Sample records for graphite arc furnace

  1. DC graphite arc furnace, a simple system to reduce mixed waste volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittle, J.K.; Hamilton, R.A.; Trescot, J.

    1995-12-31

    The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE)more » complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials.« less

  2. Dross treatment in a rotary arc furnace with graphite electrodes

    NASA Astrophysics Data System (ADS)

    Drouet, Michel G.; Handfield, My; Meunier, Jean; Laflamme, Claude B.

    1994-05-01

    Aluminum baths are always covered with a layer of dross resulting from the aluminum surface oxidation. This dross represents 1-10% of the melt and may contain up to 75wt.% aluminum. Since aluminum production is highly energy intensive, dross recycling is very attractive from both energy and economic standpoints. The conventional recycling process using salt rotary furnaces is thermally inefficient and environmentally unacceptable because of the production of salt slags. Hydro-Quebec has developed a new technology using a rotary arc furnace with graphite electrodes. This process provides aluminum recovery rates of 80-90%, using a highly energy efficient, environmentally sound production method.

  3. Behavior of an indigenously fabricated transferred arc plasma furnace for smelting studies

    NASA Astrophysics Data System (ADS)

    A, K. MANDAL; R, K. DISHWAR; O, P. SINHA

    2018-03-01

    The utilization of industrial solid waste for metal recovery requires high-temperature tools due to the presence of silica and alumina, which is reducible at high temperature. In a plasma arc furnace, transferred arc plasma furnace (TAP) can meet all requirements, but the disadvantage of this technology is the high cost. For performing experiments in the laboratory, the TAP was fabricated indigenously in a laboratory based on the different inputs provided in the literature for the furnace design and fabrication. The observed parameters such as arc length, energy consumption, graphite electrode consumption, noise level as well as lining erosion were characterized for this fabricated furnace. The nitrogen plasma increased by around 200 K (200 °C) melt temperature and noise levels decreased by ∼10 dB compared to a normal arc. Hydrogen plasma offered 100 K (100 °C) higher melt temperature with ∼5 dB higher sound level than nitrogen plasma. Nitrogen plasma arc melting showed lower electrode and energy consumption than normal arc melting, whereas hydrogen plasma showed lower energy consumption and higher electrode consumption in comparison to nitrogen plasma. The higher plasma arc temperature resulted in a shorter meltdown time than normal arc with smoother arcing. Hydrogen plasma permitted more heats, reduced meltdown time, and lower energy consumption, but with increased graphite consumption and crucible wear. The present study showed that the fabricated arc plasma is better than the normal arc furnace with respect to temperature generation, energy consumption, and environmental friendliness. Therefore, it could be used effectively for smelting-reduction studies.

  4. Improved graphite furnace atomizer

    DOEpatents

    Siemer, D.D.

    1983-05-18

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  5. Method for processing aluminum spent potliner in a graphite electrode ARC furnace

    DOEpatents

    O'Connor, William K.; Turner, Paul C.; Addison, Gerald W.

    2002-12-24

    A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spent aluminum pot liner is crushed iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine and CO.

  6. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    NASA Astrophysics Data System (ADS)

    Reynolds, Quinn G.

    2017-02-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  7. Induction graphitizing furnace acceptance test report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The induction furnace was designed to provide the controlled temperature and environment required for the post-cure, carbonization and graphitization processes for the fabrication of a fibrous graphite NERVA nozzle extension. The acceptance testing required six tests and a total operating time of 298 hrs. Low temperature mode operations, 120 to 850 C, were completed in one test run. High temperature mode operations, 120 to 2750 C, were completed during five tests.

  8. Diagnostics for a waste processing plasma arc furnace (invited) (abstract)a)

    NASA Astrophysics Data System (ADS)

    Woskov, P. P.

    1995-01-01

    Maintaining the quality of our environment has become an important goal of society. As part of this goal new technologies are being sought to clean up hazardous waste sites and to treat ongoing waste streams. A 1 MW pilot scale dc graphite electrode plasma arc furnace (Mark II) has been constructed at MIT under a joint program among Pacific Northwest Laboratory (PNL), MIT, and Electro-Pyrolysis, Inc. (EPI)c) for the remediation of buried wastes in the DOE complex. A key part of this program is the development of new and improved diagnostics to study, monitor, and control the entire waste remediation process for the optimization of this technology and to safeguard the environment. Continuous, real time diagnostics are needed for a variety of the waste process parameters. These parameters include internal furnace temperatures, slag fill levels, trace metals content in the off-gas stream, off-gas molecular content, feed and slag characterization, and off-gas particulate size, density, and velocity distributions. Diagnostics are currently being tested at MIT for the first three parameters. An active millimeter-wave radiometer with a novel, rotatable graphite waveguide/mirror antenna system has been implemented on Mark II for the measurement of surface emission and emissivity which can be used to determine internal furnace temperatures and fill levels. A microwave torch plasma is being evaluated for use as a excitation source in the furnace off-gas stream for continuous atomic emission spectroscopy of trace metals. These diagnostics should find applicability not only to waste remediation, but also to other high temperature processes such as incinerators, power plants, and steel plants.

  9. Elements of the electric arc furnace's environmental management

    NASA Astrophysics Data System (ADS)

    Ioana, Adrian; Semenescu, Augustin; Costoiu, Mihnea; Marcu, Dragoş

    2017-12-01

    The paper presents a theoretical and experimental analysis of the polluting generating mechanisms for steel making in the Electric Arc Furnaces (EAF). The scheme for the environment's polluting system through the EAF is designed and presented in this paper. The ecological experimenting consisted of determining by specialized measures of the dust percentage in the evacuated gases from the EAF and of thereof gas pollutants. From the point of view of reducing the impact on the environment, the main problem of the electric arc furnace (EAF) is the optimization of the powder collecting from the process gases, both from the furnace and from the work-area. The paper deals with the best dependence between the aggregate's constructive, functional and technological factors, which are necessary for the furnace's ecologization and for its energetically-technologically performances increasing.

  10. Laboratory arc furnace features interchangeable hearths

    NASA Technical Reports Server (NTRS)

    Armstrong, J. L.; Kruger, O. L.

    1967-01-01

    Laboratory arc furnace using rapidly interchangeable hearths gains considerable versatility in casting so that buttons or special shaped castings can be produced. It features a sight glass for observation.

  11. [Determination of trace cobalt in human urine by graphite furnace atomic absorption spectrometr].

    PubMed

    Zhong, L X; Ding, B M; Jiang, D; Liu, D Y; Yu, B; Zhu, B L; Ding, L

    2016-05-20

    To establish a method to determine cobalt in human urine by graphite furnace atomic absorption spectrometry. Urine with 2% nitric acid diluted two-fold, to quantify the curve, graphite furnace atomic absorption spectrometric detection. Co was linear within 2.5~40.0 ng/ml with r>0.999. Spike experiment showed that Co received good recovery rate, which was 90.8%~94.8%. Intra-assay precisions were 3.2%~5.1% for Co, inter-assay precisions were 4.4%~5.2% for Co. The method by using graphite furnace atomic absorption spectrometr to determine urine Co was fast, accurate and with low matrix effect. It could meet the requirement in GBZ/T 210.5-2008.

  12. Characterization of Sintering Dust, Blast Furnace Dust and Carbon Steel Electric Arc Furnace Dust

    NASA Astrophysics Data System (ADS)

    Chang, Feng; Wu, Shengli; Zhang, Fengjie; Lu, Hua; Du, Kaiping

    In order to make a complete understanding of steel plant metallurgical dusts and to realize the goal of zero-waste, a study of their properties was undertaken. For these purposes, samples of two sintering dusts (SD), two blast furnace dusts (BFD), and one electric arc furnace dust (EAFD) taken from the regular production process were subjected to a series of tests. The tests were carried out by using granulometry analysis, chemical analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy via SEM (EDS), and Fourier transform infrared spectroscopy (FTIR). The dominant elements having an advantage of reuse are Fe, K, Cl, Zn, C. The dominant mineralogical phases identified in sintering dust are KCl, Fe2O3, CaCO3, CaMg(CO3)2, NaCl, SiO2. Mineralogical phases exist in blast furnace dust are Fe2O3, Fe3O4, with small amount of KCl and kaolinite coexist. While in electric arc furnace dust, Fe3O4, ZnFe2O4, CaCO3, CaO, Ca(OH)2 are detected.

  13. Plumbrook Hypersonic Tunnel Facility Graphite Furnace Degradation Mechanisms

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1999-01-01

    A recent rebuild revealed extensive degradation to the large graphite induction furnace in the Hypersonic Tunnel Facility (HTF). This damage to the graphite blocks and insulating felt is examined and modeled with thermochemical equilibrium codes. The primary reactions appear to be with water vapor and the nitrogen purge gas. Based on these conclusions, several changes are recommended. An inert purge gas (e.g. argon or helium) and controlling and monitoring water vapor to about 10 ppm should decrease the damage substantially.

  14. New algorithm for controlling electric arc furnaces using their vibrational and acoustic characteristics

    NASA Astrophysics Data System (ADS)

    Cherednichenko, V. S.; Bikeev, R. A.; Serikov, V. A.; Rechkalov, A. V.; Cherednichenko, A. V.

    2016-12-01

    The processes occurring in arc discharges are analyzed as the sources of acoustic radiation in an electric arc furnace (EAF). Acoustic vibrations are shown to transform into mechanical vibrations in the furnace laboratory. The shielding of the acoustic energy fluxes onto water-cooled wall panels by a charge is experimentally studied. It is shown that the rate of charge melting and the depth of submergence of arc discharges in the slag and metal melt can be monitored by measuring the vibrational characteristics of furnaces and using them in a universal industrial process-control system, which was developed for EAFs.

  15. Graphitization of Coke and Its Interaction with Slag in the Hearth of a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Li, Kejiang; Zhang, Jianliang; Liu, Yanxiang; Barati, Mansoor; Liu, Zhengjian; Zhong, Jianbo; Su, Buxin; Wei, Mengfang; Wang, Guangwei; Yang, Tianjun

    2016-04-01

    Coke reaction behavior in the blast furnace hearth has yet to be fully understood due to limited access to the high temperature zone. The graphitization of coke and its interaction with slag in the hearth of blast furnace were investigated with samples obtained from the center of the deadman of a blast furnace during its overhaul period. All hearth coke samples from fines to lumps were confirmed to be highly graphitized, and the graphitization of coke in the high temperature zone was convinced to start from the coke surface and lead to the formation of coke fines. It will be essential to perform further comprehensive investigations on graphite formation and its evolution in a coke as well as its multi-effect on blast furnace performance. The porous hearth cokes were found to be filled up with final slag. Further research is required about the capability of coke to fill final slag and the attack of final slag on the hearth bottom refractories since this might be a new degradation mechanism of refractories located in the hearth bottom.

  16. Method of operating a centrifugal plasma arc furnace

    DOEpatents

    Kujawa, Stephan T.; Battleson, Daniel M.; Rademacher, Jr., Edward L.; Cashell, Patrick V.; Filius, Krag D.; Flannery, Philip A.; Whitworth, Clarence G.

    1998-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

  17. Method of operating a centrifugal plasma arc furnace

    DOEpatents

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1998-03-24

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

  18. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, David E.; Lee, Steven G.

    1996-01-01

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics.

  19. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, D.E.; Lee, S.G.

    1996-08-06

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.

  20. Formation mechanism of the graphite-rich protective layer in blast furnace hearths

    NASA Astrophysics Data System (ADS)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Feng; Liang, Li-sheng

    2016-01-01

    A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase from hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face temperature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.

  1. Arc ignition at heating of graphite by fixed current

    NASA Astrophysics Data System (ADS)

    Polistchook, V. P.; Samoylov, I. S.; Amirov, R. Kh; Kiselev, V. I.

    2017-11-01

    Arc ignition after the destruction of graphite samples under prolonged heating by electric current was described. Evidences of liquid film formation on the graphite surface at a temperature of 3.3 kK were presented.

  2. Optical emission from a small scale model electric arc furnace in 250-600 nm region.

    PubMed

    Mäkinen, A; Niskanen, J; Tikkala, H; Aksela, H

    2013-04-01

    Optical emission spectroscopy has been for long proposed for monitoring and studying industrial steel making processes. Whereas the radiative decay of thermal excitations is always taking place in high temperatures needed in steel production, one of the most promising environment for such studies are electric arc furnaces, creating plasma in excited electronic states that relax with intense characteristic emission in the optical regime. Unfortunately, large industrial scale electric arc furnaces also present a challenging environment for optical emission studies and application of the method is not straightforward. To study the usability of optical emission spectroscopy in real electric arc furnaces, we have developed a laboratory scale DC electric arc furnace presented in this paper. With the setup, optical emission spectra of Fe, Cr, Cr2O3, Ni, SiO2, Al2O3, CaO, and MgO were recorded in the wavelength range 250-600 nm and the results were analyzed with the help of reference data. The work demonstrates that using characteristic optical emission, obtaining in situ chemical information from oscillating plasma of electric arc furnaces is indeed possible. In spite of complications, the method could possibly be applied to industrial scale steel making process in order to improve its efficiency.

  3. Methods of steel manufacturing - The electric arc furnace

    NASA Astrophysics Data System (ADS)

    Dragna, E. C.; Ioana, A.; Constantin, N.

    2018-01-01

    Initially, the carbon content was reduced by mixing “the iron” with metallic ingots in ceramic crucibles/melting pots, with external heat input. As time went by the puddling procedure was developed, a procedure which also assumes a mixture with oxidized iron ore. In 1856 Bessemer invented the convertor, thus demonstrating that steel can be obtained following the transition of an air stream through the liquid pig iron. The invention of Thomas, a slightly modified basic-lined converter, fostered the desulphurization of the steel and the removal of the phosphate from it. During the same period, in 1865, in Sireuil, the Frenchman Martin applies Siemens’ heat regeneration invention and brings into service the furnace with a charge composed of iron pig, scrap iron and iron ore, that produces a high quality steel [1]. An act worthy of being highlighted within the scope of steelmaking is the start-up of the converter with oxygen injection at the upper side, as there are converters that can produce 400 tons of steel in approximately 50 minutes. Currently, the share of the steel produced in electric arc furnaces with a charge composed of scrap iron has increased. Due to this aspect, the electric arc furnace was able to impose itself on the market.

  4. Power quality analysis of DC arc furnace operation using the Bowman model for electric arc

    NASA Astrophysics Data System (ADS)

    Gherman, P. L.

    2018-01-01

    This work is about a relatively new domain. The DC electric arc is superior to the AC electric arc and it’s not used in Romania. This is why we analyzed the work functions of these furnaces by simulation and model checking of the simulation results.The conclusions are favorable, to be carried is to develop a real-time control system of steel elaboration process.

  5. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    EPA Science Inventory

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  6. Nonlinear system identification of the reduction nickel oxide smelting process in electric arc furnace

    NASA Astrophysics Data System (ADS)

    Gubin, V.; Firsov, A.

    2018-03-01

    As the title implies the article describes the nonlinear system identification of the reduction smelting process of nickel oxide in electric arc furnaces. It is suggested that for operational control ratio of components of the charge must be solved the problem of determining the qualitative composition of the melt in real time. The use of 0th harmonic of phase voltage AC furnace as an indirect measure of the melt composition is proposed. Brief description of the mechanism of occurrence and nature of the non-zero 0th harmonic of the AC voltage of the arc is given. It is shown that value of 0th harmonic of the arc voltage is not function of electrical parameters but depends of the material composition of the melt. Processed industrial data are given. Hammerstein-Wiener model is used for description of the dependence of 0th harmonic of the furnace voltage from the technical parameters of melting furnace: the melt composition and current. Recommendations are given about the practical use of the model.

  7. 40 CFR 63.10686 - What are the requirements for electric arc furnaces and argon-oxygen decarburization vessels?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... arc furnaces and argon-oxygen decarburization vessels? 63.10686 Section 63.10686 Protection of... Compliance Requirements § 63.10686 What are the requirements for electric arc furnaces and argon-oxygen... from each EAF (including charging, melting, and tapping operations) and argon-oxygen decarburization...

  8. 40 CFR 63.10686 - What are the requirements for electric arc furnaces and argon-oxygen decarburization vessels?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... arc furnaces and argon-oxygen decarburization vessels? 63.10686 Section 63.10686 Protection of... Compliance Requirements § 63.10686 What are the requirements for electric arc furnaces and argon-oxygen... from each EAF (including charging, melting, and tapping operations) and argon-oxygen decarburization...

  9. 40 CFR 63.10686 - What are the requirements for electric arc furnaces and argon-oxygen decarburization vessels?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... arc furnaces and argon-oxygen decarburization vessels? 63.10686 Section 63.10686 Protection of... Compliance Requirements § 63.10686 What are the requirements for electric arc furnaces and argon-oxygen... from each EAF (including charging, melting, and tapping operations) and argon-oxygen decarburization...

  10. 40 CFR 63.10686 - What are the requirements for electric arc furnaces and argon-oxygen decarburization vessels?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... arc furnaces and argon-oxygen decarburization vessels? 63.10686 Section 63.10686 Protection of... Compliance Requirements § 63.10686 What are the requirements for electric arc furnaces and argon-oxygen... from each EAF (including charging, melting, and tapping operations) and argon-oxygen decarburization...

  11. 40 CFR 63.10686 - What are the requirements for electric arc furnaces and argon-oxygen decarburization vessels?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... arc furnaces and argon-oxygen decarburization vessels? 63.10686 Section 63.10686 Protection of... Compliance Requirements § 63.10686 What are the requirements for electric arc furnaces and argon-oxygen... from each EAF (including charging, melting, and tapping operations) and argon-oxygen decarburization...

  12. Graphite and ablative material response to CO2 laser, carbon-arc, and xenon-arc radiation

    NASA Technical Reports Server (NTRS)

    Brewer, W. D.

    1976-01-01

    The behavior was investigated of graphite and several charring ablators in a variety of high-radiative heat-flux environments. A commercial-grade graphite and nine state-of-the-art charring ablators were subjected to various radiative environments produced by a CO2 laser and a carbon arc. Graphite was also tested in xenon-arc radiation. Heat-flux levels ranged from 10 to 47 MW/sq m. Tests were conducted in air, nitrogen, helium, and a CO2-N2 mixture which simulated the Venus atmosphere. The experimental results were compared with theoretical results obtained with a one-dimensional charring-ablator analysis and a two-dimensional subliming-ablator analysis. Neither the graphite nor the charring ablators showed significant differences in appearance or microstructure after testing in the different radiative environments. The performance of phenolic nylon and graphite was predicted satisfactorily with existing analyses and published material property data. Good agreement between experimental and analytical results was obtained by using sublimation parameters from a chemical nonequilibrium analysis of graphite sublimation. Some charring ablators performed reasonably well and could withstand radiative fluxes of the level encountered in certain planetary entries. Other materials showed excessive surface recession and/or large amounts of cracking and spalling, and appear to be unsuitable for severe radiative environments.

  13. Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.

    PubMed

    Kehagia, Fotini

    2009-05-01

    Metallurgical slags are by-products of the iron and steel industry and are subdivided into blast furnace slag and steel slag according to the different steel-producing processes. In Greece, slags are mostly produced from steelmaking using the electric arc furnace process, and subsequently are either disposed in a random way or utilized by the cement industry. Steel slag has been recently used, worldwide, as hard aggregates in wearing courses in order to improve the skidding resistance of asphalt pavements. At the Highway Laboratory, Department of Civil Engineering of Aristotle University of Thessaloniki research has been carried out in the field of steel slags, and especially in electric arc furnace (EAF) slag, to evaluate their possible use in highway engineering. In this paper, the recent results of anti-skidding performance of steel slag aggregates in highway pavements are presented.

  14. Determination of total tin in silicate rocks by graphite furnace atomic absorption spectrometry

    USGS Publications Warehouse

    Elsheimer, H.N.; Fries, T.L.

    1990-01-01

    A method is described for the determination of total tin in silicate rocks utilizing a graphite furnace atomic absorption spectrometer with a stabilized-temperature platform furnace and Zeeman-effect background correction. The sample is decomposed by lithium metaborate fusion (3 + 1) in graphite crucibles with the melt being dissolved in 7.5% hydrochloric acid. Tin extractions (4 + 1 or 8 + 1) are executed on portions of the acid solutions using a 4% solution of tricotylphosphine oxide in methyl isobutyl ketone (MIBK). Ascorbic acid is added as a reducing agent prior to extraction. A solution of diammonium hydrogenphosphate and magnesium nitrate is used as a matrix modifier in the graphite furnace determination. The limit of detection is > 10 pg, equivalent to > 1 ??g l-1 of tin in the MIBK solution or 0.2-0.3 ??g g-61 in the rock. The concentration range is linear between 2.5 and 500 ??g l-1 tin in solution. The precision, measured as relative standard deviation, is < 20% at the 2.5 ??g l-1 level and < 7% at the 10-30 ??g l-1 level of tin. Excellent agreement with recommended literature values was found when the method was applied to the international silicate rock standards BCR-1, PCC-1, GSP-1, AGV-1, STM-1, JGb-1 and Mica-Fe. Application was made to the determination of tin in geological core samples with total tin concentrations of the order of 1 ??g g-1 or less.

  15. 40 CFR Table K-1 to Subpart K of... - Electric Arc Furnace (EAF) CH4 Emission Factors

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Electric Arc Furnace (EAF) CH4 Emission Factors K Table K-1 to Subpart K of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION.... 98, Subpt. K, Table K-1 Table K-1 to Subpart K of Part 98—Electric Arc Furnace (EAF) CH4 Emission...

  16. 40 CFR Table K-1 to Subpart K of... - Electric Arc Furnace (EAF) CH4 Emission Factors

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Electric Arc Furnace (EAF) CH4 Emission Factors K Table K-1 to Subpart K of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION.... 98, Subpt. K, Table K-1 Table K-1 to Subpart K of Part 98—Electric Arc Furnace (EAF) CH4 Emission...

  17. 40 CFR Table K-1 to Subpart K of... - Electric Arc Furnace (EAF) CH4 Emission Factors

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Electric Arc Furnace (EAF) CH4 Emission Factors K Table K-1 to Subpart K of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION.... 98, Subpt. K, Table K-1 Table K-1 to Subpart K of Part 98—Electric Arc Furnace (EAF) CH4 Emission...

  18. 40 CFR Table K-1 to Subpart K of... - Electric Arc Furnace (EAF) CH4 Emission Factors

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Electric Arc Furnace (EAF) CH4 Emission Factors K Table K-1 to Subpart K of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION.... 98, Subpt. K, Table K-1 Table K-1 to Subpart K of Part 98—Electric Arc Furnace (EAF) CH4 Emission...

  19. High-Purity Composite Briquette for Direct UMG-Si Production in Arc Furnaces

    NASA Astrophysics Data System (ADS)

    Perruchoud, Raymond; Fischer, Jean-Claude

    2013-12-01

    In metallurgical grade Si (MG-Si), the coal (B) and charcoal (P) contents are on average above 30 ppm as the carbon reduction materials used in the arc furnace are either rich in B or in P. A decrease of both impurities by a factor of 3 using purer raw materials would allow for the direct production of the upgraded metallurgical grade (UMG).This would significantly improve the efficiency of the resulting photovoltaic (PV) cells made with the refined solar grade silicon (SoG-Si) or massively decrease the costs of Si purification by shortening the number of steps needed for reaching B and P contents below 1 ppm requested for the SoG-Si used for the PV cells. A composite C/SiO2 briquette fulfilling the purity targets for the direct production of UMG-Si in the arc furnace was developed. The composite contains several carbon materials with different levels of reactivities and quartz sand. The raw materials aspects, the paste and briquette preparation, as well as the final carbonization step are discussed. The finished briquettes are free of volatiles and are mechanically and thermally very stable, thus, ensuring stable arc furnace charges with minimum losses of dust and SiO gas. Semi-industrial trials including the downstream purification steps for the production of SoG-Si by a metallurgical low-cost route are contemplated.

  20. Calculation of gas release from DC and AC arc furnaces in a foundry

    NASA Astrophysics Data System (ADS)

    Krutyanskii, M. M.; Nekhamin, S. M.; Rebikov, E. M.

    2016-12-01

    A procedure for the calculation of gas release from arc furnaces is presented. The procedure is based on the stoichiometric ratios of the oxidation of carbon in liquid iron during the oxidation heat period and the oxidation of iron from a steel charge by oxygen in the period of solid charge melting during the gas exchange of the furnace cavity with the external atmosphere.

  1. Arc melting and homogenization of ZrC and ZrC + B alloys

    NASA Technical Reports Server (NTRS)

    Darolia, R.; Archbold, T. F.

    1973-01-01

    A description is given of the methods used to arc-melt and to homogenize near-stoichiometric ZrC and ZrC-boron alloys, giving attention to the oxygen contamination problem. The starting material for the carbide preparation was ZrC powder with an average particle size of 4.6 micron. Pellets weighing approximately 3 g each were prepared at room temperature from the powder by the use of an isostatic press operated at 50,000 psi. These pellets were individually melted in an arc furnace containing a static atmosphere of purified argon. A graphite resistance furnace was used for the homogenization process.

  2. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-07-20

    Total chlorine in milk was determined via the molecular absorption of diatomic strontium monochloride at 635.862 nm using high-resolution continuum source graphite furnace atomic absorption spectrometry. The effects of coating the graphite furnace, using different modifiers, amount of molecule-forming element, and different calibrants were investigated and optimized. Chlorine concentrations in milk samples were determined in a Zr-coated graphite furnace using 25 μg of Sr as the molecule-forming reagent and applying a pyrolysis temperature of 600 °C and a molecule-forming temperature of 2300 °C. Linearity was maintained up to 500 μg mL(-1) of Cl. The method was tested by analyzing a certified reference wastewater. The results were in the uncertainty limits of the certified value. The limit of detection of the method was 1.76 μg mL(-1). The chlorine concentrations in various cow milk samples taken from the market were found in the range of 588-1472 mg L(-1).

  3. Design and Construction of a Small Vacuum Furnace

    NASA Astrophysics Data System (ADS)

    Peawbang, P.; Thedsakhulwong, A.

