Sample records for graphite aeroshell assembly

  1. Systems integration and demonstration of advanced reusable structure for ALS

    NASA Technical Reports Server (NTRS)

    Gibbins, Martin N.

    1991-01-01

    The objective was to investigate the potential of advanced material to achieve life cycle cost (LCC) benefits for reusable structure on the advanced launch system. Three structural elements were investigated - all components of an Advanced Launch System reusable propulsion/avionics module. Leading aeroshell configurations included sandwich structure using titanium, graphite/polyimide (Gr/PI), or high-temperature aluminum (HTA) face sheets. Thrust structure truss concepts used titanium, graphite/epoxy, or silicon carbide/aluminum struts. Leading aft bulkhead concepts employed graphite epoxy and aluminum. The technical effort focused on the aeroshell because the greatest benefits were expected there. Thermal analyses show the structural temperature profiles during operation. Finite element analyses show stresses during splash-down. Weight statements and manufacturing cost estimates were prepared for calculation of LCC for each design. The Gr/PI aeroshell showed the lowest potential LCC, but the HTA aeroshell was judged to be lower risk. A technology development plan was prepared to validate the applicable structural technology.

  2. Thermal Analysis of Step 2 GPHS for Next Generation Radioisotope Power Source Missions

    NASA Astrophysics Data System (ADS)

    Pantano, David R.; Hill, Dennis H.

    2005-02-01

    The Step 2 General Purpose Heat Source (GPHS) is a slightly larger and more robust version of the heritage GPHS modules flown on previous Radioisotope Thermoelectric Generator (RTG) missions like Galileo, Ulysses, and Cassini. The Step 2 GPHS is to be used in future small radioisotope power sources, such as the Stirling Radioisotope Generator (SRG110) and the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). New features include an additional central web of Fine Weave Pierced Fabric (FWPF) graphite in the aeroshell between the two Graphite Impact Shells (GIS) to improve accidental reentry and impact survivability and an additional 0.1-inch of thickness to the aeroshell broad faces to improve ablation protection. This paper details the creation of the thermal model using Thermal Desktop and AutoCAD interfaces and provides comparisons of the model to results of previous thermal analysis models of the heritage GPHS. The results of the analysis show an anticipated decrease in total thermal gradient from the aeroshell to the iridium clads compared to the heritage results. In addition, the Step 2 thermal model is investigated under typical SRG110 boundary conditions, with cover gas and gravity environments included where applicable, to provide preliminary guidance for design of the generator. Results show that the temperatures of the components inside the GPHS remain within accepted design limits during all envisioned mission phases.

  3. Aeroshell for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from July 2008 shows the aeroshell for NASA's Mars Science Laboratory while it was being worked on by spacecraft technicians at Lockheed Martin Space Systems Company near Denver.

    This hardware was delivered in early fall of 2008 to NASA's Jet Propulsion Laboratory, Pasadena, Calif., where the Mars Science Laboratory spacecraft is being assembled and tested.

    The aeroshell encapsulates the mission's rover and descent stage during the journey from Earth to Mars and shields them from the intense heat of friction with that upper atmosphere during the initial portion of descent.

    The aeroshell has two main parts: the backshell, which is on top in this image and during the descent, and the heat shield, on the bottom. The heat shield in this image is an engineering unit for testing. The heat shield to be used in flight will be substituted later. The heat shield has a diameter of about 15 feet. For comparison, the heat shields for NASA's Mars Exploraton Rovers Spirit and Opportunity were 8.5 feet and the heat shields for the Apollo capsules that protected astronauts returning to Earth from the moon were just under 13 feet.

    In addition to protecting the Mars Science Laboratory rover, the backshell provides structural support for the descent stage's parachute and sky crane, a system that will lower the rover to a soft landing on the surface of Mars. The backshell for the Mars Science Laboratory is made of an aluminum honeycomb structure sandwiched between graphite-epoxy face sheets. It is covered with a thermal protection system composed of a cork/silicone super light ablator material that originated with the Viking landers of the 1970s. This ablator material has been used on the heat shields of all NASA Mars landers in the past, but this mission is the first Mars mission using it on the backshell.

    The heat shield for Mars Science Laboratory's flight will use tiles made of phenolic impregnated carbon ablator. The engineering unit in this image does not have the tiles.

    JPL, a division of the California Institute of Technology, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.

  4. Entry, Descent, and Landing Technology Concept Trade Study for Increasing Payload Mass to the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Cianciolo, Alicia D.; Powell, Richard W.; Simonsen, Lisa C.; Tolson, Robert H.

    2005-01-01

    A trade study was conducted that compared various entry, descent, and landing technologies and concepts for placing an 1,800 kg payload on the surface of Mars. The purpose of this trade study was to provide data, and make recommendations, that could be used in making decisions regarding which new technologies and concepts should be pursued. Five concepts were investigated, each using a different combination of new technologies: 1) a Baseline concept using the least new technologies, 2) Aerocapture and Entry from Orbit, 3) Inflatable Aeroshell, 4) Mid L/D Aeroshell-A (high ballistic coefficient), and 5) Mid L/D Aeroshell-B (low ballistic coefficient). All concepts were optimized to minimize entry mass subject to a common set of key requirements. These key requirements were: A) landing a payload mass of 1,800 kg, B) landing at an altitude 2.5 km above the MOLA areoid, C) landing with a descent rate of 2.5 m/s, and D) using a single launch vehicle available within the NASA Expendable Launch Vehicle Contract without resorting to in-space assembly. Additional constraints were implemented, some common to all concepts and others specific to the new technologies used. Among the findings of this study are the following observations. Concepts using blunt-body aeroshells (1, 2, and 3 above) had entry masses between 4,028 kg and 4,123 kg. Concepts using mid L/D aeroshells (4 and 5 above) were significantly heavier with entry masses of 5,292 kg (concept 4) and 4,812 kg (concept 5). This increased weight was mainly due to the aeroshell. Based on a comparison of the concepts it was recommended that: 1) re-qualified and/or improved TPS materials be developed, 2) large subsonic parachutes be qualified. Aerocapture was identified as a promising concept, but system issues beyond the scope of this study need to be investigated. Inflatable aeroshells were identified as a promising new technology, but they require additional technology maturation work. For the class of missions investigated in this trade study, mid L/D aeroshells were not competitive on an entry mass basis as compared to blunt-body aeroshells.

  5. Mars Science Laboratory Spacecraft Assembled for Testing

    NASA Image and Video Library

    2008-11-19

    The major components of NASA Mars Science Laboratory spacecraft -- cruise stage atop the aeroshell, which has the descent stage and rover inside -- were connected together in October 2008 for several weeks of system testing.

  6. Manufacturing Challenges and Benefits when Scaling the HIAD Stacked-Torus Aeroshell to a 15m-Class System

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony; Gilles, Brian; Anderson, Paul; Bond, Bruce

    2016-01-01

    Over a decade of work has been conducted in the development of NASAs Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6m, with cone angles of 60 and 70 deg. To meet NASA and commercial near term objectives, the HIAD team must scale the current technology up to 12-15m in diameter. Therefore, the HIAD projects experience in scaling the technology has reached a critical juncture. Growing from a 6m to a 15m-class system will introduce many new structural and logistical challenges to an already complicated manufacturing process.Although the general architecture and key aspects of the HIAD design scale well to larger vehicles, details of the technology will need to be reevaluated and possibly redesigned for use in a 15m-class HIAD system. These include: layout and size of the structural webbing that transfers load throughout the IS, inflatable gas barrier design, torus diameter and braid construction, internal pressure and inflation line routing, adhesives used for coating and bonding, and F-TPS gore design and seam fabrication. The logistics of fabricating and testing the IS and the F-TPS also become more challenging with increased scale. Compared to the 6m aeroshell (the largest HIAD built to date), a 12m aeroshell has four times the cross-sectional area, and a 15m one has over six times the area. This means that fabrication and test procedures will need to be reexamined to ac-count for the sheer size and weight of the aeroshell components. This will affect a variety of steps in the manufacturing process, such as: stacking the tori during assembly, stitching the structural webbing, initial inflation of tori, and stitching of F-TPS gores. Additionally, new approaches and hardware will be required for handling and ground testing of both individual tori and the fully assembled HIADs.There are also noteworthy benefits of scaling up the HIAD aeroshell to a 15m-class system. Two complications in working with handmade textile structures are the non-linearity of the material components and the role of human accuracy during fabrication. Larger, more capable, HIAD structures should see much larger operational loads, potentially bringing the structural response of the material components out of the non-linear regime and into the preferred linear response range. Also, making the reasonable assumption that the magnitude of fabrication accuracy remains constant as the structures grow, the relative effect of fabrication errors should decrease as a percentage of the textile component size. Combined, these two effects improve the predictive capability and the uniformity of the structural response for a 12-15m HIAD.In this presentation, a handful of the challenges and associated mitigation plans will be discussed, as well as an update on current 12m aeroshell manufacturing and testing that is addressing these challenges

  7. Manufacturing Challenges and Benefits when Scaling the HIAD Stacked-Torus Aeroshell to a 15m Class System

    NASA Technical Reports Server (NTRS)

    Cheatwood, F. McNeil; Swanson, Gregory T.; Johnson, R. Keith; Hughes, Stephen; Calomino, Anthony; Gilles, Brian; Anderson, Paul; Bond, Bruce

    2016-01-01

    Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD project's second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6m, with cone angles of 60 and 70 deg. To meet NASA and commercial near term objectives, the HIAD team must scale the current technology up to 12-15m in diameter. The HIAD project's experience in scaling the technology has reached a critical juncture. Growing from a 6m to a 15m class system will introduce many new structural and logistical challenges to an already complicated manufacturing process. Although the general architecture and key aspects of the HIAD design scale well to larger vehicles, details of the technology will need to be reevaluated and possibly redesigned for use in a 15m-class HIAD system. These include: layout and size of the structural webbing that transfers load throughout the IS, inflatable gas barrier design, torus diameter and braid construction, internal pressure and inflation line routing, adhesives used for coating and bonding, and F-TPS gore design and seam fabrication. The logistics of fabricating and testing the IS and the F-TPS also become more challenging with increased scale. Compared to the 6m aeroshell (the largest HIAD built to date), a 12m aeroshell has four times the cross-sectional area, and a 15m one has over six times the area. This means that fabrication and test procedures will need to be reexamined to account for the sheer size and weight of the aeroshell components. This will affect a variety of steps in the manufacturing process, such as: stacking the tori during assembly, stitching the structural webbing, initial inflation of tori, and stitching of F-TPS gores. Additionally, new approaches and hardware will be required for handling and ground testing of both individual tori and the fully assembled HIADs. There are also noteworthy benefits of scaling up the HIAD aeroshell to 15m-class system. Two complications in working with handmade textiles structures are the non-linearity of the materials and the role of human accuracy during fabrication. Larger, more capable, HIAD structures should see much larger operational loads, potentially bringing the structural response of the materials out of the non-linear regime and into the preferred linear response range. Also, making the reasonable assumption that the magnitude of fabrication accuracy remains constant as the structures grow, the relative effect of fabrication errors should decrease as a percentage of the textile component size. Combined, these two effects improve the predictive capability and the uniformity of the structural response for a 12-15m class HIAD. In this paper, the challenges and associated mitigation plans related to scaling up the HIAD stacked-torus aeroshell to a 15m class system will be discussed. In addition, the benefits of enlarging the structure will be further explored.

  8. Manufacturing Challenges and Benefits When Scaling the HIAD Stacked-Torus Aeroshell to a 15 Meter Class System

    NASA Technical Reports Server (NTRS)

    Swanson, G. T.; Cheatwood, F. M.; Johnson, R. K.; Hughes, S. J.; Calomino, A. M.

    2016-01-01

    Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD project's second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6 meters, with cone angles of 60 and 70 degrees. To meet NASA and commercial near-term objectives, the HIAD team must scale the current technology up to 12-15 meters in diameter. Therefore, the HIAD project's experience in scaling the technology has reached a critical juncture. Growing from a 6-meter to a 15-meter class system will introduce many new structural and logistical challenges to an already complicated manufacturing process. Although the general architecture and key aspects of the HIAD design scale well to larger vehicles, details of the technology will need to be reevaluated and possibly redesigned for use in a 15-meter-class HIAD system. These include: layout and size of the structural webbing that transfers load throughout the IS, inflatable gas barrier design, torus diameter and braid construction, internal pressure and inflation line routing, adhesives used for coating and bonding, and F-TPS gore design and seam fabrication. The logistics of fabricating and testing the IS and the F-TPS also become more challenging with increased scale. Compared to the 6-meter aeroshell (the largest HIAD built to date), a 12-meter aeroshell has four times the cross-sectional area, and a 15-meter one has over six times the area. This means that fabrication and test procedures will need to be reexamined to account for the sheer size and weight of the aeroshell components. This will affect a variety of steps in the manufacturing process, such as: stacking the tori during assembly, stitching the structural webbing, initial inflation of tori, and stitching of F-TPS gores. Additionally, new approaches and hardware will be required for handling and ground testing of both individual tori and the fully assembled HIADs. There are also noteworthy benefits of scaling up the HIAD aeroshell to a 15m-class system. Two complications in working with handmade textile structures are the non-linearity of the material components and the role of human accuracy during fabrication. Larger, more capable, HIAD structures should see much larger operational loads, potentially bringing the structural response of the material components out of the non-linear regime and into the preferred linear response range. Also, making the reasonable assumption that the magnitude of fabrication accuracy remains constant as the structures grow, the relative effect of fabrication errors should decrease as a percentage of the textile component size. Combined, these two effects improve the predictive capability and the uniformity of the structural response for a 12-15-meter HIAD. In this presentation, a handful of the challenges and associated mitigation plans will be discussed, as well as an update on current manufacturing and testing that addressing these challenges.

  9. Anomalistic Disturbance Torques during the Entry Phase of the Mars Exploration Rover Missions: A Telemetry and Mars-Surface Investigation

    NASA Technical Reports Server (NTRS)

    Tolson, Robert H.; Willcockson, William H.; Desai, Prasun N.; Thomas, Paige

    2006-01-01

    Shortly after landing on Mars, post-flight analysis of the "Spirit" entry data suggested that the vehicle experienced large, anomalistic oscillations in angle-of-attack starting at about M=6. Similar analysis for "Opportunity " found even larger oscillations starting immediately after maximum dynamic pressure at M=14. Where angles-of-attack of 1-2 degrees were expected from maximum dynamic pressure to drogue deployment, the reconstructions suggested 4 to 9 degrees. The next Mars lander, 2007 Phoenix project, was concerned enough to recommend further exploration of the anomalies. Detailed analysis of "Opportunity" data found significant anomalies in the hypersonic aerodynamic torques. The analysis showed that these torques were essentially fixed in the spinning vehicle. Nearly a year after landing, the "Oportunity" rover took pictures of its aeroshell on the surface, which showed that portions of the aeroshell thermal blanket assembly still remained. This blanket assembly was supposed to burn off very early in the entry. An analysis of the aeroshell photographs led to an estimate of the aerodynamic torques that the remnants could have produced. A comparison of two estimates of the aerodynamic torque perturbations (one extracted from telemetry data and the other from Mars surface photographs) showed exceptional agreement. Trajectory simulations using a simple data derived torque perturbation model provided rigid body motions similar to that observed during the "Opportunity" entry. Therefore, the case of the anomalistic attitude behavior for the "Opportunity" EDL is now considered closed and a suggestion is put forth that a similar event occurred for the "Spirit" entry as well.

  10. Deployable Aeroshell Flexible Thermal Protection System Testing

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Ware, Joanne S.; DelCorso, Joseph A.; Lugo, Rafael A.

    2009-01-01

    Deployable aeroshells offer the promise of achieving larger aeroshell surface areas for entry vehicles than otherwise attainable without deployment. With the larger surface area comes the ability to decelerate high-mass entry vehicles at relatively low ballistic coefficients. However, for an aeroshell to perform even at the low ballistic coefficients attainable with deployable aeroshells, a flexible thermal protection system (TPS) is required that is capable of surviving reasonably high heat flux and durable enough to survive the rigors of construction handling, high density packing, deployment, aerodynamic loading and aerothermal heating. The Program for the Advancement of Inflatable Decelerators for Atmospheric Entry (PAIDAE) is tasked with developing the technologies required to increase the technology readiness level (TRL) of inflatable deployable aeroshells, and one of several of the technologies PAIDAE is developing for use on inflatable aeroshells is flexible TPS. Several flexible TPS layups were designed, based on commercially available materials, and tested in NASA Langley Research Center's 8 Foot High Temperature Tunnel (8ft HTT). The TPS layups were designed for, and tested at three different conditions that are representative of conditions seen in entry simulation analyses of inflatable aeroshell concepts. Two conditions were produced in a single run with a sting-mounted dual wedge test fixture. The dual wedge test fixture had one row of sample mounting locations (forward) at about half the running length of the top surface of the wedge. At about two thirds of the running length of the wedge, a second test surface drafted up at five degrees relative to the first test surface established the remaining running length of the wedge test fixture. A second row of sample mounting locations (aft) was positioned in the middle of the running length of the second test surface. Once the desired flow conditions were established in the test section the dual wedge test fixture, oriented at 5 degrees angle of attack down, was injected into the flow. In this configuration the aft sample mounting location was subjected to roughly twice the heat flux and surface pressure of the forward mounting location. The tunnel was run at two different conditions for the test series: 1) 'Low Pressure', and 2) 'High Pressure'. At 'Low Pressure' conditions the TPS layups were tested at 6W/cm2 and 11W/cm2 while at 'High Pressure' conditions the TPS layups were tested at 11W/cm2 and 20W/cm2. This paper details the test configuration of the TPS samples in the 8Ft HTT, the sample holder assembly, TPS sample layup construction, sample instrumentation, results from this testing, as well as lessons learned.

  11. Experimental Study of Convective Heating on the Back Face and Payload of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Aeroshell

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Berry, Scott A.; Hollingsworth, Kevin E.; Wright, Sheila A.

    2017-01-01

    A wind tunnel test program has been conducted to define convective heating environments on the back-face of a Hypersonic Inflatable Aerodynamic Decelerator aeroshell. Wind tunnel testing was conducted at Mach 6 and Mach 10 at unit Reynolds numbers from 0.5×10(exp 6)/ft to 3.9×10(exp 6)/ft on a 6.3088 in diameter aeroshell model. Global heating data were obtained through phosphor thermography on the aeroshell back face, as well as on the payload and the aeroshell front face. For all test conditions, laminar flow was produced on the aeroshell front face, while the separated wake shear layer and aeroshell back-face boundary layer were transitional or turbulent. Along the leeward centerline of the aeroshell back face and payload centerbody, heating levels increased with both free stream Reynolds number and angle of attack. The Reynolds number dependency was due to increasing strength of wake turbulence with Reynolds number. The angle-of-attack dependency was due to movement of the wake-vortex reattachment point on the aeroshell back face. The maximum heating levels on the aeroshell back face and payload were approximately 5% to 6%, respectively, of the aeroshell front-face stagnation point. To allow for extrapolation of the ground test data to flight conditions, the back face and payload heating levels were correlated as a function of aeroshell front-face peak momentum thickness Reynolds numbers.

  12. Deployment and Drop Test of Inflatable Aeroshell for Atmospheric Entry Capsule with using Large Scientific Balloon

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Suzuki, Kojiro; Honma, Naohiko; Abe, Daisuke; Makino, Hitoshi; Nagata, Yasunori; Kimura, Yusuke; Koyama, Masashi; Akita, Daisuke; Hayashi, Koichi; Abe, Takashi

    A deployable and flexible aeroshell for atmospheric entry vehicles has attracted attention as an innovative space transportation system in the near future, because the large-area, low-mass aeroshell dramatically reduces aerodynamic heating and achieves a soft landing without a conventional parachute system thanks to its low ballistic coefficient. Various concepts of flexible aeroshell have been proposed in the past. Our group are researching and developing a flare-type membrane aeroshell sustained by inflatable torus. As a part of the development, a deployment and drop test of a capsule-type experimental vehicle with a 1.264-m-diameter flare-type membrane aeroshell sustained by inflatable torus was carried out using a large scientific balloon in August, 2009. The objectives of this experiment are 1) to demonstrate the remote inflation system of inflatable aeroshell, 2) to acquire aerodynamic performance of a low ballistic coefficient vehicle including an inflatable structure in subsonic region, and 3) to observe behavior and deformation of the flexible aeroshell during free flight. In this test, the inflatable aeroshell was deployed at an altitude 24.6km by radio command from ground station. After deployment, the experimental vehicle was dropped from the balloon and underwent free flight. The flight data and images of the aeroshell collected using onboard sensors were transmitted successfully during the flight by the telemetry system. The data showed that the vehicle was almost stable in free flight condition and the inflatable aeroshell was collapsed at expected altitude. This deployment and drop test was very successful and useful data for design of actual atmospheric-entry vehicles with inflatable structure was acquired as planned.

  13. Mars Science Laboratory Spacecraft Assembled for Testing

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The major components of NASA's Mars Science Laboratory spacecraft cruise stage atop the aeroshell, which has the descent stage and rover inside were connected together in October 2008 for several weeks of system testing, including simulation of launch vibrations and deep-space environmental conditions.

    These components will be taken apart again, for further work on each of them, after the environmental testing. The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011.

    This image was taken inside the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  14. InSight Aeroshell Coming Together

    NASA Image and Video Library

    2015-08-18

    The heat shield is suspended above the rest of the InSight spacecraft in this image taken July 13, 2015, in a spacecraft assembly clean room at Lockheed Martin Space Systems, Denver. The gray cone is the back shell, which together with the heat shield forms a protective aeroshell around the stowed InSight lander. The photo was taken during preparation for vibration testing of the spacecraft. InSight, for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is scheduled for launch in March 2016 and landing in September 2016. It will study the deep interior of Mars to advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19814

  15. Flight Dynamics of an Aeroshell Using an Attached Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Schoenenberger, Mark; Axdahl, Erik; Wilhite, Alan

    2009-01-01

    An aeroelastic analysis of the behavior of an entry vehicle utilizing an attached inflatable aerodynamic decelerator during supersonic flight is presented. The analysis consists of a planar, four degree of freedom simulation. The aeroshell and the IAD are assumed to be separate, rigid bodies connected with a spring-damper at an interface point constraining the relative motion of the two bodies. Aerodynamic forces and moments are modeled using modified Newtonian aerodynamics. The analysis includes the contribution of static aerodynamic forces and moments as well as pitch damping. Two cases are considered in the analysis: constant velocity flight and planar free flight. For the constant velocity and free flight cases with neutral pitch damping, configurations with highly-stiff interfaces exhibit statically stable but dynamically unstable aeroshell angle of attack. Moderately stiff interfaces exhibit static and dynamic stability of aeroshell angle of attack due to damping induced by the pitch angle rate lag between the aeroshell and IAD. For the free-flight case, low values of both the interface stiffness and damping cause divergence of the aeroshell angle of attack due to the offset of the IAD drag force with respect to the aeroshell center of mass. The presence of dynamic aerodynamic moments was found to influence the stability characteristics of the vehicle. The effect of gravity on the aeroshell angle of attack stability characteristics was determined to be negligible for the cases investigated.

  16. Controlling the Surface Chemistry of Graphite by Engineered Self-Assembled Peptides

    PubMed Central

    Khatayevich, Dmitriy; So, Christopher R.; Hayamizu, Yuhei; Gresswell, Carolyn; Sarikaya, Mehmet

    2012-01-01

    The systematic control over surface chemistry is a long-standing challenge in biomedical and nanotechnological applications for graphitic materials. As a novel approach, we utilize graphite-binding dodecapeptides that self-assemble into dense domains to form monolayer thick long-range ordered films on graphite. Specifically, the peptides are rationally designed through their amino acid sequences to predictably display hydrophilic and hydrophobic characteristics while maintaining their self-assembly capabilities on the solid substrate. The peptides are observed to maintain a high tolerance for sequence modification, allowing the control over surface chemistry via their amino acid sequence. Furthermore, through a single step co-assembly of two different designed peptides, we predictably and precisely tune the wettability of the resulting functionalized graphite surfaces from 44 to 83 degrees. The modular molecular structures and predictable behavior of short peptides demonstrated here give rise to a novel platform for functionalizing graphitic materials that offers numerous advantages, including non-invasive modification of the substrate, bio-compatible processing in an aqueous environment, and simple fusion with other functional biological molecules. PMID:22428620

  17. A Common Probe Design for Multiple Planetary Destinations

    NASA Technical Reports Server (NTRS)

    Hwang, H. H.; Allen, G. A., Jr.; Alunni, A. I.; Amato, M. J.; Atkinson, D. H.; Bienstock, B. J.; Cruz, J. R.; Dillman, R. A.; Cianciolo, A. D.; Elliott, J. O.; hide

    2018-01-01

    Atmospheric probes have been successfully flown to planets and moons in the solar system to conduct in situ measurements. They include the Pioneer Venus multi-probes, the Galileo Jupiter probe, and Huygens probe. Probe mission concepts to five destinations, including Venus, Jupiter, Saturn, Uranus, and Neptune, have all utilized similar-shaped aeroshells and concept of operations, namely a 45-degree sphere cone shape with high density heatshield material and parachute system for extracting the descent vehicle from the aeroshell. Each concept designed its probe to meet specific mission requirements and to optimize mass, volume, and cost. At the 2017 International Planetary Probe Workshop (IPPW), NASA Headquarters postulated that a common aeroshell design could be used successfully for multiple destinations and missions. This "common probe"� design could even be assembled with multiple copies, properly stored, and made available for future NASA missions, potentially realizing savings in cost and schedule and reducing the risk of losing technologies and skills difficult to sustain over decades. Thus the NASA Planetary Science Division funded a study to investigate whether a common probe design could meet most, if not all, mission needs to the five planetary destinations with extreme entry environments. The Common Probe study involved four NASA Centers and addressed these issues, including constraints and inefficiencies that occur in specifying a common design. Study methodology: First, a notional payload of instruments for each destination was defined based on priority measurements from the Planetary Science Decadal Survey. Steep and shallow entry flight path angles (EFPA) were defined for each planet based on qualification and operational g-load limits for current, state-of-the-art instruments. Interplanetary trajectories were then identified for a bounding range of EFPA. Next, 3-degrees-of-freedom simulations for entry trajectories were run using the entry state vectors from the interplanetary trajectories. Aeroheating correlations were used to generate stagnation point convective and radiative heat flux profiles for several aeroshell shapes and entry masses. High fidelity thermal response models for various Thermal Protection System (TPS) materials were used to size stagnation-point thicknesses, with margins based on previous studies. Backshell TPS masses were assumed based on scaled heat fluxes from the heatshield and also from previous mission concepts. Presentation: We will present an overview of the study scope, highlights of the trade studies and design driver analyses, and the final recommendations of a common probe design and assembly. We will also indicate limitations that the common probe design may have for the different destinations. Finally, recommended qualification approaches for missions will be presented.

  18. Hypersonic Wind Tunnel Test of a Flare-type Membrane Aeroshell for Atmospheric Entry Capsules

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Koyama, Masashi; Kimura, Yusuke; Suzuki, Kojiro; Abe, Takashi; Koichi Hayashi, A.

    A flexible aeroshell for atmospheric entry vehicles has attracted attention as an innovative space transportation system. In this study, hypersonic wind tunnel tests were carried out to investigate the behavior, aerodynamic characteristics and aerodynamic heating environment in hypersonic flow for a previously developed capsule-type vehicle with a flare-type membrane aeroshell made of ZYLON textile sustained by a rigid torus frame. Two different models with different flare angles (45º and 60º) were tested to experimentally clarify the effect of flare angle. Results indicate that flare angle of aeroshell has significant and complicate effect on flow field and aerodynamic heating in hypersonic flow at Mach 9.45 and the flare angle is very important parameter for vehicle design with the flare-type membrane aeroshell.

  19. Method of Joining Graphite Fibers to a Substrate

    NASA Technical Reports Server (NTRS)

    Beringer, Durwood M. (Inventor); Caron, Mark E. (Inventor); Taddey, Edmund P. (Inventor); Gleason, Brian P. (Inventor)

    2014-01-01

    A method of assembling a metallic-graphite structure includes forming a wetted graphite subassembly by arranging one or more layers of graphite fiber material including a plurality of graphite fibers and applying a layer of metallization material to ends of the plurality of graphite fibers. At least one metallic substrate is secured to the wetted graphite subassembly via the layer of metallization material.

  20. Aerocapture Inflatable Decelerator for Planetary Entry

    NASA Technical Reports Server (NTRS)

    Reza, Sajjad; Hund, Richard; Kustas, Frank; Willcockson, William; Songer, Jarvis; Brown, Glen

    2007-01-01

    Forward Attached Inflatable Decelerators, more commonly known as inflatable aeroshells, provide an effective, cost efficient means of decelerating spacecrafts by using atmospheric drag for aerocapture or planetary entry instead of conventional liquid propulsion deceleration systems. Entry into planetary atmospheres results in significant heating and aerodynamic pressures which stress aeroshell systems to their useful limits. Incorporation of lightweight inflatable decelerator surfaces with increased surface-area footprints provides the opportunity to reduce heat flux and induced temperatures, while increasing the payload mass fraction. Furthermore, inflatable aeroshell decelerators provide the needed deceleration at considerably higher altitudes and Mach numbers when compared with conventional rigid aeroshell entry systems. Inflatable aeroshells also provide for stowage in a compact space, with subsequent deployment of a large-area, lightweight heatshield to survive entry heating. Use of a deployable heatshield decelerator enables an increase in the spacecraft payload mass fraction and may eliminate the need for a spacecraft backshell.

  1. High-Temperature Structures, Adhesives, and Advanced Thermal Protection Materials for Next-Generation Aeroshell Design

    NASA Technical Reports Server (NTRS)

    Collins, Timothy J.; Congdon, William M.; Smeltzer, Stanley S.; Whitley, Karen S.

    2005-01-01

    The next generation of planetary exploration vehicles will rely heavily on robust aero-assist technologies, especially those that include aerocapture. This paper provides an overview of an ongoing development program, led by NASA Langley Research Center (LaRC) and aimed at introducing high-temperature structures, adhesives, and advanced thermal protection system (TPS) materials into the aeroshell design process. The purpose of this work is to demonstrate TPS materials that can withstand the higher heating rates of NASA's next generation planetary missions, and to validate high-temperature structures and adhesives that can reduce required TPS thickness and total aeroshell mass, thus allowing for larger science payloads. The effort described consists of parallel work in several advanced aeroshell technology areas. The areas of work include high-temperature adhesives, high-temperature composite materials, advanced ablator (TPS) materials, sub-scale demonstration test articles, and aeroshell modeling and analysis. The status of screening test results for a broad selection of available higher-temperature adhesives is presented. It appears that at least one (and perhaps a few) adhesives have working temperatures ranging from 315-400 C (600-750 F), and are suitable for TPS-to-structure bondline temperatures that are significantly above the traditional allowable of 250 C (482 F). The status of mechanical testing of advanced high-temperature composite materials is also summarized. To date, these tests indicate the potential for good material performance at temperatures of at least 600 F. Application of these materials and adhesives to aeroshell systems that incorporate advanced TPS materials may reduce aeroshell TPS mass by 15% - 30%. A brief outline is given of work scheduled for completion in 2006 that will include fabrication and testing of large panels and subscale aeroshell test articles at the Solar-Tower Test Facility located at Kirtland AFB and operated by Sandia National Laboratories. These tests are designed to validate aeroshell manufacturability using advanced material systems, and to demonstrate the maintenance of bondline integrity at realistically high temperatures and heating rates. Finally, a status is given of ongoing aeroshell modeling and analysis efforts which will be used to correlate with experimental testing, and to provide a reliable means of extrapolating to performance under actual flight conditions. The modeling and analysis effort includes a parallel series of experimental tests to determine TSP thermal expansion and other mechanical properties which are required for input to the analysis models.

  2. Aerocapture Inflatable Decelerator (AID)

    NASA Technical Reports Server (NTRS)

    Reza, Sajjad

    2007-01-01

    Forward Attached Inflatable Decelerators, more commonly known as inflatable aeroshells, provide an effective, cost efficient means of decelerating spacecrafts by using atmospheric drag for aerocapture or planetary entry instead of conventional liquid propulsion deceleration systems. Entry into planetary atmospheres results in significant heating and aerodynamic pressures which stress aeroshell systems to their useful limits. Incorporation of lightweight inflatable decelerator surfaces with increased surface-area footprints provides the opportunity to reduce heat flux and induced temperatures, while increasing the payload mass fraction. Furthermore, inflatable aeroshell decelerators provide the needed deceleration at considerably higher altitudes and Mach numbers when compared with conventional rigid aeroshell entry systems. Inflatable aeroshells also provide for stowage in a compact space, with subsequent deployment of a large-area, lightweight heatshield to survive entry heating. Use of a deployable heatshield decelerator not only enables an increase in the spacecraft payload mass fraction and but may also eliminate the need for a spacecraft backshell and cruise stage. This document is the viewgraph slides for the paper's presentation.

  3. Tuning carbon nanotube assembly for flexible, strong and conductive films.

    PubMed

    Wang, Yanjie; Li, Min; Gu, Yizhuo; Zhang, Xiaohua; Wang, Shaokai; Li, Qingwen; Zhang, Zuoguang

    2015-02-21

    Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g(-1), greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction along the axial direction, enabling these flexible graphite films to be both strong and conductive.

  4. Controllable Self-Assembly of Micro-Nanostructured Si-Embedded Graphite/Graphene Composite Anode for High-Performance Li-Ion Batteries.

    PubMed

    Lin, Ning; Xu, Tianjun; Li, Tieqiang; Han, Ying; Qian, Yitai

    2017-11-15

    Si-containing graphite-based composites are considered as promising high-capacity anodes for lithium-ion batteries (LIBs). Here, a controllable and scalable self-assembly strategy is developed to produce micro-nanostructured graphite/Si/reduced graphene oxides composite (SGG). The self-assembly procedure is realized by the hydrogen bond interaction between acylamino-modified graphite and graphene oxides (GO); Si nanoparticles are in situ embedded between graphite and GO sheets uniformly. This architecture is able to overcome the incompatibility between Si nanoparticles and microsized graphite. Accordingly, the as-prepared SGG anode (Si 8 wt %) delivers a reversible Li-storage capacity of 572 mAh g -1 at 0.2 C, 502.2 mAh g -1 after 600 cycles at 0.8 C with a retention of 92%, and a capacity retention of 64% even at 10 C. The impressive electrochemical properties are ascribed to the stable architecture and three-dimensional conductive network constructed by graphite and graphene sheets, which can accommodate the huge volume change of Si, keep the conductive contact and structural integrity, and suppress side reactions with electrolyte. Additionally, the full-cell (LiFePO 4 cathode/SGG anode) delivers a specific capacity of 550 mAh g -1 with a working potential beyond 3.0 V.

  5. KENNEDY SPACE CENTER, FLA. - Assembly of the backshell and heat shield surrounding the Mars Exploration Rover 1 (MER-1) is complete. The resulting aeroshell will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - Assembly of the backshell and heat shield surrounding the Mars Exploration Rover 1 (MER-1) is complete. The resulting aeroshell will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  6. Tuning carbon nanotube assembly for flexible, strong and conductive films

    NASA Astrophysics Data System (ADS)

    Wang, Yanjie; Li, Min; Gu, Yizhuo; Zhang, Xiaohua; Wang, Shaokai; Li, Qingwen; Zhang, Zuoguang

    2015-02-01

    Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g-1, greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction along the axial direction, enabling these flexible graphite films to be both strong and conductive.Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g-1, greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction along the axial direction, enabling these flexible graphite films to be both strong and conductive. Electronic supplementary information (ESI) available: The TEM image of array CNTs. The surface height curves of x-z cross-section of the films. A comparison of the mechanical properties of the pure CNT films described in this work with other CNT films/fibers spun from CNT array reported in the literature. The measured evaporation rates of ethanol and acetone. See DOI: 10.1039/c4nr06401a

  7. Mars Science Laboratory Aeroshell with Curiosity Inside

    NASA Image and Video Library

    2011-10-05

    At the Payload Hazardous Servicing Facility at NASA Kennedy Space Center in Florida, the Mars Science Laboratory rover, Curiosity, and the spacecraft descent stage have been enclosed inside the spacecraft aeroshell.

  8. Automated assembly of Gallium Arsenide and 50-micron thick silicon solar cell modules

    NASA Technical Reports Server (NTRS)

    Mesch, H. G.

    1984-01-01

    The TRW automated solar array assembly equipment was used for the module assembly of 300 GaAs solar cells and 300 50 micron thick silicon solar cells (2 x 4 cm in size). These cells were interconnected with silver plated Invar tabs by means of welding. The GaAs cells were bonded to Kapton graphite aluminum honeycomb graphite substrates and the thin silicon cells were bonded to 0.002 inch thick single layer Kapton substrates. The GaAs solar cell module assembly resulted in a yield of 86% and the thin cell assembly produced a yield of 46% due to intermittent sticking of weld electrodes during the front cell contact welding operation. (Previously assembled thin cell solar modules produced an overall assembly yield of greater than 80%).

  9. Mechanical Properties of T650-35/AFR-PE-4 at Elevated Temperatures for Lightweight Aeroshell Designs

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Collins, TImothy J.

    2006-01-01

    Considerable efforts have been underway to develop multidisciplinary technologies for aeroshell structures that will significantly increase the allowable working temperature for the aeroshell components, and enable the system to operate at higher temperatures while sustaining performance and durability. As part of these efforts, high temperature polymer matrix composites and fabrication technologies are being developed for the primary load bearing structure (heat shield) of the spacecraft. New high-temperature resins and composite material manufacturing techniques are available that have the potential to significantly improve current aeroshell design. In order to qualify a polymer matrix composite (PMC) material as a candidate aeroshell structural material, its performance must be evaluated under realistic environments. Thus, verification testing of lightweight PMC's at aeroshell entry temperatures is needed to ensure that they will perform successfully in high-temperature environments. Towards this end, a test program was developed to characterize the mechanical properties of two candidate material systems, T650-35/AFR-PE-4 and T650-35/RP46. The two candidate high-temperature polyimide resins, AFR-PE-4 and RP46, were developed at the Air Force Research Laboratory and NASA Langley Research Center, respectively. This paper presents experimental methods, strength, and stiffness data of the T650-35/AFR-PE-4 material as a function of elevated temperatures. The properties determined during the research test program herein, included tensile strength, tensile stiffness, Poisson s ratio, compressive strength, compressive stiffness, shear modulus, and shear strength. Unidirectional laminates, a cross-ply laminate and two eight-harness satin (8HS)-weave laminates (4-ply and 10-ply) were tested according to ASTM standard methods at room and elevated temperatures (23, 316, and 343 C). All of the relevant test methods and data reduction schemes are outlined along with mechanical data. These data contribute to a database of material properties for high-temperature polyimide composites that will be used to identify the material characteristics of potential candidate materials for aeroshell structure applications.

  10. 77 FR 36131 - Airworthiness Directives; Enstrom Helicopter Corporation Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... ``Aeroshell 22 grease'' or ``VC-3 Vibra- tite thread locker,'' you may use an equivalent product. (2) For the... instructions specify using ``Aeroshell 22 grease'' or ``VC-3 Vibra- tite thread locker,'' you may use an...

  11. METAShield: Hot Metallic Aeroshell Concept for RLV/SOV

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.; Poteet, Carl C.; Daryabeigi, Kamran; Nowak, Robert J.; Hsu, Su-Yuen; Schmidt, Irvin H.; Ku, Shih-Huei P.

    2003-01-01

    An innovative fuselage design approach that combines many desirable operational features with a simple and efficient structural approach is being developed by NASA. The approach, named METAShield for MEtallic TransAtmospheric Shield, utilizes lightly loaded, hot aeroshell structures surrounding integral propellant tanks that carry the primary structural loads. The aeroshells are designed to withstand the local pressure loads, transmitting them to the tanks with minimal restraint of thermal growth. No additional thermal protection system protects the METAShield, and a fibrous or multilayer insulation blanket, located in the space between the aeroshell and the tanks, serves as both high temperature and cryogenic insulation for the tanks. The concept is described in detail, and the performance and operational features are highlighted. Initial design results and analyses of the structural, thermal, and thermal-structural performance are described. Computational results evaluating resistance to hypervelocity impact damage, as well as some supporting aerothermal wind tunnel results. are also presented. Future development needs are summarized.

  12. Overview of the NASA Entry, Descent and Landing Systems Analysis Exploration Feed-Forward Study

    NASA Technical Reports Server (NTRS)

    DwyerCianciolo, Alicia M.; Zang, Thomas A.; Sostaric, Ronald R.; McGuire, M. Kathy

    2011-01-01

    Technology required to land large payloads (20 to 50 mt) on Mars remains elusive. In an effort to identify the most viable investment path, NASA and others have been studying various concepts. One such study, the Entry, Descent and Landing Systems Analysis (EDLSA) Study [1] identified three potential options: the rigid aeroshell, the inflatable aeroshell and supersonic retropropulsion (SRP). In an effort to drive out additional levels of design detail, a smaller demonstrator, or exploration feed-forward (EFF), robotic mission was devised that utilized two of the three (inflatable aeroshell and SRP) high potential technologies in a configuration to demonstrate landing a two to four metric ton payload on Mars. This paper presents and overview of the maximum landed mass, inflatable aeroshell controllability and sensor suite capability assessments of the selected technologies and recommends specific technology areas for additional work.

  13. Construction of 3D nanostructure hierarchical porous graphitic carbons by charge-induced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors.

    PubMed

    Ma, Fangwei; Ma, Di; Wu, Guang; Geng, Weidan; Shao, Jinqiu; Song, Shijiao; Wan, Jiafeng; Qiu, Jieshan

    2016-05-10

    A smart and sustainable strategy based on charge-induced self-assembly and nanocrystal-assisted catalytic graphitization is explored for the efficient construction of 3D nanostructure hierarchical porous graphitic carbons from the pectin biopolymer. The electrostatic interaction between the negatively charged pectin chains and magnesium ions plays a crucial role in the formation of 3D architectures. The 3D HPGCs possess a three-dimensional carbon framework with a hierarchical porous structure, flake-like graphitic carbon walls and high surface area (1320 m(2) g(-1)). The 3D HPGCs show an outstanding specific capacitance of 274 F g(-1) and excellent rate capability with a high capacitance retention of 85% at a high current density of 50 A g(-1) for supercapacitor electrodes. This strategy provided a novel approach to effectively construct 3D porous carbon nanostructures from biopolymers.

  14. Mesoscopic self-organization of a self-assembled supramolecular rectangle on highly oriented pyrolytic graphite and Au(111) surfaces.

    PubMed

    Gong, Jian-Ru; Wan, Li-Jun; Yuan, Qun-Hui; Bai, Chun-Li; Jude, Hershel; Stang, Peter J

    2005-01-25

    A self-assembled supramolecular metallacyclic rectangle was investigated with scanning tunneling microscopy on highly oriented pyrolytic graphite and Au(111) surfaces. The rectangles spontaneously adsorb on both surfaces and self-organize into well ordered adlayers. On highly oriented pyrolytic graphite, the long edge of the rectangle stands on the surface, forming a 2D molecular network. In contrast, the face of the rectangle lays flat on the Au(111) surface, forming linear chains. The structures and intramolecular features obtained through high-resolution scanning tunneling microscopy imaging are discussed.

  15. Surface Patterning of Benzene Carboxylic Acids on Graphite: Influence of structure, solvent, and concentration on molecular self-assembly

    NASA Astrophysics Data System (ADS)

    Florio, Gina; Stiso, Kimberly; Campanelli, Joseph; Dessources, Kimberly; Folkes, Trudi

    2012-02-01

    Scanning tunneling microscopy (STM) was used to investigate the molecular self-assembly of four different benzene carboxylic acid derivatives at the liquid/graphite interface: pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid), trimellitic acid (1,2,4-benzenetricarboxylic acid), trimesic acid (1,3,5-benzenetricarboxylic acid), and 1,3,5-benzenetriacetic acid. A range of two dimensional networks are observed that depend sensitively on the number of carboxylic acids present, the nature of the solvent, and the solution concentration. We will describe our recent efforts to determine (a) the preferential two-dimensional structure(s) for each benzene carboxylic acid at the liquid/graphite interface, (b) the thermodynamic and kinetic factors influencing self-assembly (or lack thereof), (c) the role solvent plays in the assembly, (e) the effect of in situ versus ex situ dilution on surface packing density, and (f) the temporal evolution of the self-assembled monolayer. Results of computational analysis of analog molecules and model monolayer films will also be presented to aid assignment of network structures and to provide a qualitative picture of surface adsorption and network formation.

  16. Method of fabricating composite structures

    NASA Technical Reports Server (NTRS)

    Sigur, W. A. (Inventor)

    1990-01-01

    A method of fabricating structures formed from composite materials by positioning the structure about a high coefficient of thermal expansion material, wrapping a graphite fiber overwrap about the structure, and thereafter heating the assembly to expand the high coefficient of thermal expansion material to forcibly compress the composite structure against the restraint provided by the graphite overwrap. The high coefficient of thermal expansion material is disposed about a mandrel with a release system therebetween, and with a release system between the material having the high coefficient of thermal expansion and the composite material, and between the graphite fibers and the composite structure. The heating may occur by inducing heat into the assembly by a magnetic field created by coils disposed about the assembly through which alternating current flows. The method permits structures to be formed without the use of an autoclave.

  17. Method of fabricating composite structures

    NASA Technical Reports Server (NTRS)

    Sigur, Wanda A. (Inventor)

    1992-01-01

    A method of fabricating structures formed from composite materials by positioning the structure about a high coefficient of thermal expansion material, wrapping a graphite fiber overwrap about the structure, and thereafter heating the assembly to expand the high coefficient of thermal expansion material to forcibly compress the composite structure against the restraint provided by the graphite overwrap. The high coefficient of thermal expansion material is disposed about a mandrel with a release system therebetween, and with a release system between the material having the high coefficient of thermal expansion and the composite material, and between the graphite fibers and the composite structure. The heating may occur by inducing heat into the assembly by a magnetic field created by coils disposed about the assembly through which alternating current flows. The method permits structures to be formed without the use of an autoclave.

  18. Cooling of weapons with graphite foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klett, James W.; Trammell, Michael P.

    Disclosed are examples of an apparatus for cooling a barrel 12 of a firearm 10 and examples of a cooled barrel assembly 32 for installation into an existing firearm 10. When assembled with the barrel 12, a contact surface 16 of a shell 14 is proximate to, and in thermal communication with, the outer surface of the barrel 18. The shell 14 is formed of commercially available or modified graphite foam.

  19. The aerodynamic characteristics of large angled cones with retrorockets

    NASA Technical Reports Server (NTRS)

    Jarvinen, P. O.; Adams, R. H.

    1970-01-01

    Analytical and experimental phases of the subject investigation are described. The analytical program for the single jet determines the terminal shock location, the jet boundary, the interface profile, the bow shock profile, the shear layer growth and the dead air region pressure. The experimental program described was conducted over the range from free stream Mach 0.4 to 2.0 at angles-of-attack up to 18 deg and at thrusting coefficients up to C sub T = T/q sub infinity A sub m = 30. Variables investigated included aeroshell angle, number of nozzles, engine thrust, size of nozzles, nozzle throttling and gas composition. The influence of these variables on the aeroshell stability, drag, and loads was determined by integrating pressure measurements on the aeroshell. The total system forces consist of components due to pure thrust and components due to pressure on the aeroshell arising from the jet-free stream interaction. Shadowgraphs provided flow field geometries which proved to be within 10% of those predicted analytically.

  20. Mission Sizing and Trade Studies for Low Ballistic Coefficient Entry Systems to Venus

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Smith, Brandon; Prabhu, Dinesh; Venkatapathy, Ethiraj

    2012-01-01

    The U.S and the U.S.S.R. have sent seventeen successful atmospheric entry missions to Venus. Past missions to Venus have utilized rigid aeroshell systems for entry. This rigid aeroshell paradigm sets performance limitations since the size of the entry vehicle is constrained by the fairing diameter of the launch vehicle. This has limited ballistic coefficients (beta) to well above 100 kg/m2 for the entry vehicles. In order to maximize the science payload and minimize the Thermal Protection System (TPS) mass, these missions have entered at very steep entry flight path angles (gamma). Due to Venus thick atmosphere and the steep-gamma, high- conditions, these entry vehicles have been exposed to very high heat flux, very high pressures and extreme decelerations (upwards of 100 g's). Deployable aeroshells avoid the launch vehicle fairing diameter constraint by expanding to a larger diameter after the launch. Due to the potentially larger wetted area, deployable aeroshells achieve lower ballistic coefficients (well below 100 kg/m2), and if they are flown at shallower flight path angles, the entry vehicle can access trajectories with far lower decelerations (50-60 g's), peak heat fluxes (400 W/cm2) and peak pressures. The structural and TPS mass of the shallow-gamma, low-beta deployables are lower than their steep-gamma, high-beta rigid aeroshell counterparts at larger diameters, contributing to lower areal densities and potentially higher payload mass fractions. For example, at large diameters, deployables may attain aeroshell areal densities of 10 kg/m2 as opposed to 50 kg/m2 for rigid aeroshells. However, the low-beta, shallow-gamma paradigm also raises issues, such as the possibility of skip-out during entry. The shallow-gamma could also increase the landing footprint of the vehicle. Furthermore, the deployable entry systems may be flexible, so there could be fluid-structure interaction, especially in the high altitude, low-density regimes. The need for precision in guidance, navigation and control during entry also has to be better understood. This paper investigates some of the challenges facing the design of a shallow-gamma, low-beta entry system.

  1. VIEW OF GRAPHITE BLOCK SHIELDING WALL (NOT IN ORIGINAL LOCATION), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF GRAPHITE BLOCK SHIELDING WALL (NOT IN ORIGINAL LOCATION), LEVEL -15’, LABORATORY/OFFICE WING, LOOKING SOUTHWEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  2. Self-Assembled Polystyrene Beads for Templated Covalent Functionalization of Graphitic Substrates Using Diazonium Chemistry.

    PubMed

    Van Gorp, Hans; Walke, Peter; Bragança, Ana M; Greenwood, John; Ivasenko, Oleksandr; Hirsch, Brandon E; De Feyter, Steven

    2018-04-11

    A network of self-assembled polystyrene beads was employed as a lithographic mask during covalent functionalization reactions on graphitic surfaces to create nanocorrals for confined molecular self-assembly studies. The beads were initially assembled into hexagonal arrays at the air-liquid interface and then transferred to the substrate surface. Subsequent electrochemical grafting reactions involving aryl diazonium molecules created covalently bound molecular units that were localized in the void space between the nanospheres. Removal of the bead template exposed hexagonally arranged circular nanocorrals separated by regions of chemisorbed molecules. Small molecule self-assembly was then investigated inside the resultant nanocorrals using scanning tunneling microscopy to highlight localized confinement effects. Overall, this work illustrates the utility of self-assembly principles to transcend length scale gaps in the development of hierarchically patterned molecular materials.

  3. Aeroshell Design Techniques for Aerocapture Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Dyke, R. Eric; Hrinda, Glenn A.

    2004-01-01

    A major goal of NASA s In-Space Propulsion Program is to shorten trip times for scientific planetary missions. To meet this challenge arrival speeds will increase, requiring significant braking for orbit insertion, and thus increased deceleration propellant mass that may exceed launch lift capabilities. A technology called aerocapture has been developed to expand the mission potential of exploratory probes destined for planets with suitable atmospheres. Aerocapture inserts a probe into planetary orbit via a single pass through the atmosphere using the probe s aeroshell drag to reduce velocity. The benefit of an aerocapture maneuver is a large reduction in propellant mass that may result in smaller, less costly missions and reduced mission cruise times. The methodology used to design rigid aerocapture aeroshells will be presented with an emphasis on a new systems tool under development. Current methods for fast, efficient evaluations of structural systems for exploratory vehicles to planets and moons within our solar system have been under development within NASA having limited success. Many systems tools that have been attempted applied structural mass estimation techniques based on historical data and curve fitting techniques that are difficult and cumbersome to apply to new vehicle concepts and missions. The resulting vehicle aeroshell mass may be incorrectly estimated or have high margins included to account for uncertainty. This new tool will reduce the guesswork previously found in conceptual aeroshell mass estimations.

  4. VIEW OF GRAPHITE BLOCK SHIELDING WALL (NOT IN ORIGINAL LOCATION), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF GRAPHITE BLOCK SHIELDING WALL (NOT IN ORIGINAL LOCATION), LEVEL -15’, LABORATORY/OFFICE WING, SHOWING COOLING WATER PUMPS, LOOKING WEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  5. An investigation on the effects of phase change material on material components used for high temperature thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Kim, Taeil; Singh, Dileep; Zhao, Weihuan; Yua, Wenhua; France, David M.

    2016-05-01

    The latent heat thermal energy storage (LHTES) systems for concentrated solar power (CSP) plants with advanced power cycle require high temperature phase change materials (PCMs), Graphite foams with high thermal conductivity to enhance the poor thermal conductivity of PCMs. Brazing of the graphite foams to the structural metals of the LHTES system could be a method to assemble the system and a method to protect the structural metals from the molten salts. In the present study, the LHTES prototype capsules using MgCl2-graphite foam composites were assembled by brazing and welding, and tested to investigate the corrosion attack of the PCM salt on the BNi-4 braze. The microstructural analysis showed that the BNi-4 braze alloy can be used not only for the joining of structure alloy to graphite foams but also for the protecting of structure alloy from the corrosion by PCM.

  6. Analysis and sizing of Mars aerobrake structure

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Craft, W. J.

    1993-01-01

    A cone-sphere aeroshell structure for aerobraking into Martian atmosphere is studied. Using this structural configuration, a space frame load-bearing structure is proposed. To generate this structure efficiently and to perform a variety of studies of several configurations, a mesh generator that utilizes only a few configurational parameters is developed. A finite element analysis program that analyzes space frame structures was developed. A sizing algorithm that arrives at a minimum mass configuration was developed and integrated into the finite element analysis program. A typical 135-ft-diam aerobrake configuration was analyzed and sized. The minimum mass obtained in this study using high modulus graphite/epoxy composite material members is compared with the masses obtained from two other aerobrake structures using lightweight erectable tetrahedral truss and part-spherical truss configurations. Excellent agreement for the minimum mass was obtained with the three different aerobrake structures. Also, the minimum mass using the present structure was obtained when the supports were not at the base but at about 75 percent of the base diameter.

  7. Structural Analysis and Testing of the Inflatable Re-entry Vehicle Experiment (IRVE)

    NASA Technical Reports Server (NTRS)

    Lindell, Michael C.; Hughes, Stephen J.; Dixon, Megan; Wiley, Cliff E.

    2006-01-01

    The Inflatable Re-entry Vehicle Experiment (IRVE) is a 3.0 meter, 60 degree half-angle sphere cone, inflatable aeroshell experiment designed to demonstrate various aspects of inflatable technology during Earth re-entry. IRVE will be launched on a Terrier-Improved Orion sounding rocket from NASA s Wallops Flight Facility in the fall of 2006 to an altitude of approximately 164 kilometers and re-enter the Earth s atmosphere. The experiment will demonstrate exo-atmospheric inflation, inflatable structure leak performance throughout the flight regime, structural integrity under aerodynamic pressure and associated deceleration loads, thermal protection system performance, and aerodynamic stability. Structural integrity and dynamic response of the inflatable will be monitored with photogrammetric measurements of the leeward side of the aeroshell during flight. Aerodynamic stability and drag performance will be verified with on-board inertial measurements and radar tracking from multiple ground radar stations. In addition to demonstrating inflatable technology, IRVE will help validate structural, aerothermal, and trajectory modeling and analysis techniques for the inflatable aeroshell system. This paper discusses the structural analysis and testing of the IRVE inflatable structure. Equations are presented for calculating fabric loads in sphere cone aeroshells, and finite element results are presented which validate the equations. Fabric material properties and testing are discussed along with aeroshell fabrication techniques. Stiffness and dynamics tests conducted on a small-scale development unit and a full-scale prototype unit are presented along with correlated finite element models to predict the in-flight fundamental mod

  8. THE HOT CRITICAL ASSEMBLY $sub 4$CESAR$sub 4$ (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanguy, P.

    1963-07-01

    With Cesar, the Cadarache Center for Nuclear Studies will be equipped with a zero-power critical assembly, which will enable it to obtain the data necessary for the development of natural uranium, graphite, gas reactors. Reactivity balance, evolution of the reactivity, and deformation of the flux curves are to be studied. These studies will complement those already being done on Marius, but carried out at room temperature; in Cesar the graphite temperature can reach 500 deg C. (auth)

  9. Fuel cell cooler assembly and edge seal means therefor

    DOEpatents

    Breault, Richard D.; Roethlein, Richard J.; Congdon, Joseph V.

    1980-01-01

    A cooler assembly for a stack of fuel cells comprises a fibrous, porous coolant tube holder sandwiched between and bonded to at least one of a pair of gas impervious graphite plates. The tubes are disposed in channels which pass through the holder. The channels are as deep as the holder thickness, which is substantially the same as the outer diameter of the tubes. Gas seals along the edges of the holder parallel to the direction of the channels are gas impervious graphite strips.

  10. Self-assembled monolayers of shape-persistent macrocycles on graphite: interior design and conformational polymorphism.

    PubMed

    Vollmeyer, Joscha; Eberhagen, Friederike; Höger, Sigurd; Jester, Stefan-S

    2014-01-01

    Three shape-persistent naphthylene-phenylene-acetylene macrocycles of identical backbone structures and extraannular substitution patterns but different (empty, apolar, polar) nanopore fillings are self-assembled at the solid/liquid interface of highly oriented pyrolytic graphite and 1,2,4-trichlorobenzene. Submolecularly resolved images of the resulting two-dimensional (2D) crystalline monolayer patterns are obtained by in situ scanning tunneling microscopy. A concentration-dependent conformational polymorphism is found, and open and more dense packing motifs are observed. For all three compounds alike lattice parameters are found, therefore the intermolecular macrocycle distances are mainly determined by their size and symmetry. This is an excellent example that the graphite acts as a template for the macrocycle organization independent from their specific interior.

  11. Stabilization Effect of Amino Acid Side Chains in Peptide Assemblies on Graphite Studied by Scanning Tunneling Microscopy.

    PubMed

    Guo, Yuanyuan; Hou, Jingfei; Zhang, Xuemei; Yang, Yanlian; Wang, Chen

    2017-04-19

    An analysis is presented of the effects of amino acid side chains on peptide assemblies in ambient conditions on a graphite surface. The molecularly resolved assemblies of binary peptides are examined with scanning tunneling microscopy. A comparative analysis of the assembly structures reveals that the lamellae width has an appreciable dependence on the peptide sequence, which could be considered as a manifestation of a stabilizing effect of side-chain moieties of amino acids with high (phenylalanine) and low (alanine, asparagine, histidine and aspartic acid) propensities for aggregation. These amino acids are representative for the chemical structures involving the side chains of charged (histidine and aspartic acid), aromatic (phenylalanine), hydrophobic (alanine), and hydrophilic (asparagine) amino acids. These results might provide useful insight for understanding the effects of sequence on the assembly of surface-bound peptides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. METHOD FOR COATING GRAPHITE WITH NIOBIUM CARBIDE

    DOEpatents

    Kane, J.S.; Carpenter, J.H.; Krikorian, O.H.

    1962-01-16

    A method is given for coating graphite with a hard, tenacious layer of niobium carbide up to 30 mils or more thick. The method makes use of the discovery that niobium metal, if degassed and heated rapidly below the carburization temperature in contact with graphite, spreads, wets, and penetrates the graphite without carburization. The method includes the obvious steps of physically contacting niobium powders or other physical forms of niobium with graphite, degassing the assembly below the niobium melting point, e.g., 1400 deg C, heating to about 2200 to 2400 deg C within about 15 minutes while outgassing at a high volume throughput, and thereafter carburizing the niobium. (AEC)

  13. Inviscid Flow Computations of Two '07 Mars Lander Aeroshell Configurations Over a Mach Number Range of 2 to 24

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.

    2001-01-01

    This report documents the results of an inviscid computational study conducted on two aeroshell configurations for a proposed '07 Mars Lander. The aeroshell configurations are asymmetric due to the presence of the tabs at the maximum diameter location. The purpose of these tabs was to change the pitching moment characteristics so that the aeroshell will trim at a non-zero angle of attack and produce a lift-to-drag ratio of approximately -0.25. This is required in the guidance of the vehicle on its trajectory. One of the two configurations is called the shelf and the other is called the tab. The unstructured grid software FELISA with the equilibrium Mars gas option was used for these computations. The computations were done for six points on a preliminary trajectory of the '07 Mars Lander at nominal Mach numbers of 2, 3, 5, 10, 15, and 24. Longitudinal aerodynamic characteristics namely lift, drag, and pitching moment were computed for 10, 15, and 20 degrees angles of attack. The results indicated that the two configurations have aerodynamic characteristics that have very similar aerodynamic characteristics, and provide the desired trim LID of approximately -0.25.

  14. Space structures concepts and materials

    NASA Technical Reports Server (NTRS)

    Nowitzky, A. M.; Supan, E. C.

    1988-01-01

    An extension is preseted of the evaluation of graphite/aluminum metal matrix composites (MMC) for space structures application. A tubular DWG graphite/aluminum truss assembly was fabricated having the structural integrity and thermal stability needed for space application. DWG is a proprietary thin ply continuous graphite reinforced aluminum composite. The truss end fittings were constructed using the discontinuous ceramic particulate reinforced MMC DWAl 20 (trademark). Thermal stability was incorporated in the truss by utilizing high stiffness, negative coefficient of thermal expansion (CTE) P100 graphite fibers in a 6061 aluminum matrix, crossplied to provide minimized CTE in the assembled truss. Tube CTE was designed to be slightly negative to offset the effects of the end fitting and sleeve, CTE values of which are approx. 1/2 that of aluminum. In the design of the truss configuration, the CTE contribution of each component was evaluated to establish the component dimension and layup configuration required to provide a net zero CTE in the subassemblies which would then translate to a zero CTE for the entire truss bay produced.

  15. AGC-2 Graphite Pre-irradiation Data Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Swank; Joseph Lord; David Rohrbaugh

    2010-08-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterizedmore » prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.« less

  16. X-Ray Computed Tomography Inspection of the Stardust Heat Shield

    NASA Technical Reports Server (NTRS)

    McNamara, Karen M.; Schneberk, Daniel J.; Empey, Daniel M.; Koshti, Ajay; Pugel, D. Elizabeth; Cozmuta, Ioana; Stackpoole, Mairead; Ruffino, Norman P.; Pompa, Eddie C.; Oliveras, Ovidio; hide

    2010-01-01

    The "Stardust" heat shield, composed of a PICA (Phenolic Impregnated Carbon Ablator) Thermal Protection System (TPS), bonded to a composite aeroshell, contains important features which chronicle its time in space as well as re-entry. To guide the further study of the Stardust heat shield, NASA reviewed a number of techniques for inspection of the article. The goals of the inspection were: 1) to establish the material characteristics of the shield and shield components, 2) record the dimensions of shield components and assembly as compared with the pre-flight condition, 3) provide flight infonnation for validation and verification of the FIAT ablation code and PICA material property model and 4) through the evaluation of the shield material provide input to future missions which employ similar materials. Industrial X-Ray Computed Tomography (CT) is a 3D inspection technology which can provide infonnation on material integrity, material properties (density) and dimensional measurements of the heat shield components. Computed tomographic volumetric inspections can generate a dimensionally correct, quantitatively accurate volume of the shield assembly. Because of the capabilities offered by X-ray CT, NASA chose to use this method to evaluate the Stardust heat shield. Personnel at NASA Johnson Space Center (JSC) and Lawrence Livermore National Labs (LLNL) recently performed a full scan of the Stardust heat shield using a newly installed X-ray CT system at JSC. This paper briefly discusses the technology used and then presents the following results: 1. CT scans derived dimensions and their comparisons with as-built dimensions anchored with data obtained from samples cut from the heat shield; 2. Measured density variation, char layer thickness, recession and bond line (the adhesive layer between the PICA and the aeroshell) integrity; 3. FIAT predicted recession, density and char layer profiles as well as bondline temperatures Finally suggestions are made as to future uses of this technology as a tool for non-destructively inspecting and verifying both pre and post flight heat shields.

  17. Inflatable Re-Entry Vehicle Experiment (IRVE) Design Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Dillman, Robert A.; Starr, Brett R.; Stephan, Ryan A.; Lindell, Michael C.; Player, Charles J.; Cheatwood, F. McNeil

    2005-01-01

    Inflatable aeroshells offer several advantages over traditional rigid aeroshells for atmospheric entry. Inflatables offer increased payload volume fraction of the launch vehicle shroud and the possibility to deliver more payload mass to the surface for equivalent trajectory constraints. An inflatable s diameter is not constrained by the launch vehicle shroud. The resultant larger drag area can provide deceleration equivalent to a rigid system at higher atmospheric altitudes, thus offering access to higher landing sites. When stowed for launch and cruise, inflatable aeroshells allow access to the payload after the vehicle is integrated for launch and offer direct access to vehicle structure for structural attachment with the launch vehicle. They also offer an opportunity to eliminate system duplication between the cruise stage and entry vehicle. There are however several potential technical challenges for inflatable aeroshells. First and foremost is the fact that they are flexible structures. That flexibility could lead to unpredictable drag performance or an aerostructural dynamic instability. In addition, durability of large inflatable structures may limit their application. They are susceptible to puncture, a potentially catastrophic insult, from many possible sources. Finally, aerothermal heating during planetary entry poses a significant challenge to a thin membrane. NASA Langley Research Center and NASA's Wallops Flight Facility are jointly developing inflatable aeroshell technology for use on future NASA missions. The technology will be demonstrated in the Inflatable Re-entry Vehicle Experiment (IRVE). This paper will detail the development of the initial IRVE inflatable system to be launched on a Terrier/Orion sounding rocket in the fourth quarter of CY2005. The experiment will demonstrate achievable packaging efficiency of the inflatable aeroshell for launch, inflation, leak performance of the inflatable system throughout the flight regime, structural integrity when exposed to a relevant dynamic pressure and aerodynamic stability of the inflatable system. Structural integrity and structural response of the inflatable will be verified with photogrammetric measurements of the back side of the aeroshell in flight. Aerodynamic stability as well as drag performance will be verified with on board inertial measurements and radar tracking from multiple ground radar stations. The experiment will yield valuable information about zero-g vacuum deployment dynamics of the flexible inflatable structure with both inertial and photographic measurements. In addition to demonstrating inflatable technology, IRVE will validate structural, aerothermal, and trajectory modeling techniques for the inflatable. Structural response determined from photogrammetrics will validate structural models, skin temperature measurements and additional in-depth temperature measurements will validate material thermal performance models, and on board inertial measurements along with radar tracking from multiple ground radar stations will validate trajectory simulation models.

