returns of two paired time series BM&FBOVESPA Dividend Index and BM&FBOVESPA Public Utilities Index using multivariate Markov models. The discretization corresponds to three categories, high losses, high profits and the complementary periods of the series. In technical terms, the maximal memory that can be considered for a Markov model, can be derived from the size of the alphabet and dataset. The number of parameters needed to specify a discrete multivariate Markov chain grows exponentially with the order and dimension of the chain. In this case the size of the database is not large enough for a consistent estimation of the model. We apply a strategy to estimate a multivariate process with an order greater than the order achieved using standard procedures. The new strategy consist on obtaining a partition of the state space which is constructed from a combination, of the partitions corresponding to the two marginal processes and the partition corresponding to the multivariate Markov chain. In order to estimate the transition probabilities, all the partitions are linked using a copula. In our application this strategy provides a significant improvement in the movement predictions.

  12. Markov Task Network: A Framework for Service Composition under Uncertainty in Cyber-Physical Systems.

    PubMed

    Mohammed, Abdul-Wahid; Xu, Yang; Hu, Haixiao; Agyemang, Brighter

    2016-09-21

    In novel collaborative systems, cooperative entities collaborate services to achieve local and global objectives. With the growing pervasiveness of cyber-physical systems, however, such collaboration is hampered by differences in the operations of the cyber and physical objects, and the need for the dynamic formation of collaborative functionality given high-level system goals has become practical. In this paper, we propose a cross-layer automation and management model for cyber-physical systems. This models the dynamic formation of collaborative services pursuing laid-down system goals as an ontology-oriented hierarchical task network. Ontological intelligence provides the semantic technology of this model, and through semantic reasoning, primitive tasks can be dynamically composed from high-level system goals. In dealing with uncertainty, we further propose a novel bridge between hierarchical task networks and Markov logic networks, called the Markov task network. This leverages the efficient inference algorithms of Markov logic networks to reduce both computational and inferential loads in task decomposition. From the results of our experiments, high-precision service composition under uncertainty can be achieved using this approach.

  13. A Markov Environment-dependent Hurricane Intensity Model and Its Comparison with Multiple Dynamic Models

    NASA Astrophysics Data System (ADS)

    Jing, R.; Lin, N.; Emanuel, K.; Vecchi, G. A.; Knutson, T. R.

    2017-12-01

    A Markov environment-dependent hurricane intensity model (MeHiM) is developed to simulate the climatology of hurricane intensity given the surrounding large-scale environment. The model considers three unobserved discrete states representing respectively storm's slow, moderate, and rapid intensification (and deintensification). Each state is associated with a probability distribution of intensity change. The storm's movement from one state to another, regarded as a Markov chain, is described by a transition probability matrix. The initial state is estimated with a Bayesian approach. All three model components (initial intensity, state transition, and intensity change) are dependent on environmental variables including potential intensity, vertical wind shear, midlevel relative humidity, and ocean mixing characteristics. This dependent Markov model of hurricane intensity shows a significant improvement over previous statistical models (e.g., linear, nonlinear, and finite mixture models) in estimating the distributions of 6-h and 24-h intensity change, lifetime maximum intensity, and landfall intensity, etc. Here we compare MeHiM with various dynamical models, including a global climate model [High-Resolution Forecast-Oriented Low Ocean Resolution model (HiFLOR)], a regional hurricane model (Geophysical Fluid Dynamics Laboratory (GFDL) hurricane model), and a simplified hurricane dynamic model [Coupled Hurricane Intensity Prediction System (CHIPS)] and its newly developed fast simulator. The MeHiM developed based on the reanalysis data is applied to estimate the intensity of simulated storms to compare with the dynamical-model predictions under the current climate. The dependences of hurricanes on the environment under current and future projected climates in the various models will also be compared statistically.

  14. Sensitivity Analysis in Sequential Decision Models.

    PubMed

    Chen, Qiushi; Ayer, Turgay; Chhatwal, Jagpreet

    2017-02-01

    Sequential decision problems are frequently encountered in medical decision making, which are commonly solved using Markov decision processes (MDPs). Modeling guidelines recommend conducting sensitivity analyses in decision-analytic models to assess the robustness of the model results against the uncertainty in model parameters. However, standard methods of conducting sensitivity analyses cannot be directly applied to sequential decision problems because this would require evaluating all possible decision sequences, typically in the order of trillions, which is not practically feasible. As a result, most MDP-based modeling studies do not examine confidence in their recommended policies. In this study, we provide an approach to estimate uncertainty and confidence in the results of sequential decision models. First, we provide a probabilistic univariate method to identify the most sensitive parameters in MDPs. Second, we present a probabilistic multivariate approach to estimate the overall confidence in the recommended optimal policy considering joint uncertainty in the model parameters. We provide a graphical representation, which we call a policy acceptability curve, to summarize the confidence in the optimal policy by incorporating stakeholders' willingness to accept the base case policy. For a cost-effectiveness analysis, we provide an approach to construct a cost-effectiveness acceptability frontier, which shows the most cost-effective policy as well as the confidence in that for a given willingness to pay threshold. We demonstrate our approach using a simple MDP case study. We developed a method to conduct sensitivity analysis in sequential decision models, which could increase the credibility of these models among stakeholders.

  15. Transient Properties of Probability Distribution for a Markov Process with Size-dependent Additive Noise

    NASA Astrophysics Data System (ADS)

    Yamada, Yuhei; Yamazaki, Yoshihiro

    2018-04-01

    This study considered a stochastic model for cluster growth in a Markov process with a cluster size dependent additive noise. According to this model, the probability distribution of the cluster size transiently becomes an exponential or a log-normal distribution depending on the initial condition of the growth. In this letter, a master equation is obtained for this model, and derivation of the distributions is discussed.

  16. Discrete Event Simulation for Decision Modeling in Health Care: Lessons from Abdominal Aortic Aneurysm Screening

    PubMed Central

    Jones, Edmund; Masconi, Katya L.; Sweeting, Michael J.; Thompson, Simon G.; Powell, Janet T.

    2018-01-01

    Markov models are often used to evaluate the cost-effectiveness of new healthcare interventions but they are sometimes not flexible enough to allow accurate modeling or investigation of alternative scenarios and policies. A Markov model previously demonstrated that a one-off invitation to screening for abdominal aortic aneurysm (AAA) for men aged 65 y in the UK and subsequent follow-up of identified AAAs was likely to be highly cost-effective at thresholds commonly adopted in the UK (£20,000 to £30,000 per quality adjusted life-year). However, new evidence has emerged and the decision problem has evolved to include exploration of the circumstances under which AAA screening may be cost-effective, which the Markov model is not easily able to address. A new model to handle this more complex decision problem was needed, and the case of AAA screening thus provides an illustration of the relative merits of Markov models and discrete event simulation (DES) models. An individual-level DES model was built using the R programming language to reflect possible events and pathways of individuals invited to screening v. those not invited. The model was validated against key events and cost-effectiveness, as observed in a large, randomized trial. Different screening protocol scenarios were investigated to demonstrate the flexibility of the DES. The case of AAA screening highlights the benefits of DES, particularly in the context of screening studies.

  17. STDP Installs in Winner-Take-All Circuits an Online Approximation to Hidden Markov Model Learning

    PubMed Central

    Kappel, David; Nessler, Bernhard; Maass, Wolfgang

    2014-01-01

    In order to cross a street without being run over, we need to be able to extract very fast hidden causes of dynamically changing multi-modal sensory stimuli, and to predict their future evolution. We show here that a generic cortical microcircuit motif, pyramidal cells with lateral excitation and inhibition, provides the basis for this difficult but all-important information processing capability. This capability emerges in the presence of noise automatically through effects of STDP on connections between pyramidal cells in Winner-Take-All circuits with lateral excitation. In fact, one can show that these motifs endow cortical microcircuits with functional properties of a hidden Markov model, a generic model for solving such tasks through probabilistic inference. Whereas in engineering applications this model is adapted to specific tasks through offline learning, we show here that a major portion of the functionality of hidden Markov models arises already from online applications of STDP, without any supervision or rewards. We demonstrate the emergent computing capabilities of the model through several computer simulations. The full power of hidden Markov model learning can be attained through reward-gated STDP. This is due to the fact that these mechanisms enable a rejection sampling approximation to theoretically optimal learning. We investigate the possible performance gain that can be achieved with this more accurate learning method for an artificial grammar task. PMID:24675787

  18. Hierarchical modeling for reliability analysis using Markov models. B.S./M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Fagundo, Arturo

    1994-01-01

    Markov models represent an extremely attractive tool for the reliability analysis of many systems. However, Markov model state space grows exponentially with the number of components in a given system. Thus, for very large systems Markov modeling techniques alone become intractable in both memory and CPU time. Often a particular subsystem can be found within some larger system where the dependence of the larger system on the subsystem is of a particularly simple form. This simple dependence can be used to decompose such a system into one or more subsystems. A hierarchical technique is presented which can be used to evaluate these subsystems in such a way that their reliabilities can be combined to obtain the reliability for the full system. This hierarchical approach is unique in that it allows the subsystem model to pass multiple aggregate state information to the higher level model, allowing more general systems to be evaluated. Guidelines are developed to assist in the system decomposition. An appropriate method for determining subsystem reliability is also developed. This method gives rise to some interesting numerical issues. Numerical error due to roundoff and integration are discussed at length. Once a decomposition is chosen, the remaining analysis is straightforward but tedious. However, an approach is developed for simplifying the recombination of subsystem reliabilities. Finally, a real world system is used to illustrate the use of this technique in a more practical context.

  19. Accelerating Fibre Orientation Estimation from Diffusion Weighted Magnetic Resonance Imaging Using GPUs

    PubMed Central

    Hernández, Moisés; Guerrero, Ginés D.; Cecilia, José M.; García, José M.; Inuggi, Alberto; Jbabdi, Saad; Behrens, Timothy E. J.; Sotiropoulos, Stamatios N.

    2013-01-01

    With the performance of central processing units (CPUs) having effectively reached a limit, parallel processing offers an alternative for applications with high computational demands. Modern graphics processing units (GPUs) are massively parallel processors that can execute simultaneously thousands of light-weight processes. In this study, we propose and implement a parallel GPU-based design of a popular method that is used for the analysis of brain magnetic resonance imaging (MRI). More specifically, we are concerned with a model-based approach for extracting tissue structural information from diffusion-weighted (DW) MRI data. DW-MRI offers, through tractography approaches, the only way to study brain structural connectivity, non-invasively and in-vivo. We parallelise the Bayesian inference framework for the ball & stick model, as it is implemented in the tractography toolbox of the popular FSL software package (University of Oxford). For our implementation, we utilise the Compute Unified Device Architecture (CUDA) programming model. We show that the parameter estimation, performed through Markov Chain Monte Carlo (MCMC), is accelerated by at least two orders of magnitude, when comparing a single GPU with the respective sequential single-core CPU version. We also illustrate similar speed-up factors (up to 120x) when comparing a multi-GPU with a multi-CPU implementation. PMID:23658616

  20. Markov modeling and reliability analysis of urea synthesis system of a fertilizer plant

    NASA Astrophysics Data System (ADS)

    Aggarwal, Anil Kr.; Kumar, Sanjeev; Singh, Vikram; Garg, Tarun Kr.

    2015-12-01

    This paper deals with the Markov modeling and reliability analysis of urea synthesis system of a fertilizer plant. This system was modeled using Markov birth-death process with the assumption that the failure and repair rates of each subsystem follow exponential distribution. The first-order Chapman-Kolmogorov differential equations are developed with the use of mnemonic rule and these equations are solved with Runga-Kutta fourth-order method. The long-run availability, reliability and mean time between failures are computed for various choices of failure and repair rates of subsystems of the system. The findings of the paper are discussed with the plant personnel to adopt and practice suitable maintenance policies/strategies to enhance the performance of the urea synthesis system of the fertilizer plant.

  1. Bayesian clustering of DNA sequences using Markov chains and a stochastic partition model.

    PubMed

    Jääskinen, Väinö; Parkkinen, Ville; Cheng, Lu; Corander, Jukka

    2014-02-01

    In many biological applications it is necessary to cluster DNA sequences into groups that represent underlying organismal units, such as named species or genera. In metagenomics this grouping needs typically to be achieved on the basis of relatively short sequences which contain different types of errors, making the use of a statistical modeling approach desirable. Here we introduce a novel method for this purpose by developing a stochastic partition model that clusters Markov chains of a given order. The model is based on a Dirichlet process prior and we use conjugate priors for the Markov chain parameters which enables an analytical expression for comparing the marginal likelihoods of any two partitions. To find a good candidate for the posterior mode in the partition space, we use a hybrid computational approach which combines the EM-algorithm with a greedy search. This is demonstrated to be faster and yield highly accurate results compared to earlier suggested clustering methods for the metagenomics application. Our model is fairly generic and could also be used for clustering of other types of sequence data for which Markov chains provide a reasonable way to compress information, as illustrated by experiments on shotgun sequence type data from an Escherichia coli strain.

  2. Real-Time Kinetic Modeling of Voltage-Gated Ion Channels Using Dynamic Clamp

    PubMed Central

    Milescu, Lorin S.; Yamanishi, Tadashi; Ptak, Krzysztof; Mogri, Murtaza Z.; Smith, Jeffrey C.

    2008-01-01

    We propose what to our knowledge is a new technique for modeling the kinetics of voltage-gated ion channels in a functional context, in neurons or other excitable cells. The principle is to pharmacologically block the studied channel type, and to functionally replace it with dynamic clamp, on the basis of a computational model. Then, the parameters of the model are modified in real time (manually or automatically), with the objective of matching the dynamical behavior of the cell (e.g., action potential shape and spiking frequency), but also the transient and steady-state properties of the model (e.g., those derived from voltage-clamp recordings). Through this approach, one may find a model and parameter values that explain both the observed cellular dynamics and the biophysical properties of the channel. We extensively tested the method, focusing on Nav models. Complex Markov models (10–12 states or more) could be accurately integrated in real time at >50 kHz using the transition probability matrix, but not the explicit Euler method. The practicality of the technique was tested with experiments in raphe pacemaker neurons. Through automated real-time fitting, a Hodgkin-Huxley model could be found that reproduced well the action potential shape and the spiking frequency. Adding a virtual axonal compartment with a high density of Nav channels further improved the action potential shape. The computational procedure was implemented in the free QuB software, running under Microsoft Windows and featuring a friendly graphical user interface. PMID:18375511

  3. Uncertainty Quantification of Hypothesis Testing for the Integrated Knowledge Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuellar, Leticia

    2012-05-31

    The Integrated Knowledge Engine (IKE) is a tool of Bayesian analysis, based on Bayesian Belief Networks or Bayesian networks for short. A Bayesian network is a graphical model (directed acyclic graph) that allows representing the probabilistic structure of many variables assuming a localized type of dependency called the Markov property. The Markov property in this instance makes any node or random variable to be independent of any non-descendant node given information about its parent. A direct consequence of this property is that it is relatively easy to incorporate new evidence and derive the appropriate consequences, which in general is notmore » an easy or feasible task. Typically we use Bayesian networks as predictive models for a small subset of the variables, either the leave nodes or the root nodes. In IKE, since most applications deal with diagnostics, we are interested in predicting the likelihood of the root nodes given new observations on any of the children nodes. The root nodes represent the various possible outcomes of the analysis, and an important problem is to determine when we have gathered enough evidence to lean toward one of these particular outcomes. This document presents criteria to decide when the evidence gathered is sufficient to draw a particular conclusion or decide in favor of a particular outcome by quantifying the uncertainty in the conclusions that are drawn from the data. The material in this document is organized as follows: Section 2 presents briefly a forensics Bayesian network, and we explore evaluating the information provided by new evidence by looking first at the posterior distribution of the nodes of interest, and then at the corresponding posterior odds ratios. Section 3 presents a third alternative: Bayes Factors. In section 4 we finalize by showing the relation between the posterior odds ratios and Bayes factors and showing examples these cases, and in section 5 we conclude by providing clear guidelines of how to use these for the type of Bayesian networks used in IKE.« less

  4. Transition records of stationary Markov chains.

    PubMed

    Naudts, Jan; Van der Straeten, Erik

    2006-10-01

    In any Markov chain with finite state space the distribution of transition records always belongs to the exponential family. This observation is used to prove a fluctuation theorem, and to show that the dynamical entropy of a stationary Markov chain is linear in the number of steps. Three applications are discussed. A known result about entropy production is reproduced. A thermodynamic relation is derived for equilibrium systems with Metropolis dynamics. Finally, a link is made with recent results concerning a one-dimensional polymer model.

  5. Numerical research of the optimal control problem in the semi-Markov inventory model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorshenin, Andrey K.; Belousov, Vasily V.; Shnourkoff, Peter V.

    2015-03-10

    This paper is devoted to the numerical simulation of stochastic system for inventory management products using controlled semi-Markov process. The results of a special software for the system’s research and finding the optimal control are presented.

  6. Effects of stochastic interest rates in decision making under risk: A Markov decision process model for forest management

    Treesearch

    Mo Zhou; Joseph Buongiorno

    2011-01-01

    Most economic studies of forest decision making under risk assume a fixed interest rate. This paper investigated some implications of this stochastic nature of interest rates. Markov decision process (MDP) models, used previously to integrate stochastic stand growth and prices, can be extended to include variable interest rates as well. This method was applied to...

  7. Markov State Models of gene regulatory networks.

    PubMed

    Chu, Brian K; Tse, Margaret J; Sato, Royce R; Read, Elizabeth L

    2017-02-06

    Gene regulatory networks with dynamics characterized by multiple stable states underlie cell fate-decisions. Quantitative models that can link molecular-level knowledge of gene regulation to a global understanding of network dynamics have the potential to guide cell-reprogramming strategies. Networks are often modeled by the stochastic Chemical Master Equation, but methods for systematic identification of key properties of the global dynamics are currently lacking. The method identifies the number, phenotypes, and lifetimes of long-lived states for a set of common gene regulatory network models. Application of transition path theory to the constructed Markov State Model decomposes global dynamics into a set of dominant transition paths and associated relative probabilities for stochastic state-switching. In this proof-of-concept study, we found that the Markov State Model provides a general framework for analyzing and visualizing stochastic multistability and state-transitions in gene networks. Our results suggest that this framework-adopted from the field of atomistic Molecular Dynamics-can be a useful tool for quantitative Systems Biology at the network scale.

  8. Mathematical model of the loan portfolio dynamics in the form of Markov chain considering the process of new customers attraction

    NASA Astrophysics Data System (ADS)

    Bozhalkina, Yana

    2017-12-01

    Mathematical model of the loan portfolio structure change in the form of Markov chain is explored. This model considers in one scheme both the process of customers attraction, their selection based on the credit score, and loans repayment. The model describes the structure and volume of the loan portfolio dynamics, which allows to make medium-term forecasts of profitability and risk. Within the model corrective actions of bank management in order to increase lending volumes or to reduce the risk are formalized.

  9. ASSIST: User's manual

    NASA Technical Reports Server (NTRS)

    Johnson, S. C.

    1986-01-01

    Semi-Markov models can be used to compute the reliability of virtually any fault-tolerant system. However, the process of delineating all of the states and transitions in a model of a complex system can be devastingly tedious and error-prone. The ASSIST program allows the user to describe the semi-Markov model in a high-level language. Instead of specifying the individual states of the model, the user specifies the rules governing the behavior of the system and these are used by ASSIST to automatically generate the model. The ASSIST program is described and illustrated by examples.

  10. Markov Decision Process Measurement Model.

    PubMed

    LaMar, Michelle M

    2018-03-01

    Within-task actions can provide additional information on student competencies but are challenging to model. This paper explores the potential of using a cognitive model for decision making, the Markov decision process, to provide a mapping between within-task actions and latent traits of interest. Psychometric properties of the model are explored, and simulation studies report on parameter recovery within the context of a simple strategy game. The model is then applied to empirical data from an educational game. Estimates from the model are found to correlate more strongly with posttest results than a partial-credit IRT model based on outcome data alone.

  11. Surgical gesture segmentation and recognition.

    PubMed

    Tao, Lingling; Zappella, Luca; Hager, Gregory D; Vidal, René

    2013-01-01

    Automatic surgical gesture segmentation and recognition can provide useful feedback for surgical training in robotic surgery. Most prior work in this field relies on the robot's kinematic data. Although recent work [1,2] shows that the robot's video data can be equally effective for surgical gesture recognition, the segmentation of the video into gestures is assumed to be known. In this paper, we propose a framework for joint segmentation and recognition of surgical gestures from kinematic and video data. Unlike prior work that relies on either frame-level kinematic cues, or segment-level kinematic or video cues, our approach exploits both cues by using a combined Markov/semi-Markov conditional random field (MsM-CRF) model. Our experiments show that the proposed model improves over a Markov or semi-Markov CRF when using video data alone, gives results that are comparable to state-of-the-art methods on kinematic data alone, and improves over state-of-the-art methods when combining kinematic and video data.

  12. Trans-dimensional matched-field geoacoustic inversion with hierarchical error models and interacting Markov chains.

    PubMed

    Dettmer, Jan; Dosso, Stan E

    2012-10-01

    This paper develops a trans-dimensional approach to matched-field geoacoustic inversion, including interacting Markov chains to improve efficiency and an autoregressive model to account for correlated errors. The trans-dimensional approach and hierarchical seabed model allows inversion without assuming any particular parametrization by relaxing model specification to a range of plausible seabed models (e.g., in this case, the number of sediment layers is an unknown parameter). Data errors are addressed by sampling statistical error-distribution parameters, including correlated errors (covariance), by applying a hierarchical autoregressive error model. The well-known difficulty of low acceptance rates for trans-dimensional jumps is addressed with interacting Markov chains, resulting in a substantial increase in efficiency. The trans-dimensional seabed model and the hierarchical error model relax the degree of prior assumptions required in the inversion, resulting in substantially improved (more realistic) uncertainty estimates and a more automated algorithm. In particular, the approach gives seabed parameter uncertainty estimates that account for uncertainty due to prior model choice (layering and data error statistics). The approach is applied to data measured on a vertical array in the Mediterranean Sea.

  13. Markov chain decision model for urinary incontinence procedures.

    PubMed

    Kumar, Sameer; Ghildayal, Nidhi; Ghildayal, Neha

    2017-03-13

    Purpose Urinary incontinence (UI) is a common chronic health condition, a problem specifically among elderly women that impacts quality of life negatively. However, UI is usually viewed as likely result of old age, and as such is generally not evaluated or even managed appropriately. Many treatments are available to manage incontinence, such as bladder training and numerous surgical procedures such as Burch colposuspension and Sling for UI which have high success rates. The purpose of this paper is to analyze which of these popular surgical procedures for UI is effective. Design/methodology/approach This research employs randomized, prospective studies to obtain robust cost and utility data used in the Markov chain decision model for examining which of these surgical interventions is more effective in treating women with stress UI based on two measures: number of quality adjusted life years (QALY) and cost per QALY. Treeage Pro Healthcare software was employed in Markov decision analysis. Findings Results showed the Sling procedure is a more effective surgical intervention than the Burch. However, if a utility greater than certain utility value, for which both procedures are equally effective, is assigned to persistent incontinence, the Burch procedure is more effective than the Sling procedure. Originality/value This paper demonstrates the efficacy of a Markov chain decision modeling approach to study the comparative effectiveness analysis of available treatments for patients with UI, an important public health issue, widely prevalent among elderly women in developed and developing countries. This research also improves upon other analyses using a Markov chain decision modeling process to analyze various strategies for treating UI.

  14. Overshoot in biological systems modelled by Markov chains: a non-equilibrium dynamic phenomenon.

    PubMed

    Jia, Chen; Qian, Minping; Jiang, Daquan

    2014-08-01

    A number of biological systems can be modelled by Markov chains. Recently, there has been an increasing concern about when biological systems modelled by Markov chains will perform a dynamic phenomenon called overshoot. In this study, the authors found that the steady-state behaviour of the system will have a great effect on the occurrence of overshoot. They showed that overshoot in general cannot occur in systems that will finally approach an equilibrium steady state. They further classified overshoot into two types, named as simple overshoot and oscillating overshoot. They showed that except for extreme cases, oscillating overshoot will occur if the system is far from equilibrium. All these results clearly show that overshoot is a non-equilibrium dynamic phenomenon with energy consumption. In addition, the main result in this study is validated with real experimental data.

  15. Causal inference in biology networks with integrated belief propagation.

    PubMed

    Chang, Rui; Karr, Jonathan R; Schadt, Eric E

    2015-01-01

    Inferring causal relationships among molecular and higher order phenotypes is a critical step in elucidating the complexity of living systems. Here we propose a novel method for inferring causality that is no longer constrained by the conditional dependency arguments that limit the ability of statistical causal inference methods to resolve causal relationships within sets of graphical models that are Markov equivalent. Our method utilizes Bayesian belief propagation to infer the responses of perturbation events on molecular traits given a hypothesized graph structure. A distance measure between the inferred response distribution and the observed data is defined to assess the 'fitness' of the hypothesized causal relationships. To test our algorithm, we infer causal relationships within equivalence classes of gene networks in which the form of the functional interactions that are possible are assumed to be nonlinear, given synthetic microarray and RNA sequencing data. We also apply our method to infer causality in real metabolic network with v-structure and feedback loop. We show that our method can recapitulate the causal structure and recover the feedback loop only from steady-state data which conventional method cannot.

  16. Suicidality and its relationship with depression, alcohol disorders and childhood experiences of violence: results from the ESEMeD study.

    PubMed

    Hardt, J; Bernert, S; Matschinger, H; Angermeier, M C; Vilagut, G; Bruffaerts, R; de Girolamo, G; de Graaf, R; Haro, J M; Kovess, V; Alonso, J

    2015-04-01

    Suicidality constitutes a major health concern in many countries. The aim of the present paper was to analyse 10 of its risk factors and their interdependence. Data on suicidality, mental disorders and experience of childhood violence was collected from 8796 respondents in the European Study of the Epidemiology of Mental Disorders (ESEMeD). The CIDI was used to assess mental disorders. Individuals were randomly divided into two subgroups. In one, a Graphical Markov model to predict suicidality was constructed, in the second, predictors were cross-validated. Lifetime suicidality was predicted mainly by lifetime depression and early experiences of violence, with a pseudo R-square of 12.8%. In addition, alcohol disorders predicted suicidality, but played a minor role compared with the other risk factors in this sample. In addition to depression, early experience of violence constitutes an important risk factor of suicidality. This is a cross-sectional and retrospective study assessing risk factors for suicidality, not for suicide itself. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A Systematic Approach to Determining the Identifiability of Multistage Carcinogenesis Models.

    PubMed

    Brouwer, Andrew F; Meza, Rafael; Eisenberg, Marisa C

    2017-07-01

    Multistage clonal expansion (MSCE) models of carcinogenesis are continuous-time Markov process models often used to relate cancer incidence to biological mechanism. Identifiability analysis determines what model parameter combinations can, theoretically, be estimated from given data. We use a systematic approach, based on differential algebra methods traditionally used for deterministic ordinary differential equation (ODE) models, to determine identifiable combinations for a generalized subclass of MSCE models with any number of preinitation stages and one clonal expansion. Additionally, we determine the identifiable combinations of the generalized MSCE model with up to four clonal expansion stages, and conjecture the results for any number of clonal expansion stages. The results improve upon previous work in a number of ways and provide a framework to find the identifiable combinations for further variations on the MSCE models. Finally, our approach, which takes advantage of the Kolmogorov backward equations for the probability generating functions of the Markov process, demonstrates that identifiability methods used in engineering and mathematics for systems of ODEs can be applied to continuous-time Markov processes. © 2016 Society for Risk Analysis.

  18. Document Ranking Based upon Markov Chains.

    ERIC Educational Resources Information Center

    Danilowicz, Czeslaw; Balinski, Jaroslaw

    2001-01-01

    Considers how the order of documents in information retrieval responses are determined and introduces a method that uses a probabilistic model of a document set where documents are regarded as states of a Markov chain and where transition probabilities are directly proportional to similarities between documents. (Author/LRW)

  19. A method of hidden Markov model optimization for use with geophysical data sets

    NASA Technical Reports Server (NTRS)

    Granat, R. A.

    2003-01-01

    Geophysics research has been faced with a growing need for automated techniques with which to process large quantities of data. A successful tool must meet a number of requirements: it should be consistent, require minimal parameter tuning, and produce scientifically meaningful results in reasonable time. We introduce a hidden Markov model (HMM)-based method for analysis of geophysical data sets that attempts to address these issues.

  20. The Embedding Problem for Markov Models of Nucleotide Substitution

    PubMed Central

    Verbyla, Klara L.; Yap, Von Bing; Pahwa, Anuj; Shao, Yunli; Huttley, Gavin A.

    2013-01-01

    Continuous-time Markov processes are often used to model the complex natural phenomenon of sequence evolution. To make the process of sequence evolution tractable, simplifying assumptions are often made about the sequence properties and the underlying process. The validity of one such assumption, time-homogeneity, has never been explored. Violations of this assumption can be found by identifying non-embeddability. A process is non-embeddable if it can not be embedded in a continuous time-homogeneous Markov process. In this study, non-embeddability was demonstrated to exist when modelling sequence evolution with Markov models. Evidence of non-embeddability was found primarily at the third codon position, possibly resulting from changes in mutation rate over time. Outgroup edges and those with a deeper time depth were found to have an increased probability of the underlying process being non-embeddable. Overall, low levels of non-embeddability were detected when examining individual edges of triads across a diverse set of alignments. Subsequent phylogenetic reconstruction analyses demonstrated that non-embeddability could impact on the correct prediction of phylogenies, but at extremely low levels. Despite the existence of non-embeddability, there is minimal evidence of violations of the local time homogeneity assumption and consequently the impact is likely to be minor. PMID:23935949

  1. A Hidden Markov Model for Analysis of Frontline Veterinary Data for Emerging Zoonotic Disease Surveillance

    PubMed Central

    Robertson, Colin; Sawford, Kate; Gunawardana, Walimunige S. N.; Nelson, Trisalyn A.; Nathoo, Farouk; Stephen, Craig

    2011-01-01

    Surveillance systems tracking health patterns in animals have potential for early warning of infectious disease in humans, yet there are many challenges that remain before this can be realized. Specifically, there remains the challenge of detecting early warning signals for diseases that are not known or are not part of routine surveillance for named diseases. This paper reports on the development of a hidden Markov model for analysis of frontline veterinary sentinel surveillance data from Sri Lanka. Field veterinarians collected data on syndromes and diagnoses using mobile phones. A model for submission patterns accounts for both sentinel-related and disease-related variability. Models for commonly reported cattle diagnoses were estimated separately. Region-specific weekly average prevalence was estimated for each diagnoses and partitioned into normal and abnormal periods. Visualization of state probabilities was used to indicate areas and times of unusual disease prevalence. The analysis suggests that hidden Markov modelling is a useful approach for surveillance datasets from novel populations and/or having little historical baselines. PMID:21949763

  2. Modeling long correlation times using additive binary Markov chains: Applications to wind generation time series.

    PubMed

    Weber, Juliane; Zachow, Christopher; Witthaut, Dirk

    2018-03-01

    Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.