    2017-09-01

    The purpose of this research is designed and constructed of a small vacuum furnace. A cylindrical graphite was chosen as the material of the furnace, the cylinder aluminium and copper sheets were employed to prevent the heat radiation that transfers from the furnace to the chamber wall. A rotary pump used, the pressure of graphite furnace can be pumped up to 30 mTorr and heated up to 700 °C driving by wire and the temperature of the chamber wall is relatively remained too low. In addition, heat loss obtained from the graphite furnace by conduction, convection, and radiation were analyzed. The dominating heat loss was found to be caused by the blackbody radiation, which can thus be used to estimate the relationship between graphite furnace temperature and the drive power needed. The cylindrical graphite furnace has an inner diameter of 44 mm, the outer diameter of 60 mm and 45 mm in height, the 355.5 W of power is needed to drive the furnace to 700 °C.

  4. Method 200.12 - Determination of Trace Elements in Marine Waters by StabilizedTemperature Graphite Furnace Atomic Absorption

    EPA Science Inventory

    This method provides procedures for the determination of total recoverable elements by graphite furnace atomic absorption (GFAA) in marine waters, including estuarine, ocean and brines with salinities of up to 35 ppt.

  5. Rational position of a plasmatron and energy saving in a plasma-arc steel-melting furnace

    NASA Astrophysics Data System (ADS)

    Makarov, A. N.; Zuikov, R. M.; Lugovoi, Yu. A.

    2009-12-01

    The rational position of a plasmatron in a plasma-arc steel-melting furnace is studied analytically. The rational position by the end of melting of a charge and after its melting is found to be the position of a plasmatron at an angle of 70 °-75 ° to the vertical axis. As compared to the roof position of the plasmatron, this position increases arc radiation onto the metal pool and the arc efficiency increases by 40-60%.

  6. Graphite Ablation and Thermal Response Simulation Under Arc-Jet Flow Conditions

    NASA Technical Reports Server (NTRS)

    Chen, Y.-K.; Milos, F. S.; Reda, D. C.; Stewart, D. A.; Venkatapathy, Ethiraj (Technical Monitor)

    2002-01-01

    The Two-dimensional Implicit Thermal Response and Ablation program, TITAN, was developed and integrated with a Navier-Stokes solver, GIANTS, for multidimensional ablation and shape change simulation of thermal protection systems in hypersonic flow environments. The governing equations in both codes are demoralized using the same finite-volume approximation with a general body-fitted coordinate system. Time-dependent solutions are achieved by an implicit time marching technique using Gauess-Siedel line relaxation with alternating sweeps. As the first part of a code validation study, this paper compares TITAN-GIANTS predictions with thermal response and recession data obtained from arc-jet tests recently conducted in the Interaction Heating Facility (IHF) at NASA Ames Research Center. The test models are graphite sphere-cones. Graphite was selected as a test material to minimize the uncertainties from material properties. Recession and thermal response data were obtained from two separate arc-jet test series. The first series was at a heat flux where graphite ablation is mainly due to sublimation, and the second series was at a relatively low heat flux where recession is the result of diffusion-controlled oxidation. Ablation and thermal response solutions for both sets of conditions, as calculated by TITAN-GIANTS, are presented and discussed in detail. Predicted shape change and temperature histories generally agree well with the data obtained from the arc-jet tests.

  7. DC Electric Arc Furnace Application for Production of Nickel-Boron Master Alloys

    NASA Astrophysics Data System (ADS)

    Alkan, Murat; Tasyürek, Kerem Can; Bugdayci, Mehmet; Turan, Ahmet; Yücel, Onuralp

    2017-09-01

    In this study, nickel-boron (Ni-B) alloys were produced via a carbothermic reduction starting from boric acid (H3BO3) with high-purity nickel oxide (NiO), charcoal, and wood chips in a direct current arc furnace. In electric arc furnace experiments, different starting mixtures were used, and their effects on the chemical compositions of the final Ni-B alloys were investigated. After the reduction and melting stages, Ni-B alloys were obtained by tapping from the bottom of the furnace. The samples from the designated areas were also taken and analyzed. The chemical composition of the final alloys and selected samples were measured with wet chemical analysis. The Ni-B alloys had a composition of up to 14.82 mass% B. The phase contents of the final alloys and selected samples were measured using x-ray diffraction (XRD). The XRD data helped predict possible reactions and reaction mechanisms. The material and energy balance calculations were made via the XRD Rietveld and chemical compositions. Nickel boride phases started to form 600 mm below the surface. The targeted NiB phase was detected at the tapping zone of the crucible (850-900 mm depth). The energy consumption was 1.84-4.29 kWh/kg, and the electrode consumption was 10-12 g/kg of raw material charged.

  8. Dissipation of Electrical Energy in Submerged Arc Furnaces Producing Silicomanganese and High-Carbon Ferromanganese

    NASA Astrophysics Data System (ADS)

    Steenkamp, Joalet Dalene; Hockaday, Christopher James; Gous, Johan Petrus; Nzima, Thabo Witness

    2017-09-01

    Submerged-arc furnace technology is applied in the primary production of ferroalloys. Electrical energy is dissipated to the process via a combination of arcing and resistive heating. In processes where a crater forms between the charge zone and the reaction zone, electrical energy is dissipated mainly through arcing, e.g., in coke-bed based processes, through resistive heating. Plant-based measurements from a device called "Arcmon" indicated that in silicomanganese (SiMn) production, at times up to 15% of the electrical energy used is transferred by arcing, 30% in high-carbon ferromanganese (HCFeMn) production, compared with 5% in ferrochromium and 60% in ferrosilicon production. On average, the arcing is much less at 3% in SiMn and 5% in HCFeMn production.

  9. Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.

    PubMed

    Suetens, T; Guo, M; Van Acker, K; Blanpain, B

    2015-04-28

    To better understand the phenomena of ZnFe2O4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe2O4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe2O4 formation reaction, the thermodynamic feasibility of in-process separation - a new electric arc furnace dust treatment technology - was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe2O4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Graphite furnace atomic absorption elemental analysis of ecstasy tablets.

    PubMed

    French, Holly E; Went, Michael J; Gibson, Stuart J

    2013-09-10

    Six metals (copper, magnesium, barium, nickel, chromium and lead) were determined in two separate batches of seized ecstasy tablets by graphite furnace atomic absorption spectroscopy (GFAAS) following digestion with nitric acid and hydrogen peroxide. Large intra-batch variations were found as expected for tablets produced in clandestine laboratories. For example, nickel in batch 1 was present in the range 0.47-13.1 parts per million (ppm) and in batch 2 in the range 0.35-9.06 ppm. Although batch 1 had significantly higher 3,4-methylenedioxy-N-methamphetamine (MDMA) content than batch 2, barium was the only element which discriminated between the two ecstasy seizures (batch 1: 0.19-0.66 ppm, batch 2: 3.77-5.47 ppm). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Determination of Copper by Graphite Furnace Atomic Absorption Spectrophotometry: A Student Exercise in Instrumental Methods of Analysis.

    ERIC Educational Resources Information Center

    Williamson, Mark A.

    1989-01-01

    Discusses a student exercise which requires the optimizing of the charring and atomization temperatures by producing a plot of absorbance versus temperature for each temperature parameter. Notes that although the graphite furnace atomic absorption spectroscopy technique has widespread industrial use, there are no published, structured experiments…

  12. Interaction of graphite and ablative materials with CO2-laser, carbon-arc, and xenon-arc radiation. M.S. Thesis - George Washington Univ., Washington, D. C.

    NASA Technical Reports Server (NTRS)

    Brewer, W. D.

    1975-01-01

    The behavior of graphite and several charring ablators in a variety of high radiative heat flux environments was studied in various radiative environments produced by a CO2 laser and a carbon arc facility. Graphite was also tested in xenon arc radiation. Tests were conducted in air nitrogen, helium, and a mixture of CO2 and nitrogen, simulating the Venus atmosphere. The experimental results are compared with theoretical results obtained with a one dimensional charring ablator analysis and a two dimensional subliming ablator analysis. Photomicroscopy showed no significant differences in appearance or microstructure of the charring ablators or graphite after testing in the three different facilities, indicating that the materials respond fundamentally the same to the radiation of different frequencies. The performance of phenolic nylon and graphite was satisfactorily predicted with existing analyses and published material property data.

  13. Vaporization and atomization of uranium in a graphite tube electrothermal vaporizer: a mechanistic study using electrothermal vaporization inductively coupled plasma mass spectrometry and graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Goltz, D. M.; Grégoire, D. C.; Byrne, J. P.; Chakrabarti, C. L.

    1995-07-01

    The mechanism of vaporization and atomization of U in a graphite tube electrothermal vaporizer was studied using graphite furnace atomic absorption spectrometry (GFAAS) and electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). Graphite furnace AAS studies indicate U atoms are formed at temperatures above 2400°C. Using ETV-ICP-MS, an appearance temperature of 1100°C was obtained indicating that some U vaporizes as U oxide. Although U carbides form at temperatures above 2000°C, ETV-ICP-MS studies show that they do not vaporize until 2600°C. In the temperature range between 2200°C and 2600°C, U atoms in GFAAS are likely formed by thermal dissociation of U oxide, whereas at higher temperatures, U atoms are formed via thermal dissociation of U carbide. The origin of U signal suppression in ETV-ICP-MS by NaCl was also investigated. At temperatures above 2000°C, signal suppression may be caused by the accelerated rate of formation of carbide species while at temperatures below 2000°C, the presence of NaCl may cause intercalation of the U in the graphite layers resulting in partial retention of U during the vaporization step. The use of 0.3% freon-23 (CHF 3) mixed with the argon carrier gas was effective in preventing the intercalation of U in graphite and U carbide formation at 2700°C.

  14. Thermodynamic modelling of the formation of zinc-manganese ferrite spinel in electric arc furnace dust.

    PubMed

    Pickles, C A

    2010-07-15

    Electric arc furnace dust is generated when automobile scrap, containing galvanized steel, is remelted in an electric arc furnace. This dust is considered as a hazardous waste in most countries. Zinc is a major component of the dust and can be of significant commercial value. Typically, the majority of the zinc exists as zinc oxide (ZnO) and as a zinc-manganese ferrite spinel ((Zn(x)Mn(y)Fe(1-x-y))Fe(2)O(4)). The recovery of the zinc from the dust in metal recycling and recovery processes, particularly in the hydrometallurgical extraction processes, is often hindered by the presence of the mixed ferrite spinel. However, there is a paucity of information available in the literature on the formation of this spinel. Therefore, in the present research, the equilibrium module of HSC Chemistry 6.1 was utilized to investigate the thermodynamics of the formation of the spinel and the effect of variables on the amount and the composition of the mixed ferrite spinel. It is proposed that the mixed ferrite spinel forms due to the reaction of iron-manganese particulates with both gaseous oxygen and zinc, at the high temperatures in the freeboard of the furnace above the steel melt. Based on the thermodynamic predictions, methods are proposed for minimizing the formation of the mixed ferrite spinel. 2010 Elsevier B.V. All rights reserved.

  15. Atmospheric pressure arc discharge with ablating graphite anode

    NASA Astrophysics Data System (ADS)

    Nemchinsky, V. A.; Raitses, Y.

    2015-06-01

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322-6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  16. Heat-electrical regeneration way to intensive energy saving in an electric arc furnaces

    NASA Astrophysics Data System (ADS)

    Kartavtcev, S.; Matveev, S.; Neshporenko, E.

    2018-03-01

    Energy saving in steel production is of great significance for its large economical scale of 1500 mil t/year and high-energy consumption. Steady trend of last years is an increase of steel production in electric arc furnaces (EAF) with a very high consumption of electricity up to 750 kWh/ton. The intention to reduce so much energy consumption they can reach by many ways. One of such way is a transforming heat energy of liquid steel to electricity and destine it to steel electric arc process. Under certain conditions, it may lead to “zero” consumption of electric power in the process. The development of these conditions leads to the formation of energy-efficient heat schemes, with a minimum electricity consumption from the external network.

  17. High temperature furnace modeling and performance verifications

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.

    1992-01-01

    Analytical, numerical, and experimental studies were performed on two classes of high temperature materials processing sources for their potential use as directional solidification furnaces. The research concentrated on a commercially available high temperature furnace using a zirconia ceramic tube as the heating element and an Arc Furnace based on a tube welder. The first objective was to assemble the zirconia furnace and construct parts needed to successfully perform experiments. The 2nd objective was to evaluate the zirconia furnace performance as a directional solidification furnace element. The 3rd objective was to establish a data base on materials used in the furnace construction, with particular emphasis on emissivities, transmissivities, and absorptivities as functions of wavelength and temperature. A 1-D and 2-D spectral radiation heat transfer model was developed for comparison with standard modeling techniques, and were used to predict wall and crucible temperatures. The 4th objective addressed the development of a SINDA model for the Arc Furnace and was used to design sample holders and to estimate cooling media temperatures for the steady state operation of the furnace. And, the 5th objective addressed the initial performance evaluation of the Arc Furnace and associated equipment for directional solidification. Results of these objectives are presented.

  18. OPTIMAL OPERATION OF ELECTRIC ARC FURNACES (EAF) TO MINIMIZE THE GENERATION OF AIR POLLUTANTS AT THE SOURCE

    EPA Science Inventory

    The manufacture of steel by electric arc furnaces (EAF) is continuing to increase in usage in the United States with current production estimated to be over 63 million tons per year. The reduction of emissions from steel producers has been slow for two main reasons: the nee...

  19. Growth of carbon nanotubes in arc plasma treated graphite disc: microstructural characterization and electrical conductivity study

    NASA Astrophysics Data System (ADS)

    Nayak, B. B.; Sahu, R. K.; Dash, T.; Pradhan, S.

    2018-03-01

    Circular graphite discs were treated in arc plasma by varying arcing time. Analysis of the plasma treated discs by field emission scanning electron microscope revealed globular grain morphologies on the surfaces, but when the same were observed at higher magnification and higher resolution under transmission electron microscope, growth of multiwall carbon nanotubes of around 2 nm diameter was clearly seen. In situ growth of carbon nanotube bundles/bunches consisting of around 0.7 nm tube diameter was marked in the case of 6 min treated disc surface. Both the untreated and the plasma treated graphite discs were characterized by X-ray diffraction, energy dispersive spectra of X-ray, X-ray photoelectron spectroscopy, transmission electron microscopy, micro Raman spectroscopy and BET surface area measurement. From Raman spectra, BET surface area and microstructure observed in transmission electron microscope, growth of several layers of graphene was identified. Four-point probe measurements for electrical resistivity/conductivity of the graphite discs treated under different plasma conditions showed significant increase in conductivity values over that of untreated graphite conductivity value and the best result, i.e., around eightfold increase in conductivity, was observed in the case of 6 min plasma treated sample exhibiting carbon nanotube bundles/bunches grown on disc surface. By comparing the microstructures of the untreated and plasma treated graphite discs, the electrical conductivity increase in graphite disc is attributed to carbon nanotubes (including bundles/bunches) growth on disc surface by plasma treatment.

  20. Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R

    2014-01-01

    This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electricmore » arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.« less

  1. Metals purification by improved vacuum arc remelting

    DOEpatents

    Zanner, Frank J.; Williamson, Rodney L.; Smith, Mark F.

    1994-12-13

    The invention relates to improved apparatuses and methods for remelting metal alloys in furnaces, particularly consumable electrode vacuum arc furnaces. Excited reactive gas is injected into a stationary furnace arc zone, thus accelerating the reduction reactions which purify the metal being melted. Additionally, a cooled condensation surface is disposed within the furnace to reduce the partial pressure of water in the furnace, which also fosters the reduction reactions which result in a purer produced ingot. Methods and means are provided for maintaining the stationary arc zone, thereby reducing the opportunity for contaminants evaporated from the arc zone to be reintroduced into the produced ingot.

  2. In vitro assessment of genotoxic effects of electric arc furnace dust on human lymphocytes using the alkaline comet assay.

    PubMed

    Garaj-Vrhovac, Vera; Orescanin, Visnja; Ruk, Damir; Gajski, Goran

    2009-02-15

    In vitro genotoxic effects of leachates of electric arc furnace dust (EAFD) on human peripheral lymphocytes, assessed prior and following the treatment with a strong alkaline solution were investigated using the alkaline comet assay. Prior and following the treatment, lymphocytes were incubated with leachate of EAFD for 6 and 24 hours at 37 degrees C. Negative controls were also included. Mean values of the tail lengths established in the samples treated with the leachate stemming from the original dust for 6 and 24 hours, were 15.70 microm and 16.78 microm, respectively, as compared to 12.33 microm found in the control sample. Slight, but significant increase in the tail length was also found with the dust treated with a strong alkaline solution (13.37 microm and 13.60 microm). In case of high heavy metal concentrations (the extract of the original furnace dust), the incubation period was revealed to be of significance as well. The obtained results lead to the conclusion that alkaline comet assay could be used as a rapid, sensitive and low-cost tool when assessing genotoxicity of various waste materials, such as leachates of the electric arc furnace dust.

  3. Pragmatic analysis of the electric submerged arc furnace continuum

    NASA Astrophysics Data System (ADS)

    Karalis, K.; Karkalos, N.; Antipas, G. S. E.; Xenidis, A.

    2017-09-01

    A transient mathematical model was developed for the description of fluid flow, heat transfer and electromagnetic phenomena involved in the production of ferronickel in electric arc furnaces. The key operating variables considered were the thermal and electrical conductivity of the slag and the shape, immersion depth and applied electric potential of the electrodes. It was established that the principal stimuli of the velocities in the slag bath were the electric potential and immersion depth of the electrodes and the thermal and electrical conductivities of the slag. Additionally, it was determined that, under the set of operating conditions examined, the maximum slag temperature ranged between 1756 and 1825 K, which is in accordance with industrial measurements. Moreover, it was affirmed that contributions to slag stirring due to Lorentz forces and momentum forces due to the release of carbon monoxide bubbles from the electrode surface were negligible.

  4. Pragmatic analysis of the electric submerged arc furnace continuum

    PubMed Central

    Karkalos, N.; Xenidis, A.

    2017-01-01

    A transient mathematical model was developed for the description of fluid flow, heat transfer and electromagnetic phenomena involved in the production of ferronickel in electric arc furnaces. The key operating variables considered were the thermal and electrical conductivity of the slag and the shape, immersion depth and applied electric potential of the electrodes. It was established that the principal stimuli of the velocities in the slag bath were the electric potential and immersion depth of the electrodes and the thermal and electrical conductivities of the slag. Additionally, it was determined that, under the set of operating conditions examined, the maximum slag temperature ranged between 1756 and 1825 K, which is in accordance with industrial measurements. Moreover, it was affirmed that contributions to slag stirring due to Lorentz forces and momentum forces due to the release of carbon monoxide bubbles from the electrode surface were negligible. PMID:28989738

  5. Combinatorial synthesis of phosphors using arc-imaging furnace

    PubMed Central

    Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo

    2011-01-01

    We have applied a novel ‘melt synthesis technique’ rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10–60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1–5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10–60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions. PMID:27877432

  6. Combinatorial synthesis of phosphors using arc-imaging furnace

    NASA Astrophysics Data System (ADS)

    Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo

    2011-10-01

    We have applied a novel 'melt synthesis technique' rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10-60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1-5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10-60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions.

  7. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review.

    PubMed

    de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Determination of trace and minor elements in alloys by atomic-absorption spectroscopy using an induction-heated graphite-well furnace as atom source-II.

    PubMed

    Ashy, M A; Headridge, J B; Sowerbutts, A

    1974-06-01

    Results are presented for the atomic-absorption spectrophotometric determination of zinc in aluminium and aluminium-silicon alloys, and aluminium, antimony and tin in steels, by means of solid samples dropped into an induction-heated graphite-well furnace to produce the atomic vapour.

  9. Determination of gold and cobalt dopants in advanced materials based on tin oxide by slurry sampling high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Filatova, Daria G.; Eskina, Vasilina V.; Baranovskaya, Vasilisa B.; Vladimirova, Svetlana A.; Gaskov, Alexander M.; Rumyantseva, Marina N.; Karpov, Yuri A.

    2018-02-01

    A novel approach is developed for the determination of Co and Au dopants in advanced materials based on tin oxide using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS) with direct slurry sampling. Sodium carboxylmethylcellulose (Na-CMC) is an effective stabilizer for diluted suspensions. Use Na-CMC allows to transfer the analytes into graphite furnace completely and reproducibly. The relative standard deviation obtained by HR CS GFAAS was not higher than 4%. Accuracy was proven by means inductively coupled plasma mass spectrometry (ICP-MS) in solutions after decomposition as a comparative technique. To determine Au and Co in the volume of SnO2, the acid decomposition conditions (HCl, HF) of the samples were suggested by means of an autoclave in a microwave oven.

  10. Role of iron modifier on boron atomization process using graphite furnace-atomic absorption spectrometry based on speciation of iron using X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yuhei; Tagami, Azusa; Shiarasaki, Toshihiro; Yonetani, Akira; Yamamoto, Takashi; Imai, Shoji

    2018-04-01

    The role of an Fe modifier on boron atomization process using graphite furnace-atomic absorbance spectrometry was investigated using a spectroscopic approach. The initial state of the Fe modifier in a pyrolytic graphite (PG) furnace was trivalent. With an increase in pyrolysis temperature, the Fe modifier was reduced in a stepwise manner. Fe2O3 and Fe3O4 were dominant at pyrolysis temperatures below 1300 K. From 1300 to 1500 K, FeO was dominant. At temperatures higher than 1700 K, Fe metal was dominant. After a drying step, 17.7% of the initial B remained in the PG furnace. After the pyrolysis step at 773 K, the residual fraction of B was similar to that after the drying step. After the pyrolysis step at a temperature of 1073 K, the residual fraction was 11.7%. At pyrolysis temperatures > 1738 K, the residual fraction was <3.3% (furnace during the drying and pyrolysis steps. Our results showed that improvement of B absorbance in the presence of the Fe modifier was owing to B retention by Fe oxide with a high oxidation number. The variation of B absorbance with increasing pyrolysis temperature could be explained by differences in the B retention capacity of Fe species in the PG furnace.

  11. Modeling of Radiative Heat Transfer in an Electric Arc Furnace

    NASA Astrophysics Data System (ADS)

    Opitz, Florian; Treffinger, Peter; Wöllenstein, Jürgen

    2017-12-01

    Radiation is an important means of heat transfer inside an electric arc furnace (EAF). To gain insight into the complex processes of heat transfer inside the EAF vessel, not only radiation from the surfaces but also emission and absorption of the gas phase and the dust cloud need to be considered. Furthermore, the radiative heat exchange depends on the geometrical configuration which is continuously changing throughout the process. The present paper introduces a system model of the EAF which takes into account the radiative heat transfer between the surfaces and the participating medium. This is attained by the development of a simplified geometrical model, the use of a weighted-sum-of-gray-gases model, and a simplified consideration of dust radiation. The simulation results were compared with the data of real EAF plants available in literature.

  12. Effect of Feed Forms on the Results of Melting of Fly Ash by a DC Plasma Arc Furnace

    NASA Astrophysics Data System (ADS)

    Chen, Mingzhou; Meng, Yuedong; Shi, Jiabiao; Ni, Guohua; Jiang, Yiman; Yu, Xinyao; ZHAO, Peng

    2009-10-01

    Fly ash from a municipal solid waste incinerator (MSWI) without preprocessing (original fly ash, OFA) was melted by a direct current (DC) plasma arc furnace to investigate how the feed forms governed the results. Dioxins in flue gas from stack and bag-filter ash (BFA) were detected. The distribution of heavy metals of Pb, Cd, As, and Cr along the flue gas process system was analyzed. Through a comparison of the results for dioxins and heavy metals in this study and previous work, carrying-over of fly ash particles with the flue gas stream can be deduced. Based on the magnetic induction equation and Navier-Stokes equations, a magnetohydrodynamic (MHD) model for the plasma arc was developed to describe the particle-carrying effect. The results indicate that, a. when melted, the feed forms of MSWI fly ash affect the results significantly; b. it is not preferable to melt MSWI fly ash directly, and efforts should be made to limit the mass transfer of OFA from the plasma furnace.

  13. Solid sampling determination of magnesium in lithium niobate crystals by graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Dravecz, Gabriella; Laczai, Nikoletta; Hajdara, Ivett; Bencs, László

    2016-12-01

    The vaporization/atomization processes of Mg in high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS) were investigated by evaporating solid (powder) samples of lithium niobate (LiNbO3) optical single crystals doped with various amounts of Mg in a transversally heated graphite atomizer (THGA). Optimal analytical conditions were attained by using the Mg I 215.4353 nm secondary spectral line. An optimal pyrolysis temperature of 1500 °C was found for Mg, while the compromise atomization temperature in THGAs (2400 °C) was applied for analyte vaporization. The calibration was performed against solid (powered) lithium niobate crystal standards. The standards were prepared with exactly known Mg content via solid state fusion of the oxide components of the matrix and analyte. The correlation coefficient (R value) of the linear calibration was not worse than 0.9992. The calibration curves were linear in the dopant concentration range of interest (0.74-7.25 mg/g Mg), when dosing 3-10 mg of the powder samples into the graphite sample insertion boats. The Mg content of the studied 19 samples was in the range of 1.69-4.13 mg/g. The precision of the method was better than 6.3%. The accuracy of the results was verified by means of flame atomic absorption spectrometry with solution sample introduction after digestion of several crystal samples.

  14. Time series prediction in the case of nonlinear loads by using ADALINE and NAR neural networks

    NASA Astrophysics Data System (ADS)

    Ghiormez, L.; Panoiu, M.; Panoiu, C.; Tirian, O.

    2018-01-01

    This paper presents a study regarding the time series prediction in the case of an electric arc furnace. The considered furnace is a three phase load and it is used to melt scrap in order to obtain liquid steel. The furnace is powered by a three-phase electrical supply and therefore has three graphite electrodes. The furnace is a nonlinear load that can influence the equipment connected to the same electrical power supply network. The nonlinearity is given by the electric arc that appears at the furnace between the graphite electrode and the scrap. Because of the disturbances caused by the electric arc furnace during the elaboration process of steel it is very useful to predict the current of the electric arc and the voltage from the measuring point in the secondary side of the furnace transformer. In order to make the predictions were used ADALINE and NAR neural networks. To train the networks and to make the predictions were used data acquired from the real technological plant.