  18. Magnetic-graphitic-nanocapsule templated diacetylene assembly and photopolymerization for sensing and multicoded anti-counterfeiting

    NASA Astrophysics Data System (ADS)

    Nie, Xiang-Kun; Xu, Yi-Ting; Song, Zhi-Ling; Ding, Ding; Gao, Feng; Liang, Hao; Chen, Long; Bian, Xia; Chen, Zhuo; Tan, Weihong

    2014-10-01

    Molecular self-assembly, a process to design molecular entities to aggregate into desired structures, represents a promising bottom-up route towards precise construction of functional systems. Here we report a multifunctional, self-assembled system based on magnetic-graphitic-nanocapsule (MGN) templated diacetylene assembly and photopolymerization. The as-prepared assembly system maintains the unique color and fluorescence change properties of the polydiacetylene (PDA) polymers, while also pursues the superior Raman, NIR, magnetic and superconducting properties from the MGN template. Based on both fluorescence and magnetic resonance imaging (MRI) T2 relaxivity, the MGN@PDA system could efficiently monitor the pH variations which could be used as a pH sensor. The MGN@PDA system further demonstrates potential as unique ink for anti-counterfeiting applications. Reversible color change, strong and unique Raman scattering and fluorescence emission, sensitive NIR thermal response, and distinctive magnetic properties afford this assembly system with multicoded anti-counterfeiting capabilities.Molecular self-assembly, a process to design molecular entities to aggregate into desired structures, represents a promising bottom-up route towards precise construction of functional systems. Here we report a multifunctional, self-assembled system based on magnetic-graphitic-nanocapsule (MGN) templated diacetylene assembly and photopolymerization. The as-prepared assembly system maintains the unique color and fluorescence change properties of the polydiacetylene (PDA) polymers, while also pursues the superior Raman, NIR, magnetic and superconducting properties from the MGN template. Based on both fluorescence and magnetic resonance imaging (MRI) T2 relaxivity, the MGN@PDA system could efficiently monitor the pH variations which could be used as a pH sensor. The MGN@PDA system further demonstrates potential as unique ink for anti-counterfeiting applications. Reversible color change, strong and unique Raman scattering and fluorescence emission, sensitive NIR thermal response, and distinctive magnetic properties afford this assembly system with multicoded anti-counterfeiting capabilities. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03837a

  19. Ultrasonic Welding of Graphite/Thermoplastic Composite

    NASA Technical Reports Server (NTRS)

    Hardy, S. S.; Page, D. B.

    1982-01-01

    Ultrasonic welding of graphite/thermoplastic composite materials eliminates need for fasteners (which require drilling or punching, add weight, and degrade stiffness) and can be totally automated in beam fabrication and assembly jigs. Feasibility of technique has been demonstrated in laboratory tests which show that neither angular orientation nor vacuum affect weld quality.

  20. Investigating the Co-Adsorption Behavior of Nucleic-Acid Base (Thymine and Cytosine) and Melamine at Liquid/Solid Interface

    NASA Astrophysics Data System (ADS)

    Zhao, Huiling; Li, Yinli; Chen, Dong; Liu, Bo

    2016-12-01

    The co-adsorption behavior of nucleic-acid base (thymine; cytosine) and melamine was investigated by scanning tunneling microscopy (STM) technique at liquid/solid (1-octanol/graphite) interface. STM characterization results indicate that phase separation happened after dropping the mixed solution of thymine-melamine onto highly oriented pyrolytic graphite (HOPG) surface, while the hetero-component cluster-like structure was observed when cytosine-melamine binary assembly system is used. From the viewpoints of non-covalent interactions calculated by using density functional theory (DFT) method, the formation mechanisms of these assembled structures were explored in detail. This work will supply a methodology to design the supramolecular assembled structures and the hetero-component materials composed by biological and chemical compound.

  1. Electrochemical Control of Peptide Self-Organization on Atomically Flat Solid Surfaces: A Case Study with Graphite.

    PubMed

    Seki, Takakazu; So, Christopher R; Page, Tamon R; Starkebaum, David; Hayamizu, Yuhei; Sarikaya, Mehmet

    2018-02-06

    The nanoscale self-organization of biomolecules, such as proteins and peptides, on solid surfaces under controlled conditions is an important issue in establishing functional bio/solid soft interfaces for bioassays, biosensors, and biofuel cells. Electrostatic interaction between proteins and surfaces is one of the most essential parameters in the adsorption and self-assembly of proteins on solid surfaces. Although the adsorption of proteins has been studied with respect to the electrochemical surface potential, the self-assembly of proteins or peptides forming well-organized nanostructures templated by lattice structure of the solid surfaces has not been studied in the relation to the surface potential. In this work, we utilize graphite-binding peptides (GrBPs) selected by the phage display method to investigate the relationship between the electrochemical potential of the highly ordered pyrolytic graphite (HOPG) and peptide self-organization forming long-range-ordered structures. Under modulated electrical bias, graphite-binding peptides form various ordered structures, such as well-ordered nanowires, dendritic structures, wavy wires, amorphous (disordered) structures, and islands. A systematic investigation of the correlation between peptide sequence and self-organizational characteristics reveals that the presence of the bias-sensitive amino acid modules in the peptide sequence has a significant effect on not only surface coverage but also on the morphological features of self-assembled structures. Our results show a new method to control peptide self-assembly by means of applied electrochemical bias as well as peptide design-rules for the construction of functional soft bio/solid interfaces that could be integrated in a wide range of practical implementations.

  2. The effect of ring distortions on buckling of blunt conical shells. [Viking mission aeroshell

    NASA Technical Reports Server (NTRS)

    Heard, W. L., Jr.; Anderson, M. S.; Stephens, W. B.

    1975-01-01

    A rigorous analytical study of cones stiffened by many thin-gage, open-section rings is presented. The results are compared with data previously obtained from uniform pressure tests of the Viking mission flight aeroshell and of the Viking structural prototype aeroshells. A conventional analysis, in which the rings are modeled as discrete rigid cross sections, is shown to lead to large, unconservative strength predictions. A more sophisticated technique of modeling the rings as shell branches leads to much more realistic strength predictions and more accurately predicts the failure modes. It is also shown that if a small initial imperfection proportional to the shape of the buckling mode is assumed, the critical buckling modes from analysis and test are in agreement. However, the reduction in buckling strength from the perfect-shell predictions is small.

  3. Manufacturing Challenges and Benefits When Scaling the HIAD Stacked-Torus Aeroshell to a 15m-Class System

    NASA Technical Reports Server (NTRS)

    Swanson, Greg; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony; Hughes, Steve; Gilles, Brian; Anderson, Paul; Bond, Bruce

    2016-01-01

    Over a decade of work has been conducted in the development of NASAs Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6m, with cone angles of 60 and 70 deg. To meet NASA and commercial near term objectives, the HIAD team must scale the current technology up to 12-15m in diameter. The HIAD projects experience in scaling the technology has reached a critical juncture in development. Growing from a 6m to a 15m class system will introduce many...

  4. Microwave limb sounder, graphite epoxy support structure

    NASA Technical Reports Server (NTRS)

    Pynchon, G.

    1980-01-01

    The manufacturing and processing procedures which were used to fabricate a precision graphite/epoxy support structure for a spherical microwave reflecting surface are described. The structure was made fromm GY-70/930 ultra high modulus graphite prepreg, laminated to achieve an isotropic in plane thermal expansion of less than + or - 0.1 PPM/F. The structure was hand assembled to match the interface of the reflective surface, which was an array of 18 flexure supported, aluminum, spherically contoured tiles. Structural adhesives were used in the final assembly to bond the elements into their final configuration. A eutectic metal coating was applied to the composite surface to reduce dimensional instabilities arising from changes in the composite epoxy moisture content due to environmental effects. Basic materials properties data are reported and the results of a finite element structural analysis are referenced.

  5. Quality control of FWC during assembly and commissioning in SST-1 Tokamak

    NASA Astrophysics Data System (ADS)

    Patel, Hitesh; Santra, Prosenjit; Parekh, Tejas; Biswas, Prabal; Jayswal, Snehal; Chauhan, Pradeep; Paravastu, Yuvakiran; George, Siju; Semwal, Pratibha; Thankey, Prashant; Ramesh, Gattu; Prakash, Arun; Dhanani, Kalpesh; Raval, D. C.; Khan, Ziauddin; Pradhan, Subrata

    2017-04-01

    First Wall Components (FWC) of SST-1 tokamak, which are in the immediate vicinity of plasma, comprises of limiters, divertors, baffles, passive stabilizers designed to operate long duration (∼1000 s) discharges of elongated plasma. All FWC consist of copper alloy heat sink modules with SS cooling tubes brazed onto it, graphite tiles acting as armour material facing the plasma, and are mounted to the vacuum vessels with suitable Inconel support structures at inter-connected ring & port locations. The FWC are very recently assembled and commissioned successfully inside the vacuum vessel of SST-1 undergoing a rigorous quality control and checks at every stage of the assembly process. This paper will present the quality control aspects and checks of FWC from commencement of assembly procedure, namely material test reports, leak testing of high temperature baked components, assembled dimensional tolerances, leak testing of all welded joints, graphite tile tightening torques, electrical continuity and electrical isolation of passive stabilizers from vacuum vessel, baking and cooling hydraulic connections inside vacuum vessel.

  6. Controlling Self-Assembly of Engineered Peptides on Graphite by Rational Mutation

    PubMed Central

    So, Christopher R.; Hayamizu, Yuhei; Yazici, Hilal; Gresswell, Carolyn; Khatayevich, Dmitriy; Tamerler, Candan; Sarikaya, Mehmet

    2012-01-01

    Self-assembly of proteins on surfaces is utilized in many fields to integrate intricate biological structures and diverse functions with engineered materials. Controlling proteins at bio-solid interfaces relies on establishing key correlations between their primary sequences and resulting spatial organizations on substrates. Protein self-assembly, however, remains an engineering challenge. As a novel approach, we demonstrate here that short dodecapeptides selected by phage display are capable of self-assembly on graphite and form long-range ordered biomolecular nanostructures. Using atomic force microscopy and contact angle studies, we identify three amino-acid domains along the primary sequence that steer peptide ordering and lead to nanostructures with uniformly displayed residues. The peptides are further engineered via simple mutations to control fundamental interfacial processes, including initial binding, surface aggregation and growth kinetics, and intermolecular interactions. Tailoring short peptides via their primary sequence offers versatile control over molecular self-assembly, resulting in well-defined surface properties essential in building engineered, chemically rich, bio-solid interfaces. PMID:22233341

  7. Design and development of high efficiency 140W space TWT with graphite collector

    NASA Astrophysics Data System (ADS)

    Srivastava, V.; Purohit, G.; Sharma, R. K.; Sharma, S. M.; Bera, A.; Bhaskar, P. V.; Singh, R. R.; Prasad, K.; Kiran, V.

    2008-05-01

    4-stage graphite collector assembly has been designed and developed for a 140W Ku-band space TWT to achieve the collector efficiency more than 80%. The UHV compatible, high density, copper impregnated POCO graphite (DFP-1C) was used to fabricate the four collector electrodes of the 4-stage depressed collector. Copper impregnated graphite material is used for the collector electrodes because of its low secondary electron emission coefficient, high thermal and electrical conductivities, easy machining and brazing, low thermal expansion coefficient and low weight. The graphite material was characterized for the UHV compatibility. The collector electrodes were precisely fabricated by careful machining, and technology was developed for brazing of graphite electrodes with high voltage alumina insulators. Complete TWT with four-stage graphite collector was developed and 140W output power at gain more than 55 dB was achieved. The TWT was pumped from both the gun and the collector ends.

  8. Thin graphite bipolar plate with associated gaskets and carbon cloth flow-field for use in an ionomer membrane fuel cell

    DOEpatents

    Marchetti, George A.

    2003-01-03

    The present invention comprises a thin graphite plate with associated gaskets and pieces of carbon cloth that comprise a flow-field. The plate, gaskets and flow-field comprise a "plate and gasket assembly" for use in an ionomer membrane fuel cell, fuel cell stack or battery.

  9. REFLECTOR FOR NEUTRONIC REACTORS

    DOEpatents

    Fraas, A.P.

    1963-08-01

    A reflector for nuclear reactors that comprises an assembly of closely packed graphite rods disposed with their major axes substantially perpendicular to the interface between the reactor core and the reflector is described. Each graphite rod is round in transverse cross section at (at least) its interface end and is provided, at that end, with a coaxial, inwardly tapering hole. (AEC)

  10. A High Performance Lithium-Ion Capacitor with Both Electrodes Prepared from Sri Lanka Graphite Ore.

    PubMed

    Gao, Xiaoyu; Zhan, Changzhen; Yu, Xiaoliang; Liang, Qinghua; Lv, Ruitao; Gai, Guosheng; Shen, Wanci; Kang, Feiyu; Huang, Zheng-Hong

    2017-04-14

    The natural Sri Lanka graphite (vein graphite) is widely-used as anode material for lithium-ion batteries (LIBs), due to its high crystallinity and low cost. In this work, graphitic porous carbon (GPC) and high-purity vein graphite (PVG) were prepared from Sri Lanka graphite ore by KOH activation, and high temperature purification, respectively. Furthermore, a lithium-ion capacitor (LIC) is fabricated with GPC as cathode, and PVG as anode. The assembled GPC//PVG LIC shows a notable electrochemical performance with a maximum energy density of 86 W·h·kg -1 at 150 W·kg -1 , and 48 W·h·kg -1 at a high-power density of 7.4 kW·kg -1 . This high-performance LIC based on PVG and GPC is believed to be promising for practical applications, due to its low-cost raw materials and industrially feasible production.

  11. A High Performance Lithium-Ion Capacitor with Both Electrodes Prepared from Sri Lanka Graphite Ore

    PubMed Central

    Gao, Xiaoyu; Zhan, Changzhen; Yu, Xiaoliang; Liang, Qinghua; Lv, Ruitao; Gai, Guosheng; Shen, Wanci; Kang, Feiyu; Huang, Zheng-Hong

    2017-01-01

    The natural Sri Lanka graphite (vein graphite) is widely-used as anode material for lithium-ion batteries (LIBs), due to its high crystallinity and low cost. In this work, graphitic porous carbon (GPC) and high-purity vein graphite (PVG) were prepared from Sri Lanka graphite ore by KOH activation, and high temperature purification, respectively. Furthermore, a lithium-ion capacitor (LIC) is fabricated with GPC as cathode, and PVG as anode. The assembled GPC//PVG LIC shows a notable electrochemical performance with a maximum energy density of 86 W·h·kg−1 at 150 W·kg−1, and 48 W·h·kg−1 at a high-power density of 7.4 kW·kg−1. This high-performance LIC based on PVG and GPC is believed to be promising for practical applications, due to its low-cost raw materials and industrially feasible production. PMID:28772773

  12. Aerodynamic Interactions of Propulsive Deceleration and Reaction Control System Jets on Mars-Entry Aeroshells

    NASA Astrophysics Data System (ADS)

    Alkandry, Hicham

    Future missions to Mars, including sample-return and human-exploration missions, may require alternative entry, descent, and landing technologies in order to perform pinpoint landing of heavy vehicles. Two such alternatives are propulsive deceleration (PD) and reaction control systems (RCS). PD can slow the vehicle during Mars atmospheric descent by directing thrusters into the incoming freestream. RCS can provide vehicle control and steering by inducing moments using thrusters on the hack of the entry capsule. The use of these PD and RCS jets, however, involves complex flow interactions that are still not well understood. The fluid interactions induced by PD and RCS jets for Mars-entry vehicles in hypersonic freestream conditions are investigated using computational fluid dynamics (CFD). The effects of central and peripheral PD configurations using both sonic and supersonic jets at various thrust conditions are examined in this dissertation. The RCS jet is directed either parallel or transverse to the freestream flow at different thrust conditions in order to examine the effects of the thruster orientation with respect to the center of gravity of the aeroshell. The physical accuracy of the computational method is also assessed by comparing the numerical results with available experimental data. The central PD configuration decreases the drag force acting on the entry capsule due to a shielding effect that prevents mass and momentum in the hypersonic freestream from reaching the aeroshell. The peripheral PD configuration also decreases the drag force by obstructing the flow around the aeroshell and creating low surface pressure regions downstream of the PD nozzles. The Mach number of the PD jets, however, does not have a significant effect on the induced fluid interactions. The reaction control system also alters the flowfield, surface, and aerodynamic properties of the aeroshell, while the jet orientation can have a significant effect on the control effectiveness of the RCS.

  13. A GNM mission and system design proposal

    NASA Technical Reports Server (NTRS)

    Bailey, Stephen

    1990-01-01

    Here, the author takes an advocacy position for the proposed Mars Global Network Mission (GNM); it is not intended to be an objective review, although both pros and cons are presented in summary. The mission consists of launches from earth in the '96, '98, and '01 opportunities on Delta-class launch vehicles (approx. 1000 kg injected to Mars in 8 to 10 ft diameter shroud). The trans Mars boost stage injects a stack of small independent, aeroshelled spacecraft. The stack separates from the boost stage and each rigid (as opposed to deployable) aeroshell flies to Mars on its own, performing midcourse maneuvers as necessary. Each spacecraft flies a unique trajectory which is targeted to achieve approach atmospheric interface at the desired latitude and lighting conditions; arrival times may vary by a month or more. A direct entry is performed, there is no propulsive orbit capture. The aeroshelled rough-landers are targeted to achieve a desired attitude and entry flight path angle, and then follow a passive ballistic trajectory until terminal descent. Based on sensed acceleration (integrated to deduce altitude), the aft aeroshell skirt is jettisoned; a short later a supersonic parachute is deployed. The ballistic coefficient of the parachute is sized to achieve terminal velocity at about 8 km. However the parachute is not deployed until a few Km above the surface to minimize wind-induced drift. The nose cap descent imaging begins, a laser altimeter also measures true altitude. Based on range and range rate to the surface, the parachute is jettisoned and the lander uses descent engines to achieve touchdown velocity. A contact sensor shuts down the motors to avoid cratering, and the lander rough-lands at less than 5 m/sec. The remaining aeroshell and a deployable bladder attenuate landing loads and minimize the possibility of tip over. Science instruments are deployed and activated, and the network is established.

  14. Aerocapture Guidance and Performance at Mars for High-Mass Systems

    NASA Technical Reports Server (NTRS)

    Zumwalt, Carlie H.; Sostaric, Ronald r.; Westhelle, Carlos H.; Cianciolo, Alicia Dwyer

    2010-01-01

    The objective of this study is to understand the performance associated with using the aerocapture maneuver to slow high-mass systems from an Earth-approach trajectory into orbit around Mars. This work is done in conjunction with the Mars Entry Descent and Landing Systems Analysis (EDL-SA) task to explore candidate technologies necessary for development in order to land large-scale payloads on the surface of Mars. Among the technologies considered include hypersonic inflatable aerodynamic decelerators (HIADs) and rigid mid-lift to drag (L/D) aeroshells. Nominal aerocapture trajectories were developed for the mid-L/D aeroshell and two sizes of HIADs, and Monte Carlo analysis was completed to understand sensitivities to dispersions. Additionally, a study was completed in order to determine the size of the larger of the two HIADs which would maintain design constraints on peak heat rate and diameter. Results show that each of the three aeroshell designs studied is a viable option for landing high-mass payloads as none of the three exceed performance requirements.

  15. Trapped rubber processing for advanced composites

    NASA Technical Reports Server (NTRS)

    Marra, P. J.

    1976-01-01

    Trapped rubber processing is a molding technique for composites in which precast silicone rubber is placed within a closed cavity where it thermally expands against the composite's surface supported by the vessel walls. The method has been applied by the Douglas Aircraft Company, under contract to NASA-Langley, to the design and fabrication of 10 DC-10 graphite/epoxy upper aft rudder assemblies. A three-bay development tool form mold die has been designed and manufactured, and tooling parameters have been established. Fabrication procedures include graphite layup, assembly of details in the tool, and a cure cycle. The technique has made it possible for the cocured fabrication of complex primary box structures otherwise impracticable via standard composite material processes.

  16. Orientation of surfactant self-assembled aggregates on graphite

    NASA Astrophysics Data System (ADS)

    Sammalkorpi, Maria; Hynninen, Antti-Pekka; Panagiotopoulos, Athanassios Z.; Haataja, Mikko

    2007-03-01

    Micellar aggregates on surfaces can provide a self-healing corrosion protection or lubrication layer. It has been observed experimentally that on a single crystal surface this layer often consists of oriented hemi-cylindrical micelles which are aligned with the underlying crystal lattice (``orientation effect''). A key feature of this self-assembly process is the interplay between detergent--detergent and detergent--surface interactions. Since the dimensions of the detergent molecules and the unit cell of the surface are typically quite different, the origins of this orientation effect remain unclear. Here we address the question and present the results of Molecular Dynamics simulations of sodium dodecyl sulfate (SDS) self-aggregation on graphite. We employ both single-molecule and multi-molecule simulations of SDS to unravel the origins of the orientation effect. We report that the underlying graphite surface is sufficient to impose orientational bias on individual SDS molecules diffusing on the surface. This produces collective effects that give rise to the oriented hemi-micelles.

  17. Nafion induced surface confinement of oxygen in carbon-supported oxygen reduction catalysts

    DOE PAGES

    Chlistunoff, Jerzy; Sansinena, Jose -Maria

    2016-11-17

    We studied the surface confinement of oxygen inside layers of Nafion self-assembled on carbon-supported oxygen reduction reaction (ORR) catalysts. It is demonstrated that oxygen accumulates in the hydrophobic component of the polymer remaining in contact with the carbon surface. Furthermore, the amount of surface confined oxygen increases with the degree of carbon surface graphitization, which promotes the self-assembly of the polymer. Planar macrocyclic ORR catalysts possessing a delocalized system of π electrons such as Co and Fe porphyrins and phthalocyanines have virtually no effect on the surface confinement of oxygen, in accordance with their structural similarity to graphitic carbon surfacesmore » where they adsorb. Platinum particles in carbon-supported ORR catalysts with high metal contents (20%) disrupt the self-assembly of Nafion and virtually eliminate the oxygen confinement, but the phenomenon is still observed for low Pt loading (4.8%) catalysts.« less

  18. Nafion induced surface confinement of oxygen in carbon-supported oxygen reduction catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chlistunoff, Jerzy; Sansinena, Jose -Maria

    We studied the surface confinement of oxygen inside layers of Nafion self-assembled on carbon-supported oxygen reduction reaction (ORR) catalysts. It is demonstrated that oxygen accumulates in the hydrophobic component of the polymer remaining in contact with the carbon surface. Furthermore, the amount of surface confined oxygen increases with the degree of carbon surface graphitization, which promotes the self-assembly of the polymer. Planar macrocyclic ORR catalysts possessing a delocalized system of π electrons such as Co and Fe porphyrins and phthalocyanines have virtually no effect on the surface confinement of oxygen, in accordance with their structural similarity to graphitic carbon surfacesmore » where they adsorb. Platinum particles in carbon-supported ORR catalysts with high metal contents (20%) disrupt the self-assembly of Nafion and virtually eliminate the oxygen confinement, but the phenomenon is still observed for low Pt loading (4.8%) catalysts.« less

  19. Benchmarking of HEU Mental Annuli Critical Assemblies with Internally Reflected Graphite Cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiaobo, Liu; Bess, John D.; Marshall, Margaret A.

    Three experimental configurations of critical assemblies, performed in 1963 at the Oak Ridge Critical Experiment Facility, which are assembled using three different diameter HEU annuli (15-9 inches, 15-7 inches and 13-7 inches) metal annuli with internally reflected graphite cylinder are evaluated and benchmarked. The experimental uncertainties which are 0.00055, 0.00055 and 0.00055 respectively, and biases to the detailed benchmark models which are -0.00179, -0.00189 and -0.00114 respectively, were determined, and the experimental benchmark keff results were obtained for both detailed and simplified model. The calculation results for both detailed and simplified models using MCNP6-1.0 and ENDF VII.1 agree well tomore » the benchmark experimental results with a difference of less than 0.2%. These are acceptable benchmark experiments for inclusion in the ICSBEP Handbook.« less

  20. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  1. Wearable strain sensors based on thin graphite films for human activity monitoring

    NASA Astrophysics Data System (ADS)

    Saito, Takanari; Kihara, Yusuke; Shirakashi, Jun-ichi

    2017-12-01

    Wearable health-monitoring devices have attracted increasing attention in disease diagnosis and health assessment. In many cases, such devices have been prepared by complicated multistep procedures which result in the waste of materials and require expensive facilities. In this study, we focused on pyrolytic graphite sheet (PGS), which is a low-cost, simple, and flexible material, used as wearable devices for monitoring human activity. We investigated wearable devices based on PGSs for the observation of elbow and finger motions. The thin graphite films were fabricated by cutting small films from PGSs. The wearable devices were then made from the thin graphite films assembled on a commercially available rubber glove. The human motions could be observed using the wearable devices. Therefore, these results suggested that the wearable devices based on thin graphite films may broaden their application in cost-effective wearable electronics for the observation of human activity.

  2. Ordered water structure at hydrophobic graphite interfaces observed by 4D, ultrafast electron crystallography

    PubMed Central

    Yang, Ding-Shyue; Zewail, Ahmed H.

    2009-01-01

    Interfacial water has unique properties in various functions. Here, using 4-dimensional (4D), ultrafast electron crystallography with atomic-scale spatial and temporal resolution, we report study of structure and dynamics of interfacial water assembly on a hydrophobic surface. Structurally, vertically stacked bilayers on highly oriented pyrolytic graphite surface were determined to be ordered, contrary to the expectation that the strong hydrogen bonding of water on hydrophobic surfaces would dominate with suppressed interfacial order. Because of its terrace morphology, graphite plays the role of a template. The dynamics is also surprising. After the excitation of graphite by an ultrafast infrared pulse, the interfacial ice structure undergoes nonequilibrium “phase transformation” identified in the hydrogen-bond network through the observation of structural isosbestic point. We provide the time scales involved, the nature of ice-graphite structural dynamics, and relevance to properties related to confined water. PMID:19246378

  3. Assembly & Metrology of First Wall Components of SST-1

    NASA Astrophysics Data System (ADS)

    Parekh, Tejas; Santra, Prosenjit; Biswas, Prabal; Patel, Hiteshkumar; Paravastu, Yuvakiran; Jaiswal, Snehal; Chauhan, Pradeep; Babu, Gattu Ramesh; A, Arun Prakash; Bhavsar, Dhaval; Raval, Dilip C.; Khan, Ziauddin; Pradhan, Subrata

    2017-04-01

    First Wall Components (FWC) of SST-1 tokamak, which are in the immediate vicinity of plasma comprises of limiters, divertors, baffles, passive stabilizers are designed to operate long duration (1000 s) discharges of elongated plasma. All FWC consists of a copper alloy heat sink modules with SS cooling tubes brazed onto it, graphite tiles acting as armour material facing the plasma, and are mounted to the vacuum vessels with suitable Inconel support structures at ring & port locations. The FWC are very recently assembled and commissioned successfully inside the vacuum vessel of SST-1 undergoing a meticulous planning of assembly sequence, quality checks at every stage of the assembly process. This paper will present the metrology aspects & procedure of each FWC, both outside the vacuum vessel, and inside the vessel, assembly tolerances, tools, equipment and jig/fixtures, used at each stage of assembly, starting from location of support bases on vessel rings, fixing of copper modules on support structures, around 3800 graphite tile mounting on 136 copper modules with proper tightening torques, till final toroidal and poloidal geometry of the in-vessel components are obtained within acceptable limits, also ensuring electrical continuity of passive stabilizers to form a closed saddle loop, electrical isolation of passive stabilizers from vacuum vessel.

  4. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: circuitry and mechanical design.

    PubMed

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  5. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 {mu}s. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through themore » graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.« less

  6. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    NASA Astrophysics Data System (ADS)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  7. Venus In Situ Explorer Mission design using a mechanically deployed aerodynamic decelerator

    NASA Astrophysics Data System (ADS)

    Smith, B.; Venkatapathy, E.; Wercinski, P.; Yount, B.; Prabhu, D.; Gage, P.; Glaze, L.; Baker, C.

    The Venus In Situ Explorer (VISE) Mission addresses the highest priority science questions within the Venus community outlined in the National Research Council's Decadal Survey. The heritage Venus atmospheric entry system architecture, a 45° sphere-cone rigid aeroshell with a carbon phenolic thermal protection system, may no longer be the preferred entry system architecture compared to other viable alternatives being explored at NASA. A mechanically-deployed aerodynamic decelerator, known as the Adaptive Deployable Entry and Placement Technology (ADEPT), is an entry system alternative that can provide key operational benefits and risk reduction compared to a rigid aeroshell. This paper describes a mission feasibility study performed with the objectives of identifying potential adverse interactions with other mission elements and establishing requirements on decelerator performance. Feasibility is assessed through a launch-to-landing mission design study where the Venus Intrepid Tessera Lander (VITaL), a VISE science payload designed to inform the Decadal Survey results, is repackaged from a rigid aeroshell into the ADEPT decelerator. It is shown that ADEPT reduces the deceleration load on VITaL by an order of magnitude relative to a rigid aeroshell. The more benign entry environment opens up the VISE mission design environment for increased science return, reduced risk, and reduced cost. The ADEPT-VITAL mission concept of operations is presented and details of the entry vehicle structures and mechanisms are given. Finally, entry aerothermal analysis is presented that defines the operational requirements for a revolutionary structural-TPS material employed by ADEPT: three-dimensionally woven carbon cloth. Ongoing work to mitigate key risks identified in this feasibility study is presented.

  8. Development of Inflatable Entry Systems Technologies

    NASA Technical Reports Server (NTRS)

    Player, Charles J.; Cheatwood, F. McNeil; Corliss, James

    2005-01-01

    Achieving the objectives of NASA s Vision for Space Exploration will require the development of new technologies, which will in turn require higher fidelity modeling and analysis techniques, and innovative testing capabilities. Development of entry systems technologies can be especially difficult due to the lack of facilities and resources available to test these new technologies in mission relevant environments. This paper discusses the technology development process to bring inflatable aeroshell technology from Technology Readiness Level 2 (TRL-2) to TRL-7. This paper focuses mainly on two projects: Inflatable Reentry Vehicle Experiment (IRVE), and Inflatable Aeroshell and Thermal Protection System Development (IATD). The objectives of IRVE are to conduct an inflatable aeroshell flight test that demonstrates exoatmospheric deployment and inflation, reentry survivability and stability, and predictable drag performance. IATD will continue the development of the technology by conducting exploration specific trade studies and feeding forward those results into three more flight tests. Through an examination of these projects, and other potential projects, this paper discusses some of the risks, issues, and unexpected benefits associated with the development of inflatable entry systems technology.

  9. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashby, J.W.

    1958-09-16

    ABS>A graphite moderator structure is presented for a nuclear reactor compriscd of an assembly of similarly orientated prismatic graphite blocks arranged on spaced longitudinal axes lying in common planes wherein the planes of the walls of the blocks are positioned so as to be twisted reintive to the planes of said axes so thatthe unlmpeded dtrect paths in direction wholly across the walls of the blocks are limited to the width of the blocks plus spacing between the blocks.

  10. Two-dimensional network stability of nucleobases and amino acids on graphite under ambient conditions: adenine, L-serine and L-tyrosine.

    PubMed

    Bald, Ilko; Weigelt, Sigrid; Ma, Xiaojing; Xie, Pengyang; Subramani, Ramesh; Dong, Mingdong; Wang, Chen; Mamdouh, Wael; Wang, Jianguo; Besenbacher, Flemming

    2010-04-14

    We have investigated the stability of two-dimensional self-assembled molecular networks formed upon co-adsorption of the DNA base, adenine, with each of the amino acids, L-serine and L-tyrosine, on a highly oriented pyrolytic graphite (HOPG) surface by drop-casting from a water solution. L-serine and L-tyrosine were chosen as model systems due to their different interaction with the solvent molecules and the graphite substrate, which is reflected in a high and low solubility in water, respectively, compared with adenine. Combined scanning tunneling microscopy (STM) measurements and density functional theory (DFT) calculations show that the self-assembly process is mainly driven by the formation of strong adenine-adenine hydrogen bonds. We find that pure adenine networks are energetically more stable than networks built up of either pure L-serine, pure L-tyrosine or combinations of adenine with L-serine or L-tyrosine, and that only pure adenine networks are stable enough to be observable by STM under ambient conditions.

  11. Scanning tunneling microscopy investigation of copper phthalocyanine and truxenone derivative binary superstructures on graphite.

    PubMed

    Liu, Jia; Wang, Dong; Wang, Jie-Yu; Pei, Jian; Wan, Li-Jun

    2011-02-01

    The binary self-assembly of copper phthalocyanine (CuPc) and 2,3,7,8,12,13-hexahexyloxy-truxenone (TrO23) at the solid/liquid interface of highly oriented pyrolytic graphite (HOPG) was investigated by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Pseduohexagonal and linear patterned superstructures of CuPc are obtained by co-adsorbing with TrO23. High-resolution STM images reveal the structural details of the arrangement of TrO23 and CuPc in the binary assembly structures. The molecular ratio between CuPc and TrO23 in the adlayer can be modulated by the CuPc concentration in liquid phase. The electronic properties of CuPc and TrO23 in the co-adsorbed self-assembly are investigated by STS. The results presented here are helpful to the design and fabrication of multi-component functional molecular nanostructures. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Chemistry of anthracene-acetylene oligomers XXV: on-surface chirality of a self-assembled molecular network of a fan-blade-shaped anthracene-acetylene macrocycle with a long alkyl chain.

    PubMed

    Tsuya, Takuya; Iritani, Kohei; Tahara, Kazukuni; Tobe, Yoshito; Iwanaga, Tetsuo; Toyota, Shinji

    2015-03-27

    An anthracene cyclic dimer with two different linkers and a dodecyl group was synthesized by means of coupling reactions. The calculated structure had a planar macrocyclic π core and a linear alkyl chain. Scanning tunneling microscopy observations at the 1-phenyloctane/graphite interface revealed that the molecules formed a self-assembled monolayer that consisted of linear striped bright and dark bands. In each domain, the molecular network consisted of either Re or Si molecules that differed in the two-dimensional chirality about the macrocyclic faces, which led to a unique conglomerate-type self-assembly. The molecular packing mode and the conformation of the alkyl chains are discussed in terms of the intermolecular interactions and the interactions between the molecules and the graphite surface with the aid of MM3 simulations of a model system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Pyrolytic Carbon Coatings on Aligned Carbon Nanotube Assemblies and Fabrication of Advanced Carbon Nanotube/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Faraji, Shaghayegh

    Chemical vapor deposition (CVD) is a technique used to create a pyrolytic carbon (PyC) matrix around fibrous preforms in carbon/carbon (C/C) composites. Due to difficulties in producing three-dimensional carbon nanotube (CNT) assemblies, use of nanotubes in CVD fabricated CNT/C composites is limited. This dissertation describes efforts to: 1) Study the microstructure of PyC deposited on CNTs in order to understand the effect of microstructure and morphology of carbon coatings on graphitization behavior of CNT/PyC composites. This understanding helped to suggest a new approach for controlled radial growth of CNTs. 2) Evaluate the properties of CNT/PyC structures as a novel form of CNT assemblies with resilient, anisotropic and tunable properties. PyC was deposited on aligned sheets of nanotubes, drawn from spinnable CNT arras, using CVD of acetylene gas. At longer deposition times, the microstructure of PyC changed from laminar turbostratic carbon to a disordered carbon. For samples with short PyC deposition times (up to 30 minutes), deposited carbon layer rearranged during graphitization treatment and resulted in a crystalline structure where the coating and original tube walls could not be easily differentiated. In contrast, in samples with longer carbon deposition durations, carbon layers close to the surface of the coating remained disordered even after graphitization thermal treatment. Understanding the effect of PyC microstructure transition on graphitization behavior of CNT/PyC composites was used to develop a new method for controlled radial growth of CNTs. Carbon coated aligned CNT sheets were graphitized after each short (20 minutes) carbon deposition cycle. This prevented development of disorder carbon during subsequent PyC deposition cycles. Using cyclic-graphitization method, thick PyC coating layers were successfully graphitized into a crystalline structure that could not be differentiated from the original nanotube walls. This resulted into radial growth of CNTs, from 40 to 100 nm. Infiltration of PyC into stacked layered sheets of aligned CNTs produced resilient foam-like materials that exhibited complete recovery from 90% compressive strain. PyC coated the junctions between nanotubes and also increased their surface roughness. These changes were assumed to be responsible for the resiliency of the, once inelastic, assembly of nanotubes. While nanotubes' alignment resulted in anisotropic properties of the foams, variation in PyC infiltration duration was used to tune the foams' properties. Further investigation into properties of these foams showed promising results for their application as pressure/strain sensor and selective liquid absorbers for oil spill clean ups. Finally, CNT foams were used as novel substrates for growth of secondary nanotube assemblies. In order to achieve that, foams were first coated with alumina buffer layers using atomic layer deposition (ALD) method. New nanotubes were further grown inside the foams by CVD of acetylene over iron nano-particles. Super low density and highly porous structure of the foams allowed for diffusion of catalyst along with growth gasses into their bulk, which resulted in growth of secondary nanotubes throughout the thickness of the foams. The thickness of the alumina buffer layer was shown to influence CNT nucleation density and growth uniformity across the thickness of the foams. Compressive mechanical testing of the foams showed an order of magnitude increase in compression strength after secondary CNT growth.

  14. Aerocapture Benefits to Future Science Missions

    NASA Technical Reports Server (NTRS)

    Artis, Gwen; James, Bonnie

    2006-01-01

    NASA's In-Space Propulsion Technology (ISPT) Program is investing in technologies to revolutionize the robotic exploration of deep space. One of these technologies is Aerocapture, the most promising of the "aeroassist" techniques used to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propellant. (Other aeroassist techniques include aeroentry and aerobraking.) Aerocapture relies on drag atmospheric drag to decelerate an incoming spacecraft and capture it into orbit. This technique is very attractive since it permits spacecraft to be launched from Earth at higher velocities, providing shorter trip times and saving mass and overall cost on future missions. Recent aerocapture systems analysis studies quantify the benefits of aerocapture to future exploration. The 2002 Titan aerocapture study showed that using aerocapture at Titan instead of conventional propulsive capture results in over twice as much payload delivered to Titan. Aerocapture at Venus results in almost twice the payload delivered to Venus as with aerobraking, and over six times more mass delivered into orbit than all-propulsive capture. Aerocapture at Mars shows significant benefits as the payload sizes increase and as missions become more complex. Recent Neptune aerocapture studies show that aerocapture opens up entirely new classes of missions at Neptune. Current aerocapture technology development is advancing the maturity of each subsystem technology needed for successful implementation of aerocapture on future missions. Recent development has focused on both rigid aeroshell and inflatable aerocapture systems. Rigid aeroshell systems development includes new ablative and non-ablative thermal protection systems, advanced aeroshell performance sensors, lightweight structures and higher temperature adhesives. Inflatable systems such as trailing tethered and clamped "ballutes" and inflatable aeroshells are also under development. Computational tools required to support future aerocapture missions are an integral part of aerocapture development. Tools include engineering reference atmosphere models, guidance and navigation algorithms, aerothermodynamic modeling, and flight simulation.

  15. NASA InSight Lander in Spacecraft Back Shell

    NASA Image and Video Library

    2015-08-18

    In this photo, NASA's InSight Mars lander is stowed inside the inverted back shell of the spacecraft's protective aeroshell. It was taken on July 13, 2015, in a clean room of spacecraft assembly and test facilities at Lockheed Martin Space Systems, Denver, during preparation for vibration testing of the spacecraft. InSight, for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is scheduled for launch in March 2016 and landing in September 2016. It will study the deep interior of Mars to advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19813

  16. Crane Lowers Aeroshell

    NASA Technical Reports Server (NTRS)

    2003-01-01

    January 31, 2003

    In the Payload Hazardous Servicing Facility, an overhead crane lowers the Mars Exploration Rover (MER) aeroshell toward a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  17. Structural analyses for the modification and verification of the Viking aeroshell

    NASA Technical Reports Server (NTRS)

    Stephens, W. B.; Anderson, M. S.

    1976-01-01

    The Viking aeroshell is an extremely lightweight flexible shell structure that has undergone thorough buckling analyses in the course of its development. The analytical tools and modeling technique required to reveal the structural behavior are presented. Significant results are given which illustrate the complex failure modes not usually observed in simple models and analyses. Both shell-of-revolution analysis for the pressure loads and thermal loads during entry and a general shell analysis for concentrated tank loads during launch were used. In many cases fixes or alterations to the structure were required, and the role of the analytical results in determining these modifications is indicated.

  18. Mars Exploration Rover (MER) aeroshell

    NASA Image and Video Library

    2003-01-31

    In the Payload Hazardous Servicing Facility, workers prepare the Mars Exploration Rover (MER) aeroshell for transfer to a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  19. Thermal stress response of General Purpose Heat Source (GPHS) aeroshell material

    NASA Technical Reports Server (NTRS)

    Grinberg, I. M.; Hulbert, L. E.; Luce, R. G.

    1980-01-01

    A thermal stress test was conducted to determine the ability of the GPHS aeroshell 3 D FWPF material to maintain physical integrity when exposed to a severe heat flux such as would occur from prompt reentry of GPHS modules. The test was performed in the Giant Planetary Facility at NASA's Ames Research Center. Good agreement was obtained between the theoretical and experimental results for both temperature and strain time histories. No physical damage was observed in the test specimen. These results provide initial corroboration both of the analysis techniques and that the GPHS reentry member will survive the reentry thermal stress levels expected.

  20. Impact of Vehicle Flexibility on IRVE-II Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Bose, David M.; Toniolo, Matthew D.; Cheatwood, F. M.; Hughes, Stephen J.; Dillman, Robert A.

    2011-01-01

    The Inflatable Re-entry Vehicle Experiment II (IRVE-II) successfully launched from Wallops Flight Facility (WFF) on August 17, 2009. The primary objectives of this flight test were to demonstrate inflation and re-entry survivability, assess the thermal and drag performance of the reentry vehicle, and to collect flight data for refining pre-flight design and analysis tools. Post-flight analysis including trajectory reconstruction outlined in O Keefe3 demonstrated that the IRVE-II Research Vehicle (RV) met mission objectives but also identified a few anomalies of interest to flight dynamics engineers. Most notable of these anomalies was high normal acceleration during the re-entry pressure pulse. Deflection of the inflatable aeroshell during the pressure pulse was evident in flight video and identified as the likely cause of the anomaly. This paper provides a summary of further post-flight analysis with particular attention to the impact of aeroshell flexibility on flight dynamics and the reconciliation of flight performance with pre-flight models. Independent methods for estimating the magnitude of the deflection of the aeroshell experienced on IRVE-II are discussed. The use of the results to refine models for pre-flight prediction of vehicle performance is then described.

  1. Arcjet Testing of Advanced Conformal Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Beck, Robin; Agrawal, Parul

    2014-01-01

    A conformable TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials (such as tiled Phenolic Impregnated Carbon Ablator (PICA) system on MSL. The compliant (high strain to failure) nature of the conformable ablative materials will allow integration of the TPS with the underlying aeroshell structure much easier and enable monolithic-like configuration and larger segments (or parts) to be used. In May of 2013 the CA250 project executed an arcjet test series in the Ames IHF facility to evaluate a phenolic-based conformal system (named Conformal-PICA) over a range of test conditions from 40-400Wcm2. The test series consisted of four runs in the 13-inch diameter nozzle. Test models were based on SPRITE configuration (a 55-deg sphere cone), as it was able to provide a combination of required heat flux, pressure and shear within a single entry. The preliminary in-depth TC data acquired during that test series allowed a mid-fidelity thermal response model for conformal-PICA to be created while testing of seam models began to address TPS attachment and joining of multiple segments for future fabrication of large-scale aeroshells. Discussed in this paper are the results.

  2. Bipolar battery construction

    NASA Technical Reports Server (NTRS)

    Edwards, Dean B. (Inventor); Rippel, Wally E. (Inventor)

    1981-01-01

    A lightweight, bipolar battery construction for lead acid batteries in which a plurality of thin, rigid, biplates each comprise a graphite fiber thermoplastic composition in conductive relation to lead stripes plated on opposite flat surfaces of the plates, and wherein a plurality of nonconductive thermoplastic separator plates support resilient yieldable porous glass mats in which active material is carried, the biplates and separator plates with active material being contained and maintained in stacked assembly by axial compression of the stacked assembly. A method of assembling such a bipolar battery construction.

  3. Chemical and constitutional influences in the self-assembly of functional supramolecular hydrogen-bonded nanoscopic fibres.

    PubMed

    Puigmartí-Luis, Josep; Minoia, Andrea; Pérez Del Pino, Angel; Ujaque, Gregori; Rovira, Concepció; Lledós, Agustí; Lazzaroni, Roberto; Amabilino, David B

    2006-12-13

    A new series of secondary amides bearing long alkyl chains with pi-electron-donor cores has been synthesized and characterised, and their self-assembly upon casting at surfaces has been studied. The different supramolecular assemblies of the materials have been visualized by using atomic force microscopy (AFM) and transmission electron microscopy (TEM). It is possible to obtain well-defined fibres of these aromatic core molecules as a result of the hydrogen bonds between the amide groups. Indeed, by altering the alkyl-chain lengths, constitutions, concentrations and solvent, it is possible to form different rodlike aggregates on graphite. Aggregate sizes with a lower limit of 6-8 nm width have been reached for different amide derivatives, while others show larger aggregates with rodlike morphologies which are several micrometers in length. For one compound that forms nanofibres, doping was performed by using a chemical oxidant, and the resulting layer on graphite was shown to exhibit metallic-like spectroscopy curves when probed with current-sensing AFM. This technique also revealed current maps of the surface of the molecular material. Fibre formation not only takes place on the graphite surface: nanometre scale rods have been imaged by using TEM on a grid after evaporation of solutions of the compounds in chloroform. Molecular modelling proves the importance of the hydrogen bonds in the generation of the fibres, and indicates that the constitution of the molecules is vital for the formation of the desired columnar stacks, results that are consistent with the images obtained by microscopic techniques. The results show the power of noncovalent bonds in self-assembly processes that can lead to electrically conducting nanoscale supramolecular wires.

  4. Covalent modification of graphene and graphite using diazonium chemistry: tunable grafting and nanomanipulation.

    PubMed

    Greenwood, John; Phan, Thanh Hai; Fujita, Yasuhiko; Li, Zhi; Ivasenko, Oleksandr; Vanderlinden, Willem; Van Gorp, Hans; Frederickx, Wout; Lu, Gang; Tahara, Kazukuni; Tobe, Yoshito; Uji-I, Hiroshi; Mertens, Stijn F L; De Feyter, Steven

    2015-05-26

    We shine light on the covalent modification of graphite and graphene substrates using diazonium chemistry under ambient conditions. We report on the nature of the chemical modification of these graphitic substrates, the relation between molecular structure and film morphology, and the impact of the covalent modification on the properties of the substrates, as revealed by local microscopy and spectroscopy techniques and electrochemistry. By careful selection of the reagents and optimizing reaction conditions, a high density of covalently grafted molecules is obtained, a result that is demonstrated in an unprecedented way by scanning tunneling microscopy (STM) under ambient conditions. With nanomanipulation, i.e., nanoshaving using STM, surface structuring and functionalization at the nanoscale is achieved. This manipulation leads to the removal of the covalently anchored molecules, regenerating pristine sp(2) hybridized graphene or graphite patches, as proven by space-resolved Raman microscopy and molecular self-assembly studies.

  5. HF/H2O2 treated graphite felt as the positive electrode for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    He, Zhangxing; Jiang, Yingqiao; Meng, Wei; Jiang, Fengyun; Zhou, Huizhu; Li, Yuehua; Zhu, Jing; Wang, Ling; Dai, Lei

    2017-11-01

    In order to improve the electrochemical performance of the positive graphite felt electrode in vanadium flow redox battery, a novel method is developed to effectively modify the graphite felt by combination of etching of HF and oxidation of H2O2. After the etching of HF for the graphite felt at ambient temperature, abundant oxygen-containing functional groups were further introduced on the surface of graphite felt by hydrothermal treatment using H2O2 as oxidant. Benefiting from the surface etching and introduction of functional groups, mass transfer and electrode process can be improved significantly on the surface of graphite felt. VO2+/VO2+ redox reaction on the graphite felt modified by HF and H2O2 jointly (denote: GF-HF/H2O2) exhibits superior electrochemical kinetics in comparison with the graphite felt modified by single HF or H2O2 treatment. The cell using GF-HF/H2O2 as the positive electrode was assembled and its electrochemical properties were evaluated. The increase of energy efficiency of 4.1% for GF-HF/H2O2 at a current density of 50 mA cm-2 was obtained compared with the pristine graphite felt. The cell using GF-HF/H2O2 also demonstrated higher discharge capacity. Our study revealed that HF/H2O2 treatment is an efficient method to enhance the electrochemical performance of graphite felt, further improving the comprehensive energy storage performance of the vanadium flow redox battery.

  6. Solar Tests of Aperture Plate Materials for Solar Thermal Dish Collectors

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1984-01-01

    If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the Sun, motion of the concentrator may stop. As the Sun moves relative to the Earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluoroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fall apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.

  7. Solar tests of aperture plate materials for solar thermal dish collectors

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1984-01-01

    If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the sun, motion of the concentrator may stop. As the sun moves relative to the earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fail apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.

  8. Solar tests of aperture plate materials for solar thermal dish collectors

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1984-01-01

    If a malfunction occurs in a solar thermal point-focus distributed receiver power plant while a concentrator is pointed at the sun, motion of the concentrator may stop. As the sun moves relative to the earth, the spot of concentrated sunlight then slowly walks off the receiver aperture, across the receiver face plate, and perhaps across adjacent portions of the concentrator. Intense local heating by the concentrated sunlight may damage or destroy these parts. The behavior of various materials under conditions simulating walk-off of a parabolic dish solar collector were evaluated. Each test consisted of exposure to concentrated sunlight at a peak flux density of about 7000 kW/square meter for 15 minutes. Types of materials tested included graphite, silicon carbide, silica, various silicates, alumina, zirconia, aluminum, copper, steel, and polytetrafluoroethylene. The only material that neither cracked nor melted was grade G-90 graphite. Grade CS graphite, a lower cost commercial grade, cracked half-way across, but did not fall apart. Both of these grades are medium-grain extruded graphites. A graphite cloth (graphitized polyacrylonitrile) showed fair performance when tested as a single thin ply; it might be useful as a multi-ply assembly. High purity slipcast silica showed some promise also.

  9. Cobalt ion-coordinated self-assembly synthesis of nitrogen-doped ordered mesoporous carbon nanosheets for efficiently catalyzing oxygen reduction.

    PubMed

    Wang, Haitao; Wang, Wei; Asif, Muhammad; Yu, Yang; Wang, Zhengyun; Wang, Junlei; Liu, Hongfang; Xiao, Junwu

    2017-10-19

    The design and synthesis of a promising porous carbon-based electrocatalyst with an ordered and uninterrupted porous structure for oxygen reduction reaction (ORR) is still a significant challenge. Herein, an efficient catalyst based on cobalt-embedded nitrogen-doped ordered mesoporous carbon nanosheets (Co/N-OMCNS) is successfully prepared through a two-step procedure (cobalt ion-coordinated self-assembly and carbonization process) using 3-aminophenol as a nitrogen source, cobalt acetate as a cobalt source and Pluronic F127 as a mesoporous template. This work indicates that the formation of a two dimensional nanosheet structure is directly related to the extent of the cobalt ion coordination interaction. Moreover, the critical roles of pyrolysis temperature in nitrogen doping and ORR catalytic activity are also investigated. Benefiting from the high surface area and graphitic degree, high contents of graphitic N and pyridinic N, ordered interconnected mesoporous carbon framework, as well as synergetic interaction between the cobalt nanoparticles and protective nitrogen doped graphitic carbon layer, the resultant optimal catalyst Co/N-OMCNS-800 (pyrolyzed at 800 °C) exhibits comparable ORR catalytic activity to Pt/C, superior tolerance to methanol crossover and stability.

  10. Inert gas rejection device for zinc-halogen battery systems

    DOEpatents

    Hammond, Michael J.; Arendell, Mark W.

    1981-01-01

    An electrolytic cell for separating chlorine gas from other (foreign) gases, having an anode, a cathode assembly, an aqueous electrolyte, a housing, and a constant voltage power supply. The cathode assembly is generally comprised of a dense graphite electrode having a winding channel formed in the face opposing the anode, a gas impermeable (but liquid permeable) membrane sealed into the side of the cathode electrode over the channel, and a packing of graphite particles contained in the channel of the cathode electrode. The housing separates and parallelly aligns the anode and cathode assembly, and provides a hermetic seal for the cell. In operation, a stream of chlorine and foreign gases enters the cell at the beginning of the cathode electrode channel. The chlorine gas is dissolved into the electrolyte and electrochemically reduced into chloride ions. The chloride ions disfuse through the gas impermeable membrane, and are electrochemically oxidized at the anode into purified chlorine gas. The foreign gases do not participate in the above electrochemical reactions, and are vented from the cell at the end of the cathode electrode channel.

  11. Study of 232Th(n, γ) and 232Th(n,f) reaction rates in a graphite moderated spallation neutron field produced by 1.6 GeV deuterons on lead target

    NASA Astrophysics Data System (ADS)

    Asquith, N. L.; Hashemi-Nezhad, S. R.; Westmeier, W.; Zhuk, I.; Tyutyunnikov, S.; Adam, J.

    2015-02-01

    The Gamma-3 assembly of the Joint Institute for Nuclear Research (JINR), Dubna, Russia is designed to emulate the neutron spectrum of a thermal Accelerator Driven System (ADS). It consists of a lead spallation target surrounded by reactor grade graphite. The target was irradiated with 1.6 GeV deuterons from the Nuclotron accelerator and the neutron capture and fission rate of 232Th in several locations within the assembly were experimentally measured. 232Th is a proposed fuel for envisaged Accelerator Driven Systems and these two reactions are fundamental to the performance and feasibility of 232Th in an ADS. The irradiation of the Gamma-3 assembly was also simulated using MCNPX 2.7 with the INCL4 intra-nuclear cascade and ABLA fission/evaporation models. Good agreement between the experimentally measured and calculated reaction rates was found. This serves as a good validation for the computational models and cross section data used to simulate neutron production and transport of spallation neutrons within a thermal ADS.

  12. Electrochemical Functionalization of Graphene at the Nanoscale with Self-Assembling Diazonium Salts.

    PubMed

    Xia, Zhenyuan; Leonardi, Francesca; Gobbi, Marco; Liu, Yi; Bellani, Vittorio; Liscio, Andrea; Kovtun, Alessandro; Li, Rongjin; Feng, Xinliang; Orgiu, Emanuele; Samorì, Paolo; Treossi, Emanuele; Palermo, Vincenzo

    2016-07-26

    We describe a fast and versatile method to functionalize high-quality graphene with organic molecules by exploiting the synergistic effect of supramolecular and covalent chemistry. With this goal, we designed and synthesized molecules comprising a long aliphatic chain and an aryl diazonium salt. Thanks to the long chain, these molecules physisorb from solution onto CVD graphene or bulk graphite, self-assembling in an ordered monolayer. The sample is successively transferred into an aqueous electrolyte, to block any reorganization or desorption of the monolayer. An electrochemical impulse is used to transform the diazonium group into a radical capable of grafting covalently to the substrate and transforming the physisorption into a covalent chemisorption. During covalent grafting in water, the molecules retain the ordered packing formed upon self-assembly. Our two-step approach is characterized by the independent control over the processes of immobilization of molecules on the substrate and their covalent tethering, enabling fast (t < 10 s) covalent functionalization of graphene. This strategy is highly versatile and works with many carbon-based materials including graphene deposited on silicon, plastic, and quartz as well as highly oriented pyrolytic graphite.

  13. Attitude Control Performance of IRVE-3

    NASA Technical Reports Server (NTRS)

    Dillman, Robert A.; Gsell, Valerie T.; Bowden, Ernest L.

    2013-01-01

    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility and successfully performed its mission, demonstrating both the survivability of a hypersonic inflatable aerodynamic decelerator in the reentry heating environment and the effect of an offset center of gravity on the aeroshell's flight L/D. The reentry vehicle separated from the launch vehicle, released and inflated its aeroshell, reoriented for atmospheric entry, and mechanically shifted its center of gravity before reaching atmospheric interface. Performance data from the entire mission was telemetered to the ground for analysis. This paper discusses the IRVE-3 mission scenario, reentry vehicle design, and as-flown performance of the attitude control system in the different phases of the mission.

  14. Aerocapture Technology to Reduce Trip Time and Cost of Planetary Missions

    NASA Astrophysics Data System (ADS)

    Artis, Gwen R.; James, B.

    2006-12-01

    NASA’s In-Space Propulsion Technology (ISPT) Program is investing in technologies to revolutionize the robotic exploration of deep space. One of these technologies is Aerocapture, the most promising of the “aeroassist” techniques used to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propellant. (Other aeroassist techniques include aeroentry and aerobraking.) Aerocapture relies on drag atmospheric drag to decelerate an incoming spacecraft and capture it into orbit. This technique is very attractive since it permits spacecraft to be launched from Earth at higher velocities, providing shorter trip times and saving mass and overall cost on future missions. Recent aerocapture systems analysis studies quantify the benefits of aerocapture to future exploration. The 2002 Titan aerocapture study showed that using aerocapture at Titan instead of conventional propulsive capture results in over twice as much payload delivered to Titan. Aerocapture at Venus results in almost twice the payload delivered to Venus as with aerobraking, and over six times more mass delivered into orbit than all-propulsive capture. Aerocapture at Mars shows significant benefits as the payload sizes increase and as missions become more complex. Recent Neptune aerocapture studies show that aerocapture opens up entirely new classes of missions at Neptune. Current aerocapture technology development is advancing the maturity of each sub-system technology needed for successful implementation of aerocapture on future missions. Recent development has focused on both rigid aeroshell and inflatable aerocapture systems. Rigid aeroshell systems development includes new ablative and non-ablative thermal protection systems, advanced aeroshell performance sensors, lightweight structures and higher temperature adhesives. Inflatable systems such as trailing tethered and clamped “ballutes” and inflatable aeroshells are also under development. Computational tools required to support future aerocapture missions are an integral part of aerocapture development. Tools include engineering reference atmosphere models, guidance and navigation algorithms, aerothermodynamic modeling, and flight simulation.

  15. Synthesis of monolithic graphene – graphite integrated electronics

    PubMed Central

    Park, Jang-Ung; Nam, SungWoo; Lee, Mi-Sun; Lieber, Charles M.

    2013-01-01

    Encoding electronic functionality into nanoscale elements during chemical synthesis has been extensively explored over the past decade as the key to developing integrated nanosystems1 with functions defined by synthesis2-6. Graphene7-12 has been recently explored as a two-dimensional nanoscale material, and has demonstrated simple device functions based on conventional top-down fabrication13-20. However, the synthetic approach to encoding electronic functionality and thus enabling an entire integrated graphene electronics in a chemical synthesis had not previously been demonstrated. Here we report an unconventional approach for the synthesis of monolithically-integrated electronic devices based on graphene and graphite. Spatial patterning of heterogeneous catalyst metals permits the selective growth of graphene and graphite, with controlled number of graphene layers. Graphene transistor arrays with graphitic electrodes and interconnects were formed from synthesis. These functional, all-carbon structures were transferrable onto a variety of substrates. The integrated transistor arrays were used to demonstrate real-time, multiplexed chemical sensing, and more significantly, multiple carbon layers of the graphene-graphite device components were vertically assembled to form a three-dimensional flexible structure which served as a top-gate transistor array. These results represent a substantial progress towards encoding electronic functionality via chemical synthesis and suggest future promise for one-step integration of graphene-graphite based electronics. PMID:22101813

  16. Synthesis of monolithic graphene-graphite integrated electronics.

    PubMed

    Park, Jang-Ung; Nam, SungWoo; Lee, Mi-Sun; Lieber, Charles M

    2011-11-20

    Encoding electronic functionality into nanoscale elements during chemical synthesis has been extensively explored over the past decade as the key to developing integrated nanosystems with functions defined by synthesis. Graphene has been recently explored as a two-dimensional nanoscale material, and has demonstrated simple device functions based on conventional top-down fabrication. However, the synthetic approach to encoding electronic functionality and thus enabling an entire integrated graphene electronics in a chemical synthesis had not previously been demonstrated. Here we report an unconventional approach for the synthesis of monolithically integrated electronic devices based on graphene and graphite. Spatial patterning of heterogeneous metal catalysts permits the selective growth of graphene and graphite, with a controlled number of graphene layers. Graphene transistor arrays with graphitic electrodes and interconnects were formed from the synthesis. These functional, all-carbon structures were transferable onto a variety of substrates. The integrated transistor arrays were used to demonstrate real-time, multiplexed chemical sensing and more significantly, multiple carbon layers of the graphene-graphite device components were vertically assembled to form a three-dimensional flexible structure which served as a top-gate transistor array. These results represent substantial progress towards encoding electronic functionality through chemical synthesis and suggest the future promise of one-step integration of graphene-graphite based electronics.

  17. Feasibility Study of Graphite Epoxy Antenna for a Microwave Limb Sounder Radiometer (MLSR)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Results are presented of a feasibility study to design graphite epoxy antenna reflectors for a jet propulsion laboratory microwave limb sounder instrument (MLSR). Two general configurations of the offset elliptic parabolic reflectors are presented that will meet the requirements on geometry and reflector accuracy. The designs consist of sandwich construction for the primary reflectors, secondary reflector support structure and cross-tie members between reflector pairs. Graphite epoxy materials of 3 and 6 plies are used in the facesheets of the sandwich. An aluminum honeycomb is used for the core. A built-in adjustment system is proposed to reduce surface distortions during assembly. The manufacturing and environmental effects are expected to result in surface distortions less than .0015 inch and pointing errors less than .002 degree.

  18. Synthesis and characterization of covalently bound benzocaine graphite oxide derivative

    NASA Astrophysics Data System (ADS)

    Kabbani, Ahmad; Kabbani, Mohamad; Safadi, Khadija

    2015-09-01

    Graphite oxide (GO) derived materials include chemically functionalize or reduced graphene oxide (exfoliated from GO) sheets, assembled paper-like forms , and graphene-based composites GO consists of intact graphitic regions interspersed with sp3-hybridized carbons containing hydroxyl and epoxide functional groups on the top and bottom surfaces of each sheet and sp2-hybridized carbons containing carboxyl and carbonyl groups mostly at the sheet edges. Hence, GO is hydrophilic and readily disperses in water to form stable colloidal suspensions Due to the attached oxygen functional groups, GO was used to prepare different derivatives which result in some physical and chemical properties that are dramatically different from their bulk counterparts .The present work discusses the covalent cross linking of graphite oxide to benzocaine or ethyl ester of para-aminobenzoic acid,structure I,used in many over-the-counter ointment drug.Synthesis is done via diazotization of the amino group.The product is characterized via IR,Raman, X-ray photoelectron spectroscopy as well as electron microscopy.

  19. "Bricks and mortar" self-assembly approach to graphitic mesoporous carbon nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulvio, P. F.; Mayes, R.; Wang, X. Q.

    2011-04-20

    Mesoporous carbon materials do not have sufficient ordering at the atomic scale to exhibit good electronic conductivity. To date, mesoporous carbons having uniform mesopores and high surface areas have been prepared from partially-graphitizable precursors in the presence of templates. High temperature thermal treatments above 2000 °C, which are usually required to increase conductivity, result in a partial or total collapse of the mesoporous structures and reduced surface areas induced by growth of graphitic domains, limiting their applications in electric double layer capacitors and lithium-ion batteries. In this work, we successfully implemented a “brick-and-mortar” approach to obtain ordered graphitic mesoporous carbonmore » nanocomposites with tunable mesopore sizes below 850 °C without using graphitization catalysts or high temperature thermal treatments. Phenolic resin-based mesoporous carbons act as mortar to highly conductive carbon blacks and carbon onions (bricks). The capacitance and resistivity of final materials can be tailored by changing the mortar to brick ratios.« less

  20. Superhard sp{sup 2}–sp{sup 3} hybrid carbon allotropes with tunable electronic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Meng; Ma, Mengdong; Zhao, Zhisheng

    Four sp{sup 2}–sp{sup 3} hybrid carbon allotropes are proposed on the basis of first principles calculations. These four carbon allotropes are energetically more favorable than graphite under suitable pressure conditions. They can be assembled from graphite through intralayer wrinkling and interlayer buckling, which is similar to the formation of diamond from graphite. For one of the sp{sup 2}–sp{sup 3} hybrid carbon allotropes, mC24, the electron diffraction patterns match these of i-carbon, which is synthesized from shock-compressed graphite (H. Hirai and K. Kondo, Science, 1991, 253, 772). The allotropes exhibit tunable electronic characteristics from metallic to semiconductive with band gaps comparablemore » to those of silicon allotropes. They are all superhard materials with Vickers hardness values comparable to that of cubic BN. The sp{sup 2}–sp{sup 3} hybrid carbon allotroes are promising materials for photovoltaic electronic devices, and abrasive and grinding tools.« less

  1. Design, fabrication, and test of a graphite/epoxy metering truss. [as applied to the LST

    NASA Technical Reports Server (NTRS)

    Oken, S.; Skoumal, D. E.