  3. Modeling long correlation times using additive binary Markov chains: Applications to wind generation time series

    NASA Astrophysics Data System (ADS)

    Weber, Juliane; Zachow, Christopher; Witthaut, Dirk

    2018-03-01

    Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.

  4. Predicting Urban Medical Services Demand in China: An Improved Grey Markov Chain Model by Taylor Approximation.

    PubMed

    Duan, Jinli; Jiao, Feng; Zhang, Qishan; Lin, Zhibin

    2017-08-06

    The sharp increase of the aging population has raised the pressure on the current limited medical resources in China. To better allocate resources, a more accurate prediction on medical service demand is very urgently needed. This study aims to improve the prediction on medical services demand in China. To achieve this aim, the study combines Taylor Approximation into the Grey Markov Chain model, and develops a new model named Taylor-Markov Chain GM (1,1) (T-MCGM (1,1)). The new model has been tested by adopting the historical data, which includes the medical service on treatment of diabetes, heart disease, and cerebrovascular disease from 1997 to 2015 in China. The model provides a predication on medical service demand of these three types of disease up to 2022. The results reveal an enormous growth of urban medical service demand in the future. The findings provide practical implications for the Health Administrative Department to allocate medical resources, and help hospitals to manage investments on medical facilities.

  5. Decentralized control of Markovian decision processes: Existence Sigma-admissable policies

    NASA Technical Reports Server (NTRS)

    Greenland, A.

    1980-01-01

    The problem of formulating and analyzing Markov decision models having decentralized information and decision patterns is examined. Included are basic examples as well as the mathematical preliminaries needed to understand Markov decision models and, further, to superimpose decentralized decision structures on them. The notion of a variance admissible policy for the model is introduced and it is proved that there exist (possibly nondeterministic) optional policies from the class of variance admissible policies. Directions for further research are explored.

  6. Simplification of irreversible Markov chains by removal of states with fast leaving rates.

    PubMed

    Jia, Chen

    2016-07-07

    In the recent work of Ullah et al. (2012a), the authors developed an effective method to simplify reversible Markov chains by removal of states with low equilibrium occupancies. In this paper, we extend this result to irreversible Markov chains. We show that an irreversible chain can be simplified by removal of states with fast leaving rates. Moreover, we reveal that the irreversibility of the chain will always decrease after model simplification. This suggests that although model simplification can retain almost all the dynamic information of the chain, it will lose some thermodynamic information as a trade-off. Examples from biology are also given to illustrate the main results of this paper. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Optimal clinical trial design based on a dichotomous Markov-chain mixed-effect sleep model.

    PubMed

    Steven Ernest, C; Nyberg, Joakim; Karlsson, Mats O; Hooker, Andrew C

    2014-12-01

    D-optimal designs for discrete-type responses have been derived using generalized linear mixed models, simulation based methods and analytical approximations for computing the fisher information matrix (FIM) of non-linear mixed effect models with homogeneous probabilities over time. In this work, D-optimal designs using an analytical approximation of the FIM for a dichotomous, non-homogeneous, Markov-chain phase advanced sleep non-linear mixed effect model was investigated. The non-linear mixed effect model consisted of transition probabilities of dichotomous sleep data estimated as logistic functions using piecewise linear functions. Theoretical linear and nonlinear dose effects were added to the transition probabilities to modify the probability of being in either sleep stage. D-optimal designs were computed by determining an analytical approximation the FIM for each Markov component (one where the previous state was awake and another where the previous state was asleep). Each Markov component FIM was weighted either equally or by the average probability of response being awake or asleep over the night and summed to derive the total FIM (FIM(total)). The reference designs were placebo, 0.1, 1-, 6-, 10- and 20-mg dosing for a 2- to 6-way crossover study in six dosing groups. Optimized design variables were dose and number of subjects in each dose group. The designs were validated using stochastic simulation/re-estimation (SSE). Contrary to expectations, the predicted parameter uncertainty obtained via FIM(total) was larger than the uncertainty in parameter estimates computed by SSE. Nevertheless, the D-optimal designs decreased the uncertainty of parameter estimates relative to the reference designs. Additionally, the improvement for the D-optimal designs were more pronounced using SSE than predicted via FIM(total). Through the use of an approximate analytic solution and weighting schemes, the FIM(total) for a non-homogeneous, dichotomous Markov-chain phase advanced sleep model was computed and provided more efficient trial designs and increased nonlinear mixed-effects modeling parameter precision.

  8. (abstract) Modeling Protein Families and Human Genes: Hidden Markov Models and a Little Beyond

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre

    1994-01-01

    We will first give a brief overview of Hidden Markov Models (HMMs) and their use in Computational Molecular Biology. In particular, we will describe a detailed application of HMMs to the G-Protein-Coupled-Receptor Superfamily. We will also describe a number of analytical results on HMMs that can be used in discrimination tests and database mining. We will then discuss the limitations of HMMs and some new directions of research. We will conclude with some recent results on the application of HMMs to human gene modeling and parsing.

  9. Persistence and ergodicity of plant disease model with markov conversion and impulsive toxicant input

    NASA Astrophysics Data System (ADS)

    Zhao, Wencai; Li, Juan; Zhang, Tongqian; Meng, Xinzhu; Zhang, Tonghua

    2017-07-01

    Taking into account of both white and colored noises, a stochastic mathematical model with impulsive toxicant input is formulated. Based on this model, we investigate dynamics, such as the persistence and ergodicity, of plant infectious disease model with Markov conversion in a polluted environment. The thresholds of extinction and persistence in mean are obtained. By using Lyapunov functions, we prove that the system is ergodic and has a stationary distribution under certain sufficient conditions. Finally, numerical simulations are employed to illustrate our theoretical analysis.

  10. Markov switching of the electricity supply curve and power prices dynamics

    NASA Astrophysics Data System (ADS)

    Mari, Carlo; Cananà, Lucianna

    2012-02-01

    Regime-switching models seem to well capture the main features of power prices behavior in deregulated markets. In a recent paper, we have proposed an equilibrium methodology to derive electricity prices dynamics from the interplay between supply and demand in a stochastic environment. In particular, assuming that the supply function is described by a power law where the exponent is a two-state strictly positive Markov process, we derived a regime switching dynamics of power prices in which regime switches are induced by transitions between Markov states. In this paper, we provide a dynamical model to describe the random behavior of power prices where the only non-Brownian component of the motion is endogenously introduced by Markov transitions in the exponent of the electricity supply curve. In this context, the stochastic process driving the switching mechanism becomes observable, and we will show that the non-Brownian component of the dynamics induced by transitions from Markov states is responsible for jumps and spikes of very high magnitude. The empirical analysis performed on three Australian markets confirms that the proposed approach seems quite flexible and capable of incorporating the main features of power prices time-series, thus reproducing the first four moments of log-returns empirical distributions in a satisfactory way.

  11. Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers.

    PubMed

    Borchani, Hanen; Bielza, Concha; Toro, Carlos; Larrañaga, Pedro

    2013-03-01

    Our aim is to use multi-dimensional Bayesian network classifiers in order to predict the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors given an input set of respective resistance mutations that an HIV patient carries. Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models especially designed to solve multi-dimensional classification problems, where each input instance in the data set has to be assigned simultaneously to multiple output class variables that are not necessarily binary. In this paper, we introduce a new method, named MB-MBC, for learning MBCs from data by determining the Markov blanket around each class variable using the HITON algorithm. Our method is applied to both reverse transcriptase and protease data sets obtained from the Stanford HIV-1 database. Regarding the prediction of antiretroviral combination therapies, the experimental study shows promising results in terms of classification accuracy compared with state-of-the-art MBC learning algorithms. For reverse transcriptase inhibitors, we get 71% and 11% in mean and global accuracy, respectively; while for protease inhibitors, we get more than 84% and 31% in mean and global accuracy, respectively. In addition, the analysis of MBC graphical structures lets us gain insight into both known and novel interactions between reverse transcriptase and protease inhibitors and their respective resistance mutations. MB-MBC algorithm is a valuable tool to analyze the HIV-1 reverse transcriptase and protease inhibitors prediction problem and to discover interactions within and between these two classes of inhibitors. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Estimation of customer lifetime value of a health insurance with interest rates obeying uniform distribution

    NASA Astrophysics Data System (ADS)

    Widyawan, A.; Pasaribu, U. S.; Henintyas, Permana, D.

    2015-12-01

    Nowadays some firms, including insurer firms, think that customer-centric services are better than product-centric ones in terms of marketing. Insurance firms will try to attract as many new customer as possible while maintaining existing customer. This causes the Customer Lifetime Value (CLV) becomes a very important thing. CLV are able to put customer into different segments and calculate the present value of a firm's relationship with its customer. Insurance customer will depend on the last service he or she can get. So if the service is bad now, then customer will not renew his contract though the service is very good at an erlier time. Because of this situation one suitable mathematical model for modeling customer's relationships and calculating their lifetime value is Markov Chain. In addition, the advantages of using Markov Chain Modeling is its high degree of flexibility. In 2000, Pfeifer and Carraway states that Markov Chain Modeling can be used for customer retention situation. In this situation, Markov Chain Modeling requires only two states, which are present customer and former ones. This paper calculates customer lifetime value in an insurance firm with two distinctive interest rates; the constant interest rate and uniform distribution of interest rates. The result shows that loyal customer and the customer who increase their contract value have the highest CLV.

  13. Utah State University Global Assimilation of Ionospheric Measurements Gauss-Markov Kalman filter model of the ionosphere: Model description and validation

    NASA Astrophysics Data System (ADS)

    Scherliess, L.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Zhu, L.

    2006-11-01

    The Utah State University Gauss-Markov Kalman Filter (GMKF) was developed as part of the Global Assimilation of Ionospheric Measurements (GAIM) program. The GMKF uses a physics-based model of the ionosphere and a Gauss-Markov Kalman filter as a basis for assimilating a diverse set of real-time (or near real-time) observations. The physics-based model is the Ionospheric Forecast Model (IFM), which accounts for five ion species and covers the E region, F region, and the topside from 90 to 1400 km altitude. Within the GMKF, the IFM derived ionospheric densities constitute a background density field on which perturbations are superimposed based on the available data and their errors. In the current configuration, the GMKF assimilates slant total electron content (TEC) from a variable number of global positioning satellite (GPS) ground sites, bottomside electron density (Ne) profiles from a variable number of ionosondes, in situ Ne from four Defense Meteorological Satellite Program (DMSP) satellites, and nighttime line-of-sight ultraviolet (UV) radiances measured by satellites. To test the GMKF for real-time operations and to validate its ionospheric density specifications, we have tested the model performance for a variety of geophysical conditions. During these model runs various combination of data types and data quantities were assimilated. To simulate real-time operations, the model ran continuously and automatically and produced three-dimensional global electron density distributions in 15 min increments. In this paper we will describe the Gauss-Markov Kalman filter model and present results of our validation study, with an emphasis on comparisons with independent observations.

  14. Improving Markov Chain Models for Road Profiles Simulation via Definition of States

    DTIC Science & Technology

    2012-04-01

    wavelet transform in pavement profile analysis," Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, vol. 47, no. 4...34Estimating Markov Transition Probabilities from Micro -Unit Data," Journal of the Royal Statistical Society. Series C (Applied Statistics), pp. 355-371

  15. Probability, statistics, and computational science.

    PubMed

    Beerenwinkel, Niko; Siebourg, Juliane

    2012-01-01

    In this chapter, we review basic concepts from probability theory and computational statistics that are fundamental to evolutionary genomics. We provide a very basic introduction to statistical modeling and discuss general principles, including maximum likelihood and Bayesian inference. Markov chains, hidden Markov models, and Bayesian network models are introduced in more detail as they occur frequently and in many variations in genomics applications. In particular, we discuss efficient inference algorithms and methods for learning these models from partially observed data. Several simple examples are given throughout the text, some of which point to models that are discussed in more detail in subsequent chapters.

  16. A Stable Clock Error Model Using Coupled First and Second Order Gauss-Markov Processes

    NASA Technical Reports Server (NTRS)

    Carpenter, Russell; Lee, Taesul

    2008-01-01

    Long data outages may occur in applications of global navigation satellite system technology to orbit determination for missions that spend significant fractions of their orbits above the navigation satellite constellation(s). Current clock error models based on the random walk idealization may not be suitable in these circumstances, since the covariance of the clock errors may become large enough to overflow flight computer arithmetic. A model that is stable, but which approximates the existing models over short time horizons is desirable. A coupled first- and second-order Gauss-Markov process is such a model.

  17. Estimation of Survival Probabilities for Use in Cost-effectiveness Analyses: A Comparison of a Multi-state Modeling Survival Analysis Approach with Partitioned Survival and Markov Decision-Analytic Modeling

    PubMed Central

    Williams, Claire; Lewsey, James D.; Mackay, Daniel F.; Briggs, Andrew H.

    2016-01-01

    Modeling of clinical-effectiveness in a cost-effectiveness analysis typically involves some form of partitioned survival or Markov decision-analytic modeling. The health states progression-free, progression and death and the transitions between them are frequently of interest. With partitioned survival, progression is not modeled directly as a state; instead, time in that state is derived from the difference in area between the overall survival and the progression-free survival curves. With Markov decision-analytic modeling, a priori assumptions are often made with regard to the transitions rather than using the individual patient data directly to model them. This article compares a multi-state modeling survival regression approach to these two common methods. As a case study, we use a trial comparing rituximab in combination with fludarabine and cyclophosphamide v. fludarabine and cyclophosphamide alone for the first-line treatment of chronic lymphocytic leukemia. We calculated mean Life Years and QALYs that involved extrapolation of survival outcomes in the trial. We adapted an existing multi-state modeling approach to incorporate parametric distributions for transition hazards, to allow extrapolation. The comparison showed that, due to the different assumptions used in the different approaches, a discrepancy in results was evident. The partitioned survival and Markov decision-analytic modeling deemed the treatment cost-effective with ICERs of just over £16,000 and £13,000, respectively. However, the results with the multi-state modeling were less conclusive, with an ICER of just over £29,000. This work has illustrated that it is imperative to check whether assumptions are realistic, as different model choices can influence clinical and cost-effectiveness results. PMID:27698003

  18. Estimation of Survival Probabilities for Use in Cost-effectiveness Analyses: A Comparison of a Multi-state Modeling Survival Analysis Approach with Partitioned Survival and Markov Decision-Analytic Modeling.

    PubMed

    Williams, Claire; Lewsey, James D; Mackay, Daniel F; Briggs, Andrew H

    2017-05-01

    Modeling of clinical-effectiveness in a cost-effectiveness analysis typically involves some form of partitioned survival or Markov decision-analytic modeling. The health states progression-free, progression and death and the transitions between them are frequently of interest. With partitioned survival, progression is not modeled directly as a state; instead, time in that state is derived from the difference in area between the overall survival and the progression-free survival curves. With Markov decision-analytic modeling, a priori assumptions are often made with regard to the transitions rather than using the individual patient data directly to model them. This article compares a multi-state modeling survival regression approach to these two common methods. As a case study, we use a trial comparing rituximab in combination with fludarabine and cyclophosphamide v. fludarabine and cyclophosphamide alone for the first-line treatment of chronic lymphocytic leukemia. We calculated mean Life Years and QALYs that involved extrapolation of survival outcomes in the trial. We adapted an existing multi-state modeling approach to incorporate parametric distributions for transition hazards, to allow extrapolation. The comparison showed that, due to the different assumptions used in the different approaches, a discrepancy in results was evident. The partitioned survival and Markov decision-analytic modeling deemed the treatment cost-effective with ICERs of just over £16,000 and £13,000, respectively. However, the results with the multi-state modeling were less conclusive, with an ICER of just over £29,000. This work has illustrated that it is imperative to check whether assumptions are realistic, as different model choices can influence clinical and cost-effectiveness results.

  19. Comparison of type 2 diabetes prevalence estimates in Saudi Arabia from a validated Markov model against the International Diabetes Federation and other modelling studies

    PubMed Central

    Al-Quwaidhi, Abdulkareem J.; Pearce, Mark S.; Sobngwi, Eugene; Critchley, Julia A.; O’Flaherty, Martin

    2014-01-01

    Aims To compare the estimates and projections of type 2 diabetes mellitus (T2DM) prevalence in Saudi Arabia from a validated Markov model against other modelling estimates, such as those produced by the International Diabetes Federation (IDF) Diabetes Atlas and the Global Burden of Disease (GBD) project. Methods A discrete-state Markov model was developed and validated that integrates data on population, obesity and smoking prevalence trends in adult Saudis aged ≥25 years to estimate the trends in T2DM prevalence (annually from 1992 to 2022). The model was validated by comparing the age- and sex-specific prevalence estimates against a national survey conducted in 2005. Results Prevalence estimates from this new Markov model were consistent with the 2005 national survey and very similar to the GBD study estimates. Prevalence in men and women in 2000 was estimated by the GBD model respectively at 17.5% and 17.7%, compared to 17.7% and 16.4% in this study. The IDF estimates of the total diabetes prevalence were considerably lower at 16.7% in 2011 and 20.8% in 2030, compared with 29.2% in 2011 and 44.1% in 2022 in this study. Conclusion In contrast to other modelling studies, both the Saudi IMPACT Diabetes Forecast Model and the GBD model directly incorporated the trends in obesity prevalence and/or body mass index (BMI) to inform T2DM prevalence estimates. It appears that such a direct incorporation of obesity trends in modelling studies results in higher estimates of the future prevalence of T2DM, at least in countries where obesity has been rapidly increasing. PMID:24447810

  20. Sentiment classification technology based on Markov logic networks

    NASA Astrophysics Data System (ADS)

    He, Hui; Li, Zhigang; Yao, Chongchong; Zhang, Weizhe

    2016-07-01

    With diverse online media emerging, there is a growing concern of sentiment classification problem. At present, text sentiment classification mainly utilizes supervised machine learning methods, which feature certain domain dependency. On the basis of Markov logic networks (MLNs), this study proposed a cross-domain multi-task text sentiment classification method rooted in transfer learning. Through many-to-one knowledge transfer, labeled text sentiment classification, knowledge was successfully transferred into other domains, and the precision of the sentiment classification analysis in the text tendency domain was improved. The experimental results revealed the following: (1) the model based on a MLN demonstrated higher precision than the single individual learning plan model. (2) Multi-task transfer learning based on Markov logical networks could acquire more knowledge than self-domain learning. The cross-domain text sentiment classification model could significantly improve the precision and efficiency of text sentiment classification.

  1. Information-Theoretic Performance Analysis of Sensor Networks via Markov Modeling of Time Series Data.

    PubMed

    Li, Yue; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Yue Li; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Wettergren, Thomas A; Li, Yue; Ray, Asok; Jha, Devesh K

    2018-06-01

    This paper presents information-theoretic performance analysis of passive sensor networks for detection of moving targets. The proposed method falls largely under the category of data-level information fusion in sensor networks. To this end, a measure of information contribution for sensors is formulated in a symbolic dynamics framework. The network information state is approximately represented as the largest principal component of the time series collected across the network. To quantify each sensor's contribution for generation of the information content, Markov machine models as well as x-Markov (pronounced as cross-Markov) machine models, conditioned on the network information state, are constructed; the difference between the conditional entropies of these machines is then treated as an approximate measure of information contribution by the respective sensors. The x-Markov models represent the conditional temporal statistics given the network information state. The proposed method has been validated on experimental data collected from a local area network of passive sensors for target detection, where the statistical characteristics of environmental disturbances are similar to those of the target signal in the sense of time scale and texture. A distinctive feature of the proposed algorithm is that the network decisions are independent of the behavior and identity of the individual sensors, which is desirable from computational perspectives. Results are presented to demonstrate the proposed method's efficacy to correctly identify the presence of a target with very low false-alarm rates. The performance of the underlying algorithm is compared with that of a recent data-driven, feature-level information fusion algorithm. It is shown that the proposed algorithm outperforms the other algorithm.

  2. Monte Carlo Simulation of Markov, Semi-Markov, and Generalized Semi- Markov Processes in Probabilistic Risk Assessment

    NASA Technical Reports Server (NTRS)

    English, Thomas

    2005-01-01

    A standard tool of reliability analysis used at NASA-JSC is the event tree. An event tree is simply a probability tree, with the probabilities determining the next step through the tree specified at each node. The nodal probabilities are determined by a reliability study of the physical system at work for a particular node. The reliability study performed at a node is typically referred to as a fault tree analysis, with the potential of a fault tree existing.for each node on the event tree. When examining an event tree it is obvious why the event tree/fault tree approach has been adopted. Typical event trees are quite complex in nature, and the event tree/fault tree approach provides a systematic and organized approach to reliability analysis. The purpose of this study was two fold. Firstly, we wanted to explore the possibility that a semi-Markov process can create dependencies between sojourn times (the times it takes to transition from one state to the next) that can decrease the uncertainty when estimating time to failures. Using a generalized semi-Markov model, we studied a four element reliability model and were able to demonstrate such sojourn time dependencies. Secondly, we wanted to study the use of semi-Markov processes to introduce a time variable into the event tree diagrams that are commonly developed in PRA (Probabilistic Risk Assessment) analyses. Event tree end states which change with time are more representative of failure scenarios than are the usual static probability-derived end states.

  3. Modeling dyadic processes using Hidden Markov Models: A time series approach to mother-infant interactions during infant immunization.

    PubMed

    Stifter, Cynthia A; Rovine, Michael

    2015-01-01

    The focus of the present longitudinal study, to examine mother-infant interaction during the administration of immunizations at two and six months of age, used hidden Markov modeling, a time series approach that produces latent states to describe how mothers and infants work together to bring the infant to a soothed state. Results revealed a 4-state model for the dyadic responses to a two-month inoculation whereas a 6-state model best described the dyadic process at six months. Two of the states at two months and three of the states at six months suggested a progression from high intensity crying to no crying with parents using vestibular and auditory soothing methods. The use of feeding and/or pacifying to soothe the infant characterized one two-month state and two six-month states. These data indicate that with maturation and experience, the mother-infant dyad is becoming more organized around the soothing interaction. Using hidden Markov modeling to describe individual differences, as well as normative processes, is also presented and discussed.

  4. Modeling dyadic processes using Hidden Markov Models: A time series approach to mother-infant interactions during infant immunization

    PubMed Central

    Stifter, Cynthia A.; Rovine, Michael

    2016-01-01

    The focus of the present longitudinal study, to examine mother-infant interaction during the administration of immunizations at two and six months of age, used hidden Markov modeling, a time series approach that produces latent states to describe how mothers and infants work together to bring the infant to a soothed state. Results revealed a 4-state model for the dyadic responses to a two-month inoculation whereas a 6-state model best described the dyadic process at six months. Two of the states at two months and three of the states at six months suggested a progression from high intensity crying to no crying with parents using vestibular and auditory soothing methods. The use of feeding and/or pacifying to soothe the infant characterized one two-month state and two six-month states. These data indicate that with maturation and experience, the mother-infant dyad is becoming more organized around the soothing interaction. Using hidden Markov modeling to describe individual differences, as well as normative processes, is also presented and discussed. PMID:27284272

  5. A Markov chain model for studying suicide dynamics: an illustration of the Rose theorem

    PubMed Central

    2014-01-01

    Background High-risk strategies would only have a modest effect on suicide prevention within a population. It is best to incorporate both high-risk and population-based strategies to prevent suicide. This study aims to compare the effectiveness of suicide prevention between high-risk and population-based strategies. Methods A Markov chain illness and death model is proposed to determine suicide dynamic in a population and examine its effectiveness for reducing the number of suicides by modifying certain parameters of the model. Assuming a population with replacement, the suicide risk of the population was estimated by determining the final state of the Markov model. Results The model shows that targeting the whole population for suicide prevention is more effective than reducing risk in the high-risk tail of the distribution of psychological distress (i.e. the mentally ill). Conclusions The results of this model reinforce the essence of the Rose theorem that lowering the suicidal risk in the population at large may be more effective than reducing the high risk in a small population. PMID:24948330

  6. Optimal choice of word length when comparing two Markov sequences using a χ 2-statistic.

    PubMed

    Bai, Xin; Tang, Kujin; Ren, Jie; Waterman, Michael; Sun, Fengzhu

    2017-10-03

    Alignment-free sequence comparison using counts of word patterns (grams, k-tuples) has become an active research topic due to the large amount of sequence data from the new sequencing technologies. Genome sequences are frequently modelled by Markov chains and the likelihood ratio test or the corresponding approximate χ 2 -statistic has been suggested to compare two sequences. However, it is not known how to best choose the word length k in such studies. We develop an optimal strategy to choose k by maximizing the statistical power of detecting differences between two sequences. Let the orders of the Markov chains for the two sequences be r 1 and r 2 , respectively. We show through both simulations and theoretical studies that the optimal k= max(r 1 ,r 2 )+1 for both long sequences and next generation sequencing (NGS) read data. The orders of the Markov chains may be unknown and several methods have been developed to estimate the orders of Markov chains based on both long sequences and NGS reads. We study the power loss of the statistics when the estimated orders are used. It is shown that the power loss is minimal for some of the estimators of the orders of Markov chains. Our studies provide guidelines on choosing the optimal word length for the comparison of Markov sequences.

  7. An open Markov chain scheme model for a credit consumption portfolio fed by ARIMA and SARMA processes

    NASA Astrophysics Data System (ADS)

    Esquível, Manuel L.; Fernandes, José Moniz; Guerreiro, Gracinda R.

    2016-06-01

    We introduce a schematic formalism for the time evolution of a random population entering some set of classes and such that each member of the population evolves among these classes according to a scheme based on a Markov chain model. We consider that the flow of incoming members is modeled by a time series and we detail the time series structure of the elements in each of the classes. We present a practical application to data from a credit portfolio of a Cape Verdian bank; after modeling the entering population in two different ways - namely as an ARIMA process and as a deterministic sigmoid type trend plus a SARMA process for the residues - we simulate the behavior of the population and compare the results. We get that the second method is more accurate in describing the behavior of the populations when compared to the observed values in a direct simulation of the Markov chain.

  8. Monitoring volcano activity through Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Cassisi, C.; Montalto, P.; Prestifilippo, M.; Aliotta, M.; Cannata, A.; Patanè, D.

    2013-12-01

    During 2011-2013, Mt. Etna was mainly characterized by cyclic occurrences of lava fountains, totaling to 38 episodes. During this time interval Etna volcano's states (QUIET, PRE-FOUNTAIN, FOUNTAIN, POST-FOUNTAIN), whose automatic recognition is very useful for monitoring purposes, turned out to be strongly related to the trend of RMS (Root Mean Square) of the seismic signal recorded by stations close to the summit area. Since RMS time series behavior is considered to be stochastic, we can try to model the system generating its values, assuming to be a Markov process, by using Hidden Markov models (HMMs). HMMs are a powerful tool in modeling any time-varying series. HMMs analysis seeks to recover the sequence of hidden states from the observed emissions. In our framework, observed emissions are characters generated by the SAX (Symbolic Aggregate approXimation) technique, which maps RMS time series values with discrete literal emissions. The experiments show how it is possible to guess volcano states by means of HMMs and SAX.

  9. [Succession caused by beaver (Castor fiber L.) life activity: II. A refined Markov model].

    PubMed

    Logofet; Evstigneev, O I; Aleinikov, A A; Morozova, A O

    2015-01-01

    The refined Markov model of cyclic zoogenic successions caused by beaver (Castor fiber L.) life activity represents a discrete chain of the following six states: flooded forest, swamped forest, pond, grassy swamp, shrubby swamp, and wet forest, which correspond to certain stages of succession. Those stages are defined, and a conceptual scheme of probable transitions between them for one time step is constructed from the knowledge of beaver behaviour in small river floodplains of "Bryanskii Les" Reserve. We calibrated the corresponding matrix of transition probabilities according to the optimization principle: minimizing differences between the model outcome and reality; the model generates a distribution of relative areas corresponding to the stages of succession, that has to be compared to those gained from case studies in the Reserve during 2002-2006. The time step is chosen to equal 2 years, and the first-step data in the sum of differences are given various weights, w (between 0 and 1). The value of w = 0.2 is selected due to its optimality and for some additional reasons. By the formulae of finite homogeneous Markov chain theory, we obtained the main results of the calibrated model, namely, a steady-state distribution of stage areas, indexes of cyclicity, and the mean durations (M(j)) of succession stages. The results of calibration give an objective quantitative nature to the expert knowledge of the course of succession and get a proper interpretation. The 2010 data, which are not involved in the calibration procedure, enabled assessing the quality of prediction by the homogeneous model in short-term (from the 2006 situation): the error of model area distribution relative to the distribution observed in 2010 falls into the range of 9-17%, the best prognosis being given by the least optimal matrices (rejected values of w). This indicates a formally heterogeneous nature of succession processes in time. Thus, the refined version of the homogeneous Markov chain has not eliminated all the contradictions between the model results and expert knowledge, which suggests a further model development towards a "logically inhomogeneous" version or/and refusal to postulate the Markov property in the conceptual scheme of succession.

  10. Dependability and performability analysis

    NASA Technical Reports Server (NTRS)

    Trivedi, Kishor S.; Ciardo, Gianfranco; Malhotra, Manish; Sahner, Robin A.