  15. Arc Furnace Mercury Capsule

    NASA Image and Video Library

    1959-08-20

    A hot jet research facility, used extensively in the design and development of the reentry heat shield on the Project Mercury spacecraft. The electrically-heated arc jet simulates the friction heating encountered by a space vehicle as it returns to the earth's atmosphere at high velocities. The arc jet was located in Langley's Structures Research Laboratory. It was capable of heating the air stream to about 9,000 degrees F. -- Published in Taken from an October 5, 1961 press release entitled: Hot Jet Research Facility used in Reentry Studies will be demonstrated at NASA Open House, October 7.

  16. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of chromium in water by graphite furnace atomic absorption spectrophotometry

    USGS Publications Warehouse

    McLain, B.J.

    1993-01-01

    Graphite furnace atomic absorption spectrophotometry is a sensitive, precise, and accurate method for the determination of chromium in natural water samples. The detection limit for this analytical method is 0.4 microg/L with a working linear limit of 25.0 microg/L. The precision at the detection limit ranges from 20 to 57 percent relative standard deviation (RSD) with an improvement to 4.6 percent RSD for concentrations more than 3 microg/L. Accuracy of this method was determined for a variety of reference standards that was representative of the analytical range. The results were within the established standard deviations. Samples were spiked with known concentrations of chromium with recoveries ranging from 84 to 122 percent. In addition, a comparison of data between graphite furnace atomic absorption spectrophotometry and direct-current plasma atomic emission spectrometry resulted in suitable agreement between the two methods, with an average deviation of +/- 2.0 microg/L throughout the analytical range.

  17. Determination of trace elements in metals and alloys by atomic-absorption spectroscopy using an induction-heated graphite well furnace as atom source.

    PubMed

    Headridge, J B; Smith, D R

    1972-07-01

    An induction-heated graphite furnace, coupled to a Unicam SP 90 atomic-absorption spectrometer, is described for the direct determination of trace elements in metals and alloys. The furnace is capable of operation at temperatures up to 2400 degrees , and has been used to obtain calibration graphs for the determination of ppm quantities of bismuth in lead-base alloys, cast irons and stainless steels, and for the determination of cadmium at the ppm level in zinc-base alloys. Milligram samples of the alloys were atomized directly. Calibration graphs for the determination of the elements in solutions were obtained for comparison. The accuracy and precision of the determination are presented and discussed.

  18. A combined arc-melting and tilt-casting furnace for the manufacture of high-purity bulk metallic glass materials.

    PubMed

    Soinila, E; Pihlajamäki, T; Bossuyt, S; Hänninen, H

    2011-07-01

    An arc-melting furnace which includes a tilt-casting facility was designed and built, for the purpose of producing bulk metallic glass specimens. Tilt-casting was chosen because reportedly, in combination with high-purity processing, it produces the best fatigue endurance in Zr-based bulk metallic glasses. Incorporating the alloying and casting facilities in a single piece of equipment reduces the amount of laboratory space and capital investment needed. Eliminating the sample transfer step from the production process also saves time and reduces sample contamination. This is important because the glass forming ability in many alloy systems, such as Zr-based glass-forming alloys, deteriorates rapidly with increasing oxygen content of the specimen. The challenge was to create a versatile instrument, in which high purity conditions can be maintained throughout the process, even when melting alloys with high affinity for oxygen. Therefore, the design provides a high-vacuum chamber to be filled with a low-oxygen inert atmosphere, and takes special care to keep the system hermetically sealed throughout the process. In particular, movements of the arc-melting electrode and sample manipulator arm are accommodated by deformable metal bellows, rather than sliding O-ring seals, and the whole furnace is tilted for tilt-casting. This performance of the furnace is demonstrated by alloying and casting Zr(55)Cu(30)Al(10)Ni(5) directly into rods up to ø 10 mm which are verified to be amorphous by x-ray diffraction and differential scanning calorimetry, and to exhibit locally ductile fracture at liquid nitrogen temperature.

  19. Fast and direct screening of copper in micro-volumes of distilled alcoholic beverages by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Ajtony, Zsolt; Laczai, Nikoletta; Dravecz, Gabriella; Szoboszlai, Norbert; Marosi, Áron; Marlok, Bence; Streli, Christina; Bencs, László

    2016-12-15

    HR-CS-GFAAS methods were developed for the fast determination of Cu in domestic and commercially available Hungarian distilled alcoholic beverages (called pálinka), in order to decide if their Cu content exceeds the permissible limit, as legislated by the WHO. Some microliters of samples were directly dispensed into the atomizer. Graphite furnace heating programs, effects/amounts of the Pd modifier, alternative wavelengths (e.g., Cu I 249.2146nm), external calibration and internal standardization methods were studied. Applying a fast graphite furnace heating program without any chemical modifier, the Cu content of a sample could be quantitated within 1.5min. The detection limit of the method is 0.03mg/L. Calibration curves are linear up to 10-15mg/L Cu. Spike-recoveries ranged from 89% to 119% with an average of 100.9±8.5%. Internal calibration could be applied with the assistance of Cr, Fe, and/or Rh standards. The accuracy of the GFAAS results was verified by TXRF analyses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. [Determination of trace gallium by graphite furnace atomic absorption spectrometry in urine].

    PubMed

    Zhou, L Z; Fu, S; Gao, S Q; He, G W

    2016-06-20

    To establish a method for determination trace gallium in urine by graphite furnace atomic absorption spectrometry (GFAAS). The ammonium dihydrogen phosphate was matrix modifier. The temperature effect about pyrolysis (Tpyr) and atomization temperature were optimized for determination of trace gallium. The method of technical standard about within-run, between-run and recoveries of standard were optimized. The method showed a linear relationship within the range of 0.20~80.00 μg/L (r=0.998). The within-run and between-run relative standard deviations (RSD) of repetitive measurement at 5.0, 10.0, 20.0 μg/L concentration levels were 2.1%~5.5% and 2.3%~3.0%. The detection limit was 0.06 μg/L. The recoveries of gallium were 98.2%~101.1%. This method is simple, low detection limit, accurate, reliable and reproducible. It has been applied for determination of trace gallium in urine samples those who need occupation health examination or poisoning diagnosis.

  1. Determination of ruthenium in pharmaceutical compounds by graphite furnace atomic absorption spectroscopy.

    PubMed

    Jia, Xiujuan; Wang, Tiebang; Bu, Xiaodong; Tu, Qiang; Spencer, Sandra

    2006-04-11

    A graphite furnace atomic absorption (GFAA) spectrometric method for the determination of ruthenium (Rh) in solid and liquid pharmaceutical compounds has been developed. Samples are dissolved or diluted in dimethyl sulfoxide (DMSO) without any other treatment before they were analyzed by GFAA with a carefully designed heating program to avoid pre-atomization signal loss and to achieve suitable sensitivity. Various inorganic and organic solvents were tested and compared and DMSO was found to be the most suitable. In addition, ruthenium was found to be stable in DMSO for at least 5 days. Spike recoveries ranged from 81 to 100% and the limit of quantitation (LOQ) was determined to be 0.5 microg g(-1) for solid samples or 0.005 microg ml(-1) for liquid samples based a 100-fold dilution. The same set of samples was also analyzed by ICP-MS with a different sample preparation method, and excellent agreement was achieved.

  2. Determination of Pb in Biological Samples by Graphite Furnace Atomic Absorption Spectrophotometry: An Exercise in Common Interferences and Fundamental Practices in Trace Element Determination

    ERIC Educational Resources Information Center

    Spudich, Thomas M.; Herrmann, Jennifer K.; Fietkau, Ronald; Edwards, Grant A.

    2004-01-01

    An experiment is conducted to ascertain trace-level Pb in samples of bovine liver or muscle by applying graphite furnace atomic absorption spectrophotometry (GFAAS). The primary objective is to display the effects of physical and spectral intrusions in determining trace elements, and project the usual methods employed to minimize accuracy errors…

  3. Improved Casting Furnace Conceptual Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fielding, Randall Sidney; Tolman, David Donald

    In an attempt to ensure more consistent casting results and remove some schedule variance associated with casting, an improved casting furnace concept has been developed. The improved furnace uses the existing arc melter hardware and glovebox utilities. The furnace concept was designed around physical and operational requirements such as; a charge sized of less than 30 grams, high heating rates and minimal additional footprint. The conceptual model is shown in the report as well as a summary of how the requirements were met.

  4. High temperature aircraft research furnace facilities

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  5. Determination of bromide in aqueous solutions via the TlBr molecule using high-resolution continuum source graphite furnace molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Cacho, Frantisek; Machynak, Lubomir; Nemecek, Martin; Beinrohr, Ernest

    2018-06-01

    The paper describes the determination of bromide by evaluating the molecular absorption of thallium mono-bromide (TlBr) at the rotational line at 342.9815 nm by making use a high-resolution continuum source graphite furnace atomic absorption spectrometer. The effects of variables such as the wavelength, graphite furnace program, amount of Tl and the use of a modifier were investigated and optimized. Various chemical modifiers have been studied, such as Pd, Mg, Ag and a mixture of Pd/Mg. It was found that best results were obtained by using Ag which prevents losses of bromide during pyrolysis step through precipitation of bromide as AgBr. In this way, a maximum pyrolysis temperature of 400 °C could be used. The optimum molecule forming temperature was found to be 900 °C. Bromide concentrations in various water samples (CRM, bottled drinking water and tap water) were determined. The quantification was made by both linear calibration and standard addition techniques. The results were matched well those of the reference method. The calibration curve was linear in the range between 1 and 1000 ng Br with a correlation coefficient R = 0.999. The limit of detection and characteristic mass of the method were 0.3 ng and 4.4 ng of Br.

  6. Recycling of an electric arc furnace flue dust to obtain high grade ZnO.

    PubMed

    Ruiz, Oscar; Clemente, Carmen; Alonso, Manuel; Alguacil, Francisco Jose

    2007-03-06

    The production of steel in electric arc furnace (EAF) generates a by-product called EAF dusts. These steelmaking flue dusts are classified in most industrialized countries as hazardous residues because the heavy metals contained in them, tend to leach under slightly acidic rainfall conditions. However, and at the same time they contain zinc species which can be used as a source to obtain valuable by-products. The present investigation shows results on the processing of an EAF flue dust using ammonium carbonate solutions. Once zinc is dissolved: ZnO + 4NH3 + H2O --> Zn(NH3)4(2+) + 2OH- with other impurities (i.e. cadmium and copper), these are eliminated from the zinc solution via cementation with metallic zinc. The purified zinc solution was evaporated (distilled) until precipitation of a zinc carbonate species, which then was calcined to yield a zinc oxide of a high grade. For the unattacked dust residue from the leaching operation, mainly composed of zinc ferrite, several options can be considered: back-recycling to the furnace, further treatment by sodium hydroxide processing or a more safely dumping due to its relatively inertness.

  7. Better VPS Fabrication of Crucibles and Furnace Cartridges

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Zimmerman, Frank R.; O'Dell, J. Scott; McKechnie, Timothy N.

    2003-01-01

    An experimental investigation has shown that by (1) vacuum plasma spraying (VPS) of suitable refractory metal alloys on graphite mandrels, and then (2) heat-treating the VPS alloy deposits under suitable conditions, it is possible to fabricate improved crucibles and furnace cartridges that could be used at maximum temperatures between 1,400 and 1,600 C and that could withstand chemical attack by the materials to be heated in the crucibles and cartridges. Taken by itself, the basic concept of fabricating furnace cartridges by VPS of refractory materials onto graphite mandrels is not new; taken by itself, the basic concept of heat treatment of VPS deposits for use as other than furnace cartridges is also not new; however, prior to this investigation, experimental crucibles and furnace cartridges fabricated by VPS had not been heat treated and had been found to be relatively weak and brittle. Accordingly, the investigation was directed toward determining whether certain combinations of (1) refractory alloy compositions, (2) VPS parameters, and (3) heat-treatment parameters could result in VPS-fabricated components with increased ductility.

  8. Method and Mechanisms of Soil Stabilization Using Electric Arc Furnace Dust

    PubMed Central

    Al-Amoudi, Omar S. Baghabra; Al-Homidy, Abdullah A.; Maslehuddin, Mohammed; Saleh, Tawfik A.

    2017-01-01

    This paper reports the method and mechanism for improving the strength of marl and desert sand utilizing electric arc furnace dust (EAFD), an industrial by-product, in lieu of cement or lime. EAFD was used in conjunction with a small quantity (2%) of cement. The mechanical properties and durability characteristics of marl and sand mixed with 2% cement plus 5-, 10-, 20- or 30%-EAFD, by weight of the soil, were evaluated. The soil-cement-EAFD mixtures were used to determine their unconfined compressive strength (UCS), soaked California Bearing Ratio (CBR) and durability. The risk of leaching of toxic heavy metals, such as lead and cadmium, from the stabilized soils to the groundwater was also investigated. The mechanisms of stabilization of the selected soils due to the use of EAFD along with a small quantity of cement are also elucidated. The usage of 20 to 30% EAFD with 2% cement was noted to considerably improve the mechanical properties and durability of both marl and sand. PMID:28452346

  9. Method and Mechanisms of Soil Stabilization Using Electric Arc Furnace Dust

    NASA Astrophysics Data System (ADS)

    Al-Amoudi, Omar S. Baghabra; Al-Homidy, Abdullah A.; Maslehuddin, Mohammed; Saleh, Tawfik A.

    2017-04-01

    This paper reports the method and mechanism for improving the strength of marl and desert sand utilizing electric arc furnace dust (EAFD), an industrial by-product, in lieu of cement or lime. EAFD was used in conjunction with a small quantity (2%) of cement. The mechanical properties and durability characteristics of marl and sand mixed with 2% cement plus 5-, 10-, 20- or 30%-EAFD, by weight of the soil, were evaluated. The soil-cement-EAFD mixtures were used to determine their unconfined compressive strength (UCS), soaked California Bearing Ratio (CBR) and durability. The risk of leaching of toxic heavy metals, such as lead and cadmium, from the stabilized soils to the groundwater was also investigated. The mechanisms of stabilization of the selected soils due to the use of EAFD along with a small quantity of cement are also elucidated. The usage of 20 to 30% EAFD with 2% cement was noted to considerably improve the mechanical properties and durability of both marl and sand.

  10. Driven motion and instability of an atmospheric pressure arc

    NASA Astrophysics Data System (ADS)

    Karasik, Max

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental are furnace is constructed and operated in air with graphite cathode and steel anode at currents 100--250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes. Experiments are carried out on the response of the are to applied transverse DC and AC (up to ≈1 kHz) magnetic fields. The arc is found to deflect parabolically for DC field and assumes a growing sinusoidal structure for AC field. A simple analytic two-parameter fluid model of the are dynamics is derived, in which the inertia of the magnetically pumped cathode jet balances the applied J⃗xB⃗ force. Time variation of the applied field allows evaluation of the parameters individually. A fit of the model to the experimental data gives a value for the average jet speed an order of magnitude below Maecker's estimate of the maximum jet speed. A spontaneous instability of the same arc is investigated experimentally and modeled analytically. The presence of the instability is found to depend critically on cathode dimensions. For cylindrical cathodes, instability occurs only for a narrow range of cathode diameters. Cathode spot motion is proposed as the mechanism of the instability. A simple fluid model combining the effect of the cathode spot motion and the inertia of the cathode jet successfully describes the arc shape during low amplitude instability. The amplitude of cathode spot motion required by the model is in agreement with measurements. The average jet velocity required is approximately equal to that inferred from the transverse magnetic field experiments. Reasons for spot motion and for cathode

  11. Determination of total tin in geological materials by electrothermal atomic-absorption spectrophotometry using a tungsten-impregnated graphite furnace

    USGS Publications Warehouse

    Zhou, L.; Chao, T.T.; Meier, A.L.

    1984-01-01

    An electrothermal atomic-absorption spectrophotometric method is described for the determination of total tin in geological materials, with use of a tungsten-impregnated graphite furnace. The sample is decomposed by fusion with lithium metaborate and the melt is dissolved in 10% hydrochloric acid. Tin is then extracted into trioctylphosphine oxide-methyl isobutyl ketone prior to atomization. Impregnation of the furnace with a sodium tungstate solution increases the sensitivity of the determination and improves the precision of the results. The limits of determination are 0.5-20 ppm of tin in the sample. Higher tin values can be determined by dilution of the extract. Replicate analyses of eighteen geological reference samples with diverse matrices gave relative standard deviations ranging from 2.0 to 10.8% with an average of 4.6%. Average tin values for reference samples were in general agreement with, but more precise than, those reported by others. Apparent recoveries of tin added to various samples ranged from 95 to 111% with an average of 102%. ?? 1984.

  12. Development of a simple method for the determination of lead in lipstick using alkaline solubilization and graphite furnace atomic absorption spectrometry.

    PubMed

    Soares, Aline Rodrigues; Nascentes, Clésia Cristina

    2013-02-15

    A simple method was developed for determining the total lead content in lipstick samples by graphite furnace atomic absorption spectrometry (GFAAS) after treatment with tetramethylammonium hydroxide (TMAH). Multivariate optimization was used to establish the optimal conditions of sample preparation. The graphite furnace heating program was optimized through pyrolysis and atomization curves. An aliquot containing approximately 50mg of the sample was mixed with TMAH and heated in a water bath at 60°C for 60 min. Using Nb as the permanent modifier and Pd as the chemical modifier, the optimal temperatures were 900°C and 1800°C for pyrolysis and atomization, respectively. Under optimum conditions, the working range was from 1.73 to 50.0 μg L(-1), with detection and quantification limits of 0.20 and 0.34 μg g(-1), respectively. The precision was evaluated under conditions of repeatability and intermediate precision and showed standard deviations of 2.37%-4.61% and 4.93%-9.75%, respectively. The % recovery ranged from 96.2% to 109%, and no significant differences were found between the results obtained using the proposed method and the microwave decomposition method for real samples. Lead was detected in 21 tested lipstick samples; the lead content in these samples ranged from 0.27 to 4.54 μg g(-1). Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Neutralization of cement-asbestos waste by melting in an arc-resistance furnace.

    PubMed

    Witek, Jerzy; Kusiorowski, Robert

    2017-11-01

    The paper presents the results of research on asbestos waste disposal by the melting process. The tests were carried out in a laboratory arc-resistance electric furnace. The obtained results showed that the fibrous structure of asbestos contained in cement-asbestos waste was completely destroyed. This led to the formation of new mineral phases without dangerous properties. The melting test was conducted on raw cement-asbestos samples without any additives and with a content of mineral compounds, the aim of which was to support the melting process. The additives were selected among others on the basis of the computer simulation results carried out using FactSage database computing system. The research results indicate that the melting process of asbestos wastes is a potential and interesting method of neutralizing hazardous asbestos waste, which allows for further treatment and material recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Ferrosilicon smelting in a direct current furnace

    DOEpatents

    Dosaj, V.D.; May, J.B.

    1992-12-29

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.

  15. Ferrosilicon smelting in a direct current furnace

    DOEpatents

    Dosaj, Vishu D.; May, James B.

    1992-12-29

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode.

  16. [The electric furnace of Henri Moissan at one hundred years: connection with the electric furnace, the solar furnace, the plasma furnace?].

    PubMed

    Royère, C

    1999-03-01

    The trace of Henri Moissan's pioneer work 100 years ago is clearly evidenced by an overview of achievements in high temperature devices; 1987: "Le four électrique" by Henri Moissan; 1948-1952: "High temperature heating in a cavity rotary kiln using focusing of solar radiation" by Félix Trombe; 1962: "The cavity rotary kiln using focused solar radiation jointly with a plasma gun" by Marc Foëx; 1970: "The rotary kiln with two plasma guns and arc transfer" by Marc Foëx; 1984: "The plasma furnace" by Electricité de France (EDF) at Renardières; 1997: "The plasma furnace" by the Atomic Energy Center (CEA) at Cadarache, the VULCANO program. The first part of this contribution is devoted to Henri Moissan. Re-reading his early book on the electric furnace, especially the first chapter and the sections on silica, carbon vapor and experiments performed in casting molten metal--the conclusions are outstanding--provides modern readers with an amazing insight into future developments. The last two parts are devoted to Félix Trombe and Marc Foëx, tracing the evolution of high temperature cavity processus leading to the solar furnace and the present day plasma furnace at the CEA. Focus is placed on research conducted by the French National Center for Scientific Research (CNRS) with the solar and plasma furnaces at Odeillo. The relationships with Henri Moissan's early work are amazing, offering a well deserved homage to this pioneer researcher.

  17. Physics-Based Modeling of Electric Operation, Heat Transfer, and Scrap Melting in an AC Electric Arc Furnace

    NASA Astrophysics Data System (ADS)

    Opitz, Florian; Treffinger, Peter

    2016-04-01

    Electric arc furnaces (EAF) are complex industrial plants whose actual behavior depends upon numerous factors. Due to its energy intensive operation, the EAF process has always been subject to optimization efforts. For these reasons, several models have been proposed in literature to analyze and predict different modes of operation. Most of these models focused on the processes inside the vessel itself. The present paper introduces a dynamic, physics-based model of a complete EAF plant which consists of the four subsystems vessel, electric system, electrode regulation, and off-gas system. Furthermore the solid phase is not treated to be homogenous but a simple spatial discretization is employed. Hence it is possible to simulate the energy input by electric arcs and fossil fuel burners depending on the state of the melting progress. The model is implemented in object-oriented, equation-based language Modelica. The simulation results are compared to literature data.

  18. Pigment identification in artwork using graphite furnace atomic absorption spectrometry.

    PubMed

    Goltz, D M; Coombs, J; Marion, C; Cloutis, E; Gibson, J; Attas, M; Choo-Smith, L-P; Collins, C

    2004-06-17

    The use of a sampling technique is described for the identification of metals from inorganic pigments in paint. The sampling technique involves gently contacting a cotton swab with the painted surface to physically remove a minute quantity ( approximately 1-2mug) of pigment. The amount of material removed from the painted surface is invisible to the unaided eye and does not cause any visible effect to the painted surface. The cotton swab was then placed in a 1.5ml polystyrene beaker containing HNO(3) to extract pigment metals prior to analysis using graphite furnace atomic absorption spectrometry (GFAAS). GFAAS is well suited for identifying pigment metals since it requires small samples and many pigments consist of main group elements (e.g. Al) as well as transition metals (e.g. Zn, Fe and Cd). Using Cd (cadmium red) as the test element, the reproducibility of sampling a paint surface with the cotton swab was approximately 13% in either a water or oil medium. To test the feasibility of cotton sampling for pigment identification, samples were obtained from paintings (watercolour and oil) of a local collection. Raman spectra provided complementary information to the GFAAS, which together are essential for positive identification of some pigments. For example, GFAAS indicated the presence of Cu, but the Raman spectra positively identified the modern copper pigment phthalocyanine green (Cu(C(32)Cl(16)N(8)). Both Raman spectroscopy and GFAAS were useful for identifying ZnO as a white pigment.

  19. Determination of lead in flour samples directly by solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Tinas, Hande; Ozbek, Nil; Akman, Suleyman

    2018-02-01

    In this study, lead concentrations in various flour samples were determined by high-resolution continuum source graphite furnace atomic absorption spectrometry with solid sampling. Since samples were analyzed directly, the risks and disadvantages of sample digestion were eliminated. Solid flour samples were dried, weighed on the platforms, Pd was added as a modifier and introduced directly into a graphite tube using a manual solid sampler. Platforms and tubes were coated with Zr. The optimized pyrolysis and atomization temperatures were 800 °C and 2200 °C, respectively. The sensitivities of lead in various flour certified reference materials (CRMs) and aqueous standards were not significantly different. Therefore, aqueous standards were safely used for calibration. The absolute limit of detection and characteristic mass were 7.2 pg and 9.0 pg of lead, respectively. The lead concentrations in different types of flour samples were found in the range of 25-52 μg kg- 1. Finally, homogeneity factors representing the heterogeneity of analyte distribution for lead in flour samples were determined.

  20. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing.

    PubMed

    Liapis, Ioannis; Papayianni, Ioanna

    2015-01-01

    Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. 5. Photocopied August 1978. FRONT OF A HORRY ROTARY FURNACE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photocopied August 1978. FRONT OF A HORRY ROTARY FURNACE, SHOWING INTERIOR ELECTRODES. THE RAW MATERIALS FOR CALCIUM CARBIDE PRODUCTION--LIMESTONE AND COKE--WERE FED BY HOPPERS PLACED BETWEEN THESE ELECTRODES INTO THE ELECTRIC ARC. THE REMOVABLE PLATES ON THE EXTERNAL CIRCUMSTANCE OF THE HORRY FURNACE ARE SHOWN ON THE FIRST THREE FURNACES. (M) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  2. Direct determination of Pb in raw milk by graphite furnace atomic absorption spectrometry (GF AAS) with electrothermal atomization sampling from slurries.

    PubMed

    de Oliveira, Tatiane Milão; Augusto Peres, Jayme; Lurdes Felsner, Maria; Cristiane Justi, Karin

    2017-08-15

    Milk is an important food in the human diet due to its physico-chemical composition; therefore, it is necessary to monitor contamination by toxic metals such as Pb. Milk sample slurries were prepared using Triton X-100 and nitric acid for direct analysis of Pb using graphite furnace atomic absorption spectrometry - GF AAS. After dilution of the slurries, 10.00µl were directly introduced into the pyrolytic graphite tube without use of a chemical modifier, which acts as an advantage considering this type of matrix. The limits of detection and quantification were 0.64 and 2.14µgl -1 , respectively. The figures of merit studied showed that the proposed methodology without pretreatment of the raw milk sample and using external standard calibration is suitable. The methodology was applied in milk samples from the Guarapuava region, in Paraná State (Brazil) and Pb concentrations ranged from 2.12 to 37.36µgl -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Design and Development of Tilting Rotary Furnace

    NASA Astrophysics Data System (ADS)

    Sai Varun, V.; Tejesh, P.; Prashanth, B. N.