    1975-01-01

    A graphite/epoxy metering truss as applied to the large space telescope was investigated. A full-scale truss was designed, fabricated and tested. Tests included static limit loadings, a modal survey and thermal-vacuum distortion evaluation. The most critical requirement was the demonstration of the dimensional stability provided by the graphite/epoxy truss concept. Crucial to the attainment of this objective was the ability to make very sophisticated thermal growth measurements which was provided by a seven beam laser interferometer. The design of the basic truss elements were tuned to provide the high degree of dimensional stability and stiffness required by the truss. The struts and spider assembly were fabricated with Fiberite's AS/934 and HMS/934 broadgoods. The rings utilized T300 graphite fabricate with the same materials. The predicted performance of the truss was developed using the NASTRAN program. These results showed conformance with the critical stiffness and thermal distortion requirements and correlated well with the test results.

  2. Brick-and-Mortar Self-Assembly Approach to Graphitic Mesoporous Carbon Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Sheng; Fulvio, Pasquale F; Mayes, Richard T

    2011-01-01

    Mesoporous carbon materials do not have sufficient ordering at the atomic scale to exhibit good electronic conductivity. To date, mesoporous carbons having uniform mesopores and high surface areas have been prepared from partially-graphitizable precursors in the presence of templates. High temperature thermal treatments above 2000 C, which are usually required to increase conductivity, result in a partial or total collapse of the mesoporous structures and reduced surface areas induced by growth of graphitic domains, limiting their applications in electric double layer capacitors and lithium-ion batteries. In this work, we successfully implemented a 'brick-and-mortar' approach to obtain ordered graphitic mesoporous carbonmore » nanocomposites with tunable mesopore sizes below 850 C without using graphitization catalysts or high temperature thermal treatments. Phenolic resin-based mesoporous carbons act as mortar to highly conductive carbon blacks and carbon onions (bricks). The capacitance and resistivity of final materials can be tailored by changing the mortar to brick ratios.« less

  3. Process for making silicon from halosilanes and halosilicons

    NASA Technical Reports Server (NTRS)

    Levin, Harry (Inventor)

    1988-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  4. Electrochemical deposition of honeycomb magnetite on partially exfoliated graphite as anode for capacitive applications

    NASA Astrophysics Data System (ADS)

    Sun, Zhen; Cai, Xiang; Song, Yu; Liu, Xiao-Xia

    2017-08-01

    Research on anode materials with high capacitive performance is lagging behind that of cathode materials, which has severely hindered the development of high-efficient energy storage devices. Compared with other anode materials, Fe3O4 exhibits highly desirable advantages due to its low cost, high theoretical capacity and preferable electronic conductivity of ∼102 S cm-1. Herein, hierarchical honeycomb Fe3O4 is integrated on functionalized exfoliated graphite through electrochemical deposition and the following chemical conversion. The hierarchical honeycomb Fe3O4 is constructed by the oxide nanorods, which are assembled by a number of nanoparticles. This unique porous structure not only ensures fast ion diffusion in the electrode, but also provides large amount of active sites for electrochemical reactions. The exfoliated graphene atop the graphite base can act as 3D conductive scaffold to facilitate the electron transport of the electrode. Therefore, FEG/Fe3O4 exhibits large specific capacitances of 327 F g-1@1 A g-1 and 275 F g-1@10 A g-1. Good cycling stability is also achieved due to the flexibility of the graphene substrate. The assembled asymmetric device using FEG/Fe3O4 as anode can deliver a high energy density of 54 Wh kg-1.

  5. Process for making silicon

    NASA Technical Reports Server (NTRS)

    Levin, Harry (Inventor)

    1987-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  6. Evaluation of Cadmium Ratio and Foil Activation Measurements for a Beryllium-Reflected Assembly of U(93.15)O 2 Fuel Rods (1.506-cm Triangular Pitch)

    DOE PAGES

    Marshall, Margaret A.

    2014-11-04

    A series of small, compact critical assembly (SCCA) experiments were completed from 1962 to 1965 at Oak Ridge National Laboratory’s Critical Experiments Facility (ORCEF) in support of the Medium-Power Reactor Experiments (MPRE) program. Initial experiments, performed in November and December of 1962, consisted of a core of un-moderated stainless-steel tubes, each containing 26 UOIdaho National Laboratory (INL), Idaho Falls, ID (United States) fuel pellets, surrounded by a graphite reflector. Measurements were performed to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. The graphite reflectors were then changed to beryllium reflectors. For the beryllium reflected assemblies, the fuel wasmore » in 1.506-cm-triangular and 7-tube clusters leading to two critical configurations. Once the critical configurations had been achieved, various measurements of reactivity, relative axial and radial activation rates of 235U, and cadmium ratios were performed. The cadmium ratio, reactivity, and activation rate measurements, performed on the 1.506-cm-array critical configuration, have been evaluated and are described in this paper.« less

  7. Lowering Back Shell onto Stowed InSight Lander

    NASA Image and Video Library

    2015-05-27

    In this photo, the back shell of NASA's InSight spacecraft is being lowered onto the mission's lander, which is folded into its stowed configuration. The back shell and a heat shield form the aeroshell, which will protect the lander as the spacecraft plunges into the upper atmosphere of Mars. The photo was taken on April 29, 2015, in a spacecraft assembly clean room at Lockheed Martin Space Systems, Denver. InSight, for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is scheduled for launch in March 2016 and landing in September 2016. It will study the deep interior of Mars to advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19666

  8. An Ultrahigh Capacity Graphite/Li 2S Battery with Holey-Li 2S Nanoarchitectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Fangmin; Noh, Hyungjun; Lee, Hongkyung

    The pairing of high-capacity Li 2S cathode (1166 mAh g -1) and lithium-free anode (LFA) provides an unparalleled potential in developing safe and energy-dense next-generation secondary batteries. However, the low utilization of the Li 2S cathode and the lack of electrolytes compatible to both electrodes are impeding the development. Here, a novel graphite/Li 2S battery system, which features a self-assembled, holey-Li 2S nanoarchitecture and a stable solid electrolyte interface (SEI) on the graphite electrode, is reported. The holey structure on Li 2S is beneficial in decomposing Li 2S at the first charging process due to the enhanced Li ion extractionmore » and transfer from the Li 2S to the electrolyte. In addition, the concentrated dioxolane (DOL)-rich electrolyte designed lowers the irreversible capacity loss for SEI formation. By using the combined strategies, the graphite/holey-Li 2S battery delivers an ultrahigh discharge capacity of 810 mAh g -1 at 0.1 C (based on the mass of Li 2S) and of 714 mAh g -1 at 0.2 C. Moreover, it exhibits a reversible capacity of 300 mAh g -1 after a record lifecycle of 600 cycles at 1 C. These results suggest the great potential of the designed LFA/holey-Li 2S batteries for practical use.« less

  9. An Ultrahigh Capacity Graphite/Li 2S Battery with Holey-Li 2S Nanoarchitectures

    DOE PAGES

    Ye, Fangmin; Noh, Hyungjun; Lee, Hongkyung; ...

    2018-05-07

    The pairing of high-capacity Li 2S cathode (1166 mAh g -1) and lithium-free anode (LFA) provides an unparalleled potential in developing safe and energy-dense next-generation secondary batteries. However, the low utilization of the Li 2S cathode and the lack of electrolytes compatible to both electrodes are impeding the development. Here, a novel graphite/Li 2S battery system, which features a self-assembled, holey-Li 2S nanoarchitecture and a stable solid electrolyte interface (SEI) on the graphite electrode, is reported. The holey structure on Li 2S is beneficial in decomposing Li 2S at the first charging process due to the enhanced Li ion extractionmore » and transfer from the Li 2S to the electrolyte. In addition, the concentrated dioxolane (DOL)-rich electrolyte designed lowers the irreversible capacity loss for SEI formation. By using the combined strategies, the graphite/holey-Li 2S battery delivers an ultrahigh discharge capacity of 810 mAh g -1 at 0.1 C (based on the mass of Li 2S) and of 714 mAh g -1 at 0.2 C. Moreover, it exhibits a reversible capacity of 300 mAh g -1 after a record lifecycle of 600 cycles at 1 C. These results suggest the great potential of the designed LFA/holey-Li 2S batteries for practical use.« less

  10. Labeled line drawing of Galileo spacecraft's atmospheric probe

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Labeled line drawing entitled GALILEO PROBE identifies the deceleration module aft cover, descent module, and deceleration module aeroshell configurations and dimensions prior to and during entry into Jupiter's atmosphere.

  11. Labeled line drawing of Galileo spacecraft's atmospheric probe

    NASA Image and Video Library

    1989-09-11

    Labeled line drawing entitled GALILEO PROBE identifies the deceleration module aft cover, descent module, and deceleration module aeroshell configurations and dimensions prior to and during entry into Jupiter's atmosphere.

  12. Conformationally pre-organized and pH-responsive flat dendrons: synthesis and self-assembly at the liquid-solid interface.

    PubMed

    El Malah, Tamer; Ciesielski, Artur; Piot, Luc; Troyanov, Sergey I; Mueller, Uwe; Weidner, Steffen; Samorì, Paolo; Hecht, Stefan

    2012-01-21

    Efficient Cu-catalyzed 1,3-dipolar cycloaddition reactions have been used to prepare two series of three regioisomers of G-1 and G-2 poly(triazole-pyridine) dendrons. The G-1 and G-2 dendrons consist of branched yet conformationally pre-organized 2,6-bis(phenyl/pyridyl-1,2,3-triazol-4-yl)pyridine (BPTP) monomeric and trimeric cores, respectively, carrying one focal and either two or four peripheral alkyl side chains. In the solid state, the conformation and supramolecular organization were studied by means of a single crystal X-ray structure analysis of one derivative. At the liquid-solid interface, the self-assembly behavior was investigated by scanning tunneling microscopy (STM) on graphite surfaces. Based on the observed supramolecular organization, it appears that the subtle balance between conformational preferences inherent in the dendritic backbone on the one side and the adsorption and packing of the alkyl side chains on the graphite substrate on the other side dictate the overall structure formation in 2D.

  13. Unexpected Rotamerism at the Origin of a Chessboard Supramolecular Assembly of Ruthenium Phthalocyanine.

    PubMed

    Mattioli, Giuseppe; Larciprete, Rosanna; Alippi, Paola; Bonapasta, Aldo Amore; Filippone, Francesco; Lacovig, Paolo; Lizzit, Silvano; Paoletti, Anna Maria; Pennesi, Giovanna; Ronci, Fabio; Zanotti, Gloria; Colonna, Stefano

    2017-11-16

    We have investigated the formation and the properties of ultrathin films of ruthenium phthalocyanine (RuPc) 2 vacuum deposited on graphite by scanning tunneling microscopy and synchrotron photoemission spectroscopy measurements, interpreted in close conjunction with ab initio simulations. Thanks to its unique dimeric structure connected by a direct Ru-Ru bond, (RuPc) 2 can be found in two stable rotameric forms separated by a low-energy barrier. Such isomerism leads to a peculiar organization of the molecules in flat, horizontal layers on the graphite surface, characterized by a chessboard-like alternation of the two rotamers. Moreover, the molecules are vertically connected to form π-stacked columnar pillars of akin rotamers, compatible with the high conductivity measured in (RuPc) 2 powders. Such features yield an unprecedented supramolecular assembly of phthalocyanine films, which could open interesting perspectives toward the realization of new architectures of organic electronic devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Long-term lithium-ion battery performance improvement via ultraviolet light treatment of the graphite anode

    DOE PAGES

    An, Seong Jin; Li, Jianlin; Sheng, Yangping; ...

    2016-01-01

    Effects of ultraviolet (UV) light on dried graphite anodes were investigated in terms of the cycle life of lithium ion batteries. The time variations for the UV treatment were 0 (no treatment), 20, 40, and 60 minutes. UV-light-treated graphite anodes were assembled for cycle life tests in pouch cells with pristine Li 1.02Ni 0.50Mn 0.29Co 0.19O 2 (NMC 532) cathodes. UV treatment for 40 minutes resulted in the highest capacity retention and the lowest resistance after the cycle life testing. X-ray photoelectron spectroscopy (XPS) and contact angle measurements on the graphite anodes showed changes in surface chemistry and wetting aftermore » the UV treatment. XPS also showed increases in solvent products and decreases in salt products on the SEI surface when UV-treated anodes were used. In conclusion, the thickness of the surface films and their compositions on the anodes and cathodes were also estimated using survey scans and snapshots from XPS depth profiles.« less

  15. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?

    DOE PAGES

    Hays, Kevin A.; Ruther, Rose E.; Kukay, Alexander J.; ...

    2018-03-04

    Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this paper, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency thanmore » those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Finally, Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.« less

  16. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, Kevin A.; Ruther, Rose E.; Kukay, Alexander J.

    Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this paper, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency thanmore » those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Finally, Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.« less

  17. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?

    NASA Astrophysics Data System (ADS)

    Hays, Kevin A.; Ruther, Rose E.; Kukay, Alexander J.; Cao, Pengfei; Saito, Tomonori; Wood, David L.; Li, Jianlin

    2018-04-01

    Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this study, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency than those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.

  18. Chiral symmetry breaking during the self-assembly of monolayers from achiral purine molecules.

    PubMed

    Sowerby, S J; Heckl, W M; Petersen, G B

    1996-11-01

    Scanning tunneling microscopy was used to investigate the structure of the two-dimensional adsorbate formed by molecular self-assembly of the purine base, adenine, on the surfaces of the naturally occurring mineral molybdenite and the synthetic crystal highly oriented pyrolytic graphite. Although formed from adenine, which is achiral, the observed adsorbate surface structures were enantiomorphic on molybdenite. This phenomenon suggests a mechanism for the introduction of a localized chiral symmetry break by the spontaneous crystallization of these prebiotically available molecules on inorganic surfaces and may have some role in the origin of biomolecular optical asymmetry. The possibility that purine-pyrimidine arrays assembled on naturally occurring mineral surfaces might act as possible templates for biomolecular assembly is discussed.

  19. Development of assembly and joint concepts for erectable space structures

    NASA Technical Reports Server (NTRS)

    Jacquemin, G. G.; Bluck, R. M.; Grotbeck, G. H.; Johnson, R. R.

    1980-01-01

    The technology associated with the on-orbit assembly of tetrahedral truss platforms erected of graphite epoxy tapered columns is examined. Associated with the assembly process is the design and fabrication of nine member node joints. Two such joints demonstrating somewhat different technology were designed and fabricated. Two methods of automatic assembly using the node designs were investigated, and the time of assembly of tetrahedral truss structures up to 1 square km in size was estimated. The effect of column and node joint packaging on the Space Shuttle cargo bay is examined. A brief discussion is included of operating cost considerations and the selection of energy sources. Consideration was given to the design assembly machines from 5 m to 20 m. The smaller machines, mounted on the Space Shuttle, are deployable and restowable. They provide a means of demonstrating the capabilities of the concept and of erecting small specialized platforms on relatively short notice.

  20. Progress in developing ultrathin solar cell blanket technology

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.; Mesch, H. G.; Scott-Monck, J.

    1984-01-01

    A program was conducted to develop technologies for welding interconnects to three types of 50-micron-thick, 2 by 2-cm solar cells. Parallel-gap resistance welding was used for interconnect attachment. Weld schedules were independently developed for each of the three cell types and were coincidentally identical. Six 48-cell modules were assembled with 50-micron (nominal) thick cells, frosted fused-silica covers, silver-plated Invar interconnectors, and four different substrate designs. Three modules (one for each cell type) have single-layer Kapton (50-micron-thick) substrates. The other three modules each have a different substrate (Kapton-Kevlar-Kapton, Kapton-graphite-Kapton, and Kapton-graphite-aluminum honeycomb-graphite). All six modules were subjected to 4112 thermal cycles from -175 to 65 C (corresponding to over 40 years of simulated geosynchronous orbit thermal cycling) and experienced only negligible electrical degradation (1.1 percent average of six 48-cell modules).

  1. DNA Origami Reorganizes upon Interaction with Graphite: Implications for High-Resolution DNA Directed Protein Patterning

    PubMed Central

    Rahman, Masudur; Neff, David; Green, Nathaniel; Norton, Michael L.

    2016-01-01

    Although there is a long history of the study of the interaction of DNA with carbon surfaces, limited information exists regarding the interaction of complex DNA-based nanostructures with the important material graphite, which is closely related to graphene. In view of the capacity of DNA to direct the assembly of proteins and optical and electronic nanoparticles, the potential for combining DNA-based materials with graphite, which is an ultra-flat, conductive carbon substrate, requires evaluation. A series of imaging studies utilizing Atomic Force Microscopy has been applied in order to provide a unified picture of this important interaction of structured DNA and graphite. For the test structure examined, we observe a rapid destabilization of the complex DNA origami structure, consistent with a strong interaction of single-stranded DNA with the carbon surface. This destabilizing interaction can be obscured by an intentional or unintentional primary intervening layer of single-stranded DNA. Because the interaction of origami with graphite is not completely dissociative, and because the frustrated, expanded structure is relatively stable over time in solution, it is demonstrated that organized structures of pairs of the model protein streptavidin can be produced on carbon surfaces using DNA origami as the directing material. PMID:28335324

  2. Filament-wound spar shell graphite/epoxy fan blades

    NASA Technical Reports Server (NTRS)

    Yao, S.

    1976-01-01

    The methodology for fabrication of wet filament wound spar shell fan blades is presented. All principal structural elements were filament wound, assembled, formed, bonded and co-cured in a female mold. A pair of blades were fabricated as one integral unit and parted into two after curing.

  3. Inviscid Flow Computations of Several Aeroshell Configurations for a '07 Mars Lander

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.

    2001-01-01

    This report documents the results of an inviscid computational study conducted on several candidate aeroshell configurations for a proposed '07 Mars lander. Eleven different configurations were considered, and the aerodynamic characteristics of each of these were computed for a Mach number of 23.7 at 10, 15, and 20 degree angles of attack. The unstructured grid software FELISA with the equilibrium Mars gas option was used for these computations. The pitching moment characteristics and the lift-to-drag ratios at trim angle of attack of each of these configurations were examined to make a selection. The criterion for selection was that the configuration should be longitudinally stable, and should trim at an angle of attack where the L/D is -0.25. Based on the present study, two configurations were selected for further study

  4. Fully Automated Single-Zone Elliptic Grid Generation for Mars Science Laboratory (MSL) Aeroshell and Canopy Geometries

    NASA Technical Reports Server (NTRS)

    kaul, Upender K.

    2008-01-01

    A procedure for generating smooth uniformly clustered single-zone grids using enhanced elliptic grid generation has been demonstrated here for the Mars Science Laboratory (MSL) geometries such as aeroshell and canopy. The procedure obviates the need for generating multizone grids for such geometries, as reported in the literature. This has been possible because the enhanced elliptic grid generator automatically generates clustered grids without manual prescription of decay parameters needed with the conventional approach. In fact, these decay parameters are calculated as decay functions as part of the solution, and they are not constant over a given boundary. Since these decay functions vary over a given boundary, orthogonal grids near any arbitrary boundary can be clustered automatically without having to break up the boundaries and the corresponding interior domains into various zones for grid generation.

  5. Thermal Analysis and Testing of Candidate Materials for PAIDAE Inflatable Aeroshell

    NASA Technical Reports Server (NTRS)

    DelCorso, Joseph A.; Bruce, Walter E., III; Liles, Kaitlin A.; Hughes, Stephen J.

    2009-01-01

    The Program to Advance Inflatable-Decelerators for Atmospheric Entry (PAIDAE) is a NASA project tasked with developing and evaluating viable inflatable-decelerator aeroshell geometries and materials. Thermal analysis of material layups supporting an inflatable aeroshell was completed in order to identify expected material response, failure times, and to establish an experimental test matrix to keep barrier layer materials from reaching critical temperature limits during thermal soak. Material layups were then tested in the 8- foot High Temperature Tunnel (8'HTT), where they were subjected to hypersonic aerothermal heating conditions, similar to those expected for a Mars entry. This paper presents a broad overview of the thermal analysis supporting multiple materials, and layup configurations tested in the 8'HTT at flight conditions similar to those that would be experienced during Mars entry trajectories. Direct comparison of TPS samples tested in the 8'HTT verify that the thermal model accurately predicted temperature profiles when there are up to four materials in the test layup. As the number of material layers in each test layup increase (greater than 4), the accuracy of the prediction decreases significantly. The inaccuracy of the model predictions for layups with more than four material layers is believed to be a result of the contact resistance values used throughout the model being inaccurate. In addition, the harsh environment of the 8'HTT, including hot gas penetrating through the material layers, could also be a contributing factor.

  6. Integral design method for simple and small Mars lander system using membrane aeroshell

    NASA Astrophysics Data System (ADS)

    Sakagami, Ryo; Takahashi, Ryohei; Wachi, Akifumi; Koshiro, Yuki; Maezawa, Hiroyuki; Kasai, Yasko; Nakasuka, Shinichi

    2018-03-01

    To execute Mars surface exploration missions, spacecraft need to overcome the difficulties of the Mars entry, descent, and landing (EDL) sequences. Previous landing missions overcame these challenges with complicated systems that could only be executed by organizations with mature technology and abundant financial resources. In this paper, we propose a novel integral design methodology for a small, simple Mars lander that is achievable even by organizations with limited technology and resources such as universities or emerging countries. We aim to design a lander (including its interplanetary cruise stage) whose size and mass are under 1 m3 and 150 kg, respectively. We adopted only two components for Mars EDL process: a "membrane aeroshell" for the Mars atmospheric entry and descent sequence and one additional mechanism for the landing sequence. The landing mechanism was selected from the following three candidates: (1) solid thrusters, (2) aluminum foam, and (3) a vented airbag. We present a reasonable design process, visualize dependencies among parameters, summarize sizing methods for each component, and propose the way to integrate these components into one system. To demonstrate the effectiveness, we applied this methodology to the actual Mars EDL mission led by the National Institute of Information and Communications Technology (NICT) and the University of Tokyo. As a result, an 80 kg class Mars lander with a 1.75 m radius membrane aeroshell and a vented airbag was designed, and the maximum landing shock that the lander will receive was 115 G.

  7. Mono- and multilayers of molecular spoked carbazole wheels on graphite

    PubMed Central

    Aggarwal, A Vikas; Kalle, Daniel; Höger, Sigurd

    2014-01-01

    Summary Self-assembled monolayers of a molecular spoked wheel (a shape-persistent macrocycle with an intraannular spoke/hub system) and its synthetic precursor are investigated by scanning tunneling microscopy (STM) at the liquid/solid interface of 1-octanoic acid and highly oriented pyrolytic graphite. The submolecularly resolved STM images reveal that the molecules indeed behave as more or less rigid objects of certain sizes and shapes – depending on their chemical structures. In addition, the images provide insight into the multilayer growth of the molecular spoked wheels (MSWs), where the first adlayer acts as a template for the commensurate adsorption of molecules in the second layer. PMID:25550744

  8. Mono- and multilayers of molecular spoked carbazole wheels on graphite.

    PubMed

    Jester, Stefan-S; Aggarwal, A Vikas; Kalle, Daniel; Höger, Sigurd

    2014-01-01

    Self-assembled monolayers of a molecular spoked wheel (a shape-persistent macrocycle with an intraannular spoke/hub system) and its synthetic precursor are investigated by scanning tunneling microscopy (STM) at the liquid/solid interface of 1-octanoic acid and highly oriented pyrolytic graphite. The submolecularly resolved STM images reveal that the molecules indeed behave as more or less rigid objects of certain sizes and shapes - depending on their chemical structures. In addition, the images provide insight into the multilayer growth of the molecular spoked wheels (MSWs), where the first adlayer acts as a template for the commensurate adsorption of molecules in the second layer.

  9. Study of shuttle imaging microwave system antenna. Volume 1: Conceptual design

    NASA Technical Reports Server (NTRS)

    Wesley, R. W.; Waineo, D. K.; Barton, C. R.; Love, A. W.

    1975-01-01

    A detailed preliminary design and complete performance evaluation are presented of an 11-channel large aperture scanning radiometer antenna for the shuttle imaging microwave system (SIMS) program. Provisions for interfacing the antenna with the space shuttle orbiter are presented and discussed. A program plan for hardware development and a rough order of magnitude (ROM) cost are also included. The conceptual design of the antenna is presented. It consists of a four-meter diameter parabolic torus main reflector, which is a graphite/epoxy shell supported by a graphite/epoxy truss. A rotating feed wheel assembly supports six Gregorian subreflectors covering the upper eight frequency channels from 6.6 GHz through 118.7 GHz, and two three-channel prime forms feed assemblies for 0.6, 1.4, and 2.7 GHz. The feed wheel assembly also holds the radiometers and power supplies, and a drive system using a 400 Hz synchronous motor is described. The RF analysis of the antenna is performed using physical optics procedures for both the dual reflector Gregorian concept and the single reflector prime focus concept. A unique aberration correcting feed for 2.7 GHz is analyzed. A structural analysis is also included. The analyses indicate that the antenna will meet system requirements.

  10. Mars Sample Return Spacecraft Before Arrival Artist Concept

    NASA Image and Video Library

    2011-06-20

    This artist concept of a proposed Mars sample return mission portrays an aeroshell-encased spacecraft approaching Mars. This spacecraft would put a sample-retrieving rover and an ascent vehicle onto the surface of Mars.

  11. Surface Modification of Self-Assembled Graphene Oxide for Cell Culture Studies

    NASA Astrophysics Data System (ADS)

    Swain, John E., III

    Thin films show great promise for biological applications, from in situ monitoring to pharmaceutical testing. In this study, a graphene oxide (GO) thin film is prepared with the aim to further functionalize the film for pharmaceutical toxicity screening applications. GO was selected due to its capability to be reduced into an optically transparent and electrically conductive thin film. In addition, GO is derived from carbon, a widely abundant element, in contrast to many other thin films that rely on resource-limited precious metals. Special care was taken to select GO and GO film synthesis methods that minimize the amount of organic-based solvents, maintain reactions at atmospheric pressure and moderate temperatures, and are scalable for manufacturing. Chemical oxidation of graphite flakes was carried out via a modified Hummer's Method with a pre-oxidation step. The resulting GO flakes were self-assembled using commercially available 4-sulfocalix[4]arene. Analytical characterizations (e.g., elemental analysis, XRD, FTIR, Raman, SEM, AFM) were performed to evaluate the success of graphite oxidation and formation of the self-assembled thin film. In order to gain a better understanding of the interactions between GO and sulfocalix (SCX), equilibrium conformations of the SCX molecule and truncated GO were calculated using Spartan'16 Parallels. This study demonstrates that the interaction between the GO and the SCX molecule to create a self-assembled thin film is the result of pi-pi stacking, as hypothesized by Sundramoorthy et al. (2015). The self-assembled GO film was successfully deposited on a polyethylene terephthalate (PET) substrate and functionalized with 3-aminopropyl triethoxysilane (APTES), which renders the film capable of further functionalization with proteins for yielding a three-dimensional cell culture or co-culture platform for different applications.

  12. Preparing the Phoenix Lander for Mars

    NASA Image and Video Library

    2005-06-01

    The Phoenix lander, housed in a 100,000-class clean room at Lockheed Martin Space Systems facilities near Denver, Colo. Shown here, the lander is contained inside the backshell portion of the aeroshell with the heat shield removed.

  13. Mars Science Laboratory Spacecraft During Cruise, Artist Concept

    NASA Image and Video Library

    2011-10-03

    This is an artist concept of NASA Mars Science Laboratory spacecraft during its cruise phase between launch and final approach to Mars. The spacecraft includes a disc-shaped cruise stage on the left attached to the aeroshell.

  14. Feasibility and Performance of the Microwave Thermal Rocket Launcher

    NASA Astrophysics Data System (ADS)

    Parkin, Kevin L. G.; Culick, Fred E. C.

    2004-03-01

    Beamed-energy launch concepts employing a microwave thermal thruster are feasible in principle, and microwave sources of sufficient power to launch tons into LEO already exist. Microwave thermal thrusters operate on an analogous principle to nuclear thermal thrusters, which have experimentally demonstrated specific impulses exceeding 850 seconds. Assuming such performance, simple application of the rocket equation suggests that payload fractions of 10% are possible for a single stage to orbit (SSTO) microwave thermal rocket. We present an SSTO concept employing a scaled X-33 aeroshell. The flat aeroshell underside is covered by a thin-layer microwave absorbent heat-exchanger that forms part of the thruster. During ascent, the heat-exchanger faces the microwave beam. A simple ascent trajectory analysis incorporating X-33 aerodynamic data predicts a 10% payload fraction for a 1 ton craft of this type. In contrast, the Saturn V had 3 non-reusable stages and achieved a payload fraction of 4%.

  15. Entry, Descent and Landing Systems Analysis: Exploration Feed Forward Internal Peer Review Slide Package

    NASA Technical Reports Server (NTRS)

    Dwyer Cianciolo, Alicia M. (Editor)

    2011-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to successfully land large payloads at Mars for both robotic and human-scale missions. Year 1 of the study focused on technologies required for Exploration-class missions to land payloads of 10 to 50 mt. Inflatable decelerators, rigid aeroshell and supersonic retro-propulsion emerged as the top candidate technologies. In Year 2 of the study, low TRL technologies identified in Year 1, inflatables aeroshells and supersonic retropropulsion, were combined to create a demonstration precursor robotic mission. This part of the EDL-SA Year 2 effort, called Exploration Feed Forward (EFF), took much of the systems analysis simulation and component model development from Year 1 to the next level of detail.

  16. Entry, Descent and Landing Systems Analysis Study: Phase 2 Report on Exploration Feed-Forward Systems

    NASA Technical Reports Server (NTRS)

    Dwyer Ciancolo, Alicia M.; Davis, Jody L.; Engelund, Walter C.; Komar, D. R.; Queen, Eric M.; Samareh, Jamshid A.; Way, David W.; Zang, Thomas A.; Murch, Jeff G.; Krizan, Shawn A.; hide

    2011-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to successfully land large payloads at Mars for both robotic and human-scale missions. Year 1 of the study focused on technologies required for Exploration-class missions to land payloads of 10 to 50 t. Inflatable decelerators, rigid aeroshell and supersonic retro-propulsion emerged as the top candidate technologies. In Year 2 of the study, low TRL technologies identified in Year 1, inflatables aeroshells and supersonic retropropulsion, were combined to create a demonstration precursor robotic mission. This part of the EDL-SA Year 2 effort, called Exploration Feed Forward (EFF), took much of the systems analysis simulation and component model development from Year 1 to the next level of detail.

  17. Mars Exploration Rover -2

    NASA Image and Video Library

    2003-03-06

    Components of the two Mars Exploration Rovers (MER) reside in the Payload Hazardous Servicing Facility. At right MER-2. At left is a lander. In the background is one of the aeroshells. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

  18. Aerocapture Systems Analysis for a Neptune Mission

    NASA Technical Reports Server (NTRS)

    Lockwood, Mary Kae; Edquist, Karl T.; Starr, Brett R.; Hollis, Brian R.; Hrinda, Glenn A.; Bailey, Robert W.; Hall, Jeffery L.; Spilker, Thomas R.; Noca, Muriel A.; O'Kongo, N.

    2006-01-01

    A Systems Analysis was completed to determine the feasibility, benefit and risk of an aeroshell aerocapture system for Neptune and to identify technology gaps and technology performance goals. The systems analysis includes the following disciplines: science; mission design; aeroshell configuration; interplanetary navigation analyses; atmosphere modeling; computational fluid dynamics for aerodynamic performance and aeroheating environment; stability analyses; guidance development; atmospheric flight simulation; thermal protection system design; mass properties; structures; spacecraft design and packaging; and mass sensitivities. Results show that aerocapture is feasible and performance is adequate for the Neptune mission. Aerocapture can deliver 1.4 times more mass to Neptune orbit than an all-propulsive system for the same launch vehicle and results in a 3-4 year reduction in trip time compared to all-propulsive systems. Enabling technologies for this mission include TPS manufacturing; and aerothermodynamic methods for determining coupled 3-D convection, radiation and ablation aeroheating rates and loads.

  19. Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Shao, Yuyan; Zhang, Sheng; Kou, Rong; Wang, Xiqing; Wang, Chongmin; Dai, Sheng; Viswanathan, Vilayanur; Liu, Jun; Wang, Yong; Lin, Yuehe

    We report a durable electrocatalyst support, highly graphitized mesoporous carbon (GMPC), for oxygen reduction in polymer electrolyte membrane (PEM) fuel cells. GMPC is prepared through graphitizing the self-assembled soft-template mesoporous carbon (MPC) under high temperature. Heat-treatment at 2800 °C greatly improves the degree of graphitization while most of the mesoporous structures and the specific surface area of MPC are retained. GMPC is then noncovalently functionalized with poly(diallyldimethylammonium chloride) (PDDA) and loaded with Pt nanoparticles by reducing Pt precursor (H 2PtCl 6) in ethylene glycol. Pt nanoparticles of ∼3.0 nm in diameter are uniformly dispersed on GMPC. Compared to Pt supported on Vulcan XC-72 carbon black (Pt/XC-72), Pt/GMPC exhibits a higher mass activity towards oxygen reduction reaction (ORR) and the mass activity retention (in percentage) is improved by a factor of ∼2 after 44 h accelerated degradation test under the potential step (1.4-0.85 V) electrochemical stressing condition which focuses on support corrosion. The enhanced activity and durability of Pt/GMPC are attributed to the graphitic structure of GMPC which is more resistant to corrosion. These findings demonstrate that GMPC is a promising oxygen reduction electrocatalyst support for PEM fuel cells. The approach reported in this work provides a facile, eco-friendly promising strategy for synthesizing stable metal nanoparticles on hydrophobic support materials.

  20. Self-assembling of calcium salt of the new DNA base 5-carboxylcytosine

    NASA Astrophysics Data System (ADS)

    Irrera, Simona; Ruiz-Hernandez, Sergio E.; Reggente, Melania; Passeri, Daniele; Natali, Marco; Gala, Fabrizio; Zollo, Giuseppe; Rossi, Marco; Portalone, Gustavo

    2017-06-01

    Supramolecular architectures involving DNA bases can have a strong impact in several fields such as nanomedicine and nanodevice manufacturing. To date, in addition to the four canonical nucleobases (adenine, thymine, guanine and cytosine), four other forms of cytosine modified at the 5 position have been identified in DNA. Among these four new cytosine derivatives, 5-carboxylcytosine has been recently discovered in mammalian stem cell DNA, and proposed as the final product of the oxidative epigenetic demethylation pathway on the 5 position of cytosine. In this work, a calcium salt of 5-carboxylcytosine has been synthesized and deposited on graphite surface, where it forms self-assembled features as long range monolayers and up to one micron long filaments. These structures have been analyzed in details combining different theoretical and experimental approaches: X-ray single-crystal diffraction data were used to simulate the molecule-graphite interaction, first using molecular dynamics and then refining the results using density functional theory (DFT); finally, data obtained with DFT were used to rationalize atomic force microscopy (AFM) results.

  1. Entry, Descent, and Landing with Propulsive Deceleration: Supersonic Retropropulsion Wind Tunnel Testing and Shock Phenomena

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2014-01-01

    The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet's moon atmospheres for entry, and descent can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retropropulsion (SRP) rocket system for the final soft landing. A three engine retropropulsion configuration with a 2.5 in. diameter sphere-cone aeroshell model was tested in the NASA Glenn Research Center's 1- by 1-ft (1×1) Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70deg Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a SRP system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retropropulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. In addition, special topics of electromagnetic interference with retropropulsion induced shock waves and retropropulsion for Earth launched booster recovery are also addressed.

  2. Entry, Descent, and Landing with Propulsive Deceleration: Supersonic Retropropulsion Wind Tunnel Testing and Shock Phenomena

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2013-01-01

    The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet's moon atmospheres for entry, and descent can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retro-propulsion (SRP) rocket system for the final soft landing. A three engine retro-propulsion configuration with a 2.5 inch diameter sphere-cone aeroshell model was tested in the NASA Glenn 1x1 Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70 degree Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a supersonic retro-propulsion system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retro-propulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. In addition, special topics of electromagnetic interference with retro-propulsion induced shock waves and retro-propulsion for Earth launched booster recovery are also addressed.

  3. ISP Aerocapture Technology

    NASA Astrophysics Data System (ADS)

    James, B.

    2004-11-01

    Aerocapture technology development is a vital part of the NASA In-Space Propulsion Program (ISP), which is managed by NASA Headquarters and implemented at the NASA Marshall Space Flight Center in Huntsville, Alabama. Aerocapture is a flight maneuver designed to aerodynamically decelerate a spacecraft from hyperbolic approach to a captured orbit during one pass through the atmosphere. Small amounts of propulsive fuel are used for attitude control and periapsis raise only. This technique is very attractive since it permits spacecraft to be launched from Earth at higher verlocities, reducing trip times. The aerocapture technique also significantly reduces the overall mass of the propulsion systems. This allows for more science payload to be added to the mission. Alternatively, a smaller launch vehicle could be used, reducing overall mission cost. Aerocapture can be realized in various ways. It can be accomplished using rigid aeroshells, such as those used in previous mission efforts (like Apollo, the planned Aeroassist Flight Experiment and the Mars Exploration Rovers). Aerocapture can also be achieved with inflatable deceleration systems. This family includes the use of a potentially lighter, inflatable aeroshell or a large, trailing ballute - a combination parachute and balloon made of durable, thin material and stowed behind the vehicle for deployment. Aerocapture utilizing inflatable decelerators is also derived from previous efforts, but will necessitate further research to reach the technology readiness level (TRL) that the rigid aeroshell has achieved. Results of recent Aerocapture Systems analysis studies for small bodies and giant planets show that aerocapture can be enhancing for most missions and absolutely enabling for some mission scenarios. In this way, Aerocapture could open up exciting, new science mission opportunities.

  4. Reconstruction of the Mars Science Laboratory Parachute Performance and Comparison to the Descent Simulation

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Way, David W.; Shidner, Jeremy D.; Davis, Jody L.; Adams, Douglas S.; Kipp, Devin M.

    2013-01-01

    The Mars Science Laboratory used a single mortar-deployed disk-gap-band parachute of 21.35 m nominal diameter to assist in the landing of the Curiosity rover on the surface of Mars. The parachute system s performance on Mars has been reconstructed using data from the on-board inertial measurement unit, atmospheric models, and terrestrial measurements of the parachute system. In addition, the parachute performance results were compared against the end-to-end entry, descent, and landing (EDL) simulation created to design, develop, and operate the EDL system. Mortar performance was nominal. The time from mortar fire to suspension lines stretch (deployment) was 1.135 s, and the time from suspension lines stretch to first peak force (inflation) was 0.635 s. These times were slightly shorter than those used in the simulation. The reconstructed aerodynamic portion of the first peak force was 153.8 kN; the median value for this parameter from an 8,000-trial Monte Carlo simulation yielded a value of 175.4 kN - 14% higher than the reconstructed value. Aeroshell dynamics during the parachute phase of EDL were evaluated by examining the aeroshell rotation rate and rotational acceleration. The peak values of these parameters were 69.4 deg/s and 625 deg/sq s, respectively, which were well within the acceptable range. The EDL simulation was successful in predicting the aeroshell dynamics within reasonable bounds. The average total parachute force coefficient for Mach numbers below 0.6 was 0.624, which is close to the pre-flight model nominal drag coefficient of 0.615.

  5. Mars Science Laboratory Parachute, Artist Concept

    NASA Image and Video Library

    2011-10-03

    This artist concept is of NASA Mars Science Laboratory MSL Curiosity rover parachute system; the largest parachute ever built to fly on a planetary mission. The parachute is attached to the top of the backshell portion of the spacecraft aeroshell.

  6. Methods for batch fabrication of cold cathode vacuum switch tubes

    DOEpatents

    Walker, Charles A [Albuquerque, NM; Trowbridge, Frank R [Albuquerque, NM

    2011-05-10

    Methods are disclosed for batch fabrication of vacuum switch tubes that reduce manufacturing costs and improve tube to tube uniformity. The disclosed methods comprise creating a stacked assembly of layers containing a plurality of adjacently spaced switch tube sub-assemblies aligned and registered through common layers. The layers include trigger electrode layer, cathode layer including a metallic support/contact with graphite cathode inserts, trigger probe sub-assembly layer, ceramic (e.g. tube body) insulator layer, and metallic anode sub-assembly layer. Braze alloy layers are incorporated into the stacked assembly of layers, and can include active metal braze alloys or direct braze alloys, to eliminate costs associated with traditional metallization of the ceramic insulator layers. The entire stacked assembly is then heated to braze/join/bond the stack-up into a cohesive body, after which individual switch tubes are singulated by methods such as sawing. The inventive methods provide for simultaneously fabricating a plurality of devices as opposed to traditional methods that rely on skilled craftsman to essentially hand build individual devices.

  7. A mobile work station concept for mechanically aided astronaut assembly of large space trusses

    NASA Technical Reports Server (NTRS)

    Heard, W. L., Jr.; Bush, H. G.; Wallson, R. E.; Jensen, J. K.

    1983-01-01

    This report presents results of a series of truss assembly tests conducted to evaluate a mobile work station concept intended to mechanically assist astronaut manual assembly of erectable space trusses. The tests involved assembly of a tetrahedral truss beam by a pair of test subjects with and without pressure (space) suits, both in Earth gravity and in simulated zero gravity (neutral buoyancy in water). The beam was assembled from 38 identical graphite-epoxy nestable struts, 5.4 m in length with aluminum quick-attachment structural joints. Struts and joints were designed to closely simulate flight hardware. The assembled beam was approximately 16.5 m long and 4.5 m on each of the four sides of its diamond-shaped cross section. The results show that average in-space assembly rates of approximately 38 seconds per strut can be expected for struts of comparable size. This result is virtually independent of the overall size of the structure being assembled. The mobile work station concept would improve astronaut efficiency for on-orbit manual assembly of truss structures, and also this assembly-line method is highly competitive with other construction methods being considered for large space structures.

  8. Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Wei, L.; Zhao, T. S.; Zeng, L.; Zeng, Y. K.; Jiang, H. R.

    2017-02-01

    In this work, we prepare a highly catalytic and stabilized titanium nitride (TiN) nanowire array-decorated graphite felt electrode for all vanadium redox flow batteries (VRFBs). Free-standing TiN nanowires are synthesized by a two-step process, in which TiO2 nanowires are first grown onto the surface of graphite felt via a seed-assisted hydrothermal method and then converted to TiN through nitridation reaction. When applied to VRFBs, the prepared electrode enables the electrolyte utilization and energy efficiency to be 73.9% and 77.4% at a high current density of 300 mA cm-2, which are correspondingly 43.3% and 15.4% higher than that of battery assembled with a pristine electrode. More impressively, the present battery exhibits good stability and high capacity retention during the cycle test. The superior performance is ascribed to the significant improvement in the electrochemical kinetics and enlarged active sites toward V3+/V2+ redox reaction.

  9. Multilayer core-shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Wan, Caichao; Jiao, Yue; Li, Jian

    2017-09-01

    An easily-operated and inexpensive strategy (pencil-drawing-electrodeposition-electro-oxidation) is proposed to synthesize a novel class of multilayer core-shell structured composite paper electrode, which consists of copper, cuprous oxide and graphite assembled on cellulose fibers. This interesting electrode structure plays a pivotal role in providing more active sites for electrochemical reactions, facilitating ion and electron transport and shorting their diffusion pathways. This electrode demonstrates excellent electrochemical properties with a high specific capacitance of 601 F g-1 at 2 A g-1 and retains 83% of this capacitance when operated at an ultrahigh current density of 100 A g-1. In addition, a high energy density of 13.4 W h kg-1 at the power density of 0.40 kW kg-1 and a favorable cycling stability (95.3%, 8000 cycles) were achieved for this electrode. When this electrode was assembled into an asymmetric supercapacitor with carbon paper as negative electrode, the device displays remarkable electrochemical performances with a large areal capacitances (122 mF cm-2 at 1 mA cm-2), high areal energy density (10.8 μW h cm-2 at 402.5 μW cm-2) and outstanding cycling stability (91.5%, 5000 cycles). These results unveil the potential of this composite electrode as a high-performance electrode material for supercapacitors.

  10. Advanced composite aileron for L-1011 transport aircraft: Aileron manufacture

    NASA Technical Reports Server (NTRS)

    Dunning, E. G.; Cobbs, W. L.; Legg, R. L.

    1981-01-01

    The fabrication activities of the Advanced Composite Aileron (ACA) program are discussed. These activities included detail fabrication, manufacturing development, assembly, repair and quality assurance. Five ship sets of ailerons were manufactured. The detail fabrication effort of ribs, spar and covers was accomplished on male tools to a common cure cycle. Graphite epoxy tape and fabric and syntactic epoxy materials were utilized in the fabrication. The ribs and spar were net cured and required no post cure trim. Material inconsistencies resulted in manufacturing development of the front spar during the production effort. The assembly effort was accomplished in subassembly and assembly fixtures. The manual drilling system utilized a dagger type drill in a hydraulic feed control hand drill. Coupon testing for each detail was done.

  11. Interleaved arrays antenna technology development

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Phase one and two of a program to further develop and investigate advanced graphite epoxy waveguides, radiators, and components with application to space antennas are discussed. The objective of the two phases were to demonstrate mechanical integrity of a small panel of radiators and parts procured under a previous contract and to develop alternate designs and applications of the technology. Most of the emphasis was on the assembly and test of a 5 x 5 element module. This effort was supported by evaluation of adhesives and waveguide joint configurations. The evaluation and final assembly considered not only mechanical performance but also producibility in large scale.

  12. Next-Generation MKIII Lightweight HUT/Hatch Assembly

    NASA Technical Reports Server (NTRS)

    McCarthy, Mike; Toscano, Ralph

    2013-01-01

    The MK III (H-1) carbon-graphite/ epoxy Hard Upper Torso (HUT)/Hatch assembly was designed, fabricated, and tested in the early 1990s. The spacesuit represented an 8.3 psi (˜58 kPa) technology demonstrator model of a zero prebreathe suit. The basic torso shell, brief, and hip areas of the suit were composed of a carbon-graphite/epoxy composite lay-up. In its current configuration, the suit weighs approximately 120 lb (˜54 kg). However, since future planetary suits will be designed to operate at 0.26 bar (˜26 kPa), it was felt that the suit's re-designed weight could be reduced to 79 lb (˜35 kg) with the incorporation of lightweight structural materials. Many robust, lightweight structures based on the technologies of advanced honeycomb materials, revolutionary new composite laminates, metal matrix composites, and recent breakthroughs in fullerene fillers and nanotechnology lend themselves well to applications requiring materials that are both light and strong. The major problem involves the reduction in weight of the HUT/ Hatch assembly for use in lunar and/or planetary applications, while at the same time maintaining a robust structural design. The technical objective is to research, design, and develop manufacturing methods that support fa b rica - tion of a lightweight HUT/Hatch assembly using advanced material and geometric redesign as necessary. Additionally, the lightweight HUT/Hatch assembly will interface directly with current MK III hardware. Using the new operating pressure and current MK III (H-1) interfaces as a starting block, it is planned to maximize HUT/Hatch assembly weight reduction through material selection and geometric redesign. A hard upper torso shell structure with rear-entry closure and corresponding hatch will be fabricated. The lightweight HUT/Hatch assembly will retrofit and interface with existing MK III (H-1) hardware elements, providing NASA with immediate "plug-andplay" capability. NASA crewmembers will have a lightweight, robust, life-support system that will minimize fatigue during extraterrestrial surface sojourns. Its unique feature is the utilization of a new and innovative family of materials used by the aerospace industry, which at the time of this reporting has not been used for the proposed application.

  13. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition

    NASA Astrophysics Data System (ADS)

    D'Arcy, Julio M.; Tran, Henry D.; Stieg, Adam Z.; Gimzewski, James K.; Kaner, Richard B.

    2012-05-01

    A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated. Electronic supplementary information (ESI) available: Droplet coalescence, catenoid formation, mechanism of film growth, scanning electron micrographs showing carbon nanotube alignment, flexible transparent films of SWCNTs, AFM images of a chemically converted graphene film, and SEM images of SWCNT free-standing thin films. See DOI: 10.1039/c2nr00010e

  14. Entry, Descent, and Landing With Propulsive Deceleration: Supersonic Retropropulsion Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2012-01-01

    The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet s moons atmosphere for entry, descent, and landing can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retro-propulsion (SRP) rocket system for the final soft landing. As part of those efforts, NASA began to conduct experiments to gather the experimental data to make informed decisions on the "best" EDL options. A model of a three engine retro-propulsion configuration with a 2.5 in. diameter sphere-cone aeroshell model was tested in the NASA Glenn 1- by 1-Foot Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70 Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a supersonic retro-propulsion system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retro-propulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. The rocket engine flow was simulated with a non-combusting flow of air.

  15. Optimization of a Hot Structure Aeroshell and Nose Cap for Mars Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Langston, Sarah L.; Lang, Christapher G.; Samareh, Jamshid A.; Daryabeigi, Kamran

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is preparing to send humans beyond Low Earth Orbit and eventually to the surface of Mars. As part of the Evolvable Mars Campaign, different vehicle configurations are being designed and considered for delivering large payloads to the surface of Mars. Weight and packing volume are driving factors in the vehicle design, and the thermal protection system (TPS) for planetary entry is a technology area which can offer potential weight and volume savings. The feasibility and potential benefits of a ceramic matrix composite hot structure concept for different vehicle configurations are explored in this paper, including the nose cap for a Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and an aeroshell for a mid lift-to-drag (Mid L/D) concept. The TPS of a planetary entry vehicle is a critical component required to survive the severe aerodynamic heating environment during atmospheric en- try. The current state-of-the-art is an ablative material to protect the vehicle from the heat load. The ablator is bonded to an underlying structure, which carries the mechanical loads associated with entry. The alternative hot structure design utilizes an advanced carbon-carbon material system on the outer surface of the vehicle, which is exposed to the severe heating and acts as a load carrying structure. The preliminary design using the hot structure concept and the ablative concept is determined for the spherical nose cap of the HIAD entry vehicle and the aeroshell of the Mid L/D entry vehicle. The results of the study indicate that the use of hot structures for both vehicle concepts leads to a feasible design with potential weight and volume savings benefits over current state-of-the-art TPS technology that could enable future missions.

  16. Aerocapture Technologies

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.

    2006-01-01

    Aeroassist technology development is a vital part of the NASA In-Space Propulsion Technology (ISPT) Program. One of the main focus areas of ISPT is aeroassist technologies through the Aerocapture Technology (AT) Activity. Within the ISPT, the current aeroassist technology development focus is aerocapture. Aerocapture relies on the exchange of momentum with an atmosphere to achieve thrust, in this case a decelerating thrust leading to orbit capture. Without aerocapture, a substantial propulsion system would be needed on the spacecraft to perform the same reduction of velocity. This could cause reductions in the science payload delivered to the destination, increases in the size of the launch vehicle (to carry the additional fuel required for planetary capture) or could simply make the mission impossible due to additional propulsion requirements. The AT is advancing each technology needed for the successful implementation of aerocapture in future missions. The technology development focuses on both rigid aeroshell systems as well as the development of inflatable aerocapture systems, advanced aeroshell performance sensors, lightweight structure and higher temperature adhesives. Inflatable systems such as tethered trailing ballutes ('balloon parachutes'), clamped ballutes, and inflatable aeroshells are also under development. Aerocapture-specific computational tools required to support future aerocapture missions are also an integral part of the ATP. Tools include: engineering reference atmosphere models, guidance and navigation, aerothermodynamic modeling, radiation modeling and flight simulation. Systems analysis plays a key role in the AT development process. The NASA in-house aerocapture systems analysis team has been taken with multiple systems definition and concept studies to complement the technology development tasks. The team derives science requirements, develops guidance and navigation algorithms, as well as engineering reference atmosphere models and aeroheating specifications. The study team also creates designs for the overall mission spacecraft. Presentation slides are provided to further describe the aerocapture project.

  17. Advanced High-Temperature Flexible TPS for Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    DelCorso, Joseph A.; Cheatwood, F. McNeil; Bruce, Walter E., III; Hughes, Stephen J.; Calomino, Anthony M.

    2011-01-01

    Typical entry vehicle aeroshells are limited in size by the launch vehicle shroud. Inflatable aerodynamic decelerators allow larger aeroshell diameters for entry vehicles because they are not constrained to the launch vehicle shroud diameter. During launch, the hypersonic inflatable aerodynamic decelerator (HIAD) is packed in a stowed configuration. Prior to atmospheric entry, the HIAD is deployed to produce a drag device many times larger than the launch shroud diameter. The large surface area of the inflatable aeroshell provides deceleration of high-mass entry vehicles at relatively low ballistic coefficients. Even for these low ballistic coefficients there is still appreciable heating, requiring the HIAD to employ a thermal protection system (TPS). This TPS must be capable of surviving the heat pulse, and the rigors of fabrication handling, high density packing, deployment, and aerodynamic loading. This paper provides a comprehensive overview of flexible TPS tests and results, conducted over the last three years. This paper also includes an overview of each test facility, the general approach for testing flexible TPS, the thermal analysis methodology and results, and a comparison with 8-foot High Temperature Tunnel, Laser-Hardened Materials Evaluation Laboratory, and Panel Test Facility test data. Results are presented for a baseline TPS layup that can withstand a 20 W/cm2 heat flux, silicon carbide (SiC) based TPS layup, and polyimide insulator TPS layup. Recent work has focused on developing material layups expected to survive heat flux loads up to 50 W/cm2 (which is adequate for many potential applications), future work will consider concepts capable of withstanding more than 100 W/cm2 incident radiant heat flux. This paper provides an overview of the experimental setup, material layup configurations, facility conditions, and planned future flexible TPS activities.

  18. Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Dongping; Tao, Jinhui; Yan, Pengfei

    2017-02-10

    Interfacial phenomena have always been key determinants for the performance of energy storage technologies. The solid electrolyte interfacial (SEI) layer, pervasive on the surfaces of battery electrodes for numerous chemical couples, directly affects the ion transport, charge transfer and lifespan of the entire energy system. Almost all SEI layers, however, are unstable resulting in the continuous consumption of the electrolyte. Typically, this leads to the accumulation of degradation products on/restructuring of the electrode surface and thus increased cell impedance, which largely limits the long-term operation of the electrochemical reactions. Herein, a completely new SEI formation mechanism has been discovered, inmore » which the electrolyte components reversibly self-assemble into a protective surface coating on a graphite electrode upon changing the potential. In contrast to the established wisdom regarding the necessity of employing the solvent ethylene carbonate (EC) to form a protective SEI layer on graphite, a wide range of EC-free electrolytes are demonstrated for the reversible intercalation/deintercalation of Li+ cations within a graphite lattice, thereby providing tremendous flexibility in electrolyte tailoring for battery couples. This novel finding is broadly applicable and provides guidance for how to control interfacial reactions through the relationship between ion aggregation and solvent decomposition at polarized interfaces.« less

  19. Lithium-ion capacitors using carbide-derived carbon as the positive electrode - A comparison of cells with graphite and Li4Ti5O12 as the negative electrode

    NASA Astrophysics Data System (ADS)

    Rauhala, Taina; Leis, Jaan; Kallio, Tanja; Vuorilehto, Kai

    2016-11-01

    The use of carbide-derived carbon (CDC) as the positive electrode material for lithium-ion capacitors (LICs) is investigated. CDC based LIC cells are studied utilizing two different negative electrode materials: graphite and lithium titanate Li4Ti5O12 (LTO). The graphite electrodes are prelithiated before assembling the LICs, and LTO containing cells are studied with and without prelithiation. The rate capability and cycle life stability during 1000 cycles are evaluated by galvanostatic cycling at current densities of 0.4-4 mA cm-2. The CDC shows a specific capacitance of 120 F g-1 in the organic lithium-containing electrolyte, and the LICs demonstrate a good stability over 1000 charge-discharge cycles. The choice of the negative electrode is found to have an effect on the utilization of the CDC positive electrode during cycling and on the specific energy of the device. The graphite/CDC cell delivers a maximum specific discharge energy of 90 Wh kg-1 based on the total mass of active material in the cell. Both the prelithiated and non-prelithiated LTO/CDC cells show a specific energy of around 30 Wh kg-1.

  20. Reversible Assembly of Graphitic Carbon Nitride 3D Network for Highly Selective Dyes Absorption and Regeneration.

    PubMed

    Zhang, Yuye; Zhou, Zhixin; Shen, Yanfei; Zhou, Qing; Wang, Jianhai; Liu, Anran; Liu, Songqin; Zhang, Yuanjian

    2016-09-27

    Responsive assembly of 2D materials is of great interest for a range of applications. In this work, interfacial functionalized carbon nitride (CN) nanofibers were synthesized by hydrolyzing bulk CN in sodium hydroxide solution. The reversible assemble and disassemble behavior of the as-prepared CN nanofibers was investigated by using CO2 as a trigger to form a hydrogel network at first. Compared to the most widespread absorbent materials such as active carbon, graphene and previously reported supramolecular gel, the proposed CN hydrogel not only exhibited a competitive absorbing capacity (maximum absorbing capacity of methylene blue up to 402 mg/g) but also overcame the typical deficiencies such as poor selectivity and high energy-consuming regeneration. This work would provide a strategy to construct a 3D CN network and open an avenue for developing smart assembly for potential applications ranging from environment to selective extraction.

  1. Templated bilayer self-assembly of fully conjugated π-expanded macrocyclic oligothiophenes complexed with fullerenes

    PubMed Central

    Cojal González, José D.; Iyoda, Masahiko; Rabe, Jürgen P.

    2017-01-01

    Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current–voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor–acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure. PMID:28281557

  2. Interfacial assembly structures and nanotribological properties of saccharic acids.

    PubMed

    Shi, Hongyu; Liu, Yuhong; Zeng, Qingdao; Yang, Yanlian; Wang, Chen; Lu, Xinchun

    2017-01-04

    Saccharides have been recognized as potential bio-lubricants because of their good hydration ability. However, the interfacial structures of saccharides and their derivatives are rarely studied and the molecular details of interaction mechanisms have not been well understood. In this paper, the supramolecular assembly structures of saccharic acids (including galactaric acid and lactobionic acid), mediated by hydrogen bonds O-HN and O-HO, were successfully constructed on a highly oriented pyrolytic graphite (HOPG) surface by introducing pyridine modulators and were explicitly revealed by using scanning tunneling microscopy (STM). Furthermore, friction forces were measured in the saccharic acid/pyridine co-assembled system by atomic force microscopy (AFM), revealing a larger value than a pristine saccharic acid system, which could be attributed to the stronger tip-assembled molecule interactions that lead to the higher potential energy barrier needed to overcome. The effort on saccharide-related supramolecular self-assembly and nanotribological behavior could provide a novel and promising pathway to explore the interaction mechanisms underlying friction and reveal the structure-property relationship at the molecular level.

  3. Templated bilayer self-assembly of fully conjugated π-expanded macrocyclic oligothiophenes complexed with fullerenes

    NASA Astrophysics Data System (ADS)

    Cojal González, José D.; Iyoda, Masahiko; Rabe, Jürgen P.

    2017-03-01

    Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current-voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor-acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure.

  4. A novel form of β-strand assembly observed in Aβ33-42 adsorbed onto graphene

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Weber, Jeffrey K.; Liu, Lei; Dong, Mingdong; Zhou, Ruhong; Li, Jingyuan

    2015-09-01

    Peptide assembly plays a seminal role in the fabrication of structural and functional architectures in cells. Characteristically, peptide assemblies are often dominated by β-sheet structures, wherein component molecules are connected by backbone hydrogen bonds in a parallel or an antiparallel fashion. While β-rich peptide scaffolds are implicated in an array of neurodegenerative diseases, the mechanisms by which toxic peptides assemble and mediate neuropathic effects are still poorly understood. In this work, we employ molecular dynamics simulations to study the adsorption and assembly of the fragment Aβ33-42 (taken from the Aβ-42 peptide widely associated with Alzheimer's disease) on a graphene surface. We observe that such Aβ33-42 fragments, which are largely hydrophobic in character, readily adsorb onto the graphitic surface and coalesce into a well-structured, β-strand-like assembly. Strikingly, the structure of such complex is quite unique: hydrophobic side-chains extend over the graphene surface and interact with adjacent peptides, yielding a well-defined mosaic of hydrophobic interaction patches. This ordered structure is markedly depleted of backbone hydrogen bonds. Hence, our simulation results reveal a distinct type of β-strand assembly, maintained by hydrophobic side-chain interactions. Our finding suggests the backbone hydrogen bond is no longer crucial to the peptide assembly. Further studies concerning whether such β-strand assembly can be realized in other peptide systems and in biologically-relevant contexts are certainly warranted.Peptide assembly plays a seminal role in the fabrication of structural and functional architectures in cells. Characteristically, peptide assemblies are often dominated by β-sheet structures, wherein component molecules are connected by backbone hydrogen bonds in a parallel or an antiparallel fashion. While β-rich peptide scaffolds are implicated in an array of neurodegenerative diseases, the mechanisms by which toxic peptides assemble and mediate neuropathic effects are still poorly understood. In this work, we employ molecular dynamics simulations to study the adsorption and assembly of the fragment Aβ33-42 (taken from the Aβ-42 peptide widely associated with Alzheimer's disease) on a graphene surface. We observe that such Aβ33-42 fragments, which are largely hydrophobic in character, readily adsorb onto the graphitic surface and coalesce into a well-structured, β-strand-like assembly. Strikingly, the structure of such complex is quite unique: hydrophobic side-chains extend over the graphene surface and interact with adjacent peptides, yielding a well-defined mosaic of hydrophobic interaction patches. This ordered structure is markedly depleted of backbone hydrogen bonds. Hence, our simulation results reveal a distinct type of β-strand assembly, maintained by hydrophobic side-chain interactions. Our finding suggests the backbone hydrogen bond is no longer crucial to the peptide assembly. Further studies concerning whether such β-strand assembly can be realized in other peptide systems and in biologically-relevant contexts are certainly warranted. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00555h

  5. Superalloy Foams for Aeroshell Applications

    NASA Technical Reports Server (NTRS)

    Gayda, John; Padula, Santo, II

    2001-01-01

    Current thermal protection systems for reentry from space, such as that employed on the space shuttle, rely on ceramic tiles with ultra-low conductivity. These materials provide excellent thermal protection but are extremely fragile, easily degraded by environmental attack, and carry no structural loads. Future thermal protection systems being proposed in NASAs MITAS Program will attempt to combine thermal protection with improved durability and structural capability without significant increases in vehicle weight. This may be accomplished by combining several materials in a layered structure to obtain the desired function for aeroshell applications. One class of materials being considered for inclusion in this concept are high temperature metal foam. The objective of this paper was to fabricate low density, superalloy foams and conduct limited testing to evaluate their thermal and structural capabilities. Superalloys were chosen for evaluation as they possesses good strength and excellent environmental endurance over a wide range of temperatures. Utilizing superalloys as low density foams, with porosity contents greater than 90%, minimizes weight and thermal conductivity.

  6. Aerial Deployment and Inflation System for Mars Helium Balloons

    NASA Technical Reports Server (NTRS)

    Lachenmeler, Tim; Fairbrother, Debora; Shreves, Chris; Hall, Jeffery, L.; Kerzhanovich, Viktor V.; Pauken, Michael T.; Walsh, Gerald J.; White, Christopher V.

    2009-01-01

    A method is examined for safely deploying and inflating helium balloons for missions at Mars. The key for making it possible to deploy balloons that are light enough to be buoyant in the thin, Martian atmosphere is to mitigate the transient forces on the balloon that might tear it. A fully inflated Mars balloon has a diameter of 10 m, so it must be folded up for the trip to Mars, unfolded upon arrival, and then inflated with helium gas in the atmosphere. Safe entry into the Martian atmosphere requires the use of an aeroshell vehicle, which protects against severe heating and pressure loads associated with the hypersonic entry flight. Drag decelerates the aeroshell to supersonic speeds, then two parachutes deploy to slow the vehicle down to the needed safe speed of 25 to 35 m/s for balloon deployment. The parachute system descent dynamic pressure must be approximately 5 Pa or lower at an altitude of 4 km or more above the surface.

  7. KSC-03pd0536

    NASA Image and Video Library

    2003-02-24

    KENNEDY SPACE CENTER, FLA. -- The cruise stage, aeroshell and lander for the Mars Exploration Rover-1 mission and the MER-2 rover arrive at KSC. The same flight hardware for the MER-2 rover arrived Jan. 27; however, the MER-2 rover is scheduled to arrive at KSC in March. While at KSC, each of the two rovers, the aeroshells and the landers will undergo a full mission simulation. All of these flight elements will then be integrated together. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers will be identical to each other, but will land at different regions of Mars. Launch of the MER-1 is scheduled for May 30. MER-2 will follow June 25.

  8. Composition and biodegradation of a synthetic oil spilled on the perennial ice cover of Lake Fryxell, Antarctica.

    PubMed

    Jaraula, Caroline M B; Kenig, Fabien; Doran, Peter T; Priscu, John C; Welch, Kathleen A

    2009-04-15

    A helicopter crashed in January 2003 on the 5 m-thick perennial ice cover of Lake Fryxell, spilling synthetic turbine oil Aeroshell 500. Molecular compositions of the oils were analyzed by gas chromatography-mass spectrometry and compared to the composition of contaminants in ice, meltwater, and sediments collected a year after the accident. Aeroshell 500 is based on C20-C33 Pentaerythritol triesters (PET) with C5-C10 fatty acids susbstituents and contain a number of antioxidant additives, such as tricresyl phosphates. Biodegradation of this oil in the ice cover occurs when sediments are present PETs with short fatty acids substituents are preferentially degraded, whereas long chain fatty acids seem to hinder esters from hydrolysis by esterase derived from the microbial assemblage. It remains to be seen if the microbial ecosystem can degrade tricresyl phosphates. These more recalcitrant PET species and tricresyl phosphates are likely to persist and comprise the contaminants that may eventually cross the ice cover to reach the pristine lake water.