    1993-01-01

    Several practical issues regarding specifications and solution of dependability and performability models are discussed. Model types with and without rewards are compared. Continuous-time Markov chains (CTMC's) are compared with (continuous-time) Markov reward models (MRM's) and generalized stochastic Petri nets (GSPN's) are compared with stochastic reward nets (SRN's). It is shown that reward-based models could lead to more concise model specifications and solution of a variety of new measures. With respect to the solution of dependability and performability models, three practical issues were identified: largeness, stiffness, and non-exponentiality, and a variety of approaches are discussed to deal with them, including some of the latest research efforts.

  11. Hidden markov model for the prediction of transmembrane proteins using MATLAB.

    PubMed

    Chaturvedi, Navaneet; Shanker, Sudhanshu; Singh, Vinay Kumar; Sinha, Dhiraj; Pandey, Paras Nath

    2011-01-01

    Since membranous proteins play a key role in drug targeting therefore transmembrane proteins prediction is active and challenging area of biological sciences. Location based prediction of transmembrane proteins are significant for functional annotation of protein sequences. Hidden markov model based method was widely applied for transmembrane topology prediction. Here we have presented a revised and a better understanding model than an existing one for transmembrane protein prediction. Scripting on MATLAB was built and compiled for parameter estimation of model and applied this model on amino acid sequence to know the transmembrane and its adjacent locations. Estimated model of transmembrane topology was based on TMHMM model architecture. Only 7 super states are defined in the given dataset, which were converted to 96 states on the basis of their length in sequence. Accuracy of the prediction of model was observed about 74 %, is a good enough in the area of transmembrane topology prediction. Therefore we have concluded the hidden markov model plays crucial role in transmembrane helices prediction on MATLAB platform and it could also be useful for drug discovery strategy. The database is available for free at bioinfonavneet@gmail.comvinaysingh@bhu.ac.in.

  12. Recursive utility in a Markov environment with stochastic growth

    PubMed Central

    Hansen, Lars Peter; Scheinkman, José A.

    2012-01-01

    Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron–Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility. PMID:22778428

  13. Recursive utility in a Markov environment with stochastic growth.

    PubMed

    Hansen, Lars Peter; Scheinkman, José A

    2012-07-24

    Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron-Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility.

  14. Many roads to synchrony: natural time scales and their algorithms.

    PubMed

    James, Ryan G; Mahoney, John R; Ellison, Christopher J; Crutchfield, James P

    2014-04-01

    We consider two important time scales-the Markov and cryptic orders-that monitor how an observer synchronizes to a finitary stochastic process. We show how to compute these orders exactly and that they are most efficiently calculated from the ε-machine, a process's minimal unifilar model. Surprisingly, though the Markov order is a basic concept from stochastic process theory, it is not a probabilistic property of a process. Rather, it is a topological property and, moreover, it is not computable from any finite-state model other than the ε-machine. Via an exhaustive survey, we close by demonstrating that infinite Markov and infinite cryptic orders are a dominant feature in the space of finite-memory processes. We draw out the roles played in statistical mechanical spin systems by these two complementary length scales.

  15. Application of Markov Models for Analysis of Development of Psychological Characteristics

    ERIC Educational Resources Information Center

    Kuravsky, Lev S.; Malykh, Sergey B.

    2004-01-01

    A technique to study combined influence of environmental and genetic factors on the base of changes in phenotype distributions is presented. Histograms are exploited as base analyzed characteristics. A continuous time, discrete state Markov process with piece-wise constant interstate transition rates is associated with evolution of each histogram.…

  16. Markov Random Fields, Stochastic Quantization and Image Analysis

    DTIC Science & Technology

    1990-01-01

    Markov random fields based on the lattice Z2 have been extensively used in image analysis in a Bayesian framework as a-priori models for the...of Image Analysis can be given some fundamental justification then there is a remarkable connection between Probabilistic Image Analysis , Statistical Mechanics and Lattice-based Euclidean Quantum Field Theory.

  17. UMAP Modules-Units 105, 107-109, 111-112, 158-162.

    ERIC Educational Resources Information Center

    Keller, Mary K.; And Others

    This collection of materials includes six units dealing with applications of matrix methods. These are: 105-Food Service Management; 107-Markov Chains; 108-Electrical Circuits; 109-Food Service and Dietary Requirements; 111-Fixed Point and Absorbing Markov Chains; and 112-Analysis of Linear Circuits. The units contain exercises and model exams,…

  18. Predicting hepatitis B monthly incidence rates using weighted Markov chains and time series methods.

    PubMed

    Shahdoust, Maryam; Sadeghifar, Majid; Poorolajal, Jalal; Javanrooh, Niloofar; Amini, Payam

    2015-01-01

    Hepatitis B (HB) is a major global mortality. Accurately predicting the trend of the disease can provide an appropriate view to make health policy disease prevention. This paper aimed to apply three different to predict monthly incidence rates of HB. This historical cohort study was conducted on the HB incidence data of Hamadan Province, the west of Iran, from 2004 to 2012. Weighted Markov Chain (WMC) method based on Markov chain theory and two time series models including Holt Exponential Smoothing (HES) and SARIMA were applied on the data. The results of different applied methods were compared to correct percentages of predicted incidence rates. The monthly incidence rates were clustered into two clusters as state of Markov chain. The correct predicted percentage of the first and second clusters for WMC, HES and SARIMA methods was (100, 0), (84, 67) and (79, 47) respectively. The overall incidence rate of HBV is estimated to decrease over time. The comparison of results of the three models indicated that in respect to existing seasonality trend and non-stationarity, the HES had the most accurate prediction of the incidence rates.

  19. Developing a statistically powerful measure for quartet tree inference using phylogenetic identities and Markov invariants.

    PubMed

    Sumner, Jeremy G; Taylor, Amelia; Holland, Barbara R; Jarvis, Peter D

    2017-12-01

    Recently there has been renewed interest in phylogenetic inference methods based on phylogenetic invariants, alongside the related Markov invariants. Broadly speaking, both these approaches give rise to polynomial functions of sequence site patterns that, in expectation value, either vanish for particular evolutionary trees (in the case of phylogenetic invariants) or have well understood transformation properties (in the case of Markov invariants). While both approaches have been valued for their intrinsic mathematical interest, it is not clear how they relate to each other, and to what extent they can be used as practical tools for inference of phylogenetic trees. In this paper, by focusing on the special case of binary sequence data and quartets of taxa, we are able to view these two different polynomial-based approaches within a common framework. To motivate the discussion, we present three desirable statistical properties that we argue any invariant-based phylogenetic method should satisfy: (1) sensible behaviour under reordering of input sequences; (2) stability as the taxa evolve independently according to a Markov process; and (3) explicit dependence on the assumption of a continuous-time process. Motivated by these statistical properties, we develop and explore several new phylogenetic inference methods. In particular, we develop a statistically bias-corrected version of the Markov invariants approach which satisfies all three properties. We also extend previous work by showing that the phylogenetic invariants can be implemented in such a way as to satisfy property (3). A simulation study shows that, in comparison to other methods, our new proposed approach based on bias-corrected Markov invariants is extremely powerful for phylogenetic inference. The binary case is of particular theoretical interest as-in this case only-the Markov invariants can be expressed as linear combinations of the phylogenetic invariants. A wider implication of this is that, for models with more than two states-for example DNA sequence alignments with four-state models-we find that methods which rely on phylogenetic invariants are incapable of satisfying all three of the stated statistical properties. This is because in these cases the relevant Markov invariants belong to a class of polynomials independent from the phylogenetic invariants.

  20. Availability Control for Means of Transport in Decisive Semi-Markov Models of Exploitation Process

    NASA Astrophysics Data System (ADS)

    Migawa, Klaudiusz

    2012-12-01

    The issues presented in this research paper refer to problems connected with the control process for exploitation implemented in the complex systems of exploitation for technical objects. The article presents the description of the method concerning the control availability for technical objects (means of transport) on the basis of the mathematical model of the exploitation process with the implementation of the decisive processes by semi-Markov. The presented method means focused on the preparing the decisive for the exploitation process for technical objects (semi-Markov model) and after that specifying the best control strategy (optimal strategy) from among possible decisive variants in accordance with the approved criterion (criteria) of the activity evaluation of the system of exploitation for technical objects. In the presented method specifying the optimal strategy for control availability in the technical objects means a choice of a sequence of control decisions made in individual states of modelled exploitation process for which the function being a criterion of evaluation reaches the extreme value. In order to choose the optimal control strategy the implementation of the genetic algorithm was chosen. The opinions were presented on the example of the exploitation process of the means of transport implemented in the real system of the bus municipal transport. The model of the exploitation process for the means of transports was prepared on the basis of the results implemented in the real transport system. The mathematical model of the exploitation process was built taking into consideration the fact that the model of the process constitutes the homogenous semi-Markov process.

  1. On spatial mutation-selection models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratiev, Yuri, E-mail: kondrat@math.uni-bielefeld.de; Kutoviy, Oleksandr, E-mail: kutoviy@math.uni-bielefeld.de, E-mail: kutovyi@mit.edu; Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

    2013-11-15

    We discuss the selection procedure in the framework of mutation models. We study the regulation for stochastically developing systems based on a transformation of the initial Markov process which includes a cost functional. The transformation of initial Markov process by cost functional has an analytic realization in terms of a Kimura-Maruyama type equation for the time evolution of states or in terms of the corresponding Feynman-Kac formula on the path space. The state evolution of the system including the limiting behavior is studied for two types of mutation-selection models.

  2. A Linear Regression and Markov Chain Model for the Arabian Horse Registry

    DTIC Science & Technology

    1993-04-01

    as a tax deduction? Yes No T-4367 68 26. Regardless of previous equine tax deductions, do you consider your current horse activities to be... (Mark one...E L T-4367 A Linear Regression and Markov Chain Model For the Arabian Horse Registry Accesion For NTIS CRA&I UT 7 4:iC=D 5 D-IC JA" LI J:13tjlC,3 lO...the Arabian Horse Registry, which needed to forecast its future registration of purebred Arabian horses . A linear regression model was utilized to

  3. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    NASA Astrophysics Data System (ADS)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-09-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  4. Covariate adjustment of event histories estimated from Markov chains: the additive approach.

    PubMed

    Aalen, O O; Borgan, O; Fekjaer, H

    2001-12-01

    Markov chain models are frequently used for studying event histories that include transitions between several states. An empirical transition matrix for nonhomogeneous Markov chains has previously been developed, including a detailed statistical theory based on counting processes and martingales. In this article, we show how to estimate transition probabilities dependent on covariates. This technique may, e.g., be used for making estimates of individual prognosis in epidemiological or clinical studies. The covariates are included through nonparametric additive models on the transition intensities of the Markov chain. The additive model allows for estimation of covariate-dependent transition intensities, and again a detailed theory exists based on counting processes. The martingale setting now allows for a very natural combination of the empirical transition matrix and the additive model, resulting in estimates that can be expressed as stochastic integrals, and hence their properties are easily evaluated. Two medical examples will be given. In the first example, we study how the lung cancer mortality of uranium miners depends on smoking and radon exposure. In the second example, we study how the probability of being in response depends on patient group and prophylactic treatment for leukemia patients who have had a bone marrow transplantation. A program in R and S-PLUS that can carry out the analyses described here has been developed and is freely available on the Internet.

  5. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G., E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlapmore » with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.« less

  6. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    PubMed Central

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-01-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space. PMID:25240340

  7. Combination of Markov state models and kinetic networks for the analysis of molecular dynamics simulations of peptide folding.

    PubMed

    Radford, Isolde H; Fersht, Alan R; Settanni, Giovanni

    2011-06-09

    Atomistic molecular dynamics simulations of the TZ1 beta-hairpin peptide have been carried out using an implicit model for the solvent. The trajectories have been analyzed using a Markov state model defined on the projections along two significant observables and a kinetic network approach. The Markov state model allowed for an unbiased identification of the metastable states of the system, and provided the basis for commitment probability calculations performed on the kinetic network. The kinetic network analysis served to extract the main transition state for folding of the peptide and to validate the results from the Markov state analysis. The combination of the two techniques allowed for a consistent and concise characterization of the dynamics of the peptide. The slowest relaxation process identified is the exchange between variably folded and denatured species, and the second slowest process is the exchange between two different subsets of the denatured state which could not be otherwise identified by simple inspection of the projected trajectory. The third slowest process is the exchange between a fully native and a partially folded intermediate state characterized by a native turn with a proximal backbone H-bond, and frayed side-chain packing and termini. The transition state for the main folding reaction is similar to the intermediate state, although a more native like side-chain packing is observed.

  8. Detection method of financial crisis in Indonesia using MSGARCH models based on banking condition indicators

    NASA Astrophysics Data System (ADS)

    Sugiyanto; Zukhronah, E.; Sari, S. P.

    2018-05-01

    Financial crisis has hit Indonesia for several times resulting the needs for an early detection system to minimize the impact. One of many methods that can be used to detect the crisis is to model the crisis indicators using combination of volatility and Markov switching models [5]. There are some indicators that can be used to detect financial crisis. Three of them are the difference between interest rate on deposit and lending, the real interest rate on deposit, and the difference between real BI rate and real Fed rate which can be referred as banking condition indicators. Volatility model used to overcome the conditional variance that change over time. Combination of volatility and Markov switching models used to detect condition change on the data. The smoothed probability from the combined models can be used to detect the crisis. This research resulted that the best combined volatility and Markov switching models for the three indicators are MS-GARCH(3,1,1) models with three states assumption. Crises in mid of 1997 until 1998 has successfully detected with a certain range of smoothed probability value for the three indicators.

  9. Thermodynamically accurate modeling of the catalytic cycle of photosynthetic oxygen evolution: a mathematical solution to asymmetric Markov chains.

    PubMed

    Vinyard, David J; Zachary, Chase E; Ananyev, Gennady; Dismukes, G Charles

    2013-07-01

    Forty-three years ago, Kok and coworkers introduced a phenomenological model describing period-four oscillations in O2 flash yields during photosynthetic water oxidation (WOC), which had been first reported by Joliot and coworkers. The original two-parameter Kok model was subsequently extended in its level of complexity to better simulate diverse data sets, including intact cells and isolated PSII-WOCs, but at the expense of introducing physically unrealistic assumptions necessary to enable numerical solutions. To date, analytical solutions have been found only for symmetric Kok models (inefficiencies are equally probable for all intermediates, called "S-states"). However, it is widely accepted that S-state reaction steps are not identical and some are not reversible (by thermodynamic restraints) thereby causing asymmetric cycles. We have developed a mathematically more rigorous foundation that eliminates unphysical assumptions known to be in conflict with experiments and adopts a new experimental constraint on solutions. This new algorithm termed STEAMM for S-state Transition Eigenvalues of Asymmetric Markov Models enables solutions to models having fewer adjustable parameters and uses automated fitting to experimental data sets, yielding higher accuracy and precision than the classic Kok or extended Kok models. This new tool provides a general mathematical framework for analyzing damped oscillations arising from any cycle period using any appropriate Markov model, regardless of symmetry. We illustrate applications of STEAMM that better describe the intrinsic inefficiencies for photon-to-charge conversion within PSII-WOCs that are responsible for damped period-four and period-two oscillations of flash O2 yields across diverse species, while using simpler Markov models free from unrealistic assumptions. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Can discrete event simulation be of use in modelling major depression?

    PubMed Central

    Le Lay, Agathe; Despiegel, Nicolas; François, Clément; Duru, Gérard

    2006-01-01

    Background Depression is among the major contributors to worldwide disease burden and adequate modelling requires a framework designed to depict real world disease progression as well as its economic implications as closely as possible. Objectives In light of the specific characteristics associated with depression (multiple episodes at varying intervals, impact of disease history on course of illness, sociodemographic factors), our aim was to clarify to what extent "Discrete Event Simulation" (DES) models provide methodological benefits in depicting disease evolution. Methods We conducted a comprehensive review of published Markov models in depression and identified potential limits to their methodology. A model based on DES principles was developed to investigate the benefits and drawbacks of this simulation method compared with Markov modelling techniques. Results The major drawback to Markov models is that they may not be suitable to tracking patients' disease history properly, unless the analyst defines multiple health states, which may lead to intractable situations. They are also too rigid to take into consideration multiple patient-specific sociodemographic characteristics in a single model. To do so would also require defining multiple health states which would render the analysis entirely too complex. We show that DES resolve these weaknesses and that its flexibility allow patients with differing attributes to move from one event to another in sequential order while simultaneously taking into account important risk factors such as age, gender, disease history and patients attitude towards treatment, together with any disease-related events (adverse events, suicide attempt etc.). Conclusion DES modelling appears to be an accurate, flexible and comprehensive means of depicting disease progression compared with conventional simulation methodologies. Its use in analysing recurrent and chronic diseases appears particularly useful compared with Markov processes. PMID:17147790

  11. Can discrete event simulation be of use in modelling major depression?

    PubMed

    Le Lay, Agathe; Despiegel, Nicolas; François, Clément; Duru, Gérard

    2006-12-05

    Depression is among the major contributors to worldwide disease burden and adequate modelling requires a framework designed to depict real world disease progression as well as its economic implications as closely as possible. In light of the specific characteristics associated with depression (multiple episodes at varying intervals, impact of disease history on course of illness, sociodemographic factors), our aim was to clarify to what extent "Discrete Event Simulation" (DES) models provide methodological benefits in depicting disease evolution. We conducted a comprehensive review of published Markov models in depression and identified potential limits to their methodology. A model based on DES principles was developed to investigate the benefits and drawbacks of this simulation method compared with Markov modelling techniques. The major drawback to Markov models is that they may not be suitable to tracking patients' disease history properly, unless the analyst defines multiple health states, which may lead to intractable situations. They are also too rigid to take into consideration multiple patient-specific sociodemographic characteristics in a single model. To do so would also require defining multiple health states which would render the analysis entirely too complex. We show that DES resolve these weaknesses and that its flexibility allow patients with differing attributes to move from one event to another in sequential order while simultaneously taking into account important risk factors such as age, gender, disease history and patients attitude towards treatment, together with any disease-related events (adverse events, suicide attempt etc.). DES modelling appears to be an accurate, flexible and comprehensive means of depicting disease progression compared with conventional simulation methodologies. Its use in analysing recurrent and chronic diseases appears particularly useful compared with Markov processes.

  12. True and apparent scaling: The proximity of the Markov-switching multifractal model to long-range dependence

    NASA Astrophysics Data System (ADS)

    Liu, Ruipeng; Di Matteo, T.; Lux, Thomas

    2007-09-01

    In this paper, we consider daily financial data of a collection of different stock market indices, exchange rates, and interest rates, and we analyze their multi-scaling properties by estimating a simple specification of the Markov-switching multifractal (MSM) model. In order to see how well the estimated model captures the temporal dependence of the data, we estimate and compare the scaling exponents H(q) (for q=1,2) for both empirical data and simulated data of the MSM model. In most cases the multifractal model appears to generate ‘apparent’ long memory in agreement with the empirical scaling laws.

  13. Hidden Markov models of biological primary sequence information.

    PubMed Central

    Baldi, P; Chauvin, Y; Hunkapiller, T; McClure, M A

    1994-01-01

    Hidden Markov model (HMM) techniques are used to model families of biological sequences. A smooth and convergent algorithm is introduced to iteratively adapt the transition and emission parameters of the models from the examples in a given family. The HMM approach is applied to three protein families: globins, immunoglobulins, and kinases. In all cases, the models derived capture the important statistical characteristics of the family and can be used for a number of tasks, including multiple alignments, motif detection, and classification. For K sequences of average length N, this approach yields an effective multiple-alignment algorithm which requires O(KN2) operations, linear in the number of sequences. PMID:8302831

  14. A Markov chain model for reliability growth and decay

    NASA Technical Reports Server (NTRS)

    Siegrist, K.

    1982-01-01

    A mathematical model is developed to describe a complex system undergoing a sequence of trials in which there is interaction between the internal states of the system and the outcomes of the trials. For example, the model might describe a system undergoing testing that is redesigned after each failure. The basic assumptions for the model are that the state of the system after a trial depends probabilistically only on the state before the trial and on the outcome of the trial and that the outcome of a trial depends probabilistically only on the state of the system before the trial. It is shown that under these basic assumptions, the successive states form a Markov chain and the successive states and outcomes jointly form a Markov chain. General results are obtained for the transition probabilities, steady-state distributions, etc. A special case studied in detail describes a system that has two possible state ('repaired' and 'unrepaired') undergoing trials that have three possible outcomes ('inherent failure', 'assignable-cause' 'failure' and 'success'). For this model, the reliability function is computed explicitly and an optimal repair policy is obtained.

  15. Using hidden Markov models to align multiple sequences.

    PubMed

    Mount, David W

    2009-07-01

    A hidden Markov model (HMM) is a probabilistic model of a multiple sequence alignment (msa) of proteins. In the model, each column of symbols in the alignment is represented by a frequency distribution of the symbols (called a "state"), and insertions and deletions are represented by other states. One moves through the model along a particular path from state to state in a Markov chain (i.e., random choice of next move), trying to match a given sequence. The next matching symbol is chosen from each state, recording its probability (frequency) and also the probability of going to that state from a previous one (the transition probability). State and transition probabilities are multiplied to obtain a probability of the given sequence. The hidden nature of the HMM is due to the lack of information about the value of a specific state, which is instead represented by a probability distribution over all possible values. This article discusses the advantages and disadvantages of HMMs in msa and presents algorithms for calculating an HMM and the conditions for producing the best HMM.

  16. Hidden Markov models and neural networks for fault detection in dynamic systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic

    1994-01-01

    Neural networks plus hidden Markov models (HMM) can provide excellent detection and false alarm rate performance in fault detection applications, as shown in this viewgraph presentation. Modified models allow for novelty detection. Key contributions of neural network models are: (1) excellent nonparametric discrimination capability; (2) a good estimator of posterior state probabilities, even in high dimensions, and thus can be embedded within overall probabilistic model (HMM); and (3) simple to implement compared to other nonparametric models. Neural network/HMM monitoring model is currently being integrated with the new Deep Space Network (DSN) antenna controller software and will be on-line monitoring a new DSN 34-m antenna (DSS-24) by July, 1994.

  17. Experiences with Markov Chain Monte Carlo Convergence Assessment in Two Psychometric Examples

    ERIC Educational Resources Information Center

    Sinharay, Sandip

    2004-01-01

    There is an increasing use of Markov chain Monte Carlo (MCMC) algorithms for fitting statistical models in psychometrics, especially in situations where the traditional estimation techniques are very difficult to apply. One of the disadvantages of using an MCMC algorithm is that it is not straightforward to determine the convergence of the…

  18. Chutes and Ladders for the Impatient

    ERIC Educational Resources Information Center

    Cheteyan, Leslie A.; Hengeveld, Stewart; Jones, Michael A.

    2011-01-01

    In this paper, we review the rules and game board for "Chutes and Ladders", define a Markov chain to model the game regardless of the spinner range, and describe how properties of Markov chains are used to determine that an optimal spinner range of 15 minimizes the expected number of turns for a player to complete the game. Because the Markov…

  19. Students' Progress throughout Examination Process as a Markov Chain

    ERIC Educational Resources Information Center

    Hlavatý, Robert; Dömeová, Ludmila

    2014-01-01

    The paper is focused on students of Mathematical methods in economics at the Czech university of life sciences (CULS) in Prague. The idea is to create a model of students' progress throughout the whole course using the Markov chain approach. Each student has to go through various stages of the course requirements where his success depends on the…

  20. Hidden Markov models for evolution and comparative genomics analysis.

    PubMed

    Bykova, Nadezda A; Favorov, Alexander V; Mironov, Andrey A

    2013-01-01

    The problem of reconstruction of ancestral states given a phylogeny and data from extant species arises in a wide range of biological studies. The continuous-time Markov model for the discrete states evolution is generally used for the reconstruction of ancestral states. We modify this model to account for a case when the states of the extant species are uncertain. This situation appears, for example, if the states for extant species are predicted by some program and thus are known only with some level of reliability; it is common for bioinformatics field. The main idea is formulation of the problem as a hidden Markov model on a tree (tree HMM, tHMM), where the basic continuous-time Markov model is expanded with the introduction of emission probabilities of observed data (e.g. prediction scores) for each underlying discrete state. Our tHMM decoding algorithm allows us to predict states at the ancestral nodes as well as to refine states at the leaves on the basis of quantitative comparative genomics. The test on the simulated data shows that the tHMM approach applied to the continuous variable reflecting the probabilities of the states (i.e. prediction score) appears to be more accurate then the reconstruction from the discrete states assignment defined by the best score threshold. We provide examples of applying our model to the evolutionary analysis of N-terminal signal peptides and transcription factor binding sites in bacteria. The program is freely available at http://bioinf.fbb.msu.ru/~nadya/tHMM and via web-service at http://bioinf.fbb.msu.ru/treehmmweb.

  1. Sensitivity Study for Long Term Reliability

    NASA Technical Reports Server (NTRS)

    White, Allan L.

    2008-01-01

    This paper illustrates using Markov models to establish system and maintenance requirements for small electronic controllers where the goal is a high probability of continuous service for a long period of time. The system and maintenance items considered are quality of components, various degrees of simple redundancy, redundancy with reconfiguration, diagnostic levels, periodic maintenance, and preventive maintenance. Markov models permit a quantitative investigation with comparison and contrast. An element of special interest is the use of conditional probability to study the combination of imperfect diagnostics and periodic maintenance.

  2. Power spectral ensity of markov texture fields

    NASA Technical Reports Server (NTRS)

    Shanmugan, K. S.; Holtzman, J. C.

    1984-01-01

    Texture is an important image characteristic. A variety of spatial domain techniques were proposed for extracting and utilizing textural features for segmenting and classifying images. for the most part, these spatial domain techniques are ad hos in nature. A markov random field model for image texture is discussed. A frequency domain description of image texture is derived in terms of the power spectral density. This model is used for designing optimum frequency domain filters for enhancing, restoring and segmenting images based on their textural properties.

  3. Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics

    PubMed Central

    Hey, Jody; Nielsen, Rasmus

    2007-01-01

    In 1988, Felsenstein described a framework for assessing the likelihood of a genetic data set in which all of the possible genealogical histories of the data are considered, each in proportion to their probability. Although not analytically solvable, several approaches, including Markov chain Monte Carlo methods, have been developed to find approximate solutions. Here, we describe an approach in which Markov chain Monte Carlo simulations are used to integrate over the space of genealogies, whereas other parameters are integrated out analytically. The result is an approximation to the full joint posterior density of the model parameters. For many purposes, this function can be treated as a likelihood, thereby permitting likelihood-based analyses, including likelihood ratio tests of nested models. Several examples, including an application to the divergence of chimpanzee subspecies, are provided. PMID:17301231

  4. Metastates in Mean-Field Models with Random External Fields Generated by Markov Chains

    NASA Astrophysics Data System (ADS)

    Formentin, M.; Külske, C.; Reichenbachs, A.

    2012-01-01

    We extend the construction by Külske and Iacobelli of metastates in finite-state mean-field models in independent disorder to situations where the local disorder terms are a sample of an external ergodic Markov chain in equilibrium. We show that for non-degenerate Markov chains, the structure of the theorems is analogous to the case of i.i.d. variables when the limiting weights in the metastate are expressed with the aid of a CLT for the occupation time measure of the chain. As a new phenomenon we also show in a Potts example that for a degenerate non-reversible chain this CLT approximation is not enough, and that the metastate can have less symmetry than the symmetry of the interaction and a Gaussian approximation of disorder fluctuations would suggest.

  5. Model-Averaged ℓ1 Regularization using Markov Chain Monte Carlo Model Composition

    PubMed Central

    Fraley, Chris; Percival, Daniel

    2014-01-01

    Bayesian Model Averaging (BMA) is an effective technique for addressing model uncertainty in variable selection problems. However, current BMA approaches have computational difficulty dealing with data in which there are many more measurements (variables) than samples. This paper presents a method for combining ℓ1 regularization and Markov chain Monte Carlo model composition techniques for BMA. By treating the ℓ1 regularization path as a model space, we propose a method to resolve the model uncertainty issues arising in model averaging from solution path point selection. We show that this method is computationally and empirically effective for regression and classification in high-dimensional datasets. We apply our technique in simulations, as well as to some applications that arise in genomics. PMID:25642001

  6. Hidden Markov model analysis of force/torque information in telemanipulation

    NASA Technical Reports Server (NTRS)

    Hannaford, Blake; Lee, Paul

    1991-01-01

    A model for the prediction and analysis of sensor information recorded during robotic performance of telemanipulation tasks is presented. The model uses the hidden Markov model to describe the task structure, the operator's or intelligent controller's goal structure, and the sensor signals. A methodology for constructing the model parameters based on engineering knowledge of the task is described. It is concluded that the model and its optimal state estimation algorithm, the Viterbi algorithm, are very succesful at the task of segmenting the data record into phases corresponding to subgoals of the task. The model provides a rich modeling structure within a statistical framework, which enables it to represent complex systems and be robust to real-world sensory signals.

  7. Bayesian random-effect model for predicting outcome fraught with heterogeneity--an illustration with episodes of 44 patients with intractable epilepsy.

    PubMed

    Yen, A M-F; Liou, H-H; Lin, H-L; Chen, T H-H

    2006-01-01

    The study aimed to develop a predictive model to deal with data fraught with heterogeneity that cannot be explained by sampling variation or measured covariates. The random-effect Poisson regression model was first proposed to deal with over-dispersion for data fraught with heterogeneity after making allowance for measured covariates. Bayesian acyclic graphic model in conjunction with Markov Chain Monte Carlo (MCMC) technique was then applied to estimate the parameters of both relevant covariates and random effect. Predictive distribution was then generated to compare the predicted with the observed for the Bayesian model with and without random effect. Data from repeated measurement of episodes among 44 patients with intractable epilepsy were used as an illustration. The application of Poisson regression without taking heterogeneity into account to epilepsy data yielded a large value of heterogeneity (heterogeneity factor = 17.90, deviance = 1485, degree of freedom (df) = 83). After taking the random effect into account, the value of heterogeneity factor was greatly reduced (heterogeneity factor = 0.52, deviance = 42.5, df = 81). The Pearson chi2 for the comparison between the expected seizure frequencies and the observed ones at two and three months of the model with and without random effect were 34.27 (p = 1.00) and 1799.90 (p < 0.0001), respectively. The Bayesian acyclic model using the MCMC method was demonstrated to have great potential for disease prediction while data show over-dispersion attributed either to correlated property or to subject-to-subject variability.