    2018-02-01

    Casting is the best and effective technique used for manufacturing products. The important accessory for casting is furnace. Furnace is used to melt the metal. A perfect furnace is one that reduces the wastage of material, reduces the cost of manufacturing and there by reduces the cost of production. Of all the present day furnaces there may be wastage of material, and the chances of increasing the time of manufacturing as the is continuous need of tilting of the furnace for every mould and then changing the moulds. Considering these aspects, a simple and least expensive tilting rotary furnace is designed and developed. The Tilting and Rotary Furnace consists of mainly melting chamber and the base. The metal enters the melting chamber through the input door that is provided on the top of the melting chamber. Inside the melting chamber there is a graphite furnace. The metal is melted in the graphite crucible. An insulation of ceramic fibre cloth is provided inside the furnace. The metal is melted using Propane gas. The propane gas is easily available and economic. The gas is burned using a pilot burner. The pilot burner is more efficient that other burners. The pilot burner is lit with a push button igniter. The pilot burner is located at the bottom of the combustion chamber. This enables the uniform heating of the metal inside the crucible. The temperature inside the melting chamber is noted using a temperature sensor. The gas input is cut-off if the temperature is exceeding a specific temperature. After the melting of the metal is done the furnace is tilted and after the mould is filled it is rotated. The external gears are used to controlling the tilting. The results of studies carried out for the design & development of low cost, simple furnace that can be mounted anywhere on the shop floor and this can be very much useful for the education purposes and small scale manufacturing. The furnace can be rotated in 360 degrees and can help in reducing the time taken

  4. Phosphorus removal by electric arc furnace steel slag adsorption

    NASA Astrophysics Data System (ADS)

    Lim, J. W.; Lee, K. F.; Chong, Thomas S. Y.; Abdullah, L. C.; Razak, M. A.; Tezara, C.

    2017-10-01

    As to overcome the eutrophication in lakes and reservoirs which is resulted from excessive input of phosphorus due to rapid urbanization or uncontrolled agricultural activities, Electric Arc Furnace steel slag (EAFS), a steelmaking by-product, in which the disposal of this industrial waste considered economically unfavourable yet it’s physical and chemical properties exhibits high potential to be great P adsorbent. The objective of this study was to identify most suitable mathematical model in description of adsorption by using traditional batch experiment and to investigate the effect on Phosphorus removal efficiency and Phosphorus removal capacity by EAFS adsorption through variation of parameters such as pH, size of slag and initial concentration of Phosphorus. Result demonstrated that, Langmuir is suitable in describing Phosphorus removal mechanisms with the Maximum Adsorption Capacity, Q m of 0.166 mg/g and Langmuir Constant, KL of 0.03519 L/mg. As for effect studies, smaller size of adsorbent shows higher percentage (up to 37.8%) of Phosphorus removal compared to the larger size. Besides that, the experiment indicated a more acidic environment is favourable for Phosphorus removal and the amount of Phosphorus adsorbed at pH 3.0 was the highest. In addition, the adsorption capacity increases steadily as the initial Phosphorus concentration increases but it remained steady at 100mg P/L. Eventually, this study serves as better understanding on preliminary studies of P removal mechanisms by EAFS.

  5. Ultrasensitive determination of cadmium in seawater by hollow fiber supported liquid membrane extraction coupled with graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Peng, Jin-feng; Liu, Rui; Liu, Jing-fu; He, Bin; Hu, Xia-lin; Jiang, Gui-bin

    2007-05-01

    A new procedure, based on hollow fiber supported liquid membrane preconcentration coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection, was developed for the determination of trace Cd in seawater samples. With 1-octanol that contained a mixture of dithizone (carrier) and oleic acid immobilized in the pores of the polypropylene hollow fiber as a liquid membrane, Cd was selectively extracted from water samples into 0.05 M HNO 3 that filled the lumen of the hollow fiber as a stripping solution. The main extraction related parameters were optimized, and the effects of salinity and some coexisting interferants were also evaluated. Under the optimum extraction conditions, an enrichment factor of 387 was obtained for a 100-mL sample solution. In combination with graphite furnace atomic absorption spectrometry, a very low detection limit (0.8 ng L - 1 ) and a relative standard deviation (2.5% at 50 ng L - 1 level) were achieved. Five seawater samples were analyzed by the proposed method without dilution, with detected Cd concentration in the range of 56.4-264.8 ng L - 1 and the relative spiked recoveries over 89%. For comparison, these samples were also analyzed by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method after a 10-fold dilution for matrix effect elimination. Statistical analysis with a one-way ANOVA shows no significant differences (at 0.05 level) between the results obtained by the proposed and ICP-MS methods. Additionally, analysis of certified reference materials (GBW (E) 080040) shows good agreement with the certified value. These results indicate that this present method is very sensitive and reliable, and can effectively eliminate complex matrix interferences in seawater samples.

  6. Solid sampling determination of total fluorine in baby food samples by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-11-15

    This study describes the applicability of solid sampling technique for the determination of fluorine in various baby foods via molecular absorption of calcium monofluoride generated in a graphite furnace of high-resolution continuum source atomic absorption spectrometry. Fluorine was determined at CaF wavelength, 606.440nm in a graphite tube applying a pyrolysis temperature of 1000°C and a molecule forming temperature of 2200°C. The limit of detection and characteristic mass of the method were 0.20ng and 0.17ng of fluorine, respectively. The fluorine concentrations determined in standard reference sample (bush branches and leaves) were in good agreement with the certified values. By applying the optimized parameters, the concentration of fluorine in various baby foods were determined. The fluorine concentrations were ranged from

  7. Structural ceramics containing electric arc furnace dust.

    PubMed

    Stathopoulos, V N; Papandreou, A; Kanellopoulou, D; Stournaras, C J

    2013-11-15

    In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in an increase of mechanical strength. Moreover, leaching tests performed according to the Europeans standards on the EAFD-block samples showed that the quantities of heavy metals leached from crushed blocks were within the regulatory limits. Thus the EAFD-blocks can be regarded as material of no environmental concern. Copyright © 2013 Elsevier B

  8. Sulphated Electric Arc Furnace Slag Asfenton-Like Catalyst for Degradation of Reactive Black 5

    NASA Astrophysics Data System (ADS)

    Zubir, N. A.; Nasuha, N.; Alrozi, R.

    2018-06-01

    Sulphated electric arc furnace slag (S-EAFS) was obtained through a facile chemical and thermal treatment method. The S-EAFS was evaluated as a Fenton-like catalyst for the oxidative degradation of reactive black 5 (RB5). The S-EAFS was characterized by XRD, SEM-EDX and nitrogen adsorption analysis. The highest RB5 degradation efficiency obtained in this study was above 90% which was maintained across seven successive cycles with minimum iron leaching. This was achieved at a RB5 concentration of 0.15 gL-1 (50 ppm) with 8 mM of H2O2 and a pH of 4.5. Characterization revealed that the presence of sulphated groups (SO4 2-) within the EAFS improved the surface acidity of the material and corresponded to an increase in the catalytic activity for the degradation of RB5 at mild pH.

  9. Method for the determination of cobalt from biological products with graphite furnace atomic absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Zamfir, Oana-Liliana; Ionicǎ, Mihai; Caragea, Genica; Radu, Simona; Vlǎdescu, Marian

    2016-12-01

    Cobalt is a chemical element with symbol Co and atomic number 27 and atomic weight 58.93. 59 Co is the only stable cobalt isotope and the only isotope to exist naturally on Earth. Cobalt is the active center of coenzymes called cobalamin or cyanocobalamin the most common example of which is vitamin B12. Vitamin B12 deficiency can potentially cause severe and irreversible damage, especially to the brain and nervous system in the form of fatigue, depression and poor memory or even mania and psychosis. In order to study the degree of deficiency of the population with Co or the correctness of treatment with vitamin B12, a modern optoelectronic method for the determination of metals and metalloids from biological samples has been developed, Graphite Furnace - Atomic Absorption Spectrometer (GF- AAS) method is recommended. The technique is based on the fact that free atoms will absorb light at wavelengths characteristic of the element of interest. Free atoms of the chemical element can be produced from samples by the application of high temperatures. The system GF-AAS Varian used as biological samples, blood or urine that followed the digest of the organic matrix. For the investigations was used a high - performance GF-AAS with D2 - background correction system and a transversely heated graphite atomizer. As result of the use of the method are presented the concentration of Co in the blood or urine of a group of patient in Bucharest. The method is sensitive, reproducible relatively easy to apply, with a moderately costs.

  10. Heavy metal recovery from electric arc furnace steel slag by using hydrochloric acid leaching

    NASA Astrophysics Data System (ADS)

    Wei, Lim Jin; Haan, Ong Teng; Shean Yaw, Thomas Choong; Chuah Abdullah, Luqman; Razak, Mus'ab Abdul; Cionita, Tezara; Toudehdehghan, Abdolreza

    2018-03-01

    Electric Arc Furnace steel slag (EAFS) is the waste produced in steelmaking industry. Environmental problem such as pollution will occur when dumping the steel slag waste into the landfill. These steel slags have properties that are suitable for various applications such as water treatment and wastewater. The objective of this study is to develop efficient and economical chlorination route for EAFS extraction by using leaching process. Various parameters such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature are investigated to determine the optimum conditions. As a result, the dissolution rate can be determined by changing the parameters, such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature. The optimum conditions for dissolution rates for the leaching process is at 3.0 M hydrochloric acid, particle size of 1.18 mm, reaction time of 2.5 hour and the temperature of 90°C.

  11. The efficiency of quartz addition on electric arc furnace (EAF) carbon steel slag stability.

    PubMed

    Mombelli, D; Mapelli, C; Barella, S; Gruttadauria, A; Le Saout, G; Garcia-Diaz, E

    2014-08-30

    Electric arc furnace slag (EAF) has the potential to be re-utilized as an alternative to stone material, however, only if it remains chemically stable on contact with water. The presence of hydraulic phases such as larnite (2CaO SiO2) could cause dangerous elements to be released into the environment, i.e. Ba, V, Cr. Chemical treatment appears to be the only way to guarantee a completely stable structure, especially for long-term applications. This study presents the efficiency of silica addition during the deslagging period. Microstructural characterization of modified slag was performed by SEM and XRD analysis. Elution tests were performed according to the EN 12457-2 standard, with the addition of silica and without, and the obtained results were compared. These results demonstrate the efficiency of the inertization process: the added silica induces the formation of gehlenite, which, even in caustic environments, does not exhibit hydraulic behaviour. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Effect of basicity on beneficiated chromite sand smelting process using submerged arc furnace

    NASA Astrophysics Data System (ADS)

    Nurjaman, F.; Subandrio, S.; Ferdian, D.; Suharno, Bambang

    2018-05-01

    Ferrochrome is an important alloy in stainless steel making due to its contribution to high strength and corrosion resistance. In this present study, ferrochrome was derived from Indonesian chromite sand with low-grade Cr/Fe ratio. In order to improve the ratio, beneficiation process such as pre-magnetic separation and reduction process at 1000°C for 60 minutes was required. The process followed by another magnetic separation, thus the Cr/Fe ratio was increased from 0.9 to 1.6. The reduction process used coconut shell charcoal as reductant and limestone as an additive. The beneficiated sand chromite was briquette using bentonite as a binder in 2 wt.% before it was smelted in a submerged electric arc furnace to produce ferrochrome. Basicity was controlled by the addition of limestone and it was varied from 0.4-1.6. Furthermore, the composition of ferrochrome was analyzed by using X-Ray Fluorescence. From this experiment, the result showed that chromium recovery and specific energy was decreased with the increasing of slag basicity.

  13. Atomization from a tantalum surface in graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Gregoire, D. C.; Chakrabarti, C. L.

    The mechanism of atom formation of U, V, Mo, Ni, Mn, Cu and Mg atomized from pyrolytic graphite and tantalum metal surfaces has been studied. The mechanism of atom formation for U from a graphite tube atomizer is reported for the first time. The peak absorbance for U and Cu is increased by factors of 59.7 and 2.0, respectively, whereas that of V, Mo and Ni is reduced by several orders of magnitude when they are atomized from a tantalum metal surface. The peak absorbance of Mn and Mg is not appreciably affected by the material of the atomization surface. Interaction of Mn and Mg with the graphite surface and formation of their refractory carbides was found to be negligible. Uranium forms a refractory carbide when heated from a graphite surface.

  14. Feasibility of high-resolution continuum source molecular absorption spectrometry in flame and furnace for sulphur determination in petroleum products

    NASA Astrophysics Data System (ADS)

    Kowalewska, Zofia

    2011-07-01

    For the first time, high-resolution molecular absorption spectrometry with a high-intensity xenon lamp as radiation source has been applied for the determination of sulphur in crude oil and petroleum products. The samples were analysed as xylene solutions using vaporisation in acetylene-air flame or in an electrothermally heated graphite furnace. The sensitive rotational lines of the CS molecule, belonging to the ∆ν = 0 vibrational sequence within the electronic transition X 1∑ + → A 1П, were applied. For graphite furnace molecular absorption spectrometry, the Pd + Mg organic modifier was selected. Strong interactions with Pd atoms enable easier decomposition of sulphur-containing compounds, likely through the temporal formation of Pd xS y molecules. At the 258.056 nm line, with the wavelength range covering central pixel ± 5 pixels and with application of interactive background correction, the detection limit was 14 ng in graphite furnace molecular absorption spectrometry and 18 mg kg -1 in flame molecular absorption spectrometry. Meanwhile, application of 2-points background correction found a characteristic mass of 12 ng in graphite furnace molecular absorption spectrometry and a characteristic concentration of 104 mg kg -1 in flame molecular absorption spectrometry. The range of application of the proposed methods turned out to be significantly limited by the properties of the sulphur compounds of interest. In the case of volatile sulphur compounds, which can be present in light petroleum products, severe difficulties were encountered. On the contrary, heavy oils and residues from distillation as well as crude oil could be analysed using both flame and graphite furnace vaporisation. The good accuracy of the proposed methods for these samples was confirmed by their mutual consistency and the results from analysis of reference samples (certified reference materials and home reference materials with sulphur content determined by X-ray fluorescence

  15. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR EXTRACTION OF METALS FROM SOIL, DUST, AIR FILTER, AND SURFACE AND DERMAL SAMPLES FOR AA (GRAPHITE FURNACE OR FLAME) OR ICP-AES ANALYSIS (BCO-L-3.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the acid digestion of soil, house dust, air filter, and surface or dermal wipe samples for analysis using inductively coupled plasma atomic emissions spectrometry (ICP-AES) and/or graphite furnace atomic absorption spectrometry (GFAAS) or fl...

  16. Intelligent Support System of Steel Technical Preparation in an Arc Furnace: Functional Scheme of Interactive Builder of the Multi Objective Optimization Problem

    NASA Astrophysics Data System (ADS)

    Logunova, O. S.; Sibileva, N. S.

    2017-12-01

    The purpose of the study is to increase the efficiency of the steelmaking process in large capacity arc furnace on the basis of implementation a new decision-making system about the composition of charge materials. The authors proposed an interactive builder for the formation of the optimization problem, taking into account the requirements of the customer, normative documents and stocks of charge materials in the warehouse. To implement the interactive builder, the sets of deterministic and stochastic model components are developed, as well as a list of preferences of criteria and constraints.

  17. Improved Blackbody Temperature Sensors for a Vacuum Furnace

    NASA Technical Reports Server (NTRS)

    Farmer, Jeff; Coppens, Chris; O'Dell, J. Scott; McKechnie, Timothy N.; Schofield, Elizabeth

    2009-01-01

    Some improvements have been made in the design and fabrication of blackbody sensors (BBSs) used to measure the temperature of a heater core in a vacuum furnace. Each BBS consists of a ring of thermally conductive, high-melting-temperature material with two tantalum-sheathed thermocouples attached at diametrically opposite points. The name "blackbody sensor" reflects the basic principle of operation. Heat is transferred between the ring and the furnace heater core primarily by blackbody radiation, heat is conducted through the ring to the thermocouples, and the temperature of the ring (and, hence, the temperature of the heater core) is measured by use of the thermocouples. Two main requirements have guided the development of these BBSs: (1) The rings should have as high an emissivity as possible in order to maximize the heat-transfer rate and thereby maximize temperature-monitoring performance and (2) the thermocouples must be joined to the rings in such a way as to ensure long-term, reliable intimate thermal contact. The problem of fabricating a BBS to satisfy these requirements is complicated by an application-specific prohibition against overheating and thereby damaging nearby instrumentation leads through the use of conventional furnace brazing or any other technique that involves heating the entire BBS and its surroundings. The problem is further complicated by another application-specific prohibition against damaging the thin tantalum thermocouple sheaths through the use of conventional welding to join the thermocouples to the ring. The first BBS rings were made of graphite. The tantalum-sheathed thermocouples were attached to the graphite rings by use of high-temperature graphite cements. The ring/thermocouple bonds thus formed were found to be weak and unreliable, and so graphite rings and graphite cements were abandoned. Now, each BBS ring is made from one of two materials: either tantalum or a molybdenum/titanium/zirconium alloy. The tantalum

  18. Preparation of Ceramic-Bonded Carbon Block for Blast Furnace

    NASA Astrophysics Data System (ADS)

    Li, Yiwei; Li, Yawei; Sang, Shaobai; Chen, Xilai; Zhao, Lei; Li, Yuanbing; Li, Shujing

    2014-01-01

    Traditional carbon blocks for blast furnaces are mainly produced with electrically calcined anthracite owing to its good hot metal corrosion resistance. However, this kind of material shows low thermal conductivity and does not meet the demands for cooling of the hearth and the bottom of blast furnaces. In this article, a new kind of a high-performance carbon block has been prepared via ceramic-bonded carbon (CBC) technology in a coke bed at 1673 K (1400 °C) using artificial graphite aggregate, alumina, metallic aluminum, and silicon powders as starting materials. The results showed that artificial graphite aggregates were strongly bonded by the three-dimensional network of ceramic phases in carbon blocks. In this case, the good resistance of the CBC blocks against erosion/corrosion by the hot metal is provided by the ceramic matrix and the high thermal conductivity by the graphite aggregates. The microstructure of this carbon block resembles that of CBC composites with a mean pore size of less than 0.1 μm, and up to 90 pct of the porosity shows a pore size <1 μm. Its thermal conductivity is higher than 30 W · m-1 · K-1 [293 K (20 °C)]. Meanwhile, its hot metal corrosion resistance is better than that of traditional carbon blocks.

  19. Heating rates in furnace atomic absorption using the L'vov platform

    USGS Publications Warehouse

    Koirtyohann, S.R.; Giddings, R.C.; Taylor, Howard E.

    1984-01-01

    Heating rate profiles for the furnace tube wall, the furnace atmosphere, and a L'vov platform were established for a range of conditions in a cyclically heated graphite atomizer. The tube wall profile was made by direct observation with a recording optical pyrometer. The sodium line reversal method was used to establish the heating rate of the furnace atmosphere, and appearance temperatures for a series metals of differing volatility was used to establish platform profiles. The tube wall heating rate was nearly linear at 2240??C s- until the desired temperature was reached after which the temperature remained constant. The furnace atmosphere reached a given temperature 0.2-0.4 s later than the tube wall through most of the atomize cycle. The platform lagged the tube wall 0.5-0.8 s. Under typical operating conditions the furnace atmosphere was 100-200??C cooler than the tube wall and at nearly constant temperature when the analyte vaporized from the platform. The L'vov platform causes the cyclically heated commercial furnace to approximate the behavior of a constant temperature furnace during atomization. ?? 1984.

  20. Lead screening in DBS by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry: application to newborns and pregnant women.

    PubMed

    Rello, Luis; Aramendía, Maite; Belarra, Miguel A; Resano, Martín

    2015-01-01

    DBS have become a clinical specimen especially adequate for establishing home-based collection protocols. In this work, high-resolution continuum source graphite furnace atomic absorption spectrometry is evaluated for the direct monitoring of Pb in DBS, both as a quantitative tool and a screening method. The development of the screening model is based on the establishment of the unreliability region around the threshold limits, 100 or 50 μg l(-1). More than 500 samples were analyzed to validate the model. The screening method demonstrated high sensitivity (the rate of true positives detected was always higher than 95%), an excellent LOD (1 µg l(-1)) and high throughput (10 min per sample).

  1. Trace and Essential Elements Analysis in Cymbopogon citratus (DC.) Stapf Samples by Graphite Furnace-Atomic Absorption Spectroscopy and Its Health Concern

    PubMed Central

    Anal, Jasha Momo H.

    2014-01-01

    Cymbopogon citratus (DC.) Stapf commonly known as lemon grass is used extensively as green tea and even as herbal tea ingredient across the world. Plants have the ability to uptake metals as nutrient from the soil and its environment which are so essential for their physiological and biochemical growth. Concentrations of these twelve trace elements, namely, Mg, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Mo, As, Cd, and Pb, are analysed by graphite furnace-atomic absorption spectroscopy (GF-AAS) and are compared with the permissible limits of FAO/WHO, ICMR, and NIH, USA, which are found to be within permissible limits. Toxic metals like As, Cd, and Pb, analysed are within the tolerable daily diet limit and at low concentration. PMID:25525430

  2. Thermodynamic analysis of the selective chlorination of electric arc furnace dust.

    PubMed

    Pickles, C A

    2009-07-30

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  3. Application of alkaline solid residue of electric arc furnace dust for neutralization/purification of electroplating wastewaters.

    PubMed

    Elez, Loris; Orescanin, Visnja; Sofilic, Tahir; Mikulic, Nenad; Ruk, Damir

    2008-10-01

    The purpose of this work was development of an appropriate procedure for the neutralization/purification of electroplating wastewater (EWW) with alkaline solid residue (ASR) by-product of the alkaline extraction of zinc and lead from electric arc furnace dust (EAFD). Removal efficiency of ASR at optimum purification conditions (pH 8 and mixing time; 20 minutes) for the elements Pb, Cr (VI), Cr (III), Fe, Ni, Cu and Zn were 94.92%, 97.58%, 99.59%, 99.48%, 97.25% and 99.97%, respectively. The concentrations of all elements in the purified wastewater were significantly lower in relation to the upper permissible limit for wastewaters suitable for discharge into the environment. The remaining waste mud was regenerated in the strong alkaline medium and successfully applied once again for the neutralization/purification of EWW. Removal efficiencies of heavy metals accomplished with regenerated waste mud were comparable to these achieved by original ASR. Elemental concentrations in the leachates of the waste mud were in accordance with regulated values.

  4. Speciation of organic and inorganic selenium in selenium-enriched rice by graphite furnace atomic absorption spectrometry after cloud point extraction.

    PubMed

    Sun, Mei; Liu, Guijian; Wu, Qianghua

    2013-11-01

    A new method was developed for the determination of organic and inorganic selenium in selenium-enriched rice by graphite furnace atomic absorption spectrometry detection after cloud point extraction. Effective separation of organic and inorganic selenium in selenium-enriched rice was achieved by sequentially extracting with water and cyclohexane. Under the optimised conditions, the limit of detection (LOD) was 0.08 μg L(-1), the relative standard deviation (RSD) was 2.1% (c=10.0 μg L(-1), n=11), and the enrichment factor for selenium was 82. Recoveries of inorganic selenium in the selenium-enriched rice samples were between 90.3% and 106.0%. The proposed method was successfully applied for the determination of organic and inorganic selenium as well as total selenium in selenium-enriched rice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Determination of arsenic and cadmium in crude oil by direct sampling graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    de Jesus, Alexandre; Zmozinski, Ariane Vanessa; Damin, Isabel Cristina Ferreira; Silva, Márcia Messias; Vale, Maria Goreti Rodrigues

    2012-05-01

    In this work, a direct sampling graphite furnace atomic absorption spectrometry method has been developed for the determination of arsenic and cadmium in crude oil samples. The samples were weighed directly on the solid sampling platforms and introduced into the graphite tube for analysis. The chemical modifier used for both analytes was a mixture of 0.1% Pd + 0.06% Mg + 0.06% Triton X-100. Pyrolysis and atomization curves were obtained for both analytes using standards and samples. Calibration curves with aqueous standards could be used for both analytes. The limits of detection obtained were 5.1 μg kg- 1 for arsenic and 0.2 μg kg- 1 for cadmium, calculated for the maximum amount of sample that can be analyzed (8 mg and 10 mg) for arsenic and cadmium, respectively. Relative standard deviations lower than 20% were obtained. For validation purposes, a calibration curve was constructed with the SRM 1634c and aqueous standards for arsenic and the results obtained for several crude oil samples were in agreement according to paired t-test. The result obtained for the determination of arsenic in the SRM against aqueous standards was also in agreement with the certificate value. As there is no crude oil or similar reference material available with a certified value for cadmium, a digestion in an open vessel under reflux using a "cold finger" was adopted for validation purposes. The use of paired t-test showed that the results obtained by direct sampling and digestion were in agreement at a 95% confidence level. Recovery tests were carried out with inorganic and organic standards and the results were between 88% and 109%. The proposed method is simple, fast and reliable, being appropriated for routine analysis.

  6. Increase in the efficiency of electric melting of pellets in an arc furnace with allowance for the energy effect of afterburning of carbon oxide in slag using fuel-oxygen burners

    NASA Astrophysics Data System (ADS)

    Stepanov, V. A.; Krakht, L. N.; Merker, E. E.; Sazonov, A. V.; Chermenev, E. A.

    2015-12-01

    The problems of increasing the efficiency of electric steelmaking using fuel-oxygen burners to supply oxygen for the afterburning of effluent gases in an arc furnace are considered. The application of a new energy-saving regime based on a proposed technology of electric melting is shown to intensify the processes of slag formation, heating, and metal decarburization.

  7. Oriented graphite layer formation in Ti/C and TiC/C multilayers deposited by high current pulsed cathodic arc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persson, P. O. A.; Ryves, L.; Tucker, M. D.