  9. Fabrication of the HIAD Large-Scale Demonstration Assembly and Upcoming Mission Applications

    NASA Technical Reports Server (NTRS)

    Swanson, G. T.; Johnson, R. K.; Hughes, S. J.; Dinonno, J. M.; Cheatwood, F M.

    2017-01-01

    Over a decade of work has been conducted in the development of NASAs Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) deployable aeroshell system and associated analytical tools. NASAs HIAD project team has developed, fabricated, and tested inflatable structures (IS) integrated with flexible thermal protection system (F-TPS), ranging in diameters from 3-6m, with cone angles of 60 and 70 deg.In 2015, United Launch Alliance (ULA) announced that they will use a HIAD (10-12m) as part of their Sensible, Modular, Autonomous Return Technology (SMART) for their upcoming Vulcan rocket. ULA expects SMART reusability, coupled with other advancements for Vulcan, will substantially reduce the cost of access to space. The first booster engine recovery via HIAD is scheduled for 2024. To meet this near-term need, as well as future NASA applications, the HIAD team is investigating taking the technology to the 10-15m diameter scale.In the last year, many significant development and fabrication efforts have been accomplished, culminating in the construction of a large-scale inflatable structure demonstration assembly. This assembly incorporated the first three tori for a 12m Mars Human-Scale Pathfinder HIAD conceptual design that was constructed with the current state of the art material set. Numerous design trades and torus fabrication demonstrations preceded this effort. In 2016, three large-scale tori (0.61m cross-section) and six subscale tori (0.25m cross-section) were manufactured to demonstrate fabrication techniques using the newest candidate material sets. These tori were tested to evaluate durability and load capacity. This work led to the selection of the inflatable structures third generation (Gen-3) structural liner. In late 2016, the three tori required for the large-scale demonstration assembly were fabricated, and then integrated in early 2017. The design includes provisions to add the remaining four tori necessary to complete the assembly of the 12m Human-Scale Pathfinder HIAD in the event future project funding becomes available.This presentation will discuss the HIAD large-scale demonstration assembly design and fabrication per-formed in the last year including the precursor tori development and the partial-stack fabrication. Potential near-term and future 10-15m HIAD applications will also be discussed.

  10. Fabrication of the HIAD Large-Scale Demonstration Assembly

    NASA Technical Reports Server (NTRS)

    Swanson, G. T.; Johnson, R. K.; Hughes, S. J.; DiNonno, J. M.; Cheatwood, F. M.

    2017-01-01

    Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) deployable aeroshell system and associated analytical tools. NASAs HIAD project team has developed, fabricated, and tested inflatable structures (IS) integrated with flexible thermal protection system (F-TPS), ranging in diameters from 3-6m, with cone angles of 60 and 70 deg.In 2015, United Launch Alliance (ULA) announced that they will use a HIAD (10-12m) as part of their Sensible, Modular, Autonomous Return Technology (SMART) for their upcoming Vulcan rocket. ULA expects SMART reusability, coupled with other advancements for Vulcan, will substantially reduce the cost of access to space. The first booster engine recovery via HIAD is scheduled for 2024. To meet this near-term need, as well as future NASA applications, the HIAD team is investigating taking the technology to the 10-15m diameter scale. In the last year, many significant development and fabrication efforts have been accomplished, culminating in the construction of a large-scale inflatable structure demonstration assembly. This assembly incorporated the first three tori for a 12m Mars Human-Scale Pathfinder HIAD conceptual design that was constructed with the current state of the art material set. Numerous design trades and torus fabrication demonstrations preceded this effort. In 2016, three large-scale tori (0.61m cross-section) and six subscale tori (0.25m cross-section) were manufactured to demonstrate fabrication techniques using the newest candidate material sets. These tori were tested to evaluate durability and load capacity. This work led to the selection of the inflatable structures third generation (Gen-3) structural liner. In late 2016, the three tori required for the large-scale demonstration assembly were fabricated, and then integrated in early 2017. The design includes provisions to add the remaining four tori necessary to complete the assembly of the 12m Human-Scale Pathfinder HIAD in the event future project funding becomes available.This presentation will discuss the HIAD large-scale demonstration assembly design and fabrication per-formed in the last year including the precursor tori development and the partial-stack fabrication. Potential near-term and future 10-15m HIAD applications will also be discussed.

  11. Interdigitated Eutectic Alloy Foil Anodes for Rechargeable Batteries

    DOE PAGES

    Kreder, III, Karl J.; Heligman, Brian T.; Manthiram, Arumugam

    2017-09-19

    An interdigitated eutectic alloy (IdEA) foil is presented as a framework for the development of alloy anodes with a capacity that is significantly higher than that of the traditional graphite/copper assembly. In conclusion, it is a simple, low-cost approach that can be applied to a broad range of alloy systems with various working ions such as Li, Na, or Mg.

  12. Formation of hydroxyl-functionalized stilbenoid molecular sieves at the liquid/solid interface on top of a 1-decanol monolayer.

    PubMed

    Bellec, Amandine; Arrigoni, Claire; Douillard, Ludovic; Fiorini-Debuisschert, Céline; Mathevet, Fabrice; Kreher, David; Attias, André-Jean; Charra, Fabrice

    2014-10-31

    Specific molecular tectons can be designed to form molecular sieves through self-assembly at the solid-liquid interface. After demonstrating a model tecton bearing apolar alkyl chains, we then focus on a modified structure involving asymmetric functionalization of some alkyl chains with polar hydroxyl groups in order to get chemical selectivity in the sieving. As the formation of supramolecular self-assembled networks strongly depends on molecule-molecule, molecule-substrate and molecule-solvent interactions, we compared the tectons' self-assembly on graphite for two types of solvent. We demonstrate the possibility to create hydroxylated stilbenoid molecular sieves by using 1-decanol as a solvent. Interestingly, with this solvent, the porous network is developed on top of a 1-decanol monolayer.

  13. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Astrophysics Data System (ADS)

    Rule, W. K.; Thomas, F. P.

    1992-10-01

    A preliminary design for a weldable truss joint for on-orbit assembly of large space structures is described. The joint was designed for ease of assembly, for structural efficiency, and to allow passage of fluid (for active cooling or other purposes) along the member through the joint. The truss members were assumed to consist of graphite/epoxy tubes to which were bonded 2219-T87 aluminum alloy end fittings for welding on-orbit to truss nodes of the same alloy. A modified form of gas tungsten arc welding was assumed to be the welding process. The joint was designed to withstand the thermal and structural loading associated with a 120-ft diameter tetrahedral truss intended as an aerobrake for a mission to Mars.

  14. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Thomas, F. P.

    1992-01-01

    A preliminary design for a weldable truss joint for on-orbit assembly of large space structures is described. The joint was designed for ease of assembly, for structural efficiency, and to allow passage of fluid (for active cooling or other purposes) along the member through the joint. The truss members were assumed to consist of graphite/epoxy tubes to which were bonded 2219-T87 aluminum alloy end fittings for welding on-orbit to truss nodes of the same alloy. A modified form of gas tungsten arc welding was assumed to be the welding process. The joint was designed to withstand the thermal and structural loading associated with a 120-ft diameter tetrahedral truss intended as an aerobrake for a mission to Mars.

  15. Thermal Management Design for the X-33 Lifting Body

    NASA Technical Reports Server (NTRS)

    Bouslog, S.; Mammano, J.; Strauss, B.

    1998-01-01

    The X-33 Advantage Technology Demonstrator offers a rare and exciting opportunity in Thermal Protection System development. The experimental program incorporates the latest design innovation in re-useable, low life cycle cost, and highly dependable Thermal Protection materials and constructions into both ground based and flight test vehicle validations. The unique attributes of the X-33 demonstrator for design application validation for the full scale Reusable Launch Vehicle, (RLV), are represented by both the configuration of the stand-off aeroshell, and the extreme exposures of sub-orbital hypersonic re-entry simulation. There are several challenges of producing a sub-orbital prototype demonstrator of Single Stage to Orbit/Reusable Launch Vehicle (SSTO/RLV) operations. An aggressive schedule with budgetary constraints precludes the opportunity for an extensive verification and qualification program of vehicle flight hardware. However, taking advantage of off the shelf components with proven technologies reduces some of the requirements for additional testing. The effects of scale on thermal heating rates must also be taken into account during trajectory design and analysis. Described in this document are the unique Thermal Protection System (TPS) design opportunities that are available with the lifting body configuration of the X-33. The two principal objectives for the TPS are to shield the primary airframe structure from excessive thermal loads and to provide an aerodynamic mold line surface. With the relatively benign aeroheating capability of the lifting body, an integrated stand-off aeroshell design with minimal weight and reduced procurement and operational costs is allowed. This paper summarizes the design objectives of the X-33 TPS, the flight test requirements driven configuration, and design benefits. Comparisons are made of the X-33 flight profiles and Space Shuttle Orbiter, and lifting body Reusable Launch Vehicle aerothermal environments. The X-33 TPS is based on a design to cost configuration concept. Only RLV critical technologies are verified to conform to cost and schedule restrictions. The one-off prototype vehicle configuration has evolved to minimize the tooling costs by reducing the number of unique components. Low cost approaches such as a composite/blanket leeward aeroshell and the use of Shuttle technology are implemented where applicable. The success of the X-33 will overcome the ballistic re-entry TPS mindset. The X-33 TPS is tailored to an aircraft type mission while maintaining sufficient operational margins. The flight test program for the X-33 will demonstrate that TPS for the RLV is not simply a surface insulation but rather an integrated aeroshell system.

  16. Monte Carlo Analysis of the Battery-Type High Temperature Gas Cooled Reactor

    NASA Astrophysics Data System (ADS)

    Grodzki, Marcin; Darnowski, Piotr; Niewiński, Grzegorz

    2017-12-01

    The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an `early design' variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit). A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.

  17. Interfacial effects in ZnO nanotubes/needle-structured graphitic diamond nanohybrid for detecting dissolved acetone at room temperature

    NASA Astrophysics Data System (ADS)

    Kathiravan, Deepa; Huang, Bohr-Ran; Saravanan, Adhimoorthy; Yeh, Chien-Jui; Leou, Keh-Chyang; Lin, I.-Nan

    2017-12-01

    A high-performance ZnO nanotubes (ZNTs)/needle-structured graphitic diamond (NGD) nanohybrid material was prepared and observed the electrochemical sensing properties of liquid acetone in water. Initially, we synthesized NGD film using bias-enhanced growth (BEG) process. Afterwards, a well-etched ZNTs were spatially grown on the NGD film using simple hydrothermal method, and utilized as sensing material for assemble an electrochemical sensor (via EGFET configuration) operating at room temperature. The systematic investigations depict the ultra-high sensing properties attained from ZNTs grown on NGD film. The NGD film mostly have needle or wire shaped diamond grains, which contributes extremely high electrical conductivity. Furthermore, needle shaped diamond grains cover with multi-layer graphitic material generates conduction channels for ZNTs and leads to enhance the oxygen residuals and species. The material stability and conductivity of NGD as well the defects exist with oxygen vacancies in ZNTs offers superior sensing properties. Thus, the interesting combination of these wide band gap semiconductor materials exhibit high sensor response (89 mV/mL), high stability and long-term reliability (tested after 60 days).

  18. Specific and Reversible Immobilization of Proteins Tagged to the Affinity Polypeptide C-LytA on Functionalized Graphite Electrodes

    PubMed Central

    Bello-Gil, Daniel; Maestro, Beatriz; Fonseca, Jennifer; Feliu, Juan M.; Climent, Víctor; Sanz, Jesús M.

    2014-01-01

    We have developed a general method for the specific and reversible immobilization of proteins fused to the choline-binding module C-LytA on functionalized graphite electrodes. Graphite electrode surfaces were modified by diazonium chemistry to introduce carboxylic groups that were subsequently used to anchor mixed self-assembled monolayers consisting of N,N-diethylethylenediamine groups, acting as choline analogs, and ethanolamine groups as spacers. The ability of the prepared electrodes to specifically bind C-LytA-tagged recombinant proteins was tested with a C-LytA-β-galactosidase fusion protein. The binding, activity and stability of the immobilized protein was evaluated by electrochemically monitoring the formation of an electroactive product in the enzymatic hydrolysis of the synthetic substrate 4-aminophenyl β-D-galactopyranoside. The hybrid protein was immobilized in an specific and reversible way, while retaining the catalytic activity. Moreover, these functionalized electrodes were shown to be highly stable and reusable. The method developed here can be envisaged as a general, immobilization procedure on the protein biosensor field. PMID:24498237

  19. Specific and reversible immobilization of proteins tagged to the affinity polypeptide C-LytA on functionalized graphite electrodes.

    PubMed

    Bello-Gil, Daniel; Maestro, Beatriz; Fonseca, Jennifer; Feliu, Juan M; Climent, Víctor; Sanz, Jesús M

    2014-01-01

    We have developed a general method for the specific and reversible immobilization of proteins fused to the choline-binding module C-LytA on functionalized graphite electrodes. Graphite electrode surfaces were modified by diazonium chemistry to introduce carboxylic groups that were subsequently used to anchor mixed self-assembled monolayers consisting of N,N-diethylethylenediamine groups, acting as choline analogs, and ethanolamine groups as spacers. The ability of the prepared electrodes to specifically bind C-LytA-tagged recombinant proteins was tested with a C-LytA-β-galactosidase fusion protein. The binding, activity and stability of the immobilized protein was evaluated by electrochemically monitoring the formation of an electroactive product in the enzymatic hydrolysis of the synthetic substrate 4-aminophenyl β-D-galactopyranoside. The hybrid protein was immobilized in an specific and reversible way, while retaining the catalytic activity. Moreover, these functionalized electrodes were shown to be highly stable and reusable. The method developed here can be envisaged as a general, immobilization procedure on the protein biosensor field.

  20. Scanning tunneling microscopy of the formation, transformation, and property of oligothiophene self-organizations on graphite and gold surfaces.

    PubMed

    Yang, Zhi-Yong; Zhang, Hui-Min; Yan, Cun-Ji; Li, Shan-Shan; Yan, Hui-Juan; Song, Wei-Guo; Wan, Li-Jun

    2007-03-06

    Two alkyl-substituted dual oligothiophenes, quarterthiophene (4T)-trimethylene (tm)-octithiophene (8T) and 4T-tm-4T, were used to fabricate molecular structures on highly oriented pyrolytic graphite and Au(111) surfaces. The resulted structures were investigated by scanning tunneling microscopy. The 4T-tm-8T and 4T-tm-4T molecules self-organize into long-range ordered structures with linear and/or quasi-hexagonal patterns on highly oriented pyrolytic graphite at ambient temperature. Thermal annealing induced a phase transformation from quasi-hexagonal to linear in 4T-tm-8T adlayer. The molecules adsorbed on Au(111) surface in randomly folded and linear conformation. Based on scanning tunneling microscopy results, the structural models for different self-organizations were proposed. Scanning tunneling spectroscopy measurement showed the electronic property of individual molecules in the patterns. These results are significant in understanding the chemistry of molecular structure, including its formation, transformation, and electronic properties. They also help to fabricate oligothiophene assemblies with desired structures for future molecular devices.

  1. Open-Section Composite Structural Elements

    NASA Technical Reports Server (NTRS)

    Loftin, T. A.; Smith, C. A.; Raheb, S. J.; Nowitzky, A. M.

    1991-01-01

    Report describes investigation of manufacture and mechanical properties of graphite-fiber/aluminum-matrix open-section structural elements; e.g., channels and angle bars. Conducted with view toward using such elements to build lightweight, thermally stable truss structures in outer space. Other applications transport to, and assembly at, remote or otherwise uninviting locations. Advantages include shapes permitting high packing density during shipment, convenient paths for routing tubes, hoses, and cables; accessibility of both inner and outer surfaces for repair; and ease of attachment of additional hardware. Easier and require less equipment to fabricate, and more amenable to automated fabrication and assembly at remote site. Disadvantages, not as resistant to some kinds of deformation under load.

  2. Exfoliation of graphite into graphene in polar solvents mediated by amphiphilic hexa-peri-hexabenzocoronene.

    PubMed

    Kabe, Ryota; Feng, Xinliang; Adachi, Chihaya; Müllen, Klaus

    2014-11-01

    A water-soluble surfactant consisting of hexa-peri-hexabenzocoronene (HBC) as hydrophobic aromatic core and hydrophilic carboxy substituents was synthesized. It exhibited a self-assembled nanofiber structure in the solid state. Profiting from the π interactions between the large aromatic core of HBC and graphene, the surfactant mediated the exfoliation of graphite into graphene in polar solvents, which was further stabilized by the bulky hydrophilic carboxylic groups. A graphene dispersion with a concentration as high as 1.1 mg L(-1) containing 2-6 multilayer nanosheets was obtained. The lateral size of the graphene sheets was in the range of 100-500 nm based on atomic force microscope (AFM) and transmission electron microscope (TEM) measurements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Validation of the U.S. NRC NGNP evaluation model with the HTTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saller, T.; Seker, V.; Downar, T.

    2012-07-01

    The High Temperature Test Reactor (HTTR) was modeled with TRITON/PARCS. Traditional light water reactor (LWR) homogenization methods rely on the short mean free paths of neutrons in LWR. In gas-cooled, graphite-moderated reactors like the HTTR neutrons have much longer mean free paths and penetrate further into neighboring assemblies than in LWRs. Because of this, conventional lattice calculations with a single assembly may not be valid. In addition to difficulties caused by the longer mean free paths, the HTTR presents unique axial and radial heterogeneities that require additional modifications to the single assembly homogenization method. To handle these challenges, the homogenizationmore » domain is decreased while the computational domain is increased. Instead of homogenizing a single hexagonal fuel assembly, the assembly is split into six triangles on the radial plane and five blocks axially in order to account for the placement of burnable poisons. Furthermore, the radial domain is increased beyond a single fuel assembly to account for spectrum effects from neighboring fuel, reflector, and control rod assemblies. A series of five two-dimensional cases, each closer to the full core, were calculated to evaluate the effectiveness of the homogenization method and cross-sections. (authors)« less

  4. Germanium Nanowires-in-Graphite Tubes via Self-Catalyzed Synergetic Confined Growth and Shell-Splitting Enhanced Li-Storage Performance.

    PubMed

    Sun, Yong; Jin, Shuaixing; Yang, Guowei; Wang, Jing; Wang, Chengxin

    2015-04-28

    Despite the high theoretical capacity, pure Ge has various difficulties such as significant volume expansion and electron and Li(+) transfer problems, when applied as anode materials in lithium ion battery (LIB), for which the solution would finally rely on rational design like advanced structures and available hybrid. Here in this work, we report a one-step synthesis of Ge nanowires-in-graphite tubes (GNIGTs) with the liquid Ge/C synergetic confined growth method. The structure exhibits impressing LIB behavior in terms of both cyclic stability and rate performance. We found the semiclosed graphite shell with thickness of ∼50 layers experience an interesting splitting process that was driven by electrolyte diffusion, which occurs before the Ge-Li alloying plateau begins. Two types of different splitting mechanism addressed as "inside-out"/zipper effect and "outside-in" dominate this process, which are resulted from the SEI layer growing longitudinally along the Ge-graphite interface and the lateral diffusion of Li(+) across the shell, respectively. The former mechanism is the predominant way driving the initial shell to split, which behaves like a zipper with SEI layer as invisible puller. After repeated Li(+) insertion/exaction, the GNIGTs configuration is finally reconstructed by forming Ge nanowires-thin graphite strip hybrid, both of which are in close contact, resulting in enormous enchantment to the electrons/Li(+) transport. These features make the structures perform well as anode material in LIB. We believe both the progress in 1D assembly and the structure evolution of this Ge-C composite would contribute to the design of advanced LIB anode materials.

  5. Overview of the Phoenix Entry, Descent and Landing System

    NASA Technical Reports Server (NTRS)

    Grover, Rob

    2005-01-01

    A viewgraph presentation on the entry, descent and landing system of Phoenix is shown. The topics include: 1) Phoenix Mission Goals; 2) Payload; 3) Aeroshell/Entry Comparison; 4) Entry Trajectory Comparison; 5) Phoenix EDL Timeline; 6) Hypersonic Phase; 7) Parachute Phase; 8) Terminal Descent Phase; and 9) EDL Communications.

  6. Mars Pathfinder flight system integration and test.

    NASA Astrophysics Data System (ADS)

    Muirhead, B. K.

    This paper describes the system integration and test experiences, problems and lessons learned during the assembly, test and launch operations (ATLO) phase of the Mars Pathfinder flight system scheduled to land on the surface of Mars on July 4, 1997. The Mars Pathfinder spacecraft consists of three spacecraft systems: cruise stage, entry vehicle and lander. The cruise stage carries the entry and lander vehicles to Mars and is jettisoned prior to entry. The entry vehicle, including aeroshell, parachute and deceleration rockets, protects the lander during the direct entry and reduces its velocity from 7.6 to 0 km/s in stages during the 5 min entry sequence. The lander's touchdown is softened by airbags which are retracted once stopped on the surface. The lander then uprights itself, opens up fully and begins surface operations including deploying its camera and rover. This paper overviews the system design and the results of the system integration and test activities, including the entry, descent and landing subsystem elements. System test experiences including science instruments, the microrover, Sojourner, and software are discussed. The final qualification of the entry, descent and landing subsystems during this period is also discussed.

  7. Structurally Defined 3D Nanographene Assemblies via Bottom-Up Chemical Synthesis for Highly Efficient Lithium Storage

    DOE PAGES

    Yen, Hung-Ju; Tsai, Hsinhan; Zhou, Ming; ...

    2016-10-10

    In this paper, functionalized 3D nanographenes with controlled electronic properties have been synthesized through a multistep organic synthesis method and are further used as promising anode materials for lithium-ion batteries, exhibiting a much increased capacity (up to 950 mAh g -1), three times higher than that of the graphite anode (372 mAh g -1).

  8. Cage-Type Highly Graphitic Porous Carbon-Co3O4 Polyhedron as the Cathode of Lithium-Oxygen Batteries.

    PubMed

    Tang, Jing; Wu, Shichao; Wang, Tao; Gong, Hao; Zhang, Huabin; Alshehri, Saad M; Ahamad, Tansir; Zhou, Haoshen; Yamauchi, Yusuke

    2016-02-03

    A novel cage-type highly graphitic porous carbon-Co3O4 (GPC-Co3O4) polyhedron was designed and successfully prepared for the first time by executing a two-step annealing of core-shell structured metal-organic frameworks (MOFs). The low graphitic carbon cores were selectively removed during the secondary annealing in air atmospheres, leaving the interior voids due to their lower thermal stability compared with the graphitic carbon shells. Inspired by the unique properties of the cage-type GPC-Co3O4 polyhedron, GPC-Co3O4 was assembled as an oxygen electrode for a rechargeable Li-O2 battery without the additional conductive agent. The efficient generation of Li2O2 during discharging and the reversible decomposition of Li2O2 during charging were clearly observed by XRD patterns and SEM images. The GPC-Co3O4 polyhedron integrates the beneficial properties, including high electronic conductivity, the rigid cage-type structure consisting of the mesoporous walls and interior void space, as well as the uniformly embedded catalytically active Co3O4 nanoparticles. As a result, the GPC-Co3O4 cathode displays a low charge overpotential of 0.58 V, a good rate capability, and a long cycle life in a Li-O2 battery.

  9. Rate capability improvement of Co-Ni double hydroxides integrated in cathodically partially exfoliated graphite

    NASA Astrophysics Data System (ADS)

    Cai, Xiang; Song, Yu; Sun, Zhen; Guo, Di; Liu, Xiao-Xia

    2017-10-01

    In-situ growing of energy storage materials on graphene-based substrates/current collectors with low defect is a good way to boost electron transport and so enhance rate capability for the obtained electrode. Herein, high-quality graphene-like nanopetals are partially exfoliated from graphite foil (GF) through a facile and fast cathodic process. Three-dimensional porous structure is established for the afforded cathodically-exfoliated graphite foil (CEG), with many graphene-like nanopetals vertically anchoring on the graphite substrate. A hierarchical structure is constructed by the following electrochemical growth of Co-Ni double hydroxide nanopetals on the graphene atop CEG. The double hydroxide in the obtained electrode with the optimized Co2+/Ni2+ molar ratio, Co0.75Ni0.25(OH)2-CEG, displays much improved rate capability and so can deliver a high specific capacitance of 1460 F g-1 at an ultra-high current density of 100 A g-1. An asymmetric device is assembled by using Co0.75Ni0.25(OH)2-CEG as cathode, which demonstrates a high energy density of 31.6 Wh kg-1 at an ultra-high power density of 21.5 kW kg-1, showing the potential of the hierarchical composite electrode for high power application. The device also displays good stability, it can retain more than 90% of its capacitance after 10000 galvanostatic charge-discharge cycles.

  10. Electrospun N-doped Hierarchical Porous Carbon Nanofiber with Improved Graphitization Degree for High Performance Lithium Ion Capacitor.

    PubMed

    Li, Baohua; Shi, Ruiying; Han, Cuiping; Xu, Xiaofu; Qing, Xianying; Xu, Lei; Li, Hongfei; Li, Junqin; Wong, Ching-Ping

    2018-05-14

    Lithium ion capacitor (LIC) has been regarded as a promising device to combine the merits of lithium ion batteries and supercapacitors, which can meet the requirements for both high energy and power density. The development of advanced electrode is the key. Herein, we demonstrate the bottom-up synthesis of activated carbon nanofiber (a-PANF) with hierarchical porous structure and high graphitization degree. Electrospinning is employed to prepare interconnected fiber network with macropores and ferric acetylacetonate is introduced as both mesopore creating agent and graphitic catalyst to increase the graphitization degree. Furthermore, chemical activation enlarges the specific surface area by producing rich micropores. Half cell evaluation of the as-prepared a-PANF displays a discharge capacity of 80 mAh g-1 at 0.1 A g-1 within 2~4.5 V and no capacity fading after 1000 cycles at 2 A g-1, which is significantly higher than conventional activated carbon. Furthermore, the as-assembled LIC with a-PANF cathode and Fe3O4 anode achieves a superior energy density of 124.6 Wh kg-1 at a specific power of 93.8 W kg-1, and remains 103.7 Wh kg-1 at 4687.5 W kg-1, demonstrating the promising application of a-PANF as potential electrode candidates for efficient energy storage systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Magnetic porous Fe3O4/carbon octahedra derived from iron-based metal-organic framework as heterogeneous Fenton-like catalyst

    NASA Astrophysics Data System (ADS)

    Li, Wenhui; Wu, Xiaofeng; Li, Shuangde; Tang, Wenxiang; Chen, Yunfa

    2018-04-01

    The synthesis of effective and recyclable Fenton-like catalyst is still a key factor for advanced oxidation processes. Herein, magnetic porous Fe3O4/carbon octahedra were constructed by a two-step controlled calcination of iron-based metal organic framework. The porous octahedra were assembled by interpenetrated Fe3O4 nanoparticles coated with graphitic carbon layer, offering abundant mesoporous channels for the solid-liquid contact. Moreover, the oxygen-containing functional groups on the surface of graphitic carbon endow the catalysts with hydrophilic nature and well-dispersion into water. The porous Fe3O4/carbon octahedra show efficiently heterogeneous Fenton-like reactions for decomposing the organic dye methylene blue (MB) with the help of H2O2, and nearly 100% removal efficiency within 60 min. Furthermore, the magnetic catalyst retains the activity after ten cycles and can be easily separated by external magnetic field, indicating the long-term catalytic durability and recyclability. The good Fenton-like catalytic performance of the as-synthesized Fe3O4/carbon octahedra is ascribed to the unique mesoporous structure derived from MOF-framework, as well as the sacrificial role and stabilizing effect of graphitic carbon layer. This work provides a facile strategy for the controllable synthesis of integrated porous octahedral structure with graphitic carbon layer, and thereby the catalyst holds significant potential for wastewater treatment.

  12. Cross-stiffened continuous fiber structures

    NASA Technical Reports Server (NTRS)

    Ewen, John R.; Suarez, Jim A.

    1993-01-01

    Under NASA's Novel Composites for Wing and Fuselage Applications (NCWFA) program, Contract NAS1-18784, Grumman is evaluating the structural efficiency of graphite/epoxy cross-stiffened panel elements fabricated using innovative textile preforms and cost effective Resin Transfer Molding (RTM) and Resin Film Infusion (RFI) processes. Two three-dimensional woven preform assembly concepts have been defined for application to a representative window belt design typically found in a commercial transport airframe. The 3D woven architecture for each of these concepts is different; one is vertically woven in the plane of the window belt geometry and the other is loom woven in a compressed state similar to an unfolded eggcrate. The feasibility of both designs has been demonstrated in the fabrication of small test element assemblies. These elements and the final window belt assemblies will be structurally tested, and results compared.

  13. Thermographic testing used on the X-33 space launch vehicle program by BFGoodrich Aerospace

    NASA Astrophysics Data System (ADS)

    Burleigh, Douglas D.

    1999-03-01

    The X-33 program is a team effort sponsored by NASA under Cooperative Agreement NCC8-115, and led by the Lockheed Martin Corporation. Team member BFGoodrich Aerospace Aerostructures Group (formerly Rohr) is responsible for design, manufacture, and integration of the Thermal Protection System (TPS) of the X-33 launch vehicle. The X-33 is a half-scale, experimental prototype of a vehicle called RLV (Reusable Launch Vehicle) or VentureStarTM, an SSTO (single stage to orbit) vehicle, which is a proposed successor to the aging Space Shuttle. Thermographic testing has been employed by BFGoodrich Aerospace Aerostructures Group for a wide variety of uses in the testing of components of the X-33. Thermographic NDT (TNDT) has been used for inspecting large graphite- epoxy/aluminum honeycomb sandwich panels used on the Leeward Aeroshell structure of the X-33. And TNDT is being evaluated for use in inspecting carbon-carbon composite parts such as the nosecap and wing leading edge components. Pulsed Infrared Testing (PIRT), a special form of TNDT, is used for the routine inspection of sandwich panels made of brazed inconel honeycomb and facesheets. In the developmental and qualification testing of sub-elements of the X-33, thermography has been used to monitor (1) Arc Jet tests at NASA Ames Research Center in Mountain view, CA and NASA Johnson Space Center in Houston, TX, (2) High Temperature (wind) Tunnel Tests (HTT) at Nasa Langley Research Center in Langley, VA, and (3) Hot Gas Tests at NASA Marshall Space Flight Center in Huntsville, AL.

  14. Towards an Integrated QR Code Biosensor: Light-Driven Sample Acquisition and Bacterial Cellulose Paper Substrate.

    PubMed

    Yuan, Mingquan; Jiang, Qisheng; Liu, Keng-Ku; Singamaneni, Srikanth; Chakrabartty, Shantanu

    2018-06-01

    This paper addresses two key challenges toward an integrated forward error-correcting biosensor based on our previously reported self-assembled quick-response (QR) code. The first challenge involves the choice of the paper substrate for printing and self-assembling the QR code. We have compared four different substrates that includes regular printing paper, Whatman filter paper, nitrocellulose membrane and lab synthesized bacterial cellulose. We report that out of the four substrates bacterial cellulose outperforms the others in terms of probe (gold nanorods) and ink retention capability. The second challenge involves remote activation of the analyte sampling and the QR code self-assembly process. In this paper, we use light as a trigger signal and a graphite layer as a light-absorbing material. The resulting change in temperature due to infrared absorption leads to a temperature gradient that then exerts a diffusive force driving the analyte toward the regions of self-assembly. The working principle has been verified in this paper using assembled biosensor prototypes where we demonstrate higher sample flow rate due to light induced thermal gradients.

  15. Septipyridines as conformationally controlled substitutes for inaccessible bis(terpyridine)-derived oligopyridines in two-dimensional self-assembly

    PubMed Central

    Caterbow, Daniel; Künzel, Daniela; Mavros, Michael G; Groß, Axel; Landfester, Katharina

    2011-01-01

    Summary The position of the peripheral nitrogen atoms in bis(terpyridine)-derived oligopyridines (BTPs) has a strong impact on their self-assembly behavior at the liquid/HOPG (highly oriented pyrolytic graphite) interface. The intermolecular hydrogen bonding interactions in these peripheral pyridine units show specific 2D structures for each BTP isomer. From nine possible constitutional isomers only four have been described in the literature. The synthesis and self-assembling behavior of an additional isomer is presented here, but the remaining four members of the series are synthetically inaccessible. The self-assembling properties of three of the missing four BTP isomers can be mimicked by making use of the energetically preferred N–C–C–N transoid conformation between 2,2'-bipyridine subunits in a new class of so-called septipyridines. The structures are investigated by scanning tunneling microscopy (STM) and a combination of force-field and first-principles electronic structure calculations. PMID:22003448

  16. Self-assembly of (perfluoroalkyl)alkanes on a substrate surface from solutions in supercritical carbon dioxide.

    PubMed

    Gallyamov, Marat O; Mourran, Ahmed; Tartsch, Bernd; Vinokur, Rostislav A; Nikitin, Lev N; Khokhlov, Alexei R; Schaumburg, Kjeld; Möller, Martin

    2006-06-14

    Toroidal self-assembled structures of perfluorododecylnonadecane and perfluorotetradecyloctadecane have been deposited on mica and highly oriented pyrolytic graphite surfaces by exposure of the substrates to solutions of the (pefluoroalkyl)alkanes in supercritical carbon dioxide. Scanning force microscopy (SFM) images have displayed a high degree of regularity of these self-assembled nanoobjects regarding size, shape, and packing in a monolayer. Analysis of SFM images allowed us to estimate that each toroidal domain has an outer diameter of about 50 nm and consists of several thousands of molecules. We propose a simple model explaining the clustering of the molecules to objects with a finite size. The model based on the close-packing principles predicts formation of toroids, whose size is determined by the molecular geometry. Here, we consider the amphiphilic nature of the (perfluoroalkyl)alkane molecules in combination with incommensurable packing parameters of the alkyl- and the perfluoralkyl-segments to be a key factor for such a self-assembly.

  17. Modern Advances in Ablative TPS

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    2013-01-01

    Topics covered include: Physics of Hypersonic Flow and TPS Considerations. Destinations, Missions and Requirements. State of the Art Thermal Protection Systems Capabilities. Modern Advances in Ablative TPS. Entry Systems Concepts. Flexible TPS for Hypersonic Inflatable Aerodynamic Decelerators. Conformal TPS for Rigid Aeroshell. 3-D Woven TPS for Extreme Entry Environment. Multi-functional Carbon Fabric for Mechanically Deployable.

  18. Heat Shield Cavity Parametric Experimental Aeroheating for a Proposed Mars Smart Lander Aeroshell

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Hollis, Brian R.

    2002-01-01

    The proposed Mars Smart Lander is to be attached through its aeroshell to the main spacecraft bus, thereby producing cavities in the heat shield. To study the effects these cavities will have on the heating levels experienced by the heat shield, an experimental aeroheating investigation was performed at the NASA Langley Research Center in the 20-Inch Mach 6 Air Tunnel. The effects of Reynolds number, angle-of-attack, and cavity size and location on aero-heating levels and distributions were determined and are presented. To aid the discussion on the effects of the cavities, laminar, thin-layer Navier-Stokes flow field solutions were post-processed to calculate relevant boundary layer properties such as boundary layer height and momentum thickness, edge Mach number, and streamwise pressure gradient. It was found that the effect of the cavities varies with angle-of-attack, freestream Reynolds number, and cavity size and location. The presence of a cavity raised the downstream heating rates by as much as 325% as a result of boundary layer transition.

  19. KSC-03pd0537

    NASA Image and Video Library

    2003-02-24

    KENNEDY SPACE CENTER, FLA. -- The cruise stage, aeroshell and lander for the Mars Exploration Rover-1 mission and the MER-2 rover arrive at KSC's Multi-Payload Processing Facility. The same flight hardware for the MER-2 rover arrived Jan. 27; however, the MER-2 rover is scheduled to arrive at KSC in March. While at KSC, each of the two rovers, the aeroshells and the landers will undergo a full mission simulation. All of these flight elements will then be integrated together. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers will be identical to each other, but will land at different regions of Mars. Launch of the MER-1 is scheduled for May 30. MER-2 will follow June 25.

  20. Orthotic devices using lightweight composite materials

    NASA Technical Reports Server (NTRS)

    Harrison, E., Jr.

    1983-01-01

    Potential applications of high strength, lightweight composite technology in the orthotic field were studied. Several devices were designed and fabricated using graphite-epoxy composite technology. Devices included shoe plates, assistive walker devices, and a Simes prosthesis reinforcement. Several other projects having medical application were investigated and evaluations were made of the potential for use of composite technology. A seat assembly was fabricated using sandwich construction techniques for the Total Wheelchair Project.

  1. Arc Jet Testing of the TIRS Cover Thermal Protection System for Mars Exploration Rover

    NASA Technical Reports Server (NTRS)

    Szalai, Christine E.; Chen, Y.-K.; Loomis, Mark; Hui, Frank; Scrivens, Larry

    2002-01-01

    This paper summarizes the arc jet test results of the Mars Exploration Rover (MER) Silicone Impregnated Reusable Ceramic Ablator (SIRCA) Transverse Impulse Rocket System (TIRS) Cover test series in the Panel Test Facility (PTF) at NASA Ames Research Center (ARC). NASA ARC performed aerothermal environment analyses, TPS sizing and thermal response analyses, and arc jet testing to evaluate the MER SIRCA TIRS Cover design and interface to the aeroshell structure. The primary objective of this arc jet test series was to evaluate specific design details of the SIRCA TIRS Cover interface to the MER aeroshell under simulated atmospheric entry heating conditions. Four test articles were tested in an arc jet environment with various sea] configurations. The test condition was designed to match the predicted peak flight heat load at the gap region between the SIRCA and the backshell TPS material, SLA-561S, and resulted in an over-test (with respect to heat flux and heat load) for the apex region of the SIRCA TIRS Cover. The resulting pressure differential was as much as twenty times that predicted for the flight case, depending on the location, and there was no post-test visual evidence of over-heating or damage to the seal, bracket, or backshell structure. The exposed titanium bolts were in good condition at post-test and showed only a small amount of oxidation at the leading edge locations. Repeatable thermocouple data were obtained and SIRCA thermal response analyses were compared to applicable thermocouple data. For the apex region of the SIRCA TIRS Cover, a one-dimensional thermal response prediction proved overly conservative, as there were strong multi-dimensional conduction effects evident from the thermocouple data. The one-dimensional thermal response prediction compared well with the thermocouple data for the leading edge "lip" region at the bolt location. In general, the test results yield confidence in the baseline seal design to prevent hot gas ingestion at the bracket and composite aeroshell structure interface.

  2. Materials Needs for Future In-Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2006-01-01

    NASA's In-Space Propulsion Technology Project is developing the next generation of in-space propulsion systems in support of robotic exploration missions throughout the solar system. The propulsion technologies being developed are non-traditional and have stressing materials performance requirements. Earth-storable bipropellant performance is constrained by temperature limitations of the columbium used in the chamber. Iridium/rhenium (Ir/Re) is now available and has been implemented in initial versions of Earth- Storable rockets with specific impulses about 10 seconds higher than columbium rocket chambers. New chamber fabrication methods that improve process and performance of Ir/Re and other promising material systems are needed. The solar sail is a propellantless propulsion system that gains momentum by reflecting sunlight. The sails need to be very large in area (from 10000 sq m up to 62500 sq m) yet be very lightweight in order to achieve adequate accelerations for realistic mission times. Lightweight materials that can be manufactured in thicknesses of less than 1 micron and that are not harmed by the space environment are desired. Blunt Body Aerocapture uses aerodynamic drag to slow an approaching spacecraft and insert it into a science orbit around any planet or moon with an atmosphere. The spacecraft is enclosed by a rigid aeroshell that protects it from the entry heating and aerodynamic environment. Lightweight, high-temperature structural systems, adhesives, insulators, and ablatives are key components for improving aeroshell efficiencies at heating rates of 1000-2000 W/sq cm and beyond. Inflatable decelerators in the forms of ballutes and inflatable aeroshells will use flexible polymeric thin film materials, high temperature fabrics, and structural adhesives. The inflatable systems will be tightly packaged during cruise and will be inflated prior to entry interface at the destination. Materials must maintain strength and flexibility while packaged at cold temperatures (-100 C) for up to 10 years and then withstand the high temperatures (500 C) encountered during aerocapture.

  3. Experimental Study of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Aeroshell with Axisymmetric Surface Deflection Patterns

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Hollingsworth, Kevin E.

    2017-01-01

    A wind tunnel test program was conducted to obtain aeroheating environment data on Hypersonic Inflatable Aerodynamic Decelerator aeroshells with flexible thermal protection systems. Data were obtained on a set of rigid wind tunnel models with surface deflection patterns of various heights that simulated a range of potential in-flight aeroshell deformations. Wind tunnel testing was conducted at Mach 6 at unit Reynolds numbers from 2.1 × 10(exp 6)/ft to 8.3 × 10(exp 6)/ft and angles of attack from 0 deg to 18 deg. Boundary-layer transition onset and global surface heating distribution measurements were performed using phosphor thermography and flow field images were obtained through schlieren photography. Surface deflections were found to both promote early transition of the boundary layer and to augment heating levels for both laminar and turbulent flows. A complimentary computational flow field study was also performed to provide heating predictions for comparison with the measurements as well as boundary layer flow field properties for use in correlating the data. Correlations of the wind tunnel data were developed to predict deflection effects on boundary layer transition and surface heating and were applied to both the wind tunnel test conditions and to the trajectory of NASA's successful IRVE-3 flight test. In general, the correlations produced at least qualitative agreement with the wind tunnel data, although the heating levels were underpredicted for some of the larger surface deflections. For the flight conditions, the correlations suggested that peak heating levels on the leeward side conical flank of the IRVE-3 vehicle may have exceeded those at nose for times late in the trajectory after the peak heating time point. However, the flight estimates were based on a conservative assumption of surface deflection magnitude (i.e., larger) than likely was produced in flight.

  4. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell.

    PubMed

    Song, Tian-Shun; Jin, Yuejuan; Bao, Jingjing; Kang, Dongzhou; Xie, Jingjing

    2016-11-05

    In this study, a simple method of biocathode fabrication in a Cr(VI)-reducing microbial fuel cell (MFC) is demonstrated. A self-assembling graphene was decorated onto the biocathode microbially, constructing a graphene/biofilm, in situ. The maximum power density of the MFC with a graphene biocathode is 5.7 times that of the MFC with a graphite felt biocathode. Cr(VI) reduction was also enhanced, resulting in 100% removal of Cr(VI) within 48h, at 40mg/L Cr(VI), compared with only 58.3% removal of Cr(VI) in the MFC with a graphite felt biocathode. Cyclic voltammogram analyses showed that the graphene biocathode had faster electron transfer kinetics than the graphite felt version. Energy dispersive spectrometer (EDS) and X-ray photoelectron spectra (XPS) analysis revealed a possible adsorption-reduction mechanism for Cr(VI) reduction via the graphene biocathode. This study attempts to improve the efficiency of the biocathode in the Cr(VI)-reducing MFC, and provides a useful candidate method for the treatment of Cr(VI) contaminated wastewater, under neutral conditions. Copyright © 2016. Published by Elsevier B.V.

  5. Immobilization of paracetamol and benzocaine pro-drug derivatives as long-range self-organized monolayers on graphite.

    PubMed

    Popoff, Alexandre; Fichou, Denis

    2008-05-01

    We show here by means of scanning tunneling microscopy (STM) at the liquid/solid interface that paracetamol and benzocaine molecules bearing a long aliphatic chain can be immobilized on highly oriented pyrolitic graphite (HOPG) as perfectly ordered two-dimensional domains extending over several hundreds of nanometers. In both cases, high-resolution STM images reveal that compounds 1 and 2 self-assemble into parallel lamellae having a head-to-head arrangement. The paracetamol heads of 1 are in a zigzag position with entangled n-dodecyloxy side chains while benzocaine heads of compound 2 are perfectly aligned as a double row and have their palmitic side chains on either sides of the head alignment. We attribute the very long-range ordering of these two pro-drug derivatives on HOPG to the combined effects of intermolecular H-bonding on one side and Van der Waals interactions between aliphatic side chains and graphite on the other side. The 2D immobilization of pro-drug derivatives via a non-destructive physisorption mechanism could prove to be useful for applications such as drug delivery if it can be realized on a biocompatible substrate.

  6. High performance sulfur graphite full cell for next generation sulfur Li-ion battery

    NASA Astrophysics Data System (ADS)

    Wu, Yunwen; Momma, Toshiyuki; Yokoshima, Tokihiko; Nara, Hiroki; Osaka, Tetsuya

    2018-06-01

    Sulfur (S) Li-ion battery which use the metallic Li free anode is deemed as a promising solution to conquer the hazards originating from Li metal. However, stable cycling performance and low production price of the S Li-ion battery still remain challenging. Here, we propose a S-LixC full cell system by paring a S cathode and a pre-lithiated graphite anode which is cheap and commercially available. It shows stable cycling performance with a capacity around 1300 mAh (g-S)-1 at 0.2 C-rate and 1000 mAh (g-S)-1 at 0.5 C-rate. In addition, 0.1% per cycle capacity fading rate with a capacity retention of 880 mAh (g-S)-1 after 400 cycles at 0.2 C-rate has been achieved. The pre-formed solid electrolyte interphase (SEI) layer on the pre-lithaited graphite anode largely contributes to the high capacity performance. Notably, a 10-times-enlarged scale of S-LixC laminate type full cell has been assembled with high capacity performance (around 1000 mAh (g-S)-1) even after high rate cycling.

  7. Influence of cluster-assembly parameters on the field emission properties of nanostructured carbon films

    NASA Astrophysics Data System (ADS)

    Ducati, C.; Barborini, E.; Piseri, P.; Milani, P.; Robertson, J.

    2002-11-01

    Supersonic cluster beam deposition has been used to produce films with different nanostructures by controlling the deposition parameters such as the film thickness, substrate temperature and cluster mass distribution. The field emission properties of cluster-assembled carbon films have been characterized and correlated to the evolution of the film nanostructure. Threshold fields ranging between 4 and 10 V/mum and saturation current densities as high as 0.7 mA have been measured for samples heated during deposition. A series of voltage ramps, i.e., a conditioning process, was found to initiate more stable and reproducible emission. It was found that the presence of graphitic particles (onions, nanotube embryos) in the films substantially enhances the field emission performance. Films patterned on a micrometer scale have been conditioned spot by spot by a ball-tip anode, showing that a relatively high emission site density can be achieved from the cluster-assembled material.

  8. Initial Neutronics Analyses for HEU to LEU Fuel Conversion of the Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontogeorgakos, D.; Derstine, K.; Wright, A.

    2013-06-01

    The purpose of the TREAT reactor is to generate large transient neutron pulses in test samples without over-heating the core to simulate fuel assembly accident conditions. The power transients in the present HEU core are inherently self-limiting such that the core prevents itself from overheating even in the event of a reactivity insertion accident. The objective of this study was to support the assessment of the feasibility of the TREAT core conversion based on the present reactor performance metrics and the technical specifications of the HEU core. The LEU fuel assembly studied had the same overall design, materials (UO 2more » particles finely dispersed in graphite) and impurities content as the HEU fuel assembly. The Monte Carlo N–Particle code (MCNP) and the point kinetics code TREKIN were used in the analyses.« less

  9. Unusual Enhancement in Intrinsic Thermal Conductivity of Multilayer Graphene by Tensile Strains

    DOE PAGES

    Kuang, Youdi; Lindsay, Lucas R.; Huang, Baoling

    2015-01-01

    High basal plane thermal conductivity k of multi-layer graphene makes it promising for thermal management applications. Here we examine the effects of tensile strain on thermal transport in this system. Using a first principles Boltzmann-Peierls equation for phonon transport approach, we calculate the room-temperature in-plane lattice k of multi-layer graphene (up to four layers) and graphite under different isotropic tensile strains. The calculated in-plane k of graphite, finite mono-layer graphene and 3-layer graphene agree well with previous experiments. The dimensional transitions of the intrinsic k and the extent of the diffusive transport regime from mono-layer graphene to graphite are presented.more » We find a peak enhancement of intrinsic k for multi-layer graphene and graphite with increasing strain and the largest enhancement amplitude is about 40%. In contrast the calculated intrinsic k with tensile strain decreases for diamond and diverges for graphene, we show that the competition between the decreased mode heat capacities and the increased lifetimes of flexural phonons with increasing strain contribute to this k behavior. Similar k behavior is observed for 2-layer hexagonal boron nitride systems, suggesting that it is an inherent thermal transport property in multi-layer systems assembled of purely two dimensional atomic layers. This study provides insights into engineering k of multi-layer graphene and boron nitride by strain and into the nature of thermal transport in quasi-two-dimensional and highly anisotropic systems.« less

  10. Upshot of natural graphite inclusion on the performance of porous conducting carbon fiber paper in a polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kaushal, Shweta; Negi, Praveen; Sahu, A. K.; Dhakate, S. R.

    2017-09-01

    Porous conducting carbon fiber paper (PCCFP) is one of the vital component of the gas diffusion layer (GDL) in a fuel cell. This PCCFP serves as the most suitable substrate for the GDL due to its electrical conductivity, mechanical properties, and porosity. In this approach, carbon fiber composite papers were developed by incorporating different fractions of natural graphite (NG) in the matrix phase, i.e. Phenolic resin, and using the combined process of paper making and carbon-carbon composite formation technique. These prepared samples were then heat treated at 1800 °C in an inert atmosphere. The effect of natural graphite incorporation was ascertained by characterizing porous carbon paper by various techniques i.e. X-ray diffraction, Raman spectroscopy, Scanning electron microscopy, electrical and mechanical properties, and I-V performance in a unit fuel cell assembly. The inclusion of NG certainly enhance the properties of the carbon matrix as well as improving the conductive path of carbon fibers. In this study addition of 1 wt.% of natural graphite demonstrated a significant improvement in the electrical conductivity and performance of PCCFP and resulted in the improvement of power density from 361-563 mW cm-2. This paper reports that the uniform dispersion of NG was able to generate a maximum number of macrosize pores in the carbon paper that strengthened the flexural modulus from 4 to 12 GPa without compromising the porosity required for the GDL.

  11. KSC-08pd3867

    NASA Image and Video Library

    2008-11-07

    CAPE CANAVERAL, Fla. -- In Building 1555 at Vandenberg Air Force Base in California, assembly is underway for the Taurus XL rocket that will launch NASA's Orbiting Carbon Observatory, or OCO, spacecraft. In the foreground at left is the boattail; behind it is the Stage 0 Castor 120 motor. At right near the wall (from left) are the Stage 1 and Stage 2 motors, the avionics shelf and the Stage 3 motor. The graphite/epoxy boattail structure provides the transition from the smaller diameter of the Stage 2 motor to the larger diameter of the avionics skirt. The avionics skirt, also a graphite/epoxy structure, supports the avionics shelf and carries the primary structural loads from the fairing and payload cone. The aluminum avionics shelf supports the third stage avionics. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The launch of OCO is targeted for January. Photo credit: NASA/Randy Beaudoin, VAFB

  12. Hygrothermal properties of composites

    NASA Technical Reports Server (NTRS)

    Arsenovic, Petar

    1996-01-01

    The testing procedure and acceptance criteria for outgassing selection of materials to be used in spacecraft has been reviewed. Outgassing testing should be conducted according to ASTM Standard E 595-90. In general, materials with CVCM less than or equal to 0.10% and TML less than or equal to 1.00% are acceptable for space applications. Next, test data on several types of graphite-epoxy composite materials are presented over time at various relative humidity levels at room temperature for moisture absorption, and under vacuum at several temperatures for moisture desorption (outgassing). The data can be accurately represented by simple equations which are useful for materials characterization. Finally, a laser dilatometer systems of extremely high sensitivity and accuracy was assembled and used to measure the coefficient of thermal expansion (CTE) of several types of graphite-epoxy structures, culminating in the ability to perform loading and thermal expansion tests on a prototype optical bench.

  13. Atomically Thin Mesoporous Nanomesh of Graphitic C₃N₄ for High-Efficiency Photocatalytic Hydrogen Evolution.

    PubMed

    Han, Qing; Wang, Bing; Gao, Jian; Cheng, Zhihua; Zhao, Yang; Zhang, Zhipan; Qu, Liangti

    2016-02-23

    Delamination of layer materials into two-dimensional single-atom sheets has induced exceptional physical properties, including large surface area, ultrahigh intrinsic carrier mobility, pronounced changes in the energy band structure, and other properties. Here, atomically thin mesoporous nanomesh of graphitic carbon nitride (g-C3N4) is fabricated by solvothermal exfoliation of mesoporous g-C3N4 bulk made from thermal polymerization of freeze-drying assembled Dicyandiamide nanostructure precursor. With the unique structural advantages for aligned energy levels, electron transfer, light harvesting, and the richly available reaction sites, the as-prepared monolayer of mesoporous g-C3N4 nanomesh exhibits a superior photocatalytic hydrogen evolution rate of 8510 μmol h(-1) g(-1) under λ > 420 nm and an apparent quantum efficiency of 5.1% at 420 nm, the highest of all the metal-free g-C3N4 nanosheets photocatalysts.

  14. Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries

    PubMed Central

    Liu, Bin; Wang, Xianfu; Chen, Haitian; Wang, Zhuoran; Chen, Di; Cheng, Yi-Bing; Zhou, Chongwu; Shen, Guozhen

    2013-01-01

    Toward the increasing demands of portable energy storage and electric vehicle applications, the widely used graphite anodes with significant drawbacks become more and more unsuitable. Herein, we report a novel scaffold of hierarchical silicon nanowires-carbon textiles anodes fabricated via a facile method. Further, complete lithium-ion batteries based on Si and commercial LiCoO2 materials were assembled to investigate their corresponding across-the-aboard performances, demonstrating their enhanced specific capacity (2950 mAh g−1 at 0.2 C), good repeatability/rate capability (even >900 mAh g−1 at high rate of 5 C), long cycling life, and excellent stability in various external conditions (curvature, temperature, and humidity). Above results light the way to principally replacing graphite anodes with silicon-based electrodes which was confirmed to have better comprehensive performances. PMID:23572030

  15. Controllable conversion of quasi-freestanding polymer chains to graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Ma, Chuanxu; Xiao, Zhongcan; Zhang, Honghai; Liang, Liangbo; Huang, Jingsong; Lu, Wenchang; Sumpter, Bobby G.; Hong, Kunlun; Bernholc, J.; Li, An-Ping

    2017-03-01

    In the bottom-up synthesis of graphene nanoribbons (GNRs) from self-assembled linear polymer intermediates, surface-assisted cyclodehydrogenations usually take place on catalytic metal surfaces. Here we demonstrate the formation of GNRs from quasi-freestanding polymers assisted by hole injections from a scanning tunnelling microscope (STM) tip. While catalytic cyclodehydrogenations typically occur in a domino-like conversion process during the thermal annealing, the hole-injection-assisted reactions happen at selective molecular sites controlled by the STM tip. The charge injections lower the cyclodehydrogenation barrier in the catalyst-free formation of graphitic lattices, and the orbital symmetry conservation rules favour hole rather than electron injections for the GNR formation. The created polymer-GNR intraribbon heterostructures have a type-I energy level alignment and strongly localized interfacial states. This finding points to a new route towards controllable synthesis of freestanding graphitic layers, facilitating the design of on-surface reactions for GNR-based structures.

  16. Field-Distortion Air-Insulated Switches for Next-Generation Pulsed-Power Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisher, Matthew Louis; Johns, Owen M.; Breden, Eric Wayne

    We have developed two advanced designs of a field-distortion air-insulated spark-gap switch that reduce the size of a linear-transformer-driver (LTD) brick. Both designs operate at 200 kV and a peak current of ~50 kA. At these parameters, both achieve a jitter of less than 2 ns and a prefire rate of ~0.1% over 5000 shots. We have reduced the number of switch parts and assembly steps, which has resulted in a more uniform, design-driven assembly process. We will characterize the performance of tungsten-copper and graphite electrodes, and two different electrode geometries. The new switch designs will substantially improve the electricalmore » and operational performance of next-generation pulsed-power accelerators.« less

  17. So Happy Together

    NASA Technical Reports Server (NTRS)

    2008-01-01

    These three images show the progression of 'stacking' the Mars Science Laboratory rover and its descent stage in one of the Jet Propulsion Laboratory's 'clean room.' In the first image, the car-size rover is in the middle of the picture with several team members surrounding it. The team members are all dressed in special head-to-toe white suits, called 'bunny suits.' One team member is holding on to a tether to guide the large insect-like descent stage down on top of the rover. The descent stage looms high in this image. The second image shows the descent stage a few feet above the rover with the team member continuing to guide the two pieces together. The final image shows the two pieces on top of each other.

    Imagine taking a very long 10-month journey with someone you've just recently met! The assembly team successfully introduced the Mars Science Laboratory rover to one of its space travel partners. For the first time, it was coupled with its 'descent stage,' the part of the spacecraft that lowers the rover to the Martian surface.

    Up until now, thousands of hands and minds have been making sure this pairing is a perfect fit ... on paper. The intricate parts of the rover and descent stage have all separately undergone some serious testing. Now that they're stacked together, their teams can see how they fit together in real life. With this match-making a success, the rover and descent stage will be joined with the protective case (the 'aeroshell') for more testing. But, these pieces aren't staying together forever! They'll be separated, checked, and assembled many more times before finally coming together just before launch.

  18. Nodal Diffusion Burnable Poison Treatment for Prismatic Reactor Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. M. Ougouag; R. M. Ferrer

    2010-10-01

    The prismatic block version of the High Temperature Reactor (HTR) considered as a candidate Very High Temperature Reactor (VHTR)design may use burnable poison pins in locations at some corners of the fuel blocks (i.e., assembly equivalent structures). The presence of any highly absorbing materials, such as these burnable poisons, within fuel blocks for hexagonal geometry, graphite-moderated High Temperature Reactors (HTRs) causes a local inter-block flux depression that most nodal diffusion-based method have failed to properly model or otherwise represent. The location of these burnable poisons near vertices results in an asymmetry in the morphology of the assemblies (or blocks). Hencemore » the resulting inadequacy of traditional homogenization methods, as these “spread” the actually local effect of the burnable poisons throughout the assembly. Furthermore, the actual effect of the burnable poison is primarily local with influence in its immediate vicinity, which happens to include a small region within the same assembly as well as similar regions in the adjacent assemblies. Traditional homogenization methods miss this artifact entirely. This paper presents a novel method for treating the local effect of the burnable poison explicitly in the context of a modern nodal method.« less

  19. Implementing planetary protection measures on the Mars Science Laboratory.

    PubMed

    Benardini, James N; La Duc, Myron T; Beaudet, Robert A; Koukol, Robert

    2014-01-01

    The Mars Science Laboratory (MSL), comprising a cruise stage; an aeroshell; an entry, descent, and landing system; and the radioisotope thermoelectric generator-powered Curiosity rover, made history with its unprecedented sky crane landing on Mars on August 6, 2012. The mission's primary science objective has been to explore the area surrounding Gale Crater and assess its habitability for past life. Because microbial contamination could profoundly impact the integrity of the mission and compliance with international treaty was required, planetary protection measures were implemented on MSL hardware to verify that bioburden levels complied with NASA regulations. By applying the proper antimicrobial countermeasures throughout all phases of assembly, the total bacterial endospore burden of MSL at the time of launch was kept to 2.78×10⁵ spores, well within the required specification of less than 5.0×10⁵ spores. The total spore burden of the exposed surfaces of the landed MSL hardware was 5.64×10⁴, well below the allowed limit of 3.0×10⁵ spores. At the time of launch, the MSL spacecraft was burdened with an average of 22 spores/m², which included both planned landed and planned impacted hardware. Here, we report the results of a campaign to implement and verify planetary protection measures on the MSL flight system.

  20. KSC-02pd1148

    NASA Image and Video Library

    2002-07-25

    KENNEDY SPACE CENTER, FLA. -- In Vehicle Assembly Building (VAB) high bay 4, installation of a Payload Bay Door Drying Enclosure is in progress. The enclosure will keep moisture from being absorbed into the graphite epoxy used on the payload bay doors of the Shuttle orbiters with the assistance of mini-Portable Purge Units (PPUs). Once in operation, the enclosure will allow NASA the option to store an orbiter in the VAB bay up to 180 days in a "standby-to-stack" mode.

  1. KSC-02pd1147

    NASA Image and Video Library

    2002-07-25

    KENNEDY SPACE CENTER, FLA. -- In Vehicle Assembly Building (VAB) high bay 4, installation of a Payload Bay Door Drying Enclosure is in progress. The enclosure will keep moisture from being absorbed into the graphite epoxy used on the payload bay doors of the Shuttle orbiters with the assistance of mini-Portable Purge Units (PPUs). Once in operation, the enclosure will allow NASA the option to store an orbiter in the VAB bay up to 180 days in a "standby-to-stack" mode.

  2. KSC-02pd1150

    NASA Image and Video Library

    2002-07-26

    KENNEDY SPACE CENTER, FLA. -- -- In Vehicle Assembly Building (VAB) high bay 4, installation of a Payload Bay Door Drying Enclosure is in progress. The enclosure will keep moisture from being absorbed into the graphite epoxy used on the payload bay doors of the Shuttle orbiters with the assistance of mini-Portable Purge Units (PPUs). Once in operation, the enclosure will allow NASA the option to store an orbiter in the VAB bay up to 180 days in a "standby-to-stack" mode.

  3. Strong van der Waals attractive forces in nanotechnology

    NASA Astrophysics Data System (ADS)

    Reimers, Jeffrey

    The Dobson classification scheme for failure of London-like expressions for describing dispersion is reviewed. New ways to measure using STM data and calculate by first principles free energies of organic self-assembly processes from solution will be discussed, considering tetraalkylporphyrins on graphite. How strong van der Waals forces can compete against covalent bonding to produce new molecular isomers and reaction pathways will also be demonstrated, focusing on golds-sulfur bonds for sensors and stabilizing nanoparticles.

  4. Metal-free current collectors based on graphene materials for supecapacitors produced by 3D printing

    NASA Astrophysics Data System (ADS)

    Baskakov, S. A.; Baskakova, Yu. V.; Lyskov, N. V.; Dremova, N. N.; Shul'ga, Yu. M.

    2017-10-01

    Supercapacitor (SC) current collectors with electrodes made of graphite oxide reduced during microwave exfoliation are produced from a commercial filament with a graphene component via layer-by-layer fusing with a 3D printer. The separator is made of a graphene oxide film. The current collectors are investigated by means of IR spectroscopy. Electrochemical tests are performed for the assembled SC that include tests of its cyclic stability up to 1000 cycles.

  5. Neptune Aerocapture Systems Analysis

    NASA Technical Reports Server (NTRS)

    Lockwood, Mary Kae

    2004-01-01

    A Neptune Aerocapture Systems Analysis is completed to determine the feasibility, benefit and risk of an aeroshell aerocapture system for Neptune and to identify technology gaps and technology performance goals. The high fidelity systems analysis is completed by a five center NASA team and includes the following disciplines and analyses: science; mission design; aeroshell configuration screening and definition; interplanetary navigation analyses; atmosphere modeling; computational fluid dynamics for aerodynamic performance and database definition; initial stability analyses; guidance development; atmospheric flight simulation; computational fluid dynamics and radiation analyses for aeroheating environment definition; thermal protection system design, concepts and sizing; mass properties; structures; spacecraft design and packaging; and mass sensitivities. Results show that aerocapture can deliver 1.4 times more mass to Neptune orbit than an all-propulsive system for the same launch vehicle. In addition aerocapture results in a 3-4 year reduction in trip time compared to all-propulsive systems. Aerocapture is feasible and performance is adequate for the Neptune aerocapture mission. Monte Carlo simulation results show 100% successful capture for all cases including conservative assumptions on atmosphere and navigation. Enabling technologies for this mission include TPS manufacturing; and aerothermodynamic methods and validation for determining coupled 3-D convection, radiation and ablation aeroheating rates and loads, and the effects on surface recession.

  6. Measurement of the Infinite Multiplication Constant of Natural Uranium--Graphite Lattices in the RB-1 Critical Assembly by Means of the Zero Reactivity Method. MISURA DELLA COSTANTE DI MOLTIPLICAZIONE INFINITA DI RETICOLI A URANIO NATURALE E GRAFITE NELL'INSIEME CRITICO RB-1 CON IL METODO DELLA REATTIVITA' NULLA (in Italian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghillardotti, G.

    1966-07-01

    To reduce uncertainties to the minimum, measurements in the RB-1 were conducted on the same materials and with the same instrumentation as those used previously in MARIUS. The values measured in the RB-1, compared with the already known substitution data, are as follows: (a) the difference between the multiplication and the absorption intensity; (b) the fine structure of the flux in the cell; (c) the Pu/U index. The infinite mutiplication factor K{sub infinity} is obtained by combining measurements (a) and (b). The results of this research can be summed up as follows: 1. A consistent and complete experimental procedure hasmore » been devised for measuring the K{sub infinity} of natural uranium/graphite lattices by means of the zero reactivity method. The same applies to the procedure for analysis of the experimental data. 2. The error in (K{sub infinity} -- 1) inherent in the measurement can in our opinion be reduced to 2%. This limit was reached in the last experiment on lattices consisting of tubular elements. 3. Agreement proved to be good with the results obtained by the CEA in the critical assembly MARIUS. (auth)« less

  7. Development of simulation approach for two-dimensional chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface

    NASA Astrophysics Data System (ADS)

    Qin, Yuan; Yao, Man; Hao, Ce; Wan, Lijun; Wang, Yunhe; Chen, Ting; Wang, Dong; Wang, Xudong; Chen, Yonggang

    2017-09-01

    Two-dimensional (2D) chiral self-assembly system of 5-(benzyloxy)-isophthalic acid derivative/(S)-(+)-2-octanol/highly oriented pyrolytic graphite was studied. A combined density functional theory/molecular mechanics/molecular dynamics (DFT/MM/MD) approach for system of 2D chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface was thus proposed. Structural models of the chiral assembly were built on the basis of scanning tunneling microscopy (STM) images and simplified for DFT geometry optimization. Merck Molecular Force Field (MMFF) was singled out as the suitable force field by comparing the optimized configurations of MM and DFT. MM and MD simulations for hexagonal unit model which better represented the 2D assemble network were then preformed with MMFF. The adhesion energy, evolution of self-assembly process and characteristic parameters of hydrogen bond were obtained and analyzed. According to the above simulation, the stabilities of the clockwise and counterclockwise enantiomorphous networks were evaluated. The calculational results were supported by STM observations and the feasibility of the simulation method was confirmed by two other systems in the presence of chiral co-absorbers (R)-(-)-2-octanol and achiral co-absorbers 1-octanol. This theoretical simulation method assesses the stability trend of 2D enantiomorphous assemblies with atomic scale and can be applied to the similar hydrogen bond driven 2D chirality of molecular self-assembly system.