  8. A new test statistic for climate models that includes field and spatial dependencies using Gaussian Markov random fields

    DOE PAGES

    Nosedal-Sanchez, Alvaro; Jackson, Charles S.; Huerta, Gabriel

    2016-07-20

    A new test statistic for climate model evaluation has been developed that potentially mitigates some of the limitations that exist for observing and representing field and space dependencies of climate phenomena. Traditionally such dependencies have been ignored when climate models have been evaluated against observational data, which makes it difficult to assess whether any given model is simulating observed climate for the right reasons. The new statistic uses Gaussian Markov random fields for estimating field and space dependencies within a first-order grid point neighborhood structure. We illustrate the ability of Gaussian Markov random fields to represent empirical estimates of fieldmore » and space covariances using "witch hat" graphs. We further use the new statistic to evaluate the tropical response of a climate model (CAM3.1) to changes in two parameters important to its representation of cloud and precipitation physics. Overall, the inclusion of dependency information did not alter significantly the recognition of those regions of parameter space that best approximated observations. However, there were some qualitative differences in the shape of the response surface that suggest how such a measure could affect estimates of model uncertainty.« less

  9. A hybrid degradation tendency measurement method for mechanical equipment based on moving window and Grey-Markov model

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Zhou, Jianzhong; Zheng, Yang; Liu, Han

    2017-11-01

    Accurate degradation tendency measurement is vital for the secure operation of mechanical equipment. However, the existing techniques and methodologies for degradation measurement still face challenges, such as lack of appropriate degradation indicator, insufficient accuracy, and poor capability to track the data fluctuation. To solve these problems, a hybrid degradation tendency measurement method for mechanical equipment based on a moving window and Grey-Markov model is proposed in this paper. In the proposed method, a 1D normalized degradation index based on multi-feature fusion is designed to assess the extent of degradation. Subsequently, the moving window algorithm is integrated with the Grey-Markov model for the dynamic update of the model. Two key parameters, namely the step size and the number of states, contribute to the adaptive modeling and multi-step prediction. Finally, three types of combination prediction models are established to measure the degradation trend of equipment. The effectiveness of the proposed method is validated with a case study on the health monitoring of turbine engines. Experimental results show that the proposed method has better performance, in terms of both measuring accuracy and data fluctuation tracing, in comparison with other conventional methods.

  10. Reliability modelling and analysis of a multi-state element based on a dynamic Bayesian network

    NASA Astrophysics Data System (ADS)

    Li, Zhiqiang; Xu, Tingxue; Gu, Junyuan; Dong, Qi; Fu, Linyu

    2018-04-01

    This paper presents a quantitative reliability modelling and analysis method for multi-state elements based on a combination of the Markov process and a dynamic Bayesian network (DBN), taking perfect repair, imperfect repair and condition-based maintenance (CBM) into consideration. The Markov models of elements without repair and under CBM are established, and an absorbing set is introduced to determine the reliability of the repairable element. According to the state-transition relations between the states determined by the Markov process, a DBN model is built. In addition, its parameters for series and parallel systems, namely, conditional probability tables, can be calculated by referring to the conditional degradation probabilities. Finally, the power of a control unit in a failure model is used as an example. A dynamic fault tree (DFT) is translated into a Bayesian network model, and subsequently extended to a DBN. The results show the state probabilities of an element and the system without repair, with perfect and imperfect repair, and under CBM, with an absorbing set plotted by differential equations and verified. Through referring forward, the reliability value of the control unit is determined in different kinds of modes. Finally, weak nodes are noted in the control unit.

  11. Poisson-Gaussian Noise Reduction Using the Hidden Markov Model in Contourlet Domain for Fluorescence Microscopy Images

    PubMed Central

    Yang, Sejung; Lee, Byung-Uk

    2015-01-01

    In certain image acquisitions processes, like in fluorescence microscopy or astronomy, only a limited number of photons can be collected due to various physical constraints. The resulting images suffer from signal dependent noise, which can be modeled as a Poisson distribution, and a low signal-to-noise ratio. However, the majority of research on noise reduction algorithms focuses on signal independent Gaussian noise. In this paper, we model noise as a combination of Poisson and Gaussian probability distributions to construct a more accurate model and adopt the contourlet transform which provides a sparse representation of the directional components in images. We also apply hidden Markov models with a framework that neatly describes the spatial and interscale dependencies which are the properties of transformation coefficients of natural images. In this paper, an effective denoising algorithm for Poisson-Gaussian noise is proposed using the contourlet transform, hidden Markov models and noise estimation in the transform domain. We supplement the algorithm by cycle spinning and Wiener filtering for further improvements. We finally show experimental results with simulations and fluorescence microscopy images which demonstrate the improved performance of the proposed approach. PMID:26352138

  12. A new test statistic for climate models that includes field and spatial dependencies using Gaussian Markov random fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nosedal-Sanchez, Alvaro; Jackson, Charles S.; Huerta, Gabriel

    A new test statistic for climate model evaluation has been developed that potentially mitigates some of the limitations that exist for observing and representing field and space dependencies of climate phenomena. Traditionally such dependencies have been ignored when climate models have been evaluated against observational data, which makes it difficult to assess whether any given model is simulating observed climate for the right reasons. The new statistic uses Gaussian Markov random fields for estimating field and space dependencies within a first-order grid point neighborhood structure. We illustrate the ability of Gaussian Markov random fields to represent empirical estimates of fieldmore » and space covariances using "witch hat" graphs. We further use the new statistic to evaluate the tropical response of a climate model (CAM3.1) to changes in two parameters important to its representation of cloud and precipitation physics. Overall, the inclusion of dependency information did not alter significantly the recognition of those regions of parameter space that best approximated observations. However, there were some qualitative differences in the shape of the response surface that suggest how such a measure could affect estimates of model uncertainty.« less

  13. Comparison of statistical algorithms for detecting homogeneous river reaches along a longitudinal continuum

    NASA Astrophysics Data System (ADS)

    Leviandier, Thierry; Alber, A.; Le Ber, F.; Piégay, H.

    2012-02-01

    Seven methods designed to delineate homogeneous river segments, belonging to four families, namely — tests of homogeneity, contrast enhancing, spatially constrained classification, and hidden Markov models — are compared, firstly on their principles, then on a case study, and on theoretical templates. These templates contain patterns found in the case study but not considered in the standard assumptions of statistical methods, such as gradients and curvilinear structures. The influence of data resolution, noise and weak satisfaction of the assumptions underlying the methods is investigated. The control of the number of reaches obtained in order to achieve meaningful comparisons is discussed. No method is found that outperforms all the others on all trials. However, the methods with sequential algorithms (keeping at order n + 1 all breakpoints found at order n) fail more often than those running complete optimisation at any order. The Hubert-Kehagias method and Hidden Markov Models are the most successful at identifying subpatterns encapsulated within the templates. Ergodic Hidden Markov Models are, moreover, liable to exhibit transition areas.

  14. Semi-Markov models for interval censored transient cognitive states with back transitions and a competing risk

    PubMed Central

    Wei, Shaoceng; Kryscio, Richard J.

    2015-01-01

    Continuous-time multi-state stochastic processes are useful for modeling the flow of subjects from intact cognition to dementia with mild cognitive impairment and global impairment as intervening transient, cognitive states and death as a competing risk (Figure 1). Each subject's cognition is assessed periodically resulting in interval censoring for the cognitive states while death without dementia is not interval censored. Since back transitions among the transient states are possible, Markov chains are often applied to this type of panel data. In this manuscript we apply a Semi-Markov process in which we assume that the waiting times are Weibull distributed except for transitions from the baseline state, which are exponentially distributed and in which we assume no additional changes in cognition occur between two assessments. We implement a quasi-Monte Carlo (QMC) method to calculate the higher order integration needed for likelihood estimation. We apply our model to a real dataset, the Nun Study, a cohort of 461 participants. PMID:24821001

  15. Semi-Markov models for interval censored transient cognitive states with back transitions and a competing risk.

    PubMed

    Wei, Shaoceng; Kryscio, Richard J

    2016-12-01

    Continuous-time multi-state stochastic processes are useful for modeling the flow of subjects from intact cognition to dementia with mild cognitive impairment and global impairment as intervening transient cognitive states and death as a competing risk. Each subject's cognition is assessed periodically resulting in interval censoring for the cognitive states while death without dementia is not interval censored. Since back transitions among the transient states are possible, Markov chains are often applied to this type of panel data. In this manuscript, we apply a semi-Markov process in which we assume that the waiting times are Weibull distributed except for transitions from the baseline state, which are exponentially distributed and in which we assume no additional changes in cognition occur between two assessments. We implement a quasi-Monte Carlo (QMC) method to calculate the higher order integration needed for likelihood estimation. We apply our model to a real dataset, the Nun Study, a cohort of 461 participants. © The Author(s) 2014.

  16. Self-Organizing Hidden Markov Model Map (SOHMMM).

    PubMed

    Ferles, Christos; Stafylopatis, Andreas

    2013-12-01

    A hybrid approach combining the Self-Organizing Map (SOM) and the Hidden Markov Model (HMM) is presented. The Self-Organizing Hidden Markov Model Map (SOHMMM) establishes a cross-section between the theoretic foundations and algorithmic realizations of its constituents. The respective architectures and learning methodologies are fused in an attempt to meet the increasing requirements imposed by the properties of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein chain molecules. The fusion and synergy of the SOM unsupervised training and the HMM dynamic programming algorithms bring forth a novel on-line gradient descent unsupervised learning algorithm, which is fully integrated into the SOHMMM. Since the SOHMMM carries out probabilistic sequence analysis with little or no prior knowledge, it can have a variety of applications in clustering, dimensionality reduction and visualization of large-scale sequence spaces, and also, in sequence discrimination, search and classification. Two series of experiments based on artificial sequence data and splice junction gene sequences demonstrate the SOHMMM's characteristics and capabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Modeling and Computing of Stock Index Forecasting Based on Neural Network and Markov Chain

    PubMed Central

    Dai, Yonghui; Han, Dongmei; Dai, Weihui

    2014-01-01

    The stock index reflects the fluctuation of the stock market. For a long time, there have been a lot of researches on the forecast of stock index. However, the traditional method is limited to achieving an ideal precision in the dynamic market due to the influences of many factors such as the economic situation, policy changes, and emergency events. Therefore, the approach based on adaptive modeling and conditional probability transfer causes the new attention of researchers. This paper presents a new forecast method by the combination of improved back-propagation (BP) neural network and Markov chain, as well as its modeling and computing technology. This method includes initial forecasting by improved BP neural network, division of Markov state region, computing of the state transition probability matrix, and the prediction adjustment. Results of the empirical study show that this method can achieve high accuracy in the stock index prediction, and it could provide a good reference for the investment in stock market. PMID:24782659

  18. High-Resolution Remote Sensing Image Building Extraction Based on Markov Model

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Yan, L.; Chang, Y.; Gong, L.

    2018-04-01

    With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.

  19. Stochastic-shielding approximation of Markov chains and its application to efficiently simulate random ion-channel gating.

    PubMed

    Schmandt, Nicolaus T; Galán, Roberto F

    2012-09-14

    Markov chains provide realistic models of numerous stochastic processes in nature. We demonstrate that in any Markov chain, the change in occupation number in state A is correlated to the change in occupation number in state B if and only if A and B are directly connected. This implies that if we are only interested in state A, fluctuations in B may be replaced with their mean if state B is not directly connected to A, which shortens computing time considerably. We show the accuracy and efficacy of our approximation theoretically and in simulations of stochastic ion-channel gating in neurons.

  20. Markov Chain Ontology Analysis (MCOA)

    PubMed Central

    2012-01-01

    Background Biomedical ontologies have become an increasingly critical lens through which researchers analyze the genomic, clinical and bibliographic data that fuels scientific research. Of particular relevance are methods, such as enrichment analysis, that quantify the importance of ontology classes relative to a collection of domain data. Current analytical techniques, however, remain limited in their ability to handle many important types of structural complexity encountered in real biological systems including class overlaps, continuously valued data, inter-instance relationships, non-hierarchical relationships between classes, semantic distance and sparse data. Results In this paper, we describe a methodology called Markov Chain Ontology Analysis (MCOA) and illustrate its use through a MCOA-based enrichment analysis application based on a generative model of gene activation. MCOA models the classes in an ontology, the instances from an associated dataset and all directional inter-class, class-to-instance and inter-instance relationships as a single finite ergodic Markov chain. The adjusted transition probability matrix for this Markov chain enables the calculation of eigenvector values that quantify the importance of each ontology class relative to other classes and the associated data set members. On both controlled Gene Ontology (GO) data sets created with Escherichia coli, Drosophila melanogaster and Homo sapiens annotations and real gene expression data extracted from the Gene Expression Omnibus (GEO), the MCOA enrichment analysis approach provides the best performance of comparable state-of-the-art methods. Conclusion A methodology based on Markov chain models and network analytic metrics can help detect the relevant signal within large, highly interdependent and noisy data sets and, for applications such as enrichment analysis, has been shown to generate superior performance on both real and simulated data relative to existing state-of-the-art approaches. PMID:22300537

  1. Markov Chain Ontology Analysis (MCOA).

    PubMed

    Frost, H Robert; McCray, Alexa T

    2012-02-03

    Biomedical ontologies have become an increasingly critical lens through which researchers analyze the genomic, clinical and bibliographic data that fuels scientific research. Of particular relevance are methods, such as enrichment analysis, that quantify the importance of ontology classes relative to a collection of domain data. Current analytical techniques, however, remain limited in their ability to handle many important types of structural complexity encountered in real biological systems including class overlaps, continuously valued data, inter-instance relationships, non-hierarchical relationships between classes, semantic distance and sparse data. In this paper, we describe a methodology called Markov Chain Ontology Analysis (MCOA) and illustrate its use through a MCOA-based enrichment analysis application based on a generative model of gene activation. MCOA models the classes in an ontology, the instances from an associated dataset and all directional inter-class, class-to-instance and inter-instance relationships as a single finite ergodic Markov chain. The adjusted transition probability matrix for this Markov chain enables the calculation of eigenvector values that quantify the importance of each ontology class relative to other classes and the associated data set members. On both controlled Gene Ontology (GO) data sets created with Escherichia coli, Drosophila melanogaster and Homo sapiens annotations and real gene expression data extracted from the Gene Expression Omnibus (GEO), the MCOA enrichment analysis approach provides the best performance of comparable state-of-the-art methods. A methodology based on Markov chain models and network analytic metrics can help detect the relevant signal within large, highly interdependent and noisy data sets and, for applications such as enrichment analysis, has been shown to generate superior performance on both real and simulated data relative to existing state-of-the-art approaches.

  2. A Langevin equation for the rates of currency exchange based on the Markov analysis

    NASA Astrophysics Data System (ADS)

    Farahpour, F.; Eskandari, Z.; Bahraminasab, A.; Jafari, G. R.; Ghasemi, F.; Sahimi, Muhammad; Reza Rahimi Tabar, M.

    2007-11-01

    We propose a method for analyzing the data for the rates of exchange of various currencies versus the U.S. dollar. The method analyzes the return time series of the data as a Markov process, and develops an effective equation which reconstructs it. We find that the Markov time scale, i.e., the time scale over which the data are Markov-correlated, is one day for the majority of the daily exchange rates that we analyze. We derive an effective Langevin equation to describe the fluctuations in the rates. The equation contains two quantities, D and D, representing the drift and diffusion coefficients, respectively. We demonstrate how the two coefficients are estimated directly from the data, without using any assumptions or models for the underlying stochastic time series that represent the daily rates of exchange of various currencies versus the U.S. dollar.

  3. Decomposition of conditional probability for high-order symbolic Markov chains.

    PubMed

    Melnik, S S; Usatenko, O V

    2017-07-01

    The main goal of this paper is to develop an estimate for the conditional probability function of random stationary ergodic symbolic sequences with elements belonging to a finite alphabet. We elaborate on a decomposition procedure for the conditional probability function of sequences considered to be high-order Markov chains. We represent the conditional probability function as the sum of multilinear memory function monomials of different orders (from zero up to the chain order). This allows us to introduce a family of Markov chain models and to construct artificial sequences via a method of successive iterations, taking into account at each step increasingly high correlations among random elements. At weak correlations, the memory functions are uniquely expressed in terms of the high-order symbolic correlation functions. The proposed method fills the gap between two approaches, namely the likelihood estimation and the additive Markov chains. The obtained results may have applications for sequential approximation of artificial neural network training.

  4. A high-fidelity weather time series generator using the Markov Chain process on a piecewise level

    NASA Astrophysics Data System (ADS)

    Hersvik, K.; Endrerud, O.-E. V.

    2017-12-01

    A method is developed for generating a set of unique weather time-series based on an existing weather series. The method allows statistically valid weather variations to take place within repeated simulations of offshore operations. The numerous generated time series need to share the same statistical qualities as the original time series. Statistical qualities here refer mainly to the distribution of weather windows available for work, including durations and frequencies of such weather windows, and seasonal characteristics. The method is based on the Markov chain process. The core new development lies in how the Markov Process is used, specifically by joining small pieces of random length time series together rather than joining individual weather states, each from a single time step, which is a common solution found in the literature. This new Markov model shows favorable characteristics with respect to the requirements set forth and all aspects of the validation performed.

  5. Decomposition of conditional probability for high-order symbolic Markov chains

    NASA Astrophysics Data System (ADS)

    Melnik, S. S.; Usatenko, O. V.

    2017-07-01

    The main goal of this paper is to develop an estimate for the conditional probability function of random stationary ergodic symbolic sequences with elements belonging to a finite alphabet. We elaborate on a decomposition procedure for the conditional probability function of sequences considered to be high-order Markov chains. We represent the conditional probability function as the sum of multilinear memory function monomials of different orders (from zero up to the chain order). This allows us to introduce a family of Markov chain models and to construct artificial sequences via a method of successive iterations, taking into account at each step increasingly high correlations among random elements. At weak correlations, the memory functions are uniquely expressed in terms of the high-order symbolic correlation functions. The proposed method fills the gap between two approaches, namely the likelihood estimation and the additive Markov chains. The obtained results may have applications for sequential approximation of artificial neural network training.

  6. Canonical Structure and Orthogonality of Forces and Currents in Irreversible Markov Chains

    NASA Astrophysics Data System (ADS)

    Kaiser, Marcus; Jack, Robert L.; Zimmer, Johannes

    2018-03-01

    We discuss a canonical structure that provides a unifying description of dynamical large deviations for irreversible finite state Markov chains (continuous time), Onsager theory, and Macroscopic Fluctuation Theory (MFT). For Markov chains, this theory involves a non-linear relation between probability currents and their conjugate forces. Within this framework, we show how the forces can be split into two components, which are orthogonal to each other, in a generalised sense. This splitting allows a decomposition of the pathwise rate function into three terms, which have physical interpretations in terms of dissipation and convergence to equilibrium. Similar decompositions hold for rate functions at level 2 and level 2.5. These results clarify how bounds on entropy production and fluctuation theorems emerge from the underlying dynamical rules. We discuss how these results for Markov chains are related to similar structures within MFT, which describes hydrodynamic limits of such microscopic models.

  7. Markov Chains For Testing Redundant Software

    NASA Technical Reports Server (NTRS)

    White, Allan L.; Sjogren, Jon A.

    1990-01-01

    Preliminary design developed for validation experiment that addresses problems unique to assuring extremely high quality of multiple-version programs in process-control software. Approach takes into account inertia of controlled system in sense it takes more than one failure of control program to cause controlled system to fail. Verification procedure consists of two steps: experimentation (numerical simulation) and computation, with Markov model for each step.

  8. A Network of Conformational Transitions in the Apo Form of NDM-1 Enzyme Revealed by MD Simulation and a Markov State Model.

    PubMed

    Gao, Kaifu; Zhao, Yunjie

    2017-04-13

    New Delhi metallo-β-lactamase-1 (NDM-1) is a novel β-lactamase enzyme that confers enteric bacteria with nearly complete resistance to all β-lactam antibiotics, so it raises a formidable and global threat to human health. However, the binding mechanism between apo-NDM-1 and antibiotics as well as related conformational changes remains poorly understood, which largely hinders the overcoming of its antibiotic resistance. In our study, long-time conventional molecular dynamics simulation and Markov state models were applied to reveal both the dynamical and conformational landscape of apo-NDM-1: the MD simulation demonstrates that loop L3, which is responsible for antibiotic binding, is the most flexible and undergoes dramatic conformational changes; moreover, the Markov state model built from the simulation maps four metastable states including open, semiopen, and closed conformations of loop L3 as well as frequent transitions between the states. Our findings propose a possible conformational selection model for the binding mechanism between apo-NDM-1 and antibiotics, which facilitates the design of novel inhibitors and antibiotics.

  9. Risk assessment by dynamic representation of vulnerability, exploitation, and impact

    NASA Astrophysics Data System (ADS)

    Cam, Hasan

    2015-05-01

    Assessing and quantifying cyber risk accurately in real-time is essential to providing security and mission assurance in any system and network. This paper presents a modeling and dynamic analysis approach to assessing cyber risk of a network in real-time by representing dynamically its vulnerabilities, exploitations, and impact using integrated Bayesian network and Markov models. Given the set of vulnerabilities detected by a vulnerability scanner in a network, this paper addresses how its risk can be assessed by estimating in real-time the exploit likelihood and impact of vulnerability exploitation on the network, based on real-time observations and measurements over the network. The dynamic representation of the network in terms of its vulnerabilities, sensor measurements, and observations is constructed dynamically using the integrated Bayesian network and Markov models. The transition rates of outgoing and incoming links of states in hidden Markov models are used in determining exploit likelihood and impact of attacks, whereas emission rates help quantify the attack states of vulnerabilities. Simulation results show the quantification and evolving risk scores over time for individual and aggregated vulnerabilities of a network.

  10. Post processing of optically recognized text via second order hidden Markov model

    NASA Astrophysics Data System (ADS)

    Poudel, Srijana

    In this thesis, we describe a postprocessing system on Optical Character Recognition(OCR) generated text. Second Order Hidden Markov Model (HMM) approach is used to detect and correct the OCR related errors. The reason for choosing the 2nd order HMM is to keep track of the bigrams so that the model can represent the system more accurately. Based on experiments with training data of 159,733 characters and testing of 5,688 characters, the model was able to correct 43.38 % of the errors with a precision of 75.34 %. However, the precision value indicates that the model introduced some new errors, decreasing the correction percentage to 26.4%.

  11. Exact Markov chains versus diffusion theory for haploid random mating.

    PubMed

    Tyvand, Peder A; Thorvaldsen, Steinar

    2010-05-01

    Exact discrete Markov chains are applied to the Wright-Fisher model and the Moran model of haploid random mating. Selection and mutations are neglected. At each discrete value of time t there is a given number n of diploid monoecious organisms. The evolution of the population distribution is given in diffusion variables, to compare the two models of random mating with their common diffusion limit. Only the Moran model converges uniformly to the diffusion limit near the boundary. The Wright-Fisher model allows the population size to change with the generations. Diffusion theory tends to under-predict the loss of genetic information when a population enters a bottleneck. 2010 Elsevier Inc. All rights reserved.

  12. [Succession caused by beaver (Castor fiber L.) life activity: I. What is learnt from the calibration of a simple Markov model].

    PubMed

    Logofet, D O; Evstigneev, O I; Aleĭnikov, A A; Morozova, A O

    2014-01-01

    A homogeneous Markov chain of three aggregated states "pond--swamp--wood" is proposed as a model of cyclic zoogenic successions caused by beaver (Castor fiber L.) life activity in a forest biogeocoenosis. To calibrate the chain transition matrix, the data have appeared sufficient that were gained from field studies undertaken in "Bryanskii Les" Reserve in the years of 2002-2008. Major outcomes of the calibrated model ensue from the formulae of finite homogeneous Markov chain theory: the stationary probability distribution of states, thematrix (T) of mean first passage times, and the mean durations (M(j)) of succession stages. The former illustrates the distribution of relative areas under succession stages if the current trends and transition rates of succession are conserved in the long-term--it has appeared close to the observed distribution. Matrix T provides for quantitative characteristics of the cyclic process, specifying the ranges the experts proposed for the duration of stages in the conceptual scheme of succession. The calculated values of M(j) detect potential discrepancies between empirical data, the expert knowledge that summarizes the data, and the postulates accepted in the mathematical model. The calculated M2 value falls outside the expert range, which gives a reason to doubt the validity of expert estimation proposed, the aggregation mode chosen for chain states, or/and the accuracy-of data available, i.e., to draw certain "lessons" from partially successful calibration. Refusal to postulate the time homogeneity or the Markov property of the chain is also discussed among possible ways to improve the model.

  13. Utilization of two web-based continuing education courses evaluated by Markov chain model.

    PubMed

    Tian, Hao; Lin, Jin-Mann S; Reeves, William C

    2012-01-01

    To evaluate the web structure of two web-based continuing education courses, identify problems and assess the effects of web site modifications. Markov chain models were built from 2008 web usage data to evaluate the courses' web structure and navigation patterns. The web site was then modified to resolve identified design issues and the improvement in user activity over the subsequent 12 months was quantitatively evaluated. Web navigation paths were collected between 2008 and 2010. The probability of navigating from one web page to another was analyzed. The continuing education courses' sequential structure design was clearly reflected in the resulting actual web usage models, and none of the skip transitions provided was heavily used. The web navigation patterns of the two different continuing education courses were similar. Two possible design flaws were identified and fixed in only one of the two courses. Over the following 12 months, the drop-out rate in the modified course significantly decreased from 41% to 35%, but remained unchanged in the unmodified course. The web improvement effects were further verified via a second-order Markov chain model. The results imply that differences in web content have less impact than web structure design on how learners navigate through continuing education courses. Evaluation of user navigation can help identify web design flaws and guide modifications. This study showed that Markov chain models provide a valuable tool to evaluate web-based education courses. Both the results and techniques in this study would be very useful for public health education and research specialists.

  14. Utilization of two web-based continuing education courses evaluated by Markov chain model

    PubMed Central

    Lin, Jin-Mann S; Reeves, William C

    2011-01-01

    Objectives To evaluate the web structure of two web-based continuing education courses, identify problems and assess the effects of web site modifications. Design Markov chain models were built from 2008 web usage data to evaluate the courses' web structure and navigation patterns. The web site was then modified to resolve identified design issues and the improvement in user activity over the subsequent 12 months was quantitatively evaluated. Measurements Web navigation paths were collected between 2008 and 2010. The probability of navigating from one web page to another was analyzed. Results The continuing education courses' sequential structure design was clearly reflected in the resulting actual web usage models, and none of the skip transitions provided was heavily used. The web navigation patterns of the two different continuing education courses were similar. Two possible design flaws were identified and fixed in only one of the two courses. Over the following 12 months, the drop-out rate in the modified course significantly decreased from 41% to 35%, but remained unchanged in the unmodified course. The web improvement effects were further verified via a second-order Markov chain model. Conclusions The results imply that differences in web content have less impact than web structure design on how learners navigate through continuing education courses. Evaluation of user navigation can help identify web design flaws and guide modifications. This study showed that Markov chain models provide a valuable tool to evaluate web-based education courses. Both the results and techniques in this study would be very useful for public health education and research specialists. PMID:21976027

  15. National Centers for Environmental Prediction

    Science.gov Websites

    Products Operational Forecast Graphics Experimental Forecast Graphics Verification and Diagnostics Model PARALLEL/EXPERIMENTAL MODEL FORECAST GRAPHICS OPERATIONAL VERIFICATION / DIAGNOSTICS PARALLEL VERIFICATION Developmental Air Quality Forecasts and Verification Back to Table of Contents 2. PARALLEL/EXPERIMENTAL GRAPHICS

  16. National Centers for Environmental Prediction

    Science.gov Websites

    Operational Forecast Graphics Experimental Forecast Graphics Verification and Diagnostics Model Configuration /EXPERIMENTAL MODEL FORECAST GRAPHICS OPERATIONAL VERIFICATION / DIAGNOSTICS PARALLEL VERIFICATION / DIAGNOSTICS Developmental Air Quality Forecasts and Verification Back to Table of Contents 2. PARALLEL/EXPERIMENTAL GRAPHICS

  17. Connections between Graphical Gaussian Models and Factor Analysis

    ERIC Educational Resources Information Center

    Salgueiro, M. Fatima; Smith, Peter W. F.; McDonald, John W.

    2010-01-01

    Connections between graphical Gaussian models and classical single-factor models are obtained by parameterizing the single-factor model as a graphical Gaussian model. Models are represented by independence graphs, and associations between each manifest variable and the latent factor are measured by factor partial correlations. Power calculations…

  18. Modelling past land use using archaeological and pollen data

    NASA Astrophysics Data System (ADS)

    Pirzamanbein, Behnaz; Lindström, johan; Poska, Anneli; Gaillard-Lemdahl, Marie-José

    2016-04-01

    Accurate maps of past land use are necessary for studying the impact of anthropogenic land-cover changes on climate and biodiversity. We develop a Bayesian hierarchical model to reconstruct the land use using Gaussian Markov random fields. The model uses two observations sets: 1) archaeological data, representing human settlements, urbanization and agricultural findings; and 2) pollen-based land estimates of the three land-cover types Coniferous forest, Broadleaved forest and Unforested/Open land. The pollen based estimates are obtained from the REVEALS model, based on pollen counts from lakes and bogs. Our developed model uses the sparse pollen-based estimations to reconstruct the spatial continuous cover of three land cover types. Using the open-land component and the archaeological data, the extent of land-use is reconstructed. The model is applied on three time periods - centred around 1900 CE, 1000 and, 4000 BCE over Sweden for which both pollen-based estimates and archaeological data are available. To estimate the model parameters and land use, a block updated Markov chain Monte Carlo (MCMC) algorithm is applied. Using the MCMC posterior samples uncertainties in land-use predictions are computed. Due to lack of good historic land use data, model results are evaluated by cross-validation. Keywords. Spatial reconstruction, Gaussian Markov random field, Fossil pollen records, Archaeological data, Human land-use, Prediction uncertainty

  19. Alignment-free Transcriptomic and Metatranscriptomic Comparison Using Sequencing Signatures with Variable Length Markov Chains.