    2008-10-01

    Ti/C and TiC/C multilayers with periods ranging from 2 to 18 nm were grown by filtered high current pulsed cathodic arc. The growth was monitored in situ by ellipsometry and cantilever stress measurements. The ellipsometry results reveal that the optical properties of the carbon vary as a function of thickness. Correspondingly, the stress in each carbon layer as measured in situ exhibits two well defined values: initially the stress is low and then takes on a higher value for the remainder of the layer. Transmission electron microscopy shows that the initial growth of carbon on Ti or TiC layer ismore » oriented with graphitic basal planes aligned parallel to the interface. After 2-4 nm of growth, the graphitic structure transforms to amorphous carbon. Electron energy loss spectroscopy shows that the carbon layer simultaneously undergoes a transition from sp{sup 2} rich to sp{sup 3} rich material.« less

  8. Evaluation of ammonia as diluent for serum sample preparation and determination of selenium by graphite furnace atomic absorption spectrometry*1

    NASA Astrophysics Data System (ADS)

    Hernández-Caraballo, Edwin A.; Burguera, Marcela; Burguera, José L.

    2002-12-01

    A method for the determination of total selenium in serum samples by graphite furnace atomic absorption spectrometry was evaluated. The method involved direct introduction of 1:5 diluted serum samples (1% v/v NH 4OH+0.05% w/v Triton X-100 ®) into transversely heated graphite tubes, and the use of 10 μg Pd+3 μg Mg(NO 3) 2 as chemical modifier. Optimization of the modifier mass and the atomization temperature was conducted by simultaneously varying such parameters and evaluating both the integrated absorbance and the peak height/peak area ratio. The latter allowed the selection of compromise conditions rendering good sensitivity and adequate analyte peak profiles. A characteristic mass of 49 pg and a detection limit (3s) of 6 μg 1 -1 Se, corresponding to 30 μg l -1 Se in the serum sample, were obtained. The analyte addition technique was used for calibration. The accuracy was assessed by the determination of total selenium in Seronorm™ Trace Elements Serum Batch 116 (Nycomed Pharma AS). The method was applied for the determination of total selenium in ten serum samples taken from individuals with no known physical affection. The selenium concentration ranged between 79 and 147 μg l -1, with a mean value of 114±22 μg l -1.

  9. Computational Fluid Dynamics Modeling of Supersonic Coherent Jets for Electric Arc Furnace Steelmaking Process

    NASA Astrophysics Data System (ADS)

    Alam, Morshed; Naser, Jamal; Brooks, Geoffrey; Fontana, Andrea

    2010-12-01

    Supersonic coherent gas jets are now used widely in electric arc furnace steelmaking and many other industrial applications to increase the gas-liquid mixing, reaction rates, and energy efficiency of the process. However, there has been limited research on the basic physics of supersonic coherent jets. In the present study, computational fluid dynamics (CFD) simulation of the supersonic jet with and without a shrouding flame at room ambient temperature was carried out and validated against experimental data. The numerical results show that the potential core length of the supersonic oxygen and nitrogen jet with shrouding flame is more than four times and three times longer, respectively, than that without flame shrouding, which is in good agreement with the experimental data. The spreading rate of the supersonic jet decreased dramatically with the use of the shrouding flame compared with a conventional supersonic jet. The present CFD model was used to investigate the characteristics of the supersonic coherent oxygen jet at steelmaking conditions of around 1700 K (1427 °C). The potential core length of the supersonic coherent oxygen jet at steelmaking conditions was 1.4 times longer than that at room ambient temperature.

  10. The influence of the structure of the metal load removal from liquid steel in electric arc furnaces

    NASA Astrophysics Data System (ADS)

    Pǎcurar, Cristina; Hepuť, Teodor; Crisan, Eugen

    2016-06-01

    One of the main technical and economic indicators in the steel industry and steel respectively the development it is the removal of liquid steel. This indicator depends on several factors, namely technology: the structure and the quality metal load, the degree of preparedness of it, and the content of non-metallic material accompanying the unit of drawing up, the technology for the elaboration, etc. research has been taken into account in drawing up steel electric arc furnace type spring EBT (Electric Bottom taping), seeking to load and removing components of liquid steel. Metal load has been composed of eight metal grades, in some cases with great differences in terms of quality. Data obtained were processed in the EXCEL spreadsheet programs and MATLAB, the results obtained being presented both graphically and analytically. On the basis of the results obtained may opt for a load optimal structure metal.

  11. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR EXTRACTION OF METALS FROM SOIL, DUST, AIR FILTER, AND SURFACE AND DERMAL WIPE SAMPLES FOR AA (GRAPHITE FURNACE OR FLAME) OR ICP-AES ANALYSIS (BCO-L-3.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the acid digestion of soil, house dust, air filter, and surface or dermal wipe samples for analysis using inductively coupled plasma atomic emissions spectrometry (ICP-AES) and/or graphite furnace atomic absorption spectrometry (GFAAS) or fl...

  12. High purity polyimide analysis by solid sampling graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Santos, Rafael F.; Carvalho, Gabriel S.; Duarte, Fabio A.; Bolzan, Rodrigo C.; Flores, Erico M. M.

    2017-03-01

    In this work, Cr, Cu, Mn, Na and Ni were determined in high purity polyimides (99.5%) by solid sampling graphite furnace atomic absorption spectrometry (SS-GFAAS) using Zeeman effect background correction system with variable magnetic field, making possible the simultaneous measurement at high or low sensitivity. The following analytical parameters were evaluated: pyrolysis and atomization temperatures, feasibility of calibration with aqueous solution, linear calibration range, sample mass range and the use of chemical modifier. Calibration with aqueous standard solutions was feasible for all analytes. No under or overestimated results were observed and up to 10 mg sample could be introduced on the platform for the determination of Cr, Cu, Mn, Na and Ni. The relative standard deviation ranged from 3 to 20%. The limits of detection (LODs) achieved using the high sensitivity mode were as low as 7.0, 2.5, 1.7, 17 and 0.12 ng g- 1 for Cr, Cu, Mn, Na and Ni, respectively. No addition of chemical modifier was necessary, except for Mn determination where Pd was required. The accuracy was evaluated by analyte spike and by comparison of the results with those obtained by inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry after microwave-assisted digestion in a single reaction chamber system and also by neutron activation analysis. No difference among the results obtained by SS-GFAAS and those obtained by alternative analytical methods using independent techniques. SS-GFAAS method showed some advantages, such as the determination of metallic contaminants in high purity polyimides with practically no sample preparation, very low LODs, calibration with aqueous standards and determination in a wide range of concentration.

  13. Environmental impacts of asphalt mixes with electric arc furnace steel slag.

    PubMed

    Milačič, Radmila; Zuliani, Tea; Oblak, Tina; Mladenovič, Ana; Ančar, Janez Šč

    2011-01-01

    Electric arc furnace (EAF) steel slag can be used as an alternative high-quality material in road construction. Although asphalts with slag aggregates have been recognized as environmentally acceptable, there is a lack of data concerning the potential leaching of toxic Cr(VI) due to the highly alkaline media of EAF slag. Leaching of selected water extractable metals from slag indicated elevated concentrations of total chromium and Cr(VI). To estimate the environmental impacts of asphalt mixes with slag, leachability tests based on diffusion were performed using pure water and salt water as leaching agents. Compact and ground asphalt composites with natural aggregates, and asphalt composites in which the natural aggregates were completely replaced by slag were prepared. The concentrations of total chromium and Cr(VI) were determined in leachates over a time period of 6 mo. After 1 and 6 mo, the concentrations of some other metals were also determined in the leachates. The results indicated that chromium in leachates from asphalt composites with the addition of slag was present almost solely in its hexavalent form. However, the concentrations were very low (below 25 μg L) and did not represent an environmental burden. The leaching of other metals from asphalt composites with the addition of slag was negligible. Therefore, the investigated EAF slag can be considered as environmentally safe substitute for natural aggregates in asphalt mixes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    USGS Publications Warehouse

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  15. Synthesis of carbon nanotubes by arc discharge in open air.

    PubMed

    Paladugu, Mohan Chand; Maneesh, K; Nair, P Kesavan; Haridoss, Prathap

    2005-05-01

    In this work Carbon nanotubes have been synthesized by arc discharge in open air. A TIG welding ac/dc inverter was used as the power source for arc discharge. During each run of the arc discharge based synthesis, the anode was a low purity (approximately 85% C by weight) graphite rod. The effect of varying the atmosphere on the yield of soot of the carbon nanotube containing carbon soot has been studied. Various soots were produced, purified by oxidation and characterized to confirm formation of carbon nanotubes and their relative quality, using transmission electron microscopy, Raman spectroscopy, and XRD. It was found that the yield of soot formed on the cathode is higher when synthesis is carried out in open air than when carried out in a flowing argon atmosphere. When synthesized in open air, using a 7.2-mm-diameter graphite rod as anode, the yield of soot was around 50% by weight of the graphite consumed. Current and voltage for arcing were at identical starting values in all the experiments. This modified method does not require a controlled atmosphere as in the case of a conventional arc discharge method of synthesis and hence the cost of production may be reduced.

  16. Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags.

    PubMed

    Pasetto, Marco; Baldo, Nicola

    2010-09-15

    The paper presents the results of a laboratory study aimed at verifying the use of two types of electric arc furnace (EAF) steel slags as substitutes for natural aggregates, in the composition of base course and road base asphalt concrete (BBAC) for flexible pavements. The trial was composed of a preliminary study of the chemical, physical, mechanical and leaching properties of the EAF steel slags, followed by the mix design and performance characterization of the bituminous mixes, through gyratory compaction tests, permanent deformation tests, stiffness modulus tests at various temperatures, fatigue tests and indirect tensile strength tests. All the mixtures with EAF slags presented better mechanical characteristics than those of the corresponding asphalts with natural aggregate and satisfied the requisites for acceptance in the Italian road sector technical standards, thus resulting as suitable for use in road construction. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Effect of electric arc furnace slag on growth and physiology of maize (Zea mays L.).

    PubMed

    Radić, Sandra; Crnojević, Helena; Sandev, Dubravka; Jelić, Sonja; Sedlar, Zorana; Glavaš, Katarina; Pevalek-Kozlina, Branka

    2013-12-01

    Basic slag, used in this study as a potential source of certain nutrients, is a byproduct of the production of steel in electric arc furnace (EAF). A pot experiment with two nutrient-poor substrates was conducted to investigate to compare the effect of EAF steel slag and fertilizers NPK + F e on growth and availability of specific nutrients to maize. Mineral content of both substrate and plant leaves, growth, chlorophyll fluorescence and photosynthetic pigments were measured following six weeks of cultivation. As steel slag also contains trace amounts of heavy metals, certain oxidative parameters (antioxidative enzyme activities and lipid peroxidation) were evaluated as well. The steel slag improved soil mineral composition, increased above ground maize biomass by providing Fe, Mn, Mg, K and partly P and improved photosynthetic parameters. The potential phytotoxicity of EAF slag containing substrates was not determined as evaluated by MDA (malondialdehyde), GR (glutathione reductase) and APX (ascorbate peroxidase) levels. The obtained results show that EAF steel slag is comparable to NPK + F e in supplying nutrients for maize growth, indicating the potential of EAF steel slag as an inexpensive and non-phytotoxic nutrient supplier especially in poor soils.

  18. Arc initiation in cathodic arc plasma sources

    DOEpatents

    Anders, Andre

    2002-01-01

    A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.

  19. Paired Straight Hearth Furnace - Transformational Ironmaking Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei-Kao; Debski, Paul

    2014-11-19

    The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further significant gains in energy efficiency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alternative high productivity, direct reduced iron (DRI) technology that may achieve very low fuel rates and has the potential to replace blast furnace ironmaking. The PSH furnace can operate independently or may be coupled with other melting technologies to produce liquid hot metal that is both similar to blast furnace iron and suitablemore » as a feedstock for basic oxygen steelmaking furnaces. The PSH process uses non-metallurgical coal as a reductant to convert iron oxides such as iron ore and steelmaking by-product oxides to DRI pellets. In this process, a multi-layer, nominally 120mm tall bed of composite “green balls” made from oxide, coal and binder is built up and contained within a moving refractory hearth. The pellet bed absorbs radiant heat energy during exposure to the high temperature interior refractory surfaces of the PSH while generating a strongly reducing gas atmosphere in the bed that yields a highly metalized DRI product. The PSH concept has been well tested in static hearth experiments. A moving bed design is being developed. The process developers believe that if successful, the PSH process has the potential to replace blast furnaces and coke ovens at a fraction of the operating and capital cost while using about 30% less energy relative to current blast furnace technology. DRI output could also feed electric arc furnaces (EAFs) by displacing a portion of the scrap charge.« less

  20. Modeling and Simulation of the Off-gas in an Electric Arc Furnace

    NASA Astrophysics Data System (ADS)

    Meier, Thomas; Gandt, Karima; Echterhof, Thomas; Pfeifer, Herbert

    2017-12-01

    The following paper describes an approach to process modeling and simulation of the gas phase in an electric arc furnace (EAF). The work presented represents the continuation of research by Logar, Dovžan, and Škrjanc on modeling the heat and mass transfer and the thermochemistry in an EAF. Due to the lack of off-gas measurements, Logar et al. modeled a simplified gas phase under consideration of five gas components and simplified chemical reactions. The off-gas is one of the main continuously measurable EAF process values and the off-gas flow represents a heat loss up to 30 pct of the entire EAF energy input. Therefore, gas phase modeling offers further development opportunities for future EAF optimization. This paper presents the enhancement of the previous EAF gas phase modeling by the consideration of additional gas components and a more detailed heat and mass transfer modeling. In order to avoid the increase of simulation time due to more complex modeling, the EAF model has been newly implemented to use an efficient numerical solver for ordinary differential equations. Compared to the original model, the chemical components H2, H2O, and CH4 are included in the gas phase and equilibrium reactions are implemented. The results show high levels of similarity between the measured operational data from an industrial scale EAF and the theoretical data from the simulation within a reasonable simulation time. In the future, the dynamic EAF model will be applicable for on- and offline optimizations, e.g., to analyze alternative input materials and mode of operations.

  1. Sulfur determination in coal using molecular absorption in graphite filter vaporizer.

    PubMed

    Jim, Gibson; Katskov, Dmitri; Tittarelli, Paolo

    2011-02-15

    The vaporization of sulfur containing samples in graphite vaporizers for atomic absorption spectrometry is accompanied by modification of sulfur by carbon and, respectively, appearance at high temperature of structured molecular absorption in 200-210 nm wavelength range. It has been proposed to employ the spectrum for direct determination of sulfur in coal; soundness of the suggestion is evaluated by analysis of coal slurry using low resolution CCD spectrometer with continuum light source coupled to platform or filter furnace vaporizers. For coal in platform furnace losses of the analyte at low temperature and strong spectral background from the coal matrix hinder the determination. Both negative effects are significantly reduced in filter furnace, in which sample vapor efficiently interacts with carbon when transferred through the heated graphite filter. The method is verified by analysis of coals with sulfur content within 0.13-1.5% (m/m) range. The use of coal certified reference material for sulfur analyte addition to coal slurry permitted determination with random error 5-12%. Absolute and relative detection limits for sulfur in coal are 0.16 μg and 0.02 mass%, respectively. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Utilization of Electric Arc Furnace Dust as raw material for the production of ceramic and concrete building products.

    PubMed

    Sikalidis, Constantine; Mitrakas, Manassis

    2006-01-01

    The up to 20 wt% addition of the Electric Arc Furnace Dust (EAFD) hazardous waste on the properties of extruded clay-based ceramic building products fired at various temperatures (850 to 1050 degrees C), as well as of dolomite-concrete products was investigated. Chemical, mineralogical and particle size distribution analyses were performed in order to characterize the used EAFD. The results showed that the ceramic specimens prepared had water absorption, firing shrinkage, apparent density, mechanical strength, colour and leaching behaviour within accepted limits. Addition of 7.5 to 15 wt% EAFD presented improved properties, while 20 wt% seems to be the upper limit. Dolomite-concrete specimens were prepared by vibration and press-forming of mixtures containing cement, sand, dolomite, EAFD and water. Modulus of rupture values were significantly increased by the addition of EAFD. The leaching tests showed stabilization of all toxic metals within the sintered ceramic structure, while the leaching behaviour of lead in dolomite-concrete products needs further detailed study.

  3. Preliminary Results from Electric Arc Furnace Off-Gas Enthalpy Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R

    2015-01-01

    This article describes electric arc furnace (EAF) off-gas enthalpy models developed at Oak Ridge National Laboratory (ORNL) to calculate overall heat availability (sensible and chemical enthalpy) and recoverable heat values (steam or power generation potential) for existing EAF operations and to test ORNL s new EAF waste heat recovery (WHR) concepts. ORNL s new EAF WHR concepts are: Regenerative Drop-out Box System and Fluidized Bed System. The two EAF off-gas enthalpy models described in this paper are: 1.Overall Waste Heat Recovery Model that calculates total heat availability in off-gases of existing EAF operations 2.Regenerative Drop-out Box System Model in whichmore » hot EAF off-gases alternately pass through one of two refractory heat sinks that store heat and then transfer it to another gaseous medium These models calculate the sensible and chemical enthalpy of EAF off-gases based on the off-gas chemical composition, temperature, and mass flow rate during tap to tap time, and variations in those parameters in terms of actual values over time. The models provide heat transfer analysis for the aforementioned concepts to confirm the overall system and major component sizing (preliminary) to assess the practicality of the systems. Real-time EAF off-gas composition (e.g., CO, CO2, H2, and H2O), volume flow, and temperature data from one EAF operation was used to test the validity and accuracy of the modeling work. The EAF off-gas data was used to calculate the sensible and chemical enthalpy of the EAF off-gases to generate steam and power. The article provides detailed results from the modeling work that are important to the success of ORNL s EAF WHR project. The EAF WHR project aims to develop and test new concepts and materials that allow cost-effective recovery of sensible and chemical heat from high-temperature gases discharged from EAFs.« less

  4. Global analysis of the temperature and flow fields in samples heated in multizone resistance furnaces

    NASA Astrophysics Data System (ADS)

    Pérez-Grande, I.; Rivas, D.; de Pablo, V.

    The temperature field in samples heated in multizone resistance furnaces will be analyzed, using a global model where the temperature fields in the sample, the furnace and the insulation are coupled; the input thermal data is the electric power supplied to the heaters. The radiation heat exchange between the sample and the furnace is formulated analytically, taking into account specular reflections at the sample; for the solid sample the reflectance is both diffuse and specular, and for the melt it is mostly specular. This behavior is modeled through the exchange view factors, which depend on whether the sample is solid or liquid, and, therefore, they are not known a priori. The effect of this specular behavior in the temperature field will be analyzed, by comparing with the case of diffuse samples. A parameter of great importance is the thermal conductivity of the insulation material; it will be shown that the temperature field depends strongly on it. A careful characterization of the insulation is therefore necessary, here it will be done with the aid of experimental results, which will also serve to validate the model. The heating process in the floating-zone technique in microgravity conditions will be simulated; parameters like the Marangoni number or the temperature gradient at the melt-crystal interface will be estimated. Application to the case of compound samples (graphite-silicon-graphite) will be made; the temperature distribution in the silicon part will be studied, especially the temperature difference between the two graphite rods that hold the silicon, since it drives the thermocapillary flow in the melt. This flow will be studied, after coupling the previous model with the convective effects. The possibility of suppresing this flow by the controlled vibration of the graphite rods will be also analyzed. Numerical results show that the thermocapillary flow can indeed be counterbalanced quite effectively.

  5. Unstable behavior of anodic arc discharge for synthesis of nanomaterials

    DOE PAGES

    Gershman, Sophia; Raitses, Yevgeny

    2016-07-27

    A short carbon arc operating with a high ablation rate of the graphite anode exhibits a combined motion of the arc and the arc attachment to the anode. A characteristic time scale of this motion is in a 10 -3 sec range. The arc exhibits a negative differential resistance before the arc motion occurs. Thermal processes in the arc plasma region interacting with the ablating anode are considered as possible causes of this unstable arc behavior. It is also hypothesized that the arc motion could potentially cause mixing of the various nanoparticles synthesized in the arc in the high ablationmore » regime.« less

  6. Unstable behavior of anodic arc discharge for synthesis of nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gershman, Sophia; Raitses, Yevgeny

    A short carbon arc operating with a high ablation rate of the graphite anode exhibits a combined motion of the arc and the arc attachment to the anode. A characteristic time scale of this motion is in a 10 -3 sec range. The arc exhibits a negative differential resistance before the arc motion occurs. Thermal processes in the arc plasma region interacting with the ablating anode are considered as possible causes of this unstable arc behavior. It is also hypothesized that the arc motion could potentially cause mixing of the various nanoparticles synthesized in the arc in the high ablationmore » regime.« less

  7. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry.

    PubMed

    Sun, Mei; Wu, Qianghua

    2010-04-15

    A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL(-1). The relative standard deviation (n=7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin. 2009 Elsevier B.V. All rights reserved.

  8. Graphite fiber/copper composites prepared by spontaneous infiltration

    NASA Astrophysics Data System (ADS)

    Wang, Hongbao; Tao, Zechao; Li, Xiangfen; Yan, Xi; Liu, Zhanjun; Guo, Quangui

    2018-05-01

    The major bottleneck in developing graphite fiber reinforced copper (GF/Cu) composites is the poor wettability of Cu/graphite system. Alloying element of chromium (Cr) is introduced to improve the wettability of liquid copper on graphite. Sessile drop method experiments illustrate that the contact angle of liquid Cu-Cr (1.0 wt.%) alloy on graphite substrate decreases to 43° at 1300 °C. The improvement of wettability is related to the formation of chromium carbide layer at interface zone. Based on the wetting experiment, a spontaneous infiltration method for preparing GF/Cu composites is proposed. Unidirectional GF preforms are infiltrated by Cu-Cr alloys without external pressure in a tubular furnace. Results reveal that the GF preform can be fully infiltrated by Cu-Cr alloy (8 wt.%) spontaneously when fiber volume fraction is 40%. The coefficient of thermal expansion (CTE) of GF/Cu-Cr (8.0 wt.%) composites is 4.68 × 10-6/K along the longitudinal direction.

  9. A Heat and Mass Transfer Model of a Silicon Pilot Furnace

    NASA Astrophysics Data System (ADS)

    Sloman, Benjamin M.; Please, Colin P.; Van Gorder, Robert A.; Valderhaug, Aasgeir M.; Birkeland, Rolf G.; Wegge, Harald

    2017-10-01

    The most common technological route for metallurgical silicon production is to feed quartz and a carbon source ( e.g., coal, coke, or charcoal) into submerged-arc furnaces, which use electrodes as electrical conductors. We develop a mathematical model of a silicon furnace. A continuum approach is taken, and we derive from first principles the equations governing the time evolution of chemical concentrations, gas partial pressures, velocity, and temperature within a one-dimensional vertical section of a furnace. Numerical simulations are obtained for this model and are shown to compare favorably with experimental results obtained using silicon pilot furnaces. A rising interface is shown to exist at the base of the charge, with motion caused by the heating of the pilot furnace. We find that more reactive carbon reduces the silicon monoxide losses, while reducing the carbon content in the raw material mixture causes greater solid and liquid material to build-up in the charge region, indicative of crust formation (which can be detrimental to the silicon production process). We also comment on how the various findings could be relevant for industrial operations.

  10. Thermal Analysis on the Pyrolysis of Tetrabromobisphenol A and Electric Arc Furnace Dust Mixtures

    NASA Astrophysics Data System (ADS)

    Al-Harahsheh, Mohammad; Al-Otoom, Awni; Al-Jarrah, Muhannad; Altarawneh, Mohammednoor; Kingman, Sam

    2018-02-01

    The pyrolysis of Tetrabromobisphenol A (TBBPA) mixed with electric arc furnace dust (EAFD) was studied using thermogravimetric analysis (TGA) and theoretically analyzed using thermodynamic equilibrium calculations. Mixtures of both materials with varying TBBPA loads (1:1 and 1:3) were prepared and pyrolyzed in a nitrogen atmosphere under dynamic heating conditions at heating rates of 5 and 10 °C/min. The mixtures degraded through several steps, including decomposition of TBBPA yielding mainly HBr, bromination of metal oxides, followed by their evaporation in the sequence of CuBr3, ZnBr2, PbBr2, FeBr2, MnBr2, KBr, NaBr, CaBr2, and MgBr2, and finally reduction of the remaining metal oxides by the char formed from decomposition of TBBPA. Thermodynamic calculations suggest the possibility of selective bromination of zinc and lead followed by their evaporation, leaving iron in its oxide form, while the char formed may serve as a reduction agent for iron oxides into metallic iron. However, at higher TBBPA volumes, iron bromide forms, which can also be evaporated at a temperature higher than those of ZnBr2 and PbBr2. Results from this work provide practical insight into selective recovery of valuable metals from EAFD while at the same time recycling the hazardous bromine content in TBBPA.

  11. Arcing and its role in PFC erosion and dust production in DIII-D

    NASA Astrophysics Data System (ADS)

    Rudakov, D. L.; Chrobak, C. P.; Doerner, R. P.; Krasheninnikov, S. I.; Moyer, R. A.; Umstadter, K. R.; Wampler, W. R.; Wong, C. P. C.

    2013-07-01

    Two types of arc tracks are observed on the plasma-facing components (PFCs) in DIII-D. "Unmagnetized" random walk tracks are produced during glow discharges; they are rare and have no importance for PFC erosion but may degrade diagnostic mirrors. "Magnetized" scratch-like type II tracks are produced by unipolar arcs during plasma operations; they are formed by "retrograde BxJ" motion of the cathode spot and are roughly perpendicular to the local magnetic field. Type II arcs cause measurable erosion of graphite, but based on the evidence available they are relatively small contributors to the total erosion of carbon in DIII-D compared to other mechanisms such as physical and chemical sputtering and ablation from leading edges. Erosion by arcing of tungsten films deposited on graphite samples was observed in Divertor Material Evaluation System (DiMES) experiments. New DiMES experiments aimed at time-resolved arc measurements are proposed.