  8. Safe lithium-ion battery with ionic liquid-based electrolyte for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Damen, Libero; Lazzari, Mariachiara; Mastragostino, Marina

    2011-10-01

    A lithium-ion battery featuring graphite anode, LiFePO4-C cathode and an innovative, safe, ionic liquid-based electrolyte, was assembled and characterized in terms of specific energy and power after the USABC-DOE protocol for power-assist hybrid electric vehicle (HEV) application. The test results show that the battery surpasses the energy and power goals stated by USABC-DOE and, hence, this safe lithium-ion battery should be suitable for application in the evolving HEV market.

  9. Scalable Production Method for Graphene Oxide Water Vapor Separation Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.; Shin, Yongsoon; Liu, Wei

    ABSTRACT Membranes for selective water vapor separation were assembled from graphene oxide suspension using techniques compatible with high volume industrial production. The large-diameter graphene oxide flake suspensions were synthesized from graphite materials via relatively efficient chemical oxidation steps with attention paid to maintaining flake size and achieving high graphene oxide concentrations. Graphene oxide membranes produced using scalable casting methods exhibited water vapor flux and water/nitrogen selectivity performance meeting or exceeding that of membranes produced using vacuum-assisted laboratory techniques. (PNNL-SA-117497)

  10. Low temperature ion source for calutrons

    DOEpatents

    Veach, Allen M.; Bell, Jr., William A.; Howell, Jr., George D.

    1981-01-01

    A new ion source assembly for calutrons has been provided for the efficient separation of elements having high vapor pressures. The strategic location of cooling pads and improved insulation permits operation of the source at lower temperatures. A vapor valve constructed of graphite and located in a constantly increasing temperature gradient provides reliable control of the vapor flow from the charge bottle to the arc chamber. A pronounced saving in calutron operating time and equipment maintenance has been achieved with the use of the present ion source.

  11. Low temperature ion source for calutrons

    DOEpatents

    Veach, A.M.; Bell, W.A. Jr.; Howell, G.D. Jr.

    1979-10-10

    A new ion source assembly for calutrons has been provided for the efficient separation of elements having high vapor pressures. The strategic location of cooling pads and improved insulation permits operation of the source at lower temperatures. A vapor valve constructed of graphite and located in a constantly increasing temperature gradient provides reliable control of the vapor flow from the charge bottle to the arc chamber. A pronounced saving in calutron operating time and equipment maintenance has been achieved with the use of the present ion source.

  12. Structure investigations on assembled astaxanthin molecules

    NASA Astrophysics Data System (ADS)

    Köpsel, Christian; Möltgen, Holger; Schuch, Horst; Auweter, Helmut; Kleinermanns, Karl; Martin, Hans-Dieter; Bettermann, Hans

    2005-08-01

    The carotenoid r,r-astaxanthin (3R,3‧R-dihydroxy-4,4‧-diketo-β-carotene) forms different types of aggregates in acetone-water mixtures. H-type aggregates were found in mixtures with a high part of water (e.g. 1:9 acetone-water mixture) whereas two different types of J-aggregates were identified in mixtures with a lower part of water (3:7 acetone-water mixture). These aggregates were characterized by recording UV/vis-absorption spectra, CD-spectra and fluorescence emissions. The sizes of the molecular assemblies were determined by dynamic light scattering experiments. The hydrodynamic diameter of the assemblies amounts 40 nm in 1:9 acetone-water mixtures and exceeds up to 1 μm in 3:7 acetone-water mixtures. Scanning tunneling microscopy monitored astaxanthin aggregates on graphite surfaces. The structure of the H-aggregate was obtained by molecular modeling calculations. The structure was confirmed by calculating the electronic absorption spectrum and the CD-spectrum where the molecular modeling structure was used as input.

  13. Binding Modes of Thioflavin T Molecules to Prion Peptide Assemblies Identified by Using Scanning Tunneling Microscopy

    PubMed Central

    2011-01-01

    The widely used method to monitor the aggregation process of amyloid peptide is thioflavin T (ThT) assay, while the detailed molecular mechanism is still not clear. In this work, we report here the direct identification of the binding modes of ThT molecules with the prion peptide GNNQQNY by using scanning tunneling microscopy (STM). The assembly structures of GNNQQNY were first observed by STM on a graphite surface, and the introduction of ThT molecules to the surface facilitated the STM observations of the adsorption conformations of ThT with peptide strands. ThT molecules are apt to adsorb on the peptide assembly with β-sheet structure and oriented parallel with the peptide strands adopting four different binding modes. This effort could benefit the understanding of the mechanisms of the interactions between labeling species or inhibitory ligands and amyloid peptides, which is keenly needed for developing diagnostic and therapeutic approaches. PMID:22778872

  14. Atomic force microscope characterization of self-assembly behaviors of cyclo[8] pyrrole on solid substrates

    NASA Astrophysics Data System (ADS)

    Xu, Hai; Zhao, Siqi; Xiong, Xiang; Jiang, Jinzhi; Xu, Wei; Zhu, Daoben; Zhang, Yi; Liang, Wenjie; Cai, Jianfeng

    2017-04-01

    Cyclo [8] pyrrole (CP) is a porphyrin analogue containing eight α-conjugated pyrrole units which are arranged in a nearly coplanar conformation. The π-π interactions between CP molecules lead to regular aggregations through a solution casting process. Using tapping mode atomic force microscope (AFM), we investigated the morphology of self-assembled aggregates formed by deposition of different CP solutions on different substrates. We found that in the n-butanol solution, nanofibrous structures could be formed on the silicon or mica surface. Interestingly, on the highly oriented pyrolytic graphite (HOPG) surface, or silicon and mica surface with a toluene solution, only irregular spherical structures were identified. The difference in the nanomorphology may be attributed to distinct interactions between molecule-molecule, molecule-solvent and molecule-substrate.

  15. Modern mechanisms make manless Martian mission mobile: Spin-off spells stairclimbing self-sufficiency for earthbound handicapped

    NASA Technical Reports Server (NTRS)

    Sandor, G. N.; Hassel, D. R.; Marino, P. F.

    1975-01-01

    Concepts were developed for three wheel chairs from progressively improving designs of a proposed unmanned roving vehicle for the surface exploration of Mars; as a spin-off, a concept for a stair-climbing wheel chair was generated. The mechanisms employed in these are described. The Mars mission is envisioned using the booster rockets and aeroshell of the Viking missions.

  16. HIAD on ULA (HULA) Orbital Reentry Flight Experiment Concept

    NASA Technical Reports Server (NTRS)

    Dinonno, J. M.; Cheatwood, F. M.; Hughes, S. J.; Ragab, M. M.; Dillman, R. A.; Bodkin, R. J.; Zumwalt, C. H.; Johnson, R. K.

    2016-01-01

    This paper describes a proposed orbital velocity reentry flight test of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD). The flight test builds upon ground development activities that continue to advance the materials, design, and manufacturing techniques for the inflatable structure and flexible thermal protection system (F-TPS) that comprise the inflatable heat shield. While certain aspects of material and system performance can be assessed using a variety of ground testing capabilities, only orbital velocity energy on a trajectory through the gradient density of the atmosphere can impart the combined aerodynamic and aeroheating design environments in real time. To achieve this at limited cost, the HIAD would be delivered to a spin-stabilized entry trajectory as a secondary payload on the Centaur stage of a United Launch Alliance (ULA) Atlas V launch vehicle. Initial trajectory studies indicate that the combination of launch vehicle capability and achievable reentry vehicle ballistic numbers make this a strategic opportunity for technology development. This 4 to 6 meter diameter scale aeroshell flight, referred to as HIAD on ULA (HULA), would also contribute to ULA asset recovery development. ULA has proposed that a HIAD be utilized as part of the Sensible, Modular, Autonomous Return Technology (SMART) initiative to enable recovery of the Vulcan launch vehicle booster main engines [1], including a Mid-Air Recovery (MAR) to gently return these assets for reuse. Whereas HULA will attain valuable aerothermal and structural response data toward advancing HIAD technology, it may also provide a largest-to-date scaled flight test of the MAR operation, which in turn would allow the examination of a nearly pristine post-entry aeroshell. By utilizing infrared camera imaging, HULA will also attain aft-side thermal response data, enhancing understanding of the aft side aerothermal environment, an area of high uncertainty. The aeroshell inflation will utilize a heritage design compressed gas system to minimize development costs. The data will be captured to both an onboard recorder and a recorder that is jettisoned and recovered separately from the reentry vehicle to mitigate risk. This paper provides an overview, including the architecture and flight concept of operations, for the proposed HULA flight experiment.

  17. Materials Needs for Future In-space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Charles Les

    2008-01-01

    NASA is developing the next generation of in-space propulsion systems in support of robotic exploration missions throughout the solar system. The propulsion technologies being developed are non-traditional and have stressing materials performance requirements. (Chemical Propulsion) Earth-storable chemical bipropellant performance is constrained by temperature limitations of the columbium used in the chamber. Iridium/rhenium (Ir/Re) is now available and has been implemented in initial versions of Earth-Storable rockets with specific impulses (Isp) about 10 seconds higher than columbium rocket chambers. New chamber fabrication methods that improve process and performance of Ir/Re and other promising material systems are needed. (Solar Sail Propulsion) The solar sail is a propellantless propulsion system that gains momentum by reflecting sunlight. The sails need to be very large in area (from 10000 m2 up to 62500 m2) yet be very lightweight in order to achieve adequate accelerations for realistic mission times. Lightweight materials that can be manufactured in thicknesses of less than 1 micron and that are not harmed by the space environment are desired. (Aerocapture) Blunt Body Aerocapture uses aerodynamic drag to slow an approaching spacecraft and insert it into a science orbit around any planet or moon with an atmosphere. The spacecraft is enclosed by a rigid aeroshell that protects it from the entry heating and aerodynamic environment. Lightweight, high-temperature structural systems, adhesives, insulators, and ablatives are key components for improving aeroshell efficiencies at heating rates of 1000-2000 W/cu cm and beyond. Inflatable decelerators in the forms of ballutes and inflatable aeroshells will use flexible polymeric thin film materials, high temperature fabrics, and structural adhesives. The inflatable systems will be tightly packaged during cruise and will be inflated prior to entry interface at the destination. Materials must maintain strength and flexibility while packaged at cold temperatures (_100oC) for up to 10 years and then withstand the high temperatures (500oC) encountered during aerocapture. The presentation will describe the status of each propulsion technology and summarize the materials needed for their implementation.

  18. Review of NASA In-Space Propulsion Technology Program Inflatable Decelerator Investments

    NASA Technical Reports Server (NTRS)

    Richardson, E. H.; Mnk, M. M.; James, B. F.; Moon, S. A.

    2005-01-01

    The NASA In-Space Propulsion Technology (ISPT) Program is managed by the NASA Headquarters Science Mission Directorate and is implemented by the Marshall Space Flight Center in Huntsville, Alabama. The ISPT objective is to fund development of promising in-space propulsion technologies that can decrease flight times, decrease cost, or increase delivered payload mass for future science missions. Before ISPT will invest in a technology, the Technology Readiness Level (TRL) of the concept must be estimated to be at TRL 3. A TRL 3 signifies that the technical community agrees that the feasibility of the concept has been proven through experiment or analysis. One of the highest priority technology investments for ISPT is Aerocapture. The aerocapture maneuver uses a planetary atmosphere to reduce or alter the speed of a vehicle allowing for quick, propellantless (or using very little propellant) orbit capture. The atmosphere is used as a brake, transferring the energy associated with the vehicle's high speed into thermal energy. The ISPT Aerocapture Technology Area (ATA) is currently investing in the development of advanced lightweight ablative thermal protection systems, high temperature composite structures, and heat-flux sensors for rigid aeroshells. The heritage of rigid aeroshells extends back to the Apollo era and this technology will most likely be used by the first generation aerocapture vehicle. As a second generation aerocapture technology, ISPT is investing in three inflatable aerodynamic decelerator concepts for planetary aerocapture. They are: trailing ballute (balloon-parachute), attached afterbody ballute, and an inflatable aeroshell. ISPT also leverages the NASA Small Business Innovative Research Program for additional inflatable decelerator technology development. In mid-2004 ISPT requested an independent review of the three inflatable decelerator technologies funded directly by ISPT to validate the TRL and to identify technology maturation concerns. An independent panel with expertise in advanced thin film materials, aerothermodynamics, trajectory design, and inflatable structures was convened to assess the ISPT investments. The panel considered all major technical subsystems including materials, aerothermodynamics, structural dynamics, packaging, and inflation systems. The panel assessed the overall technology readiness of inflatable decelerators to be a 3 and identified fluid- structure interaction, aeroheating, and structural adhesives to be of highest technical concern.

  19. Review of NASA In-Space Propulsion Technology Program Inflatable Decelerator Investments

    NASA Technical Reports Server (NTRS)

    Richardson, Erin H.; Munk, Michelle M.; James, Bonnie F.; Moon, Steve A.

    2005-01-01

    The NASA In-Space Propulsion Technology (ISPT) Program is managed by the NASA Headquarters Science Mission Directorate and is implemented by the Marshall Space Flight Center in Huntsville, Alabama. The ISPT objective is to fund development of promising in- space propulsion technologies that can decrease flight times, decrease cost, or increase delivered payload mass for future science missions. Before ISPT will invest in a technology, the Technology Readiness Level (TRL) of the concept must be estimated to be at TRL 3. A TRL 3 signifies that the technical community agrees that the feasibility of the concept has been proven through experiment or analysis. One of the highest priority technology investments for ISPT is Aerocapture. The aerocapture maneuver uses a planetary atmosphere to reduce or alter the speed of a vehicle allowing for quick, propellantless (or using very little propellant) orbit capture. The atmosphere is used as a brake, transferring the energy associated with the vehicle s high speed into thermal energy. The ISPT Aerocapture Technology Area (ATA) is currently investing in the development of advanced lightweight ablative thermal protection systems, high temperature composite structures, and heat-flux sensors for rigid aeroshells. The heritage of rigid aeroshells extends back to the Apollo era and this technology will most likely be used by the first generation aerocapture vehicle. As a second generation aerocapture technology, ISPT is investing in three inflatable aerodynamic decelerator concepts for planetary aerocapture. They are: trailing ballute (balloon-parachute), attached afterbody ballute, and an inflatable aeroshell. ISPT also leverages the NASA Small Business Innovative Research Program for additional inflatable decelerator technology development. In mid-2004 ISPT requested an independent review of the three inflatable decelerator technologies funded directly by ISPT to validate the TRL and to identify technology maturation concerns. An independent panel with expertise in advanced thin film materials, aerothermodynamics, trajectory design, and inflatable structures was convened to assess the ISPT investments. The panel considered all major technical subsystems including materials, aerothermodynamics, structural dynamics, packaging, and inflation systems. The panel assessed the overall technology readiness of inflatable decelerators to be a 3 and identified fluid-structure interaction, aeroheating, and structural adhesives to be of highest technical concern.

  20. All-Atom Multiscale Molecular Dynamics Theory and Simulation of Self-Assembly, Energy Transfer and Structural Transition in Nanosystems

    NASA Astrophysics Data System (ADS)

    Espinosa Duran, John Michael

    The study of nanosystems and their emergent properties requires the development of multiscale computational models, theories and methods that preserve atomic and femtosecond resolution, to reveal details that cannot be resolved experimentally today. Considering this, three long time scale phenomena were studied using molecular dynamics and multiscale methods: self-assembly of organic molecules on graphite, energy transfer in nanosystems, and structural transition in vault nanoparticles. Molecular dynamics simulations of the self-assembly of alkoxybenzonitriles with different tail lengths on graphite were performed to learn about intermolecular interactions and phases exhibited by self-organized materials. This is important for the design of ordered self-assembled organic photovoltaic materials with greater efficiency than the disordered blends. Simulations revealed surface dynamical behaviors that cannot be resolved experimentally today due to the lack of spatiotemporal resolution. Atom-resolved structures predicted by simulations agreed with scanning tunneling microscopy images and unit cell measurements. Then, a multiscale theory based on the energy density as a field variable is developed to study energy transfer in nanoscale systems. For applications like photothermal microscopy or cancer phototherapy is required to understand how the energy is transferred to/from nanosystems. This multiscale theory could be applied in this context and here is tested for cubic nanoparticles immersed in water for energy being transferred to/from the nanoparticle. The theory predicts the energy transfer dynamics and reveals phenomena that cannot be described by current phenomenological theories. Finally, temperature-triggered structural transitions were revealed for vault nanoparticles using molecular dynamics and multiscale simulations. Vault is a football-shaped supramolecular assembly very distinct from the commonly observed icosahedral viruses. It has very promising applications in drug delivery and has been extensively studied experimentally. Sub-microsecond multiscale simulations at 310 K on the vault revealed the opening and closing of fractures near the shoulder while preserving the overall structure. This fracture mechanism could explain the uptake and release of small drugs while maintaining the overall structure. Higher temperature simulations show the generation of large fractures near the waist, which enables interaction of the external medium with the inner vault residues. Simulation results agreed with microscopy and spectroscopy measurements, and revealed new structures and mechanisms.

  1. Toward tunable doping in graphene FETs by molecular self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Li, Bing; Klekachev, Alexander V.; Cantoro, Mirco; Huyghebaert, Cedric; Stesmans, André; Asselberghs, Inge; de Gendt, Stefan; de Feyter, Steven

    2013-09-01

    In this paper, we report the formation of self-assembled monolayers (SAMs) of oleylamine (OA) on highly oriented pyrolytic graphite (HOPG) and graphene surfaces and demonstrate the potential of using such organic SAMs to tailor the electronic properties of graphene. Molecular resolution Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) images reveal the detailed molecular ordering. The electrical measurements show that OA strongly interacts with graphene leading to n-doping effects in graphene devices. The doping levels are tunable by varying the OA deposition conditions. Importantly, neither hole nor electron mobilities are decreased by the OA modification. As a benefit from this noncovalent modification strategy, the pristine characteristics of the device are recoverable upon OA removal. From this study, one can envision the possibility to correlate the graphene-based device performance with the molecular structure and supramolecular ordering of the organic dopant.In this paper, we report the formation of self-assembled monolayers (SAMs) of oleylamine (OA) on highly oriented pyrolytic graphite (HOPG) and graphene surfaces and demonstrate the potential of using such organic SAMs to tailor the electronic properties of graphene. Molecular resolution Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) images reveal the detailed molecular ordering. The electrical measurements show that OA strongly interacts with graphene leading to n-doping effects in graphene devices. The doping levels are tunable by varying the OA deposition conditions. Importantly, neither hole nor electron mobilities are decreased by the OA modification. As a benefit from this noncovalent modification strategy, the pristine characteristics of the device are recoverable upon OA removal. From this study, one can envision the possibility to correlate the graphene-based device performance with the molecular structure and supramolecular ordering of the organic dopant. Electronic supplementary information (ESI) available: AFM images of self-assembled monolayers of OA on HOPG; AFM height image of the graphene surface on a SiC substrate; high resolution STM image of a self-assembled monolayer of OA on HOPG; transfer curves of a graphene FET with and without baking steps; transfer curves of a graphene FET under high vacuum conditions; transfer curves of a graphene FET and its Raman response before and after OA treatment; transfer curves of a graphene FET before and after rinsing with n-hexane. See DOI: 10.1039/c3nr01255g

  2. Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs)

    NASA Astrophysics Data System (ADS)

    Lee, Dongyoung; Lee, Dai Gil

    2016-09-01

    A carbon/epoxy composite bipolar plate is an ideal substitute for the brittle graphite bipolar plate for lightweight proton exchange membrane fuel cells (PEMFCs) because of its high specific strength and stiffness. However, conventional carbon/epoxy composite bipolar plates are not applicable for high-temperature PEMFCs (HT-PEMFCs) because these systems are operated at higher temperatures than the glass transition temperatures of conventional epoxies. Therefore, in this study, a cyanate ester-modified epoxy is adopted for the development of a carbon composite bipolar plate for HT-PEMFCs. The composite bipolar plate with exposed surface carbon fibers is produced without any surface treatments or coatings to increase the productivity and is integrated with a silicone gasket to reduce the assembly cost. The developed carbon composite bipolar plate exhibits not only superior electrical properties but also high thermo-mechanical properties. In addition, a unit cell test is performed, and the results are compared with those of the conventional graphite bipolar plate.

  3. Thermal conductivity of a graphite bipolar plate (BPP) and its thermal contact resistance with fuel cell gas diffusion layers: Effect of compression, PTFE, micro porous layer (MPL), BPP out-of-flatness and cyclic load

    NASA Astrophysics Data System (ADS)

    Sadeghifar, Hamidreza; Djilali, Ned; Bahrami, Majid

    2015-01-01

    This paper reports on measurements of thermal conductivity of a graphite bipolar plate (BPP) as a function of temperature and its thermal contact resistance (TCR) with treated and untreated gas diffusion layers (GDLs). The thermal conductivity of the BPP decreases with temperature and its thermal contact resistance with GDLs, which has been overlooked in the literature, is found to be dominant over a relatively wide range of compression. The effects of PTFE loading, micro porous layer (MPL), compression, and BPP out-of-flatness are also investigated experimentally. It is found that high PTFE loadings, MPL and even small BPP out-of-flatness increase the BPP-GDL thermal contact resistance dramatically. The paper also presents the effect of cyclic load on the total resistance of a GDL-BPP assembly, which sheds light on the behavior of these materials under operating conditions in polymer electrolyte membrane fuel cells.

  4. Simple-Cubic Carbon Frameworks with Atomically Dispersed Iron Dopants toward High-Efficiency Oxygen Reduction.

    PubMed

    Wang, Biwei; Wang, Xinxia; Zou, Jinxiang; Yan, Yancui; Xie, Songhai; Hu, Guangzhi; Li, Yanguang; Dong, Angang

    2017-03-08

    Iron and nitrogen codoped carbons (Fe-N-C) have attracted increasingly greater attention as electrocatalysts for oxygen reduction reaction (ORR). Although challenging, the synthesis of Fe-N-C catalysts with highly dispersed and fully exposed active sites is of critical importance for improving the ORR activity. Here, we report a new type of graphitic Fe-N-C catalysts featuring numerous Fe single atoms anchored on a three-dimensional simple-cubic carbon framework. The Fe-N-C catalyst, derived from self-assembled Fe 3 O 4 nanocube superlattices, was prepared by in situ ligand carbonization followed by acid etching and ammonia activation. Benefiting from its homogeneously dispersed and fully accessible active sites, highly graphitic nature, and enhanced mass transport, our Fe-N-C catalyst outperformed Pt/C and many previously reported Fe-N-C catalysts for ORR. Furthermore, when used for constructing the cathode for zinc-air batteries, our Fe-N-C catalyst exhibited current and power densities comparable to those of the state-of-the-art Pt/C catalyst.

  5. Fabrication of crystals from single metal atoms

    PubMed Central

    Barry, Nicolas P. E.; Pitto-Barry, Anaïs; Sanchez, Ana M.; Dove, Andrew P.; Procter, Richard J.; Soldevila-Barreda, Joan J.; Kirby, Nigel; Hands-Portman, Ian; Smith, Corinne J.; O’Reilly, Rachel K.; Beanland, Richard; Sadler, Peter J.

    2014-01-01

    Metal nanocrystals offer new concepts for the design of nanodevices with a range of potential applications. Currently the formation of metal nanocrystals cannot be controlled at the level of individual atoms. Here we describe a new general method for the fabrication of multi-heteroatom-doped graphitic matrices decorated with very small, ångström-sized, three-dimensional (3D)-metal crystals of defined size. We irradiate boron-rich precious-metal-encapsulated self-spreading polymer micelles with electrons and produce, in real time, a doped graphitic support on which individual osmium atoms hop and migrate to form 3D-nanocrystals, as small as 15 Å in diameter, within 1 h. Crystal growth can be observed, quantified and controlled in real time. We also synthesize the first examples of mixed ruthenium–osmium 3D-nanocrystals. This technology not only allows the production of ångström-sized homo- and hetero-crystals, but also provides new experimental insight into the dynamics of nanocrystals and pathways for their assembly from single atoms. PMID:24861089

  6. Thermal neutron calibration channel at LNMRI/IRD.

    PubMed

    Astuto, A; Salgado, A P; Leite, S P; Patrão, K C S; Fonseca, E S; Pereira, W W; Lopes, R T

    2014-10-01

    The Brazilian Metrology Laboratory of Ionizing Radiations (LNMRI) standard thermal neutron flux facility was designed to provide uniform neutron fluence for calibration of small neutron detectors and individual dosemeters. This fluence is obtained by neutron moderation from four (241)Am-Be sources, each with 596 GBq, in a facility built with blocks of graphite/paraffin compound and high-purity carbon graphite. This study was carried out in two steps. In the first step, simulations using the MCNPX code on different geometric arrangements of moderator materials and neutron sources were performed. The quality of the resulting neutron fluence in terms of spectrum, cadmium ratio and gamma-neutron ratio was evaluated. In the second step, the system was assembled based on the results obtained on the simulations, and new measurements are being made. These measurements will validate the system, and other intercomparisons will ensure traceability to the International System of Units. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. IMPROVEMENTS IN THE THERMAL NEUTRON CALIBRATION UNIT, TNF2, AT LNMRI/IRD.

    PubMed

    Astuto, A; Fernandes, S S; Patrão, K C S; Fonseca, E S; Pereira, W W; Lopes, R T

    2018-02-21

    The standard thermal neutron flux unit, TNF2, in the Brazilian National Ionizing Radiation Metrology Laboratory was rebuilt. Fluence is still achieved by moderating of four 241Am-Be sources with 0.6 TBq each. The facility was again simulated and redesigned with graphite core and paraffin added graphite blocks surrounding it. Simulations using the MCNPX code on different geometric arrangements of moderator materials and neutron sources were performed. The resulting neutron fluence quality in terms of intensity, spectrum and cadmium ratio was evaluated. After this step, the system was assembled based on the results obtained from the simulations and measurements were performed with equipment existing in LNMRI/IRD and by simulated equipment. This work focuses on the characterization of a central chamber point and external points around the TNF2 in terms of neutron spectrum, fluence and ambient dose equivalent, H*(10). This system was validated with spectra measurements, fluence and H*(10) to ensure traceability.

  8. Vibration damping characteristics of graphite/epoxy composites for large space structures

    NASA Technical Reports Server (NTRS)

    Gibson, R. F.

    1982-01-01

    Limited data on extensional and flexural damping of small specimens of graphite/epoxy and unreinforced epoxy resin were obtained. Flexural damping was measured using a forced vibration technique based on resonant flexural vibration of shaker excited double cantilever specimens. Extensional damping was measured by subjecting similar specimens to low frequency sinusoidal oscillation in a servohydraulic tensile testing machine while plotting load versus extensional strain. Damping was found to vary slowly and continuously over the frequency range 0.01 - 1000 Hz, and no drastic transitions were observed. Composite damping was found to be less than neat resin damping. Comparison of small specimen damping values with assembled column damping values seems to indicate that, for those materials, material damping is more important than joint damping. The data reported was limited not by the test apparatus, but by signal conditioning and data acquisition. It is believed that filtering of the strain gage signals and the use of digital storage with slow playback will make it possible to extend the frequency and amplitude ranges significantly.

  9. Design of a boron neutron capture enhanced fast neutron therapy assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhonglu

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator nearmore » the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm 2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm 2 collimation was 21.9% per 100-ppm 10B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm 2 fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm 2 collimator. Five 1.0-cm thick 20x20 cm 2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The measured dose enhancement at 5.0-cm depth in the head phantom for the 5.0-cm thick tungsten filter is (16.6 ± 1.8)%, which agrees well with the MCNP simulation of the simplified BNCEFNT assembly, (16.4 ± 0.5)%. The error in the calculated dose enhancement only considers the statistical uncertainties. The total dose rate measured at 5.0-cm depth using the non-borated ion chamber is (0.765 ± 0.076) Gy/MU, about 61% of the fast neutron standard dose rate (1.255Gy/MU) at 5.0-cm depth for the standard 10x10 cm 2 treatment beam. The increased doses to other organs due to the use of the BNCEFNT assembly were calculated using MCNP5 and a MIRD phantom. The activities of the activation products produced in the BNCEFNT assembly after neutron beam delivery were computed. The photon ambient dose rate due to the radioactive activation products was also estimated.« less

  10. Effect of end-ring stiffness on buckling of pressure-loaded stiffened conical shells

    NASA Technical Reports Server (NTRS)

    Davis, R. C.; Williams, J. G.

    1977-01-01

    Buckling studies were conducted on truncated 120 deg conical shells having large end rings and many interior reinforcing rings that are typical of aeroshells used as spacecraft decelerators. Changes in base-end-ring stiffness were accomplished by simply machining away a portion of the base ring between successive buckling tests. Initial imperfection measurements from the test cones were included in the analytical model.

  11. Atmospheric Entry Studies for Venus Missions: 45 Sphere-Cone Rigid Aeroshells and Ballistic Entries

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Spilker, Thomas R.; Allen, Gary A., Jr.; Hwang, Helen H.; Cappuccio, Gelsomina; Moses, Robert W.

    2013-01-01

    The present study considers direct ballistic entries into the atmosphere of Venus using a 45deg sphere-cone rigid aeroshell, a legacy shape that has been used successfully in the past in the Pioneer Venus Multiprobe Mission. For a number of entry mass and heatshield diameter combinations (i.e., various ballistic coefficients) and entry velocities, the trajectory space in terms of entry flight path angles between skip out and -30deg is explored with a 3DoF trajectory code, TRAJ. From these trajectories, the viable entry flight path angle space is determined through the use of mechanical and thermal performance limits on the thermal protection material and science payload; the thermal protection material of choice is entry-grade carbon phenolic, for which a material thermal response model is available. For mechanical performance, a 200 g limit is placed on the peak deceleration load experienced by the science instruments, and 10 bar is assumed as the pressure limit for entry-grade carbon-phenolic material. For thermal performance, inflection points in the total heat load distribution are used as cut off criteria. Analysis of the results shows the existence of a range of critical ballistic coefficients beyond which the steepest possible entries are determined by the pressure limit of the material rather than the deceleration load limit.

  12. Electrochemical Exfoliation of Graphite in Aqueous Sodium Halide Electrolytes toward Low Oxygen Content Graphene for Energy and Environmental Applications.

    PubMed

    Munuera, J M; Paredes, J I; Enterría, M; Pagán, A; Villar-Rodil, S; Pereira, M F R; Martins, J I; Figueiredo, J L; Cenis, J L; Martínez-Alonso, A; Tascón, J M D

    2017-07-19

    Graphene and graphene-based materials have shown great promise in many technological applications, but their large-scale production and processing by simple and cost-effective means still constitute significant issues in the path of their widespread implementation. Here, we investigate a straightforward method for the preparation of a ready-to-use and low oxygen content graphene material that is based on electrochemical (anodic) delamination of graphite in aqueous medium with sodium halides as the electrolyte. Contrary to previous conflicting reports on the ability of halide anions to act as efficient exfoliating electrolytes in electrochemical graphene exfoliation, we show that proper choice of both graphite electrode (e.g., graphite foil) and sodium halide concentration readily leads to the generation of large quantities of single-/few-layer graphene nanosheets possessing a degree of oxidation (O/C ratio down to ∼0.06) lower than that typical of anodically exfoliated graphenes obtained with commonly used electrolytes. The halide anions are thought to play a role in mitigating the oxidation of the graphene lattice during exfoliation, which is also discussed and rationalized. The as-exfoliated graphene materials exhibited a three-dimensional morphology that was suitable for their practical use without the need to resort to any kind of postproduction processing. When tested as dye adsorbents, they outperformed many previously reported graphene-based materials (e.g., they adsorbed ∼920 mg g -1 for methyl orange) and were useful sorbents for oils and nonpolar organic solvents. Supercapacitor cells assembled directly from the as-exfoliated products delivered energy and power density values (up to 15.3 Wh kg -1 and 3220 W kg -1 , respectively) competitive with those of many other graphene-based devices but with the additional advantage of extreme simplicity of preparation.

  13. Assembly, growth, and catalytic activity of gold nanoparticles in hollow carbon nanofibers.

    PubMed

    La Torre, Alessandro; Giménez-López, Maria del Carmen; Fay, Michael W; Rance, Graham A; Solomonsz, William A; Chamberlain, Thomas W; Brown, Paul D; Khlobystov, Andrei N

    2012-03-27

    Graphitized carbon nanofibers (GNFs) act as efficient templates for the growth of gold nanoparticles (AuNPs) adsorbed on the interior (and exterior) of the tubular nanostructures. Encapsulated AuNPs are stabilized by interactions with the step-edges of the individual graphitic nanocones, of which GNFs are composed, and their size is limited to approximately 6 nm, while AuNPs adsorbed on the atomically flat graphitic surfaces of the GNF exterior continue their growth to 13 nm and beyond under the same heat treatment conditions. The corrugated structure of the GNF interior imposes a significant barrier for the migration of AuNPs, so that their growth mechanism is restricted to Ostwald ripening. Conversely, nanoparticles adsorbed on smooth GNF exterior surfaces are more likely to migrate and coalesce into larger nanoparticles, as revealed by in situ transmission electron microscopy imaging. The presence of alkyl thiol surfactant within the GNF channels changes the dynamics of the AuNP transformations, as surfactant molecules adsorbed on the surface of the AuNPs diminished the stabilization effect of the step-edges, thus allowing nanoparticles to grow until their diameters reach the internal diameter of the host nanofiber. Nanoparticles thermally evolved within the GNF channel exhibit alignment, perpendicular to the GNF axis due to interactions with the step-edges and parallel to the axis because of graphitic facets of the nanocones. Despite their small size, AuNPs in GNF possess high stability and remain unchanged at temperatures up to 300 °C in ambient atmosphere. Nanoparticles immobilized at the step-edges within GNF are shown to act as effective catalysts promoting the transformation of dimethylphenylsilane to bis(dimethylphenyl)disiloxane with a greater than 10-fold enhancement of selectivity as compared to free-standing or surface-adsorbed nanoparticles. © 2012 American Chemical Society

  14. 3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports.

    PubMed

    Sneed, Brian T; Cullen, David A; Reeves, Kimberly S; Dyck, Ondrej E; Langlois, David A; Mukundan, Rangachary; Borup, Rodney L; More, Karren L

    2017-09-06

    Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of the cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Furthermore, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.

  15. 3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports

    DOE PAGES

    Sneed, Brian T.; Cullen, David A.; Reeves, Kimberly S.; ...

    2017-08-15

    Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of themore » cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Moreover, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.« less

  16. 3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sneed, Brian T.; Cullen, David A.; Reeves, Kimberly S.

    Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of themore » cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Moreover, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.« less

  17. Self-assembled PCBM bilayers on graphene and HOPG examined by AFM and STM

    NASA Astrophysics Data System (ADS)

    Li, Yanlong; Chen, Chuanhui; Burton, John; Park, Kyungwha; Heflin, James R.; Tao, Chenggang

    2018-05-01

    In this work we report fabrication and characterization of phenyl-C61-butyric acid methyl ester (PCBM) bilayer structures on graphene and highly oriented pyrolytic graphite (HOPG). Through careful control of the PCBM solution concentration (from 0.1 to 2 mg ml-1) and the deposition conditions, we demonstrate that PCBM molecules self-assemble into bilayer structures on graphene and HOPG substrates. Interestingly, the PCBM bilayers are formed with two distinct heights on HOPG, but only one unique representative height on graphene. At elevated annealing temperatures, edge diffusion allows neighboring vacancies to merge into a more ordered structure. This is, to the best of our knowledge, the first experimental realization of PCBM bilayer structures on graphene. This work could provide valuable insight into fabrication of new hybrid, ordered structures for applications to organic solar cells.

  18. Self-assembled PCBM bilayers on graphene and HOPG examined by AFM and STM.

    PubMed

    Li, Yanlong; Chen, Chuanhui; Burton, John; Park, Kyungwha; Heflin, James R; Tao, Chenggang

    2018-05-04

    In this work we report fabrication and characterization of phenyl-C61-butyric acid methyl ester (PCBM) bilayer structures on graphene and highly oriented pyrolytic graphite (HOPG). Through careful control of the PCBM solution concentration (from 0.1 to 2 mg ml -1 ) and the deposition conditions, we demonstrate that PCBM molecules self-assemble into bilayer structures on graphene and HOPG substrates. Interestingly, the PCBM bilayers are formed with two distinct heights on HOPG, but only one unique representative height on graphene. At elevated annealing temperatures, edge diffusion allows neighboring vacancies to merge into a more ordered structure. This is, to the best of our knowledge, the first experimental realization of PCBM bilayer structures on graphene. This work could provide valuable insight into fabrication of new hybrid, ordered structures for applications to organic solar cells.

  19. Investigating Premature Ignition of Thruster Pressure Cartridges by Mechanical Impact of Internal Components

    NASA Technical Reports Server (NTRS)

    Woods, Stephen S.; Saulsberry, Regor

    2010-01-01

    Pyrotechnic thruster pressure cartridges (TPCs) are used for aeroshell separation on a new NASA crew launch vehicle. The premature ignition concern was hypothesized based on the potential range of motion of the subassemblies, projected worst case accelerations, and the internal geometry that could subject propellant grains to mechanical impact sufficiently high for ignition. This possibility was investigated by fabricating a high-fidelity model of the suspected contact geometry, placing a representative amount of propellant in it, and impacting the propellant with a range of forces equivalent to and greater than the maximum possible during launch. Testing demonstrated that the likelihood of ignition is less than 1 in 1,000,000. The test apparatus, methodology, and results are described in this paper. Nondestructive evaluation ( NDE) during TPC acceptance testing indicated that internal assemblies moved during shock and vibration testing due to an internal bond anomaly. This caused concerns that the launch environment might produce the same movement and release propellant grains that might be prematurely ignited through impact or through electrostatic discharge (ESD) as grains vibrated against internal surfaces. Since a new lot could not be fabricated in time, a determination had to be made as to whether the lot was acceptable to fly. This paper discusses the analysis and impact testing used to address the potential impact issue and a separate paper addresses the ESD issue.

  20. InSight Planetary Protection Status

    NASA Astrophysics Data System (ADS)

    Benardini, James; La Duc, Myron; Willis, Jason

    The NASA Discovery Program’s next mission, Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSIght), consists of a single spacecraft that will be launched aboard an Atlas V 401 rocket from Vandenberg Air Force Base (Space Launch Complex 3E) during the March 2016 timeframe. The overarching mission goal is to illuminate the fundamentals of formation and evolution of terrestrial planets by investigating the interior structure and processes of Mars. The flight system consists of a heritage cruise stage, aeroshell (heatshield and backshell), and Lander from the 2008 Phoenix mission. Included in the lander payload are various cameras, a seismometer, an auxiliary sensor suite to measure wind, temperature, and pressure, and a mole to penetrate the regolith (<5 meters) and assess the subsurface geothermal gradient of Mars. Being a Mars lander mission without life detection instruments, InSight has been designated a PP Category Iva mission. As such, planetary protection bioburden requirements apply which require microbial reduction procedures and biological burden reporting. The InSight project is current with required PP documentation, having completed an approved Planetary Protection Plan, Subsidiary PP Plans, and a PP Implementation Plan. The InSight mission’s early planetary protection campaign has commenced, coinciding with the fabrication and assembly of payload and flight system hardware and the baseline analysis of existing flight spares. A report on the status of InSight PP activities will be provided.

  1. Mars Sample Return mission: Two alternate scenarios

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Two scenarios for accomplishing a Mars Sample Return mission are presented herein. Mission A is a low cost, low mass scenario, while Mission B is a high technology, high science alternative. Mission A begins with the launch of one Titan IV rocket with a Centaur G' upper stage. The Centaur performs the trans-Mars injection burn and is then released. The payload consists of two lander packages and the Orbital Transfer Vehicle, which is responsible for supporting the landers during launch and interplanetary cruise. After descending to the surface, the landers deploy small, local rovers to collect samples. Mission B starts with 4 Titan IV launches, used to place the parts of the Planetary Transfer Vehicle (PTV) into orbit. The fourth launch payload is able to move to assemble the entire vehicle by simple docking routines. Once complete, the PTV begins a low thrust trajectory out from low Earth orbit, through interplanetary space, and into low Martian orbit. It deploys a communication satellite into a 1/2 sol orbit and then releases the lander package at 500 km altitude. The lander package contains the lander, the Mars Ascent Vehicle (MAV), two lighter than air rovers (called Aereons), and one conventional land rover. The entire package is contained with a biconic aeroshell. After release from the PTV, the lander package descends to the surface, where all three rovers are released to collect samples and map the terrain.

  2. Transparent, flexible supercapacitors from nano-engineered carbon films.

    PubMed

    Jung, Hyun Young; Karimi, Majid B; Hahm, Myung Gwan; Ajayan, Pulickel M; Jung, Yung Joon

    2012-01-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  3. Transparent, flexible supercapacitors from nano-engineered carbon films

    PubMed Central

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-01-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications. PMID:23105970

  4. Transparent, flexible supercapacitors from nano-engineered carbon films

    NASA Astrophysics Data System (ADS)

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-10-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  5. Interleaved array antenna technology development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This is the third phase of a program to establish an antenna concept for shuttle and free flying spacecraft earth resources experiments using Synthetic Aperture Radar. The feasibility of a plated graphite epoxy waveguide for a space antenna was evaluated. A quantity of flat panels and waveguides were developed, procured, and tested for electrical and mechanical properties. In addition, processes for the assembly of a unique waveguide array were investigated. Finally, trades between various configurations that would allow elevation (range) electronic scanning and that would minimize feed complexity for various RF bandwidths were made.

  6. LBNF 1.2 MW Target: Conceptual Design & Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, C.; Ammigan, K.; Anderson, K.

    2015-06-01

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield.more » Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.« less

  7. LBNF 1.2 MW TARGET: CONCEPTUAL DESIGN & FABRICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, Cory F.; Ammigan, K.; Anderson, K.

    2015-06-29

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield.more » Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.« less

  8. Effect of intermolecular dipole-dipole interactions on interfacial supramolecular structures of C3-symmetric hexa-peri-hexabenzocoronene derivatives.

    PubMed

    Mu, Zhongcheng; Shao, Qi; Ye, Jun; Zeng, Zebing; Zhao, Yang; Hng, Huey Hoon; Boey, Freddy Yin Chiang; Wu, Jishan; Chen, Xiaodong

    2011-02-15

    Two-dimensional (2D) supramolecular assemblies of a series of novel C(3)-symmetric hexa-peri-hexabenzocoronene (HBC) derivatives bearing different substituents adsorbed on highly oriented pyrolytic graphite were studied by using scanning tunneling microscopy at a solid-liquid interface. It was found that the intermolecular dipole-dipole interactions play a critical role in controlling the interfacial supramolecular assembly of these C(3)-symmetric HBC derivatives at the solid-liquid interface. The HBC molecule bearing three -CF(3) groups could form 2D honeycomb structures because of antiparallel dipole-dipole interactions, whereas HBC molecules bearing three -CN or -NO(2) groups could form hexagonal superstructures because of a special trimeric arrangement induced by dipole-dipole interactions and weak hydrogen bonding interactions ([C-H···NC-] or [C-H···O(2)N-]). Molecular mechanics and dynamics simulations were performed to reveal the physics behind the 2D structures as well as detailed functional group interactions. This work provides an example of how intermolecular dipole-dipole interactions could enable fine control over the self-assembly of disklike π-conjugated molecules.

  9. Fabrication of Hierarchical Layer-by-Layer Assembled Diamond-based Core-Shell Nanocomposites as Highly Efficient Dye Absorbents for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Zhao, Xinna; Ma, Kai; Jiao, Tifeng; Xing, Ruirui; Ma, Xilong; Hu, Jie; Huang, Hao; Zhang, Lexin; Yan, Xuehai

    2017-03-01

    The effective chemical modification and self-assembly of diamond-based hierarchical composite materials are of key importance for a broad range of diamond applications. Herein, we report the preparation of novel core-shell diamond-based nanocomposites for dye adsorption toward wastewater treatment through a layer-by-layer (LbL) assembled strategy. The synthesis of the reported composites began with the carboxyl functionalization of microdiamond by the chemical modification of diamond@graphene oxide composite through the oxidation of diamond@graphite. The carboxyl-terminated microdiamond was then alternatively immersed in the aqueous solution of amine-containing polyethylenimine and carboxyl-containing poly acrylic acid, which led to the formation of adsorption layer on diamond surface. Alternating (self-limiting) immersions in the solutions of the amine-containing and carboxyl-containing polymers were continued until the desired number of shell layers were formed around the microdiamond. The obtained core-shell nanocomposites were successfully synthesized and characterized by morphological and spectral techniques, demonstrating higher surface areas and mesoporous structures for good dye adsorption capacities than nonporous solid diamond particles. The LbL-assembled core-shell nanocomposites thus obtained demonstrated great adsorption capacity by using two model dyes as pollutants for wastewater treatment. Therefore, the present work on LbL-assembled diamond-based composites provides new alternatives for developing diamond hybrids as well as nanomaterials towards wastewater treatment applications.

  10. A probabilisitic based failure model for components fabricated from anisotropic graphite

    NASA Astrophysics Data System (ADS)

    Xiao, Chengfeng

    The nuclear moderator for high temperature nuclear reactors are fabricated from graphite. During reactor operations graphite components are subjected to complex stress states arising from structural loads, thermal gradients, neutron irradiation damage, and seismic events. Graphite is a quasi-brittle material. Two aspects of nuclear grade graphite, i.e., material anisotropy and different behavior in tension and compression, are explicitly accounted for in this effort. Fracture mechanic methods are useful for metal alloys, but they are problematic for anisotropic materials with a microstructure that makes it difficult to identify a "critical" flaw. In fact cracking in a graphite core component does not necessarily result in the loss of integrity of a nuclear graphite core assembly. A phenomenological failure criterion that does not rely on flaw detection has been derived that accounts for the material behaviors mentioned. The probability of failure of components fabricated from graphite is governed by the scatter in strength. The design protocols being proposed by international code agencies recognize that design and analysis of reactor core components must be based upon probabilistic principles. The reliability models proposed herein for isotropic graphite and graphite that can be characterized as being transversely isotropic are another set of design tools for the next generation very high temperature reactors (VHTR) as well as molten salt reactors. The work begins with a review of phenomenologically based deterministic failure criteria. A number of this genre of failure models are compared with recent multiaxial nuclear grade failure data. Aspects in each are shown to be lacking. The basic behavior of different failure strengths in tension and compression is exhibited by failure models derived for concrete, but attempts to extend these concrete models to anisotropy were unsuccessful. The phenomenological models are directly dependent on stress invariants. A set of invariants, known as an integrity basis, was developed for a non-linear elastic constitutive model. This integrity basis allowed the non-linear constitutive model to exhibit different behavior in tension and compression and moreover, the integrity basis was amenable to being augmented and extended to anisotropic behavior. This integrity basis served as the starting point in developing both an isotropic reliability model and a reliability model for transversely isotropic materials. At the heart of the reliability models is a failure function very similar in nature to the yield functions found in classic plasticity theory. The failure function is derived and presented in the context of a multiaxial stress space. States of stress inside the failure envelope denote safe operating states. States of stress on or outside the failure envelope denote failure. The phenomenological strength parameters associated with the failure function are treated as random variables. There is a wealth of failure data in the literature that supports this notion. The mathematical integration of a joint probability density function that is dependent on the random strength variables over the safe operating domain defined by the failure function provides a way to compute the reliability of a state of stress in a graphite core component fabricated from graphite. The evaluation of the integral providing the reliability associated with an operational stress state can only be carried out using a numerical method. Monte Carlo simulation with importance sampling was selected to make these calculations. The derivation of the isotropic reliability model and the extension of the reliability model to anisotropy are provided in full detail. Model parameters are cast in terms of strength parameters that can (and have been) characterized by multiaxial failure tests. Comparisons of model predictions with failure data is made and a brief comparison is made to reliability predictions called for in the ASME Boiler and Pressure Vessel Code. Future work is identified that would provide further verification and augmentation of the numerical methods used to evaluate model predictions.

  11. Applications of Graphene-Modified Electrodes in Microbial Fuel Cells

    PubMed Central

    Yu, Fei; Wang, Chengxian; Ma, Jie

    2016-01-01

    Graphene-modified materials have captured increasing attention for energy applications due to their superior physical and chemical properties, which can significantly enhance the electricity generation performance of microbial fuel cells (MFC). In this review, several typical synthesis methods of graphene-modified electrodes, such as graphite oxide reduction methods, self-assembly methods, and chemical vapor deposition, are summarized. According to the different functions of the graphene-modified materials in the MFC anode and cathode chambers, a series of design concepts for MFC electrodes are assembled, e.g., enhancing the biocompatibility and improving the extracellular electron transfer efficiency for anode electrodes and increasing the active sites and strengthening the reduction pathway for cathode electrodes. In spite of the challenges of MFC electrodes, graphene-modified electrodes are promising for MFC development to address the reduction in efficiency brought about by organic waste by converting it into electrical energy. PMID:28773929

  12. Functionalized graphene nanomaterials: new insight into direct exfoliation of graphite with supramolecular polymers

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Chia; Chang, Feng-Chih; Wang, Jui-Hsu; Chen, Jem-Kun; Yen, Ying-Chieh; Lee, Duu-Jong

    2015-12-01

    A novel urea-cytosine end-capped polypropylene glycol (UrCy-PPG) can self-assemble into a long-range ordered lamellar microstructure on the surface of graphene, due to the strong specific interactions between UrCy-PPG and graphene. In addition, the graphene composite produced exhibits a high conductivity (~1093 S m-1) with a dramatic thermo-responsive ON/OFF resistance-switching behavior (10 consecutive cycles).A novel urea-cytosine end-capped polypropylene glycol (UrCy-PPG) can self-assemble into a long-range ordered lamellar microstructure on the surface of graphene, due to the strong specific interactions between UrCy-PPG and graphene. In addition, the graphene composite produced exhibits a high conductivity (~1093 S m-1) with a dramatic thermo-responsive ON/OFF resistance-switching behavior (10 consecutive cycles). Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07076g

  13. Relationship between microstructure and tribological behavior of CFRC composites

    NASA Astrophysics Data System (ADS)

    de Souza, Maria Aparecida Miranda; Pardini, Luiz Claudio

    2017-12-01

    Carbon fiber reinforced carbon (CFRC) composites were initially introduced in spacecraft propulsion area and quickly started to be applied in aircraft braking systems, replacing conventional metallic systems, thanks to their excellent tribological properties. Each company develops their own CFRC composite production system, the information is unique to each manufacturer, and little is reported in the literature. In this work, tribological characterizations of three commercial CFRC composites are performed using a pin-on-disc tribometer. The results showed that the pairs assembled with pyrolytic matrix composites of rough or smooth laminar texture with graphitization index between 18 and 40% has an average COF between 0.15 and 0.25, while the pairs assembled with mixed pairs, pyrolytic matrix and glassy matrix, or pair of glassy matrix display average COF between 0.10 and 0.15. Wear which can reach a rate 9 times higher to the tribological pair of glassy composite when compared to a pyrolytic composite.

  14. Achievable flatness in a large microwave power transmitting antenna

    NASA Technical Reports Server (NTRS)

    Ried, R. C.

    1980-01-01

    A dual reference SPS system with pseudoisotropic graphite composite as a representative dimensionally stable composite was studied. The loads, accelerations, thermal environments, temperatures and distortions were calculated for a variety of operational SPS conditions along with statistical considerations of material properties, manufacturing tolerances, measurement accuracy and the resulting loss of sight (LOS) and local slope distributions. A LOS error and a subarray rms slope error of two arc minutes can be achieved with a passive system. Results show that existing materials measurement, manufacturing, assembly and alignment techniques can be used to build the microwave power transmission system antenna structure. Manufacturing tolerance can be critical to rms slope error. The slope error budget can be met with a passive system. Structural joints without free play are essential in the assembly of the large truss structure. Variations in material properties, particularly for coefficient of thermal expansion from part to part, is more significant than actual value.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, John D.; Sterbentz, James W.; Snoj, Luka

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less

  16. Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development

    NASA Technical Reports Server (NTRS)

    Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony

    2015-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.

  17. Aerothermodynamic Environments Definition for the Mars Science Laboratory Entry Capsule

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Dyakonov, Artem A.; Wright, Michael J.; Tang, Chun Y.

    2007-01-01

    An overview of the aerothermodynamic environments definition status is presented for the Mars Science Laboratory entry vehicle. The environments are based on Navier-Stokes flowfield simulations on a candidate aeroshell geometry and worst-case entry heating trajectories. Uncertainties for the flowfield predictions are based primarily on available ground data since Mars flight data are scarce. The forebody aerothermodynamics analysis focuses on boundary layer transition and turbulent heating augmentation. Turbulent transition is expected prior to peak heating, a first for Mars entry, resulting in augmented heat flux and shear stress at the same heatshield location. Afterbody computations are also shown with and without interference effects of reaction control system thruster plumes. Including uncertainties, analysis predicts that the heatshield may experience peaks of 225 W/sq cm for turbulent heat flux, 0.32 atm for stagnation pressure, and 400 Pa for turbulent shear stress. The afterbody heat flux without thruster plume interference is predicted to be 7 W/sq cm on the backshell and 10 W/sq cm on the parachute cover. If the reaction control jets are fired near peak dynamic pressure, the heat flux at localized areas could reach as high as 76 W/sq cm on the backshell and 38 W/sq cm on the parachute cover, including uncertainties. The final flight environments used for hardware design will be updated for any changes in the aeroshell configuration, heating design trajectories, or uncertainties.

  18. Electrochemical monitoring of biointeraction by graphene-based material modified pencil graphite electrode.

    PubMed

    Eksin, Ece; Zor, Erhan; Erdem, Arzum; Bingol, Haluk

    2017-06-15

    Recently, the low-cost effective biosensing systems based on advanced nanomaterials have received a key attention for development of novel assays for rapid and sequence-specific nucleic acid detection. The electrochemical biosensor based on reduced graphene oxide (rGO) modified disposable pencil graphite electrodes (PGEs) were developed herein for electrochemical monitoring of DNA, and also for monitoring of biointeraction occurred between anticancer drug, Daunorubicin (DNR), and DNA. First, rGO was synthesized chemically and characterized by using UV-Vis, TGA, FT-IR, Raman Spectroscopy and SEM techniques. Then, the quantity of rGO assembling onto the surface of PGE by passive adsorption was optimized. The electrochemical behavior of rGO-PGEs was examined by cyclic voltammetry (CV). rGO-PGEs were then utilized for electrochemical monitoring of surface-confined interaction between DNR and DNA using differential pulse voltammetry (DPV) technique. Additionally, voltammetric results were complemented with electrochemical impedance spectroscopy (EIS) technique. Electrochemical monitoring of DNR and DNA was resulted with satisfying detection limits 0.55µM and 2.71µg/mL, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A User-Friendly DNA Modeling Software for the Interpretation of Cryo-Electron Microscopy Data.

    PubMed

    Larivière, Damien; Galindo-Murillo, Rodrigo; Fourmentin, Eric; Hornus, Samuel; Lévy, Bruno; Papillon, Julie; Ménétret, Jean-François; Lamour, Valérie

    2017-01-01

    The structural modeling of a macromolecular machine is like a "Lego" approach that is challenged when blocks, like proteins imported from the Protein Data Bank, are to be assembled with an element adopting a serpentine shape, such as DNA templates. DNA must then be built ex nihilo, but modeling approaches are either not user-friendly or very long and fastidious. In this method chapter we show how to use GraphiteLifeExplorer, a software with a simple graphical user interface that enables the sketching of free forms of DNA, of any length, at the atomic scale, as fast as drawing a line on a sheet of paper. We took as an example the nucleoprotein complex of DNA gyrase, a bacterial topoisomerase whose structure has been determined using cryo-electron microscopy (Cryo-EM). Using GraphiteLifeExplorer, we could model in one go a 155 bp long and twisted DNA duplex that wraps around DNA gyrase in the cryo-EM map, improving the quality and interpretation of the final model compared to the initially published data.

  20. High-performance symmetric supercapacitors based on carbon nanotube/graphite nanofiber nanocomposites.

    PubMed

    Zhou, Yongsheng; Jin, Pan; Zhou, Yatong; Zhu, Yingchun

    2018-06-13

    This work reports the nanocomposites of graphitic nanofibers (GNFs) and carbon nanotubes (CNTs) as the electrode material for supercapacitors. The hybrid CNTs/GNFs was prepared via a synthesis route that involved catalytic chemical vapor deposition (CVD) method. The structure and morphology of CNTs/GNFs can be precisely controlled by adjusting the flow rates of reactant gases. The nest shape entanglement of CNTs and GNFs which could not only have high conductivity to facilitate ion transmission, but could also increase surface area for more electrolyte ions access. When assembled in a symmetric two-electrode system, the CNTs/GNFs-based supercapacitor showed a very good cycling stability of 96% after 10 000 charge/discharge cycles. Moreover, CNTs/GNFs-based symmetric device can deliver a maximum specific energy of 72.2 Wh kg -1 at a power density of 686.0 W kg -1 . The high performance of the hybrid performance can be attributed to the wheat like GNFs which provide sufficient accessible sites for charge storage, and the CNTs skeleton which provide channels for charge transport.

  1. Metal dependent motif transition in a self-assembled monolayer of bipyridine derivatives via coordination: An STM study.

    PubMed

    Wang, Yi; Yuan, Qunhui; Xu, Hongbo; Zhu, Xuefeng; Gan, Wei

    2016-07-21

    Low-dimensional molecular motifs with diversity developed via the on-surface chemistry are attracting growing interest for their potential in advanced nanofabrication. In this work, scanning tunneling microscopy was employed to investigate the in situ and ex situ metal coordinations between 4,4'-ditetradecyl-2,2'-bipyridine (bpy) and Zn(ii) or Cu(ii) ions at a highly oriented pyrolytic graphite (HOPG)/1-phenyloctane interface under ambient conditions. The results demonstrate that the bpy adopts a flat-lying orientation with its substituted alkyl chains in a tail-to-tail arrangement in a bpy monolayer. For the in situ coordination, the bpy/Zn(ii) and bpy/Cu(ii) complexes are aligned in edge-on fashions, wherein the bpy stands vertically on the HOPG surface and interdigitates at the alkyl chains. In the two-dimensional arrays of ex situ coordinated complexes, metal dependent motifs have been observed with Zn(ii) and Cu(ii), wherein the bipyridine moieties are parallel to the graphite surface. These results suggest that the desired on-surface coordination architectures may be achieved by the intentional selection of the metal centers.

  2. Metal-free supercapacitor with aqueous electrolyte and low-cost carbon materials

    NASA Astrophysics Data System (ADS)

    Blomquist, Nicklas; Wells, Thomas; Andres, Britta; Bäckström, Joakim; Forsberg, Sven; Olin, Håkan

    2017-01-01

    Electric double-layer capacitors (EDLCs) or supercapacitors (SCs) are fast energy storage devices with high pulse efficiency and superior cyclability, which makes them useful in various applications including electronics, vehicles and grids. Aqueous SCs are considered to be more environmentally friendly than those based on organic electrolytes. Because of the corrosive nature of the aqueous environment, however, expensive electrochemically stable materials are needed for the current collectors and electrodes in aqueous SCs. This results in high costs for a given energy-storage capacity. To address this, we developed a novel low-cost aqueous SC using graphite foil as the current collector and a mix of graphene, nanographite, simple water-purification carbons and nanocellulose as electrodes. The electrodes were coated directly onto the graphite foil by using casting frames and the SCs were assembled in a pouch cell design. With this approach, we achieved a material cost reduction of greater than 90% while maintaining approximately one-half of the specific capacitance of a commercial unit, thus demonstrating that the proposed SC can be an environmentally friendly, low-cost alternative to conventional SCs.

  3. Novel approaches for alleviation of electrical hazards of graphite-fiber composites. [aircraft safety

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.

    1979-01-01

    Four basically different approaches were considered: gasification of fibers, retention in the matrix, clumping to prevent entrainment, and electrical insulation of fibers. The techniques used to achieve them are described in some detail. These involved surface treatment of fibers to improve the wettability of fibers and coating the fibers with the selected substances before laying them up for composite fabrication. Thermogravimetric analyses were performed on the plain and treated fibers in inert (nitrogen, argon) and reactive (air) atmospheres. The treated fibers embedded in epoxy were ignited in a Bunsen flame to determine the efficiency of these treatments. A simple apparatus was assembled to detect the time for the first short circuit (in a typical electrical circuit) when exposed to the combustion products from a graphite fiber composite fire. The state-of-the-art and treated fibers cast in typical epoxy were burned and ranked for potential success. It was inferred that the gasification schemes appear promising when reduction or oxidation is tried. It was also found that some very promising candidates were available for the clumping and for the electrical insulation of fibers.

  4. Fabrication of composite propfan blades for a cruise missile wind tunnel model

    NASA Technical Reports Server (NTRS)

    Fite, E. Brian

    1993-01-01

    This report outlines the procedures that were employed in fabricating prototype graphite-epoxy composite prop fan blades. These blades were used in wind tunnel tests that investigated prop fan propulsion system interactions with a missile airframe in order to study the feasibility of an advanced-technology-propfan-propelled missile. Major phases of the blade fabrication presented include machining of the master blade, mold fabrication, ply cutting and assembly, blade curing, and quality assurance. Specifically, four separate designs were fabricated, 18 blades of each geometry, using the same fabrication technique for each design.

  5. A normal incidence, high resolution X-ray telescope for solar coronal observations

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1985-01-01

    The following major activities were advanced or completed: complete design of the entire telescope assembly and fabrication of all front-end components; specification of all rocket skin sections including bulkheads, feedthroughs and access door; fabrication, curing, and delivery of the large graphite-epoxy telescope tube; engineering analysis of the primary mirror vibration test was completed and a decision made to redesign the mirror attachment to a kinematic three-point mount; detail design of the camera control, payload and housekeeping electronics; and multilayer mirror flats with 2d spacings of 50 A and 60 A.

  6. Multistage Electromagnetic and Laser Launchers for Affordable, Rapid Access to Space

    DTIC Science & Technology

    2011-07-01

    control procedures. To accommodate this, after each gun build, bore gauges were used to accurately measure the bore dimensions , and the projectile...1. Operating Parameters Projectile Mass 5.4 g Bore Dimensions 17 mm × 17 mm Desired Muzzle Speed ~4.5 km/s (3.2m) ~7 km/s (7 m) Gun Length 3.2 m...for a range of ballistic trajectories of interest to the gun launch. The aeroshell dimensions were chosen as being typical for the launch mass

  7. Effects of nonequilibrium ablation chemistry on Viking radio blackout.

    NASA Technical Reports Server (NTRS)

    Evans, J. S.; Schexnayder, C. J., Jr.; Grose, W. L.

    1973-01-01

    The length of the entry blackout period during descent of the Viking Lander into the Mars atmosphere is predicted from calculated profiles of electron density in the shock layer over the aeroshell. Nonequilibrium chemistry plays a key role in the calculation, both in the inviscid flow and in the boundary layer. This is especially true in the boundary layer contaminated with ablation material, for which nonequilibrium chemistry predicts electron densities two decades lower than the same case calculated with equilibrium chemistry.