    PubMed

    Liao, Weinan; Ren, Jie; Wang, Kun; Wang, Shun; Zeng, Feng; Wang, Ying; Sun, Fengzhu

    2016-11-23

    The comparison between microbial sequencing data is critical to understand the dynamics of microbial communities. The alignment-based tools analyzing metagenomic datasets require reference sequences and read alignments. The available alignment-free dissimilarity approaches model the background sequences with Fixed Order Markov Chain (FOMC) yielding promising results for the comparison of microbial communities. However, in FOMC, the number of parameters grows exponentially with the increase of the order of Markov Chain (MC). Under a fixed high order of MC, the parameters might not be accurately estimated owing to the limitation of sequencing depth. In our study, we investigate an alternative to FOMC to model background sequences with the data-driven Variable Length Markov Chain (VLMC) in metatranscriptomic data. The VLMC originally designed for long sequences was extended to apply to high-throughput sequencing reads and the strategies to estimate the corresponding parameters were developed. The flexible number of parameters in VLMC avoids estimating the vast number of parameters of high-order MC under limited sequencing depth. Different from the manual selection in FOMC, VLMC determines the MC order adaptively. Several beta diversity measures based on VLMC were applied to compare the bacterial RNA-Seq and metatranscriptomic datasets. Experiments show that VLMC outperforms FOMC to model the background sequences in transcriptomic and metatranscriptomic samples. A software pipeline is available at https://d2vlmc.codeplex.com.

  20. Stability Analysis of Multi-Sensor Kalman Filtering over Lossy Networks

    PubMed Central

    Gao, Shouwan; Chen, Pengpeng; Huang, Dan; Niu, Qiang

    2016-01-01

    This paper studies the remote Kalman filtering problem for a distributed system setting with multiple sensors that are located at different physical locations. Each sensor encapsulates its own measurement data into one single packet and transmits the packet to the remote filter via a lossy distinct channel. For each communication channel, a time-homogeneous Markov chain is used to model the normal operating condition of packet delivery and losses. Based on the Markov model, a necessary and sufficient condition is obtained, which can guarantee the stability of the mean estimation error covariance. Especially, the stability condition is explicitly expressed as a simple inequality whose parameters are the spectral radius of the system state matrix and transition probabilities of the Markov chains. In contrast to the existing related results, our method imposes less restrictive conditions on systems. Finally, the results are illustrated by simulation examples. PMID:27104541

  1. Pattern statistics on Markov chains and sensitivity to parameter estimation

    PubMed Central

    Nuel, Grégory

    2006-01-01

    Background: In order to compute pattern statistics in computational biology a Markov model is commonly used to take into account the sequence composition. Usually its parameter must be estimated. The aim of this paper is to determine how sensitive these statistics are to parameter estimation, and what are the consequences of this variability on pattern studies (finding the most over-represented words in a genome, the most significant common words to a set of sequences,...). Results: In the particular case where pattern statistics (overlap counting only) computed through binomial approximations we use the delta-method to give an explicit expression of σ, the standard deviation of a pattern statistic. This result is validated using simulations and a simple pattern study is also considered. Conclusion: We establish that the use of high order Markov model could easily lead to major mistakes due to the high sensitivity of pattern statistics to parameter estimation. PMID:17044916

  2. Variable context Markov chains for HIV protease cleavage site prediction.

    PubMed

    Oğul, Hasan

    2009-06-01

    Deciphering the knowledge of HIV protease specificity and developing computational tools for detecting its cleavage sites in protein polypeptide chain are very desirable for designing efficient and specific chemical inhibitors to prevent acquired immunodeficiency syndrome. In this study, we developed a generative model based on a generalization of variable order Markov chains (VOMC) for peptide sequences and adapted the model for prediction of their cleavability by certain proteases. The new method, called variable context Markov chains (VCMC), attempts to identify the context equivalence based on the evolutionary similarities between individual amino acids. It was applied for HIV-1 protease cleavage site prediction problem and shown to outperform existing methods in terms of prediction accuracy on a common dataset. In general, the method is a promising tool for prediction of cleavage sites of all proteases and encouraged to be used for any kind of peptide classification problem as well.

  3. Pattern statistics on Markov chains and sensitivity to parameter estimation.

    PubMed

    Nuel, Grégory

    2006-10-17

    In order to compute pattern statistics in computational biology a Markov model is commonly used to take into account the sequence composition. Usually its parameter must be estimated. The aim of this paper is to determine how sensitive these statistics are to parameter estimation, and what are the consequences of this variability on pattern studies (finding the most over-represented words in a genome, the most significant common words to a set of sequences,...). In the particular case where pattern statistics (overlap counting only) computed through binomial approximations we use the delta-method to give an explicit expression of sigma, the standard deviation of a pattern statistic. This result is validated using simulations and a simple pattern study is also considered. We establish that the use of high order Markov model could easily lead to major mistakes due to the high sensitivity of pattern statistics to parameter estimation.

  4. Probabilistic Graphical Model Representation in Phylogenetics

    PubMed Central

    Höhna, Sebastian; Heath, Tracy A.; Boussau, Bastien; Landis, Michael J.; Ronquist, Fredrik; Huelsenbeck, John P.

    2014-01-01

    Recent years have seen a rapid expansion of the model space explored in statistical phylogenetics, emphasizing the need for new approaches to statistical model representation and software development. Clear communication and representation of the chosen model is crucial for: (i) reproducibility of an analysis, (ii) model development, and (iii) software design. Moreover, a unified, clear and understandable framework for model representation lowers the barrier for beginners and nonspecialists to grasp complex phylogenetic models, including their assumptions and parameter/variable dependencies. Graphical modeling is a unifying framework that has gained in popularity in the statistical literature in recent years. The core idea is to break complex models into conditionally independent distributions. The strength lies in the comprehensibility, flexibility, and adaptability of this formalism, and the large body of computational work based on it. Graphical models are well-suited to teach statistical models, to facilitate communication among phylogeneticists and in the development of generic software for simulation and statistical inference. Here, we provide an introduction to graphical models for phylogeneticists and extend the standard graphical model representation to the realm of phylogenetics. We introduce a new graphical model component, tree plates, to capture the changing structure of the subgraph corresponding to a phylogenetic tree. We describe a range of phylogenetic models using the graphical model framework and introduce modules to simplify the representation of standard components in large and complex models. Phylogenetic model graphs can be readily used in simulation, maximum likelihood inference, and Bayesian inference using, for example, Metropolis–Hastings or Gibbs sampling of the posterior distribution. [Computation; graphical models; inference; modularization; statistical phylogenetics; tree plate.] PMID:24951559

  5. Synchronizing stochastic circadian oscillators in single cells of Neurospora crassa

    NASA Astrophysics Data System (ADS)

    Deng, Zhaojie; Arsenault, Sam; Caranica, Cristian; Griffith, James; Zhu, Taotao; Al-Omari, Ahmad; Schüttler, Heinz-Bernd; Arnold, Jonathan; Mao, Leidong

    2016-10-01

    The synchronization of stochastic coupled oscillators is a central problem in physics and an emerging problem in biology, particularly in the context of circadian rhythms. Most measurements on the biological clock are made at the macroscopic level of millions of cells. Here measurements are made on the oscillators in single cells of the model fungal system, Neurospora crassa, with droplet microfluidics and the use of a fluorescent recorder hooked up to a promoter on a clock controlled gene-2 (ccg-2). The oscillators of individual cells are stochastic with a period near 21 hours (h), and using a stochastic clock network ensemble fitted by Markov Chain Monte Carlo implemented on general-purpose graphical processing units (or GPGPUs) we estimated that >94% of the variation in ccg-2 expression was stochastic (as opposed to experimental error). To overcome this stochasticity at the macroscopic level, cells must synchronize their oscillators. Using a classic measure of similarity in cell trajectories within droplets, the intraclass correlation (ICC), the synchronization surface ICC is measured on >25,000 cells as a function of the number of neighboring cells within a droplet and of time. The synchronization surface provides evidence that cells communicate, and synchronization varies with genotype.

  6. Back to BaySICS: a user-friendly program for Bayesian Statistical Inference from Coalescent Simulations.

    PubMed

    Sandoval-Castellanos, Edson; Palkopoulou, Eleftheria; Dalén, Love

    2014-01-01

    Inference of population demographic history has vastly improved in recent years due to a number of technological and theoretical advances including the use of ancient DNA. Approximate Bayesian computation (ABC) stands among the most promising methods due to its simple theoretical fundament and exceptional flexibility. However, limited availability of user-friendly programs that perform ABC analysis renders it difficult to implement, and hence programming skills are frequently required. In addition, there is limited availability of programs able to deal with heterochronous data. Here we present the software BaySICS: Bayesian Statistical Inference of Coalescent Simulations. BaySICS provides an integrated and user-friendly platform that performs ABC analyses by means of coalescent simulations from DNA sequence data. It estimates historical demographic population parameters and performs hypothesis testing by means of Bayes factors obtained from model comparisons. Although providing specific features that improve inference from datasets with heterochronous data, BaySICS also has several capabilities making it a suitable tool for analysing contemporary genetic datasets. Those capabilities include joint analysis of independent tables, a graphical interface and the implementation of Markov-chain Monte Carlo without likelihoods.

  7. Synchronizing stochastic circadian oscillators in single cells of Neurospora crassa

    PubMed Central

    Deng, Zhaojie; Arsenault, Sam; Caranica, Cristian; Griffith, James; Zhu, Taotao; Al-Omari, Ahmad; Schüttler, Heinz-Bernd; Arnold, Jonathan; Mao, Leidong

    2016-01-01

    The synchronization of stochastic coupled oscillators is a central problem in physics and an emerging problem in biology, particularly in the context of circadian rhythms. Most measurements on the biological clock are made at the macroscopic level of millions of cells. Here measurements are made on the oscillators in single cells of the model fungal system, Neurospora crassa, with droplet microfluidics and the use of a fluorescent recorder hooked up to a promoter on a clock controlled gene-2 (ccg-2). The oscillators of individual cells are stochastic with a period near 21 hours (h), and using a stochastic clock network ensemble fitted by Markov Chain Monte Carlo implemented on general-purpose graphical processing units (or GPGPUs) we estimated that >94% of the variation in ccg-2 expression was stochastic (as opposed to experimental error). To overcome this stochasticity at the macroscopic level, cells must synchronize their oscillators. Using a classic measure of similarity in cell trajectories within droplets, the intraclass correlation (ICC), the synchronization surface ICC is measured on >25,000 cells as a function of the number of neighboring cells within a droplet and of time. The synchronization surface provides evidence that cells communicate, and synchronization varies with genotype. PMID:27786253

  8. Multivariate Markov chain modeling for stock markets

    NASA Astrophysics Data System (ADS)

    Maskawa, Jun-ichi

    2003-06-01

    We study a multivariate Markov chain model as a stochastic model of the price changes of portfolios in the framework of the mean field approximation. The time series of price changes are coded into the sequences of up and down spins according to their signs. We start with the discussion for small portfolios consisting of two stock issues. The generalization of our model to arbitrary size of portfolio is constructed by a recurrence relation. The resultant form of the joint probability of the stationary state coincides with Gibbs measure assigned to each configuration of spin glass model. Through the analysis of actual portfolios, it has been shown that the synchronization of the direction of the price changes is well described by the model.

  9. A Unified Framework for Complex Networks with Degree Trichotomy Based on Markov Chains.

    PubMed

    Hui, David Shui Wing; Chen, Yi-Chao; Zhang, Gong; Wu, Weijie; Chen, Guanrong; Lui, John C S; Li, Yingtao

    2017-06-16

    This paper establishes a Markov chain model as a unified framework for describing the evolution processes in complex networks. The unique feature of the proposed model is its capability in addressing the formation mechanism that can reflect the "trichotomy" observed in degree distributions, based on which closed-form solutions can be derived. Important special cases of the proposed unified framework are those classical models, including Poisson, Exponential, Power-law distributed networks. Both simulation and experimental results demonstrate a good match of the proposed model with real datasets, showing its superiority over the classical models. Implications of the model to various applications including citation analysis, online social networks, and vehicular networks design, are also discussed in the paper.

  10. Detecting higher-order interactions among the spiking events in a group of neurons.

    PubMed

    Martignon, L; Von Hasseln, H; Grün, S; Aertsen, A; Palm, G

    1995-06-01

    We propose a formal framework for the description of interactions among groups of neurons. This framework is not restricted to the common case of pair interactions, but also incorporates higher-order interactions, which cannot be reduced to lower-order ones. We derive quantitative measures to detect the presence of such interactions in experimental data, by statistical analysis of the frequency distribution of higher-order correlations in multiple neuron spike train data. Our first step is to represent a frequency distribution as a Markov field on the minimal graph it induces. We then show the invariance of this graph with regard to changes of state. Clearly, only linear Markov fields can be adequately represented by graphs. Higher-order interdependencies, which are reflected by the energy expansion of the distribution, require more complex graphical schemes, like constellations or assembly diagrams, which we introduce and discuss. The coefficients of the energy expansion not only point to the interactions among neurons but are also a measure of their strength. We investigate the statistical meaning of detected interactions in an information theoretic sense and propose minimum relative entropy approximations as null hypotheses for significance tests. We demonstrate the various steps of our method in the situation of an empirical frequency distribution on six neurons, extracted from data on simultaneous multineuron recordings from the frontal cortex of a behaving monkey and close with a brief outlook on future work.

  11. Reciprocal Markov Modeling of Feedback Mechanisms Between Emotion and Dietary Choice Using Experience-Sampling Data.

    PubMed

    Lu, Ji; Pan, Junhao; Zhang, Qiang; Dubé, Laurette; Ip, Edward H

    2015-01-01

    With intensively collected longitudinal data, recent advances in the experience-sampling method (ESM) benefit social science empirical research, but also pose important methodological challenges. As traditional statistical models are not generally well equipped to analyze a system of variables that contain feedback loops, this paper proposes the utility of an extended hidden Markov model to model reciprocal the relationship between momentary emotion and eating behavior. This paper revisited an ESM data set (Lu, Huet, & Dube, 2011) that observed 160 participants' food consumption and momentary emotions 6 times per day in 10 days. Focusing on the analyses on feedback loop between mood and meal-healthiness decision, the proposed reciprocal Markov model (RMM) can accommodate both hidden ("general" emotional states: positive vs. negative state) and observed states (meal: healthier, same or less healthy than usual) without presuming independence between observations and smooth trajectories of mood or behavior changes. The results of RMM analyses illustrated the reciprocal chains of meal consumption and mood as well as the effect of contextual factors that moderate the interrelationship between eating and emotion. A simulation experiment that generated data consistent with the empirical study further demonstrated that the procedure is promising in terms of recovering the parameters.

  12. Modeling Driver Behavior near Intersections in Hidden Markov Model

    PubMed Central

    Li, Juan; He, Qinglian; Zhou, Hang; Guan, Yunlin; Dai, Wei

    2016-01-01

    Intersections are one of the major locations where safety is a big concern to drivers. Inappropriate driver behaviors in response to frequent changes when approaching intersections often lead to intersection-related crashes or collisions. Thus to better understand driver behaviors at intersections, especially in the dilemma zone, a Hidden Markov Model (HMM) is utilized in this study. With the discrete data processing, the observed dynamic data of vehicles are used for the inference of the Hidden Markov Model. The Baum-Welch (B-W) estimation algorithm is applied to calculate the vehicle state transition probability matrix and the observation probability matrix. When combined with the Forward algorithm, the most likely state of the driver can be obtained. Thus the model can be used to measure the stability and risk of driver behavior. It is found that drivers’ behaviors in the dilemma zone are of lower stability and higher risk compared with those in other regions around intersections. In addition to the B-W estimation algorithm, the Viterbi Algorithm is utilized to predict the potential dangers of vehicles. The results can be applied to driving assistance systems to warn drivers to avoid possible accidents. PMID:28009838

  13. Model-based Clustering of Categorical Time Series with Multinomial Logit Classification

    NASA Astrophysics Data System (ADS)

    Frühwirth-Schnatter, Sylvia; Pamminger, Christoph; Winter-Ebmer, Rudolf; Weber, Andrea

    2010-09-01

    A common problem in many areas of applied statistics is to identify groups of similar time series in a panel of time series. However, distance-based clustering methods cannot easily be extended to time series data, where an appropriate distance-measure is rather difficult to define, particularly for discrete-valued time series. Markov chain clustering, proposed by Pamminger and Frühwirth-Schnatter [6], is an approach for clustering discrete-valued time series obtained by observing a categorical variable with several states. This model-based clustering method is based on finite mixtures of first-order time-homogeneous Markov chain models. In order to further explain group membership we present an extension to the approach of Pamminger and Frühwirth-Schnatter [6] by formulating a probabilistic model for the latent group indicators within the Bayesian classification rule by using a multinomial logit model. The parameters are estimated for a fixed number of clusters within a Bayesian framework using an Markov chain Monte Carlo (MCMC) sampling scheme representing a (full) Gibbs-type sampler which involves only draws from standard distributions. Finally, an application to a panel of Austrian wage mobility data is presented which leads to an interesting segmentation of the Austrian labour market.

  14. Analyzing Dyadic Sequence Data—Research Questions and Implied Statistical Models

    PubMed Central

    Fuchs, Peter; Nussbeck, Fridtjof W.; Meuwly, Nathalie; Bodenmann, Guy

    2017-01-01

    The analysis of observational data is often seen as a key approach to understanding dynamics in romantic relationships but also in dyadic systems in general. Statistical models for the analysis of dyadic observational data are not commonly known or applied. In this contribution, selected approaches to dyadic sequence data will be presented with a focus on models that can be applied when sample sizes are of medium size (N = 100 couples or less). Each of the statistical models is motivated by an underlying potential research question, the most important model results are presented and linked to the research question. The following research questions and models are compared with respect to their applicability using a hands on approach: (I) Is there an association between a particular behavior by one and the reaction by the other partner? (Pearson Correlation); (II) Does the behavior of one member trigger an immediate reaction by the other? (aggregated logit models; multi-level approach; basic Markov model); (III) Is there an underlying dyadic process, which might account for the observed behavior? (hidden Markov model); and (IV) Are there latent groups of dyads, which might account for observing different reaction patterns? (mixture Markov; optimal matching). Finally, recommendations for researchers to choose among the different models, issues of data handling, and advises to apply the statistical models in empirical research properly are given (e.g., in a new r-package “DySeq”). PMID:28443037

  15. Economic evaluation of nivolumab for the treatment of second-line advanced squamous NSCLC in Canada: a comparison of modeling approaches to estimate and extrapolate survival outcomes.

    PubMed

    Goeree, Ron; Villeneuve, Julie; Goeree, Jeff; Penrod, John R; Orsini, Lucinda; Tahami Monfared, Amir Abbas

    2016-06-01

    Background Lung cancer is the most common type of cancer in the world and is associated with significant mortality. Nivolumab demonstrated statistically significant improvements in progression-free survival (PFS) and overall survival (OS) for patients with advanced squamous non-small cell lung cancer (NSCLC) who were previously treated. The cost-effectiveness of nivolumab has not been assessed in Canada. A contentious component of projecting long-term cost and outcomes in cancer relates to the modeling approach adopted, with the two most common approaches being partitioned survival (PS) and Markov models. The objectives of this analysis were to estimate the cost-utility of nivolumab and to compare the results using these alternative modeling approaches. Methods Both PS and Markov models were developed using docetaxel and erlotinib as comparators. A three-health state model was used consisting of progression-free, progressed disease, and death. Disease progression and time to progression were estimated by identifying best-fitting survival curves from the clinical trial data for PFS and OS. Expected costs and health outcomes were calculated by combining health-state occupancy with medical resource use and quality-of-life assigned to each of the three health states. The health outcomes included in the model were survival and quality-adjusted-life-years (QALYs). Results Nivolumab was found to have the highest expected per-patient cost, but also improved per-patient life years (LYs) and QALYs. Nivolumab cost an additional $151,560 and $140,601 per QALY gained compared to docetaxel and erlotinib, respectively, using a PS model approach. The cost-utility estimates using a Markov model were very similar ($152,229 and $141,838, respectively, per QALY gained). Conclusions Nivolumab was found to involve a trade-off between improved patient survival and QALYs, and increased cost. It was found that the use of a PS or Markov model produced very similar estimates of expected cost, outcomes, and incremental cost-utility.

  16. SURE - SEMI-MARKOV UNRELIABILITY RANGE EVALUATOR (VAX VMS VERSION)

    NASA Technical Reports Server (NTRS)

    Butler, R. W.

    1994-01-01

    The Semi-Markov Unreliability Range Evaluator, SURE, is an analysis tool for reconfigurable, fault-tolerant systems. Traditional reliability analyses are based on aggregates of fault-handling and fault-occurrence models. SURE provides an efficient means for calculating accurate upper and lower bounds for the death state probabilities for a large class of semi-Markov models, not just those which can be reduced to critical-pair architectures. The calculated bounds are close enough (usually within 5 percent of each other) for use in reliability studies of ultra-reliable computer systems. The SURE bounding theorems have algebraic solutions and are consequently computationally efficient even for large and complex systems. SURE can optionally regard a specified parameter as a variable over a range of values, enabling an automatic sensitivity analysis. Highly reliable systems employ redundancy and reconfiguration as methods of ensuring operation. When such systems are modeled stochastically, some state transitions are orders of magnitude faster than others; that is, fault recovery is usually faster than fault arrival. SURE takes these time differences into account. Slow transitions are described by exponential functions and fast transitions are modeled by either the White or Lee theorems based on means, variances, and percentiles. The user must assign identifiers to every state in the system and define all transitions in the semi-Markov model. SURE input statements are composed of variables and constants related by FORTRAN-like operators such as =, +, *, SIN, EXP, etc. There are a dozen major commands such as READ, READO, SAVE, SHOW, PRUNE, TRUNCate, CALCulator, and RUN. Once the state transitions have been defined, SURE calculates the upper and lower probability bounds for entering specified death states within a specified mission time. SURE output is tabular. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. Although different solution techniques are utilized on different programs, it is possible to have a common input language. The Systems Validation Methods group at NASA Langley Research Center has created a set of programs that form the basis for a reliability analysis workstation. The set of programs are: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920); and the FTC fault tree tool (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree. PAWS/STEM and SURE are programs which interpret the same SURE language, but utilize different solution methods. ASSIST is a preprocessor that generates SURE language from a more abstract definition. SURE, ASSIST, and PAWS/STEM are also offered as a bundle. Please see the abstract for COS-10039/COS-10041, SARA - SURE/ASSIST Reliability Analysis Workstation, for pricing details. SURE was originally developed for DEC VAX series computers running VMS and was later ported for use on Sun computers running SunOS. The VMS version (LAR13789) is written in PASCAL, C-language, and FORTRAN 77. The standard distribution medium for the VMS version of SURE is a 9-track 1600 BPI magnetic tape in VMSINSTAL format. It is also available on a TK50 tape cartridge in VMSINSTAL format. Executables are included. The Sun UNIX version (LAR14921) is written in ANSI C-language and PASCAL. An ANSI compliant C compiler is required in order to compile the C portion of this package. The standard distribution medium for the Sun version of SURE is a .25 inch streaming magnetic tape cartridge in UNIX tar format. Both Sun3 and Sun4 executables are included. SURE was developed in 1988 and last updated in 1992. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation. TEMPLATE is a registered trademark of Template Graphics Software, Inc. UNIX is a registered trademark of AT&T Bell Laboratories. Sun3 and Sun4 are trademarks of Sun Microsystems, Inc.

  17. SURE - SEMI-MARKOV UNRELIABILITY RANGE EVALUATOR (SUN VERSION)

    NASA Technical Reports Server (NTRS)

    Butler, R. W.

    1994-01-01

    The Semi-Markov Unreliability Range Evaluator, SURE, is an analysis tool for reconfigurable, fault-tolerant systems. Traditional reliability analyses are based on aggregates of fault-handling and fault-occurrence models. SURE provides an efficient means for calculating accurate upper and lower bounds for the death state probabilities for a large class of semi-Markov models, not just those which can be reduced to critical-pair architectures. The calculated bounds are close enough (usually within 5 percent of each other) for use in reliability studies of ultra-reliable computer systems. The SURE bounding theorems have algebraic solutions and are consequently computationally efficient even for large and complex systems. SURE can optionally regard a specified parameter as a variable over a range of values, enabling an automatic sensitivity analysis. Highly reliable systems employ redundancy and reconfiguration as methods of ensuring operation. When such systems are modeled stochastically, some state transitions are orders of magnitude faster than others; that is, fault recovery is usually faster than fault arrival. SURE takes these time differences into account. Slow transitions are described by exponential functions and fast transitions are modeled by either the White or Lee theorems based on means, variances, and percentiles. The user must assign identifiers to every state in the system and define all transitions in the semi-Markov model. SURE input statements are composed of variables and constants related by FORTRAN-like operators such as =, +, *, SIN, EXP, etc. There are a dozen major commands such as READ, READO, SAVE, SHOW, PRUNE, TRUNCate, CALCulator, and RUN. Once the state transitions have been defined, SURE calculates the upper and lower probability bounds for entering specified death states within a specified mission time. SURE output is tabular. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. Although different solution techniques are utilized on different programs, it is possible to have a common input language. The Systems Validation Methods group at NASA Langley Research Center has created a set of programs that form the basis for a reliability analysis workstation. The set of programs are: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920); and the FTC fault tree tool (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree. PAWS/STEM and SURE are programs which interpret the same SURE language, but utilize different solution methods. ASSIST is a preprocessor that generates SURE language from a more abstract definition. SURE, ASSIST, and PAWS/STEM are also offered as a bundle. Please see the abstract for COS-10039/COS-10041, SARA - SURE/ASSIST Reliability Analysis Workstation, for pricing details. SURE was originally developed for DEC VAX series computers running VMS and was later ported for use on Sun computers running SunOS. The VMS version (LAR13789) is written in PASCAL, C-language, and FORTRAN 77. The standard distribution medium for the VMS version of SURE is a 9-track 1600 BPI magnetic tape in VMSINSTAL format. It is also available on a TK50 tape cartridge in VMSINSTAL format. Executables are included. The Sun UNIX version (LAR14921) is written in ANSI C-language and PASCAL. An ANSI compliant C compiler is required in order to compile the C portion of this package. The standard distribution medium for the Sun version of SURE is a .25 inch streaming magnetic tape cartridge in UNIX tar format. Both Sun3 and Sun4 executables are included. SURE was developed in 1988 and last updated in 1992. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation. TEMPLATE is a registered trademark of Template Graphics Software, Inc. UNIX is a registered trademark of AT&T Bell Laboratories. Sun3 and Sun4 are trademarks of Sun Microsystems, Inc.

  18. Hybrid Discrete-Continuous Markov Decision Processes

    NASA Technical Reports Server (NTRS)

    Feng, Zhengzhu; Dearden, Richard; Meuleau, Nicholas; Washington, Rich

    2003-01-01

    This paper proposes a Markov decision process (MDP) model that features both discrete and continuous state variables. We extend previous work by Boyan and Littman on the mono-dimensional time-dependent MDP to multiple dimensions. We present the principle of lazy discretization, and piecewise constant and linear approximations of the model. Having to deal with several continuous dimensions raises several new problems that require new solutions. In the (piecewise) linear case, we use techniques from partially- observable MDPs (POMDPS) to represent value functions as sets of linear functions attached to different partitions of the state space.

  19. Markov Jump-Linear Performance Models for Recoverable Flight Control Computers

    NASA Technical Reports Server (NTRS)

    Zhang, Hong; Gray, W. Steven; Gonzalez, Oscar R.

    2004-01-01

    Single event upsets in digital flight control hardware induced by atmospheric neutrons can reduce system performance and possibly introduce a safety hazard. One method currently under investigation to help mitigate the effects of these upsets is NASA Langley s Recoverable Computer System. In this paper, a Markov jump-linear model is developed for a recoverable flight control system, which will be validated using data from future experiments with simulated and real neutron environments. The method of tracking error analysis and the plan for the experiments are also described.

  20. Applications of geostatistics and Markov models for logo recognition

    NASA Astrophysics Data System (ADS)

    Pham, Tuan

    2003-01-01

    Spatial covariances based on geostatistics are extracted as representative features of logo or trademark images. These spatial covariances are different from other statistical features for image analysis in that the structural information of an image is independent of the pixel locations and represented in terms of spatial series. We then design a classifier in the sense of hidden Markov models to make use of these geostatistical sequential data to recognize the logos. High recognition rates are obtained from testing the method against a public-domain logo database.

  1. Multi-state Markov model for disability: A case of Malaysia Social Security (SOCSO)

    NASA Astrophysics Data System (ADS)

    Samsuddin, Shamshimah; Ismail, Noriszura

    2016-06-01

    Studies of SOCSO's contributor outcomes like disability are usually restricted to a single outcome. In this respect, the study has focused on the approach of multi-state Markov model for estimating the transition probabilities among SOCSO's contributor in Malaysia between states: work, temporary disability, permanent disability and death at yearly intervals on age, gender, year and disability category; ignoring duration and past disability experience which is not consider of how or when someone arrived in that category. These outcomes represent different states which depend on health status among the workers.

  2. Upper and lower bounds for semi-Markov reliability models of reconfigurable systems

    NASA Technical Reports Server (NTRS)

    White, A. L.

    1984-01-01

    This paper determines the information required about system recovery to compute the reliability of a class of reconfigurable systems. Upper and lower bounds are derived for these systems. The class consists of those systems that satisfy five assumptions: the components fail independently at a low constant rate, fault occurrence and system reconfiguration are independent processes, the reliability model is semi-Markov, the recovery functions which describe system configuration have small means and variances, and the system is well designed. The bounds are easy to compute, and examples are included.

  3. The display of molecular models with the Ames Interactive Modeling System (AIMS)

    NASA Technical Reports Server (NTRS)

    Egan, J. T.; Hart, J.; Burt, S. K.; Macelroy, R. D.