  12. Non-destructive control of graphite electrodes with use of current displacement effect

    NASA Astrophysics Data System (ADS)

    Myatezh, A. V.; Malozyomov, B. V.; Smirnov, M. A.

    2017-10-01

    The work is devoted to methods of nondestructive diagnostics and their use for solving the problem of diagnosing various defects in solid surface of graphite electrodes used in steelmaking furnaces. Various non-destructive control methods of materials are analyzed. In the article, methods of eddy-current defectoscopy of graphite electrodes are considered. Rationalization of the sensitivity increase of the method and localization of damage is described. Imitating modeling of electromagnetic processes was executed; results were made and conclusions were drawn.

  13. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Preliminary Development of Electrodes for an Electric-Arc Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Shepard, Charles E.; Boldman, Donald R.

    1959-01-01

    Two electrode configurations were tested in an electric-arc wind tunnel at the NASA Lewis Research Center. The results indicated approximately the same heat-loss rate per unit of arc power input for each of the configurations. Measured heat-loss rates were on the order of 40 percent of the arc power input. Nearly all this loss occurred at the anode. The power input and arc current limitations of the electrodes appear to be the critical design factors. Up to now, the maximum power to the stream has been 115 kilowatts with a cooled tungsten cathode and a cooled cylindrical anode incorporating a magnetic field. The maximum power input to this anode could not be established with the cooled tungsten cathode because cathode failures occurred at a gross power level of approximately 175 kilowatts. It was necessary to use a graphite cathode to seek the limitation of the anode. The results indicated that the anode limitation was primarily a function of arc current rather than power input. The anode was successfully operated at a power of 340 kilowatts at 1730 amperes; however, the anode failed with a power input of 324 kilowatts and a current of 2140 amperes. The magnetic flux density at the time of failure was 0.32 weber per square meter, or 3200 gauss. The graphite cathode was used only to establish the anode limitation; further investigation of graphite cathodes was discontinued because of the large amount of stream contamination associated with this type of electrode.

  15. Effect of basicity and reductant amount in the nickel pig iron (NPI) production from Indonesian limonite ore in submerged electric arc furnace (SAF)

    NASA Astrophysics Data System (ADS)

    Astuti, W.; Andika, R.; Nurjaman, F.

    2018-01-01

    The effect of basicity and reductant amount on the nickel and iron recovery of the nickel pig iron (NPI) production from Indonesian limonite ore was investigated in the experimental study using submerged electric arc furnace (SAF). Indonesian limonite ore used in this study originated from Sulawesi Island with the composition of Ni (1.26%) and Fe (43%). Metallurgical coke was applied as the reductant. This study showed that the the highest nickel and iron recovery as well as metal yield can be resulted from the basicity of 0.8 and reductant amount of 0.23 kg coke/kg limonite ore. Nickel content in the NPI produced was around 3 - 4%. It was concluded that this experiment can produce medium grade NPI.

  16. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOEpatents

    Gerdemann, Stephen J.; White, Jack C.

    1999-01-01

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  17. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOEpatents

    Gerdemann, Stephen J.; White, Jack C.

    1998-01-01

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  18. Experimental study of the mechanical stabilization of electric arc furnace dust using fluid cement mortars.

    PubMed

    Ledesma, E F; Jiménez, J R; Ayuso, J; Fernández, J M; Brito, J de

    2017-03-15

    This article shows the results of an experimental study carried out in order to determine the maximum amount of electric arc furnace dust (EAFD) that can be incorporated into fluid cement-based mortars to produce mechanically stable monolithic blocks. The leaching performance of all mixes was studied in order to classify them according to the EU Council Decision 2003/33/EC. Two mortars were used as reference and three levels of EAFD incorporation were tested in each of the reference mortars. As the incorporation ratio of EAFD/cement increases, the mechanical strength decreases. This is due to the greater EAFD/cement and water/cement ratios, besides the presence of a double-hydrated hydroxide of Ca and Zn (CaZn 2 (OH) 6 ·2H 2 O) instead of the portlandite phase (Ca(OH) 2 ) in the mixes made with EAFD, as well as non-hydrated tricalcium silicate. A mass ratio of 2:1 (EAFD: cement-based mortar) can be added maintaining a stable mechanical strength. The mechanical stabilization process also reduced the leaching of metals, although it was not able to reduce the Pb concentration below the limit for hazardous waste. The high amount of EAFD mechanically stabilized in this experimental study can be useful to reduce the storage volume required in hazardous waste landfills. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Study of the versatility of a graphite furnace atomic absorption spectrometric method for the determination of cadmium in the environmental field.

    PubMed

    Rucandio, M Isabel; Petit-Domínguez, M Dolores

    2002-01-01

    Cadmium is a representative example of trace elements that are insidious and widespread health hazards. In contemporary environmental analysis, there is a clear trend toward its determination over a wide range of concentrations in complex matrixes. This paper describes a versatile method for the determination of Cd at various levels (0.1-500 microg/g) in several sample types, such as soils, sediments, coals, ashes, sewage sludges, animal tissues, and plants, by graphite furnace atomic absorption spectrometry with Zeeman background correction. The effect of the individual presence of about 50 elements, with an interference/analyte concentration ratio of up to 10(5), was tested; recoveries of Cd ranged from 93 to 106%. The influence of different media, such as HNO3, HCI, HF, H2SO4, HClO4, acetic acid, hydroxylammonium chloride, and ammonium acetate, in several concentrations, was also tested. From these studies it can be concluded that the analytical procedure is scarcely matrix dependent, and the results obtained for a wide diversity of reference materials are in good agreement with the certified values.

  20. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOEpatents

    Gerdemann, S.J.; White, J.C.

    1998-08-04

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag. 1 fig.

  1. Innovative Concept for the Recovery of Silver and Indium by a Combined Treatment of Jarosite and Electric Arc Furnace Dust

    NASA Astrophysics Data System (ADS)

    Wegscheider, S.; Steinlechner, S.; Leuchtenmüller, M.

    2017-02-01

    Industrial wastes such as slags, dust, or precipitation residues contain significant amounts of valuable metals like zinc, lead, and copper as well as precious metals like silver and indium. Nevertheless, a lot of these waste materials are not recycled, and therefore, many valuable metals end up being sent to landfills. Because of harmful components in the waste, it is often necessary to send it to specialized landfills for hazardous wastes, which leads to environmental problems as well as additional costs. Consequently, the recovery of the valuable metals from the residues represents a sensible task to decrease the negative impact on the environment and to reduce costs for maintaining a landfill. In addition, recycling helps to decrease the dependency from primary resources. The present study deals with the behavior of different metals in a pyro-metallurgical treatment for a mixture of jarosite and electric arc furnace dust with a special focus on indium and silver.

  2. TECHNOLOGY DEMONSTRATION SUMMARY. BABCOCK AND WILCOX CYCLONE FURNACE VITRIFICATION TECHNOLOGY (EPA/540/SR-92/017)

    EPA Science Inventory

    A Superfund Innovative Technology Evaluation (SITE) Demonstration of the Babcock & Wilcox Cyclone Furnace Vitrification Technology was conducted in November 1991. This Demonstration occurred at the Babcock & Wilcox (B&W) Alliance Research Center (ARC) in Alliance, OH. The B&W cyc...

  3. Determination of trace concentrations of chlorine in aqueous solutions by high-resolution continuum source graphite furnace molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Machyňák, Ľubomír; Čacho, František; Němeček, Martin; Beinrohr, Ernest

    2016-11-01

    Trace concentrations of total chlorine were determined by means of molecular absorption of indium mono-chloride (InCl) at 267.217 nm using high-resolution continuum source graphite furnace molecular absorption spectrometry. The effects of chemical modifiers and the amount of In on the sensitivity and accuracy were investigated. The optimum pyrolysis and vaporization temperatures were 600 °C and 1400 °C, respectively. The limit of detection and characteristic mass were found to be 0.10 ng and 0.21 ng, respectively. Potential non-spectral and spectral interferences were tested for various metals and non-metals at concentrations up to 50 mg L- 1 and for phosphoric, sulphuric and nitric acids. No spectral interferences were observed. Significant non-spectral interferences were observed with F, Br, and I at concentrations higher than 1 mg L- 1, 5 mg L- 1 and 25 mg L- 1, respectively, which is probably caused by formation of competitive indium halogen molecules. Higher concentrations of mineral acids depressed the signal owing to the formation of volatile HCl. The calibration curve was linear in the range between 0.3 and 10 ng with a correlation coefficient of R = 0.993. The elaborated method was used for the chlorine determination in various waters and a drug sample.

  4. Controlling electrode gap during vacuum arc remelting at low melting current

    DOEpatents

    Williamson, Rodney L.; Zanner, Frank J.; Grose, Stephen M.

    1997-01-01

    An apparatus and method for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived.

  5. Determination of phospholipids in soybean lecithin samples via the phosphorus monoxide molecule by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    PubMed

    Pires, Laís N; Brandão, Geovani C; Teixeira, Leonardo S G

    2017-06-15

    This paper presents a method for determining phospholipids in soybean lecithin samples by phosphorus determination using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) via molecular absorption of phosphorus monoxide. Samples were diluted in methyl isobutyl ketone. The best conditions were found to be 213.561nm with a pyrolysis temperature of 1300°C, a volatilization temperature of 2300°C and Mg as a chemical modifier. To increase the analytical sensitivity, measurement of the absorbance signal was obtained by summing molecular transition lines for PO surrounding 213nm: 213.561, 213.526, 213.617 and 213.637nm. The limit of detection was 2.35mgg -1 and the precision, evaluated as relative standard deviation (RSD), was 2.47% (n=10) for a sample containing 2.2% (w/v) phosphorus. The developed method was applied for the analysis of commercial samples of soybean lecithin. The determined concentrations of phospholipids in the samples varied between 38.1 and 45% (w/v). Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometric for selenium speciation in foods and beverages.

    PubMed

    Tuzen, Mustafa; Pekiner, Ozlem Zeynep

    2015-12-01

    A rapid and environmentally friendly ultrasound assisted ionic liquid dispersive liquid liquid microextraction (USA-IL-DLLME) was developed for the speciation of inorganic selenium in beverages and total selenium in food samples by using graphite furnace atomic absorption spectrometry. Some analytical parameters including pH, amount of complexing agent, extraction time, volume of ionic liquid, sample volume, etc. were optimized. Matrix effects were also investigated. Enhancement factor (EF) and limit of detection (LOD) for Se(IV) were found to be 150 and 12 ng L(-1), respectively. The relative standard deviation (RSD) was found 4.2%. The accuracy of the method was confirmed with analysis of LGC 6010 Hard drinking water and NIST SRM 1573a Tomato leaves standard reference materials. Optimized method was applied to ice tea, soda and mineral water for the speciation of Se(IV) and Se(VI) and some food samples including beer, cow's milk, red wine, mixed fruit juice, date, apple, orange, grapefruit, egg and honey for the determination of total selenium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. BUNDLE: A Novel Furnace for Performing Controlled Directional Solidification Experiments in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Carrasquillo, Edgar J.; Griffin, Mark R.; Hammond, Monica S.; Johnson, Martin L.; Grugel, R. N.

    2000-01-01

    NASA Marshall Space Flight Center has developed a novel directional solidification furnace prototype for processing metals and alloys experiments in a microgravity environment. The BUNDLE (Bridgman Unidirectional Dendrite in Liquid Experiment) furnace is intended to accommodate the science requirements of Flight Definition Principle Investigators studying cellular/dendritic growth in aluminum and lead alloys at processing temperatures up to 1200 C. The furnace implements a number of innovative features to achieve high thermal gradients and quench rates in a low-power, light-weight design. These include a pyrolytic boron nitride/graphite composite heating element surrounded by layers of self-supporting refractory metal shielding, and a graphite fiber enhanced cold zone allowing high levels of heat extraction from the sample crucible. Novel to the BUNDLE design is an in-situ helium gas quench capability that ensures rapid freezing of the solidifying region (mushy zone) of the metal sample within the furnace without sample disturbance prior to quenching; this is a stringent requirement for subsequent analysis and understanding of microstructural development. The experiment hardware concept features multiple furnaces that may be "bundled" together so many samples, currently up to eight, can be processed at one time. The design of BUNDLE is flexible enough to be implemented on the Shuttle and Space Station in a number of locations (SpaceHab, Express Rack, MPESS, ISPR, etc). BUNDLE prototype furnaces have directionally solidified and quenched 1cm diameter lead - 5.8 weight percent antimony and aluminum - 4 weight percent copper alloys. Quenching of the mushy zone, as recorded by in-situ thermocouples, occurred on the order of 0.5 seconds or less, a rate within the PI's requirements. Subsequent metallographic examination revealed the solidified microstructure to be, as expected, unidirectional. Both the dendrite tips and the eutectic reaction were planar in nature

  8. BUNDLE - A Novel Furnace for Performing Controlled Directional Solidification Experiments in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Carrasquillo, Edgar J.; Griffin, Mark R.; Hammond, Monica S.; Johnson, Martin L.; Grugel, R. N.

    2001-01-01

    NASA Marshall Space Flight Center has developed a novel directional solidification furnace prototype for processing metals and alloys experiments in a microgravity environment. The BUNDLE (Bridgman Unidirectional Dendrite in Liquid Experiment) furnace is intended to accommodate the science requirements of Flight Definition Principle Investigators studying cellular/dendritic growth in aluminum and lead alloys at processing temperatures up to 1200 C. The furnace implements a number of innovative features to achieve high thermal gradients and quench rates in a low-power, light-weight design. These include a pyrolytic boron nitride/graphite composite heating element surrounded by layers of self-supporting refractory metal shielding, and a graphite fiber enhanced cold zone allowing high levels of heat extraction from the sample crucible. Novel to the BUNDLE design is an in-situ helium gas quench capability that ensures rapid freezing of the solidifying region (mushy zone) of the metal sample within the furnace without sample disturbance prior to quenching; this is a stringent requirement for subsequent analysis and understanding of microstructural development. The experiment hardware concept features multiple furnaces that may be "bundled" together so many samples, currently up to eight, can be processed at one time. The design of BUNDLE is flexible enough to be implemented on the Shuttle and Space Station in a number of locations (SpaceHab, Express Rack, MPESS, ISPR, etc). BUNDLE prototype furnaces have directionally solidified and quenched 1cm diameter lead - 5.8 weight percent antimony and aluminum - 4 weight percent copper alloys. Quenching of the mushy zone, as recorded by in-situ thermocouples, occurred on the order of 0.5 seconds or less, a rate within the PI's requirements. Subsequent metallographic examination revealed the solidified microstructure to be, as expected, unidirectional. Both the dendrite tips and the eutectic reaction were planar in nature

  9. Achieving zero waste of municipal incinerator fly ash by melting in electric arc furnaces while steelmaking.

    PubMed

    Yang, Gordon C C; Chuang, Tsun-Nan; Huang, Chien-Wen

    2017-04-01

    The main objective of this work was to promote zero waste of municipal incinerator fly ash (MIFA) by full-scale melting in electric arc furnaces (EAFs) of steel mini mills around the world. MIFA, generally, is considered as a hazardous waste. Like in many countries, MIFA in Taiwan is first solidified/stabilized and then landfilled. Due to the scarcity of landfill space, the cost of landfilling increases markedly year by year in Taiwan. This paper presents satisfactory results of treating several hundred tons of MIFA in a full-scale steel mini mill using the approach of "melting MIFA while EAF steelmaking", which is somewhat similar to "molten salt oxidation" process. It was found that this practice yielded many advantages such as (1) about 18wt% of quicklime requirement in EAF steelmaking can be substituted by the lime materials contained in MIFA; (2) MIFA would totally end up as a material in fractions of recyclable EAF dust, oxidized slag and reduced slag; (3) no waste is needed for landfilling; and (4) a capital cost saving through the employment of existing EAFs in steel mini mills instead of building new melting plants for the treatment of MIFA. Thus, it is technically feasible to achieve zero waste of MIFA by the practice of this innovative melting technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Controlling electrode gap during vacuum arc remelting at low melting current

    DOEpatents

    Williamson, R.L.; Zanner, F.J.; Grose, S.M.

    1997-04-15

    An apparatus and method are disclosed for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived. 5 figs.

  11. Comparison of the oxidation rate and degree of graphitization of selected IG and NBG nuclear graphite grades

    NASA Astrophysics Data System (ADS)

    Chi, Se-Hwan; Kim, Gen-Chan

    2008-10-01

    The oxidation rate and degree of graphitization (DOG) were determined for some selected nuclear graphite grades (i.e., IG-110, IG-430, NBG-18, NBG-25) and compared in view of their filler coke type (i.e., pitch or petroleum coke) and the physical property of the grades. Oxidation rates were determined at six temperatures between 600 and 960 °C in air by using a three-zone vertical tube furnace at a 10 l/min air flow rate. The specimens were a cylinder with a 25.4 mm diameter and a 25.4 mm length. The DOG was determined based on the lattice parameter c determined from an X-ray diffraction (XRD). Results showed that, even though the four examined nuclear graphite grades showed a highly temperature-sensitive oxidation behavior through out the test temperature range of 600-950 °C, the differences between the grades were not significant. The oxidation rates determined for a 5-10% weight loss at the six temperatures were nearly the same except for 702 and 808 °C, where the pitch coke graphites showed an apparent decrease in their oxidation rate, more so than the petroleum coke graphites. These effects of the coke type reduced or nearly disappeared with an increasing temperature. The average activation energy determined for 608-808 °C was 161.5 ± 7.3 kJ/mol, showing that the dominant oxidation reaction occurred by a chemical control. A relationship between the oxidation rate and DOG was not observed.

  12. Arc-Free High-Power dc Switch

    NASA Technical Reports Server (NTRS)

    Miller, W. N.; Gray, O. E.

    1982-01-01

    Hybrid switch allows high-power direct current to be turned on and off without arcing or erosion. Switch consists of bank of transistors in parallel with mechanical contacts. Transistor bank makes and breaks switched circuit; contacts carry current only during steady-state "on" condition. Designed for Space Shuttle orbiter, hybrid switch can be used also in high-power control circuits in aircraft, electric autos, industrial furnaces, and solar-cell arrays.

  13. Ionic liquid-based extraction followed by graphite-furnace atomic absorption spectrometry for the determination of trace heavy metals in high-purity iron metal.

    PubMed

    Matsumiya, Hiroaki; Kato, Tatsuya; Hiraide, Masataka

    2014-02-01

    The analysis of high-purity materials for trace impurities is an important and challenging task. The present paper describes a facile and sensitive method for the determination of trace heavy metals in high-purity iron metal. Trace heavy metals in an iron sample solution were rapidly and selectively preconcentrated by the extraction into a tiny volume of an ionic liquid [1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide] for the determination by graphite-furnace atomic absorption spectrometry (GFAAS). A nitrogen-donating neutral ligand, 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ), was found to be effective in the ionic liquid-based selective extraction, allowing the nearly complete (~99.8%) elimination of the iron matrix. The combination with the optimized GFAAS was successful. The detectability reached sub-μg g(-1) levels in iron metal. The novel use of TPTZ in ionic liquid-based extraction followed by GFAAS was successfully applied to the determination of traces of Co, Ni, Cu, Cd, and Pb in certified reference materials for high-purity iron metal. © 2013 Published by Elsevier B.V.

  14. Complex structure of the carbon arc discharge for synthesis of nanotubes

    DOE PAGES

    Vekselman, V.; Feurer, M.; Huang, T.; ...

    2017-06-06

    Comprehensive non-invasive spectroscopic techniques and electrical measurements of the carbon arc revealed two distinguishable plasma synthesis regions in the radial direction normal to the arc axis. These regions, which are defined as the arc core and the arc periphery, are shown to have very different compositions of carbon species with different densities and temperatures. The colder arc periphery is dominated by carbon diatomic molecules (C 2), which are in the minority in the composition of the hot arc core. These differences are due to a highly non-uniform distribution of the arc current, which is mainly conducted through the arc coremore » populated with carbon atoms and ions. Therefore, the ablation of the graphite anode is governed by the arc core, while the formation of carbon molecules occurs in the colder arc periphery. Furthermore, this result is consistent with previous predictions that the plasma environment in the arc periphery is suitable for synthesis of carbon nanotubes.« less

  15. Complex structure of the carbon arc discharge for synthesis of nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vekselman, V.; Feurer, M.; Huang, T.

    Comprehensive non-invasive spectroscopic techniques and electrical measurements of the carbon arc revealed two distinguishable plasma synthesis regions in the radial direction normal to the arc axis. These regions, which are defined as the arc core and the arc periphery, are shown to have very different compositions of carbon species with different densities and temperatures. The colder arc periphery is dominated by carbon diatomic molecules (C 2), which are in the minority in the composition of the hot arc core. These differences are due to a highly non-uniform distribution of the arc current, which is mainly conducted through the arc coremore » populated with carbon atoms and ions. Therefore, the ablation of the graphite anode is governed by the arc core, while the formation of carbon molecules occurs in the colder arc periphery. Furthermore, this result is consistent with previous predictions that the plasma environment in the arc periphery is suitable for synthesis of carbon nanotubes.« less

  16. Baseline tests for arc melter vitrification of INEL buried wastes. Volume II: Baseline test data appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oden, L.L.; O`Conner, W.K.; Turner, P.C.

    1993-11-19

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc meltingmore » furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.« less

  17. Radioactively contaminated electric arc furnace dust as an addition to the immobilization mortar in low- and medium-activity repositories.

    PubMed

    Castellote, Marta; Menéndez, Esperanza; Andrade, Carmen; Zuloaga, Pablo; Navarro, Mariano; Ordóñez, Manuel

    2004-05-15

    Electric arc furnace dust (EAFD), generated by the steel-making industry, is in itself an intrinsic hazardous waste; however, the case may also be that scrap used in the process is accidentally contaminated by radioactive elements such as cesium. In this case the resulting EAFD is to be handled as radioactive waste, being duly confined in low- and medium-activity repositories (LMAR). What this paper studies is the reliability of using this radioactive EAFD as an addition in the immobilization mortar of the containers of the LMAR, that is, from the point of view of the durability. Different mixes of mortar containing different percentages of EAFD have been subjected to flexural and compressive strength, initial and final setting time, XRD study, total porosity and pore size distribution, determination of the chloride diffusion coefficient, dimensional stability tests, hydration heat, workability of the fresh mix, and leaching behavior. What is deduced from the results is that for the conditions used in this research, (cement + sand) can be replaced by EAFD upto a ratio [EAFD/(cement + EAFD)] of 46% in the immobilization mortar of LMAR, apparently without any loss in the long-term durability properties of the mortar.

  18. Single-Wall Carbon Nanotube Production by the Arc Process: A Parametric Study

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Gorelik, Olga; Proft, William J.

    2000-01-01

    Single wall carbon nanotubes are produced using the arc discharge process. Graphite anodes are filled with a mixture of nickel and yttrium metallic powders, then vaporized by creating a high current arc. By varying the current, gap distance, and ambient pressure it is shown that the best yield of single wall carbon nanotubes is obtained within a narrow range of conditions. The relative yield and purity of the product are indicated semi-quantitatively from scanning electric microscopy (SEM) and thermogravimetric analysis (TGA). Two types of anodes have been investigated. The first is hollow and filled with a powder mixture of graphite, nickel and yttrium. The second is filled with a paste made of a mixture of metal nitrates, graphite powder and carbon adhesive, then reduced in an argon atmosphere at high temperature. Product purity and yield will be compared for the two types of anodes. The graphite in the anodes may have hydrogen attached in the pores. To remove this impurity anodes have been baked up to 1400 - 1500 C. The effect of baking the anodes on impurities in the product will be given.

  19. Soft X-Ray Absorption Spectroscopy of High-Abrasion-Furnace Carbon Black

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muramatsu, Yasuji; Harada, Ryusuke; Gullikson, Eric M.

    2007-02-02

    The soft x-ray absorption spectra of high-abrasion-furnace carbon black were measured to obtain local-structure/chemical-states information of the primary particles and/or crystallites. The soft x-ray absorption spectral features of carbon black represent broader {pi}* and {sigma}* peak structures compared to highly oriented pyrolytic graphite (HOPG). The subtracted spectra between the carbon black and HOPG, (carbon black) - (HOPG), show double-peak structures on both sides of the {pi}* peak. The lower-energy peak, denoted as the 'pre-peak', in the subtracted spectra and the {pi}*/{sigma}* peak intensity ratio in the absorption spectra clearly depend on the specific surface area by nitrogen adsorption (NSA). Therefore,more » it is concluded that the pre-peak intensity and the {pi}*/{sigma}* ratio reflect the local graphitic structure of carbon black.« less

  20. POLLUTION EFFECTS OF ABNORMAL OPERATIONS IN IRON AND STEEL MAKING. VOLUME V. ELECTRIC ARC FURNACE, MANUAL OF PRACTICE

    EPA Science Inventory

    The report is one in a six-volume series considering abnormal operating conditions (AOCs) in the primary section (sintering, blast furnace ironmaking, open hearth, electric furnace, and basic oxygen steelmaking) of an integrated iron and steel plant. Pollution standards, generall...

  1. Miniature Arcs for Synthesis of Carbon Nanotubes in Microgravity

    NASA Technical Reports Server (NTRS)

    Alford, J. M.; Mason, G. R.; Feikema, D. A.

    2006-01-01

    Although many methods are available for producing single-walled carbon nanotubes (SWNTs), the conventional carbon arc process remains the most popular due to its simplicity and large production rate. In the carbon arc, SWNTs are catalytically synthesized by rapidly evaporating a graphite anode impregnated with NiN metal catalyst from which the nanotubes grow in an inert atmosphere. However, high temperatures inside the carbon arc generate strong buoyancy driven convection, and it is hypothesized that the non-uniform environment created by this flow has a large effect on the growth and morphology of the SWNTs. To study the effect of buoyancy on the arc process, a miniature carbon arc apparatus was developed to synthesize SWNTs in a microgravity environment substantially free from these strong convective flows. The reactor was operated for either 2.2 or 5 seconds during free-fall in the drop towers at the NASA Glenn Research Center. Two apparatus designs differing mainly in their production rate and power capacity were investigated. The first consisted of a miniaturized carbon arc employing a 1 mm diameter graphite anode and powered by a 0.54 F capacitor bank charged to 65 V. The second, larger apparatus employed a 4 mm diameter anode and was powered by a portable battery pack capable of providing in excess of 300 amps at 30 volts to the arc for the duration of a 5 second drop. Initial results indicated that transient heating is a very large effect in the short-duration drop tower carbon arcs, and thermal equilibrium of the arc plasma, buffer gas, and apparatus was not attained during the short microgravity periods. In addition, removal of the buoyant convection by the microgravity now allowed clear observation of large jets of evaporated carbon vapor streaming from the anode and mixing with the inert buffer gas. The initial mixing of these jets with the cold buffer gas combined with the thermal transient made it difficult to establish a uniform high temperature

  2. Micro-sampling method based on high-resolution continuum source graphite furnace atomic absorption spectrometry for calcium determination in blood and mitochondrial suspensions.