  8. Passive Safety Features Evaluation of KIPT Neutron Source Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Zhaopeng; Gohar, Yousry

    2016-06-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have cooperated on the development, design, and construction of a neutron source facility. The facility was constructed at Kharkov, Ukraine and its commissioning process is underway. It will be used to conduct basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The facility has an electron accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100 MeV electrons. Tungsten or natural uranium is the target material for generating neutrons driving the subcritical assembly. The subcritical assemblymore » is composed of WWR-M2 - Russian fuel assemblies with U-235 enrichment of 19.7 wt%, surrounded by beryllium reflector assembles and graphite blocks. The subcritical assembly is seated in a water tank, which is a part of the primary cooling loop. During normal operation, the water coolant operates at room temperature and the total facility power is ~300 KW. The passive safety features of the facility are discussed in in this study. Monte Carlo computer code MCNPX was utilized in the analyses with ENDF/B-VII.0 nuclear data libraries. Negative reactivity temperature feedback was consistently observed, which is important for the facility safety performance. Due to the design of WWR-M2 fuel assemblies, slight water temperature increase and the corresponding water density decrease produce large reactivity drop, which offset the reactivity gain by mistakenly loading an additional fuel assembly. The increase of fuel temperature also causes sufficiently large reactivity decrease. This enhances the facility safety performance because fuel temperature increase provides prompt negative reactivity feedback. The reactivity variation due to an empty fuel position filled by water during the fuel loading process is examined. Also, the loading mistakes of removing beryllium reflector assemblies and replacing them with dummy assemblies were analyzed. In all these circumstances, the reactivity change results do not cause any safety concerns.« less

  9. Laser processing for manufacturing nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Van, Hai Hoang

    CNTs have been considered as the excellent candidate to revolutionize a broad range of applications. There have been many method developed to manipulate the chemistry and the structure of CNTs. Laser with non-contact treatment capability exhibits many processing advantages, including solid-state treatment, extremely fast processing rate, and high processing resolution. In addition, the outstanding monochromatic, coherent, and directional beam generates the powerful energy absorption and the resultant extreme processing conditions. In my research, a unique laser scanning method was developed to process CNTs, controlling the oxidation and the graphitization. The achieved controllability of this method was applied to address the important issues of the current CNT processing methods for three applications. The controllable oxidation of CNTs by laser scanning method was applied to cut CNT films to produce high-performance cathodes for FE devices. The production method includes two important self-developed techniques to produce the cold cathodes: the production of highly oriented and uniformly distributed CNT sheets and the precise laser trimming process. Laser cutting is the unique method to produce the cathodes with remarkable features, including ultrathin freestanding structure (~200 nm), greatly high aspect ratio, hybrid CNT-GNR emitter arrays, even emitter separation, and directional emitter alignment. This unique cathode structure was unachievable by other methods. The developed FE devices successfully solved the screening effect issue encounter by current FE devices. The laser-control oxidation method was further developed to sequentially remove graphitic walls of CNTs. The laser oxidation process was directed to occur along the CNT axes by the laser scanning direction. Additionally, the oxidation was further assisted by the curvature stress and the thermal expansion of the graphitic nanotubes, ultimately opening (namely unzipping) the tubular structure to produce GNRs. Therefore the developed laser scanning method optimally exploited the thermal laser-CNT interaction, successfully transforming CNTs into 2D GNRs. The solid-state laser unzipping process effectively addressed the issues of contamination and scalability encountered by the current unzipping methods. Additionally, the produced GNRs were uniquely featured with the freestanding structure and the smooth surfaces. If the scanning process was performed in an inert environment without the appearance of oxygen, the oxidation of CNTs would not happen. Instead, the greatly mobile carbon atoms of the heated CNTs would reorganize the crystal structure, inducing the graphitization process to improve the crystallinity. Many observations showing the structural improvement of CNTs under laser irradiation has been reported, confirming the capability of laser to heal graphitic defects. Laser methods were more time-efficient and energy-efficient than other annealing methods because laser can quickly heat CNTs to generate graphitization in less than one second. This subsecond heating process of laser irradiation was more effective than other heating methods because it avoided the undesired coalescence of CNTs. In my research, the laser scanning method was applied to generate the graphitization, healing the structural defects of CNTs. Different from the reported laser methods, the laser scanning directed the locally annealed areas to move along the CNT axes, migrating and coalescencing the graphitic defects to achieve better healing results. The critical information describing the CNT structural transformation caused by the moving laser irradiation was explored from the successful applications of the developed laser method. This knowledge inspires an important method to modifiy the general graphitic structure for important applications, such as carbon fiber production, CNT self-assembly process and CNT welding. This method will be effective, facile, versatile, and adaptable for laboratory and industrial facilities.

  10. Iron Oxide Nanosheets and Pulse-Electrodeposited Ni-Co-S Nanoflake Arrays for High-Performance Charge Storage.

    PubMed

    Khani, Hadi; Wipf, David O

    2017-03-01

    Nanostructured nickel cobalt sulfide (Ni 4.5 Co 4.5 S 8 ) has been prepared through a single-step pulse-electrodeposition method. Iron oxide nanosheets at hollow graphite shells (Fe 3 O 4 @g-shells) were prepared from graphite-coated iron carbide/α-Fe (g-Fe 3 C/Fe) in a two-step annealing/electrochemical cycling process. Electrochemical characterization of the Ni 4.5 Co 4.5 S 8 and g-Fe 3 C/Fe materials showed that both have high specific capacities (206 mAh g -1 and 147 mAh g -1 at 1 A g -1 ) and excellent rate capabilities (∼95% and ∼83% retention at 20 A g -1 , respectively). To demonstrate the advantageous pairing of these high rate materials, a full-cell battery with supercapacitor-like power behavior was assembled with Ni 4.5 Co 4.5 S 8 and g-Fe 3 C/Fe as the positive and negative electrodes, respectively. The (Ni 4.5 Co 4.5 S 8 //g-Fe 3 C/Fe) device could be reversibly operated in a 0.0-1.6 V potential window, delivering an impressive specific energy of 89 Wh kg -1 at 1.1 kW kg -1 and a remarkable rate performance of 61 Wh kg -1 at a very high specific power of 38.5 kW kg -1 . Additionally, long-term cycling demonstrated that the asymmetric full cell assembly retained 91% of its initial specific capacity after 2500 cycles at 40 A g -1 . The performance features of this device are among the best for iron oxide/hydroxide and bimetallic sulfide based energy storage devices to date, thereby giving insight into design principles for the next generation high-energy-density devices.

  11. Effect of Acetylene Black Content to Half Cells Li-ion Battery Performance Based on Li4Ti5O12 using Li2CO3 as Lithium Ion Source with Hydrothermal Mechanochemical Process

    NASA Astrophysics Data System (ADS)

    Priyono, B.; Faizah; Syahrial, A. Z.; Subhan, A.

    2017-07-01

    Lithium titanate (Li4Ti5O12)/LTO is a promising candidate to be used as anode electrode in Li-ion battery, to replace graphite in Li-ion battery application. Crystal structure of lithium titanate/LTO is more stable or undergoes less strain than graphite during intercalation and de-intercalation process Li+ ions. However, although lithium titanate has good stability, the material has low electrical conductivity and lithium ion diffusion. The purpose of this research is to synthesis the spinel LTO using combinated hydrothermal and mechanochemical processes from xerogel TiO2. Then, to increase the conductivity, in the half-cell battery assembly process it was added acetylene black conductive (AB) additive with various from 10%, to 15% in wt. The LTO obtained were characterized using scanning electron microscope (SEM), X-Ray Diffraction (XRD) and Brunauer-Emmett-Teller (BET). The XRD showed a rutile as minor phase, while SEM showed homogeneous distribution of particle with an average particle size of 0.35 μm. The BET showed that the surface area of LTO formed is 2.26 m2/g. The assembled coin half cells used this Li4Ti5O12 as a cathode and lithium metal foil as the anode were tested using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and charge discharge (CD). The conductivity value obtained from EIS corresponds to the contents of AB. Meanwhile, the CV and CD testing showed that higher percentage of AB causing the decrease of battery specific capacity. The highest specific capacity at the rate of 10C is obtained at the mixture of 10wt% AB with the value of 40.91 mAh/g.

  12. HTR-PROTEUS pebble bed experimental program cores 9 & 10: columnar hexagonal point-on-point packing with a 1:1 moderator-to-fuel pebble ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, John D.

    2014-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less

  13. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 5, 6, 7, & 8: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:2 MODERATOR-TO-FUEL PEBBLE RATIO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less

  14. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 9 & 10: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less

  15. Nuclear design analysis of square-lattice honeycomb space nuclear rocket engine

    NASA Astrophysics Data System (ADS)

    Widargo, Reza; Anghaie, Samim

    1999-01-01

    The square-lattice honeycomb reactor is designed based on a cylindrical core that is determined to have critical diameter and length of 0.50 m and 0.50 c, respectively. A 0.10-cm thick radial graphite reflector, in addition to a 0.20-m thick axial graphite reflector are used to reduce neutron leakage from the reactor. The core is fueled with solid solution of 93% enriched (U, Zr, Nb)C, which is one of several ternary uranium carbides that are considered for this concept. The fuel is to be fabricated as 2 mm grooved (U, Zr, Nb)C wafers. The fuel wafers are used to form square-lattice honeycomb fuel assemblies, 0.10 m in length with 30% cross-sectional flow area. Five fuel assemblies are stacked up axially to form the reactor core. Based on the 30% void fraction, the width of the square flow channel is about 1.3 mm. The hydrogen propellant is passed through these flow channels and removes the heat from the reactor core. To perform nuclear design analysis, a series of neutron transport and diffusion codes are used. The preliminary results are obtained using a simple four-group cross-section model. To optimize the nuclear design, the fuel densities are varied for each assembly. Tantalum, hafnium and tungsten are considered and used as a replacement for niobium in fuel material to provide water submersion sub-criticality for the reactor. Axial and radial neutron flux and power density distributions are calculated for the core. Results of the neutronic analysis indicate that the core has a relatively fast spectrum. From the results of the thermal hydraulic analyses, eight axial temperature zones are chosen for the calculation of group average cross-sections. An iterative process is conducted to couple the neutronic calculations with the thermal hydraulics calculations. Results of the nuclear design analysis indicate that a compact core can be designed based on ternary uranium carbide square-lattice honeycomb fuel. This design provides a relatively high thrust to weight ratio.

  16. Lifting Entry & Atmospheric Flight (LEAF) System Concept Applications at Solar System Bodies With an Atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, Greg; Polidan, Ronald; Ross, Floyd; Sokol, Daniel; Warwick, Steve

    2015-11-01

    Northrop Grumman and L’Garde have continued the development of a hypersonic entry, semi-buoyant, maneuverable platform capable of performing long-duration (months to a year) in situ and remote measurements at any solar system body that possesses an atmosphere.The Lifting Entry & Atmospheric Flight (LEAF) family of vehicles achieves this capability by using a semi-buoyant, ultra-low ballistic coefficient vehicle whose lifting entry allows it to enter the atmosphere without an aeroshell. The mass savings realized by eliminating the heavy aeroshell allows significantly more payload to be accommodated by the platform for additional science collection and return.In this presentation, we discuss the application of the LEAF system at various solar system bodies: Venus, Titan, Mars, and Earth. We present the key differences in platform design as well as operational differences required by the various target environments. The Venus implementation includes propulsive capability to reach higher altitudes during the day and achieves full buoyancy in the mid-cloud layer of Venus’ atmosphere at night.Titan also offers an attractive operating environment, allowing LEAF designs that can target low or medium altitude operations, also with propulsive capabilities to roam within each altitude regime. The Mars version is a glider that descends gradually, allowing targeted delivery of payloads to the surface or high resolution surface imaging. Finally, an Earth version could remain in orbit in a stowed state until activated, allowing rapid response type deployments to any region of the globe.

  17. An Inviscid Computational Study of Three '07 Mars Lander Aeroshell Configurations Over a Mach Number Range of 2.3 to 4.5

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.; Sutton, Kenneth (Technical Monitor)

    2001-01-01

    This report documents the results of a study conducted to compute the inviscid longitudinal aerodynamic characteristics of three aeroshell configurations of the proposed '07 Mars lander. This was done in support of the activity to design a smart lander for the proposed '07 Mars mission. In addition to the three configurations with tabs designated as the shelf, the canted, and the Ames, the baseline configuration (without tab) was also studied. The unstructured grid inviscid CFD software FELISA was used, and the longitudinal aerodynamic characteristics of the four configurations were computed for Mach number of 2.3, 2.7, 3.5, and 4.5, and for an angle of attack range of -4 to 20 degrees. Wind tunnel tests had been conducted on scale models of these four configurations in the Unitary Plan Wind Tunnel, NASA Langley Research Center. Present computational results are compared with the data from these tests. Some differences are noticed between the two results, particularly at the lower Mach numbers. These differences are attributed to the pressures acting on the aft body. Most of the present computations were done on the forebody only. Additional computations were done on the full body (forebody and afterbody) for the baseline and the Shelf configurations. Results of some computations done (to simulate flight conditions) with the Mars gas option and with an effective gamma are also included.

  18. A graphitic hollow carbon nitride nanosphere as a novel photochemical internalization agent for targeted and stimuli-responsive cancer therapy

    NASA Astrophysics Data System (ADS)

    Liu, Chaoqun; Chen, Zhaowei; Wang, Zhenzhen; Li, Wei; Ju, Enguo; Yan, Zhengqing; Liu, Zhen; Ren, Jinsong; Qu, Xiaogang

    2016-06-01

    As a novel technique, photochemical internalization (PCI) has been employed as a new approach to overcome endo/lysosomal restriction, which is one of the main difficulties in both drug and gene delivery. However, the complicated synthesis procedure (usually requiring the self-assembly of polymers, photosensitizers and cargos) and payload specificity greatly limit its further application. In this paper, we employ a highly fluorescent graphitic hollow carbon nitride nanosphere (GHCNS) to simultaneously serve as a PCI photosensitizer, an imaging agent and a drug carrier. The surface modification of GHCNS with multifunctional polysaccharide hyaluronic acid (HA) endows the system with colloidal stability, biocompatibility and cancer cell targeting ability. After CD44 receptor-mediated endocytosis, the nanosystem is embedded in endo/lysosomal vesicles and HA could be specially degraded by hyaluronidase (Hyal), inducing open pores. In the following, with visible light illumination, GHCNS could produce ROS that effectively induced lipid peroxidation and caused endo/lysosomal membrane break, accelerating the cytoplasmic release of the drug in the targeted and irradiated cells. As a result, significantly increased therapeutic potency and specificity against cancer cells could be achieved.As a novel technique, photochemical internalization (PCI) has been employed as a new approach to overcome endo/lysosomal restriction, which is one of the main difficulties in both drug and gene delivery. However, the complicated synthesis procedure (usually requiring the self-assembly of polymers, photosensitizers and cargos) and payload specificity greatly limit its further application. In this paper, we employ a highly fluorescent graphitic hollow carbon nitride nanosphere (GHCNS) to simultaneously serve as a PCI photosensitizer, an imaging agent and a drug carrier. The surface modification of GHCNS with multifunctional polysaccharide hyaluronic acid (HA) endows the system with colloidal stability, biocompatibility and cancer cell targeting ability. After CD44 receptor-mediated endocytosis, the nanosystem is embedded in endo/lysosomal vesicles and HA could be specially degraded by hyaluronidase (Hyal), inducing open pores. In the following, with visible light illumination, GHCNS could produce ROS that effectively induced lipid peroxidation and caused endo/lysosomal membrane break, accelerating the cytoplasmic release of the drug in the targeted and irradiated cells. As a result, significantly increased therapeutic potency and specificity against cancer cells could be achieved. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07719b

  19. Bactericidal activity of self-assembled palmitic and stearic fatty acid crystals on highly ordered pyrolytic graphite.

    PubMed

    Ivanova, Elena P; Nguyen, Song Ha; Guo, Yachong; Baulin, Vladimir A; Webb, Hayden K; Truong, Vi Khanh; Wandiyanto, Jason V; Garvey, Christopher J; Mahon, Peter J; Mainwaring, David E; Crawford, Russell J

    2017-09-01

    The wings of insects such as cicadas and dragonflies have been found to possess nanostructure arrays that are assembled from fatty acids. These arrays can physically interact with the bacterial cell membranes, leading to the death of the cell. Such mechanobactericidal surfaces are of significant interest, as they can kill bacteria without the need for antibacterial chemicals. Here, we report on the bactericidal effect of two of the main lipid components of the insect wing epicuticle, palmitic (C16) and stearic (C18) fatty acids. Films of these fatty acids were re-crystallised on the surface of highly ordered pyrolytic graphite. It appeared that the presence of two additional CH 2 groups in the alkyl chain resulted in the formation of different surface structures. Scanning electron microscopy and atomic force microscopy showed that the palmitic acid microcrystallites were more asymmetric than those of the stearic acid, where the palmitic acid microcrystallites were observed to be an angular abutment in the scanning electron micrographs. The principal differences between the two types of long-chain saturated fatty acid crystallites were the larger density of peaks in the upper contact plane of the palmitic acid crystallites, as well as their greater proportion of asymmetrical shapes, in comparison to that of the stearic acid film. These two parameters might contribute to higher bactericidal activity on surfaces derived from palmitic acid. Both the palmitic and stearic acid crystallite surfaces displayed activity against Gram-negative, rod-shaped Pseudomonas aeruginosa and Gram-positive, spherical Staphylococcus aureus cells. These microcrystallite interfaces might be a useful tool in the fabrication of effective bactericidal nanocoatings. Nanostructured cicada and dragonfly wing surfaces have been discovered to be able physically kill bacterial cells. Here, we report on the successful fabrication of bactericidal three-dimensional structures of two main lipid components of the epicuticle of insect wings, palmitic (C16) and stearic (C18) acids. After crystallisation onto highly ordered pyrolytic graphite, both the palmitic and stearic acid films displayed bactericidal activity against both Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus cells. The simplicity of the production of these microcrystallite interfaces suggests that a fabrication technique, based on solution deposition, could be an effective technique for the application of bactericidal nanocoatings. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Microwave exfoliated graphene oxide/TiO{sub 2} nanowire hybrid for high performance lithium ion battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishtiaque Shuvo, Mohammad Arif; Rodriguez, Gerardo; Karim, Hasanul

    Lithium ion battery (LIB) is a key solution to the demand of ever-improving, high energy density, clean-alternative energy systems. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To date, one of the approaches in LIB performance improvement is by using porous carbon (PC) to replace graphite as anode material. PC's pore structure facilitates ion transport and has been proven to be an excellent anode material candidate in high power density LIBs. In addition, to overcome the limited lithium-ion intercalation obstacle, nanostructured anode assembly hasmore » been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown promising results for enhanced lithium-ion intercalation. Herein, we demonstrate a hydrothermal approach of growing TiO{sub 2} nanowires (TON) on microwave exfoliated graphene oxide (MEGO) to further improve LIB performance over PC. This MEGO-TON hybrid not only uses the high surface area of MEGO but also increases the specific surface area for electrode–electrolyte interaction. Therefore, this new nanowire/MEGO hybrid anode material enhances both the specific capacity and charge–discharge rate. Scanning electron microscopy and X-ray diffraction were used for materials characterization. Battery analyzer was used for measuring the electrical performance of the battery. The testing results have shown that MEGO-TON hybrid provides up to 80% increment of specific capacity compared to PC anode.« less

  1. Modifying the morphology and properties of aligned CNT foams through secondary CNT growth.

    PubMed

    Faraji, Shaghayegh; Stano, Kelly; Akyildiz, Halil; Yildiz, Ozkan; Jur, Jesse S; Bradford, Philip D

    2018-07-20

    In this work, we report for the first time, growth of secondary carbon nanotubes (CNTs) throughout a three-dimensional assembly of CNTs. The assembly of nanotubes was in the form of aligned CNT/carbon (ACNT/C) foams. These low-density CNT foams were conformally coated with an alumina buffer layer using atomic layer deposition. Chemical vapor deposition was further used to grow new CNTs. The CNT foam's extremely high porosity allowed for growth of secondary CNTs inside the bulk of the foams. Due to the heavy growth of new nanotubes, density of the foams increased more than 2.5 times. Secondary nanotubes had the same graphitic quality as the primary CNTs. Microscopy and chemical analysis revealed that the thickness of the buffer layer affected the diameter, nucleation density as well as growth uniformity across the thickness of the foams. The effects of secondary nanotubes on the compressive mechanical properties of the foams was also investigated.

  2. Modifying the morphology and properties of aligned CNT foams through secondary CNT growth

    NASA Astrophysics Data System (ADS)

    Faraji, Shaghayegh; Stano, Kelly; Akyildiz, Halil; Yildiz, Ozkan; Jur, Jesse S.; Bradford, Philip D.

    2018-07-01

    In this work, we report for the first time, growth of secondary carbon nanotubes (CNTs) throughout a three-dimensional assembly of CNTs. The assembly of nanotubes was in the form of aligned CNT/carbon (ACNT/C) foams. These low-density CNT foams were conformally coated with an alumina buffer layer using atomic layer deposition. Chemical vapor deposition was further used to grow new CNTs. The CNT foam’s extremely high porosity allowed for growth of secondary CNTs inside the bulk of the foams. Due to the heavy growth of new nanotubes, density of the foams increased more than 2.5 times. Secondary nanotubes had the same graphitic quality as the primary CNTs. Microscopy and chemical analysis revealed that the thickness of the buffer layer affected the diameter, nucleation density as well as growth uniformity across the thickness of the foams. The effects of secondary nanotubes on the compressive mechanical properties of the foams was also investigated.

  3. A priori calculations of the free energy of formation from solution of polymorphic self-assembled monolayers.

    PubMed

    Reimers, Jeffrey R; Panduwinata, Dwi; Visser, Johan; Chin, Yiing; Tang, Chunguang; Goerigk, Lars; Ford, Michael J; Sintic, Maxine; Sum, Tze-Jing; Coenen, Michiel J J; Hendriksen, Bas L M; Elemans, Johannes A A W; Hush, Noel S; Crossley, Maxwell J

    2015-11-10

    Modern quantum chemical electronic structure methods typically applied to localized chemical bonding are developed to predict atomic structures and free energies for meso-tetraalkylporphyrin self-assembled monolayer (SAM) polymorph formation from organic solution on highly ordered pyrolytic graphite surfaces. Large polymorph-dependent dispersion-induced substrate-molecule interactions (e.g., -100 kcal mol(-1) to -150 kcal mol(-1) for tetratrisdecylporphyrin) are found to drive SAM formation, opposed nearly completely by large polymorph-dependent dispersion-induced solvent interactions (70-110 kcal mol(-1)) and entropy effects (25-40 kcal mol(-1) at 298 K) favoring dissolution. Dielectric continuum models of the solvent are used, facilitating consideration of many possible SAM polymorphs, along with quantum mechanical/molecular mechanical and dispersion-corrected density functional theory calculations. These predict and interpret newly measured and existing high-resolution scanning tunnelling microscopy images of SAM structure, rationalizing polymorph formation conditions. A wide range of molecular condensed matter properties at room temperature now appear suitable for prediction and analysis using electronic structure calculations.

  4. Collar nut and thrust ring

    DOEpatents

    Lowery, Guy B.

    1991-01-01

    A collar nut comprises a hollow cylinder having fine interior threads at one end for threadably engaging a pump mechanical seal assembly and an inwardly depending flange at the other end. The flange has an enlarged portion with a groove for receiving an O-ring for sealing against the intrusion of pumpage from the exterior. The enlarged portion engages a thrust ring about the pump shaft for crushing a hard O-ring, such as a graphite O-ring. The hard O-ring seals the interior of the mechanical seal assembly and pump housing against the loss of lubricants or leakage of pumpage. The fine threads of the hollow cylinder provide the mechanical advantage for crushing the hard O-ring evenly and easily with a hand tool from the side of the collar nut rather than by tightening a plurality of bolts from the end and streamlines the exterior surface of the mechanical seal. The collar nut avoids the spatial requirements of bolt heads at the end of a seal and associated bolt head turbulence.

  5. W18O49 nanowires assembled on carbon felt for application to supercapacitors

    NASA Astrophysics Data System (ADS)

    Jung, Jinjoo; Kim, Do Hyung

    2018-03-01

    For supercapacitor applications, W18O49 nanowires have been extensively grown on graphitic carbon felt using a facile solvothermal method. The diameter and length of the nanowires are about 7 and 300 nm, respectively. The nanowires consist of monoclinic W18O49 grown along the [010] direction, as shown by TEM and XRD analyses. The W18O49 nanowires, assembled on carbon felt, exhibit a high capacity of 588.33 F/g at a current density of 1 A/g together with an excellent cycle performance, and a low internal resistance during the electrochemical tests. This outstanding performance may originate from the three-dimensional porous nanostructure of these W18O49 nanowires, which leads to a reduction in the resistance and fast reaction kinetics due to the high specific surface area and electrolyte accessibility. Furthermore, sufficient oxygen deficiencies of the substoichiometric tungsten oxide can also contribute to the electrochemical activity, which can be confirmed by comparison of CV and EIS data with WO3 nanowires.

  6. Switchable friction enabled by nanoscale self-assembly on graphene

    DOE PAGES

    Gallagher, Patrick; Lee, Menyoung; Amet, Francois; ...

    2016-02-23

    Graphene monolayers are known to display domains of anisotropic friction with twofold symmetry and anisotropy exceeding 200%. This anisotropy has been thought to originate from periodic nanoscale ripples in the graphene sheet, which enhance puckering around a sliding asperity to a degree determined by the sliding direction. Here we demonstrate that these frictional domains derive not from structural features in the graphene but from self-assembly of environmental adsorbates into a highly regular superlattice of stripes with period 4–6 nm. The stripes and resulting frictional domains appear on monolayer and multilayer graphene on a variety of substrates, as well as onmore » exfoliated flakes of hexagonal boron nitride. We show that the stripe-superlattices can be reproducibly and reversibly manipulated with submicrometre precision using a scanning probe microscope, allowing us to create arbitrary arrangements of frictional domains within a single flake. In conclusion, our results suggest a revised understanding of the anisotropic friction observed on graphene and bulk graphite in terms of adsorbates.« less

  7. Reproductive toxicity of carbon nanomaterials: a review

    NASA Astrophysics Data System (ADS)

    Vasyukova, I.; Gusev, A.; Tkachev, A.

    2015-11-01

    In the current review, we assembled the experimental evidences of an association between carbon nanomaterials including carbon black, graphite nanoplatelets, graphene, single- and multi-walled carbon nanotubes, and fullerene exposure and adverse reproductive and developmental effects, in vitro and in vivo studies. It is shown that carbon nanomaterials reveal toxic effect on reproductive system and offspring development of the animals of various system groups to a certain degree depending on carbon crystal structure. Although this paper provides initial information about the potential male and female reproductive toxicity of carbon nanomaterials, further studies, using characterized nanoparticles, relevant routes of administration, and doses closely reflecting all the expected levels of exposure are needed.

  8. Noncovalent immobilization of electrocatalysts on carbon electrodes for fuel production.

    PubMed

    Blakemore, James D; Gupta, Ayush; Warren, Jeffrey J; Brunschwig, Bruce S; Gray, Harry B

    2013-12-11

    We show that molecular catalysts for fuel-forming reactions can be immobilized on graphitic carbon electrode surfaces via noncovalent interactions. A pyrene-appended bipyridine ligand (P) serves as the linker between each complex and the surface. Immobilization of a rhodium proton-reduction catalyst, [Cp*Rh(P)Cl]Cl (1), and a rhenium CO2-reduction catalyst, Re(P)(CO)3Cl (2), afford electrocatalytically active assemblies. X-ray photoelectron spectroscopy and electrochemistry confirm catalyst immobilization. Reduction of 1 in the presence of p-toluenesulfonic acid results in catalytic H2 production, while reduction of 2 in the presence of CO2 results in catalytic CO production.

  9. The development of autoclave processable, thermally stable adhesives for titanium alloy and graphite composite structures

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Jones, R. J.

    1971-01-01

    The A-type polyimide adhesive resin P11B was modified by use of mixed diamines (thio-dianiline and meta phenylene diamine) which provided the desired autoclave processability. This new resin was termed P11BA. It was shown that copolymeric blends of P11BA and Amoco AI-1137 amide-imide resin provided improved adhesive properties when autoclave processed over the properties obtained previously by press bonding with P11B based copolymeric blended adhesives. Properties of bonded assemblies are presented for long-term aging at both elevated and low temperatures, and also stress-rupture tests at elevated temperature.

  10. Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Kabtamu, Daniel Manaye; Chen, Jian-Yu; Chang, Yu-Chung; Wang, Chen-Hao

    2017-02-01

    A simple, green, novel, time-efficient, and potentially cost-effective water activation method was employed to enhance the electrochemical activity of graphite felt (GF) electrodes for vanadium redox flow batteries (VRFBs). The GF electrode prepared with a water vapor injection time of 5 min at 700 °C exhibits the highest electrochemical activity for the VO2+/VO2+ couple among all the tested electrodes. This is attributed to the small, controlled amount of water vapor that was introduced producing high contents of oxygen-containing functional groups, such as sbnd OH groups, on the surface of the GF fibers, which are known to be electrochemically active sites for vanadium redox reactions. Charge-discharge tests further confirm that only 5 min of GF water activation is required to improve the efficiency of the VRFB cell. The average coulombic efficiency, voltage efficiency, and energy efficiency are 95.06%, 87.42%, and 83.10%, respectively, at a current density of 50 mA cm-2. These voltage and energy efficiencies are determined to be considerably higher than those of VRFB cells assembled using heat-treated GF electrodes without water activation and pristine GF electrodes.

  11. Preparation and Characterization of Graphene Oxide Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dikin,D.; Stankovich, S.; Zimney, E.

    2007-01-01

    Free-standing paper-like or foil-like materials are an integral part of our technological society. Their uses include protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, electronic or optoelectronic components, and molecular storage. Inorganic 'paper-like' materials based on nanoscale components such as exfoliated vermiculite or mica platelets have been intensively studied and commercialized as protective coatings, high-temperature binders, dielectric barriers and gas-impermeable membranes. Carbon-based flexible graphite foils composed of stacked platelets of expanded graphite have long been used in packing and gasketing applications because of their chemical resistivity against most media, superior sealability over a wide temperature range,more » and impermeability to fluids. The discovery of carbon nanotubes brought about bucky paper, which displays excellent mechanical and electrical properties that make it potentially suitable for fuel cell and structural composite applications. Here we report the preparation and characterization of graphene oxide paper, a free-standing carbon-based membrane material made by flow-directed assembly of individual graphene oxide sheets. This new material outperforms many other paper-like materials in stiffness and strength. Its combination of macroscopic flexibility and stiffness is a result of a unique interlocking-tile arrangement of the nanoscale graphene oxide sheets.« less

  12. Preparation and characterization of graphene oxide paper.

    PubMed

    Dikin, Dmitriy A; Stankovich, Sasha; Zimney, Eric J; Piner, Richard D; Dommett, Geoffrey H B; Evmenenko, Guennadi; Nguyen, SonBinh T; Ruoff, Rodney S

    2007-07-26

    Free-standing paper-like or foil-like materials are an integral part of our technological society. Their uses include protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, electronic or optoelectronic components, and molecular storage. Inorganic 'paper-like' materials based on nanoscale components such as exfoliated vermiculite or mica platelets have been intensively studied and commercialized as protective coatings, high-temperature binders, dielectric barriers and gas-impermeable membranes. Carbon-based flexible graphite foils composed of stacked platelets of expanded graphite have long been used in packing and gasketing applications because of their chemical resistivity against most media, superior sealability over a wide temperature range, and impermeability to fluids. The discovery of carbon nanotubes brought about bucky paper, which displays excellent mechanical and electrical properties that make it potentially suitable for fuel cell and structural composite applications. Here we report the preparation and characterization of graphene oxide paper, a free-standing carbon-based membrane material made by flow-directed assembly of individual graphene oxide sheets. This new material outperforms many other paper-like materials in stiffness and strength. Its combination of macroscopic flexibility and stiffness is a result of a unique interlocking-tile arrangement of the nanoscale graphene oxide sheets.

  13. A Novel In-situ Electrochemical Cell for Neutron Diffraction Studies of Phase Transitions in Small Volume Electrodes of Li-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vadlamani, Bhaskar S; An, Ke; Jagannathan, M.

    2014-01-01

    The design and performance of a novel in-situ electrochemical cell that greatly facilitates the neutron diffraction study of complex phase transitions in small volume electrodes of Li-ion cells, is presented in this work. Diffraction patterns that are Rietveld-refinable could be obtained simultaneously for all the electrodes, which demonstrates that the cell is best suited to explore electrode phase transitions driven by the lithiation and delithiation processes. This has been facilitated by the use of single crystal (100) Si sheets as casing material and the planar cell configuration, giving improved signal-to-noise ratio relative to other casing materials. The in-situ cell hasmore » also been designed for easy assembly and to facilitate rapid experiments. The effectiveness of cell is demonstrated by tracking the neutron diffraction patterns during the charging of graphite/LiCoO2 and graphite/LiMn2O4 cells. It is shown that good quality neutron diffraction data can be obtained and that most of the finer details of the phase transitions, and the associated changes in crystallographic parameters in these electrodes, can be captured.« less

  14. Catalytic behavior of a palladium doped binder free paper based cobalt electrode in electroreduction of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Zhang, Dongming; Ye, Ke; Cao, Dianxue; Yin, Jinling; Cheng, Kui; Wang, Bin; Xu, Yang; Wang, Guiling

    2015-01-01

    A piece of flexible and conductive A4 paper is prepared by coating a layer of graphite with a normal 8B pencil. Then, Co nano-plates and Pd are assembled by a simple electrodeposition and chemical-reduction methods on the surface of the electrified paper, respectively. The as-prepared paper substrate/graphite-Co film-Pd (PG-CoPd) electrode is characterized by scanning electron microscopy equipped with energy dispersive X-ray spectrometer, transmission electron microscope and X-ray diffractometer. The catalytic activity of the PG-CoPd electrode for H2O2 electroreduction is investigated by means of cyclic voltammetry and chronoamperometry. The preparation process of the PG-CoPd electrode does not use any binder and it exhibits a three dimensional (3D) nano structure, high stability and good electric conductivity. The mass of the Pd in PG-CoPd is about 0.0535 mg cm-2 and the reduction current density reaches to -4.30 A cm-2 mg-1 in 1 mol dm-3 NaOH and 1.4 mol dm-3 H2O2 at -0.5 V, which is higher than our previous reports of Au/Pd modified Co electrode.

  15. Concentration-dependent multiple chirality transition in halogen-bond-driven 2D self-assembly process

    NASA Astrophysics Data System (ADS)

    Miao, Xinrui; Li, Jinxing; Zha, Bao; Miao, Kai; Dong, Meiqiu; Wu, Juntian; Deng, Wenli

    2018-03-01

    The concentration-dependent self-assembly of iodine substituted thienophenanthrene derivative (5,10-DITD) is investigated at the 1-octanic acid/graphite interface using scanning tunneling microscopy. Three kinds of chiral arrangement and transition of 2D molecular assembly mainly driven by halogen bonding is clearly revealed. At high concentration the molecules self-assembled into a honeycomb-like chiral network. Except for the interchain van der Waals forces, this pattern is stabilized by intermolecular continuous Cdbnd O⋯I⋯S halogen bonds in each zigzag line. At moderate concentration, a chiral kite-like nanoarchitecture are observed, in which the Cdbnd O⋯I⋯S and I⋯Odbnd C halogen bonds, along with the molecule-solvent Cdbnd O⋯I⋯H halogen bonds are the dominated forces to determine the structural formation. At low concentration, the molecules form a chiral cyclic network resulting from the solvent coadsorption mainly by molecule-molecule Cdbnd O⋯I⋯S halogen bonds and molecule-solvent Cdbnd O⋯I⋯H halogen bonds. The density of molecular packing becomes lower with the decreasing of the solution concentration. The solution-concentration dependent self-assembly of thienophenanthrene derivative with iodine and ester chain moieties reveals that the type of intermolecular halogen bond and the number of the co-adsorbing 1-octanic acids by molecule-solvent Cdbnd O⋯I⋯H halogen bonds determine the formation and transformation of chirality. This research emphasizes the role of different types of halogen (I) bonds in the controllable supramolecular structures and provides an approach for the fabrication of chirality.

  16. Method for producing dustless graphite spheres from waste graphite fines

    DOEpatents

    Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  17. Entry Descent and Landing Workshop Proceedings. Volume 1; Inflatable Reentry Vehicle Experiment-3 (IRVE-3) Project Overview & Instrumentation

    NASA Technical Reports Server (NTRS)

    Dillman, Robert

    2015-01-01

    Entry mass at Mars is limited by the payload size that can be carried by a rigid capsule that can fit inside the launch vehicle fairing. Landing altitude at Mars is limited by ballistic coefficient (mass per area) of entry body. Inflatable technologies allow payload to use full diameter of launch fairing, and deploy larger aeroshell before atmospheric interface, landing more payload at a higher altitude. Also useful for return of large payloads from Low Earth Orbit (LEO).

  18. Mars Aerocapture Systems Study

    NASA Technical Reports Server (NTRS)

    Wright, Henry S.; Oh, David Y.; Westhelle, Carlos H.; Fisher, Jody L.; Dyke, R. Eric; Edquist, Karl T.; Brown, James L.; Justh, Hilary L.; Munk, Michelle M.

    2006-01-01

    Mars Aerocapture Systems Study (MASS) is a detailed study of the application of aerocapture to a large Mars robotic orbiter to assess and identify key technology gaps. This study addressed use of an Opposition class return segment for use in the Mars Sample Return architecture. Study addressed mission architecture issues as well as system design. Key trade studies focused on design of aerocapture aeroshell, spacecraft design and packaging, guidance, navigation and control with simulation, computational fluid dynamics, and thermal protection system sizing. Detailed master equipment lists are included as well as a cursory cost assessment.

  19. FennoFlakes: a project for identifying flake graphite ores in the Fennoscandian shield and utilizing graphite in different applications

    NASA Astrophysics Data System (ADS)

    Palosaari, Jenny; Eklund, O.; Raunio, S.; Lindfors, T.; Latonen, R.-M.; Peltonen, J.; Smått, J.-H.; Kauppila, J.; Lund, S.; Sjöberg-Eerola, P.; Blomqvist, R.; Marmo, J.

    2016-04-01

    Natural graphite is a strategic mineral, since the European Commission stated (Report on critical raw materials for the EU (2014)) that graphite is one of the 20 most critical materials for the European Union. The EU consumed 13% of all flake graphite in the world but produced only 3%, which stresses the demand of the material. Flake graphite, which is a flaky version of graphite, forms under high metamorphic conditions. Flake graphite is important in different applications like batteries, carbon brushes, heat sinks etc. Graphene (a single layer of graphite) can be produced from graphite and is commonly used in many nanotechnological applications, e.g. in electronics and sensors. The steps to obtain pure graphene from graphite ore include fragmentation, flotation and exfoliation, which can be cumbersome and resulting in damaging the graphene layers. We have started a project named FennoFlakes, which is a co-operation between geologists and chemists to fill the whole value chain from graphite to graphene: 1. Exploration of graphite ores (geological and geophysical methods). 2. Petrological and geochemical analyses on the ores. 3. Development of fragmentation methods for graphite ores. 4. Chemical exfoliation of the enriched flake graphite to separate flake graphite into single and multilayer graphene. 5. Test the quality of the produced material in several high-end applications with totally environmental friendly and disposable material combinations. Preliminary results show that flake graphite in high metamorphic areas has better qualities compared to synthetic graphite produced in laboratories.

  20. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.

    PubMed

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N

    2017-09-11

    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Influence of Metal-Coated Graphite Powders on Microstructure and Properties of the Bronze-Matrix/Graphite Composites

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-hua; Li, Pu; Tang, Qi; Zhang, Yan-qing; He, Jian-sheng; He, Ke

    2017-02-01

    In this study, the bronze-matrix/x-graphite (x = 0, 1, 3 and 5%) composites were fabricated by powder metallurgy route by using Cu-coated graphite, Ni-coated graphite and pure graphite, respectively. The microstructure, mechanical properties and corrosive behaviors of bronze/Cu-coated-graphite (BCG), bronze/Ni-coated-graphite (BNG) and bronze/pure-graphite (BPG) were characterized and investigated. Results show that the Cu-coated and Ni-coated graphite could definitely increase the bonding quality between the bronze matrix and graphite. In general, with the increase in graphite content in bronze-matrix/graphite composites, the friction coefficients, ultimate density and wear rates of BPG, BCG and BNG composites all went down. However, the Vickers microhardness of the BNG composite would increase as the graphite content increased, which was contrary to the BPG and BCG composites. When the graphite content was 3%, the friction coefficient of BNG composite was more stable than that of BCG and BPG composites, indicating that BNG composite had a better tribological performance than the others. Under all the values of applied loads (10, 20, 40 and 60N), the BCG and BNG composites exhibited a lower wear rate than BPG composite. What is more, the existence of nickel in graphite powders could effectively improve the corrosion resistance of the BNG composite.

  2. Producing graphite with desired properties

    NASA Technical Reports Server (NTRS)

    Dickinson, J. M.; Imprescia, R. J.; Reiswig, R. D.; Smith, M. C.

    1971-01-01

    Isotropic or anisotropic graphite is synthesized with precise control of particle size, distribution, and shape. The isotropic graphites are nearly perfectly isotropic, with thermal expansion coefficients two or three times those of ordinary graphites. The anisotropic graphites approach the anisotropy of pyrolytic graphite.

  3. Brazing graphite to graphite

    DOEpatents

    Peterson, George R.

    1976-01-01

    Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of virtually graphite.

  4. Atmospheric Entry Studies for Venus Missions: 45 deg Sphere-Cone Rigid Aeroshells and Ballistic Entries

    NASA Technical Reports Server (NTRS)

    Prabu, Dinesh K.; Allen, Gary A., Jr.; Cappuccio, Gelsomina; Spilker, Thomas R.; Hwang, Helen H.; Moses, Robert W.

    2013-01-01

    The present study considers ballistic entries into the atmosphere of Venus using a 45deg sphere-cone rigid aeroshell, a legacy shape that has been used successfully in the past in the Pioneer Venus Multiprobe Mission. For a number of entry mass and capsule diameter combinations (i.e., various ballistic coefficients) and entry velocities, the trajectory space in terms of entry flight path angles between skip out and -30 is explored with a 3DOF trajectory code, TRAJ. Assuming that the thermal protection material of choice is carbon phenolic of flight heritage, the entry flight path angle space is constrained a posteriori by the mechanical and thermal performance parameters of the material. For mechanical performance, a 200 g limit is placed on the peak deceleration load and 10 bar is assumed as the limit for heritage carbon-phenolic material. It is shown that both constraints cannot be active simultaneously. For thermal performance, a heat flux 2.5 kW/sq cm is utilized as a threshold below which the heritage carbon phenolic is considered mass inefficient. Using these constraints, viable entry flight path angle corridors are determined. Analysis of the results also hints at the existence of a range of "critical" ballistic coefficients beyond which the steepest possible entries are determined by the pressure limit of 10 bar. The results are verified against known performance of the various probes used in the Pioneer Venus mission. It is anticipated that the results presented here will serve as a baseline in the development of a new class of ablative materials for future Venus missions.

  5. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamo, Alberto; Gohar, Yousry

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is drivenmore » by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.« less

  6. Square lattice honeycomb tri-carbide fuels for 50 to 250 KN variable thrust NTP design

    NASA Astrophysics Data System (ADS)

    Anghaie, Samim; Knight, Travis; Gouw, Reza; Furman, Eric

    2001-02-01

    Ultrahigh temperature solid solution of tri-carbide fuels are used to design an ultracompact nuclear thermal rocket generating 950 seconds of specific impulse with scalable thrust level in range of 50 to 250 kilo Newtons. Solid solutions of tri-carbide nuclear fuels such as uranium-zirconium-niobium carbide. UZrNbC, are processed to contain certain mixing ratio between uranium carbide and two stabilizing carbides. Zirconium or niobium in the tri-carbide could be replaced by tantalum or hafnium to provide higher chemical stability in hot hydrogen environment or to provide different nuclear design characteristics. Recent studies have demonstrated the chemical compatibility of tri-carbide fuels with hydrogen propellant for a few to tens of hours of operation at temperatures ranging from 2800 K to 3300 K, respectively. Fuel elements are fabricated from thin tri-carbide wafers that are grooved and locked into a square-lattice honeycomb (SLHC) shape. The hockey puck shaped SLHC fuel elements are stacked up in a grooved graphite tube to form a SLHC fuel assembly. A total of 18 fuel assemblies are arranged circumferentially to form two concentric rings of fuel assemblies with zirconium hydride filling the space between assemblies. For 50 to 250 kilo Newtons thrust operations, the reactor diameter and length including reflectors are 57 cm and 60 cm, respectively. Results of the nuclear design and thermal fluid analyses of the SLHC nuclear thermal propulsion system are presented. .

  7. Carbon chemistry: The high temperature syntheses and applications of nanotubes andsp-hybridized compounds

    NASA Astrophysics Data System (ADS)

    Mitchell, Daniel Robert

    A brief introduction to carbon chemistry is given with an emphasis on the use high-temperature reactions that use carbon vapor, generated from graphite, to synthesize nano-structured materials. Laser and electric are ablation of graphite was utilized to create a variety of high carbon content materials ranging from discrete acetylenic molecules to extremely large multi-wall nanotubes. A new synthesis for large carbon nanotubes, containing 1--5 atom percent nitrogen bound into the graphite lattice, was realized by the reaction of carbon vapor, nickel/yttrium catalyst and cyanogen gas. These carbon "megatubes" were then employed as a substrate to tether a wide variety of molecules both inorganic and organic. The megatubes, in their native and derivatized states, were then assembled into simple circuits to explore their electronic transport properties. Direct fluorination was used to post-treat the surface of the multi-wall carbon nanotubes in order to alter the inherent physical and chemical properties of the tubes, as well as to serve as another route to functionalize their surfaces. Fluorine sites on the walls of the tube were allowed to react with Grignard reagents to produce nantoubes with the chosen alkyl chemically bonded to the surface. Products were characterized with techniques similar to unfluorinated tubules. Using similar carbon vaporization techniques, sp-hybridized carbon chain compounds were synthesized. Using a one-step method dicyanopolyynes were synthesized and characterized with nuclear magnetic resonance and mass spectroscopy, containing up to 8 acetylenic repeat units. A two-step method was also utilized to create polyynes terminated with trifluoromethyl or nitrile radicals generated in a capacitively coupled radio frequency glow plasma discharge. A partial characterization of these products was accomplished with nuclear magnetic resonance, mass, and infrared spectroscopy techniques.

  8. Self-Passivating Lithium/Solid Electrolyte/Iodine Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar; Whitcare, Jay; Narayanan, Sekharipuram; West, William

    2006-01-01

    Robust lithium/solid electrolyte/iodine electrochemical cells that offer significant advantages over commercial lithium/ iodine cells have been developed. At room temperature, these cells can be discharged at current densities 10 to 30 times those of commercial lithium/iodine cells. Moreover, from room temperature up to 80 C, the maximum discharge-current densities of these cells exceed those of all other solid-electrolyte-based cells. A cell of this type includes a metallic lithium anode in contact with a commercial flexible solid electrolyte film that, in turn, is in contact with an iodine/ graphite cathode. The solid electrolyte (the chemical composition of which has not been reported) offers the high ionic conductivity needed for high cell performance. However, the solid electrolyte exhibits an undesirable chemical reactivity to lithium that, if not mitigated, would render the solid electrolyte unsuitable for use in a lithium cell. In this cell, such mitigation is affected by the formation of a thin passivating layer of lithium iodide at the anode/electrolyte interface. Test cells of this type were fabricated from iodine/graphite cathode pellets, free-standing solid-electrolyte films, and lithium-foil anodes. The cathode mixtures were made by grinding together blends of nominally 10 weight percent graphite and 90 weight percent iodine. The cathode mixtures were then pressed into pellets at 36 kpsi (248 MPa) and inserted into coin-shaped stainless-steel cell cases that were coated with graphite paste to minimize corrosion. The solid-electrolyte film material was stamped to form circular pieces to fit in the coin cell cases, inserted in the cases, and pressed against the cathode pellets with polyethylene gaskets. Lithium-foil anodes were placed directly onto the electrolyte films. The layers described thus far were pressed and held together by stainless- steel shims, wave springs, and coin cell caps. The assembled cells were then crimped to form hermetic seals. It was found that the solid electrolyte films became discolored within seconds after they were placed in contact with the cathodes - a result of facile diffusion of iodine through the solid electrolyte material (see figure).

  9. Improved Rare-Earth Emitter Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.

    2011-01-01

    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out the back. This configuration replaces the previous sheathed heater design that limited the cycling-life of the cathode.

  10. Nickel-Graphite Composite Compliant Interface and/or Hot Shoe Material

    NASA Technical Reports Server (NTRS)

    Firdosy, Samad A.; Chun-Yip Li, Billy; Ravi, Vilupanur A.; Fleurial, Jean-Pierre; Caillat, Thierry; Anjunyan, Harut

    2013-01-01

    Next-generation high-temperature thermoelectric-power-generating devices will employ segmented architectures and will have to reliably withstand thermally induced mechanical stresses produced during component fabrication, device assembly, and operation. Thermoelectric materials have typically poor mechanical strength, exhibit brittle behavior, and possess a wide range of coefficient of thermal expansion (CTE) values. As a result, the direct bonding at elevated temperatures of these materials to each other to produce segmented leg components is difficult, and often results in localized microcracking at interfaces and mec hanical failure due to the stresses that arise from the CTE mismatch between the various materials. Even in the absence of full mechanical failure, degraded interfaces can lead to increased electrical and thermal resistances, which adversely impact conversion efficiency and power output. The proposed solution is the insertion of a mechanically compliant layer, with high electrical and thermal conductivity, between the low- and high-temperature segments to relieve thermomechanical stresses during device fabrication and operation. This composite material can be used as a stress-relieving layer between the thermoelectric segments and/or between a thermoelectric segment and a hot- or cold-side interconnect material. The material also can be used as a compliant hot shoe. Nickel-coated graphite powders were hot-pressed to form a nickel-graphite composite material. A freestanding thermoelectric segmented leg was fabricated by brazing the compliant pad layer between the high-temperature p- Zintl and low-temperature p-SKD TE segments using Cu-Ag braze foils. The segmented leg stack was heated in vacuum under a compressive load to achieve bonding. The novelty of the innovation is the use of composite material that re duces the thermomechanical stresses en - countered in the construction of high-efficiency, high-temperature therm - o-electric devices. The compliant pad enables the bonding of dissimilar thermoelectric materials while maintaining the desired electrical and thermal properties essential for efficient device operation. The modulus, CTE, electrical, and thermal conductances of the composite can be controlled by varying the ratio of nickel to graphite.

  11. Thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  12. SXI prototype mirror mount

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule. A number of development hardware parts have been designed and fabricated jointly by MSFC and UAH for the engineering model of SXI. The major parts include a nickel electroformed mirror and a mirror mount, plating and coating of the ceramic spacers, and gold plating of the contact rings and fingers for the camera assembly. An aluminum model of the high accuracy sun sensor (HASS) was also designed and fabricated. A number of fiber optic tapers for the camera assembly were also coated with indium tin oxide and phosphor for testing and evaluation by MSFC. A large number of the SXI optical bench parts were also redesigned and simplified for a prototype telescope. These parts include the forward and rear support flanges, front aperture plate, the graphite epoxy optical bench and a test fixture for the prototype telescope. More than fifty (50) drawings were generated for various components of the prototype telescope. Some of these parts were subsequently fabricated at UAH machine shop or at MSFC or by the outside contractors. UAH also provide technical support to MSFC staff for a number of preliminary and critical design reviews. These design reviews included PDR and CDR for the mirror assembly by United Technologies Optical Systems (UTOS), and the program quarterly reviews, and SXI PDR and CDR. UAH staff also regularly attended the monthly status reviews, and made a significant number of suggestions to improve the design, assembly and alignment of the telescope. Finally, a high level assembly and alignment plan for the entire telescope was prepared by UAH. This plan addresses the sequence of assembly, the required assembly and alignment tolerances, and the methods to verify the alignment at each step during the assembly process. This assembly and alignment plan will be used to assemble and integrate the engineering model (EM) of the telescope. Later on, based on this plan more detailed assembly and alignment procedures will be developed for the lower-level assemblies of SXI.

  13. The action of macrosounds on graphite ore and derived products

    NASA Technical Reports Server (NTRS)

    Bradeteanu, C.; Dragan, O.

    1974-01-01

    A suspension of graphite ore, floated graphite, and the gangue left over from flotation were subjected to the action of macrosounds under determinant conditions. The following was found: (1) The graphite ore undergoes an efficient settling action. (2) The floated graphite is strongly crushed down to the dimensions of colloidal graphite. (3) The gangue left over from flotation can be further processed to recuperate graphite from its nuclei.

  14. Graphene prepared by thermal reduction–exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dao, Trung Dung; Jeong, Han Mo, E-mail: hmjeong@mail.ulsan.ac.kr

    Highlights: • Effect of raw graphite particle size on properties of GO and graphene is reported. • Size of raw graphite affects oxidation degree and chemical structure of GO. • Highly oxidized GO results in small-sized but well-exfoliated graphene. • GO properties affect reduction degree, structure, and conductivity of graphene. - Abstract: We report the effect of raw graphite size on the properties of graphite oxide and graphene prepared by thermal reduction–exfoliation of graphite oxide. Transmission electron microscope analysis shows that the lateral size of graphene becomes smaller when smaller size graphite is used. X-ray diffraction analysis confirms that graphitemore » with smaller size is more effectively oxidized, resulting in a more effective subsequent exfoliation of the obtained graphite oxide toward graphene. X-ray photoelectron spectroscopy demonstrates that reduction of the graphite oxide derived from smaller size graphite into graphene is more efficient. However, Raman analysis suggests that the average size of the in-plane sp{sup 2}-carbon domains on graphene is smaller when smaller size graphite is used. The enhanced reduction degree and the reduced size of sp{sup 2}-carbon domains contribute contradictively to the electrical conductivity of graphene when the particle size of raw graphite reduces.« less

  15. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Xu, Wu; Choi, Daiwon

    2012-04-27

    In order to form the stable surface film and to further enhance the long-term cycling stability of the graphite anodes of lithium-ion batteries, the surface of graphite powders has been modified by AlF3 coating through chemical precipitation method. The AlF3-coated graphite shows no evident changes in the bulk structure and a thin AlF3-coating layer of about 2 nm thick is found to uniformly cover the graphite particles with 2 wt% AlF3 content. However, it delivers a higher initial discharge capacity and largely improved rate performances compared to the pristine graphite. Remarkably, AlF3 coated graphite demonstrated a much better cycle life.more » After 300 cycles, AlF3 coated graphite and uncoated graphite show capacity retention of 92% and 81%, respectively. XPS measurement shows that a more conductive solid electrode interface (SEI) layer was formed on AlF3 coated graphite as compared to uncoated graphite. SEM monograph also reveals that the AlF3-coated graphite particles have a much more stable surface morphology after long-term cycling. Therefore, the improved electrochemical performance of AlF3 coated graphite can be attributed to a more stable and conductive SEI formed on coated graphite anode during cycling process.« less

  16. Graphite

    USGS Publications Warehouse

    Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For some of these uses, no suitable substitutes are available. Steelmaking and refractory applications in metallurgy use the largest amount of produced graphite; however, emerging technology uses in large-scale fuel cell, battery, and lightweight high-strength composite applications could substantially increase world demand for graphite.Graphite ores are classified as “amorphous” (microcrystalline), and “crystalline” (“flake” or “lump or chip”) based on the ore’s crystallinity, grain-size, and morphology. All graphite deposits mined today formed from metamorphism of carbonaceous sedimentary rocks, and the ore type is determined by the geologic setting. Thermally metamorphosed coal is the usual source of amorphous graphite. Disseminated crystalline flake graphite is mined from carbonaceous metamorphic rocks, and lump or chip graphite is mined from veins in high-grade metamorphic regions. Because graphite is chemically inert and nontoxic, the main environmental concerns associated with graphite mining are inhalation of fine-grained dusts, including silicate and sulfide mineral particles, and hydrocarbon vapors produced during the mining and processing of ore. Synthetic graphite is manufactured from hydrocarbon sources using high-temperature heat treatment, and it is more expensive to produce than natural graphite.Production of natural graphite is dominated by China, India, and Brazil, which export graphite worldwide. China provides approximately 67 percent of worldwide output of natural graphite, and, as the dominant exporter, has the ability to set world prices. China has significant graphite reserves, and China’s graphite production is expected to increase, although rising labor costs and some mine production problems are developing. China is expected to continue to be the dominant exporter for the near future. Mexico and Canada export graphite mainly to the United States, which has not had domestic production of natural graphite since the 1950s. Most graphite deposits in the United States are too small, low-grade, or remote to be of commercial value in the near future, and the likelihood of discovering larger, higher-grade, or favorably located domestic deposits is unlikely. The United States is a major producer of synthetic graphite.

  17. Strategic graphite, a survey

    USGS Publications Warehouse

    Cameron, Eugene N.; Weis, Paul L.

    1960-01-01

    Strategic graphite consists of certain grades of lump and flake graphite for which the United States is largely or entirely dependent on sources abroad. Lump graphite of high purity, necessary in the manufacture of carbon brushes, is imported from Ceylon, where it occurs in vein deposits. Flake graphite, obtained from deposits consisting of graphite disseminated in schists and other metamorphic rocks, is an essential ingredient of crucibles used in the nonferrous metal industries and in the manufacture of lubricants and packings. High-quality flake graphite for these uses has been obtained mostly from Madagascar since World War I. Some flake graphite of strategic grade has been produced, however, from deposits in Texas, Alabama, and Pennsylvania. The development of the carbon-bonded crucible, which does not require coarse flake, should lessen the competitive advantage of the Madagascar producers of crucible flake. Graphite of various grades has been produced intermittently in the United States since 1644. The principal domestic deposits of flake graphite are in Texas, Alabama, Pennsylvania, and New York. Reserves of flake graphite in these four States are very large, but production has been sporadic and on the whole unprofitable since World War I, owing principally to competition from producers in Madagascar. Deposits in Madagascar are large and relatively high in content of flake graphite. Production costs are low and the flake produced is of high quality. Coarseness of flake and uniformity of the graphite products marketed are cited as major advantages of Madagascar flake. In addition, the usability of Madagascar flake for various purposes has been thoroughly demonstrated, whereas the usability of domestic flake for strategic purposes is still in question. Domestic graphite deposits are of five kinds: deposits consisting of graphite disseminated in metamorphosed siliceous sediments, deposits consisting of graphite disseminated in marble, deposits formed by thermal or dynamothermal metamorphism of coal beds or other highly carbonaceous sediments, vein deposits, and contact metasomatic deposits in marble. Only the first kind comprises deposits sufficiently large and rich in flake graphite to be significant potential sources of strategic grades of graphite. Vein deposits in several localities are known, but none is known to contain substantial reserves of graphite of strategic quality.Large resources of flake graphite exist in central Texas, in northeastern Alabama, in eastern Pennsylvania, and in the eastern Adirondack Mountains of New York. Tonnages available, compared with the tonnages of flake graphite consumed annually in the United States, are very large. There have been indications that flake graphite from Texas, Alabama, and Pennsylvania can be used in clay-graphite crucibles as a substitute for Madagascar flake, and one producer has made progress in establishing markets for his flake products as ingredients of lubricants. The tonnages of various commercial grades of graphite recoverable from various domestic deposits, however, have not been established; hence, the adequacy of domestic resources of graphite in a time of emergency is not known.The only vein deposits from which significant quantities of lump graphite have been produced are those of the Crystal Graphite mine, Beaverhead County, Mont. The deposits are fracture fillings in Precambrian gneiss and pegmatite. Known reserves in the deposits are small. In Texas, numerous flake-graphite deposits occur in the Precambrian Packsaddle schist in Llano and Burnet Counties. Graphite disseminated in certain parts of this formation ranges from extremely fine to medium grained. The principal producer has been the mine of the Southwestern Graphite Co., west of the town of Burnet. Substantial reserves of medium-grained graphite are present in the deposit mined by the company. In northeastern Alabama, flake-graphite deposits occur in the Ashland mica schist in two belts that trend northeastward across Clay, Goosa, and Chilton Counties. The northeastern belt has been the most productive. About 40 mines have been operated at one time or another, but only a few have been active during or since World War I. The deposits consist of flake graphite disseminated in certain zones or "leads" consisting of quartz-mica-feldspar schists and mica quartzite. Most of past production has come from the weathered upper parts of the deposits, but unweathered rock has been mined at several localities. Reserves of weathered rock containing 3 to 5 percent graphite are very large, and reserves of unweathered rock are even greater. Flake graphite deposits in Chester County, Pa., have been worked intermittently since about 1890. The deposits consist of medium- to coarse-grained graphite disseminated in certain belts of the Pickering gneiss. The most promising deposit is one worked in the Benjamin Franklin and the Eynon Just mines. Reserves of weathered rock containing 1.5 percent graphite are of moderate size; reserves of unweathered rock are large. In the eastern Adirondack Mountains in New York there are two principal kinds of flake-graphite deposits: contact-metasomatic deposits and those consisting of flake graphite disseminated in quartz schist. The contact-metasomatic deposits are small, irregular, and very erratic in graphite content. The deposits in quartz schist are very large, persistent, and uniform in grade. There are large reserves of schist containing 3 to 5 percent graphite, but the graphite is relatively fine grained.

  18. Fission Product Sorptivity in Graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tompson, Jr., Robert V.; Loyalka, Sudarshan; Ghosh, Tushar

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodatemore » the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one graduate student meant that data acquisition with the packed bed systems ended up competing for the graduate student’s available time with the electrodynamic balance redesign and assembly portions of the project. This competition for available time was eventually mitigated to some extent by the later recruitment of an undergraduate student to help with data collection using the packed bed system. It was only the recruitment of the second student that allowed the single particle balance design and construction efforts to proceed as far as they did during the project period. It should be added that some significant time was also spent by the graduate student cataloging previous work involving graphite. This eventually resulted in a review paper being submitted and accepted (“Adsorption of Iodine on Graphite in High Temperature Gas-Cooled Reactor Systems: A Review,” Kyle L. Walton, Tushar K. Ghosh, Dabir S. Viswanath, Sudarshan K. Loyalka, Robert V. Tompson). Our specific revised objectives in this project were as follows: Experimentally obtain isotherms of Iodine for reactor grade IG-110 samples of graphite particles over a range of temperatures and pressures using an EDB and a temperature controlled EDB; Experimentally obtain isotherms of Iodine for reactor grade IG-110 samples of graphite particles over a range of temperatures and pressures using a packed column bed apparatus; Explore the effect that charge has on the adsorption isotherms of iodine by varying the charges on and the voltages used to suspend the microscopic particles in the EDB; and To interpret these results in terms of the existing models (Langmuir, BET, Freundlich, and others) which we will modify as necessary to include charge related effects.« less

  19. Methods and codes for neutronic calculations of the MARIA research reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrzejewski, K.; Kulikowska, T.; Bretscher, M. M.

    2002-02-18

    The core of the MARIA high flux multipurpose research reactor is highly heterogeneous. It consists of beryllium blocks arranged in 6 x 8 matrix, tubular fuel assemblies, control rods and irradiation channels. The reflector is also heterogeneous and consists of graphite blocks clad with aluminum. Its structure is perturbed by the experimental beam tubes. This paper presents methods and codes used to calculate the MARIA reactor neutronics characteristics and experience gained thus far at IAE and ANL. At ANL the methods of MARIA calculations were developed in connection with the RERTR program. At IAE the package of programs was developedmore » to help its operator in optimization of fuel utilization.« less

  20. Graphene-Diatom Silica Aerogels for Efficient Removal of Mercury Ions from Water.

    PubMed

    Kabiri, Shervin; Tran, Diana N H; Azari, Sara; Losic, Dusan

    2015-06-10

    A simple synthetic approach for the preparation of graphene-diatom silica composites in the form of self-assembled aerogels with three-dimensional networks from natural graphite and diatomite rocks is demonstrated for the first time. Their adsorption performance for the removal of mercury from water was studied as a function of contact time, solution pH, and mercury concentration to optimize the reaction conditions. The adsorption isotherm of mercury fitted well with the Langmuir model, representing a very high adsorption capacity of >500 mg of mercury/g of adsorbent. The prepared aerogels exhibited outstanding adsorption performance for the removal of mercury from water, which is significant for environmental applications.

  1. Photocatalysis and self-cleaning from g-C3N4 coated cotton fabrics under sunlight irradiation

    NASA Astrophysics Data System (ADS)

    Fan, Yunde; Zhou, Ji; Zhang, Jin; Lou, Yaqin; Huang, Zhenwu; Ye, Yong; Jia, Li; Tang, Bin

    2018-05-01

    Graphite-like carbon nitride (g-C3N4) nanosheets have been facilely assembled via electrostatic interaction onto cotton fabrics for achieving multi-functionalities. The surface morphologies, chemical composition and optical features of the g-C3N4-coated fabrics were characterized. The treated cotton fabrics exhibited remarkable photocatalytic degradation activity and superior self-cleaning performance. A complete degradation of Rhodamine B (RhB) and removal of stains were accomplished under simulated sunlight irradiation. More importantly, the modified fabrics can be reused in catalysis reactions with great durability. The practical treatment approach demonstrated from this work has great potential to be applied in textile industry for functional fabrics manufacture.

  2. A normal incidence X-ray telescope sounding rocket payload

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1985-01-01

    Progress is reported on the following major activities on the X-ray telescope: (1) complete design of the entire telescope assembly and fabrication of all front-end components was completed; (2) all rocket skin sections, including bulkheads, feedthroughs and access door, were specified; (3) fabrication, curing and delivery of the large graphite-epoxy telescope tube were completed; (4) an engineering analysis of the primary mirror vibration test was completed and a decision made to redesign the mirror attachment system to a kinematic three-point mount; (5) detail design of the camera control, payload and housekeeping electronics were completed; and (6) multilayer mirror plates with 2d spacings of 50 A and 60 A were produced.

  3. Molecular adsorbates on HOPG: Toward modulation of graphene density of states

    NASA Astrophysics Data System (ADS)

    Groce, Michelle; Einstein, Theodore; Cullen, William

    2013-03-01

    Ordered molecular superlattices, particularly those made of planar aromatics with their attendant pi orbitals, have the potential to break the graphene sublattice degeneracy and create a band gap. Trimesic acid (TMA) is a promising candidate due to its self-assembly into symmetry-breaking superlattices nearly commensurate with that of graphene. We have used the graphite (0001) surface as a model system to explore the impact of TMA thin films on band structure. By examining correlations between STM topography and STS maps of corresponding regions, we are able to investigate the effects of TMA on the local density of states. Work supported by the University of Maryland NSF-MRSEC, DMR 0520471 and Shared Experimental Facilities.

  4. New thermal neutron calibration channel at LNMRI/IRD

    NASA Astrophysics Data System (ADS)

    Astuto, A.; Patrão, K. C. S.; Fonseca, E. S.; Pereira, W. W.; Lopes, R. T.

    2016-07-01

    A new standard thermal neutron flux unit was designed in the National Ionizing Radiation Metrology Laboratory (LNMRI) for calibration of neutron detectors. Fluence is achieved by moderation of four 241Am-Be sources with 0.6 TBq each, in a facility built with graphite and paraffin blocks. The study was divided into two stages. First, simulations were performed using MCNPX code in different geometric arrangements, seeking the best performance in terms of fluence and their uncertainties. Last, the system was assembled based on the results obtained on the simulations. The simulation results indicate quasi-homogeneous fluence in the central chamber and H*(10) at 50 cm from the front face with the polyethylene filter.

  5. Blowing Carbon Nanotubes to Carbon Nanobulbs

    NASA Astrophysics Data System (ADS)

    Su, D. S.; Zhu, Z. P.; Lu, Y.; Schlögl, R.; Weinberg, G.; Liu, Z. Y.