    1982-01-01

    A visualization of molecular models can lead to a clearer understanding of the models. Sophisticated graphics devices supported by minicomputers make it possible for the chemist to interact with the display of a very large model, altering its structure. In addition to user interaction, the need arises also for other ways of displaying information. These include the production of viewgraphs, film presentation, as well as publication quality prints of various models. To satisfy these needs, the display capability of the Ames Interactive Modeling System (AIMS) has been enhanced to provide a wide range of graphics and plotting capabilities. Attention is given to an overview of the AIMS system, graphics hardware used by the AIMS display subsystem, a comparison of graphics hardware, the representation of molecular models, graphics software used by the AIMS display subsystem, the display of a model obtained from data stored in molecule data base, a graphics feature for obtaining single frame permanent copy displays, and a feature for producing multiple frame displays.

  4. A Modularized Efficient Framework for Non-Markov Time Series Estimation

    NASA Astrophysics Data System (ADS)

    Schamberg, Gabriel; Ba, Demba; Coleman, Todd P.

    2018-06-01

    We present a compartmentalized approach to finding the maximum a-posteriori (MAP) estimate of a latent time series that obeys a dynamic stochastic model and is observed through noisy measurements. We specifically consider modern signal processing problems with non-Markov signal dynamics (e.g. group sparsity) and/or non-Gaussian measurement models (e.g. point process observation models used in neuroscience). Through the use of auxiliary variables in the MAP estimation problem, we show that a consensus formulation of the alternating direction method of multipliers (ADMM) enables iteratively computing separate estimates based on the likelihood and prior and subsequently "averaging" them in an appropriate sense using a Kalman smoother. As such, this can be applied to a broad class of problem settings and only requires modular adjustments when interchanging various aspects of the statistical model. Under broad log-concavity assumptions, we show that the separate estimation problems are convex optimization problems and that the iterative algorithm converges to the MAP estimate. As such, this framework can capture non-Markov latent time series models and non-Gaussian measurement models. We provide example applications involving (i) group-sparsity priors, within the context of electrophysiologic specrotemporal estimation, and (ii) non-Gaussian measurement models, within the context of dynamic analyses of learning with neural spiking and behavioral observations.

  5. Risk aversion and risk seeking in multicriteria forest management: a Markov decision process approach

    Treesearch

    Joseph Buongiorno; Mo Zhou; Craig Johnston

    2017-01-01

    Markov decision process models were extended to reflect some consequences of the risk attitude of forestry decision makers. One approach consisted of maximizing the expected value of a criterion subject to an upper bound on the variance or, symmetrically, minimizing the variance subject to a lower bound on the expected value.  The other method used the certainty...

  6. Teaching "Instant Experience" with Graphical Model Validation Techniques

    ERIC Educational Resources Information Center

    Ekstrøm, Claus Thorn

    2014-01-01

    Graphical model validation techniques for linear normal models are often used to check the assumptions underlying a statistical model. We describe an approach to provide "instant experience" in looking at a graphical model validation plot, so it becomes easier to validate if any of the underlying assumptions are violated.

  7. GRAPHICS MANAGER (GFXMGR): An interactive graphics software program for the Advanced Electronics Design (AED) graphics controller, Model 767

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faculjak, D.A.

    1988-03-01

    Graphics Manager (GFXMGR) is menu-driven, user-friendly software designed to interactively create, edit, and delete graphics displays on the Advanced Electronics Design (AED) graphics controller, Model 767. The software runs on the VAX family of computers and has been used successfully in security applications to create and change site layouts (maps) of specific facilities. GFXMGR greatly benefits graphics development by minimizing display-development time, reducing tedium on the part of the user, and improving system performance. It is anticipated that GFXMGR can be used to create graphics displays for many types of applications. 8 figs., 2 tabs.

  8. Dimensional Reduction for the General Markov Model on Phylogenetic Trees.

    PubMed

    Sumner, Jeremy G

    2017-03-01

    We present a method of dimensional reduction for the general Markov model of sequence evolution on a phylogenetic tree. We show that taking certain linear combinations of the associated random variables (site pattern counts) reduces the dimensionality of the model from exponential in the number of extant taxa, to quadratic in the number of taxa, while retaining the ability to statistically identify phylogenetic divergence events. A key feature is the identification of an invariant subspace which depends only bilinearly on the model parameters, in contrast to the usual multi-linear dependence in the full space. We discuss potential applications including the computation of split (edge) weights on phylogenetic trees from observed sequence data.

  9. User's instructions for the GE cardiovascular model to simulate LBNP and tilt experiments, with graphic capabilities

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The present form of this cardiovascular model simulates both 1-g and zero-g LBNP (lower body negative pressure) experiments and tilt experiments. In addition, the model simulates LBNP experiments at any body angle. The model is currently accessible on the Univac 1110 Time-Shared System in an interactive operational mode. Model output may be in tabular form and/or graphic form. The graphic capabilities are programmed for the Tektronix 4010 graphics terminal and the Univac 1110.

  10. Forecasting client transitions in British Columbia's Long-Term Care Program.

    PubMed Central

    Lane, D; Uyeno, D; Stark, A; Gutman, G; McCashin, B

    1987-01-01

    This article presents a model for the annual transitions of clients through various home and facility placements in a long-term care program. The model, an application of Markov chain analysis, is developed, tested, and applied to over 9,000 clients (N = 9,483) in British Columbia's Long Term Care Program (LTC) over the period 1978-1983. Results show that the model gives accurate forecasts of the progress of groups of clients from state to state in the long-term care system from time of admission until eventual death. Statistical methods are used to test the modeling hypothesis that clients' year-over-year transitions occur in constant proportions from state to state within the long-term care system. Tests are carried out by examining actual year-over-year transitions of each year's new admission cohort (1978-1983). Various subsets of the available data are analyzed and, after accounting for clear differences among annual cohorts, the most acceptable model of the actual client transition data occurred when clients were separated into male and female groups, i.e., the transition behavior of each group is describable by a different Markov model. To validate the model, we develop model estimates for the numbers of existing clients in each state of the long-term care system for the period (1981-1983) for which actual data are available. When these estimates are compared with the actual data, total weighted absolute deviations do not exceed 10 percent of actuals. Finally, we use the properties of the Markov chain probability transition matrix and simulation methods to develop three-year forecasts with prediction intervals for the distribution of the existing total clients into each state of the system. The tests, forecasts, and Markov model supplemental information are contained in a mechanized procedure suitable for a microcomputer. The procedure provides a powerful, efficient tool for decision makers planning facilities and services in response to the needs of long-term care clients. PMID:3121537

  11. Under-reported data analysis with INAR-hidden Markov chains.

    PubMed

    Fernández-Fontelo, Amanda; Cabaña, Alejandra; Puig, Pedro; Moriña, David

    2016-11-20

    In this work, we deal with correlated under-reported data through INAR(1)-hidden Markov chain models. These models are very flexible and can be identified through its autocorrelation function, which has a very simple form. A naïve method of parameter estimation is proposed, jointly with the maximum likelihood method based on a revised version of the forward algorithm. The most-probable unobserved time series is reconstructed by means of the Viterbi algorithm. Several examples of application in the field of public health are discussed illustrating the utility of the models. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Vulnerability of networks of interacting Markov chains.

    PubMed

    Kocarev, L; Zlatanov, N; Trajanov, D

    2010-05-13

    The concept of vulnerability is introduced for a model of random, dynamical interactions on networks. In this model, known as the influence model, the nodes are arranged in an arbitrary network, while the evolution of the status at a node is according to an internal Markov chain, but with transition probabilities that depend not only on the current status of that node but also on the statuses of the neighbouring nodes. Vulnerability is treated analytically and numerically for several networks with different topological structures, as well as for two real networks--the network of infrastructures and the EU power grid--identifying the most vulnerable nodes of these networks.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottam, Joseph A.; Blaha, Leslie M.

    Systems have biases. Their interfaces naturally guide a user toward specific patterns of action. For example, modern word-processors and spreadsheets are both capable of taking word wrapping, checking spelling, storing tables, and calculating formulas. You could write a paper in a spreadsheet or could do simple business modeling in a word-processor. However, their interfaces naturally communicate which function they are designed for. Visual analytic interfaces also have biases. In this paper, we outline why simple Markov models are a plausible tool for investigating that bias and how they might be applied. We also discuss some anticipated difficulties in such modelingmore » and touch briefly on what some Markov model extensions might provide.« less

  14. Markov model of the loan portfolio dynamics considering influence of management and external economic factors

    NASA Astrophysics Data System (ADS)

    Bozhalkina, Yana; Timofeeva, Galina

    2016-12-01

    Mathematical model of loan portfolio in the form of a controlled Markov chain with discrete time is considered. It is assumed that coefficients of migration matrix depend on corrective actions and external factors. Corrective actions include process of receiving applications, interaction with existing solvent and insolvent clients. External factors are macroeconomic indicators, such as inflation and unemployment rates, exchange rates, consumer price indices, etc. Changes in corrective actions adjust the intensity of transitions in the migration matrix. The mathematical model for forecasting the credit portfolio structure taking into account a cumulative impact of internal and external changes is obtained.

  15. Stochastic Modeling based on Dictionary Approach for the Generation of Daily Precipitation Occurrences

    NASA Astrophysics Data System (ADS)

    Panu, U. S.; Ng, W.; Rasmussen, P. F.

    2009-12-01

    The modeling of weather states (i.e., precipitation occurrences) is critical when the historical data are not long enough for the desired analysis. Stochastic models (e.g., Markov Chain and Alternating Renewal Process (ARP)) of the precipitation occurrence processes generally assume the existence of short-term temporal-dependency between the neighboring states while implying the existence of long-term independency (randomness) of states in precipitation records. Existing temporal-dependent models for the generation of precipitation occurrences are restricted either by the fixed-length memory (e.g., the order of a Markov chain model), or by the reining states in segments (e.g., persistency of homogenous states within dry/wet-spell lengths of an ARP). The modeling of variable segment lengths and states could be an arduous task and a flexible modeling approach is required for the preservation of various segmented patterns of precipitation data series. An innovative Dictionary approach has been developed in the field of genome pattern recognition for the identification of frequently occurring genome segments in DNA sequences. The genome segments delineate the biologically meaningful ``words" (i.e., segments with a specific patterns in a series of discrete states) that can be jointly modeled with variable lengths and states. A meaningful “word”, in hydrology, can be referred to a segment of precipitation occurrence comprising of wet or dry states. Such flexibility would provide a unique advantage over the traditional stochastic models for the generation of precipitation occurrences. Three stochastic models, namely, the alternating renewal process using Geometric distribution, the second-order Markov chain model, and the Dictionary approach have been assessed to evaluate their efficacy for the generation of daily precipitation sequences. Comparisons involved three guiding principles namely (i) the ability of models to preserve the short-term temporal-dependency in data through the concepts of autocorrelation, average mutual information, and Hurst exponent, (ii) the ability of models to preserve the persistency within the homogenous dry/wet weather states through analysis of dry/wet-spell lengths between the observed and generated data, and (iii) the ability to assesses the goodness-of-fit of models through the likelihood estimates (i.e., AIC and BIC). Past 30 years of observed daily precipitation records from 10 Canadian meteorological stations were utilized for comparative analyses of the three models. In general, the Markov chain model performed well. The remainders of the models were found to be competitive from one another depending upon the scope and purpose of the comparison. Although the Markov chain model has a certain advantage in the generation of daily precipitation occurrences, the structural flexibility offered by the Dictionary approach in modeling the varied segment lengths of heterogeneous weather states provides a distinct and powerful advantage in the generation of precipitation sequences.

  16. Application of stochastic automata networks for creation of continuous time Markov chain models of voltage gating of gap junction channels.

    PubMed

    Snipas, Mindaugas; Pranevicius, Henrikas; Pranevicius, Mindaugas; Pranevicius, Osvaldas; Paulauskas, Nerijus; Bukauskas, Feliksas F

    2015-01-01

    The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC) of voltage gating of gap junction (GJ) channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs), which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ~20 times.

  17. Neyman, Markov processes and survival analysis.

    PubMed

    Yang, Grace

    2013-07-01

    J. Neyman used stochastic processes extensively in his applied work. One example is the Fix and Neyman (F-N) competing risks model (1951) that uses finite homogeneous Markov processes to analyse clinical trials with breast cancer patients. We revisit the F-N model, and compare it with the Kaplan-Meier (K-M) formulation for right censored data. The comparison offers a way to generalize the K-M formulation to include risks of recovery and relapses in the calculation of a patient's survival probability. The generalization is to extend the F-N model to a nonhomogeneous Markov process. Closed-form solutions of the survival probability are available in special cases of the nonhomogeneous processes, like the popular multiple decrement model (including the K-M model) and Chiang's staging model, but these models do not consider recovery and relapses while the F-N model does. An analysis of sero-epidemiology current status data with recurrent events is illustrated. Fix and Neyman used Neyman's RBAN (regular best asymptotic normal) estimates for the risks, and provided a numerical example showing the importance of considering both the survival probability and the length of time of a patient living a normal life in the evaluation of clinical trials. The said extension would result in a complicated model and it is unlikely to find analytical closed-form solutions for survival analysis. With ever increasing computing power, numerical methods offer a viable way of investigating the problem.

  18. Estimating parameters of hidden Markov models based on marked individuals: use of robust design data

    USGS Publications Warehouse

    Kendall, William L.; White, Gary C.; Hines, James E.; Langtimm, Catherine A.; Yoshizaki, Jun

    2012-01-01

    Development and use of multistate mark-recapture models, which provide estimates of parameters of Markov processes in the face of imperfect detection, have become common over the last twenty years. Recently, estimating parameters of hidden Markov models, where the state of an individual can be uncertain even when it is detected, has received attention. Previous work has shown that ignoring state uncertainty biases estimates of survival and state transition probabilities, thereby reducing the power to detect effects. Efforts to adjust for state uncertainty have included special cases and a general framework for a single sample per period of interest. We provide a flexible framework for adjusting for state uncertainty in multistate models, while utilizing multiple sampling occasions per period of interest to increase precision and remove parameter redundancy. These models also produce direct estimates of state structure for each primary period, even for the case where there is just one sampling occasion. We apply our model to expected value data, and to data from a study of Florida manatees, to provide examples of the improvement in precision due to secondary capture occasions. We also provide user-friendly software to implement these models. This general framework could also be used by practitioners to consider constrained models of particular interest, or model the relationship between within-primary period parameters (e.g., state structure) and between-primary period parameters (e.g., state transition probabilities).

  19. Nucleosome positioning from tiling microarray data.

    PubMed

    Yassour, Moran; Kaplan, Tommy; Jaimovich, Ariel; Friedman, Nir

    2008-07-01

    The packaging of DNA around nucleosomes in eukaryotic cells plays a crucial role in regulation of gene expression, and other DNA-related processes. To better understand the regulatory role of nucleosomes, it is important to pinpoint their position in a high (5-10 bp) resolution. Toward this end, several recent works used dense tiling arrays to map nucleosomes in a high-throughput manner. These data were then parsed and hand-curated, and the positions of nucleosomes were assessed. In this manuscript, we present a fully automated algorithm to analyze such data and predict the exact location of nucleosomes. We introduce a method, based on a probabilistic graphical model, to increase the resolution of our predictions even beyond that of the microarray used. We show how to build such a model and how to compile it into a simple Hidden Markov Model, allowing for a fast and accurate inference of nucleosome positions. We applied our model to nucleosomal data from mid-log yeast cells reported by Yuan et al. and compared our predictions to those of the original paper; to a more recent method that uses five times denser tiling arrays as explained by Lee et al.; and to a curated set of literature-based nucleosome positions. Our results suggest that by applying our algorithm to the same data used by Yuan et al. our fully automated model traced 13% more nucleosomes, and increased the overall accuracy by about 20%. We believe that such an improvement opens the way for a better understanding of the regulatory mechanisms controlling gene expression, and how they are encoded in the DNA.

  20. Reliability modelling and analysis of a multi-state element based on a dynamic Bayesian network

    PubMed Central

    Xu, Tingxue; Gu, Junyuan; Dong, Qi; Fu, Linyu

    2018-01-01

    This paper presents a quantitative reliability modelling and analysis method for multi-state elements based on a combination of the Markov process and a dynamic Bayesian network (DBN), taking perfect repair, imperfect repair and condition-based maintenance (CBM) into consideration. The Markov models of elements without repair and under CBM are established, and an absorbing set is introduced to determine the reliability of the repairable element. According to the state-transition relations between the states determined by the Markov process, a DBN model is built. In addition, its parameters for series and parallel systems, namely, conditional probability tables, can be calculated by referring to the conditional degradation probabilities. Finally, the power of a control unit in a failure model is used as an example. A dynamic fault tree (DFT) is translated into a Bayesian network model, and subsequently extended to a DBN. The results show the state probabilities of an element and the system without repair, with perfect and imperfect repair, and under CBM, with an absorbing set plotted by differential equations and verified. Through referring forward, the reliability value of the control unit is determined in different kinds of modes. Finally, weak nodes are noted in the control unit. PMID:29765629

  1. Susceptible-infected-susceptible epidemics on networks with general infection and cure times.

    PubMed

    Cator, E; van de Bovenkamp, R; Van Mieghem, P

    2013-06-01

    The classical, continuous-time susceptible-infected-susceptible (SIS) Markov epidemic model on an arbitrary network is extended to incorporate infection and curing or recovery times each characterized by a general distribution (rather than an exponential distribution as in Markov processes). This extension, called the generalized SIS (GSIS) model, is believed to have a much larger applicability to real-world epidemics (such as information spread in online social networks, real diseases, malware spread in computer networks, etc.) that likely do not feature exponential times. While the exact governing equations for the GSIS model are difficult to deduce due to their non-Markovian nature, accurate mean-field equations are derived that resemble our previous N-intertwined mean-field approximation (NIMFA) and so allow us to transfer the whole analytic machinery of the NIMFA to the GSIS model. In particular, we establish the criterion to compute the epidemic threshold in the GSIS model. Moreover, we show that the average number of infection attempts during a recovery time is the more natural key parameter, instead of the effective infection rate in the classical, continuous-time SIS Markov model. The relative simplicity of our mean-field results enables us to treat more general types of SIS epidemics, while offering an easier key parameter to measure the average activity of those general viral agents.

  2. Multilayer Markov Random Field models for change detection in optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Benedek, Csaba; Shadaydeh, Maha; Kato, Zoltan; Szirányi, Tamás; Zerubia, Josiane

    2015-09-01

    In this paper, we give a comparative study on three Multilayer Markov Random Field (MRF) based solutions proposed for change detection in optical remote sensing images, called Multicue MRF, Conditional Mixed Markov model, and Fusion MRF. Our purposes are twofold. On one hand, we highlight the significance of the focused model family and we set them against various state-of-the-art approaches through a thematic analysis and quantitative tests. We discuss the advantages and drawbacks of class comparison vs. direct approaches, usage of training data, various targeted application fields and different ways of Ground Truth generation, meantime informing the Reader in which roles the Multilayer MRFs can be efficiently applied. On the other hand we also emphasize the differences between the three focused models at various levels, considering the model structures, feature extraction, layer interpretation, change concept definition, parameter tuning and performance. We provide qualitative and quantitative comparison results using principally a publicly available change detection database which contains aerial image pairs and Ground Truth change masks. We conclude that the discussed models are competitive against alternative state-of-the-art solutions, if one uses them as pre-processing filters in multitemporal optical image analysis. In addition, they cover together a large range of applications, considering the different usage options of the three approaches.

  3. An efficient interpolation technique for jump proposals in reversible-jump Markov chain Monte Carlo calculations

    PubMed Central

    Farr, W. M.; Mandel, I.; Stevens, D.

    2015-01-01

    Selection among alternative theoretical models given an observed dataset is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty and it requires jumps between model parameter spaces, but cannot efficiently explore both parameter spaces at once. Thus, a naive jump between parameter spaces is unlikely to be accepted in the Markov chain Monte Carlo (MCMC) algorithm and convergence is correspondingly slow. Here, we demonstrate an interpolation technique that uses samples from single-model MCMCs to propose intermodel jumps from an approximation to the single-model posterior of the target parameter space. The interpolation technique, based on a kD-tree data structure, is adaptive and efficient in modest dimensionality. We show that our technique leads to improved convergence over naive jumps in an RJMCMC, and compare it to other proposals in the literature to improve the convergence of RJMCMCs. We also demonstrate the use of the same interpolation technique as a way to construct efficient ‘global’ proposal distributions for single-model MCMCs without prior knowledge of the structure of the posterior distribution, and discuss improvements that permit the method to be used in higher dimensional spaces efficiently. PMID:26543580

  4. Susceptible-infected-susceptible epidemics on networks with general infection and cure times

    NASA Astrophysics Data System (ADS)

    Cator, E.; van de Bovenkamp, R.; Van Mieghem, P.

    2013-06-01

    The classical, continuous-time susceptible-infected-susceptible (SIS) Markov epidemic model on an arbitrary network is extended to incorporate infection and curing or recovery times each characterized by a general distribution (rather than an exponential distribution as in Markov processes). This extension, called the generalized SIS (GSIS) model, is believed to have a much larger applicability to real-world epidemics (such as information spread in online social networks, real diseases, malware spread in computer networks, etc.) that likely do not feature exponential times. While the exact governing equations for the GSIS model are difficult to deduce due to their non-Markovian nature, accurate mean-field equations are derived that resemble our previous N-intertwined mean-field approximation (NIMFA) and so allow us to transfer the whole analytic machinery of the NIMFA to the GSIS model. In particular, we establish the criterion to compute the epidemic threshold in the GSIS model. Moreover, we show that the average number of infection attempts during a recovery time is the more natural key parameter, instead of the effective infection rate in the classical, continuous-time SIS Markov model. The relative simplicity of our mean-field results enables us to treat more general types of SIS epidemics, while offering an easier key parameter to measure the average activity of those general viral agents.

  5. A novel grey-fuzzy-Markov and pattern recognition model for industrial accident forecasting

    NASA Astrophysics Data System (ADS)

    Edem, Inyeneobong Ekoi; Oke, Sunday Ayoola; Adebiyi, Kazeem Adekunle

    2017-10-01

    Industrial forecasting is a top-echelon research domain, which has over the past several years experienced highly provocative research discussions. The scope of this research domain continues to expand due to the continuous knowledge ignition motivated by scholars in the area. So, more intelligent and intellectual contributions on current research issues in the accident domain will potentially spark more lively academic, value-added discussions that will be of practical significance to members of the safety community. In this communication, a new grey-fuzzy-Markov time series model, developed from nondifferential grey interval analytical framework has been presented for the first time. This instrument forecasts future accident occurrences under time-invariance assumption. The actual contribution made in the article is to recognise accident occurrence patterns and decompose them into grey state principal pattern components. The architectural framework of the developed grey-fuzzy-Markov pattern recognition (GFMAPR) model has four stages: fuzzification, smoothening, defuzzification and whitenisation. The results of application of the developed novel model signify that forecasting could be effectively carried out under uncertain conditions and hence, positions the model as a distinctly superior tool for accident forecasting investigations. The novelty of the work lies in the capability of the model in making highly accurate predictions and forecasts based on the availability of small or incomplete accident data.

  6. A Program of Continuing Research on Representing, Manipulating, and Reasoning about Physical Objects

    DTIC Science & Technology

    1991-09-30

    graphics with the goal of automatically converting complex graphics models into forms more appropriate for radiosity computation. 2.4 Least Constraint We...to computer graphics with the goal of automatically 7 converting complex graphics models into forms more appropriate for radiosity com- putation. 8 4

  7. Building Regression Models: The Importance of Graphics.

    ERIC Educational Resources Information Center

    Dunn, Richard

    1989-01-01

    Points out reasons for using graphical methods to teach simple and multiple regression analysis. Argues that a graphically oriented approach has considerable pedagogic advantages in the exposition of simple and multiple regression. Shows that graphical methods may play a central role in the process of building regression models. (Author/LS)

  8. Engineering Graphics Educational Outcomes for the Global Engineer: An Update

    ERIC Educational Resources Information Center

    Barr, R. E.

    2012-01-01

    This paper discusses the formulation of educational outcomes for engineering graphics that span the global enterprise. Results of two repeated faculty surveys indicate that new computer graphics tools and techniques are now the preferred mode of engineering graphical communication. Specifically, 3-D computer modeling, assembly modeling, and model…

  9. Inference for finite-sample trajectories in dynamic multi-state site-occupancy models using hidden Markov model smoothing

    USGS Publications Warehouse

    Fiske, Ian J.; Royle, J. Andrew; Gross, Kevin

    2014-01-01

    Ecologists and wildlife biologists increasingly use latent variable models to study patterns of species occurrence when detection is imperfect. These models have recently been generalized to accommodate both a more expansive description of state than simple presence or absence, and Markovian dynamics in the latent state over successive sampling seasons. In this paper, we write these multi-season, multi-state models as hidden Markov models to find both maximum likelihood estimates of model parameters and finite-sample estimators of the trajectory of the latent state over time. These estimators are especially useful for characterizing population trends in species of conservation concern. We also develop parametric bootstrap procedures that allow formal inference about latent trend. We examine model behavior through simulation, and we apply the model to data from the North American Amphibian Monitoring Program.

  10. Computer modeling of lung cancer diagnosis-to-treatment process

    PubMed Central

    Ju, Feng; Lee, Hyo Kyung; Osarogiagbon, Raymond U.; Yu, Xinhua; Faris, Nick

    2015-01-01

    We introduce an example of a rigorous, quantitative method for quality improvement in lung cancer care-delivery. Computer process modeling methods are introduced for lung cancer diagnosis, staging and treatment selection process. Two types of process modeling techniques, discrete event simulation (DES) and analytical models, are briefly reviewed. Recent developments in DES are outlined and the necessary data and procedures to develop a DES model for lung cancer diagnosis, leading up to surgical treatment process are summarized. The analytical models include both Markov chain model and closed formulas. The Markov chain models with its application in healthcare are introduced and the approach to derive a lung cancer diagnosis process model is presented. Similarly, the procedure to derive closed formulas evaluating the diagnosis process performance is outlined. Finally, the pros and cons of these methods are discussed. PMID:26380181

  11. MacSyFinder: A Program to Mine Genomes for Molecular Systems with an Application to CRISPR-Cas Systems

    PubMed Central

    Abby, Sophie S.; Néron, Bertrand; Ménager, Hervé; Touchon, Marie; Rocha, Eduardo P. C.

    2014-01-01

    Motivation Biologists often wish to use their knowledge on a few experimental models of a given molecular system to identify homologs in genomic data. We developed a generic tool for this purpose. Results Macromolecular System Finder (MacSyFinder) provides a flexible framework to model the properties of molecular systems (cellular machinery or pathway) including their components, evolutionary associations with other systems and genetic architecture. Modelled features also include functional analogs, and the multiple uses of a same component by different systems. Models are used to search for molecular systems in complete genomes or in unstructured data like metagenomes. The components of the systems are searched by sequence similarity using Hidden Markov model (HMM) protein profiles. The assignment of hits to a given system is decided based on compliance with the content and organization of the system model. A graphical interface, MacSyView, facilitates the analysis of the results by showing overviews of component content and genomic context. To exemplify the use of MacSyFinder we built models to detect and class CRISPR-Cas systems following a previously established classification. We show that MacSyFinder allows to easily define an accurate “Cas-finder” using publicly available protein profiles. Availability and Implementation MacSyFinder is a standalone application implemented in Python. It requires Python 2.7, Hmmer and makeblastdb (version 2.2.28 or higher). It is freely available with its source code under a GPLv3 license at https://github.com/gem-pasteur/macsyfinder. It is compatible with all platforms supporting Python and Hmmer/makeblastdb. The “Cas-finder” (models and HMM profiles) is distributed as a compressed tarball archive as Supporting Information. PMID:25330359

  12. Polymeric Radiation Shielding for Applications in Space: Polyimide Synthesis and Modeling of Multi-Layered Polymeric Shields

    NASA Astrophysics Data System (ADS)

    Schiavone, Clinton Cleveland

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  13. Modeling of Critically-Stratified Gravity Flows: Application to the Eel River Continental Shelf, Northern California

    NASA Astrophysics Data System (ADS)

    Scully, Malcolm E.

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  14. Multiphysics Modeling of Electric-Swing Adsorption System with In-Vessel Condensation (POSTPRINT)

    DTIC Science & Technology

    2007-04-01

    Petkovska, Danijela Antov-Bozalo, Ana Markovic Department of Chemical Engineering Faculty of Technology and Metallurgy University of Belgrade Belgrade...Government. M. Petkovska () · D. Antov-Bozalo · A. Markovic Department of Chemical Engineering, Faculty of Technology and Metallurgy , University of...distributions in a resistance-heated gran- ular activated- charcoal bed. Theor. Found. Chem. Eng. 36, 141– 144 (2002) Yu, F.D., Luo, L.A., Grevillot, G

  15. Symbolic Heuristic Search for Factored Markov Decision Processes

    NASA Technical Reports Server (NTRS)

    Morris, Robert (Technical Monitor); Feng, Zheng-Zhu; Hansen, Eric A.

    2003-01-01

    We describe a planning algorithm that integrates two approaches to solving Markov decision processes with large state spaces. State abstraction is used to avoid evaluating states individually. Forward search from a start state, guided by an admissible heuristic, is used to avoid evaluating all states. We combine these two approaches in a novel way that exploits symbolic model-checking techniques and demonstrates their usefulness for decision-theoretic planning.

  16. CTPPL: A Continuous Time Probabilistic Programming Language

    DTIC Science & Technology

    2009-07-01

    recent years there has been a flurry of interest in continuous time models, mostly focused on continuous time Bayesian networks ( CTBNs ) [Nodelman, 2007... CTBNs are built on homogenous Markov processes. A homogenous Markov pro- cess is a finite state, continuous time process, consisting of an initial...q1 : xn()] ... Some state transitions can produce emissions. In a CTBN , each variable has a conditional inten- sity matrix Qu for every combination of

  17. Semi-Markov Models for Degradation-Based Reliability

    DTIC Science & Technology

    2010-01-01

    standard analysis techniques for Markov processes can be employed (cf. Whitt (1984), Altiok (1985), Perros (1994), and Osogami and Harchol-Balter...We want to approximate X by a PH random variable, sayY, with c.d.f. Ĥ. Marie (1980), Altiok (1985), Johnson (1993), Perros (1994), and Osogami and...provides a minimal representation when matching only two moments. By considering the guidance provided by Marie (1980), Whitt (1984), Altiok (1985), Perros

  18. Numerical methods in Markov chain modeling

    NASA Technical Reports Server (NTRS)

    Philippe, Bernard; Saad, Youcef; Stewart, William J.