    PubMed

    Gómez-Nieto, Beatriz; Gismera, Mª Jesús; Sevilla, Mª Teresa; Satrústegui, Jorgina; Procopio, Jesús R

    2017-08-01

    A micro-sampling and straightforward method based on high resolution continuum source atomic absorption spectrometry (HR-CS AAS) was developed to determine extracellular and intracellular Ca in samples of interest in clinical and biomedical analysis. Solid sampling platforms were used to introduce the micro-samples into the graphite furnace atomizer. The secondary absorption line for Ca, located at 239.856nm, was selected to carry out the measurements. Experimental parameters such as pyrolysis and atomization temperatures and the amount of sample introduced for the measurements were optimized. Calibration was performed using aqueous standards and the approach to measure at the wings of the absorption lines was employed for the expansion of the linear response range. The limit of detection was of 0.02mgL -1 Ca (0.39ng Ca) and the upper limit of linear range was increased up to 8.0mgL -1 Ca (160ng Ca). The proposed method was used to determine Ca in mitochondrial suspensions and whole blood samples with successful results. Adequate recoveries (within 91-107%) were obtained in the tests performed for validation purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for gold determination in geological samples after preconcentration onto carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dobrowolski, Ryszard; Mróz, Agnieszka; Dąbrowska, Marzena; Olszański, Piotr

    2017-06-01

    A novelty method for the determination of gold in geological samples by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry (SS HR CS GF AAS) after solid-phase extraction onto modified carbon nanotubes (CNT) was described. The methodology developed is based on solid phase extraction of Au(III) ions from digested samples to eliminate strong interference caused by iron compounds and problems related to inhomogeneities of the samples. The use of aqueous or solid standard for calibration was studied and the slope of calibration curve was the same for both of these modes. This statement indicates the possibility to perform the calibration of the method using aqueous standard solutions. Under optimum conditions the absolute detection limit for gold was equal to 2.24 · 10- 6 μg g- 1 while the adsorption capacity of modified carbon nanotubes was 264 mg g- 1. The proposed procedure was validated by the application of certified reference materials (CRMs) with different content of gold and different matrix, the results were in good agreement with certified values. The method was successfully applied for separation and determination of gold ions in complex geological samples, with precision generally better than 8%.

  4. Ultrasound-Assisted Emulsification Microextraction Based on Solidification Floating Organic Drop Trace Amounts of Manganese Prior to Graphite Furnace Atomic Absorption Spectrometry Determination

    PubMed Central

    Mohadesi, Alireza; Falahnejad, Masoumeh

    2012-01-01

    In the present study, an ultrasound-assisted emulsification microextraction based on solidification floating organic drop method is described for preconcentration of trace amounts of Mn (II). 2-(5-Bromo-2-pyridylazo)-5 diethylaminophenol was added to a solution of Mn+2 at ph = 10.0. After this, 1-undecanol was added to the solution as an extraction solvent, and solution was stirred. Several factors influencing the microextraction efficiency, such as pH, the amount of chelating agent, nature and volume of extraction solvent, the volume of sample solution, stirring rate, and extraction time were investigated and optimized. Then sample vial was cooled by inserting into an ice bath, and the solidified was transferred into a suitable vial for immediate melting. Finally the sample was injected into a graphite furnace atomic absorption spectrometry. Under the optimum condition the linear dynamic range was 0.50–10.0 ng mL−1 with a correlation coefficient of 0.9926, and the detection limit of 0.3 ng mL−1 was obtained. The enrichment factor was 160. The proposed method was successfully applied for separation and determination of manganese in sea, rain, tap, and river water samples. PMID:22645504

  5. Graphite to Graphene via Graphene Oxide: An Overview on Synthesis, Properties, and Applications

    NASA Astrophysics Data System (ADS)

    Hansora, D. P.; Shimpi, N. G.; Mishra, S.

    2015-12-01

    This work represents a state-of-the-art technique developed for the preparation of graphene from graphite-metal electrodes by the arc-discharge method carried out in a continuous flow of water. Because of continuous arcing of graphite-metal electrodes, the graphene sheets were observed in water with uniformity and little damage. These nanosheets were subjected to various purification steps such as acid treatment, oxidation, water washing, centrifugation, and drying. The pure graphene sheets were analyzed using Raman spectrophotometry, x-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and tunneling electron microscopy (TEM). Peaks of Raman spectra were recorded at (1300-1400 cm-1) and (1500-1600 cm-1) for weak D-band and strong G-band, respectively. The XRD pattern showed 85.6% crystallinity of pure graphite, whereas pure graphene was 66.4% crystalline. TEM and FE-SEM micrographs revealed that graphene sheets were overlapped to each other and layer-by-layer formation was also observed. Beside this research work, we also reviewed recent developments of graphene and related nanomaterials along with their preparations, properties, functionalizations, and potential applications.

  6. Graphite furnace atomic absorption spectrometric detection of vanadium in water and food samples after solid phase extraction on multiwalled carbon nanotubes.

    PubMed

    Wadhwa, Sham Kumar; Tuzen, Mustafa; Gul Kazi, Tasneem; Soylak, Mustafa

    2013-11-15

    Vanadium(V) ions as 8-hydroxyquinoline chelates were loaded on multiwalled carbon nanotubes (MWNTs) in a mini chromatographic column. Vanadium was determined by graphite furnace atomic absorption spectrometry (GFAAS). Various analytical parameters including pH of the working solutions, amounts of 8-hydroxyquinoline, eluent type, sample volume, and flow rates were investigated. The effects of matrix ions and some transition metals were also studied. The column can be reused 250 times without any loss in its sorption properties. The preconcentration factor was found as 100. Detection limit (3 s) and limit of quantification (10 s) for the vanadium in the optimal conditions were observed to be 0.012 µg L(-1) and 0.040 μg L(-1), respectively. The capacity of adsorption was 9.6 mg g(-1). Relative standard deviation (RSD) was found to be 5%. The validation of the method was confirmed by using NIST SRM 1515 Apple leaves, NIST SRM 1570a Spinach leaves and GBW 07605 Tea certified reference materials. The procedure was applied to the determination of vanadium in tap water and bottled drinking water samples. The procedure was also successfully applied to microwave digested food samples including black tea, coffee, tomato, cabbage, zucchini, apple and chicken samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Baseline tests for arc melter vitrification of INEL buried wastes. Volume 1: Facility description and summary data report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oden, L.L.; O`Connor, W.K.; Turner, P.C.

    1993-11-19

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc meltingmore » furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.« less

  8. CHARGING SIDE OF #130 ELECTRIC FURNACE CO. REHEAT FURNACE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CHARGING SIDE OF #130 ELECTRIC FURNACE CO. REHEAT FURNACE IN REROLL BAY. CAKES FROM THE CASTING SHOP ARE BROUGHT UP TO ROLLING TEMPERATURE IN ONE OF TWO (#130 AND 146) GAS-FIRED FURNACES. A RADIO-CONTROLLED OVERHEAD CRANE TRANSFERS CAKES FROM FLATCARS TO THE ROLLER LINE LEADING INTO THE FURNACE. CAKES ARE HEATED AT 900-1000 DEGREES FAHRENHEIT FOR THREE TO FOUR HOURS. RATED FURNACE CAPACITY IS 100,000 LBS.\\HOUR. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  9. INTERIOR VIEW SHOWING FURNACE KEEPER OBSERVING FURNACE THROUGH BLUE GLASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING FURNACE KEEPER OBSERVING FURNACE THROUGH BLUE GLASS EVERY TWENTY MINUTES TO DETERMINE SIZE AND TEXTURE OF BATCH AND OTHER VARIABLES. FAN IN FRONT COOLS WORKERS AS THEY CONDUCT REPAIRS. FURNACE TEMPERATURE AT 1572 DEGREES FAHRENHEIT. - Chambers-McKee Window Glass Company, Furnace No. 2, Clay Avenue Extension, Jeannette, Westmoreland County, PA

  10. Upgrading constructed wetlands phosphorus reduction from a dairy effluent using electric arc furnace steel slag filters.

    PubMed

    Weber, D; Drizo, A; Twohig, E; Bird, S; Ross, D

    2007-01-01

    In 2003, a subsurface flow constructed wetlands (SSF-CW) system was built at the University of Vermont (UVM) Paul Miller Dairy Farm as an alternative nutrient management approach for treating barnyard runoff and milk parlour waste. Given the increasing problem of phosphorus (P) pollution in the Lake Champlain region, a slag based P-removal filter technology (PFT) was established (2004) at the CW with two objectives: (i) to test the filters' efficiency as an upgrade unit for improving P removal performance via SSF-CW (ii) to investigate the capacity of filters technology to remove P as a "stand alone" unit. Six individual filters (F1-F6) were filled with electric arc furnace (EAF) steel slag, each containing 112.5 kg of material with a pore volume of 21 L. F1-F4, fed with CW treated water, received approximately 2.17 g DRP kg(-1) EAF steel slag (0.25 kg DRP total) during the 259 day feeding period. F1-F4 retained 1.7 g DRP kg(-1) EAF steel slag, resulting in an average P removal efficiency of 75%. The addition of filters improved CW DRP removal efficiency by 74%. F5 and F6, fed non-treated water, received 1.9 g DRP kg(-1) EAF steel slag (0.22 kg DRP in total) and retained 1.5 g DRP kg(-1) resulting in a P removal efficiency of 72%. The establishment of the EAF slag based PFT is the first in-field evaluation of this technology to reduce P from dairy farm effluent in Vermont.

  11. Enhancement of oxidation resistance of graphite foams by polymer derived-silicon carbide coating for concentrated solar power applications

    DOE PAGES

    Kim, T.; Singh, D.; Singh, M.

    2015-05-01

    Graphite foam with extremely high thermal conductivity has been investigated to enhance heat transfer of latent heat thermal energy storage (LHTES) systems. However, the use of graphite foam for elevated temperature applications (>600 °C) is limited due to poor oxidation resistance of graphite. In the present study, oxidation resistance of graphite foam coated with silicon carbide (SiC) was investigated. A pre-ceramic polymer derived coating (PDC) method was used to form a SiC coating on the graphite foams. Post coating deposition, the samples were analyzed by scanning electron microscopy and energy dispersive spectroscopy. The oxidation resistance of PDC-SiC coating was quantifiedmore » by measuring the weight of the samples at several measuring points. The experiments were conducted under static argon atmosphere in a furnace. After the experiments, oxidation rates (%/hour) were calculated to predict the lifetime of the graphite foams. The experimental results showed that the PDC-SiC coating could prevent the oxidation of graphite foam under static argon atmosphere up to 900 °C.« less

  12. The effect of smelting time and composition of palm kernel shell charcoal reductant toward extractive Pomalaa nickel laterite ore in mini electric arc furnace

    NASA Astrophysics Data System (ADS)

    Sihotang, Iqbal Huda; Supriyatna, Yayat Iman; Ismail, Ika; Sulistijono

    2018-04-01

    Indonesia is a country that is rich in natural resources. Being a third country which has a nickel laterite ore in the world after New Caledonia and Philippines. However, the processing of nickel laterite ore to increase its levels in Indonesia is still lacking. In the processing of nickel laterite ore into metal, it can be processed by pyrometallurgy method that typically use coal as a reductant. However, coal is a non-renewable energy and have high enough levels of pollution. One potentially replace is the biomass, that is a renewable energy. Palm kernel shell are biomass that can be used as a reductant because it has a fairly high fix carbon content. This research aims to make nickel laterite ores become metal using palm kernel shell charcoal as reductant in mini electric arc furnace. The result show that the best smelting time of this research is 60 minutes with the best composition of the reductant is 2,000 gram.

  13. Brazing graphite to graphite

    DOEpatents

    Peterson, George R.

    1976-01-01

    Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of virtually graphite.

  14. Erosion resistance of arc-sprayed coatings to iron ore at 25 and 315 °C

    NASA Astrophysics Data System (ADS)

    Dallaire, S.; Levert, H.; Legoux, J.-G.

    2001-06-01

    Iron ore pellets are sintered and reduced in large continuous industrial oil-fired furnaces. From the furnace, powerful fans extract large volumes of hot gas. Being exposed to gas-borne iron ore particles and temperatures ranging between 125 and 328 °C, fan components are rapidly eroded. Extensive part repair or replacement is required for maintaining a profitable operation. The arc spraying technique has been suggested for repair provided it could produce erosion-resistant coatings. Conventional and cored wires (1.6 mm diameter) were arc sprayed using various spray parameters to produce 250 to 300 µm thick coatings. Arc-sprayed coatings and reference specimens were erosion tested at 25 and 315 °C and impact angles of 25 and 90° in a laboratory gas-blast erosion rig. This device was designed to impact materials with coarse (32 to 300 µm) iron ore particles at a speed of 100 m/s. The coating volume loss due to erosion was measured with a laser profilometer built by National Research Council Canada several years ago. Few arc-sprayed coatings exhibited erosion resistance comparable with structural steel at low impact angles. Erosion of arc-sprayed coatings and reference specimens dramatically increases at 315 °C for both 25° and 90° impact angles. Erosion-enhanced oxidation was found to be responsible for the increase in volume loss above room temperature. Though arc spraying can be appropriate for on-site repair, the development of more erosion-resistant coatings is required for intermediate temperatures.

  15. Electrical properties of alkali-activated slag composite with combined graphite/CNT filler

    NASA Astrophysics Data System (ADS)

    Rovnaník, P.; Míková, M.; Kusák, I.

    2017-10-01

    Alkali-activated industrial by-products such as blast furnace slag are known to possess properties which are comparable to or even better than those observed for ordinary Portland cement. The combination of alkali-activated slag matrix with conductive filler introduces new functionalities which are commonly known for self-sensing or self-heating concrete. The present paper discusses the effect of the mixture of two different conductive fillers, graphite powder and carbon nanotubes (CNTs), on the electrical properties of alkali-activated slag mortars. Prepared samples were also tested for their mechanical properties and microstructure was investigated by means of mercury intrusion porosimetry and scanning electron microscopy. The percolation threshold for the resistance was reached for the mixture containing 0.1% CNTs and 8% graphite powder.

  16. Temperature and flow fields in samples heated in monoellipsoidal mirror furnaces

    NASA Astrophysics Data System (ADS)

    Rivas, D.; Haya, R.

    The temperature field in samples heated in monoellipsoidal mirror furnaces will be analyzed. The radiation heat exchange between the sample and the mirror is formulated analytically, taking into account multiple reflections at the mirror. It will be shown that the effect of these multiple reflections in the heating process is quite important, and, as a consequence, the effect of the mirror reflectance in the temperature field is quite strong. The conduction-radiation model will be used to simulate the heating process in the floating-zone technique in microgravity conditions; important parameters like the Marangoni number (that drives the thermocapillary flow in the melt), and the temperature gradient at the melt-crystal interface will be estimated. The model will be validated comparing with experimental data. The case of samples mounted in a wall-free configuration (as in the MAXUS-4 programme) will be also considered. Application to the case of compound samples (graphite-silicon-graphite) will be made; the melting of the silicon part and the surface temperature distribution in the melt will be analyzed. Of special interest is the temperature difference between the two graphite rods that hold the silicon part, since it drives the thermocapillary flow in the melt. This thermocapillary flow will be studied, after coupling the previous model with the convective effects. The possibility of counterbalancing this flow by the controlled vibration of the graphite rods will be studied as well. Numerical results show that suppressing the thermocapillary flow can be accomplished quite effectively.

  17. Effectiveness of recycling light in ultra-bright short-arc discharge lamps.

    PubMed

    Malul, Asher; Nakar, Doron; Feuermann, Daniel; Gordon, Jeffrey M

    2007-10-17

    Recycling light back into a plasma lamp's radiant zone can enhance its radiance. Measurements are reported for the effectiveness, spectral properties and modified plasma radiance maps that result from light recycling with a specular hemispherical mirror in commercial 150 W ultrabright Xenon short-arc discharge lamps, motivated by projection, biomedical and high-temperature furnace applications. For certain spectral windows and plasma arc regions, radiance can be heightened by up to 70%. However, the overall light recycling efficiency is reduced to about half this value due to lamp geometry. The manner in which light-plasma interactions affect light recycling efficacy is also elucidated.

  18. Evaluation of electric arc furnace-processed steel slag for dermal corrosion, irritation, and sensitization from dermal contact.

    PubMed

    Suh, Mina; Troese, Matthew J; Hall, Debra A; Yasso, Blair; Yzenas, John J; Proctor, Debora M

    2014-12-01

    Electric arc furnace (EAF) steel slag is alkaline (pH of ~11-12) and contains metals, most notably chromium and nickel, and thus has potential to cause dermal irritation and sensitization at sufficient dose. Dermal contact with EAF slag occurs in many occupational and environmental settings because it is used widely in construction and other industrial sectors for various applications including asphaltic paving, road bases, construction fill, and as feed for cement kilns construction. However, no published study has characterized the potential for dermal effects associated with EAF slag. To assess dermal irritation, corrosion and sensitizing potential of EAF slag, in vitro and in vivo dermal toxicity assays were conducted based on the Organisation for Economic Co-operation and Development (OECD) guidelines. In vitro dermal corrosion and irritation testing (OECD 431 and 439) of EAF slag was conducted using the reconstructed human epidermal (RHE) tissue model. In vivo dermal toxicity and delayed contact sensitization testing (OECD 404 and 406) were conducted in rabbits and guinea pigs, respectively. EAF slag was not corrosive and not irritating in any tests. The results of the delayed contact dermal sensitization test indicate that EAF slag is not a dermal sensitizer. These findings are supported by the observation that metals in EAF slag occur as oxides of low solubility with leachates that are well below toxicity characteristic leaching procedure (TCLP) limits. Based on these results and in accordance to the OECD guidelines, EAF slag is not considered a dermal sensitizer, corrosive or irritant. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Removal of hexavalent chromium in carbonic acid solution by oxidizing slag discharged from steelmaking process in electric arc furnace

    NASA Astrophysics Data System (ADS)

    Yokoyama, Seiji; Okazaki, Kohei; Sasano, Junji; Izaki, Masanobu

    2014-02-01

    Hexavalent chromium (Cr(VI)) is well-known to be a strong oxidizer, and is recognized as a carcinogen. Therefore, it is regulated for drinking water, soil, groundwater and sea by the environmental quality standards all over the world. In this study, it was attempted to remove Cr(VI) ion in a carbonic acid solution by the oxidizing slag that was discharged from the normal steelmaking process in an electric arc furnace. After the addition of the slag into the aqueous solution contained Cr(VI) ion, concentrations of Cr(VI) ion and total chromium (Cr(VI) + trivalent chromium (Cr(III)) ions decreased to lower detection limit of them. Therefore, the used slag could reduce Cr(VI) and fix Cr(III) ion on the slag. While Cr(VI) ion existed in the solution, iron did not dissolve from the slag. From the relation between predicted dissolution amount of iron(II) ion and amount of decrease in Cr(VI) ion, the Cr(VI) ion did not react with iron(II) ion dissolved from the slag. Therefore, Cr(VI) ion was removed by the reductive reaction between Cr(VI) ion and the iron(II) oxide (FeO) in the slag. This reaction progressed on the newly appeared surface of iron(II) oxide due to the dissolution of phase composed of calcium etc., which existed around iron(II) oxide grain in the slag.

  20. High-purity silicon for solar cell applications

    NASA Technical Reports Server (NTRS)

    Dosaj, V. D.; Hunt, L. P.; Schei, A.

    1978-01-01

    The article discusses the production of solar cells from high-purity silicon. The process consists of reducing the level of impurities in the raw materials, preventing material contamination before and after entering the furnace, and performing orders-of-magnitude reduction of metal impurity concentrations. The high-purity raw materials are considered with reference to carbon reductants, silica, and graphite electrodes. Attention is also given to smelting experiments used to demonstrate, in an experimental-scale furnace, the production of high-purity SoG-Si. It is found that high-purity silicon may be produced from high-purity quartz and chemically purified charcoal in a 50-kVA arc furnace. The major contamination source is shown to be impurities from the carbon reducing materials.

  1. Heat treatment furnace

    DOEpatents

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  2. Tungsten erosion by unipolar arcing in DIII-D

    NASA Astrophysics Data System (ADS)

    Bykov, I.; Chrobak, C. P.; Abrams, T.; Rudakov, D. L.; Unterberg, E. A.; Wampler, W. R.; Hollmann, E. M.; Moyer, R. A.; Boedo, J. A.; Stahl, B.; Hinson, E. T.; Yu, J. H.; Lasnier, C. J.; Makowski, M.; McLean, A. G.

    2017-12-01

    Unipolar arcing was an important mechanism of metal surface erosion during the recently conducted Metal Rings Campaign in DIII-D when two toroidally continuous tile rings with 5 cm wide W-coated TZM inserts were installed in graphite tiles in the lower divertor, one on the floor and one on the shelf. Most of the arc damage occurred on the shelf ring. The total amount of W removed by arcing from the affected ˜4% of the shelf ring area was estimated ˜0.8 × 1021 at., about half of the total amount of W eroded and redeposited outside the inserts (1.8 ± 0.9)×1021 at. The rings were exposed for a total of ˜480 discharges, an equivalent of plasma time on W surfaces (with {{I}}{{p}}> 0.5 MA) ˜103 s. Arcing was monitored in situ with WI (400.9 nm) filtered camera and photomultipliers and showed that: (i) arcing only occurred during ELMs and disruptions, (ii) arcing rate was much lower on the floor than on the shelf ring, and (iii) arcing had a low cut off power flux density about 2 MW m-2. About half of arc tracks had large {10}\\circ pitch angle and probably were produced during disruptions. Such tracks were only found on the shelf. Moderate toroidal variation of the arc track density and W erosion with nearly n = 1 pattern has been measured.

  3. One-step displacement dispersive liquid-liquid microextraction coupled with graphite furnace atomic absorption spectrometry for the selective determination of methylmercury in environmental samples.

    PubMed

    Liang, Pei; Kang, Caiyan; Mo, Yajun

    2016-01-01

    A novel method for the selective determination of methylmercury (MeHg) was developed by one-step displacement dispersive liquid-liquid microextraction (D-DLLME) coupled with graphite furnace atomic absorption spectrometry. In the proposed method, Cu(II) reacted with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which was used as the chelating agent instead of DDTC for the dispersive liquid-liquid microextraction (DLLME) of MeHg. Because the stability of MeHg-DDTC is higher than that of Cu-DDTC, MeHg can displace Cu from the Cu-DDTC complex and be preconcentrated in a single DLLME procedure. MeHg could be extracted into the extraction solvent phase at pH 6 while Hg(II) remained in the sample solution. Potential interference from co-existing metal ions with lower DDTC complex stability was largely eliminated without the need of any masking reagent. Under the optimal conditions, the limit of detection of this method was 13.6ngL(-1) (as Hg), and an enhancement factor of 81 was achieved with a sample volume of 5.0mL. The proposed method was successfully applied for the determination of trace MeHg in some environmental samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Pereira, Éderson R; de Almeida, Tarcísio S; Borges, Daniel L G; Carasek, Eduardo; Welz, Bernhard; Feldmann, Jörg; Campo Menoyo, Javier Del

    2016-04-01

    High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. More About Arc-Welding Process for Making Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M.; Leidecker, Henning

    2005-01-01

    High-quality batches of carbon nanotubes are produced at relatively low cost in a modified atmospheric-pressure electric-arc welding process that does not include the use of metal catalysts. What would normally be a welding rod and a weldment are replaced by an amorphous carbon anode rod and a wider, hollow graphite cathode rod. Both electrodes are water-cooled. The cathode is immersed in ice water to about 0.5 cm from the surface. The system is shielded from air by flowing helium during arcing. As the anode is consumed during arcing at 20 to 25 A, it is lowered to maintain it at an approximately constant distance above the cathode. The process causes carbon nanotubes to form on the lowest 5 cm of the anode. The arcing process is continued until the anode has been lowered to a specified height. The nanotube-containing material is then harvested. The additional information contained in the instant report consists mostly of illustrations of carbon nanotubes and a schematic diagram of the arc-welding setup, as modified for the production of carbon nanotubes.

  6. High Temperature Transparent Furnace Development

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  7. New Experimental Technique for Nodularity and Mg Fading Control in Compacted Graphite Iron Production on Laboratory Scale

    NASA Astrophysics Data System (ADS)

    Hernando, Juan Carlos; Domeij, Björn; González, Daniel; Amieva, José Manuel; Diószegi, Attila

    2017-11-01

    The narrow production window for compacted graphite iron material (CGI) drastically reduces the possibilities to produce it in small batches outside an industrial environment. This fact hinders laboratory-scale investigations on CGI solidification. This work presents a solution to that issue by introducing an experimental technique to produce graphitic cast iron of the main three families. Samples of a base hypereutectic spheroidal graphite iron (SGI) were re-melted in a resistance furnace under Ar atmosphere. Varying the holding time at 1723 K (1450 °C), graphitic irons ranging from spheroidal to lamellar were produced. Characterization of the graphite morphology evolution, in terms of nodularity as a function of holding time, is presented. The nodularity decay for the SGI region suggests a linear correlation with the holding time. In the CGI region, nodularity deterioration shows a slower rate, concluding with the sudden appearance of lamellar graphite. The fading process of magnesium, showing agreement with previous researchers, is described by means of empirical relations as a function of holding time and nodularity. The results on nodularity fade and number of nodules per unit area fade suggest that both phenomena occur simultaneously during the fading process of magnesium.