    2004-09-01

    We report the blowing of multi-walled carbon nanotubes into carbon nanobulbs. This is realized in a unique tube growth environment generated by explosive decomposition of picric acid mixed with nickel formate. The carbon spherical bulbs are characterized by large dimensions (up to 900 nm), thin walls (around 10 nm), and fully hollow cores. The walls are in graphitic structure of sp2 hybridized carbons. Bulb-tube assemblies are found as intermediate derivatives of blowing. A joint action of the filled high-pressure gases and the structural defects in the carbon nanotubes is responsible to the formation of the carbon nanobulbs. Our finding may indicate the possibility to engineer the carbon nanotubes to the designed nanostructures.

  6. CMB-13 research on carbon and graphite

    NASA Technical Reports Server (NTRS)

    Smith, M. C.

    1972-01-01

    Preliminary results of the research on carbon and graphite accomplished during this report period are presented. Included are: particle characteristics of Santa Maria fillers, compositions and density data for hot-molded Santa Maria graphites, properties of hot-molded Santa Maria graphites, and properties of hot-molded anisotropic graphites. Ablation-resistant graphites are also discussed.

  7. METHOD OF FABRICATING A GRAPHITE MODERATED REACTOR

    DOEpatents

    Kratz, H.R.

    1963-05-01

    S>A nuclear reactor formed of spaced bodies of uranium and graphite blocks is improved by diffusing helium through the graphite blocks in order to replace the air in the pores of the graphite with helium. The helium-impregnated graphite conducts heat better, and absorbs neutrons less, than the original air- impregnated graphite. (AEC)

  8. AGC-2 Irradiation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbaugh, David Thomas; Windes, William; Swank, W. David

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled, very high temperature reactor (VHTR) with a large graphite core. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor (HTGR) designs.[ , ] Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphites have been developed and are considered suitable candidates for the new NGNP reactor design. To support the design and licensing of NGNP core components within a commercial reactor, a completemore » properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade with a specific emphasis on data related to the life limiting effects of irradiation creep on key physical properties of the NGNP candidate graphites. Based on experience with previous graphite core components, the phenomenon of irradiation induced creep within the graphite has been shown to be critical to the total useful lifetime of graphite components. Irradiation induced creep occurs under the simultaneous application of high temperatures, neutron irradiation, and applied stresses within the graphite components. Significant internal stresses within the graphite components can result from a second phenomenon—irradiation induced dimensional change. In this case, the graphite physically changes i.e., first shrinking and then expanding with increasing neutron dose. This disparity in material volume change can induce significant internal stresses within graphite components. Irradiation induced creep relaxes these large internal stresses, thus reducing the risk of crack formation and component failure. Obviously, higher irradiation creep levels tend to relieve more internal stress, thus allowing the components longer useful lifetimes within the core. Determining the irradiation creep rates of nuclear grade graphites is critical for determining the useful lifetime of graphite components and is a major component of the Advanced Graphite Creep (AGC) experiment.« less

  9. Stable dispersions of polymer-coated graphitic nanoplatelets

    NASA Technical Reports Server (NTRS)

    Nguyen, Sonbinh T. (Inventor); Stankovich, Sasha (Inventor); Ruoff, Rodney S. (Inventor)

    2011-01-01

    A method of making a dispersion of reduced graphite oxide nanoplatelets involves providing a dispersion of graphite oxide nanoplatelets and reducing the graphite oxide nanoplatelets in the dispersion in the presence of a reducing agent and a polymer. The reduced graphite oxide nanoplatelets are reduced to an extent to provide a higher C/O ratio than graphite oxide. A stable dispersion having polymer-treated reduced graphite oxide nanoplatelets dispersed in a dispersing medium, such as water or organic liquid is provided. The polymer-treated, reduced graphite oxide nanoplatelets can be distributed in a polymer matrix to provide a composite material.

  10. Structural disorder of graphite and implications for graphite thermometry

    NASA Astrophysics Data System (ADS)

    Kirilova, Martina; Toy, Virginia; Rooney, Jeremy S.; Giorgetti, Carolina; Gordon, Keith C.; Collettini, Cristiano; Takeshita, Toru

    2018-02-01

    Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25 megapascal (MPa) and aseismic velocities of 1, 10 and 100 µm s-1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  11. International strategic minerals inventory summary report; natural graphite

    USGS Publications Warehouse

    Krauss, U.H.; Schmidt, H.W.; Taylor, H.A.; Sutphin, D.M.

    1989-01-01

    Natural graphite is a crystalline mineral of pure carbon which normally occurs in the form of platelet-shaped crystals. It has important properties, such as chemical inertness, low thermal expansion, and lubricity, that make it almost irreplaceable for certain uses such as refractories and steelmaking. Graphite ore types are crystalline (flake and lump} or 'amorphous' (cryptocrystalline}. Refractory applications use the largest total amount of natural graphite, while the most important use of crystalline graphite is in crucibles for handling molten metals. All graphite deposits being mined today are found in the following metamorphic environments: (1) contact metamorphosed coal generally is a source of amorphous graphite; (2)disseminated crystalline flake graphite comes from syngenetic metasediments; and (3) crystalline lump graphite is found in epigenetic veins in high-grade metamorphic regions. Graphite may also occur as a trace mineral in ultrabasic rocks and pegmatites, but these are economically insignificant. The world's identified economically exploitable resources of crystalline graphite in major deposits are estimated to be about 9.7 million metric tons of concentrate. In-place resources of amorphous graphite are about 11.5 million metric tons. Of these, less than 2 percent of the crystalline ore and less than 1 percent of the amorphous ore are in western industrial countries. World mining production of natural graphite rose from 347,000 metric tons in 1973 to 659,000 metric tons in 1986, while the proportion produced by central economy countries increased from about 50 percent for the period from 1973 to 1978 to more than 64 percent in 1979 to 1986. It is estimated that crystalline flake graphite accounts for at least 180,000 metric tons of total annual world mining production of natural graphite, and amorphous graphite makes up the rest.

  12. KSC-03pd1364

    NASA Image and Video Library

    2003-04-29

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility begin raising an overhead crane that will be used to lift the aeroshell enclosing Mars Exploration Rover 2 and lander. The descent and landing vehicle will be moved to a rotation table for a spin stabilization test. v Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station. The second is scheduled for launch June 25.

  13. Entry trajectory and atmosphere reconstruction methodologies for the Mars Exploration Rover mission

    NASA Astrophysics Data System (ADS)

    Desai, Prasun N.; Blanchard, Robert C.; Powell, Richard W.

    2004-02-01

    The Mars Exploration Rover (MER) mission will land two landers on the surface of Mars, arriving in January 2004. Both landers will deliver the rovers to the surface by decelerating with the aid of an aeroshell, a supersonic parachute, retro-rockets, and air bags for safely landing on the surface. The reconstruction of the MER descent trajectory and atmosphere profile will be performed for all the phases from hypersonic flight through landing. A description of multiple methodologies for the flight reconstruction is presented from simple parameter identification methods through a statistical Kalman filter approach.

  14. Transformation of graphite by tectonic and hydrothermal processes in an active plate boundary fault zone, Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Kirilova, Matina; Toy, Virginia; Timms, Nicholas; Halfpenny, Angela; Menzies, Catriona; Craw, Dave; Rooney, Jeremy; Giorgetti, Carolina

    2017-04-01

    Graphite is a material with one of the lowest frictional strengths, with coefficient of friction of 0.1 and thus in natural fault zones it may act as a natural solid lubricant. Graphitization, or the transformation of organic matter (carbonaceous material, or CM) into crystalline graphite, is induced by compositional and structural changes during diagenesis and metamorphism. The supposed irreversible nature of this process has allowed the degree of graphite crystallinity to be calibrated as an indicator of the peak temperatures reached during progressive metamorphism. We examine processes of graphite emplacement and deformation in the Alpine Fault Zone, New Zealand's active continental tectonic plate boundary. Raman spectrometry indicates that graphite in the distal, amphibolite-facies Alpine Schist, which experienced peak metamorphic temperatures up to 640 ◦C, is highly crystalline and occurs mainly along grain boundaries within quartzo-feldspathic domains. The subsequent mylonitisation in the Alpine Fault Zone resulted in progressive reworking of CM under lower temperature conditions (500◦C-600◦C) in a structurally controlled environment, resulting in spatial clustering in lower-strain protomylonites, and further foliation-alignment in higher-strain mylonites. Subsequent brittle deformation of the mylonitised schists resulted in cataclasites that contain over three-fold increase in the abundance of graphite than mylonites. Furthermore, cataclasites contain graphite with two different habits: highly-crystalline, foliated forms that are inherited mylonitic graphite; and lower-crystallinity, less mature patches of finer-grained graphite. The observed graphite enrichment and the occurrence of poorly-organised graphite in the Alpine Fault cataclasites could result from: i) hydrothermal precipitation from carbon-supersaturated fluids; and/or ii) mechanical degradation by structural disordering of mylonitic graphite combined with strain-induced graphite localisation. The lack of published systematic studies of mechanical modification of the structure of graphite inhibits further conclusion to be drawn. Thus, we performed laboratory deformation experiments during which we sheared highly crystalline graphite powder at room temperature, normal stresses of 5 MPa and 25 MPa and sliding velocities of 1 µm/s, 10 µm/s and 100 µm/s. The degree of graphite crystallinity, both in the starting and resulting materials, was analysed by Raman microspectroscopy. Our results demonstrate consistent decrease of graphite crystallinity with increasing shear strain. We conclude that: i) graphite 'thermometers' are unreliable in brittely deformed rocks; ii) a shear strain calibration of graphite 'thermometers' is needed; iii) fault creep is very likely responsible for the observed structural and textural characteristics of graphite in the Alpine Fault cataclasites. Finally, to investigate the possibility of hydrothermal origin for at least some of the graphite in the Alpine Fault cataclasites we will also present synchrotron FTIR and carbon isotope analysis of the Alpine fault rocks.

  15. Evaluation of co-cokes from bituminous coal with vacuum resid or decant oil, and evaluation of anthracites, as precursors to graphite

    NASA Astrophysics Data System (ADS)

    Nyathi, Mhlwazi S.

    2011-12-01

    Graphite is utilized as a neutron moderator and structural component in some nuclear reactor designs. During the reactor operaction the structure of graphite is damaged by collision with fast neutrons. Graphite's resistance to this damage determines its lifetime in the reactor. On neutron irradiation, isotropic or near-isotropic graphite experiences less structural damage than anisotropic graphite. The degree of anisotropy in a graphite artifact is dependent on the structure of its precursor coke. Currently, there exist concerns over a short supply of traditional precursor coke, primarily due to a steadily increasing price of petroleum. The main goal of this study was to study the anisotropic and isotropic properties of graphitized co-cokes and anthracites as a way of investigating the possibility of synthesizing isotropic or near-isotropic graphite from co-cokes and anthracites. Demonstrating the ability to form isotropic or near-isotropic graphite would mean that co-cokes and anthracites have a potential use as filler material in the synthesis of nuclear graphite. The approach used to control the co-coke structure was to vary the reaction conditions. Co-cokes were produced by coking 4:1 blends of vacuum resid/coal and decant oil/coal at temperatures of 465 and 500 °C for reaction times of 12 and 18 hours under autogenous pressure. Co-cokes obtained were calcined at 1420 °C and graphitized at 3000 °C for 24 hours. Optical microscopy, X-ray diffraction, temperature-programmed oxidation and Raman spectroscopy were used to characterize the products. It was found that higher reaction temperature (500 °C) or shorter reaction time (12 hours) leads to an increase in co-coke structural disorder and an increase in the amount of mosaic carbon at the expense of textural components that are necessary for the formation of anisotropic structure, namely, domains and flow domains. Characterization of graphitized co-cokes showed that the quality, as expressed by the degree of graphitization and crystallite dimensions, of the final product is dependent on the nature of the precursor co-coke. The methodology for studying anthracites was to select two anthracites on basis of rank, PSOC1515 being semi-anthracite and DECS21 anthracite. The selected anthracites were graphitized, in both native and demineralized states, under the same conditions as co-cokes. Products obtained from DECS21 showed higher degrees of graphitization and larger crystallite dimensions than products obtained from PSOC1515. Demineralization of anthracites served to increase the degree of graphitization, indicating that the minerals contained in these anthracites have no graphitization-enhancing ability. A larger crystallite length for products obtained from native versions, compared to demineralized versions, was attributed to a formation and decomposition of a silicon carbide during graphitization of native versions. In order to examine the anisotropic and isotropic properties, nuclear-grade graphite samples obtained from Oak Ridge National Laboratory (ORNL) and commercial graphite purchased from Fluka were characterized under similar conditions as graphitized co-cokes and anthracites. These samples served as representatives of "two extremes", with ORNL samples being the isotropic end and commercial graphite being the anisotropic end. Through evaluating relationships between structural parameters, it was observed that graphitized co-cokes are situated, structurally, somewhere between the "two extremes", whereas graphitized anthracites are closer to the anisotropic end. Basically, co-cokes have a better potential than anthracites to transform to isotropic or near-isotropic graphite upon graphitization. By co-coking vacuum resid/coal instead of decant oil/coal or using 500 °C instead of 465 °C, a shift away from commercial graphite towards ORNL samples was attained. Graphitizing a semi-anthracite or demineralizing anthracites before graphitization also caused a shift towards ORNL samples.

  16. ZPR-6 assembly 7 high {sup 240} PU core : a cylindrical assemby with mixed (PU, U)-oxide fuel and a central high {sup 240} PU zone.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lell, R. M.; Schaefer, R. W.; McKnight, R. D.

    Over a period of 30 years more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited to form the basis for criticality safety benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactormore » physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. The term 'benchmark' in a ZPR program connotes a particularly simple loading aimed at gaining basic reactor physics insight, as opposed to studying a reactor design. In fact, the ZPR-6/7 Benchmark Assembly (Reference 1) had a very simple core unit cell assembled from plates of depleted uranium, sodium, iron oxide, U3O8, and plutonium. The ZPR-6/7 core cell-average composition is typical of the interior region of liquid-metal fast breeder reactors (LMFBRs) of the era. It was one part of the Demonstration Reactor Benchmark Program,a which provided integral experiments characterizing the important features of demonstration-size LMFBRs. As a benchmark, ZPR-6/7 was devoid of many 'real' reactor features, such as simulated control rods and multiple enrichment zones, in its reference form. Those kinds of features were investigated experimentally in variants of the reference ZPR-6/7 or in other critical assemblies in the Demonstration Reactor Benchmark Program.« less

  17. EXPLORATORY DEVELOPMENT OF GRAPHITE MATERIALS.

    DTIC Science & Technology

    COMPOSITE MATERIALS), (* GRAPHITE , (*FIBERS, GRAPHITE ), (*LAMINATED PLASTICS, GRAPHITE ), MOLDINGS, EXTRUSION, VACUUM, EPOXY RESINS, FILAMENTS, STRESSES, TENSILE PROPERTIES, OXIDATION, PHYSICAL PROPERTIES.

  18. Development of a trickle bed reactor of electro-Fenton process for wastewater treatment.

    PubMed

    Lei, Yangming; Liu, Hong; Shen, Zhemin; Wang, Wenhua

    2013-10-15

    To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H2O2 was generated with a current of 0.3A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte-cathode interface. In terms of H2O2 generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L(-1) of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3h. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. From coin cells to 400 mAh pouch cells: Enhancing performance of high-capacity lithium-ion cells via modifications in electrode constitution and fabrication

    NASA Astrophysics Data System (ADS)

    Trask, Stephen E.; Li, Yan; Kubal, Joseph J.; Bettge, Martin; Polzin, Bryant J.; Zhu, Ye; Jansen, Andrew N.; Abraham, Daniel P.

    2014-08-01

    In this article we describe efforts to improve performance and cycle life of cells containing Li1.2Ni0.15Mn0.55Co0.1O2-based positive and graphite-based negative electrodes. Initial work to identify high-performing materials, compositions, fabrication variables, and cycling conditions is conducted in coin cells. The resulting information is then used for the preparation of double-sided electrodes, assembly of pouch cells, and electrochemical testing. We report the cycling performance of cells with electrodes prepared under various conditions. Our data indicate that cells with positive electrodes containing 92 wt.% Li1.2Ni0.15Mn0.55Co0.1O2, 4 wt.% carbons (no graphite), and 4 wt.% PVdF (92-4-4) show ∼20% capacity fade after 1000 cycles in the 2.5-4.4 V range, significantly better than our baseline cells that show the same fade after only 450 cycles. Our analyses indicate that the major contributors to cell energy fade are capacity loss and impedance rise. Therefore incorporating approaches that minimize capacity fade and impedance rise, such as electrode coatings and electrolyte additives, can significantly enhance calendar and cycle life of this promising cell chemistry.

  20. Electrochemical fabrication of interconnected tungsten bronze nanosheets for high performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Yang, Gan; Liu, Xiao-Xia

    2018-04-01

    Interconnected H0.12WO3ṡH2O nanosheets with high electrochemical performances are fabricated on partial exfoliated graphite substrate (Ex-GF) by potential-limited pulse galvanostatic method (PLPG). The dead volume problem of bulk pesudocapacitive materials is addressed by the novel interconnected nanosheets structure, enabling a large specific capacitance of 5.95 F cm-2 (495.8 F g-1) at 2 mA cm-2. Merited from the fluent electrolyte penetration channels established by the plenty voids among nanosheets, as well as fast electron transportation in the electronic conductive tungsten bronze which is directly grown from graphite substrate, the obtained WO3/Ex-GF demonstrates excellent rate capability. The material can maintain 60.0% of its capacitance when the discharge current density increases from 2 to 100 mA cm-2. Moreover, WO3/Ex-GF doesn't show capacitance decay after 5000 galvanostatic charge-discharge cycles, displaying its super stability. Furthermore, a high performance asymmetric supercapacitor assembled by using WO3/Ex-GF and electrochemical fabricated MnO2/Ex-GF as negative and positive electrodes, respectively displays a high energy density of 2.88 mWh cm-3 at the power density of 11.1 mW cm-3, demonstrating its potential application for energy storage.

  1. High surface area monodispersed Fe3O4 nanoparticles alone and on physical exfoliated graphite for improved supercapacitors

    NASA Astrophysics Data System (ADS)

    Sarno, Maria; Ponticorvo, Eleonora; Cirillo, Claudia

    2016-12-01

    Highly conductive, unsophisticated and easy to be obtained physical exfoliated graphite (PHG) supporting well dispersed magnetite, Fe3O4/PHG nanocomposite, has been prepared by a one-step chemical strategy and physico-chemical characterized. The nanocomposite, favoured by the a-polar nanoparticles (NPs) capping, results in a self-assembled monolayer of monodispersed Fe3O4, covering perfectly the hydrophobic surfaces of PHG. The nanocomposite as an electrode material was fabricated into a supercapacitor and characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. It shows, after a suitable annealing, significant electrochemical properties (capacitance value of 787 F/g at 0.5 A g-1 and a Fe3O4/PHG weight ratio of 0.31) and good cycling stability (retention 91% after 30,000 cycles). Highly monodispersed very fine Fe3O4 NPs, covered by organic chains, have been also synthesized. The high surface area Fe3O4 NPs, after washing to leave a low content of organic chains able to avoid aggregation without excessively affecting the electrical properties of the material, exhibit remarkable pseudocapacitive activities, including the highest specific capacitance over reported for Fe3O4 (300 F/g at 0.5 A g-1).

  2. Reactive Capture of Gold Nanoparticles by Strongly Physisorbed Monolayers on Graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xiaoliang; Tong, Wenjun; Fidler, Vlastimil

    2012-12-01

    Anthracene Diels Alder adducts (DAa) bearing two long side chains (H-(CH2)22O(CH2)6OCH2-) at the 1- and 5-positions form self-assembled monolayers (SAMs) at the phenyloctane - highly oriented pyrolytic graphite (HOPG) interface. The long DAa side chains promote strong physisorption of the monolayer to HOPG and maintain the monolayer morphology upon rinsing or incubation in ethanol and air-drying of the substrate. Incorporating a carboxylic acid group on the DAa core enables capture of 1 - 4 nm diameter gold nanoparticles (AuNP) provided (i) the monolayer containing DAa-carboxylic acids is treated with Cu2+ ions and (ii) the organic coating on the AuNP containsmore » carboxylic acids (11-mercaptoundecanoic acid, MUA-AuNP). AuNP capture by the monolayer proceeds with formation of Cu2+ - carboxylate coordination complexes. The captured AuNP appear as mono- and multi-layered clusters at high coverage on HOPG. The surface density of the captured AuNPs can be adjusted from AuNP multi-layers to isolated AuNPs by varying incubation times, MUA-AuNP concentration, the number density of carboxylic acids in the monolayer, the number of MUA per AuNP, and the post-incubation treatments.« less

  3. Highly Flexible Freestanding Porous Carbon Nanofibers for Electrodes Materials of High-Performance All-Carbon Supercapacitors.

    PubMed

    Liu, Ying; Zhou, Jinyuan; Chen, Lulu; Zhang, Peng; Fu, Wenbin; Zhao, Hao; Ma, Yufang; Pan, Xiaojun; Zhang, Zhenxing; Han, Weihua; Xie, Erqing

    2015-10-28

    Highly flexible porous carbon nanofibers (P-CNFs) were fabricated by electrospining technique combining with metal ion-assistant acid corrosion process. The resultant fibers display high conductivity and outstanding mechanical flexibility, whereas little change in their resistance can be observed under repeatedly bending, even to 180°. Further results indicate that the improved flexibility of P-CNFs can be due to the high graphitization degree caused by Co ions. In view of electrode materials for high-performance supercapacitors, this type of porous nanostructure and high graphitization degree could synergistically facilitate the electrolyte ion diffusion and electron transportation. In the three electrodes testing system, the resultant P-CNFs electrodes can exhibit a specific capacitance of 104.5 F g(-1) (0.2 A g(-1)), high rate capability (remain 56.5% at 10 A g(-1)), and capacitance retention of ∼94% after 2000 cycles. Furthermore, the assembled symmetric supercapacitors showed a high flexibility and can deliver an energy density of 3.22 Wh kg(-1) at power density of 600 W kg(-1). This work might open a way to improve the mechanical properties of carbon fibers and suggests that this type of freestanding P-CNFs be used as effective electrode materials for flexible all-carbon supercapacitors.

  4. From coin cells to 400 mAh pouch cells: Enhancing performance of high-capacity lithium-ion cells via modifications in electrode constitution and fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trask, Stephen E.; Li, Yan; Kubal, Joseph J.

    2014-08-01

    In this article we describe efforts to improve performance and cycle life of cells containing Li1.2Ni0.15Mn0.55Co0.1O2-based positive and graphite-based negative electrodes. Initial work to identify high-performing materials, compositions, fabrication variables, and cycling conditions is conducted in coin cells. The resulting information is then used for the preparation of double-sided electrodes, assembly of pouch cells, and electrochemical testing. We report the cycling performance of cells with electrodes prepared under various conditions. Our data indicate that cells with positive electrodes containing 92 wt% Li1.2Ni0.15Mn0.55Co0.1O2, 4 wt% carbons (no graphite), and 4 wt% PVdF (92-4-4) show ~20% capacity fade after 1000 cycles inmore » the 2.5-4.4V range, significantly better than our baseline cells that show the same fade after only 450 cycles. Our analyses indicate that the major contributors to cell energy fade are capacity loss and impedance rise. Therefore incorporating approaches that minimize capacity fade and impedance rise, such as electrode coatings and electrolyte additives, can significantly enhance calendar and cycle life of this promising cell chemistry.« less

  5. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots

    PubMed Central

    Qu, Dan; Zheng, Min; Zhang, Ligong; Zhao, Haifeng; Xie, Zhigang; Jing, Xiabin; Haddad, Raid E.; Fan, Hongyou; Sun, Zaicheng

    2014-01-01

    Photoluminescent graphene quantum dots (GQDs) have received enormous attention because of their unique chemical, electronic and optical properties. Here a series of GQDs were synthesized under hydrothermal processes in order to investigate the formation process and optical properties of N-doped GQDs. Citric acid (CA) was used as a carbon precursor and self-assembled into sheet structure in a basic condition and formed N-free GQD graphite framework through intermolecular dehydrolysis reaction. N-doped GQDs were prepared using a series of N-containing bases such as urea. Detailed structural and property studies demonstrated the formation mechanism of N-doped GQDs for tunable optical emissions. Hydrothermal conditions promote formation of amide between –NH2 and –COOH with the presence of amine in the reaction. The intramoleculur dehydrolysis between neighbour amide and COOH groups led to formation of pyrrolic N in the graphene framework. Further, the pyrrolic N transformed to graphite N under hydrothermal conditions. N-doping results in a great improvement of PL quantum yield (QY) of GQDs. By optimized reaction conditions, the highest PL QY (94%) of N-doped GQDs was obtained using CA as a carbon source and ethylene diamine as a N source. The obtained N-doped GQDs exhibit an excitation-independent blue emission with single exponential lifetime decay. PMID:24938871

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, J.X.; Wei, B.Q.; Li, D.D.

    The evolution of microstructure in bainite during graphitization annealing at 680 °C of Jominy-quenched bars of an Al-Si bearing medium carbon (0.4C wt%) steel has been studied and compared with that in martensite by using light, scanning and transmission electron microscopy. The results show that the graphitization process in bainite is different from that in martensite in many aspects such as the initial carbon state, the behavior of cementite, the nucleation-growth feature and kinetics of formation of graphite spheroids during graphitization annealing, and the shape, size and distribution of these graphite spheroids. The fact that the graphitization in bainite canmore » produce more homogeneous graphite spheroids with more spherical shape and finer size in a shorter annealing time without the help of preexisting coring particles implies that bainite should be a better starting structure than martensite for making graphitic steel. - Highlights: • This article presents a microstructural characterization of formation of graphite spheroids in bainite. • Nucleation and growth characteristics of graphite spheroids formed in bainite and martensite are compared. • Bainite should be a better starting structure for making graphitic steel as results show.« less

  7. Surface-Enhanced Raman Spectroscopy of Carbon Nanomembranes from Aromatic Self-Assembled Monolayers.

    PubMed

    Zhang, Xianghui; Mainka, Marcel; Paneff, Florian; Hachmeister, Henning; Beyer, André; Gölzhäuser, Armin; Huser, Thomas

    2018-02-27

    Surface-enhanced Raman scattering spectroscopy (SERS) was employed to investigate the formation of self-assembled monolayers (SAMs) of biphenylthiol, 4'-nitro-1,1'-biphenyl-4-thiol, and p-terphenylthiol on Au surfaces and their structural transformations into carbon nanomembranes (CNMs) induced by electron irradiation. The high sensitivity of SERS allows us to identify two types of Raman scattering in electron-irradiated SAMs: (1) Raman-active sites exhibit similar bands as those of pristine SAMs in the fingerprint spectral region, but with indications of an amorphization process and (2) Raman-inactive sites show almost no Raman-scattering signals, except a very weak and broad D band, indicating a lack of structural order but for the presence of graphitic domains. Statistical analysis showed that the ratio of the number of Raman-active sites to the total number of measurement sites decreases exponentially with increasing the electron irradiation dose. The maximum degree of cross-linking ranged from 97 to 99% for the three SAMs. Proof-of-concept experiments were conducted to demonstrate potential applications of Raman-inactive CNMs as a supporting membrane for Raman analysis.

  8. Liquid-phase exfoliated graphene self-assembled films: Low-frequency noise and thermal-electric characterization

    NASA Astrophysics Data System (ADS)

    Tubon Usca, G.; Hernandez-Ambato, J.; Pace, C.; Caputi, L. S.; Tavolaro, A.

    2016-09-01

    In few years, graphene has become a revolutionary material, leading not only to applications in various fields such as electronics, medicine and environment, but also to the production of new types of 2D materials. In this work, Liquid Phase Exfoliation (LPE) was applied to natural graphite by brief sonication or mixer treatment in suitable solvents, in order to produce Few Layers Graphene (FLG) suspensions. Additionally, zeolite 4A (Z4A) was added during the production of FLG flakes-based inks, with the aim of aiding the exfoliation process. Conductive films were obtained by drop casting three types of suspensions over Al2O3 substrates with interdigitated electrodes, with total channel surface of 1.39 mm2. The morphology characterization resulted in the verification of the presence of thin self-assembled flakes. Raman studies gave evidence of 4 to 10 layers graphene flakes. Electrical measurements were performed to state the Low-Frequency Noise and Thermal-Electric characteristics of the samples. We observe interesting relations between sample preparation procedures and electrical properties.

  9. A priori calculations of the free energy of formation from solution of polymorphic self-assembled monolayers

    PubMed Central

    Reimers, Jeffrey R.; Panduwinata, Dwi; Visser, Johan; Chin, Yiing; Tang, Chunguang; Goerigk, Lars; Ford, Michael J.; Sintic, Maxine; Sum, Tze-Jing; Coenen, Michiel J. J.; Hendriksen, Bas L. M.; Elemans, Johannes A. A. W.; Hush, Noel S.; Crossley, Maxwell J.

    2015-01-01

    Modern quantum chemical electronic structure methods typically applied to localized chemical bonding are developed to predict atomic structures and free energies for meso-tetraalkylporphyrin self-assembled monolayer (SAM) polymorph formation from organic solution on highly ordered pyrolytic graphite surfaces. Large polymorph-dependent dispersion-induced substrate−molecule interactions (e.g., −100 kcal mol−1 to −150 kcal mol−1 for tetratrisdecylporphyrin) are found to drive SAM formation, opposed nearly completely by large polymorph-dependent dispersion-induced solvent interactions (70–110 kcal mol−1) and entropy effects (25–40 kcal mol−1 at 298 K) favoring dissolution. Dielectric continuum models of the solvent are used, facilitating consideration of many possible SAM polymorphs, along with quantum mechanical/molecular mechanical and dispersion-corrected density functional theory calculations. These predict and interpret newly measured and existing high-resolution scanning tunnelling microscopy images of SAM structure, rationalizing polymorph formation conditions. A wide range of molecular condensed matter properties at room temperature now appear suitable for prediction and analysis using electronic structure calculations. PMID:26512115

  10. Criticality calculations of the Very High Temperature reactor Critical Assembly benchmark with Serpent and SCALE/KENO-VI

    DOE PAGES

    Bostelmann, Friederike; Hammer, Hans R.; Ortensi, Javier; ...

    2015-12-30

    Within the framework of the IAEA Coordinated Research Project on HTGR Uncertainty Analysis in Modeling, criticality calculations of the Very High Temperature Critical Assembly experiment were performed as the validation reference to the prismatic MHTGR-350 lattice calculations. Criticality measurements performed at several temperature points at this Japanese graphite-moderated facility were recently included in the International Handbook of Evaluated Reactor Physics Benchmark Experiments, and represent one of the few data sets available for the validation of HTGR lattice physics. Here, this work compares VHTRC criticality simulations utilizing the Monte Carlo codes Serpent and SCALE/KENO-VI. Reasonable agreement was found between Serpent andmore » KENO-VI, but only the use of the latest ENDF cross section library release, namely the ENDF/B-VII.1 library, led to an improved match with the measured data. Furthermore, the fourth beta release of SCALE 6.2/KENO-VI showed significant improvements from the current SCALE 6.1.2 version, compared to the experimental values and Serpent.« less

  11. 40 CFR 436.380 - Applicability; description of the graphite subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... graphite subcategory. 436.380 Section 436.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Graphite Subcategory § 436.380 Applicability; description of the graphite subcategory. The provisions of this subpart are applicable to the mining and processing of naturally occurring graphite. ...

  12. Method for producing thin graphite flakes with large aspect ratios

    DOEpatents

    Bunnell, L. Roy

    1993-01-01

    A method for making graphite flakes of high aspect ratio by the steps of providing a strong concentrated acid and heating the graphite in the presence of the acid for a time and at a temperature effective to intercalate the acid in the graphite; heating the intercalated graphite at a rate and to a temperature effective to exfoliate the graphite in discrete layers; subjecting the graphite layers to ultrasonic energy, mechanical shear forces, or freezing in an amount effective to separate the layes into discrete flakes.

  13. Physical, electrochemical, and thermal properties of granulated natural graphite as anodes for Li-ion batteries.

    PubMed

    Jo, Yong Nam; Park, Min-Sik; Kim, Jae-Hun; Kim, Young-Jun

    2013-05-01

    Two different types of granulated graphites were synthesized by blending and kneading of natural graphite with pitch followed by sintering methods. The electrochemical performances of granulated graphites were investigated as anode materials for use in Li-ion batteries. The blending type granulated graphite possesses a large amount of cavities and voids, while the kneading type granulated graphite has a relatively compact microstructure, which is responsible for a high tap density. Both granulated graphites show improved the initial coulombic efficiencies as a result of decrease of surface area by the granulations. In particular, the kneading type granulated graphite exhibits an excellent rate-capability without significant capacity loss. In addition, the thermal stabilities of both granulated graphites were also improved, which could be attributed to the decrease of active surface area due to pitch coating.

  14. Effect of Reacting Surface Density on the Overall Graphite Oxidation Rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang H. Oh; Eung Kim; Jong Lim

    2009-05-01

    Graphite oxidation in an air-ingress accident is presently a very important issue for the reactor safety of the very high temperature gas cooled-reactor (VHTR), the concept of the next generation nuclear plant (NGNP) because of its potential problems such as mechanical degradation of the supporting graphite in the lower plenum of the VHTR might lead to core collapse if the countermeasure is taken carefully. The oxidation process of graphite has known to be affected by various factors, including temperature, pressure, oxygen concentration, types of graphite, graphite shape and size, flow distribution, etc. However, our recent study reveals that the internalmore » pore characteristics play very important roles in the overall graphite oxidation rate. One of the main issues regarding graphite oxidation is the potential core collapse problem that may occur following the degradation of graphite mechanical strength. In analyzing this phenomenon, it is very important to understand the relationship between the degree of oxidization and strength degradation. In addition, the change of oxidation rate by graphite oxidation degree characterization by burn-off (ratio of the oxidized graphite density to the original density) should be quantified because graphite strength degradation is followed by graphite density decrease, which highly affects oxidation rates and patterns. Because the density change is proportional to the internal pore surface area, they should be quantified in advance. In order to understand the above issues, the following experiments were performed: (1)Experiment on the fracture of the oxidized graphite and validation of the previous correlations, (2) Experiment on the change of oxidation rate using graphite density and data collection, (3) Measure the BET surface area of the graphite. The experiments were performed using H451 (Great Lakes Carbon Corporation) and IG-110 (Toyo Tanso Co., Ltd) graphite. The reason for the use of those graphite materials is because their chemical and mechanical characteristics are well identified by the previous investigations, and therefore it was convenient for us to access the published data, and to apply and validate our new methodologies. This paper presents preliminary results of compressive strength vs. burn-off and surface area density vs. burn-off, which can be used for the nuclear graphite selection for the NGNP.« less

  15. Systems and methods for forming defects on graphitic materials and curing radiation-damaged graphitic materials

    DOEpatents

    Ryu, Sunmin; Brus, Louis E.; Steigerwald, Michael L.; Liu, Haitao

    2012-09-25

    Systems and methods are disclosed herein for forming defects on graphitic materials. The methods for forming defects include applying a radiation reactive material on a graphitic material, irradiating the applied radiation reactive material to produce a reactive species, and permitting the reactive species to react with the graphitic material to form defects. Additionally, disclosed are methods for removing defects on graphitic materials.

  16. Effect of graphite target power density on tribological properties of graphite-like carbon films

    NASA Astrophysics Data System (ADS)

    Dong, Dan; Jiang, Bailing; Li, Hongtao; Du, Yuzhou; Yang, Chao

    2018-05-01

    In order to improve the tribological performance, a series of graphite-like carbon (GLC) films with different graphite target power densities were prepared by magnetron sputtering. The valence bond and microstructure of films were characterized by AFM, TEM, XPS and Raman spectra. The variation of mechanical and tribological properties with graphite target power density was analyzed. The results showed that with the increase of graphite target power density, the deposition rate and the ratio of sp2 bond increased obviously. The hardness firstly increased and then decreased with the increase of graphite target power density, whilst the friction coefficient and the specific wear rate increased slightly after a decrease with the increasing graphite target power density. The friction coefficient and the specific wear rate were the lowest when the graphite target power density was 23.3 W/cm2.

  17. AGC 2 Irradiated Material Properties Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbaugh, David Thomas

    2017-05-01

    The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. , Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core componentsmore » within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less

  18. AGC 2 Irradiation Creep Strain Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windes, William E.; Rohrbaugh, David T.; Swank, W. David

    2016-08-01

    The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. Nuclear graphite H-451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core components within amore » commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less

  19. Preparation, quantitative surface analysis, intercalation characteristics and industrial implications of low temperature expandable graphite

    NASA Astrophysics Data System (ADS)

    Peng, Tiefeng; Liu, Bin; Gao, Xuechao; Luo, Liqun; Sun, Hongjuan

    2018-06-01

    Expandable graphite is widely used as a new functional carbon material, especially as fire-retardant; however, its practical application is limited due to the high expansion temperature. In this work, preparation process of low temperature and highly expandable graphite was studied, using natural flake graphite as raw material and KMnO4/HClO4/NH4NO3 as oxidative intercalations. The structure, morphology, functional groups and thermal properties were characterized during expanding process by Fourier transform infrared spectroscopy (FTIR), Raman spectra, thermo-gravimetry differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM). The analysis showed that by oxidation intercalation, some oxygen-containing groups were grafted on the edge and within the graphite layer. The intercalation reagent entered the graphite layer to increase the interlayer spacing. After expansion, the original flaky expandable graphite was completely transformed into worm-like expanded graphite. The order of graphite intercalation compounds (GICs) was proposed and determined to be 3 for the prepared expandable graphite, based on quantitative XRD peak analysis. Meanwhile, the detailed intercalation mechanisms were also proposed. The comprehensive investigation paved a benchmark for the industrial application of such sulfur-free expanded graphite.

  20. The impact of LDEF results on the space application of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Steckel, Gary L.; Le, Tuyen D.

    1993-01-01

    Over 200 graphite/aluminum and graphite/magnesium composites were flown on the leading and trailing edges of LDEF on the Advanced Composites Experiment. The performance of these composites was evaluated by performing scanning electron microscopy and x-ray photoelectron spectroscopy of exposed surfaces, optical microscopy of cross sections, and on-orbit and postflight thermal expansion measurements. Graphite/aluminum and graphite/magnesium were found to be superior to graphite/polymer matrix composites in that they are inherently resistant to atomic oxygen and are less susceptible to thermal cycling induced microcracking. The surface foils on graphite/aluminum and graphite/magnesium protect the graphite fibers from atomic oxygen and from impact damage from small micrometeoroid or space debris particles. However, the surface foils were found to be susceptible to thermal fatigue cracking arising from contamination embrittlement, surface oxidation, or stress risers. Thus, the experiment reinforced requirements for carefully protecting these composites from prelaunch oxidation or corrosion, avoiding spacecraft contamination, and designing composite structures to minimize stress concentrations. On-orbit strain measurements demonstrated the importance of through-thickness thermal conductivity in composites to minimize thermal distortions arising from thermal gradients. Because of the high thermal conductivity of aluminum, thermal distortions were greatly reduced in the LDEF thermal environment for graphite/aluminum as compared to graphite/magnesium and graphite/polymer composites. The thermal expansion behavior of graphite/aluminum and graphite/magnesium was stabilized by on-orbit thermal cycling in the same manner as observed in laboratory tests.

  1. Natural graphite demand and supply - Implications for electric vehicle battery requirements

    USGS Publications Warehouse

    Olson, Donald W.; Virta, Robert L.; Mahdavi, Mahbood; Sangine, Elizabeth S.; Fortier, Steven M.

    2016-01-01

    Electric vehicles have been promoted to reduce greenhouse gas emissions and lessen U.S. dependence on petroleum for transportation. Growth in U.S. sales of electric vehicles has been hindered by technical difficulties and the high cost of the lithium-ion batteries used to power many electric vehicles (more than 50% of the vehicle cost). Groundbreaking has begun for a lithium-ion battery factory in Nevada that, at capacity, could manufacture enough batteries to power 500,000 electric vehicles of various types and provide economies of scale to reduce the cost of batteries. Currently, primary synthetic graphite derived from petroleum coke is used in the anode of most lithium-ion batteries. An alternate may be the use of natural flake graphite, which would result in estimated graphite cost reductions of more than US$400 per vehicle at 2013 prices. Most natural flake graphite is sourced from China, the world's leading graphite producer. Sourcing natural flake graphite from deposits in North America could reduce raw material transportation costs and, given China's growing internal demand for flake graphite for its industries and ongoing environmental, labor, and mining issues, may ensure a more reliable and environmentally conscious supply of graphite. North America has flake graphite resources, and Canada is currently a producer, but most new mining projects in the United States require more than 10 yr to reach production, and demand could exceed supplies of flake graphite. Natural flake graphite may serve only to supplement synthetic graphite, at least for the short-term outlook.

  2. Finite element model correlation of a composite UAV wing using modal frequencies

    NASA Astrophysics Data System (ADS)

    Oliver, Joseph A.; Kosmatka, John B.; Hemez, François M.; Farrar, Charles R.

    2007-04-01

    The current work details the implementation of a meta-model based correlation technique on a composite UAV wing test piece and associated finite element (FE) model. This method involves training polynomial models to emulate the FE input-output behavior and then using numerical optimization to produce a set of correlated parameters which can be returned to the FE model. After discussions about the practical implementation, the technique is validated on a composite plate structure and then applied to the UAV wing structure, where it is furthermore compared to a more traditional Newton-Raphson technique which iteratively uses first-order Taylor-series sensitivity. The experimental testpiece wing comprises two graphite/epoxy prepreg and Nomex honeycomb co-cured skins and two prepreg spars bonded together in a secondary process. MSC.Nastran FE models of the four structural components are correlated independently, using modal frequencies as correlation features, before being joined together into the assembled structure and compared to experimentally measured frequencies from the assembled wing in a cantilever configuration. Results show that significant improvements can be made to the assembled model fidelity, with the meta-model procedure producing slightly superior results to Newton-Raphson iteration. Final evaluation of component correlation using the assembled wing comparison showed worse results for each correlation technique, with the meta-model technique worse overall. This can be most likely be attributed to difficultly in correlating the open-section spars; however, there is also some question about non-unique update variable combinations in the current configuration, which lead correlation away from physically probably values.

  3. Automating Structural Analysis of Spacecraft Vehicles

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2004-01-01

    A major effort within NASA's vehicle analysis discipline has been to automate structural analysis and sizing optimization during conceptual design studies of advanced spacecraft. Traditional spacecraft structural sizing has involved detailed finite element analysis (FEA) requiring large degree-of-freedom (DOF) finite element models (FEM). Creation and analysis of these models can be time consuming and limit model size during conceptual designs. The goal is to find an optimal design that meets the mission requirements but produces the lightest structure. A structural sizing tool called HyperSizer has been successfully used in the conceptual design phase of a reusable launch vehicle and planetary exploration spacecraft. The program couples with FEA to enable system level performance assessments and weight predictions including design optimization of material selections and sizing of spacecraft members. The software's analysis capabilities are based on established aerospace structural methods for strength, stability and stiffness that produce adequately sized members and reliable structural weight estimates. The software also helps to identify potential structural deficiencies early in the conceptual design so changes can be made without wasted time. HyperSizer's automated analysis and sizing optimization increases productivity and brings standardization to a systems study. These benefits will be illustrated in examining two different types of conceptual spacecraft designed using the software. A hypersonic air breathing, single stage to orbit (SSTO), reusable launch vehicle (RLV) will be highlighted as well as an aeroshell for a planetary exploration vehicle used for aerocapture at Mars. By showing the two different types of vehicles, the software's flexibility will be demonstrated with an emphasis on reducing aeroshell structural weight. Member sizes, concepts and material selections will be discussed as well as analysis methods used in optimizing the structure. Analysis based on the HyperSizer structural sizing software will be discussed. Design trades required to optimize structural weight will be presented.

  4. Thermal Protection for Mars Sample Return Earth Entry Vehicle: A Grand Challenge for Design Methodology and Reliability Verification

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Gage, Peter; Wright, Michael J.

    2017-01-01

    Mars Sample Return is our Grand Challenge for the coming decade. TPS (Thermal Protection System) nominal performance is not the key challenge. The main difficulty for designers is the need to verify unprecedented reliability for the entry system: current guidelines for prevention of backward contamination require that the probability of spores larger than 1 micron diameter escaping into the Earth environment be lower than 1 million for the entire system, and the allocation to TPS would be more stringent than that. For reference, the reliability allocation for Orion TPS is closer to 11000, and the demonstrated reliability for previous human Earth return systems was closer to 1100. Improving reliability by more than 3 orders of magnitude is a grand challenge indeed. The TPS community must embrace the possibility of new architectures that are focused on reliability above thermal performance and mass efficiency. MSR (Mars Sample Return) EEV (Earth Entry Vehicle) will be hit with MMOD (Micrometeoroid and Orbital Debris) prior to reentry. A chute-less aero-shell design which allows for self-righting shape was baselined in prior MSR studies, with the assumption that a passive system will maximize EEV robustness. Hence the aero-shell along with the TPS has to take ground impact and not break apart. System verification will require testing to establish ablative performance and thermal failure but also testing of damage from MMOD, and structural performance at ground impact. Mission requirements will demand analysis, testing and verification that are focused on establishing reliability of the design. In this proposed talk, we will focus on the grand challenge of MSR EEV TPS and the need for innovative approaches to address challenges in modeling, testing, manufacturing and verification.

  5. A Venus/Saturn Mission Study: 45deg Sphere-Cone Rigid Aeroshells and Ballistic Entries

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Allen, Gary A.; Cappuccio, Gelsomina

    2012-01-01

    The present study considers ballistic entries into the atmospheres of Saturn and Venus using a 45deg sphere-cone rigid aeroshell (a legacy shape that has been successfully used in the Pioneer Venus and Galileo missions). For a number of entry mass and diameter combinations (i.e., various entries ballistic coefficients), entry velocities, and heading angles, the trajectory space in terms of entry flight path angles between skip out and -30deg is explored with a 3DOF trajectory code, TRAJ. Assuming that the thermal protection material of choice is carbon phenolic of flight heritage, the entry flight path angle space is constrained a posteriori by the mechanical and thermal performance parameters of the material. For mechanical performance, a 200 g limit is place on the peak deceleration load and 10 bar is assumed as the spallation pressure threshold for the legacy material. It is shown that both constraints cannot be active simultaneously. For thermal performance, a minimum margined heat flux threshold of 2.5 kW/sq cm is assumed for the heritage material. Using these constraints, viable entry flight path angle corridors are determined. Analysis of the results also hints at the existence of a "critical" ballistic coefficient beyond which the steepest possible entries are determined by the spallation pressure threshold. The results are verified against known performance of the various probes used in the Galileo and Pioneer Venus missions. It is hoped that the results presented here will serve as a baseline in the development of a new class of ablative materials for Venus and Saturn missions being considered in a future New Frontiers class of NASA missions.

  6. KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers lower the backshell with the Mars Exploration Rover 1 (MER-1) onto the heat shield. The two components form the aeroshell that will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers lower the backshell with the Mars Exploration Rover 1 (MER-1) onto the heat shield. The two components form the aeroshell that will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  7. KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers check the attachment between the backshell (above) and heat shield (below) surrounding the Mars Exploration Rover 1 (MER-1). The aeroshell will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers check the attachment between the backshell (above) and heat shield (below) surrounding the Mars Exploration Rover 1 (MER-1). The aeroshell will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  8. Dual Heat Pulse, Dual Layer Thermal Protection System Sizing Analysis and Trade Studies for Human Mars Entry Descent and Landing

    NASA Technical Reports Server (NTRS)

    McGuire, Mary Kathleen

    2011-01-01

    NASA has been recently updating design reference missions for the human exploration of Mars and evaluating the technology investments required to do so. The first of these started in January 2007 and developed the Mars Design Reference Architecture 5.0 (DRA5). As part of DRA5, Thermal Protection System (TPS) sizing analysis was performed on a mid L/D rigid aeroshell undergoing a dual heat pulse (aerocapture and atmospheric entry) trajectory. The DRA5 TPS subteam determined that using traditional monolithic ablator systems would be mass expensive. They proposed a new dual-layer TPS concept utilizing an ablator atop a low thermal conductivity insulative substrate to address the issue. Using existing thermal response models for an ablator and insulative tile, preliminary hand analysis of the dual layer concept at a few key heating points indicated that the concept showed potential to reduce TPS masses and warranted further study. In FY09, the followon Entry, Descent and Landing Systems Analysis (EDL-SA) project continued by focusing on Exploration-class cargo or crewed missions requiring 10 to 50 metric tons of landed payload. The TPS subteam advanced the preliminary dual-layer TPS analysis by developing a new process and updated TPS sizing code to rapidly evaluate mass-optimized, full body sizing for a dual layer TPS that is capable of dual heat pulse performance. This paper describes the process and presents the results of the EDL-SA FY09 dual-layer TPS analyses on the rigid mid L/D aeroshell. Additionally, several trade studies were conducted with the sizing code to evaluate the impact of various design factors, assumptions and margins.

  9. Treatment of irradiated graphite from French Bugey reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Howard; Laurent, Gerard

    In 2008, following the general French plan for nuclear waste management, Electricite de France attempted to find for irradiated graphite an alternative solution to direct storage at the low-activity long-life storage center in France managed by the national agency for wastes (ANDRA). EDF management requested that its engineering arm, EDF CIDEN, study the graphite treatment alternatives to direct storage. In mid-2008, this study revealed the potential advantage for EDF to use a steam reforming process known as Thermal Organic Reduction, 'THOR' (owned by Studsvik, Inc., USA), to treat or destroy the graphite matrix and limit the quantity of secondary wastemore » to be stored. In late 2009, EDF began a test program with Studsvik to determine if the THOR steam reforming process could be used to destroy the graphite. The program also sought to determine if the graphite could be treated to release the bulk of activity while minimizing the gasification of the bulk mass of the graphite. In October 2009, tests with non-irradiated graphite were completed and demonstrated destruction of a graphite matrix by the THOR process at satisfactory rates. After gasifying the graphite, focus shifted to the effect of roasting graphite at high temperatures in inert gases with low concentrations of oxidizing gases to preferentially remove volatile radionuclides while minimizing the graphite mass loss to 5%. A radioactive graphite sleeve was imported from France to the US for these tests. Completed in April 2010, 'Phase I' of testing showed that the process removed >99% of H-3 and 46% of C-14 with <6% mass loss. Completed in September 2011, 'Phase II' testing achieved increased removals as high as 80% C-14. During Phase II, it was also discovered that roasting in a reducing atmosphere helped to limit the oxidation of the graphite. Future work seeks to explore the effects of reducing gases to limit the bulk oxidation of graphite. If the graphite could be decontaminated of long-lived radionuclides up to 95% for C-14 while minimizing mass loss to <5%, this would minimize the volume of any secondary waste streams and potentially lower the waste class of the larger bulk of graphite. Alternatively, if up to 95% decontamination of C-14 is achieved, the graphite may be completely gasified which could result in lower disposal. (authors)« less

  10. Solar Concentrator Advanced Development Program

    NASA Technical Reports Server (NTRS)

    Knasel, Don; Ehresman, Derik

    1989-01-01

    The Solar Concentrator Advanced Development Project has successfully designed, fabricated, and tested a full scale prototypical solar dynamic concentrator for space station applications. A Truss Hexagonal Panel reflector was selected as a viable solar concentrator concept to be used for space station applications. This concentrator utilizes a modular design approach and is flexible in attainable flux profiles and assembly techniques. The detailed design of the concentrator, which included structural, thermal and optical analysis, identified the feasibility of the design and specific technologies that were required to fabricate it. The needed surface accuracy of the reflectors surface was found to be very tight, within 5 mrad RMS slope error, and results in very close tolerances for fabrication. To meet the design requirements, a modular structure composed of hexagonal panels was used. The panels, made up of graphite epoxy box beams provided the strength, stiffness and dimensional stability needed. All initial project requirements were met or exceeded by hardware demonstration. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort within the project, which included developing the vapor deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.

  11. Analytical and Photogrammetric Characterization of a Planar Tetrahedral Truss

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Adams, Richard R.; Rhodes, Marvin D.

    1990-01-01

    Future space science missions are likely to require near-optical quality reflectors which are supported by a stiff truss structure. This support truss should conform closely with its intended shape to minimize its contribution to the overall surface error of the reflector. The current investigation was conducted to evaluate the planar surface accuracy of a regular tetrahedral truss structure by comparing the results of predicted and measured node locations. The truss is a 2-ring hexagonal structure composed of 102 equal-length truss members. Each truss member is nominally 2 meters in length between node centers and is comprised of a graphite/epoxy tube with aluminum nodes and joints. The axial stiffness and the length variation of the truss components were determined experimentally and incorporated into a static finite element analysis of the truss. From this analysis, the root mean square (RMS) surface error of the truss was predicted to be 0.11 mm (0004 in). Photogrammetry tests were performed on the assembled truss to measure the normal displacements of the upper surface nodes and to determine if the truss would maintain its intended shape when subjected to repeated assembly. Considering the variation in the truss component lengths, the measures rms error of 0.14 mm (0.006 in) in the assembled truss is relatively small. The test results also indicate that a repeatable truss surface is achievable. Several potential sources of error were identified and discussed.

  12. Bridged graphite oxide materials

    NASA Technical Reports Server (NTRS)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  13. Preparation of graphitic articles

    DOEpatents

    Phillips, Jonathan; Nemer, Martin; Weigle, John C.

    2010-05-11

    Graphitic structures have been prepared by exposing templates (metal, metal-coated ceramic, graphite, for example) to a gaseous mixture that includes hydrocarbons and oxygen. When the template is metal, subsequent acid treatment removes the metal to yield monoliths, hollow graphitic structures, and other products. The shapes of the coated and hollow graphitic structures mimic the shapes of the templates.

  14. Method of Obtaining Uniform Coatings on Graphite

    DOEpatents

    Campbell, I. E.

    1961-04-01

    A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.

  15. METHOD OF OBTAINING UNIFORM COATINGS ON GRAPHITE

    DOEpatents

    Campbell, I.E.

    1961-04-01

    A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.

  16. Morphological and optoelectronic characteristics of nanocomposites comprising graphene nanosheets and poly(3-hexylthiophene).

    PubMed

    Chang, Yo-Wei; Yu, Shiau-Wei; Liu, Cheng-Hao; Tsiang, Raymond Chien-Chao

    2010-10-01

    P3HT/graphene nanocomposite was prepared via in-situ reduction of exfoliated graphite oxide in the P3HT polymer matrix, where the exfoliated graphite oxide was formed beforehand via the oxidation of graphite via the Hummers method. The oxidation reaction not only imparts functional groups, such as C=O, C-OH, and C-O-C, to graphite but also causes exfoliation of the resulting graphite oxide. The functional groups render graphite oxide an additional, lower thermal degradation temperature (T(d)) and the exfoliation shifts the XRD pattern towards a much smaller angle. The oxidation of graphite into graphite oxide creates a pleated flaking morphology for graphite oxide as opposed to that of graphite. UV/Vis and photoluminescence (PL) spectra of P3HT/graphene nanocomposite indicate that the existence of graphene does not alter the UV/Vis and PL excitation characteristics of P3HT, and the P3HT/graphene composite has higher electron mobility, a smaller band gap and higher conductivity than the pristine P3HT.

  17. Graphite Sheet Coating for Improved Thermal Oxidative Stability of Carbon Fiber Reinforced/PMR-15 Composites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi; Papadopoulos, Demetrios; Heimann, Paula; Inghram, Linda; McCorkle, Linda

    2005-01-01

    Expanded graphite was compressed into graphite sheets and used as a coating for carbon fiber reinforced PMR-15 composites. BET analysis of the graphite indicated an increase in graphite pore size on compression, however the material was proven to be an effective barrier to oxygen when prepegged with PMR-15 resin. Oxygen permeability of the PMR-15/graphite was an order of magnitude lower than the compressed graphite sheet. By providing a barrier to oxygen permeation, the rate of oxidative degradation of PMR-15 was decreased. As a result, the composite thermo-oxidative stability increased by up to 25%. The addition of a graphite sheet as a top ply on the composites yielded little change in the material's flexural strength or interlaminar shear strength.

  18. GRAFEC: A New Spanish Program to Investigate Waste Management Options for Radioactive Graphite - 12399

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquez, Eva; Pina, Gabriel; Rodriguez, Marina

    Spain has to manage about 3700 tons of irradiated graphite from the reactor Vandellos I as radioactive waste. 2700 tons are the stack of the reactor and are still in the reactor core waiting for retrieval. The rest of the quantities, 1000 tons, are the graphite sleeves which have been already retrieved from the reactor. During operation the graphite sleeves were stored in a silo and during the dismantling stage a retrieval process was carried out separating the wires from the graphite, which were crushed and introduced into 220 cubic containers of 6 m{sup 3} each and placed in interimmore » storage. The graphite is an intermediate level radioactive waste but it contains long lived radionuclides like {sup 14}C which disqualifies disposal at the low level waste repository of El Cabril. Therefore, a new project has been started in order to investigate two new options for the management of this waste type. The first one is based on a selective decontamination of {sup 14}C by thermal methods. This method is based on results obtained at the Research Centre Juelich (FZJ) in the Frame of the EC programs 'Raphael' and 'Carbowaste'. The process developed at FZJ is based on a preferential oxidation of {sup 14}C in comparison to the bulk {sup 12}C. Explanations for this effect are the inhomogeneous distribution and a weaker bounding of {sup 14}C which is not incorporated in the graphite lattice. However these investigations have only been performed with graphite from the high temperature reactor Arbeitsgemeinschaft Versuchsreaktor Juelich AVR which has been operated in a non-oxidising condition or research reactor graphite operated at room temperature. The reactor Vandellos I has been operated with CO{sub 2} as coolant and significant amounts of graphite have been already oxidised. The aim of the project is to validate whether a {sup 14}C decontamination can also been achieved with graphite from Vandellos I. A second possibility under investigation is the encapsulation of the graphite in a long term stable glass matrix. The principal applicability has been already proved by FNAG. Crushed graphite mixed with a suitable glass powder has been pressed at elevated temperature under vacuum. The vacuum is required to avoid gas enclosures in the obtained product. The obtained products, named IGM for 'Impermeable Graphite Matrix', have densities above 99% of theoretical density. The amount of glass has been chosen with respect to the pore volume of the former graphite parts. The method allows the production of encapsulated graphite without increasing the disposal volume. This paper will give a short overview of characterisation results of different irradiated graphite materials obtained at CIEMAT and in the Carbowaste project as well as the proposed methods and the actual status of the program including first results about leaching of non-radioactive IGM samples and hopefully first tendencies concerning the C-14 separation from graphite of Vandellos I by thermal treatment. Both processes, the thermal treatment as well as the IGM, have the potential to solve problems related to the management of irradiated graphite in Spain. However the methods have only been tested with different types of i-graphite and virgin graphite, respectively. Only investigations with real i-graphite from Spain will reveal whether the described methods are applicable to graphite from Vandellos I. However all partners are convinced that one of these new methods or a combination of them will lead to a feasible option to manage i-graphite in Spain on an industrial scale. (authors)« less

  19. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.

    1977-01-01

    The results of research for the origination of graphite-fiber reinforced glass matrix composites are presented. The method selected to form the composites consisted of pulling the graphite fiber through a slurry containing powdered glass, winding up the graphite fiber and the glass it picks up on a drum, drying, cutting into segments, loading the tape segment into a graphite die, and hot pressing. During the course of the work, composites were made with a variety of graphite fibers in a glass matrix.

  20. Supercooling of Hydrogen on Template Materials to Deterministically Seed Ignition-Quality Solid Fuel Layers

    DOE PAGES

    Shin, S. J.; Zepeda-Ruiz, L. A.; Lee, J. R. I.; ...

    2016-09-01

    In this study, we explored templating effects of various materials for hydrogen (H 2 and D 2) solidification by measuring the degree of supercooling required for liquid hydrogen to solidify below each triple point. The results show high supercooling (>100 mK) for most metallic, covalent, and ionic solids, and low supercooling (<100 mK) for van der Waals (vdW) solids. We attribute the low supercooling of vdW solids to the weak interaction of the substrate and hydrogen. Highly ordered pyrolytic graphite showed the lowest supercooling among materials that are solid at room temperature, but did not exhibit a templating effect withinmore » a fill-tube and capsule assembly.« less

  1. Two-dimensional assembly structure of graphene and TiO2 nanosheets from titanic acid with enhanced visible-light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Hao, Rong; Guo, Shien; Wang, Xiuwen; Feng, Tong; Feng, Qingmao; Li, Mingxia; Jiang, Baojiang

    2016-06-01

    The titanic acid sheets were prepared by one-step hydrazine hydrate-assisted hydrothermal process. Then the reduced graphite oxide (rGO)@TiO2 nanosheet composites were finally obtained through ultrasonic exfoliation and following calcination treatment process. rGO@TiO2 nanosheet composites show excellent hydrogen production performance under AM1.5 light source. The highest hydrogen evolution yield (923.23 μmol) is nearly two times higher than that of pure TiO2, mainly due to the special electron structure and more active sites for TiO2 nanosheet. The introduction of graphene could improve the TiO2 nanosheet stability and extend visible-light absorption range.

  2. Installing logic gates in permeability controllable polyelectrolyte-carbon nitride films for detecting proteases and nucleases.

    PubMed

    Chen, Lichan; Zeng, Xiaoting; Dandapat, Anirban; Chi, Yuwu; Kim, Donghwan

    2015-09-01

    Proteases and nucleases are enzymes heavily involved in many important biological processes, such as cancer initiation, progression, and metastasis; hence, they are indicative of potential diagnostic biomarkers. Here, we demonstrate a new label free and sensitive electrochemiluminescent (ECL) sensing strategy for protease and nuclease assays that utilize target-triggered desorption of programmable polyelectrolyte films assembled on graphite-like carbon nitride (g-C3N4) film to regulate the diffusion flux of a coreactant. Furthermore, we have built Boolean logic gates OR and AND into the polyelectrolyte films, capable of simultaneously sensing proteases and nucleases in a complicated system by breaking it into simple functions. The developed intelligent permeability controlled enzyme sensor may prove valuable in future medical diagnostics.

  3. Research on the transformation mechanism of graphite phase and microstructure in the heated region of gray cast iron by laser cladding

    NASA Astrophysics Data System (ADS)

    Liu, Yancong; Zhan, Xianghua; Yi, Peng; Liu, Tuo; Liu, Benliang; Wu, Qiong

    2018-03-01

    A double-track lap cladding experiment involving gray cast iron was established to investigate the transformation mechanism of graphite phase and microstructure in a laser cladding heated region. The graphite phase and microstructure in different heated regions were observed under a microscope, and the distribution of elements in various heated regions was analyzed using an electron probe. Results show that no graphite existed in the cladding layer and in the middle and upper parts of the binding region. Only some of the undissolved small graphite were observed at the bottom of the binding region. Except the refined graphite size, the morphological characteristics of substrate graphite and graphite in the heat-affected zone were similar. Some eutectic clusters, which grew along the direction of heat flux, were observed in the heat-affected zone whose microstructure was transformed into a mixture of austenite, needle-like martensite, and flake graphite. Needle-like martensite around graphite was fine, but this martensite became sparse and coarse when it was away from graphite. Some martensite clusters appeared in the local area near the binding region, and the carbon atoms in the substrate did not diffuse into the cladding layer through laser cladding, which only affected the bonding area and the bottom of the cladding layer.

  4. NEW METHOD OF GRAPHITE PREPARATION

    DOEpatents

    Stoddard, S.D.; Harper, W.T.

    1961-08-29

    BS>A method is described for producing graphite objects comprising mixing coal tar pitch, carbon black, and a material selected from the class comprising raw coke, calcined coke, and graphite flour. The mixture is placed in a graphite mold, pressurized to at least 1200 psi, and baked and graphitized by heating to about 2500 deg C while maintaining such pressure. (AEC)

  5. Electronic and total energy properties of ternary and quaternary semiconductor compounds, alloys, and superlattices: Theoretical study of Cu/graphite bonding

    NASA Technical Reports Server (NTRS)

    Lambrecht, Walter R. L.

    1992-01-01

    The goals of the research were to provide a fundamental science basis for why the bonding of Cu to graphite is weak, to critically evaluate the previous analysis of the wetting studies with particular regard to the values used for the surface energies of Cu and graphite, and to make recommendations for future experiments or other studies which could advance the understanding and solution of this technological problem. First principles electronic structure calculations were used to study the problem. These are based on density functional theory in the local density approximation and the use of the linear muffin-tin orbital band structure method. Calculations were performed for graphite monolayers, single crystal graphite with the hexagonal AB stacking, bulk Cu, Cu(111) surface, and Cu/graphite superlattices. The study is limited to the basal plane of graphite because this is the graphite plane exposed to Cu and graphite surface energies and combined with the measured contact angles to evaluate the experimental adhesion energy.

  6. Low-energy electron diffraction study of potassium adsorbed on single-crystal graphite and highly oriented pyrolytic graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferralis, N.; Diehl, R.D.; Pussi, K.

    2004-12-15

    Potassium adsorption on graphite has been a model system for the understanding of the interaction of alkali metals with surfaces. The geometries of the (2x2) structure of potassium on both single-crystal graphite (SCG) and highly oriented pyrolytic graphite (HOPG) were investigated for various preparation conditions for graphite temperatures between 55 and 140 K. In all cases, the geometry was found to consist of K atoms in the hollow sites on top of the surface. The K-graphite average perpendicular spacing is 2.79{+-}0.03 A , corresponding to an average C-K distance of 3.13{+-}0.03 A , and the spacing between graphite planes ismore » consistent with the bulk spacing of 3.35 A. No evidence was observed for a sublayer of potassium. The results of dynamical LEED studies for the clean SCG and HOPG surfaces indicate that the surface structures of both are consistent with the truncated bulk structure of graphite.« less

  7. An Electron Microscopy Study of Graphite Growth in Nodular Cast Irons

    NASA Astrophysics Data System (ADS)

    Laffont, L.; Jday, R.; Lacaze, J.