    1989-01-01

    Several methods for computing stationary probability distributions of Markov chains are described and compared. The main linear algebra problem consists of computing an eigenvector of a sparse, usually nonsymmetric, matrix associated with a known eigenvalue. It can also be cast as a problem of solving a homogeneous singular linear system. Several methods based on combinations of Krylov subspace techniques are presented. The performance of these methods on some realistic problems are compared.

  19. Dynamic neutron scattering from conformational dynamics. I. Theory and Markov models

    NASA Astrophysics Data System (ADS)

    Lindner, Benjamin; Yi, Zheng; Prinz, Jan-Hendrik; Smith, Jeremy C.; Noé, Frank

    2013-11-01

    The dynamics of complex molecules can be directly probed by inelastic neutron scattering experiments. However, many of the underlying dynamical processes may exist on similar timescales, which makes it difficult to assign processes seen experimentally to specific structural rearrangements. Here, we show how Markov models can be used to connect structural changes observed in molecular dynamics simulation directly to the relaxation processes probed by scattering experiments. For this, a conformational dynamics theory of dynamical neutron and X-ray scattering is developed, following our previous approach for computing dynamical fingerprints of time-correlation functions [F. Noé, S. Doose, I. Daidone, M. Löllmann, J. Chodera, M. Sauer, and J. Smith, Proc. Natl. Acad. Sci. U.S.A. 108, 4822 (2011)]. Markov modeling is used to approximate the relaxation processes and timescales of the molecule via the eigenvectors and eigenvalues of a transition matrix between conformational substates. This procedure allows the establishment of a complete set of exponential decay functions and a full decomposition into the individual contributions, i.e., the contribution of every atom and dynamical process to each experimental relaxation process.

  20. Bayesian spatial transformation models with applications in neuroimaging data

    PubMed Central

    Miranda, Michelle F.; Zhu, Hongtu; Ibrahim, Joseph G.

    2013-01-01

    Summary The aim of this paper is to develop a class of spatial transformation models (STM) to spatially model the varying association between imaging measures in a three-dimensional (3D) volume (or 2D surface) and a set of covariates. Our STMs include a varying Box-Cox transformation model for dealing with the issue of non-Gaussian distributed imaging data and a Gaussian Markov Random Field model for incorporating spatial smoothness of the imaging data. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. Simulations and real data analysis demonstrate that the STM significantly outperforms the voxel-wise linear model with Gaussian noise in recovering meaningful geometric patterns. Our STM is able to reveal important brain regions with morphological changes in children with attention deficit hyperactivity disorder. PMID:24128143

  1. Entropy, complexity, and Markov diagrams for random walk cancer models.

    PubMed

    Newton, Paul K; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-12-19

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.

  2. Free flowing and cohesive powders agitation in a cylindrical convective blender- kinetics experiments and Markov chain modelling

    NASA Astrophysics Data System (ADS)

    Legoix, Léonard; Milhé, Mathieu; Gatumel, Cendrine; Berthiaux, Henri

    2017-06-01

    An original methodology for studying powder flow in a cylindrical convective blender has been developed. A free-flowing and a cohesive powder were studied, at a fixed stirring speed, in rolling regime. For both powders, three apparent flow mechanisms were evidenced: convection in the volume swept by the blades, diffusion/shearing between the agitated zone and the stagnant one, as well as in the stagnant zone itself, and avalanches at the powder bed surface between agitated and stagnant zones. After defining six zones in the blender, tracing experiments were carried out by placing appropriate tracers in different starting zones and sampling the whole bed at different stirring times, which lead to mixing kinetics of the powders into themselves. A Markov chains model of the blender allowed the quantification of the three mechanisms respective magnitude by fitting the experimental data. This simple model has a good agreement with the free-flowing powder data, but is not able to represent well the observations for the cohesive powder. Bed consolidation should probably be taken into account for this kind of powders and thus a linear Markov model is not sufficient.

  3. Entropy, complexity, and Markov diagrams for random walk cancer models

    NASA Astrophysics Data System (ADS)

    Newton, Paul K.; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-12-01

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.

  4. Identifying differentially expressed genes in cancer patients using a non-parameter Ising model.

    PubMed

    Li, Xumeng; Feltus, Frank A; Sun, Xiaoqian; Wang, James Z; Luo, Feng

    2011-10-01

    Identification of genes and pathways involved in diseases and physiological conditions is a major task in systems biology. In this study, we developed a novel non-parameter Ising model to integrate protein-protein interaction network and microarray data for identifying differentially expressed (DE) genes. We also proposed a simulated annealing algorithm to find the optimal configuration of the Ising model. The Ising model was applied to two breast cancer microarray data sets. The results showed that more cancer-related DE sub-networks and genes were identified by the Ising model than those by the Markov random field model. Furthermore, cross-validation experiments showed that DE genes identified by Ising model can improve classification performance compared with DE genes identified by Markov random field model. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Unifying Model-Based and Reactive Programming within a Model-Based Executive

    NASA Technical Reports Server (NTRS)

    Williams, Brian C.; Gupta, Vineet; Norvig, Peter (Technical Monitor)

    1999-01-01

    Real-time, model-based, deduction has recently emerged as a vital component in AI's tool box for developing highly autonomous reactive systems. Yet one of the current hurdles towards developing model-based reactive systems is the number of methods simultaneously employed, and their corresponding melange of programming and modeling languages. This paper offers an important step towards unification. We introduce RMPL, a rich modeling language that combines probabilistic, constraint-based modeling with reactive programming constructs, while offering a simple semantics in terms of hidden state Markov processes. We introduce probabilistic, hierarchical constraint automata (PHCA), which allow Markov processes to be expressed in a compact representation that preserves the modularity of RMPL programs. Finally, a model-based executive, called Reactive Burton is described that exploits this compact encoding to perform efficIent simulation, belief state update and control sequence generation.

  6. Markov models for fMRI correlation structure: Is brain functional connectivity small world, or decomposable into networks?

    PubMed

    Varoquaux, G; Gramfort, A; Poline, J B; Thirion, B

    2012-01-01

    Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. On the stochastic dissemination of faults in an admissible network

    NASA Technical Reports Server (NTRS)

    Kyrala, A.

    1987-01-01

    The dynamic distribution of faults in a general type network is discussed. The starting point is a uniquely branched network in which each pair of nodes is connected by a single branch. Mathematical expressions for the uniquely branched network transition matrix are derived to show that sufficient stationarity exists to ensure the validity of the use of the Markov Chain model to analyze networks. In addition the conditions for the use of Semi-Markov models are discussed. General mathematical expressions are derived in an examination of branch redundancy techniques commonly used to increase reliability.

  8. MARKOV: A methodology for the solution of infinite time horizon MARKOV decision processes

    USGS Publications Warehouse

    Williams, B.K.

    1988-01-01

    Algorithms are described for determining optimal policies for finite state, finite action, infinite discrete time horizon Markov decision processes. Both value-improvement and policy-improvement techniques are used in the algorithms. Computing procedures are also described. The algorithms are appropriate for processes that are either finite or infinite, deterministic or stochastic, discounted or undiscounted, in any meaningful combination of these features. Computing procedures are described in terms of initial data processing, bound improvements, process reduction, and testing and solution. Application of the methodology is illustrated with an example involving natural resource management. Management implications of certain hypothesized relationships between mallard survival and harvest rates are addressed by applying the optimality procedures to mallard population models.

  9. Network Security Risk Assessment System Based on Attack Graph and Markov Chain

    NASA Astrophysics Data System (ADS)

    Sun, Fuxiong; Pi, Juntao; Lv, Jin; Cao, Tian

    2017-10-01

    Network security risk assessment technology can be found in advance of the network problems and related vulnerabilities, it has become an important means to solve the problem of network security. Based on attack graph and Markov chain, this paper provides a Network Security Risk Assessment Model (NSRAM). Based on the network infiltration tests, NSRAM generates the attack graph by the breadth traversal algorithm. Combines with the international standard CVSS, the attack probability of atomic nodes are counted, and then the attack transition probabilities of ones are calculated by Markov chain. NSRAM selects the optimal attack path after comprehensive measurement to assessment network security risk. The simulation results show that NSRAM can reflect the actual situation of network security objectively.

  10. Tissue multifractality and hidden Markov model based integrated framework for optimum precancer detection

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sabyasachi; Das, Nandan K.; Kurmi, Indrajit; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.

    2017-10-01

    We report the application of a hidden Markov model (HMM) on multifractal tissue optical properties derived via the Born approximation-based inverse light scattering method for effective discrimination of precancerous human cervical tissue sites from the normal ones. Two global fractal parameters, generalized Hurst exponent and the corresponding singularity spectrum width, computed by multifractal detrended fluctuation analysis (MFDFA), are used here as potential biomarkers. We develop a methodology that makes use of these multifractal parameters by integrating with different statistical classifiers like the HMM and support vector machine (SVM). It is shown that the MFDFA-HMM integrated model achieves significantly better discrimination between normal and different grades of cancer as compared to the MFDFA-SVM integrated model.

  11. Modeling treatment of ischemic heart disease with partially observable Markov decision processes.

    PubMed

    Hauskrecht, M; Fraser, H

    1998-01-01

    Diagnosis of a disease and its treatment are not separate, one-shot activities. Instead they are very often dependent and interleaved over time, mostly due to uncertainty about the underlying disease, uncertainty associated with the response of a patient to the treatment and varying cost of different diagnostic (investigative) and treatment procedures. The framework of Partially observable Markov decision processes (POMDPs) developed and used in operations research, control theory and artificial intelligence communities is particularly suitable for modeling such a complex decision process. In the paper, we show how the POMDP framework could be used to model and solve the problem of the management of patients with ischemic heart disease, and point out modeling advantages of the framework over standard decision formalisms.

  12. ASSIST - THE ABSTRACT SEMI-MARKOV SPECIFICATION INTERFACE TO THE SURE TOOL PROGRAM (SUN VERSION)

    NASA Technical Reports Server (NTRS)

    Johnson, S. C.

    1994-01-01

    ASSIST, the Abstract Semi-Markov Specification Interface to the SURE Tool program, is an interface that will enable reliability engineers to accurately design large semi-Markov models. The user describes the failure behavior of a fault-tolerant computer system in an abstract, high-level language. The ASSIST program then automatically generates a corresponding semi-Markov model. The abstract language allows efficient description of large, complex systems; a one-page ASSIST-language description may result in a semi-Markov model with thousands of states and transitions. The ASSIST program also includes model-reduction techniques to facilitate efficient modeling of large systems. Instead of listing the individual states of the Markov model, reliability engineers can specify the rules governing the behavior of a system, and these are used to automatically generate the model. ASSIST reads an input file describing the failure behavior of a system in an abstract language and generates a Markov model in the format needed for input to SURE, the semi-Markov Unreliability Range Evaluator program, and PAWS/STEM, the Pade Approximation with Scaling program and Scaled Taylor Exponential Matrix. A Markov model consists of a number of system states and transitions between them. Each state in the model represents a possible state of the system in terms of which components have failed, which ones have been removed, etc. Within ASSIST, each state is defined by a state vector, where each element of the vector takes on an integer value within a defined range. An element can represent any meaningful characteristic, such as the number of working components of one type in the system, or the number of faulty components of another type in use. Statements representing transitions between states in the model have three parts: a condition expression, a destination expression, and a rate expression. The first expression is a Boolean expression describing the state space variable values of states for which the transition is valid. The second expression defines the destination state for the transition in terms of state space variable values. The third expression defines the distribution of elapsed time for the transition. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. Although different solution techniques are utilized on different programs, it is possible to have a common input language. The Systems Validation Methods group at NASA Langley Research Center has created a set of programs that form the basis for a reliability analysis workstation. The set of programs are: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920); and the FTC fault tree tool (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree. PAWS/STEM and SURE are programs which interpret the same SURE language, but utilize different solution methods. ASSIST is a preprocessor that generates SURE language from a more abstract definition. SURE, ASSIST, and PAWS/STEM are also offered as a bundle. Please see the abstract for COS-10039/COS-10041, SARA - SURE/ASSIST Reliability Analysis Workstation, for pricing details. ASSIST was originally developed for DEC VAX series computers running VMS and was later ported for use on Sun computers running SunOS. The VMS version (LAR14193) is written in C-language and can be compiled with the VAX C compiler. The standard distribution medium for the VMS version of ASSIST is a 9-track 1600 BPI magnetic tape in VMSINSTAL format. It is also available on a TK50 tape cartridge in VMSINSTAL format. Executables are included. The Sun version (LAR14923) is written in ANSI C-language. An ANSI compliant C compiler is required in order to compile this package. The standard distribution medium for the Sun version of ASSIST is a .25 inch streaming magnetic tape cartridge in UNIX tar format. Both Sun3 and Sun4 executables are included. Electronic copies of the documentation in PostScript, TeX, and DVI formats are provided on the distribution medium. (The VMS distribution lacks the .DVI format files, however.) ASSIST was developed in 1986 and last updated in 1992. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation. SunOS, Sun3, and Sun4 are trademarks of Sun Microsystems, Inc. UNIX is a registered trademark of AT&T Bell Laboratories.

  13. ASSIST - THE ABSTRACT SEMI-MARKOV SPECIFICATION INTERFACE TO THE SURE TOOL PROGRAM (VAX VMS VERSION)

    NASA Technical Reports Server (NTRS)

    Johnson, S. C.

    1994-01-01

    ASSIST, the Abstract Semi-Markov Specification Interface to the SURE Tool program, is an interface that will enable reliability engineers to accurately design large semi-Markov models. The user describes the failure behavior of a fault-tolerant computer system in an abstract, high-level language. The ASSIST program then automatically generates a corresponding semi-Markov model. The abstract language allows efficient description of large, complex systems; a one-page ASSIST-language description may result in a semi-Markov model with thousands of states and transitions. The ASSIST program also includes model-reduction techniques to facilitate efficient modeling of large systems. Instead of listing the individual states of the Markov model, reliability engineers can specify the rules governing the behavior of a system, and these are used to automatically generate the model. ASSIST reads an input file describing the failure behavior of a system in an abstract language and generates a Markov model in the format needed for input to SURE, the semi-Markov Unreliability Range Evaluator program, and PAWS/STEM, the Pade Approximation with Scaling program and Scaled Taylor Exponential Matrix. A Markov model consists of a number of system states and transitions between them. Each state in the model represents a possible state of the system in terms of which components have failed, which ones have been removed, etc. Within ASSIST, each state is defined by a state vector, where each element of the vector takes on an integer value within a defined range. An element can represent any meaningful characteristic, such as the number of working components of one type in the system, or the number of faulty components of another type in use. Statements representing transitions between states in the model have three parts: a condition expression, a destination expression, and a rate expression. The first expression is a Boolean expression describing the state space variable values of states for which the transition is valid. The second expression defines the destination state for the transition in terms of state space variable values. The third expression defines the distribution of elapsed time for the transition. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. Although different solution techniques are utilized on different programs, it is possible to have a common input language. The Systems Validation Methods group at NASA Langley Research Center has created a set of programs that form the basis for a reliability analysis workstation. The set of programs are: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920); and the FTC fault tree tool (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree. PAWS/STEM and SURE are programs which interpret the same SURE language, but utilize different solution methods. ASSIST is a preprocessor that generates SURE language from a more abstract definition. SURE, ASSIST, and PAWS/STEM are also offered as a bundle. Please see the abstract for COS-10039/COS-10041, SARA - SURE/ASSIST Reliability Analysis Workstation, for pricing details. ASSIST was originally developed for DEC VAX series computers running VMS and was later ported for use on Sun computers running SunOS. The VMS version (LAR14193) is written in C-language and can be compiled with the VAX C compiler. The standard distribution medium for the VMS version of ASSIST is a 9-track 1600 BPI magnetic tape in VMSINSTAL format. It is also available on a TK50 tape cartridge in VMSINSTAL format. Executables are included. The Sun version (LAR14923) is written in ANSI C-language. An ANSI compliant C compiler is required in order to compile this package. The standard distribution medium for the Sun version of ASSIST is a .25 inch streaming magnetic tape cartridge in UNIX tar format. Both Sun3 and Sun4 executables are included. Electronic copies of the documentation in PostScript, TeX, and DVI formats are provided on the distribution medium. (The VMS distribution lacks the .DVI format files, however.) ASSIST was developed in 1986 and last updated in 1992. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation. SunOS, Sun3, and Sun4 are trademarks of Sun Microsystems, Inc. UNIX is a registered trademark of AT&T Bell Laboratories.

  14. Reciprocal Markov modeling of feedback mechanisms between emotion and dietary choice using experience sampling data

    PubMed Central

    Lu, Ji; Pan, Junhao; Zhang, Qiang; Dubé, Laurette; Ip, Edward H.

    2015-01-01

    With intensively collected longitudinal data, recent advances in Experience Sampling Method (ESM) benefit social science empirical research, but also pose important methodological challenges. As traditional statistical models are not generally well-equipped to analyze a system of variables that contain feedback loops, this paper proposes the utility of an extended hidden Markov model to model reciprocal relationship between momentary emotion and eating behavior. This paper revisited an ESM data set (Lu, Huet & Dube, 2011) that observed 160 participants’ food consumption and momentary emotions six times per day in 10 days. Focusing on the analyses on feedback loop between mood and meal healthiness decision, the proposed Reciprocal Markov Model (RMM) can accommodate both hidden (“general” emotional states: positive vs. negative state) and observed states (meal: healthier, same or less healthy than usual) without presuming independence between observations and smooth trajectories of mood or behavior changes. The results of RMM analyses illustrated the reciprocal chains of meal consumption and mood as well as the effect of contextual factors that moderate the interrelationship between eating and emotion. A simulation experiment that generated data consistent to the empirical study further demonstrated that the procedure is promising in terms of recovering the parameters. PMID:26717120

  15. Development of reversible jump Markov Chain Monte Carlo algorithm in the Bayesian mixture modeling for microarray data in Indonesia

    NASA Astrophysics Data System (ADS)

    Astuti, Ani Budi; Iriawan, Nur; Irhamah, Kuswanto, Heri

    2017-12-01

    In the Bayesian mixture modeling requires stages the identification number of the most appropriate mixture components thus obtained mixture models fit the data through data driven concept. Reversible Jump Markov Chain Monte Carlo (RJMCMC) is a combination of the reversible jump (RJ) concept and the Markov Chain Monte Carlo (MCMC) concept used by some researchers to solve the problem of identifying the number of mixture components which are not known with certainty number. In its application, RJMCMC using the concept of the birth/death and the split-merge with six types of movement, that are w updating, θ updating, z updating, hyperparameter β updating, split-merge for components and birth/death from blank components. The development of the RJMCMC algorithm needs to be done according to the observed case. The purpose of this study is to know the performance of RJMCMC algorithm development in identifying the number of mixture components which are not known with certainty number in the Bayesian mixture modeling for microarray data in Indonesia. The results of this study represent that the concept RJMCMC algorithm development able to properly identify the number of mixture components in the Bayesian normal mixture model wherein the component mixture in the case of microarray data in Indonesia is not known for certain number.

  16. The detection of financial crisis using combination of volatility and markov switching models based on real output, domestic credit per GDP, and ICI indicators

    NASA Astrophysics Data System (ADS)

    Sugiyanto; Zukhronah, Etik; Setianingrum, Meganisa

    2018-05-01

    Open economic system has not only provided ease for every country to interact with each other, but also make it easier to transmitted the crisis. Financial crisis that hit Indonesia in 1997-1998 and 2008 severely impacted the economy, thus a method to detect crisis is required. According to Kamisky et al. [6], crisis can be detected based on several financial indicators such as real output, domestic credit per Gross Domestic Product (GDP), and Indonesia Composite Index (ICI). This research aims to determine the appropriate combination of volatility and Markov switching model to detect financial crisis in Indonesia based on the indicators. Volatility model used for modeling the unconstant-variance of ARMA. Markov switching is an alternative model of time series data with changed conditions in the data, or called state. In this research, we are using three assumption of states namely low volatility state, medium volatility state and high volatility state. The data of each indicator were taken from 1990 until 2016. The result of the study show that MS-ARCH(3,1) can be used to detect the financial crisis that hit Indonesia in 1997-1998 and 2008 based on real output, domestic credit per GDP, and ICI indicators.

  17. Application of Stochastic Automata Networks for Creation of Continuous Time Markov Chain Models of Voltage Gating of Gap Junction Channels

    PubMed Central

    Pranevicius, Henrikas; Pranevicius, Mindaugas; Pranevicius, Osvaldas; Bukauskas, Feliksas F.

    2015-01-01

    The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC) of voltage gating of gap junction (GJ) channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs), which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ∼20 times. PMID:25705700

  18. Bayesian experimental design for models with intractable likelihoods.

    PubMed

    Drovandi, Christopher C; Pettitt, Anthony N

    2013-12-01

    In this paper we present a methodology for designing experiments for efficiently estimating the parameters of models with computationally intractable likelihoods. The approach combines a commonly used methodology for robust experimental design, based on Markov chain Monte Carlo sampling, with approximate Bayesian computation (ABC) to ensure that no likelihood evaluations are required. The utility function considered for precise parameter estimation is based upon the precision of the ABC posterior distribution, which we form efficiently via the ABC rejection algorithm based on pre-computed model simulations. Our focus is on stochastic models and, in particular, we investigate the methodology for Markov process models of epidemics and macroparasite population evolution. The macroparasite example involves a multivariate process and we assess the loss of information from not observing all variables. © 2013, The International Biometric Society.

  19. Mixture Hidden Markov Models in Finance Research

    NASA Astrophysics Data System (ADS)

    Dias, José G.; Vermunt, Jeroen K.; Ramos, Sofia

    Finite mixture models have proven to be a powerful framework whenever unobserved heterogeneity cannot be ignored. We introduce in finance research the Mixture Hidden Markov Model (MHMM) that takes into account time and space heterogeneity simultaneously. This approach is flexible in the sense that it can deal with the specific features of financial time series data, such as asymmetry, kurtosis, and unobserved heterogeneity. This methodology is applied to model simultaneously 12 time series of Asian stock markets indexes. Because we selected a heterogeneous sample of countries including both developed and emerging countries, we expect that heterogeneity in market returns due to country idiosyncrasies will show up in the results. The best fitting model was the one with two clusters at country level with different dynamics between the two regimes.

  20. SURE reliability analysis: Program and mathematics

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; White, Allan L.

    1988-01-01

    The SURE program is a new reliability analysis tool for ultrareliable computer system architectures. The computational methods on which the program is based provide an efficient means for computing accurate upper and lower bounds for the death state probabilities of a large class of semi-Markov models. Once a semi-Markov model is described using a simple input language, the SURE program automatically computes the upper and lower bounds on the probability of system failure. A parameter of the model can be specified as a variable over a range of values directing the SURE program to perform a sensitivity analysis automatically. This feature, along with the speed of the program, makes it especially useful as a design tool.

  1. Surface Connectivity and Interocean Exchanges From Drifter-Based Transition Matrices

    NASA Astrophysics Data System (ADS)

    McAdam, Ronan; van Sebille, Erik

    2018-01-01

    Global surface transport in the ocean can be represented by using the observed trajectories of drifters to calculate probability distribution functions. The oceanographic applications of the Markov Chain approach to modeling include tracking of floating debris and water masses, globally and on yearly-to-centennial time scales. Here we analyze the error inherent with mapping trajectories onto a grid and the consequences for ocean transport modeling and detection of accumulation structures. A sensitivity analysis of Markov Chain parameters is performed in an idealized Stommel gyre and western boundary current as well as with observed ocean drifters, complementing previous studies on widespread floating debris accumulation. Focusing on two key areas of interocean exchange—the Agulhas system and the North Atlantic intergyre transport barrier—we assess the capacity of the Markov Chain methodology to detect surface connectivity and dynamic transport barriers. Finally, we extend the methodology's functionality to separate the geostrophic and nongeostrophic contributions to interocean exchange in these key regions.

  2. Studies of regional-scale climate variability and change. Hidden Markov models and coupled ocean-atmosphere modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghil, M.; Kravtsov, S.; Robertson, A. W.

    2008-10-14

    This project was a continuation of previous work under DOE CCPP funding, in which we had developed a twin approach of probabilistic network (PN) models (sometimes called dynamic Bayesian networks) and intermediate-complexity coupled ocean-atmosphere models (ICMs) to identify the predictable modes of climate variability and to investigate their impacts on the regional scale. We had developed a family of PNs (similar to Hidden Markov Models) to simulate historical records of daily rainfall, and used them to downscale GCM seasonal predictions. Using an idealized atmospheric model, we had established a novel mechanism through which ocean-induced sea-surface temperature (SST) anomalies might influencemore » large-scale atmospheric circulation patterns on interannual and longer time scales; we had found similar patterns in a hybrid coupled ocean-atmosphere-sea-ice model. The goal of the this continuation project was to build on these ICM results and PN model development to address prediction of rainfall and temperature statistics at the local scale, associated with global climate variability and change, and to investigate the impact of the latter on coupled ocean-atmosphere modes. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling together with the development of associated software; new intermediate coupled models; a new methodology of inverse modeling for linking ICMs with observations and GCM results; and, observational studies of decadal and multi-decadal natural climate results, informed by ICM results.« less

  3. Exact goodness-of-fit tests for Markov chains.

    PubMed

    Besag, J; Mondal, D

    2013-06-01

    Goodness-of-fit tests are useful in assessing whether a statistical model is consistent with available data. However, the usual χ² asymptotics often fail, either because of the paucity of the data or because a nonstandard test statistic is of interest. In this article, we describe exact goodness-of-fit tests for first- and higher order Markov chains, with particular attention given to time-reversible ones. The tests are obtained by conditioning on the sufficient statistics for the transition probabilities and are implemented by simple Monte Carlo sampling or by Markov chain Monte Carlo. They apply both to single and to multiple sequences and allow a free choice of test statistic. Three examples are given. The first concerns multiple sequences of dry and wet January days for the years 1948-1983 at Snoqualmie Falls, Washington State, and suggests that standard analysis may be misleading. The second one is for a four-state DNA sequence and lends support to the original conclusion that a second-order Markov chain provides an adequate fit to the data. The last one is six-state atomistic data arising in molecular conformational dynamics simulation of solvated alanine dipeptide and points to strong evidence against a first-order reversible Markov chain at 6 picosecond time steps. © 2013, The International Biometric Society.

  4. Study of behavior and determination of customer lifetime value(CLV) using Markov chain model

    NASA Astrophysics Data System (ADS)

    Permana, Dony; Indratno, Sapto Wahyu; Pasaribu, Udjianna S.

    2014-03-01

    Customer Lifetime Value or CLV is a restriction on interactive marketing to help a company in arranging financial for the marketing of new customer acquisition and customer retention. Additionally CLV can be able to segment customers for financial arrangements. Stochastic models for the fairly new CLV used a Markov chain. In this model customer retention probability and new customer acquisition probability play an important role. This model is originally introduced by Pfeifer and Carraway in 2000 [1]. They introduced several CLV models, one of them only involves customer and former customer. In this paper we expand the model by adding the assumption of the transition from former customer to customer. In the proposed model, the CLV value is higher than the CLV value obtained by Pfeifer and Caraway model. But our model still requires a longer convergence time.

  5. Study of behavior and determination of customer lifetime value(CLV) using Markov chain model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Permana, Dony, E-mail: donypermana@students.itb.ac.id; Indratno, Sapto Wahyu; Pasaribu, Udjianna S.

    Customer Lifetime Value or CLV is a restriction on interactive marketing to help a company in arranging financial for the marketing of new customer acquisition and customer retention. Additionally CLV can be able to segment customers for financial arrangements. Stochastic models for the fairly new CLV used a Markov chain. In this model customer retention probability and new customer acquisition probability play an important role. This model is originally introduced by Pfeifer and Carraway in 2000 [1]. They introduced several CLV models, one of them only involves customer and former customer. In this paper we expand the model by addingmore » the assumption of the transition from former customer to customer. In the proposed model, the CLV value is higher than the CLV value obtained by Pfeifer and Caraway model. But our model still requires a longer convergence time.« less

  6. A tutorial on the CARE III approach to reliability modeling. [of fault tolerant avionics and control systems

    NASA Technical Reports Server (NTRS)

    Trivedi, K. S.; Geist, R. M.

    1981-01-01

    The CARE 3 reliability model for aircraft avionics and control systems is described by utilizing a number of examples which frequently use state-of-the-art mathematical modeling techniques as a basis for their exposition. Behavioral decomposition followed by aggregration were used in an attempt to deal with reliability models with a large number of states. A comprehensive set of models of the fault-handling processes in a typical fault-tolerant system was used. These models were semi-Markov in nature, thus removing the usual restrictions of exponential holding times within the coverage model. The aggregate model is a non-homogeneous Markov chain, thus allowing the times to failure to posses Weibull-like distributions. Because of the departures from traditional models, the solution method employed is that of Kolmogorov integral equations, which are evaluated numerically.

  7. Teaching Real Business Cycles to Undergraduates

    ERIC Educational Resources Information Center

    Brevik, Frode; Gartner, Manfred

    2007-01-01

    The authors review the graphical approach to teaching the real business cycle model introduced in Barro. They then look at where this approach cuts corners and suggest refinements. Finally, they compare graphical and exact models by means of impulse-response functions. The graphical models yield reliable qualitative results. Sizable quantitative…

  8. Graphics modelling of non-contact thickness measuring robotics work cell

    NASA Technical Reports Server (NTRS)

    Warren, Charles W.

    1990-01-01

    A system was developed for measuring, in real time, the thickness of a sprayable insulation during its application. The system was graphically modelled, off-line, using a state-of-the-art graphics workstation and associated software. This model was to contain a 3D color model of a workcell containing a robot and an air bearing turntable. A communication link was established between the graphics workstations and the robot's controller. Sequences of robot motion generated by the computer simulation are transmitted to the robot for execution.

  9. Transmembrane Topology and Signal Peptide Prediction Using Dynamic Bayesian Networks

    PubMed Central

    Reynolds, Sheila M.; Käll, Lukas; Riffle, Michael E.; Bilmes, Jeff A.; Noble, William Stafford

    2008-01-01

    Hidden Markov models (HMMs) have been successfully applied to the tasks of transmembrane protein topology prediction and signal peptide prediction. In this paper we expand upon this work by making use of the more powerful class of dynamic Bayesian networks (DBNs). Our model, Philius, is inspired by a previously published HMM, Phobius, and combines a signal peptide submodel with a transmembrane submodel. We introduce a two-stage DBN decoder that combines the power of posterior decoding with the grammar constraints of Viterbi-style decoding. Philius also provides protein type, segment, and topology confidence metrics to aid in the interpretation of the predictions. We report a relative improvement of 13% over Phobius in full-topology prediction accuracy on transmembrane proteins, and a sensitivity and specificity of 0.96 in detecting signal peptides. We also show that our confidence metrics correlate well with the observed precision. In addition, we have made predictions on all 6.3 million proteins in the Yeast Resource Center (YRC) database. This large-scale study provides an overall picture of the relative numbers of proteins that include a signal-peptide and/or one or more transmembrane segments as well as a valuable resource for the scientific community. All DBNs are implemented using the Graphical Models Toolkit. Source code for the models described here is available at http://noble.gs.washington.edu/proj/philius. A Philius Web server is available at http://www.yeastrc.org/philius, and the predictions on the YRC database are available at http://www.yeastrc.org/pdr. PMID:18989393

  10. National Centers for Environmental Prediction

    Science.gov Websites

    / VISION | About EMC EMC > NAM > EXPERIMENTAL DATA Home NAM Operational Products HIRESW Operational Products Operational Forecast Graphics Experimental Forecast Graphics Verification and Diagnostics Model PARALLEL/EXPERIMENTAL MODEL FORECAST GRAPHICS OPERATIONAL VERIFICATION / DIAGNOSTICS PARALLEL VERIFICATION

  11. Bringing consistency to simulation of population models--Poisson simulation as a bridge between micro and macro simulation.

    PubMed

    Gustafsson, Leif; Sternad, Mikael

    2007-10-01

    Population models concern collections of discrete entities such as atoms, cells, humans, animals, etc., where the focus is on the number of entities in a population. Because of the complexity of such models, simulation is usually needed to reproduce their complete dynamic and stochastic behaviour. Two main types of simulation models are used for different purposes, namely micro-simulation models, where each individual is described with its particular attributes and behaviour, and macro-simulation models based on stochastic differential equations, where the population is described in aggregated terms by the number of individuals in different states. Consistency between micro- and macro-models is a crucial but often neglected aspect. This paper demonstrates how the Poisson Simulation technique can be used to produce a population macro-model consistent with the corresponding micro-model. This is accomplished by defining Poisson Simulation in strictly mathematical terms as a series of Poisson processes that generate sequences of Poisson distributions with dynamically varying parameters. The method can be applied to any population model. It provides the unique stochastic and dynamic macro-model consistent with a correct micro-model. The paper also presents a general macro form for stochastic and dynamic population models. In an appendix Poisson Simulation is compared with Markov Simulation showing a number of advantages. Especially aggregation into state variables and aggregation of many events per time-step makes Poisson Simulation orders of magnitude faster than Markov Simulation. Furthermore, you can build and execute much larger and more complicated models with Poisson Simulation than is possible with the Markov approach.

  12. Semantic Context Detection Using Audio Event Fusion

    NASA Astrophysics Data System (ADS)

    Chu, Wei-Ta; Cheng, Wen-Huang; Wu, Ja-Ling

    2006-12-01

    Semantic-level content analysis is a crucial issue in achieving efficient content retrieval and management. We propose a hierarchical approach that models audio events over a time series in order to accomplish semantic context detection. Two levels of modeling, audio event and semantic context modeling, are devised to bridge the gap between physical audio features and semantic concepts. In this work, hidden Markov models (HMMs) are used to model four representative audio events, that is, gunshot, explosion, engine, and car braking, in action movies. At the semantic context level, generative (ergodic hidden Markov model) and discriminative (support vector machine (SVM)) approaches are investigated to fuse the characteristics and correlations among audio events, which provide cues for detecting gunplay and car-chasing scenes. The experimental results demonstrate the effectiveness of the proposed approaches and provide a preliminary framework for information mining by using audio characteristics.

  13. A flowgraph model for bladder carcinoma

    PubMed Central

    2014-01-01

    Background Superficial bladder cancer has been the subject of numerous studies for many years, but the evolution of the disease still remains not well understood. After the tumor has been surgically removed, it may reappear at a similar level of malignancy or progress to a higher level. The process may be reasonably modeled by means of a Markov process. However, in order to more completely model the evolution of the disease, this approach is insufficient. The semi-Markov framework allows a more realistic approach, but calculations become frequently intractable. In this context, flowgraph models provide an efficient approach to successfully manage the evolution of superficial bladder carcinoma. Our aim is to test this methodology in this particular case. Results We have built a successful model for a simple but representative case. Conclusion The flowgraph approach is suitable for modeling of superficial bladder cancer. PMID:25080066

  14. Bayesian spatial transformation models with applications in neuroimaging data.

    PubMed

    Miranda, Michelle F; Zhu, Hongtu; Ibrahim, Joseph G

    2013-12-01

    The aim of this article is to develop a class of spatial transformation models (STM) to spatially model the varying association between imaging measures in a three-dimensional (3D) volume (or 2D surface) and a set of covariates. The proposed STM include a varying Box-Cox transformation model for dealing with the issue of non-Gaussian distributed imaging data and a Gaussian Markov random field model for incorporating spatial smoothness of the imaging data. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. Simulations and real data analysis demonstrate that the STM significantly outperforms the voxel-wise linear model with Gaussian noise in recovering meaningful geometric patterns. Our STM is able to reveal important brain regions with morphological changes in children with attention deficit hyperactivity disorder. © 2013, The International Biometric Society.

  15. Inferring phenomenological models of Markov processes from data

    NASA Astrophysics Data System (ADS)

    Rivera, Catalina; Nemenman, Ilya

    Microscopically accurate modeling of stochastic dynamics of biochemical networks is hard due to the extremely high dimensionality of the state space of such networks. Here we propose an algorithm for inference of phenomenological, coarse-grained models of Markov processes describing the network dynamics directly from data, without the intermediate step of microscopically accurate modeling. The approach relies on the linear nature of the Chemical Master Equation and uses Bayesian Model Selection for identification of parsimonious models that fit the data. When applied to synthetic data from the Kinetic Proofreading process (KPR), a common mechanism used by cells for increasing specificity of molecular assembly, the algorithm successfully uncovers the known coarse-grained description of the process. This phenomenological description has been notice previously, but this time it is derived in an automated manner by the algorithm. James S. McDonnell Foundation Grant No. 220020321.

  16. A hidden Markov model approach to neuron firing patterns.

    PubMed

    Camproux, A C; Saunier, F; Chouvet, G; Thalabard, J C; Thomas, G

    1996-11-01

    Analysis and characterization of neuronal discharge patterns are of interest to neurophysiologists and neuropharmacologists. In this paper we present a hidden Markov model approach to modeling single neuron electrical activity. Basically the model assumes that each interspike interval corresponds to one of several possible states of the neuron. Fitting the model to experimental series of interspike intervals by maximum likelihood allows estimation of the number of possible underlying neuron states, the probability density functions of interspike intervals corresponding to each state, and the transition probabilities between states. We present an application to the analysis of recordings of a locus coeruleus neuron under three pharmacological conditions. The model distinguishes two states during halothane anesthesia and during recovery from halothane anesthesia, and four states after administration of clonidine. The transition probabilities yield additional insights into the mechanisms of neuron firing.

  17. Comparison of INAR(1)-Poisson model and Markov prediction model in forecasting the number of DHF patients in west java Indonesia

    NASA Astrophysics Data System (ADS)

    Ahdika, Atina; Lusiyana, Novyan

    2017-02-01

    World Health Organization (WHO) noted Indonesia as the country with the highest dengue (DHF) cases in Southeast Asia. There are no vaccine and specific treatment for DHF. One of the efforts which can be done by both government and resident is doing a prevention action. In statistics, there are some methods to predict the number of DHF cases to be used as the reference to prevent the DHF cases. In this paper, a discrete time series model, INAR(1)-Poisson model in specific, and Markov prediction model are used to predict the number of DHF patients in West Java Indonesia. The result shows that MPM is the best model since it has the smallest value of MAE (mean absolute error) and MAPE (mean absolute percentage error).

  18. Stochastic models for the Trojan Y-Chromosome eradication strategy of an invasive species.

    PubMed

    Wang, Xueying; Walton, Jay R; Parshad, Rana D

    2016-01-01

    The Trojan Y-Chromosome (TYC) strategy, an autocidal genetic biocontrol method, has been proposed to eliminate invasive alien species. In this work, we develop a Markov jump process model for this strategy, and we verify that there is a positive probability for wild-type females going extinct within a finite time. Moreover, when sex-reversed Trojan females are introduced at a constant population size, we formulate a stochastic differential equation (SDE) model as an approximation to the proposed Markov jump process model. Using the SDE model, we investigate the probability distribution and expectation of the extinction time of wild-type females by solving Kolmogorov equations associated with these statistics. The results indicate how the probability distribution and expectation of the extinction time are shaped by the initial conditions and the model parameters.

  19. Rice crop mapping and change prediction using multi-temporal satellite images in the Mekong Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Chen, C. R.; Chen, C. F.; Nguyen, S. T.

    2014-12-01

    The rice cropping systems in the Vietnamese Mekong Delta (VMD) has been undergoing major changes to cope with developing agro-economics, increasing population and changing climate. Information on rice cropping practices and changes in cropping systems is critical for policymakers to devise successful strategies to ensure food security and rice grain exports for the country. The primary objective of this research is to map rice cropping systems and predict future dynamics of rice cropping systems using the MODIS time-series data of 2002, 2006, and 2010. First, a phenology-based classification approach was applied for the classification and assessment of rice cropping systems in study region. Second, the Cellular Automata-Markov (CA-Markov) models was used to simulate the rice-cropping system map of VMD for 2010. The comparisons between the classification maps and the ground reference data indicated satisfactory results with overall accuracies and Kappa coefficients, respectively, of 81.4% and 0.75 for 2002, 80.6% and 0.74 for 2006 and 85.5% and 0.81 for 2010. The simulated map of rice cropping system for 2010 was extrapolated by CA-Markov model based on the trend of rice cropping systems during 2002~2006. The comparison between predicted scenario and classification map for 2010 presents a reasonably closer agreement. In conclusion, the CA-Markov model performs a powerful tool for the dynamic modeling of changes in rice cropping systems, and the results obtained demonstrate that the approach produces satisfactory results in terms of accuracy, quantitative forecast and spatial pattern changes. Meanwhile, the projections of the future changes would provide useful inputs to the agricultural policy for effective management of the rice cropping practices in VMD.

  20. The models for financial crisis detection in Indonesia based on import, export, and foreign exchange reserves

    NASA Astrophysics Data System (ADS)

    Sugiyanto; Wibowo, Supriyadi; Rizky Aristina Suwardi, Vivi

    2017-12-01

    The severity of the financial crisis that occurred in Indonesia required an early warning system of financial crisis. The financial crisis in Indonesia can be detected based on imports, exports, and foreign exchange reserves. The purpose of the research is to determine an appropriate model to detect the financial crisis in Indonesia based on imports, exports, and foreign exchange reserves. Markov switching is an alternative framework for the approach often used in financial crisis detection. Combined volatility and Markov switching model with three states assumptions can be established if an AR and volatility models have been obtained. Imports, exports, and foreign exchange reserves data from January 1990 to December 2016 have the heteroscedasticity effect so that an ARCH model is used as a volatility model. Research shows that SWARCH(3.1) model is an appropriate model for detecting financial crisis in Indonesia based on imports, exports, and foreign exchange reserves.

  1. Cardiac sodium channel Markov model with temperature dependence and recovery from inactivation.

    PubMed Central

    Irvine, L A; Jafri, M S; Winslow, R L

    1999-01-01

    A Markov model of the cardiac sodium channel is presented. The model is similar to the CA1 hippocampal neuron sodium channel model developed by Kuo and Bean (1994. Neuron. 12:819-829) with the following modifications: 1) an additional open state is added; 2) open-inactivated transitions are made voltage-dependent; and 3) channel rate constants are exponential functions of enthalpy, entropy, and voltage and have explicit temperature dependence. Model parameters are determined using a simulated annealing algorithm to minimize the error between model responses and various experimental data sets. The model reproduces a wide range of experimental data including ionic currents, gating currents, tail currents, steady-state inactivation, recovery from inactivation, and open time distributions over a temperature range of 10 degrees C to 25 degrees C. The model also predicts measures of single channel activity such as first latency, probability of a null sweep, and probability of reopening. PMID:10096885

  2. Twelve years of succession on sandy substrates in a post-mining landscape: a Markov chain analysis.

    PubMed

    Baasch, Annett; Tischew, Sabine; Bruelheide, Helge

    2010-06-01

    Knowledge of succession rates and pathways is crucial for devising restoration strategies for highly disturbed ecosystems such as surface-mined land. As these processes have often only been described in qualitative terms, we used Markov models to quantify transitions between successional stages. However, Markov models are often considered not attractive for some reasons, such as model assumptions (e.g., stationarity in space and time, or the high expenditure of time required to estimate successional transitions in the field). Here we present a solution for converting multivariate ecological time series into transition matrices and demonstrate the applicability of this approach for a data set that resulted from monitoring the succession of sandy dry grassland in a post-mining landscape. We analyzed five transition matrices, four one-step matrices referring to specific periods of transition (1995-1998, 1998-2001, 2001-2004, 2004-2007), and one matrix for the whole study period (stationary model, 1995-2007). Finally, the stationary model was enhanced to a partly time-variable model. Applying the stationary and the time-variable models, we started a prediction well outside our calibration period, beginning with 100% bare soil in 1974 as the known start of the succession, and generated the coverage of 12 predefined vegetation types in three-year intervals. Transitions among vegetation types changed significantly in space and over time. While the probability of colonization was almost constant over time, the replacement rate tended to increase, indicating that the speed of succession accelerated with time or fluctuations became stronger. The predictions of both models agreed surprisingly well with the vegetation data observed more than two decades later. This shows that our dry grassland succession in a post-mining landscape can be adequately described by comparably simple types of Markov models, although some model assumptions have not been fulfilled and within-plot transitions have not been observed with point exactness. The major achievement of our proposed way to convert vegetation time series into transition matrices is the estimation of probability of events--a strength not provided by other frequently used statistical methods in vegetation science.

  3. Identifying ontogenetic, environmental and individual components of forest tree growth

    PubMed Central

    Chaubert-Pereira, Florence; Caraglio, Yves; Lavergne, Christian; Guédon, Yann

    2009-01-01

    Background and Aims This study aimed to identify and characterize the ontogenetic, environmental and individual components of forest tree growth. In the proposed approach, the tree growth data typically correspond to the retrospective measurement of annual shoot characteristics (e.g. length) along the trunk. Methods Dedicated statistical models (semi-Markov switching linear mixed models) were applied to data sets of Corsican pine and sessile oak. In the semi-Markov switching linear mixed models estimated from these data sets, the underlying semi-Markov chain represents both the succession of growth phases and their lengths, while the linear mixed models represent both the influence of climatic factors and the inter-individual heterogeneity within each growth phase. Key Results On the basis of these integrative statistical models, it is shown that growth phases are not only defined by average growth level but also by growth fluctuation amplitudes in response to climatic factors and inter-individual heterogeneity and that the individual tree status within the population may change between phases. Species plasticity affected the response to climatic factors while tree origin, sampling strategy and silvicultural interventions impacted inter-individual heterogeneity. Conclusions The transposition of the proposed integrative statistical modelling approach to cambial growth in relation to climatic factors and the study of the relationship between apical growth and cambial growth constitute the next steps in this research. PMID:19684021

  4. Short-term droughts forecast using Markov chain model in Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Rahmat, Siti Nazahiyah; Jayasuriya, Niranjali; Bhuiyan, Muhammed A.

    2017-07-01

    A comprehensive risk management strategy for dealing with drought should include both short-term and long-term planning. The objective of this paper is to present an early warning method to forecast drought using the Standardised Precipitation Index (SPI) and a non-homogeneous Markov chain model. A model such as this is useful for short-term planning. The developed method has been used to forecast droughts at a number of meteorological monitoring stations that have been regionalised into six (6) homogenous clusters with similar drought characteristics based on SPI. The non-homogeneous Markov chain model was used to estimate drought probabilities and drought predictions up to 3 months ahead. The drought severity classes defined using the SPI were computed at a 12-month time scale. The drought probabilities and the predictions were computed for six clusters that depict similar drought characteristics in Victoria, Australia. Overall, the drought severity class predicted was quite similar for all the clusters, with the non-drought class probabilities ranging from 49 to 57 %. For all clusters, the near normal class had a probability of occurrence varying from 27 to 38 %. For the more moderate and severe classes, the probabilities ranged from 2 to 13 % and 3 to 1 %, respectively. The developed model predicted drought situations 1 month ahead reasonably well. However, 2 and 3 months ahead predictions should be used with caution until the models are developed further.

  5. Understanding of Relation Structures of Graphical Models by Lower Secondary Students

    ERIC Educational Resources Information Center

    van Buuren, Onne; Heck, André; Ellermeijer, Ton

    2016-01-01

    A learning path has been developed on system dynamical graphical modelling, integrated into the Dutch lower secondary physics curriculum. As part of the developmental research for this learning path, students' understanding of the relation structures shown in the diagrams of graphical system dynamics based models has been investigated. One of our…

  6. Assessing the Deterrence Value of Carrier Presence Against Adversary Aggression in a Coalition Environment

    DTIC Science & Technology

    2017-09-01

    seeks to quantify the deterrence value of a CSG using a game - theoretic framework. Consider a region with several nations, where two major players stand...develop a Markov game to model the interactions between the two players and these other nations over a period of time. The game starts in Notional...establishing diplomatic advantage are equally important in deterring aggression. 14. SUBJECT TERMS carrier strike group, CSG, deterrence, Markov game

  7. The cutoff phenomenon in finite Markov chains.

    PubMed Central

    Diaconis, P

    1996-01-01

    Natural mixing processes modeled by Markov chains often show a sharp cutoff in their convergence to long-time behavior. This paper presents problems where the cutoff can be proved (card shuffling, the Ehrenfests' urn). It shows that chains with polynomial growth (drunkard's walk) do not show cutoffs. The best general understanding of such cutoffs (high multiplicity of second eigenvalues due to symmetry) is explored. Examples are given where the symmetry is broken but the cutoff phenomenon persists. PMID:11607633

  8. Space system operations and support cost analysis using Markov chains

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Dean, Edwin B.; Moore, Arlene A.; Fairbairn, Robert E.

    1990-01-01

    This paper evaluates the use of Markov chain process in probabilistic life cycle cost analysis and suggests further uses of the process as a design aid tool. A methodology is developed for estimating operations and support cost and expected life for reusable space transportation systems. Application of the methodology is demonstrated for the case of a hypothetical space transportation vehicle. A sensitivity analysis is carried out to explore the effects of uncertainty in key model inputs.

  9. Towards early software reliability prediction for computer forensic tools (case study).

    PubMed

    Abu Talib, Manar

    2016-01-01

    Versatility, flexibility and robustness are essential requirements for software forensic tools. Researchers and practitioners need to put more effort into assessing this type of tool. A Markov model is a robust means for analyzing and anticipating the functioning of an advanced component based system. It is used, for instance, to analyze the reliability of the state machines of real time reactive systems. This research extends the architecture-based software reliability prediction model for computer forensic tools, which is based on Markov chains and COSMIC-FFP. Basically, every part of the computer forensic tool is linked to a discrete time Markov chain. If this can be done, then a probabilistic analysis by Markov chains can be performed to analyze the reliability of the components and of the whole tool. The purposes of the proposed reliability assessment method are to evaluate the tool's reliability in the early phases of its development, to improve the reliability assessment process for large computer forensic tools over time, and to compare alternative tool designs. The reliability analysis can assist designers in choosing the most reliable topology for the components, which can maximize the reliability of the tool and meet the expected reliability level specified by the end-user. The approach of assessing component-based tool reliability in the COSMIC-FFP context is illustrated with the Forensic Toolkit Imager case study.

  10. A Graph-Algorithmic Approach for the Study of Metastability in Markov Chains

    NASA Astrophysics Data System (ADS)

    Gan, Tingyue; Cameron, Maria

    2017-06-01

    Large continuous-time Markov chains with exponentially small transition rates arise in modeling complex systems in physics, chemistry, and biology. We propose a constructive graph-algorithmic approach to determine the sequence of critical timescales at which the qualitative behavior of a given Markov chain changes, and give an effective description of the dynamics on each of them. This approach is valid for both time-reversible and time-irreversible Markov processes, with or without symmetry. Central to this approach are two graph algorithms, Algorithm 1 and Algorithm 2, for obtaining the sequences of the critical timescales and the hierarchies of Typical Transition Graphs or T-graphs indicating the most likely transitions in the system without and with symmetry, respectively. The sequence of critical timescales includes the subsequence of the reciprocals of the real parts of eigenvalues. Under a certain assumption, we prove sharp asymptotic estimates for eigenvalues (including pre-factors) and show how one can extract them from the output of Algorithm 1. We discuss the relationship between Algorithms 1 and 2 and explain how one needs to interpret the output of Algorithm 1 if it is applied in the case with symmetry instead of Algorithm 2. Finally, we analyze an example motivated by R. D. Astumian's model of the dynamics of kinesin, a molecular motor, by means of Algorithm 2.

  11. Predictive Rate-Distortion for Infinite-Order Markov Processes

    NASA Astrophysics Data System (ADS)

    Marzen, Sarah E.; Crutchfield, James P.

    2016-06-01

    Predictive rate-distortion analysis suffers from the curse of dimensionality: clustering arbitrarily long pasts to retain information about arbitrarily long futures requires resources that typically grow exponentially with length. The challenge is compounded for infinite-order Markov processes, since conditioning on finite sequences cannot capture all of their past dependencies. Spectral arguments confirm a popular intuition: algorithms that cluster finite-length sequences fail dramatically when the underlying process has long-range temporal correlations and can fail even for processes generated by finite-memory hidden Markov models. We circumvent the curse of dimensionality in rate-distortion analysis of finite- and infinite-order processes by casting predictive rate-distortion objective functions in terms of the forward- and reverse-time causal states of computational mechanics. Examples demonstrate that the resulting algorithms yield substantial improvements.

  12. Oncology Modeling for Fun and Profit! Key Steps for Busy Analysts in Health Technology Assessment.

    PubMed

    Beca, Jaclyn; Husereau, Don; Chan, Kelvin K W; Hawkins, Neil; Hoch, Jeffrey S

    2018-01-01

    In evaluating new oncology medicines, two common modeling approaches are state transition (e.g., Markov and semi-Markov) and partitioned survival. Partitioned survival models have become more prominent in oncology health technology assessment processes in recent years. Our experience in conducting and evaluating models for economic evaluation has highlighted many important and practical pitfalls. As there is little guidance available on best practices for those who wish to conduct them, we provide guidance in the form of 'Key steps for busy analysts,' who may have very little time and require highly favorable results. Our guidance highlights the continued need for rigorous conduct and transparent reporting of economic evaluations regardless of the modeling approach taken, and the importance of modeling that better reflects reality, which includes better approaches to considering plausibility, estimating relative treatment effects, dealing with post-progression effects, and appropriate characterization of the uncertainty from modeling itself.

  13. A Graphical Analysis of the Cournot-Nash and Stackelberg Models.

    ERIC Educational Resources Information Center

    Fulton, Murray

    1997-01-01

    Shows how the Cournot-Nash and Stackelberg equilibria can be represented in the familiar supply-demand graphical framework, allowing a direct comparison with the monopoly, competitive, and industrial organization models. This graphical analysis is represented throughout the article. (MJP)

  14. Perspective: Markov models for long-timescale biomolecular dynamics.

    PubMed

    Schwantes, C R; McGibbon, R T; Pande, V S

    2014-09-07

    Molecular dynamics simulations have the potential to provide atomic-level detail and insight to important questions in chemical physics that cannot be observed in typical experiments. However, simply generating a long trajectory is insufficient, as researchers must be able to transform the data in a simulation trajectory into specific scientific insights. Although this analysis step has often been taken for granted, it deserves further attention as large-scale simulations become increasingly routine. In this perspective, we discuss the application of Markov models to the analysis of large-scale biomolecular simulations. We draw attention to recent improvements in the construction of these models as well as several important open issues. In addition, we highlight recent theoretical advances that pave the way for a new generation of models of molecular kinetics.

  15. AN OPTIMAL MAINTENANCE MANAGEMENT MODEL FOR AIRPORT CONCRETE PAVEMENT

    NASA Astrophysics Data System (ADS)

    Shimomura, Taizo; Fujimori, Yuji; Kaito, Kiyoyuki; Obama, Kengo; Kobayashi, Kiyoshi

    In this paper, an optimal management model is formulated for the performance-based rehabilitation/maintenance contract for airport concrete pavement, whereby two types of life cycle cost risks, i.e., ground consolidation risk and concrete depreciation risk, are explicitly considered. The non-homogenous Markov chain model is formulated to represent the deterioration processes of concrete pavement which are conditional upon the ground consolidation processes. The optimal non-homogenous Markov decision model with multiple types of risk is presented to design the optimal rehabilitation/maintenance plans. And the methodology to revise the optimal rehabilitation/maintenance plans based upon the monitoring data by the Bayesian up-to-dating rules. The validity of the methodology presented in this paper is examined based upon the case studies carried out for the H airport.

  16. Using Markov state models to study self-assembly

    NASA Astrophysics Data System (ADS)

    Perkett, Matthew R.; Hagan, Michael F.

    2014-06-01

    Markov state models (MSMs) have been demonstrated to be a powerful method for computationally studying intramolecular processes such as protein folding and macromolecular conformational changes. In this article, we present a new approach to construct MSMs that is applicable to modeling a broad class of multi-molecular assembly reactions. Distinct structures formed during assembly are distinguished by their undirected graphs, which are defined by strong subunit interactions. Spatial inhomogeneities of free subunits are accounted for using a recently developed Gaussian-based signature. Simplifications to this state identification are also investigated. The feasibility of this approach is demonstrated on two different coarse-grained models for virus self-assembly. We find good agreement between the dynamics predicted by the MSMs and long, unbiased simulations, and that the MSMs can reduce overall simulation time by orders of magnitude.

  17. Memetic Approaches for Optimizing Hidden Markov Models: A Case Study in Time Series Prediction

    NASA Astrophysics Data System (ADS)

    Bui, Lam Thu; Barlow, Michael

    We propose a methodology for employing memetics (local search) within the framework of evolutionary algorithms to optimize parameters of hidden markov models. With this proposal, the rate and frequency of using local search are automatically changed over time either at a population or individual level. At the population level, we allow the rate of using local search to decay over time to zero (at the final generation). At the individual level, each individual is equipped with information of when it will do local search and for how long. This information evolves over time alongside the main elements of the chromosome representing the individual.

  18. A descriptive model of resting-state networks using Markov chains.

    PubMed

    Xie, H; Pal, R; Mitra, S

    2016-08-01

    Resting-state functional connectivity (RSFC) studies considering pairwise linear correlations have attracted great interests while the underlying functional network structure still remains poorly understood. To further our understanding of RSFC, this paper presents an analysis of the resting-state networks (RSNs) based on the steady-state distributions and provides a novel angle to investigate the RSFC of multiple functional nodes. This paper evaluates the consistency of two networks based on the Hellinger distance between the steady-state distributions of the inferred Markov chain models. The results show that generated steady-state distributions of default mode network have higher consistency across subjects than random nodes from various RSNs.

  19. Population Synthesis of Radio and Y-ray Millisecond Pulsars Using Markov Chain Monte Carlo

    NASA Astrophysics Data System (ADS)

    Gonthier, Peter L.; Billman, C.; Harding, A. K.

    2013-04-01

    We present preliminary results of a new population synthesis of millisecond pulsars (MSP) from the Galactic disk using Markov Chain Monte Carlo techniques to better understand the model parameter space. We include empirical radio and γ-ray luminosity models that are dependent on the pulsar period and period derivative with freely varying exponents. The magnitudes of the model luminosities are adjusted to reproduce the number of MSPs detected by a group of ten radio surveys and by Fermi, predicting the MSP birth rate in the Galaxy. We follow a similar set of assumptions that we have used in previous, more constrained Monte Carlo simulations. The parameters associated with the birth distributions such as those for the accretion rate, magnetic field and period distributions are also free to vary. With the large set of free parameters, we employ Markov Chain Monte Carlo simulations to explore the large and small worlds of the parameter space. We present preliminary comparisons of the simulated and detected distributions of radio and γ-ray pulsar characteristics. We express our gratitude for the generous support of the National Science Foundation (REU and RUI), Fermi Guest Investigator Program and the NASA Astrophysics Theory and Fundamental Program.

  20. Traffic Video Image Segmentation Model Based on Bayesian and Spatio-Temporal Markov Random Field

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Bao, Xu; Li, Dawei; Yin, Yongwen

    2017-10-01

    Traffic video image is a kind of dynamic image and its background and foreground is changed at any time, which results in the occlusion. In this case, using the general method is more difficult to get accurate image segmentation. A segmentation algorithm based on Bayesian and Spatio-Temporal Markov Random Field is put forward, which respectively build the energy function model of observation field and label field to motion sequence image with Markov property, then according to Bayesian' rule, use the interaction of label field and observation field, that is the relationship of label field’s prior probability and observation field’s likelihood probability, get the maximum posterior probability of label field’s estimation parameter, use the ICM model to extract the motion object, consequently the process of segmentation is finished. Finally, the segmentation methods of ST - MRF and the Bayesian combined with ST - MRF were analyzed. Experimental results: the segmentation time in Bayesian combined with ST-MRF algorithm is shorter than in ST-MRF, and the computing workload is small, especially in the heavy traffic dynamic scenes the method also can achieve better segmentation effect.

Top