    2018-04-01

    Growth of graphite during solidification and high-temperature solid-state transformation has been investigated in samples cut out from a thin-wall casting which solidified partly in the stable (iron-graphite) and partly in the metastable (iron-cementite) systems. Transmission electron microscopy has been used to characterize graphite nodules in as-cast state and in samples having been fully graphitized at various temperatures in the austenite field. Nodules in the as-cast material show a twofold structure characterized by an inner zone where graphite is disoriented and an outer zone where it is well crystallized. In heat-treated samples, graphite nodules consist of well-crystallized sectors radiating from the nucleus. These observations suggest that the disoriented zone appears because of mechanical deformation when the liquid contracts during its solidification in the metastable system. During heat-treatment, the graphite in this zone recrystallizes. In turn, it can be concluded that nodular graphite growth mechanism is the same during solidification and solid-state transformation.

  8. Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam - scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Na; Jia, Zhe; Wang, Zhihui; Zhao, Hui; Ai, Guo; Song, Xiangyun; Bai, Ying; Battaglia, Vincent; Sun, Chengdong; Qiao, Juan; Wu, Kai; Liu, Gao

    2017-10-01

    The structure degradation of commercial Lithium-ion battery (LIB) graphite anodes with different cycling numbers and charge rates was investigated by focused ion beam (FIB) and scanning electron microscopy (SEM). The cross-section image of graphite anode by FIB milling shows that cracks, resulted in the volume expansion of graphite electrode during long-term cycling, were formed in parallel with the current collector. The crack occurs in the bulk of graphite particles near the lithium insertion surface, which might derive from the stress induced during lithiation and de-lithiation cycles. Subsequently, crack takes place along grain boundaries of the polycrystalline graphite, but only in the direction parallel with the current collector. Furthermore, fast charge graphite electrodes are more prone to form cracks since the tensile strength of graphite is more likely to be surpassed at higher charge rates. Therefore, for LIBs long-term or high charge rate applications, the tensile strength of graphite anode should be taken into account.

  9. Friction and wear of carbon-graphite materials for high-energy brakes

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1978-01-01

    Caliper type brake simulation experiments were conducted on seven different carbon graphite materials formulations against a steel disk material and against a carbon graphite disk material. The effects of binder level, boron carbide (B4C) additions, SiC additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level, additions of B4C, and additions of SiC each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. The transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur.

  10. Fluid-deposited graphitic inclusions in quartz: Comparison between KTB (German Continental Deep-Drilling) core samples and artificially reequilibrated natural inclusions

    USGS Publications Warehouse

    Pasteris, J.D.; Chou, I.-Ming

    1998-01-01

    We used Raman microsampling spectroscopy (RMS) to determine the degree of crystallinity of minute (2-15 ??m) graphite inclusions in quartz in two sets of samples: experimentally reequilibrated fluid inclusions in a natural quartz grain and biotite-bearing paragneisses from the KTB deep drillhole in SE Germany. Our sequential reequilibration experiments at 725??C on initially pure CO2 inclusions in a quartz wafer and the J. Krautheim (1993) experiments at 900-1100??C on organic compounds heated in gold or platinum capsules suggest that, at a given temperature, (1) fluid-deposited graphite will have a lower crystallinity than metamorphosed organic matter and (2) that the crystallinity of fluid-deposited graphite is affected by the composition of the fluid from which it was deposited. We determined that the precipitation of more-crystalline graphite is favored by lower fH2 (higher fO2), and that the crystallinity of graphite is established by the conditions (including gas fugacities) that pertain as the fluid first reaches graphite saturation. Graphite inclusions within quartz grains in the KTB rocks show a wide range in crystallinity index, reflecting three episodes of carbon entrapment under different metamorphic conditions. Isolated graphite inclusions have the spectral properties of totally ordered, completely crystalline graphite. Such crystallinity suggests that the graphite was incorporated from the surrounding metasedimentary rocks, which underwent metamorphism at upper amphibolite-facies conditions. Much of the fluid-deposited graphite in fluid inclusions, however, shows some spectral disorder. The properties of that graphite resemble those of experimental precipitates at temperatures in excess of 700??C and at elevated pressures, suggesting that the inclusions represent precipitates from C-O-H fluids trapped under conditions near those of peak metamorphism at the KTB site. In contrast, graphite that is intimately associated with chlorite and other (presumably low-temperature) silicates in inclusions is highly disordered and spectrally resembles kerogens. This graphite probably was deposited during later greenschist-facies retrograde metamorphism at about 400-500??C. The degree of crystallinity of fluid-deposited graphite is shown to be a much more complex function of temperature than is the crystallinity of metamorphic graphite. To some extent, experiments can provide temperature-calibration of the crystallinity index. However, the difference in time scales between experimental runs and geologic processes makes it difficult to infer specific temperatures for naturally precipitated graphite. Copyright ?? 1998 Elsevier Science Ltd.

  11. Tubular graphite cones.

    PubMed

    Zhang, Guangyu; Jiang, Xin; Wang, Enge

    2003-04-18

    We report the synthesis of tubular graphite cones using a chemical vapor deposition method. The cones have nanometer-sized tips, micrometer-sized roots, and hollow interiors with a diameter ranging from about 2 to several tens of nanometers. The cones are composed of cylindrical graphite sheets; a continuous shortening of the graphite layers from the interior to the exterior makes them cone-shaped. All of the tubular graphite cones have a faceted morphology. The constituent graphite sheets have identical chiralities of a zigzag type across the entire diameter, imparting structural control to tubular-based carbon structures. The tubular graphite cones have potential for use as tips for scanning probe microscopy, but with greater rigidity and easier mounting than currently used carbon nanotubes.

  12. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    DOEpatents

    Makowiecki, D.M.; Ramsey, P.B.; Juntz, R.S.

    1995-07-04

    An improved method is disclosed for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite`s high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding. 11 figs.

  13. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  14. Mineral resource of the month: graphite

    USGS Publications Warehouse

    ,

    2008-01-01

    The article presents facts about graphite ideal for industrial applications. Among the characteristics of graphite are its metallic luster, softness, perfect basal cleavage and electrical conductivity. Batteries, brake linings and powdered metals are some of the products that make use of graphite. It attributes the potential applications for graphite in high-technology fields to innovations in thermal technology and acid-leaching techniques.

  15. Nucleation and Growth of Graphite in Eutectic Spheroidal Cast Iron: Modeling and Testing

    NASA Astrophysics Data System (ADS)

    Carazo, Fernando D.; Dardati, Patricia M.; Celentano, Diego J.; Godoy, Luis A.

    2016-06-01

    A new model of graphite growth during the continuous cooling of eutectic spheroidal cast iron is presented in this paper. The model considers the nucleation and growth of graphite from pouring to room temperature. The microstructural model of solidification accounts for the eutectic as divorced and graphite growth rate as a function of carbon gradient at the liquid in contact with the graphite. In the solid state, the microstructural model takes into account three stages for graphite growth, namely (1) from the end of solidification to the upper bound of intercritical stable eutectoid, (2) during the intercritical stable eutectoid, and (3) from the lower bound of intercritical stable eutectoid to room temperature. The micro- and macrostructural models are coupled using a sequential multiscale approach. Numerical results for graphite fraction and size distribution are compared with experimental results obtained from a cylindrical cup, in which the graphite volumetric fraction and size distribution were obtained using the Schwartz-Saltykov approach. The agreements between the experimental and numerical results for the fraction of graphite and the size distribution of spheroids reveal the importance of numerical models in the prediction of the main aspects of graphite in spheroidal cast iron.

  16. Graphitized-carbon fiber/carbon char fuel

    DOEpatents

    Cooper, John F [Oakland, CA

    2007-08-28

    A method for recovery of intact graphitic fibers from fiber/polymer composites is described. The method comprises first pyrolyzing the graphite fiber/polymer composite mixture and then separating the graphite fibers by molten salt electrochemical oxidation.

  17. KSC-03pd1373

    NASA Image and Video Library

    2003-04-29

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility look over the aeroshell enclosing Mars Exploration Rover 2 and lander that is being moved to a rotation table for a spin stabilization test. There are two identical rovers that will land at different regions of Mars and are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station. The second is scheduled for launch June 25.

  18. KSC-03pd1372

    NASA Image and Video Library

    2003-04-29

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility look over the aeroshell enclosing Mars Exploration Rover 2 and lander that is being moved to a rotation table for a spin stabilization test. There are two identical rovers that will land at different regions of Mars and are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station. The second is scheduled for launch June 25.

  19. KSC-03pd1366

    NASA Image and Video Library

    2003-04-29

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility begin moving the aeroshell enclosing Mars Exploration Rover 2 and lander to a rotation table for a spin stabilization test. There are two identical rovers that will land at different regions of Mars and are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station. The second is scheduled for launch June 25.

  20. Material Damage System and Method for Determining Same

    NASA Technical Reports Server (NTRS)

    Okojie, Robert (Inventor)

    2017-01-01

    A system and method for determining a change in a thickness and temperature of a surface of a material are disclosed herein. The system and the method are usable in a thermal protection system of a space vehicle, such as an aeroshell of a space vehicle. The system and method may incorporate micro electric sensors arranged in a ladder network and capacitor strip sensors. Corrosion or ablation causes a change in an electrical property of the sensors. An amount of or rate of the corrosion or the ablation and a temperature of the material is determined based on the change of the electrical property of the sensors.

  1. KSC-03pd1221

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 2 (MER-A) is ready for final closure of the petals on the lander. The lander and rover will be enclosed within an aeroshell for launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  2. KSC-03pd1223

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - While workers watch the process, the petals on the lander close up around the Mars Exploration Rover 2 (MER-A). The lander and rover will be enclosed within an aeroshell for launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  3. KSC-03pd0232

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, an overhead crane lifts the Mars Exploration Rover (MER) aeroshell for transfer to a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  4. KSC-03pd0438

    NASA Image and Video Library

    2003-02-04

    KENNEDY SPACE CENTER, FLA. -- The aeroshell for Mars Exploration Rover 2 rests on a rotation stand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  5. KSC-03pd0230

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover (MER) aeroshell is being prepared for transfer to a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  6. KSC-03pd0234

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, an overhead crane lowers the Mars Exploration Rover (MER) aeroshell toward a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  7. KSC-03pd0457

    NASA Image and Video Library

    2003-02-06

    KENNEDY SPACE CENTER, FLA. -- Technicians secure the aeroshell for Mars Exploration Rover 2 to a workstand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25, 2003.

  8. KSC-03pd0439

    NASA Image and Video Library

    2003-02-04

    KENNEDY SPACE CENTER, FLA. -- The aeroshell for Mars Exploration Rover 2 rests on end after rotation in the Payload Hazardous Servicing Facility. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  9. KSC-03pd0236

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover (MER) aeroshell onto a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  10. KSC-03pd0235

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover (MER) aeroshell as it is lowered toward a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  11. KSC-03pd0440

    NASA Image and Video Library

    2003-02-04

    KENNEDY SPACE CENTER, FLA. - During processing, workers in the Payload Hazardous Servicing Facility work on part of the aeroshell for Mars Exploration Rover 2. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  12. The Mars Exploration Rovers Entry Descent and Landing and the Use of Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam; Desai, Prasun; Lee, Wayne; Bruno, Robin

    2003-01-01

    The Mars Exploration Rovers (MER) project, the next United States mission to the surface of Mars, uses aerodynamic decelerators in during its entry, descent and landing (EDL) phase. These two identical missions (MER-A and MER-B), which deliver NASA s largest mobile science suite to date to the surface of Mars, employ hypersonic entry with an ablative energy dissipating aeroshell, a supersonic/subsonic disk-gap-band parachute and an airbag landing system within EDL. This paper gives an overview of the MER EDL system and speaks to some of the challenges faced by the various aerodynamic decelerators.

  13. Thermodynamic Simulation of Equilibrium Composition of Reaction Products at Dehydration of a Technological Channel in a Uranium-Graphite Reactor

    NASA Astrophysics Data System (ADS)

    Pavliuk, A. O.; Zagumennov, V. S.; Kotlyarevskiy, S. G.; Bespala, E. V.

    2018-01-01

    The problems of accumulation of nuclear fuel spills in the graphite stack in the course of operation of uranium-graphite nuclear reactors are considered. The results of thermodynamic analysis of the processes in the graphite stack at dehydration of a technological channel, fuel element shell unsealing and migration of fission products, and activation of stable nuclides in structural elements of the reactor and actinides inside the graphite moderator are given. The main chemical reactions and compounds that are produced in these modes in the reactor channel during its operation and that may be hazardous after its shutdown and decommissioning are presented. Thermodynamic simulation of the equilibrium composition is performed using the specialized code TERRA. The results of thermodynamic simulation of the equilibrium composition in different cases of technological channel dehydration in the course of the reactor operation show that, if the temperature inside the active core of the nuclear reactor increases to the melting temperature of the fuel element, oxides and carbides of nuclear fuel are produced. The mathematical model of the nonstationary heat transfer in a graphite stack of a uranium-graphite reactor in the case of the technological channel dehydration is presented. The results of calculated temperature evolution at the center of the fuel element, the replaceable graphite element, the air gap, and in the surface layer of the block graphite are given. The numerical results show that, in the case of dehydration of the technological channel in the uranium-graphite reactor with metallic uranium, the main reaction product is uranium dioxide UO2 in the condensed phase. Low probability of production of pyrophoric uranium compounds (UH3) in the graphite stack is proven, which allows one to disassemble the graphite stack without the risk of spontaneous graphite ignition in the course of decommissioning of the uranium-graphite nuclear reactor.

  14. Electrochemical treatment of evaporated residue of soak liquor generated from leather industry.

    PubMed

    Boopathy, R; Sekaran, G

    2013-09-15

    The organic and suspended solids present in soak liquor, generated from leather industry, demands treatment. The soak liquor is being segregated and evaporated in solar evaporation pans/multiple effect evaporator due to non availability of viable technology for its treatment. The residue left behind in the pans/evaporator does not carry any reuse value and also faces disposal threat due to the presence of high concentration of sodium chloride, organic and bacterial impurities. In the present investigation, the aqueous evaporated residue of soak liquor (ERSL) was treated by electrochemical oxidation. Graphite/graphite and SS304/graphite systems were used in electrochemical oxidation of organics in ERSL. Among these, graphite/graphite system was found to be effective over SS304/graphite system. Hence, the optimised conditions for the electrochemical oxidation of organics in ERSL using graphite/graphite system was evaluated by response surface methodology (RSM). The mass transport coefficient (km) was calculated based on pseudo-first order rate kinetics for both the electrode systems (graphite/graphite and SS304/graphite). The thermodynamic properties illustrated the electrochemical oxidation was exothermic and non-spontaneous in nature. The calculated specific energy consumption at the optimum current density of 50 mA cm(-2) was 0.41 kWh m(-3) for the removal of COD and 2.57 kWh m(-3) for the removal of TKN. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Preparation and Characterization of Graphite Waste/CeO2 Composites

    NASA Astrophysics Data System (ADS)

    Kusrini, E.; Utami, C. S.; Nasruddin; Prasetyanto, E. A.; Bawono, Aji A.

    2018-03-01

    In this research, the chemical modification of graphite waste with CeO2 was developed and characterized. Graphite waste was pretreated with mechanical to obtain the size 200 mesh (75 μm), and thermal methods at 110°C oven for 6 hours. Here, we demonstrate final properties of graphite before modification (GBM), activated graphite (GA) and graphite/CeO2 composite with variation of 0.5, 1 and 2 g of CeO2 (G0.5; G1; G2). The effect of CeO2 concentration was observed. The presence of cerium in modified graphite samples (G0.5; G1; G2) were analyzed using SEM-EDX. The results show that the best surface area was found in G2 is 26.82 m2/g. The presence of CeO2 onto graphite surface does not significantly increase the surface area of composites.

  16. Monolithic porous graphitic carbons obtained through catalytic graphitization of carbon xerogels

    NASA Astrophysics Data System (ADS)

    Kiciński, Wojciech; Norek, Małgorzata; Bystrzejewski, Michał

    2013-01-01

    Pyrolysis of organic xerogels accompanied by catalytic graphitization and followed by selective-combustion purification was used to produce porous graphitic carbons. Organic gels impregnated with iron(III) chloride or nickel(II) acetate were obtained through polymerization of resorcinol and furfural. During the pyrolysis stage graphitization of the gel matrix occurs, which in turn develops mesoporosity of the obtained carbons. The evolution of the carbon into graphitic structures is strongly dependent on the concentrations of the transition metal. Pyrolysis leads to monoliths of carbon xerogel characterized by substantially enhanced mesoporosity resulting in specific surface areas up to 400 m2/g. Removal of the amorphous carbon by selective-combustion purification reduces the xerogels' mesoporosity, occasionally causing loss of their mechanical strength. The graphitized carbon xerogels were investigated by means of SEM, XRD, Raman scattering, TG-DTA and N2 physisorption. Through this procedure well graphitized carbonaceous materials can be obtained as bulk pieces.

  17. Friction and wear of carbon-graphite materials for high energy brakes

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1975-01-01

    Caliper-type brakes simulation experiments were conducted on seven different carbon-graphite material formulations against a steel disk material and against a carbon-graphite disk material. The effects of binder level, boron carbide (B4C) additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level and additions of B4C each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. This transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur. The exposure of the fiber structure of the cloth constituent is believed to play a role in the shear film disruption.

  18. Nucleation and growth studies of crystalline carbon phases at nanoscale

    NASA Astrophysics Data System (ADS)

    Mani, Radhika C.

    Understanding the nucleation and early stage growth of crystals from the vapor phase is important for realizing large-area single-crystal quality films, controlled synthesis of nanocrystals, and the possible discovery of new phases of materials. Carbon provides the most interesting system because all its known crystalline phases (diamond, graphite and carbon nanotubes) are technologically important materials. Hence, this dissertation is focused on studying the nucleation and growth of carbon phases synthesized from the vapor phase. Nucleation experiments were performed in a microwave plasma chemical vapor deposition (CVD) reactor, and the resulting carbon nanocrystals were analyzed primarily using electron nanodiffraction and Raman spectroscopy. These studies led to the discovery of two new crystalline phases of sp 3 carbon other than diamond: face-centered and body-centered cubic carbon. Nanodiffraction results revealed possible hydrogen substitution into diamond-cubic lattices, indicating that these new phases probably act as intermediates in diamond nucleation. Nucleation experiments also led to the discovery of two new morphologies for sp2 carbon: nanocrystals of graphite and tapered, hollow 1-D structures termed here as "carbon nanopipettes". A Kinetic Monte Carlo (KMC) algorithm was developed to simulate the growth of individual diamond crystals from the vapor phase, starting with small clusters of carbon atoms (or seeds). Specifically, KMC simulations were used to distinguish the kinetic rules that give rise to a star-shaped decahedral morphology compared to decahedral crystals. KMC simulations revealed that slow adsorption on the {111} step-propagation sites compared to kink sites leads to star-decahedral crystals, and higher adsorption leads to decahedral crystals. Since the surfaces of the nanocrystals of graphite and nanopipettes were expected to be composed primarily of edge-plane sites, the electrochemical behavior of both these materials were investigated with compounds requiring chemisorption, specifically biologically important species. Both these materials exhibited a stable and reversible voltammetric behavior for dopamine (a neurotransmitter) similar to that of graphite edge planes. Furthermore, a simple bottom-up concept utilizing the tapered morphology of the nanopipettes was developed to assemble a nanoarray sensor for fast cyclic voltammetry. In summary, the main outcomes of this dissertation include: the discovery of new crystalline carbon phases, understanding kinetic faceting of multiply twinned diamond crystals and tapered morphologies of carbon nanotubes, and development of new electrode materials based on sp2 carbon nanocrystals for sensing biologically important analytes.

  19. Porous carbon-coated graphite electrodes for energy production from salinity gradient using reverse electrodialysis

    NASA Astrophysics Data System (ADS)

    Lee, Su-Yoon; Jeong, Ye-Jin; Chae, So-Ryong; Yeon, Kyeong-Ho; Lee, Yunkyu; Kim, Chan-Soo; Jeong, Nam-Jo; Park, Jin-Soo

    2016-04-01

    Performance of graphite foil electrodes coated by porous carbon black (i.e., Vulcan) was investigated in comparison with metal electrodes for reverse electrodialysis (RED) application. The electrode slurry that was used for fabrication of the porous carbon-coated graphite foil is composed of 7.2 wt% of carbon black (Vulcan X-72), 0.8 wt% of a polymer binder (polyvinylidene fluoride, PVdF), and 92.0 wt% of a mixing solvent (dimethylacetamide, DMAc). Cyclic voltammograms of both the porous carbon (i.e., Vulcan)-coated graphite foil electrode and the graphite foil electrode without Vulcan showed good reversibility in the hexacyanoferrate(III) (i.e., Fe(CN)63-) and hexacyanoferrate(II) (i.e., Fe(CN)64-) redox couple and 1 M Na2SO4 at room temperature. However, anodic and cathodic current of the Vulcan-coated graphite foil electrode was much higher than those of the graphite foil electrode. Using a bench-scale RED stack, the current-voltage polarization curve of the Vulcan-coated graphite electrode was compared to that of metal electrodes such as iridium (Ir) and platinum (Pt). From the results, it was confirmed that resistance of four different electrodes increased with the following order: the Vulcan-coated graphite foil

  20. Comparison between the Strength Levels of Baseline Nuclear-Grade Graphite and Graphite Irradiated in AGC-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Mark Christopher

    2015-07-01

    This report details the initial comparison of mechanical strength properties between the cylindrical nuclear-grade graphite specimens irradiated in the second Advanced Graphite Creep (AGC-2) experiment with the established baseline, or unirradiated, mechanical properties compiled in the Baseline Graphite Characterization program. The overall comparative analysis will describe the development of an appropriate test protocol for irradiated specimens, the execution of the mechanical tests on the AGC-2 sample population, and will further discuss the data in terms of developing an accurate irradiated property distribution in the limited amount of irradiated data by leveraging the considerably larger property datasets being captured in themore » Baseline Graphite Characterization program. Integrating information on the inherent variability in nuclear-grade graphite with more complete datasets is one of the goals of the VHTR Graphite Materials program. Between “sister” specimens, or specimens with the same geometry machined from the same sub-block of graphite from which the irradiated AGC specimens were extracted, and the Baseline datasets, a comprehensive body of data will exist that can provide both a direct and indirect indication of the full irradiated property distributions that can be expected of irradiated nuclear-grade graphite while in service in a VHTR system. While the most critical data will remain the actual irradiated property measurements, expansion of this data into accurate distributions based on the inherent variability in graphite properties will be a crucial step in qualifying graphite for nuclear use as a structural material in a VHTR environment.« less

  1. Influence of graphite-alloy interactions on corrosion of Ni-Mo-Cr alloy in molten fluorides

    NASA Astrophysics Data System (ADS)

    Ai, Hua; Hou, Juan; Ye, Xiang-Xi; Zeng, Chao Liu; Sun, Hua; Li, Xiaoyun; Yu, Guojun; Zhou, Xingtai; Wang, Jian-Qiang

    2018-05-01

    In this study, the effects of graphite-alloy interaction on corrosion of Ni-Mo-Cr alloy in molten FLiNaK salt were investigated. The corrosion tests of Ni-Mo-Cr alloys were conducted in graphite crucibles, to examine the differences of test specimens in conditions of electric contact and isolated with graphite, respectively. The corrosion attack is severer with more weight loss and deeper Cr depletion layer in samples electric contact with graphite than those isolated with graphite. The occurrence of galvanic corrosion between alloy specimens and graphite container was confirmed by electrochemical measurement. The corrosion is controlled by nonelectric transfer in isolated test while electrochemical reaction accelerated corrosion in electric contact test.

  2. The origin of epigenetic graphite: evidence from isotopes

    USGS Publications Warehouse

    Weis, P.L.; Friedman, I.; Gleason, J.P.

    1981-01-01

    Stable carbon isotope ratios measured in syngenetic graphite, epigenetic graphite, and graphitic marble suggests that syngenetic graphite forms only by the metamorphism of carbonaceous detritus. Metamorphism of calcareous rocks with carbonaceous detritus is accompanied by an exchange of carbon between the two, which may result in large changes in isotopic composition of the non-carbonate phase but does not affect the relative proportions of the two reactants in the rock. Epigenetic graphite forms only from carbonaceous material or preexisting graphite. The reactions involved are the water gas reaction (C + H2O ??? CO + H2) at 800-900??C, and the Boudouard reaction (2CO ??? C + CO2), which probably takes place at temperatures about 50-100??C lower. ?? 1982.

  3. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  4. METHOD FOR COATING GRAPHITE WITH METALLIC CARBIDES

    DOEpatents

    Steinberg, M.A.

    1960-03-22

    A method for producing refractory coatings of metallic carbides on graphite was developed. In particular, the graphite piece to be coated is immersed in a molten solution of 4 to 5% by weight of zirconium, titanium, or niobium dissolved in tin. The solution is heated in an argon atmosphere to above 1400 deg C, whereby the refractory metal reacts with the surface of the graphite to form a layer of metalic carbide. The molten solution is cooled to 300 to 400 deg C, and the graphite piece is removed. Excess tin is wiped from the graphite, which is then heated in vacuum to above 2300 deg C. The tin vaporizes from the graphite surface, leaving the surface coated with a tenacious layer of refractory metallic carbide.

  5. Recent Advances in Preparation, Structure, Properties and Applications of Graphite Oxide.

    PubMed

    Srivastava, Suneel Kumar; Pionteck, Jürgen

    2015-03-01

    Graphite oxide, also referred as graphitic oxide or graphitic acid, is an oxidized bulk product of graphite with a variable composition. However, it did not receive immense attention until it was identified as an important and easily obtainable precursor for the preparation of graphene. This inspired many researchers to explore facts related to graphite oxide in exploiting its fascinating features. The present article culminates up-dated review on different preparative methods, morphology and characterization of physical/chemical properties of graphite oxide by XRD, XPS, FTIR, Raman, NMR, UV-visible, and DRIFT analyses. Finally, recent developments on intercalation and applications of GO in multifaceted areas of catalysis, sensor, supercapacitors, water purification, hydrogen storage and magnetic shielding etc. has also been reviewed.

  6. CMB-13 research on carbon and graphite

    NASA Technical Reports Server (NTRS)

    Smith, M. C.

    1972-01-01

    The research on graphite and carbon for this period is reported. Topics discussed include: effects of grinding on the Santa Marie graphites, properties and purities of coal-tar, resin-bonded graphite, carbonization of resin components, and glass-like carbon filler.

  7. Tribological Analysis of Copper-Coated Graphite Particle-Reinforced A359 Al/5 wt.% SiC Composites

    NASA Astrophysics Data System (ADS)

    Lin, C. B.; Wang, T. C.; Chang, Z. C.; Chu, H. Y.

    2013-01-01

    Copper-coated graphite particles can be mass-produced by the cementation process using simple equipment. Graphite particulates that were coated with electroless copper and 5 wt.% SiC particulates were introduced into an aluminum alloy by compocasting to make A359 Al/5 wt.% SiC(p) composite that contained 2, 4, 6, and 8 wt.% graphite particulate composite. The effects of SiC particles, quantity of graphite particles, normal loading, sliding speed and wear debris on the coefficient of friction, and the wear rate were investigated. The results thus obtained indicate that the wear properties were improved by adding small amounts of SiC and graphite particles into the A359 Al alloy. The coefficient of friction of the A359 Al/5 wt.% SiC(p) composite that contained 6.0 wt.% graphite particulates was reduced to 0.246 and the amount of graphite film that was released on the worn surface increased with the graphite particulate content. The coefficient of friction and the wear rate were insensitive to the variation in the sliding speed and normal loading.

  8. Preparation and characterization of copper-graphite composites by electrical explosion of wire in liquid.

    PubMed

    Bien, T N; Gul, W H; Bac, L H; Kim, J C

    2014-11-01

    Copper-graphite nanocomposites containing 5 vol.% graphite were prepared by a powder metallurgy route using an electrical wire explosion (EEW) in liquid method and spark plasma sintering (SPS) process. Graphite rods with a 0.3 mm diameter and copper wire with a 0.2 mm diameter were used as raw materials for EEWin liquid. To compare, a pure copper and copper-graphite mixture was also prepared. The fabricated graphite was in the form of a nanosheet, onto which copper particles were coated. Sintering was performed at 900 degrees C at a heating rate of 30 degrees C/min for 10 min and under a pressure of 70 MPa. The density of the sintered composite samples was measured by the Archimedes method. A wear test was performed by a ball-on-disc tribometer under dry conditions at room temperature in air. The presence of graphite effectively reduced the wear of composites. The copper-graphite nanocomposites prepared by EEW had lower wear rates than pure copper material and simple mixed copper-graphite.

  9. Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam - scanning electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Na; Jia, Zhe; Wang, Zhihui

    Here in this paper, the structure degradation of commercial Lithium-ion battery (LIB) graphite anodes with different cycling numbers and charge rates was investigated by focused ion beam (FIB) and scanning electron microscopy (SEM). The cross-section image of graphite anode by FIB milling shows that cracks, resulted in the volume expansion of graphite electrode during long-term cycling, were formed in parallel with the current collector. The crack occurs in the bulk of graphite particles near the lithium insertion surface, which might derive from the stress induced during lithiation and de-lithiation cycles. Subsequently, crack takes place along grain boundaries of the polycrystallinemore » graphite, but only in the direction parallel with the current collector. Furthermore, fast charge graphite electrodes are more prone to form cracks since the tensile strength of graphite is more likely to be surpassed at higher charge rates. Therefore, for LIBs long-term or high charge rate applications, the tensile strength of graphite anode should be taken into account.« less

  10. Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam - scanning electron microscopy

    DOE PAGES

    Lin, Na; Jia, Zhe; Wang, Zhihui; ...

    2017-10-01

    Here in this paper, the structure degradation of commercial Lithium-ion battery (LIB) graphite anodes with different cycling numbers and charge rates was investigated by focused ion beam (FIB) and scanning electron microscopy (SEM). The cross-section image of graphite anode by FIB milling shows that cracks, resulted in the volume expansion of graphite electrode during long-term cycling, were formed in parallel with the current collector. The crack occurs in the bulk of graphite particles near the lithium insertion surface, which might derive from the stress induced during lithiation and de-lithiation cycles. Subsequently, crack takes place along grain boundaries of the polycrystallinemore » graphite, but only in the direction parallel with the current collector. Furthermore, fast charge graphite electrodes are more prone to form cracks since the tensile strength of graphite is more likely to be surpassed at higher charge rates. Therefore, for LIBs long-term or high charge rate applications, the tensile strength of graphite anode should be taken into account.« less

  11. Study of evaporating the irradiated graphite in equilibrium low-temperature plasma

    NASA Astrophysics Data System (ADS)

    Bespala, E. V.; Novoselov, I. Yu.; Pavlyuk, A. O.; Kotlyarevskiy, S. G.

    2018-01-01

    The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes 137Cs, 60Co, 90Sr, 36Cl, and 3H. A method was developed for processing of irradiated graphite ensuring the volu-metric decontamination of samples. The calculation results are presented for equilibrium composition of plasma-chemical reactions in systems "irradiated graphite-argon" and "irradiated graphite-helium" for a wide range of tem-peratures. The paper describes a developed mathematical model for the process of purification of a porous graphite surface treated by equilibrium low-temperature plasma. The simulation results are presented for the rate of sublimation of radioactive contaminants as a function of plasma temperature and plasma flow velocity when different plasma-forming gases are used. The extraction coefficient for the contaminant 137Cs from the outer side of graphite pores was calculated. The calculations demonstrated the advantages of using a lighter plasma forming gas, i.e., helium.

  12. Hybridized polymer matrix composites

    NASA Technical Reports Server (NTRS)

    House, E. E.; Hoggatt, J. T.; Symonds, W. A.

    1980-01-01

    The extent to which graphite fibers are released from resin matrix composites that are exposed to fire and impact conditions was determined. Laboratory simulations of those conditions that could exist in the event of an aircraft crash and burn situation were evaluated. The effectiveness of various hybridizing concepts in preventing this release of graphite fibers were also evaluated. The baseline (i.e., unhybridized) laminates examined were prepared from commercially available graphite/epoxy, graphite/polyimide, and graphite/phenolic materials. Hybridizing concepts investigated included resin fillers, laminate coatings, resin blending, and mechanical interlocking of the graphite reinforcement. The baseline and hybridized laminates' mechanical properties, before and after isothermal and humidity aging, were also compared. It was found that a small amount of graphite fiber was released from the graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that several hybrid concepts eliminated this fiber release. Isothermal and humidity aging did not appear to alter the fiber release tendencies.

  13. Chemical Characterization and Removal of C-14 from Irradiated Graphite-12010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, James; McCrory, Shilo; Smith, Tara E.

    2012-07-01

    Quantities of irradiated graphite waste are expected to drastically increase, which indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 (C-14), with a half-life of 5730 years. Study of irradiated graphite from nuclear reactors indicates C-14 is concentrated on the outer 5 mm of the graphite structure. The aim of the research described here is to identify the chemical form of C-14 in irradiated graphite and develop a practical method by which C-14 can be removed. Characterization of pre- and post-irradiation graphite was conducted to determine bond type, functionalmore » groups, location and concentration of C-14 and its precursors via the use of surface sensitive characterization techniques. Because most surface C-14 originates from neutron activation of nitrogen, an understanding of nitrogen bonding to graphite may lead to a greater understanding of the formation pathway of C-14. However, no single technique provides a complete picture. Therefore, a portfolio of techniques has been developed, with each technique providing another piece to the puzzle that is the chemical nature of the C-14. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), and Raman Spectroscopy were used to evaluate the morphological features of graphite samples. The concentration, chemical composition, and bonding characteristics of C-14 and its precursors were determined through X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (SIMS), and Auger and Energy Dispersive X-ray Analysis Spectroscopy (EDX). High-surface-area graphite foam, POCOFoam{sup R}, was exposed to liquid nitrogen and irradiated. Characterization of this material has shown C-14 to C-12 ratios of 0.035. This information was used to optimize the thermal treatment of graphite. Thermal treatment of irradiated graphite as reported by Fachinger et al. (2007) uses naturally adsorbed oxygen complexes to gasify graphite, thus its effectiveness is highly dependent on the availability of adsorbed oxygen compounds. In research presented, the quantity and form of adsorbed oxygen complexes in pre- and post irradiated graphite was studied using SIMS and XPS. SIMS and XPS detected adsorbed oxygen compounds on both irradiated and unirradiated graphite. During thermal treatment graphite samples are heated in the presence of inert argon gas, which carries off gaseous products released during treatment. Experiments were performed at 900 deg. C and 1400 deg. C to evaluate the selective removal of C-14. (authors)« less

  14. High speed hydrogen/graphite interaction

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Hamman, R.; Sharma, O. P.; Harrje, D. T.

    1974-01-01

    Various aspects of a research program on high speed hydrogen/graphite interaction are presented. Major areas discussed are: (1) theoretical predictions of hydrogen/graphite erosion rates; (2) high temperature, nonequilibrium hydrogen flow in a nozzle; and (3) molecular beam studies of hydrogen/graphite erosion.

  15. RECOVERY OF VALUABLE MATERIAL FROM GRAPHITE BODIES

    DOEpatents

    Fromm, L.W. Jr.

    1959-09-01

    An electrolytic process for recovering uranium from a graphite fuel element is described. The uraniumcontaining graphite body is disposed as the anode of a cell containing a nitric acid electrolyte and a 5 amp/cm/sup 2/ current passed to induce a progressive disintegration of the graphite body. The dissolved uranium is quickly and easily separated from the resulting graphite particles by simple mechanical means, such as centrifugation, filtration, and decontamination.

  16. Interface Character of Aluminum-Graphite Metal Matrix Composites.

    DTIC Science & Technology

    1983-01-27

    studied included the commer- cial A/graphite composites; layered model systems on single crystal and poly- crystalline graphite substrates as well as...composition and thickness of the composite interface, and graphite crystal orientation. 3 For the model systems in this study , single crystal graphite...been reviewed by Kingcry. Segregation at surfaces in single- crystal MgO of Fe, Cr and Sc, which were Dresent in concentrations within the single- 3phase

  17. Structure and Performance of Epoxy Resin Cladded Graphite Used as Anode

    NASA Astrophysics Data System (ADS)

    Zhou, Zhentao; Li, Haijun

    This paper is concerning to prepare modified natural graphite which is low-cost and advanced materials used as lithium ion battery anode using the way of cladding natural graphite with epoxy resin. The results shows that the specific capacity and circular performance of the modified natural graphite, which is prepared in the range of 600°C and 1000°C, have been apparently improved compare with the not-modified natural graphite. The first reversible capacity of the modified natural graphite is 338mAh/g and maintain more than 330mAh/g after 20 charge/discharge circles.

  18. Artificially-built solid electrolyte interphase via surface-bonded vinylene carbonate derivative on graphite by molecular layer deposition

    NASA Astrophysics Data System (ADS)

    Chae, Seulki; Lee, Jeong Beom; Lee, Jae Gil; Lee, Tae-jin; Soon, Jiyong; Ryu, Ji Heon; Lee, Jin Seok; Oh, Seung M.

    2017-12-01

    Vinylene carbonate (VC) is attached in a ring-opened form on a graphite surface by molecular layer deposition (MLD) method, and its role as a solid electrolyte interphase (SEI) former is studied. When VC is added into the electrolyte solution of a graphite/LiNi0.5Mn1.5O4 (LNMO) full-cell, it is reductively decomposed to form an effective SEI on the graphite electrode. However, VC in the electrolyte solution has serious adverse effects due to its poor stability against electrochemical oxidation on the LNMO positive electrode. A excessive acid generation as a result of VC oxidation is observed, causing metal dissolution from the LNMO electrode. The dissolved metal ions are plated on the graphite electrode to destroy the SEI layer, eventually causing serious capacity fading and poor Coulombic efficiency. The VC derivative on the graphite surface also forms an effective SEI layer on the graphite negative electrode via reductive decomposition. The detrimental effects on the LNMO positive electrode, however, can be avoided because the bonded VC derivative on the graphite surface cannot move to the LNMO electrode. Consequently, the graphite/LNMO full-cell fabricated with the VC-attached graphite outperforms the cells without VC or with VC in the electrolyte, in terms of Coulombic efficiency and capacity retention.

  19. Micro-fabrication method of graphite mesa microdevices based on optical lithography technology

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Wen, Donghui; Zhu, Huamin; Zhang, Xiaorui; Yang, Xing; Shi, Yunsheng; Zheng, Tianxiang

    2017-12-01

    Graphite mesa microdevices have incommensurate contact nanometer interfaces, superlubricity, high-speed self-retraction, and other characteristics, which have potential applications in high-performance oscillators and micro-scale switches, memory devices, and gyroscopes. However, the current method of fabricating graphite mesa microdevices is mainly based on high-cost, low efficiency electron beam lithography technology. In this paper, the processing technologies of graphite mesa microdevices with various shapes and sizes were investigated by a low-cost micro-fabrication method, which was mainly based on optical lithography technology. The characterization results showed that the optical lithography technology could realize a large-area of patterning on the graphite surface, and the graphite mesa microdevices, which have a regular shape, neat arrangement, and high verticality could be fabricated in large batches through optical lithography technology. The experiments and analyses showed that the graphite mesa microdevices fabricated through optical lithography technology basically have the same self-retracting characteristics as those fabricated through electron beam lithography technology, and the maximum size of the graphite mesa microdevices with self-retracting phenomenon can reach 10 µm  ×  10 µm. Therefore, the proposed method of this paper can realize the high-efficiency and low-cost processing of graphite mesa microdevices, which is significant for batch fabrication and application of graphite mesa microdevices.

  20. High-performance wearable supercapacitors fabricated with surface activated continuous filament graphite fibers

    NASA Astrophysics Data System (ADS)

    Jia, Dedong; Yu, Xin; Chen, Tinghan; Wang, Shu; Tan, Hua; Liu, Hong; Wang, Zhong Lin; Li, Linlin

    2017-08-01

    Generally, carbon or graphite fibers (GFs) are used as the supporting materials for the preparation of flexible supercapacitors (SCs) by assembling various electrochemically active nanomaterials on them. A facile and rapid electrochemical oxidation method with a voltage of 3 V in a mixed H2SO4-HNO3 solution for 2-15 min is proposed to active continuous filament GFs. Detailed structural characterization, SEM, TEM, XRD, Raman and XPS demonstrate that the GFs-8 (oxidized for 8 min) possessing high specific surface area which provided numerous electrochemical sites and a large number of oxygen-containing functional groups producing pseudocapacitance. Cyclic voltammetric (CV), galvanostatic charge-discharge measurements and electrochemical impedance spectroscopy (EIS) are conducted to test the capacitive of GFs and activated GFs. The capacitance of GFs-8 reaches as high as 570 mF cm-1 at the current density of 1 mA cm-1 in LiCl electrolyte, a 1965-fold enhancement with respect to the pristine GFs (0.29 mF cm-1). The fabricated fiber solid-state supercapacitors (SSCs) provide high energy density of 0.68 mWh cm-3 at the power density 3.3 W cm-3 and have excellent durability with 90% capacitance retention after 10000 cycles. In addition, such fiber SSCs features flexibility and mechanical stability, which may have wide applications in wearable electronic devices.

  1. Synthesis and characterization of a material derived from 4-mercaptobenzoic acid: A novel platform for oligonucleotide immobilization.

    PubMed

    Alves, Rafael da Fonseca; da Silva, Amanda Gonçalves; Ferreira, Lucas Franco; Franco, Diego Leoni

    2017-04-01

    This paper reports the electrochemical modification of pencil carbon graphite electrodes with a polymeric material derived from 4-mercaptobenzoic acid. Acidic solutions (pH 0 and 5.02) yielded an insulating polymeric film with anionic permselective properties. Scanning Electron Microscopy (SEM) analysis showed a complete coverage of the carbon graphite electrodes with a laminar-like polymeric structure. Different characterization studies indicate that the carboxyl group remained unchanged since the absorbance peak and oxidation potential did not change with the increase in pH at the pK a accounting for the carboxyl/carboxylate redox transition. The functionalized matrix was activated using carbodiimide, succinimide and an amine-modified oligonucleotide. The immobilization and hybridization processes were successfully verified using the redox electroactive indicator methylene blue, where better electrochemical signals were obtained when compared with the traditional self-assembled monolayer system. The selectivity of the system was verified using a noncomplementary target where no significant difference in electric current was observed when compared to the system containing only the probe. The method showed a good linear correlation coefficient (r 2 =0.9915), low limit of detection (1.17nmolL -1 ), and an acceptable precision (RSD=2.75%). The proposed method is suitable for further studies using different sequences of oligonucleotides. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Graphitized Carbon: A Promising Stable Cathode Catalyst Support Material for Long Term PEMFC Applications.

    PubMed

    Mohanta, Paritosh Kumar; Regnet, Fabian; Jörissen, Ludwig

    2018-05-28

    Stability of cathode catalyst support material is one of the big challenges of polymer electrolyte membrane fuel cells (PEMFC) for long term applications. Traditional carbon black (CB) supports are not stable enough to prevent oxidation to CO₂ under fuel cell operating conditions. The feasibility of a graphitized carbon (GC) as a cathode catalyst support for low temperature PEMFC is investigated herein. GC and CB supported Pt electrocatalysts were prepared via an already developed polyol process. The physical characterization of the prepared catalysts was performed using transmission electron microscope (TEM), X-ray Powder Diffraction (XRD) and inductively coupled plasma optical emission spectrometry (ICP-OES) analysis, and their electrochemical characterizations were conducted via cyclic voltammetry(CV), rotating disk electrode (RDE) and potential cycling, and eventually, the catalysts were processed using membrane electrode assemblies (MEA) for single cell performance tests. Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SEM) have been used as MEA diagonostic tools. GC showed superior stability over CB in acid electrolyte under potential conditions. Single cell MEA performance of the GC-supported catalyst is comparable with the CB-supported catalyst. A correlation of MEA performance of the supported catalysts of different Brunauer⁻Emmett⁻Teller (BET) surface areas with the ionomer content was also established. GC was identified as a promising candidate for catalyst support in terms of both of the stability and the performance of fuel cell.

  3. Electrochemical detection of DNA damage induced by acrylamide and its metabolite at the graphene-ionic liquid-Nafion modified pyrolytic graphite electrode.

    PubMed

    Qiu, Yanyan; Qu, Xiangjin; Dong, Jing; Ai, Shiyun; Han, Ruixia

    2011-06-15

    A new electrochemical biosensor for directly detecting DNA damage induced by acrylamide (AA) and its metabolite was presented in this work. The graphene-ionic liquid-Nafion modified pyrolytic graphite electrode (PGE) was prepared, and then horseradish peroxidase (HRP) and natural double-stranded DNA were alternately assembled on the modified electrode by the layer-by-layer method. The PGE/graphene-ionic liquid-Nafion and the construction of the (HRP/DNA)(n) film were characterized by electrochemical impedance spectroscopy. With the guanine signal in DNA as an indicator, the damage of DNA was detected by differential pulse voltammetry after PGE/graphene-ionic liquid-Nafion/(HRP/DNA)(n) was incubated in AA solution or AA+H(2)O(2) solution at 37°C. This method provides a new model to mimic and directly detect DNA damage induced by chemical pollutants and their metabolites in vitro. The results indicated that, in the presence of H(2)O(2), HRP was activated and catalyzed the transformation of AA to glycidamide, which could form DNA adducts and induce more serious damage of DNA than AA. In order to further verify these results, UV-vis spectrophotometry was also used to investigate DNA damage induced by AA and its metabolites in solution and the similar results were obtained. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Direct formation of a current collector layer on a partially reduced graphite oxide film using sputter-assisted metal deposition to fabricate high-power micro-supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Byun, Segi; Yu, Jin

    2016-03-01

    When a reduced graphite oxide (RGO) freestanding film is fabricated on a supercapacitor cell via compression onto a current collector, there are gaps between the film and the current collector, even if the cell is carefully assembled. These gaps can induce increases in the electrical series resistance (ESR) of the cell, resulting in degradation of the cell's electrochemical performance. Here, to effectively reduce the ESR of the supercapacitor, metal sputtering deposition is introduced. This enables the direct formation of the current collector layer on a partially reduced GO (pRGO) film, the model system. Using metal sputtering, a nickel (Ni) layer with a thickness <1 μm can be created easily on one side of the pRGO film. Good electrical interconnection between the pRGO film and the current collector can be obtained using a Ni layer formed on the pRGO film. The pRGO film sustains its film form with high packing density (∼1.31 g cm-3). Furthermore, the Ni-sputtered pRGO film with optimized Ni thickness exhibits remarkable enhancement of its electrochemical performance. This includes a superior rate capability and semi-permanent cycle life compared with the untreated pRGO film. This is due to the significant decrease in the ESR of the film.

  5. An evaluation of dry film lubricants and substrate materials for use on SSME gimbal bearings

    NASA Technical Reports Server (NTRS)

    Harp, J. A.

    1976-01-01

    Failure of the spherical bearing shaft of the Space Shuttle Main Engine (SSME) gimbal bearing assembly was encountered during Design Verification Specification testing of the full scale engine. Investigation revealed that the failure was caused by a deficiency in the lubrication system. Based upon the materials and gimbal operating conditions, a lubricant of MoS2 and graphite with a ceramic binder was the best lubricant candidate for this particular application; however, the decision to implement the change was not made without verification testing. Scaled down simulation testing was performed. Four different substrate materials and eight different dry film lubricants were subjected to tests under simulated SSME environmental and stress load conditions. The test specimens were evaluated for friction and operating life. Each test specimen was subjected to cyclic operation under load until failure. The force required to move the bearing surfaces relative to each other was monitored throughout the test, thus providing analytical data for derivation of the coefficient of friction. Results indicate that the MoS2/graphite lubricant with ceramic binder proved to be superior from the standpoint of endurance and also from the standpoint of friction reducing capabilities when applied to the titanium substrate material used on SSME. Endurance of this lubricant was approximately 16 times that of the lubricant which was being used when the SSME gimbal failed.

  6. Alkaline deoxygenated graphene oxide for supercapacitor applications: An effective green alternative for chemically reduced graphene

    NASA Astrophysics Data System (ADS)

    Perera, Sanjaya D.; Mariano, Ruperto G.; Nijem, Nour; Chabal, Yves; Ferraris, John P.; Balkus, Kenneth J.

    2012-10-01

    Graphene is a promising electrode material for energy storage applications. The most successful method for preparing graphene from graphite involves the oxidation of graphite to graphene oxide (GO) and reduction back to graphene. Even though different chemical and thermal methods have been developed to reduce GO to graphene, the use of less toxic materials to generate graphene still remains a challenge. In this study we developed a facile one-pot synthesis of deoxygenated graphene (hGO) via alkaline hydrothermal process, which exhibits similar properties to the graphene obtained via hydrazine reduction (i.e. the same degree of deoxygenation found in hydrazine reduced GO). Moreover, the hGO formed freestanding, binder-free paper electrodes for supercapacitors. Coin cell type (CR2032) symmetric supercapacitors were assembled using the hGO electrodes. Electrochemical characterization of hGO was carried out using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and ethylmethylimidazolium bis-(trifluoromethanesulfonyl)imide (EMITFSI) electrolytes. The results for the hGO electrodes were compared with the hydrazine reduced GO (rGO) electrode. The hGO electrode exhibits a energy density of 20 W h kg-1 and 50 W h kg-1 in LiTFSI and EMITFSI respectively, while delivering a maximum power density of 11 kW kg-1 and 14.7 kW kg-1 in LiTFSI and EMITFSI, respectively.

  7. Graphite tail powder and liquid biofertilizer as trace elements source for ground nut

    NASA Astrophysics Data System (ADS)

    Hindersah, Reginawanti; Setiawati, M. Rochimi; Fitriatin, B. Natalie; Suryatama, Pujawati; Asmiran, Priyanka; Panatarani, Camellia; Joni, I. Made

    2018-02-01

    Utilization of graphite tail waste from the mineral beneficiation processing is very important since it contain significant amount of essential minerals which are necessary for plant growth. These mineral are required in biochemical processes and mainly play an important role as cofactor in enzymatic reaction. The objective of this research is to investigate the performance of graphite tail on supporting plant growth and yield of ground nut (Arachishypogeae L.). A field experiment has been performed to test the performance of mixed graphite tail and reduced organic matter dose. The graphite tail size were reduced to various sieved size, -80 mesh, -100 mesh and -200 mesh. The experiment was setup in randomized block design with 4 treatments and 6 replications for each treatment, while the control plot is received without graphite tail. The results demonstrated that reduced organic matter along with -200 mesh tail has potentially decreased plant height at the end of vegetative growth stage, in contrast for to -80 mesh tail amendment increased individual fresh plant biomass. Statistically, there was no change of plant nodule, individual shoot fresh and dry weight, root nodule, number of pod following any mesh of graphite tail amendment. Reducing organic matter while adding graphite tail of 5% did not change bean weight in all plot. In contrast, reduced organic matter along with 80-mesh graphite tail amendment improved the nut yield per plot. This experiment suggests that graphite tail, mainly -80 mesh graphite tail can be possibly used in legume production.

  8. 40 CFR 436.380 - Applicability; description of the graphite subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... graphite subcategory. 436.380 Section 436.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Graphite Subcategory § 436.380 Applicability; description of the graphite subcategory. The provisions of this subpart...

  9. 40 CFR 436.380 - Applicability; description of the graphite subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... graphite subcategory. 436.380 Section 436.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Graphite Subcategory § 436.380 Applicability; description of the graphite subcategory. The provisions of this subpart...

  10. Surface confined metallosupramolecular architectures: formation and scanning tunneling microscopy characterization.

    PubMed

    Li, Shan-Shan; Northrop, Brian H; Yuan, Qun-Hui; Wan, Li-Jun; Stang, Peter J

    2009-02-17

    Metallosupramolecular compounds have attracted a great deal of attention over the past two decades largely because of their unique, highly complex structural characteristics and their potential electronic, magnetic, optical, and catalytic properties. These molecules can be prepared with relative ease using coordination-driven self-assembly techniques. In particular, the use of electron-poor square-planar Pt(II) transition metals in conjunction with rigid, electron-rich pyridyl donors has enabled the spontaneous self-assembly of a rich library of 2D metallacyclic and 3D metallacage assemblies via the directional-bonding approach. With this progress in the preparation and characterization of metallosupramolecules, researchers have now turned their attention toward fully exploring and developing their materials properties. Assembling metallosupramolecular compounds on solid supports represents a vitally important step toward developing their materials properties. Surfaces provide a means of uniformly aligning and orienting these highly symmetric metallacycles and metallacages. This uniformity increases the level of coherence between molecules above that which can be achieved in the solution phase and provides a way to integrate adsorbed layers, or adlayers, into a solid-state materials setting. The dynamic nature of kinetically labile Pt(II)-N coordination bonds requires us to adjust deposition and imaging conditions to retain the assemblies' stability. Toward these aims, we have used scanning tunneling microscopy (STM) to image these adlayers and to understand the factors that govern surface self-assembly and the interactions that influence their structure and stability. This Account describes our efforts to deposit 2D rectangular and square metallacycles and 3D trigonal bipyramidal and chiral trigonal prism metallacages on highly oriented pyrolytic graphite (HOPG) and Au(111) substrates to give intact assemblies and ordered adlayers. We have investigated the effects of varying the size, symmetry, and dimensionality of supramolecular adsorbates, the choice of substrate, the use of a molecular template, and the effects of chirality. Our systematic investigations provide insights into the various adsorbate-adsorbate and substrate-adsorbate interactions that largely determine the architecture of each assembly and affect their performance in a materials setting. Rational control over adlayer formation and structure will greatly enhance the potential of these supramolecules to be used in a variety of applications such as host-guest sensing/diagnostic systems, molecular electronic devices, and heterogeneous stereoselective synthesis and catalysis.

  11. Temperature effect of friction and wear characteristics for solid lubricating graphite

    NASA Astrophysics Data System (ADS)

    Kim, Yeonwook; Kim, Jaehoon

    2015-03-01

    Graphite is one of the effective lubricant additives due to its excellent high-temperature endurance and self-lubricating properties. In this study, wear behavior of graphite used as sealing materials to cut off hot gas is evaluated at room and elevated temperature. Wear occurs on graphite seal due to the friction of driving shaft and graphite. Thus, a reciprocating wear test to evaluate the wear generated for the graphite by means of the relative motion between a shaft material and a graphite seal was carried out. The friction coefficient and specific wear rate for the changes of applied load and sliding speed were compared under different temperature conditions considering the actual operating environment. Through SEM observation of the worn surface, the lubricating film was observed and compared with test conditions.

  12. Fabrication and testing of non-graphitic superhybrid composites

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Sinclair, J. H.; Chamis, C. C.

    1979-01-01

    A study was conducted to determine the fabrication feasibility and the mechanical properties of adhesively-bonded boron aluminum/titanium and non-graphitic fiber/epoxy resin superhybrid (NGSH) composite laminates for potential aerospace applications. The major driver for this study was the elimination of a potential graphite fiber release problem in the event of a fire. The results of the study show that non-graphitic fibers, such as S-glass and Kevlar 49, may be substituted for the graphite fibers used in superhybrid (SH) composites for some applications. As is to be expected, however, the non-graphitic superhybrids have lower stiffness properties than the graphitic superhybrids. In-plane and flexural moduli of the laminates studied in this program can be predicted reasonably well using linear laminate theory while nonlinear laminate theory is required for strength predictions.

  13. Status of Initial Assessment of Physical and Mechanical Properties of Graphite Grades for NGNP Appkications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strizak, Joe P; Burchell, Timothy D; Windes, Will

    2011-12-01

    Current candidate graphite grades for the core structures of NGNP include grades NBG-17, NBG-18, PCEA and IG-430. Both NBG-17 and NBG-18 are manufactured using pitch coke, and are vibrationally molded. These medium grain products are produced by SGL Carbon SAS (France). Tayo Tanso (Japan) produces IG-430 which is a petroleum coke, isostatically molded, nuclear grade graphite. And PCEA is a medium grain, extruded graphite produced by UCAR Carbon Co. (USA) from petroleum coke. An experimental program has been initiated to develop physical and mechanical properties data for these current candidate graphites. The results will be judged against the requirements formore » nuclear grade graphites set forth in ASTM standard D 7219-05 "Standard Specification for Isotropic and Near-isotropic Nuclear Graphites". Physical properties data including thermal conductivity and coefficient of thermal expansion, and mechanical properties data including tensile, compressive and flexural strengths will be obtained using the established test methods covered in D-7219 and ASTM C 781-02 "Standard Practice for Testing Graphite and Boronated Graphite Components for High-Temperature Gas-Cooled Nuclear Reactors". Various factors known to effect the properties of graphites will be investigated. These include specimen size, spatial location within a graphite billet, specimen orientation (ag and wg) within a billet, and billet-to-billet variations. The current status of the materials characterization program is reported herein. To date billets of the four graphite grades have been procured, and detailed cut up plans for obtaining the various specimens have been prepared. Particular attention has been given to the traceability of each specimen to its spatial location and orientation within a billet.« less

  14. A contrastive study of three graphite anodes in the piperidinium based electrolytes for lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xiao-Tao; Wang, Chen-Yi; Gao, Kun, E-mail: gaokun0451@163.com

    Graphical abstract: The fitting results of R{sub sei} and R{sub ct} of three graphite/Li cells. Besides three graphite/Li cells show the similar R{sub sei}, the NG198/Li cell demonstrates a higher R{sub ct} value in all test temperatures. Especially, the R{sub ct} at 333 K is even up to 355.8 Ω cm{sup 2}. Obviously, the narrow distribution of edge plane for NG198 caused this result, and then greatly restricts its cell capacity. By contrast, CMB with bigger specific surface area and more Li{sup +} insertion points shows lower resistance at room temperature, which should help to improve its capacity. - Highlights:more » • SEI film is closely related to graphite structures and formation temperature. • The graphite with bigger surface area and more Li{sup +} insertion points behaves better. • The graphite with narrow edge plane is uncompetitive for ionic liquid electrolyte. - Abstract: The electrochemical behaviors of natural graphite (NG198), artificial graphite (AG360) and carbon microbeads (CMB) in an ionic liquid based electrolyte are investigated by cyclic voltammetry (CV). The surface and structure of three graphite materials are characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) before and after cycling. It is found that solid electrolyte interface (SEI) is closely related to graphite structure. Benefiting from larger specific surface area and more dispersed Li{sup +} insertion points, CMB shows a better Li{sup +} insertion/de-insertion behavior than NG198 and AG360. Furthermore, electrochemical impedance spectra (EIS) prove that the SEI of different graphite electrodes has different intrinsic resistance and Li{sup +} penetrability. By comparison, CMB behaves better cell performances than AG360, while the narrow edge plane makes NG198 uncompetitive as a potential anode for the ionic liquids (ILs)-type Li-ion battery.« less

  15. Is Water at the Graphite Interface Vapor-like or Ice-like?

    PubMed

    Qiu, Yuqing; Lupi, Laura; Molinero, Valeria

    2018-04-05

    Graphitic surfaces are the main component of soot, a major constituent of atmospheric aerosols. Experiments indicate that soots of different origins display a wide range of abilities to heterogeneously nucleate ice. The ability of pure graphite to nucleate ice in experiments, however, seems to be almost negligible. Nevertheless, molecular simulations with the monatomic water model mW with water-carbon interactions parameterized to reproduce the experimental contact angle of water on graphite predict that pure graphite nucleates ice. According to classical nucleation theory, the ability of a surface to nucleate ice is controlled by the binding free energy between ice immersed in liquid water and the surface. To establish whether the discrepancy in freezing efficiencies of graphite in mW simulations and experiments arises from the coarse resolution of the model or can be fixed by reparameterization, it is important to elucidate the contributions of the water-graphite, water-ice, and ice-water interfaces to the free energy, enthalpy, and entropy of binding for both water and the model. Here we use thermodynamic analysis and free energy calculations to determine these interfacial properties. We demonstrate that liquid water at the graphite interface is not ice-like or vapor-like: it has similar free energy, entropy, and enthalpy as water in the bulk. The thermodynamics of the water-graphite interface is well reproduced by the mW model. We find that the entropy of binding between graphite and ice is positive and dominated, in both experiments and simulations, by the favorable entropy of reducing the ice-water interface. Our analysis indicates that the discrepancy in freezing efficiencies of graphite in experiments and the simulations with mW arises from the inability of the model to simultaneously reproduce the contact angle of liquid water on graphite and the free energy of the ice-graphite interface. This transferability issue is intrinsic to the resolution of the model, and arises from its lack of rotational degrees of freedom.

  16. Effect of friction on oxidative graphite intercalation and high-quality graphene formation.

    PubMed

    Seiler, Steffen; Halbig, Christian E; Grote, Fabian; Rietsch, Philipp; Börrnert, Felix; Kaiser, Ute; Meyer, Bernd; Eigler, Siegfried

    2018-02-26

    Oxidative wet-chemical delamination of graphene from graphite is expected to become a scalable production method. However, the formation process of the intermediate stage-1 graphite sulfate by sulfuric acid intercalation and its subsequent oxidation are poorly understood and lattice defect formation must be avoided. Here, we demonstrate film formation of micrometer-sized graphene flakes with lattice defects down to 0.02% and visualize the carbon lattice by transmission electron microscopy at atomic resolution. Interestingly, we find that only well-ordered, highly crystalline graphite delaminates into oxo-functionalized graphene, whereas other graphite grades do not form a proper stage-1 intercalate and revert back to graphite upon hydrolysis. Ab initio molecular dynamics simulations show that ideal stacking and electronic oxidation of the graphite layers significantly reduce the friction of the moving sulfuric acid molecules, thereby facilitating intercalation. Furthermore, the evaluation of the stability of oxo-species in graphite sulfate supports an oxidation mechanism that obviates intercalation of the oxidant.

  17. Direct Preparation of Few Layer Graphene Epoxy Nanocomposites from Untreated Flake Graphite.

    PubMed

    Throckmorton, James; Palmese, Giuseppe

    2015-07-15

    The natural availability of flake graphite and the exceptional properties of graphene and graphene-polymer composites create a demand for simple, cost-effective, and scalable methods for top-down graphite exfoliation. This work presents a novel method of few layer graphite nanocomposite preparation directly from untreated flake graphite using a room temperature ionic liquid and laminar shear processing regimen. The ionic liquid serves both as a solvent and initiator for epoxy polymerization and is incorporated chemically into the matrix. This nanocomposite shows low electrical percolation (0.005 v/v) and low thickness (1-3 layers) graphite/graphene flakes by TEM. Additionally, the effect of processing conditions by rheometry and comparison with solvent-free conditions reveal the interactions between processing and matrix properties and provide insight into the theory of the chemical and physical exfoliation of graphite crystals and the resulting polymer matrix dispersion. An interaction model that correlates the interlayer shear physics of graphite flakes and processing parameters is proposed and tested.

  18. New insights into canted spiro carbon interstitial in graphite

    NASA Astrophysics Data System (ADS)

    EL-Barbary, A. A.

    2017-12-01

    The self-interstitial carbon is the key to radiation damage in graphite moderator nuclear reactor, so an understanding of its behavior is essential for plant safety and maximized reactor lifetime. The density functional theory is applied on four different graphite unit cells, starting from of 64 carbon atoms up to 256 carbon atoms, using AIMPRO code to obtain the energetic, athermal and mechanical properties of carbon interstitial in graphite. This study presents first principles calculations of the energy of formation that prove its high barrier to athermal diffusion (1.1 eV) and the consequent large critical shear stress (39 eV-50 eV) necessary to shear graphite planes in its presence. Also, for the first time, the gamma surface of graphite in two dimensions is calculated and found to yield the critical shear stress for perfect graphite. Finally, in contrast to the extensive literature describing the interstitial of carbon in graphite as spiro interstitial, in this work the ground state of interstitial carbon is found to be canted spiro interstitial.

  19. Adsorption behavior of bisphenol A on CTAB-modified graphite

    NASA Astrophysics Data System (ADS)

    Wang, Li-Cong; Ni, Xin-jiong; Cao, Yu-Hua; Cao, Guang-qun

    2018-01-01

    In this work, the adsorption behavior of BPA on CTAB-modified graphite was investigated thoroughly to develop a novel absorbent material. Atomic force microscopy revealed that conical admicelles formed on the surface of graphite. The surface area of graphite decreased significantly from 1.46 to 0.95 m2 g-1, which confirmed the formation of the larger size admicelle instead of the original smaller particle on the surface. CTAB concentration and incubation time affected the progress of admicelle formation on the surface of graphite. Adsolubilization is key in BPA adsorption by CTAB-modified graphite. An extraordinary cation-π electron interaction between CTAB and BPA, revealed by a red-shift in the ultraviolet spectrum, as well as a hydrophobic interaction contribute substantially to BPA adsolubilization. The equilibrium adsorption capacity of the modified graphite for BPA was 125.01 mg g-1. The adsorption kinetic curves of BPA on modified graphite were shown to follow a pseudosecond-order rate. The adsorption process was observed to be both spontaneous and exothermic complied with the Freundlich model.

  20. Phase Structures and Magnetic Properties of Graphite Nanosheets and Ni-Graphite Nanocomposite Synthesized by Electrical Explosion of Wire in Liquid

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Thuyet; Kim, Jin-Hyung; Lee, Jung-Goo; Kim, Jin-Chun

    2018-03-01

    The present work studied on phases and magnetic properties of graphite nanosheets and Ni-graphite nanocomposite synthesized using the electrical explosion of wire (EEW) in ethanol. X-ray diffraction and field emission scanning electron microscope were used to investigate the phases and the morphology of the nanopowders obtained. It was found that graphite nanosheets were absolutely fabricated by EEW with a thickness of 29 nm and 3 μm diameter. The as-synthesized Ni-graphite composite powders had a Ni-coating on the surfaces of graphite sheets. The hysteresis loop of the as-exploded, the hydrogen-treated composite nanopowders and the sintered samples were examined with a vibrating sample magnetometer at room temperature. The Ni-graphite composite exposed the magnetic behaviors which are attributed to Ni component. The magnetic properties of composite had the improvement from 10.2 emu/g for the as-exploded powders to 15.8 emu/g for heat-treated powders and 49.16 emu/g for sintered samples.

Top