  8. Simultaneous determination of Cd and Fe in beans and soil of different regions of Brazil using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling.

    PubMed

    dos Santos, Lisia M G; Welz, Bernhard; Araujo, Rennan G O; Jacob, Silvana do C; Vale, Maria Goreti R; Martens, Andreas; Gonzaga Martens, Irland B; Becker-Ross, Helmut

    2009-11-11

    A fast routine screening method for the simultaneous determination of cadmium and iron in bean and soil samples is proposed, using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling. The primary absorption line at 228.802 nm has been used for the determination of cadmium, and an adjacent secondary line, at 228.726 nm, for iron. Fourteen bean samples and 10 soil samples from nine states all over Brazil have been analyzed. The limits of detection (3 sigma, n = 10) were 2.0 microg kg(-1) for Cd and 4.5 mg kg(-1) for Fe. The relative standard deviation ranged from 4 to 7% for Cd and from 5 to 28% for Fe, which is usually acceptable for a screening method. The accuracy of the method has been confirmed by the analysis of two certified reference materials; the results were in agreement with the certified values at a 95% confidence interval.

  9. Thermal investigation of an electrical high-current arc with porous gas-cooled anode

    NASA Technical Reports Server (NTRS)

    Eckert, E. R. G.; Schoeck, P. A.; Winter, E. R. F.

    1984-01-01

    The following guantities were measured on a high-intensity electric arc with tungsten cathode and transpiration-cooled graphite anode burning in argon: electric current and voltage, cooling gas flow rate (argon), surface temperature of the anode and of the anode holder, and temperature profile in three cross-sections of the arc are column. The last mentioned values were obtained from spectroscopic photographs. From the measured quantities, the following values were calculated: the heat flux into the anode surface, the heat loss of the anode by radiation and conduction, and the heat which was regeneratively transported by the cooling gas back into the arc space. Heat balances for the anode were also obtained. The anode losses (which are approximately 80% of the total arc power for free burning arcs) were reduced by transpiration cooling to 20%. The physical processes of the energy transfer from the arc to the anode are discussed qualitatively.

  10. New Raman-peak at 1850 cm(-1) observed in multiwalled carbon nanotubes produced by hydrogen arc discharge.

    PubMed

    Chen, B; Kadowaki, Y; Inoue, S; Ohkohchi, M; Zhao, X; Ando, Y

    2010-06-01

    The new peak (near 1850 cm(-1)) assigned to carbon linear chain included in the centre of very thin innermost multiwalled carbon nanotubes (MWNTs) has been verified by Raman spectroscopy. These MWNTs were produced by dc arc discharge of pure graphite rods in pure hydrogen gas and existed in the cathode deposit. In this paper, we clarified that the new Raman-peaks could also be observed in the cathode deposit including MWNTs produced by hydrogen dc arc discharge using graphite electrode with added Y or La. By changing the quantity of addition (Y or La), dc arc current and pressure of ambient hydrogen gas, the optimum condition to get maximum intensity of the new Raman-peaks was obtained. For the case of 1 wt% La, dc 50 A, H2 pressure of 50 Torr was found to be optimum, and the intensity of new Raman-peak was even higher than the G-band peak. For the case of 1 wt% Y, dc 50 A, H2 pressure of 50 Torr was optimum, but the intensity of new Raman-peak was weaker than the G-band peak. Transmission electron microscopy observation revealed that the crystallinity of MWNTs produced with pure graphite rod was better than those produced with added Y or La.

  11. Fast arsenic speciation in water by on-site solid phase extraction and high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mihucz, Victor G.; Bencs, László; Koncz, Kornél; Tatár, Enikő; Weiszburg, Tamás; Záray, Gyula

    2017-02-01

    A method of high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS), combined with on-site separation/solid phase extraction (SPE) has been developed for the speciation of inorganic As (iAs) in geothermal and drinking water samples. The HR-CS-GFAAS calibration curves were linear up to 200 μg/L As, but using second order polynomial fitting, accurate calibration could be performed up to 500 μg/L. It has been demonstrated that sample pH should not be higher than 8 for an accurate speciation of As(V) with a recovery of ≈ 95%. Geothermal water had fairly high salt content (≈ 2200 mg/L) due to the presence of chlorides and sulfates at mg/L levels. Therefore, a two-fold dilution of these types of samples before SPE is recommended, especially, for total As determinations, when the As concentration is as high as 400 μg/L. For drinking water, sampled from public wells with records of As concentrations higher than the 10 μg/L in the past, the reduction of As contamination below the WHO's health limit value could be observed. However, the electrical conductivity was close to 2500 μS/cm, i.e., the guideline limit for drinking water, which was due to their higher chloride content. The proposed fit-for-purpose SPE-HR-CS-GFAAS method could be a candidate for screening drinking water quality.

  12. Efficient 'Optical Furnace': A Cheaper Way to Make Solar Cells is Reaching the Marketplace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Kuegelgen, T.

    In Bhushan Sopori's laboratory, you'll find a series of optical furnaces he has developed for fabricating solar cells. When not in use, they sit there discreetly among the lab equipment. But when a solar silicon wafer is placed inside one for processing, Sopori walks over to a computer and types in a temperature profile. Almost immediately this fires up the furnace, which glows inside and selectively heats up the silicon wafer to 800 degrees centigrade by the intense light it produces. Sopori, a principal engineer at the National Renewable Energy Laboratory, has been researching and developing optical furnace technology formore » around 20 years. He says it's a challenging technology to develop because there are many issues to consider when you process a solar cell, especially in optics. Despite the challenges, Sopori and his research team have advanced the technology to the point where it will benefit all solar cell manufacturers. They are now developing a commercial version of the furnace in partnership with a manufacturer. 'This advanced optical furnace is highly energy efficient, and it can be used to manufacture any type of solar cell,' he says. Each type of solar cell or manufacturing process typically requires a different furnace configuration and temperature profile. With NREL's new optical furnace system, a solar cell manufacturer can ask the computer for any temperature profile needed for processing a solar cell, and the same type of furnace is suitable for several solar cell fabrication process steps. 'In the future, solar cell manufacturers will only need this one optical furnace because it can be used for any process, including diffusion, metallization and oxidation,' Sopori says. 'This helps reduce manufacturing costs.' One startup company, Applied Optical Systems, has recognized the furnace's potential for manufacturing thin-film silicon cells. 'We'd like to develop thin-film silicon cells with higher efficiencies, up to 15 to 18 percent, and we

  13. Erection of duct-like graphitic carbon nitride with enhanced photocatalytic activity for ACB photodegradation

    NASA Astrophysics Data System (ADS)

    Muhmood, Tahir; Xia, Mingzhu; Lei, Wu; Wang, Fengyun

    2018-02-01

    Novel duct graphitic carbon nitride (DCN) was successfully prepared using the temperature control method in a quartz tube furnace from commercially available melamine and evaluated against the photo-degradation of latent organic pollutants, acarbose (ACB). These prepared materials were characterized by UV-Vis spectroscopy, Fourier transform infrared spectra, x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy and scanning electron microscopy. The characterization results indicated that the synthesized material was in the form of a duct-like structure and has greater adsorption capacity and photocatalytic ability as compared to traditionally synthesized graphitic carbon nitride materials. The DCN split theACB completely into many intermediates, which were depicted in the HPLC-MS spectrum for knowing the acarbose photo-degrdation pathway. The duct-like morphology of graphitic carbon nitride has improved properties, such as increasing the surface area and decelerating the e -/h + recombination, which increase the light absorbance ability with enhanced photoactivity.

  14. Synthesis method for ultrananocrystalline diamond in powder employing a coaxial arc plasma gun

    NASA Astrophysics Data System (ADS)

    Naragino, Hiroshi; Tominaga, Aki; Hanada, Kenji; Yoshitake, Tsuyoshi

    2015-07-01

    A new method that enables us to synthesize ultrananocrystalline diamond (UNCD) in powder is proposed. Highly energetic carbon species ejected from a graphite cathode of a coaxial arc plasma gun were provided on a quartz plate at a high density by repeated arc discharge in a compact vacuum chamber, and resultant films automatically peeled from the plate were aggregated and powdered. The grain size was easily controlled from 2.4 to 15.0 nm by changing the arc discharge energy. It was experimentally demonstrated that the proposed method is a new and promising method that enables us to synthesize UNCD in powder easily and controllably.

  15. Determination of sulfur in human hair using high resolution continuum source graphite furnace molecular absorption spectrometry and its correlation with total protein and albumin

    NASA Astrophysics Data System (ADS)

    Ozbek, Nil; Baysal, Asli

    2017-04-01

    Human hair is a valuable contributor for biological monitoring. It is an information storage point to assess the effects of environmental, nutritional or occupational sources on the body. Human proteins, amino acids or other compounds are among the key components to find the sources of different effects or disorders in the human body. Sulfur is a significant one of these compounds, and it has great affinity to some metals and compounds. This property of the sulfur affects the human health positively or negatively. In this manuscript, sulfur was determined in hair samples of autistic and age-match control group children via molecular absorption of CS using a high-resolution continuum source graphite furnace atomic absorption spectrometer. For this purpose, hair samples were appropriately washed and dried at 75 °C. Then samples were dissolved in microwave digestion using HNO3 for sulfur determination. Extraction was performed with HCl hydrolysation by incubation for 24 h at 110 °C for total protein and albumin determination. The validity of the method for the sulfur determination was tested using hair standard reference materials. The results were in the uncertainty limits of the certified values at 95% confidence level. Finally correlation of sulfur levels of autistic children's hair with their total protein and albumin levels were done.

  16. Magnetic stirrer induced dispersive ionic-liquid microextraction for the determination of vanadium in water and food samples prior to graphite furnace atomic absorption spectrometry.

    PubMed

    Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa

    2015-04-01

    A new dispersive liquid-liquid microextraction, magnetic stirrer induced dispersive ionic-liquid microextraction (MS-IL-DLLME) was developed to quantify the trace level of vanadium in real water and food samples by graphite furnace atomic absorption spectrometry (GFAAS). In this extraction method magnetic stirrer was applied to obtained a dispersive medium of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] in aqueous solution of (real water samples and digested food samples) to increase phase transfer ratio, which significantly enhance the recovery of vanadium - 4-(2-pyridylazo) resorcinol (PAR) chelate. Variables having vital role on desired microextraction methods were optimised to obtain the maximum recovery of study analyte. Under the optimised experimental variables, enhancement factor (EF) and limit of detection (LOD) were achieved to be 125 and 18 ng L(-1), respectively. Validity and accuracy of the desired method was checked by analysis of certified reference materials (SLRS-4 Riverine water and NIST SRM 1515 Apple leaves). The relative standard deviation (RSD) for 10 replicate determinations at 0.5 μg L(-1) of vanadium level was found to be <5.0%. This method was successfully applied to real water and acid digested food samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. AN INSTRUMENT TO MEASURE THE ELECTRICAL CONDUCTIVITY OF ARC PLASMA JETS

    DTIC Science & Technology

    The instrument was calibrated by moving aluminum or graphite rods through the transducer. By using thin-wall, stainless steel tubing, the influence ... function for the transducer was also obtained. Tests were run on two different arc plasma jet facilities. Values of s, u ranged from 0.02 to 9 megamhos per second. (Author)

  18. Direct sampling graphite furnace atomic absorption spectrometry - feasibility of Na and K determination in desalted crude oil

    NASA Astrophysics Data System (ADS)

    Seeger, Tassia S.; Machado, Eduarda Q.; Flores, Erico M. M.; Mello, Paola A.; Duarte, Fabio A.

    2018-03-01

    In this study, Na and K were determined in desalted crude oil by direct sampling graphite furnace atomic absorption spectrometry (DS-GF AAS), with the use of a Zeeman-effect background correction system with variable magnetic field. The analysis was performed in low and high sensitivity conditions. Sodium determination was performed in two low-sensitivity conditions: 1) main absorption line (589.0 nm), gas stop flow during the atomization step and 3-field dynamic mode (0.6-0.8 T); and 2) secondary absorption line (330.3 nm), gas stop flow during the atomization and 2-field mode (0.8 T). In K determination, some parameters, such as high-sensitivity mode, main absorption line (766.5 nm), gas stop flow during the atomization and 2-field mode (0.8 T), were used. Suitability of chemical modifiers, such as Pd and W-Ir was also evaluated. The heating program for Na and K was based on the pyrolysis and atomization curves. Calibration was performed by aqueous standards. Accuracy was evaluated by the analysis of Green Petroleum Coke (SRM NIST 2718) and Trace Elements in Fuel Oil (SRM NIST 1634c). Recovery tests were also performed and results were compared with those obtained by GF AAS after crude oil digestion by microwave-assisted digestion. The characteristic mass of Na was 17.1 pg and 0.46 ng in conditions 1 and 2, respectively, while the one of K was 1.4 pg. Limits of detection and quantification by DS-GF AAS were 30 and 40 ng g-1 for Na and 3.2 and 4.2 ng g-1 for K, respectively. Sodium and K were determined in three crude oil samples with API density ranging from 20.9 to 28.0. Sodium and K concentration ranged from 1.5 to 73 μg g-1 and from 23 to 522 ng g-1, respectively.

  19. Lead and cadmium in human placentas and maternal and neonatal blood (in a heavily polluted area) measured by graphite furnace atomic absorption spectrometry.

    PubMed Central

    Baranowska, I

    1995-01-01

    OBJECTIVE--To measure the concentrations of the trace elements lead and cadmium in human placenta and in maternal and neonatal (cord) blood. To assess the influence of the strongly polluted environment on the content of metals in tissues and on the permeability of placenta to cadmium and lead. Various methods of mineralisation were tested before analysis. METHODS--Graphite furnace atomic absorption spectrometry was used for the determination of lead and cadmium. The samples for analysis were prepared by mineralisation under pressure in a Teflon bomb (HNO3, 110 degrees C), by wet ashing under normal pressure (HNO3 + H2O2 for 12 hours), and by microwave digestion in concentrated nitric acid. RESULTS--In analysed samples the following mean concentrations of cadmium and lead were found: in venous blood Pb = 72.50 ng/ml, Cd = 4.90 ng/ml; in placenta Pb = 0.50 microgram/g, Cd = 0.11 microgram/g; in cord blood Pb = 38.31 ng/ml, Cd = 1.13 ng/ml. CONCLUSION--High concentrations of lead and cadmium were found in placentas and in maternal blood whereas in neonatal blood there was an increased concentration of lead and only traces of cadmium. It is concluded that the placenta is a better barrier for cadmium than for lead. Among the examined methods of mineralisation, microwave digestion was the best. PMID:7795737

  20. Graphite

    USGS Publications Warehouse

    Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For some of these uses, no suitable substitutes are available. Steelmaking and refractory applications in metallurgy use the largest amount of produced graphite; however, emerging technology uses in large-scale fuel cell, battery, and lightweight high-strength composite applications could substantially increase world demand for graphite.Graphite ores are classified as “amorphous” (microcrystalline), and “crystalline” (“flake” or “lump or chip”) based on the ore’s crystallinity, grain-size, and morphology. All graphite deposits mined today formed from metamorphism of carbonaceous sedimentary rocks, and the ore type is determined by the geologic setting. Thermally metamorphosed coal is the usual source of amorphous graphite. Disseminated crystalline flake graphite is mined from carbonaceous metamorphic rocks, and lump or chip graphite is mined from veins in high-grade metamorphic regions. Because graphite is chemically inert and nontoxic, the main environmental concerns associated with graphite mining are inhalation of fine-grained dusts, including silicate and sulfide mineral particles, and hydrocarbon vapors produced during the mining and processing of ore. Synthetic graphite is manufactured from hydrocarbon sources using high-temperature heat treatment, and it is more expensive to produce than natural graphite.Production of natural graphite is dominated by China, India, and Brazil, which export graphite worldwide. China provides approximately 67 percent of worldwide output of natural graphite, and, as the dominant exporter, has the ability to set world prices. China has significant graphite reserves, and

  1. Looking Northwest at Furnace Control Panels and Gas Control Furnace ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Northwest at Furnace Control Panels and Gas Control Furnace in Red Room Within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  2. Nanoscale multilayer Me-graphite coatings grown by combined steered cathodic arc/unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kok, Yin Nan

    Low friction, nanoscale multilayer carbon/chromium (C/Cr) coatings were successfully deposited by the combined steered cathodic arc/unbalanced magnetron sputtering technique (also known as Arc Bond Sputtering or ABS) using a Hauzer HTC 1000-4 PVD coater. The work described in this thesis has been directed towards understanding the effect of ion irradiation on the composition, microstructure, and functional properties of C/Cr coatings. This has been achieved by varying the bias voltage, U[B], over a wide range between -65 V and -550 V. C/Cr coatings were deposited in three major steps: (i) Cr+ ion etching using a steered cathodic arc discharge at a substrate bias voltage of -1200 V, (ii) deposition of a 0.25 mum thick CrN base layer by reactive unbalanced magnetron sputtering to enhance the adhesion, and (iii) deposition of C/Cr coatings by unbalanced magnetron sputtering from three graphite targets and one chromium target at 260°C. The coatings were deposited at different bias voltages (U[B]) from -65 V to -550 V in a non-reactive Ar atmosphere.C/Cr coatings exhibit excellent adhesion (critical load, L[C] > 70 N), with hardness ranging from 6.8 to 25.1 GPa depending on the bias voltage. The friction coefficient of C/Cr coatings was found to reduce from 0.22 to 0.16 when the bias voltage was increased from U[B] = -65 to -95 V. The relevance of C/Cr coatings for actual practical applications was demonstrated using dry high-speed milling trials on automotive aluminium alloy (Al-Si8Cu3Fe). The results showed that C/Cr coated cemented carbide ball-nose end mills prepared at U[B] = -95 V (70 at.% C, 30 at.% Cr) enhance the tool performance and the tool life compared to the uncoated tools by a factor of two, suggesting the potential for use in dry high-speed machining of "sticky" alloys such as aluminum. Different film morphologies were observed in the investigated bias voltage range between U[B] = -65 and -550 V using XTEM. With increasing bias voltage from U[B] = -65

  3. Carbon-free induction furnace

    DOEpatents

    Holcombe, Cressie E.; Masters, David R.; Pfeiler, William A.

    1985-01-01

    An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  4. Oxidation Character of Carbon Composite Bricks Used in Blast Furnace

    NASA Astrophysics Data System (ADS)

    Zuo, Haibin; Wang, Cong; Zhang, Jianliang; Jiao, Kexin; Zhao, Yongan

    The carbon composite brick is a new refractory used in blast furnace hearth and bottom. It caused wide attention due to its high thermal conductivity and low erosion by molten iron. In this paper, chemical constituents, SEM-EDS and X-ray diffraction were carried out in order to understand reaction mechanisms. A series of experiments of oxidation resistance characteristics were made. The oxidation mechanisms of carbon composite bricks in the presence of air were analyzed. According to the analysis on many experimental results, the oxidation process of carbon composite bricks under different temperatures were controlled by different mechanisms. In the condition of high temperature, SiO2 as oxidation product hindered the diffusion of O2, and reduced the oxidation loss of graphite in the internal.

  5. Non-carbon induction furnace

    DOEpatents

    Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

    1984-01-06

    The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  6. Study of The Maximum Uptake Capacity on Various Sizes of Electric Arc Furnace Slag in Phosphorus Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Afnizan, W. M. W.; Hamdan, R.; Othman, N.

    2016-07-01

    The high content of uncontrolled phosphorus concentration in wastewater has emerged as a major problem recently. The excessive amount of phosphorus that is originated from domestic waste, unproper treated waste from septic tanks, as well as agricultural activities have led to the eutrophication problem. Therefore, a laboratory experiment was initiated to evaluate the potential of the Electric Arc Furnace Slag (EAFS), a by-product waste from steel making industry in removing phosphorus concentrations in aqueous solutions. In this work several particle sizes ranging from (9.5-12.4 mm, 12.5-15.9 mm, 16.0-19.9 mm, 20.0-24.9 mm, 25-37.4 mm) with a known weight (20±0.28 g, 40±0.27 g, 60±0.30 g, 80±0.29 g and 100±0.38 g) were used to study the effect of different particle sizes towards phosphorus removal. Each particle size of EAFS was shaken in synthetic phosphorus solutions (10 mg/l, 20 mg/l, 30 mg/l, 40 mg/l and 50 mg/l) at a contact time of 2 hours. Final concentrations of phosphorus were sampled and the measurement was made using WESTCO Discrete Analyzer equipment. Results showed that the highest of the maximum uptake capacity of each EAFS particle size distribution achieved at 0.287, 0.313, 0.266, 0.241 and 0.25 mg/g as particle size range was varied from 9.5-12.4 mm to 25-37.4 mm. In conclusion, the maximum uptake capacity of each EAFS mostly was determined to occur at adsorbent weight of 20 to 40 g in most conditions.

  7. Simultaneous multielement atomic absorption spectrometry with graphite furnace atomization

    NASA Astrophysics Data System (ADS)

    Harnly, James M.; Miller-Ihli, Nancy J.; O'Haver, Thomas C.

    The extended analytical range capability of a simultaneous multielement atomic absorption continuum source spectrometer (SIMAAC) was tested for furnace atomization with respect to the signal measurement mode (peak height and area), the atomization mode (from the wall or from a platform), and the temperature program mode (stepped or ramped atomization). These parameters were evaluated with respect to the shapes of the analytical curves, the detection limits, carry-over contamination and accuracy. Peak area measurements gave more linear calibration curves. Methods for slowing the atomization step heating rate, the use of a ramped temperature program or a platform, produced similar calibration curves and longer linear ranges than atomization with a stepped temperature program. Peak height detection limits were best using stepped atomization from the wall. Peak area detection limits for all atomization modes were similar. Carry-over contamination was worse for peak area than peak height, worse for ramped atomization than stepped atomization, and worse for atomization from a platform than from the wall. Accurate determinations (100 ± 12% for Ca, Cu, Fe, Mn, and Zn in National Bureau of Standards' Standard Reference Materials Bovine Liver 1577 and Rice Flour 1568 were obtained using peak area measurements with ramped atomization from the wall and stepped atomization from a platform. Only stepped atomization from a platform gave accurate recoveries for K. Accurate recoveries, 100 ± 10%, with precisions ranging from 1 to 36 % (standard deviation), were obtained for the determination of Al, Co, Cr, Fe, Mn, Mo, Ni. Pb, V and Zn in Acidified Waters (NBS SRM 1643 and 1643a) using stepped atomization from a platform.

  8. CaI and SrI molecules for iodine determination by high-resolution continuum source graphite furnace molecular absorption spectrometry: Greener molecules for practical application.

    PubMed

    Zanatta, Melina Borges Teixeira; Nakadi, Flávio Venâncio; da Veiga, Márcia Andreia Mesquita Silva

    2018-03-01

    A new method to determine iodine in drug samples by high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) has been developed. The method measures the molecular absorption of a diatomic molecule, CaI or SrI (less toxic molecule-forming reagents), at 638.904 or 677.692nm, respectively, and uses a mixture containing 5μg of Pd and 0.5μg of Mg as chemical modifier. The method employs pyrolysis temperatures of 1000 and 800°C and vaporization temperatures of 2300 and 2400°C for CaI and SrI, respectively. The optimized amounts of Ca and Sr as molecule-forming reagents are 100 and 150µg, respectively. On the basis of interference studies, even small chlorine concentrations reduce CaI and SrI absorbance significantly. The developed method was used to analyze different commercial drug samples, namely thyroid hormone pills with three different iodine amounts (15.88, 31.77, and 47.66µg) and one liquid drug with 1% m v -1 active iodine in their compositions. The results agreed with the values informed by the manufacturers (95% confidence level) regardless of whether CaI or SrI was determined. Therefore, the developed method is useful for iodine determination on the basis of CaI or SrI molecular absorption. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Persistent sample circulation microextraction combined with graphite furnace atomic absorption spectroscopy for trace determination of heavy metals in fish species marketed in Kermanshah, Iran, and human health risk assessment.

    PubMed

    Safari, Yahya; Karimaei, Mostafa; Sharafi, Kiomars; Arfaeinia, Hossein; Moradi, Masoud; Fattahi, Nazir

    2018-06-01

    Persistent sample circulation microextraction (PSCME) combined with graphite furnace atomic absorption spectrometry (GFAAS) was developed as a high pre-concentration technique for the determination of heavy metals in fish species. In this method, a few microliters of organic solvent (40.0 µL carbon tetrachloride) was transferred to the bottom of a conical sample cup. Then 10.0 mL of aqueous solution was transformed to fine droplets while passing through the organic solvent. At this stage, metal-ligand hydrophobic complex was extracted into the organic solvent. After extraction, 20 µL of extraction solvent was injected into the graphite tube using an auto-sampler. Under optimal conditions, enrichment factors and enhancement factor were in the range of 180-240 and 155-214, respectively. The calibration curves were linear in the range of 0.03-200 µg kg -1 and the limits of detection (LODs) were in the range of 0.01-0.05 µg kg -1 . Repeatability (intra-day) and reproducibility (inter-day) for 0.50 µg L -1 Hg and 0.10 µg L -1 Cd and Pb were in the range of 3.1-4.2% (n = 7) and 4.3-6.1% (n = 7), respectively. Potential human health risk assessment was conducted by calculating estimated weekly intake (EWI) of the metals from eating fish and comparison of these values with provisional tolerable weekly intake (PTWI) values. EWI data for the studied metals through fish consumption were lower than the PTWI values. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. FURNACE NO. 1, THE ORIGINAL FURNACE OF THE GLASS FACTORY; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FURNACE NO. 1, THE ORIGINAL FURNACE OF THE GLASS FACTORY; TO THE LEFT IS A GLORY HOLE, POSSIBLY DATING FROM THE NINETEENTH CENTURY; THE SQUARE-SHAPED GLORY HOLE TO THE RIGHT PROBABLY DATES FROM THE 1950S. - Westmoreland Glass Company, Seventh & Kier Streets, Grapeville, Westmoreland County, PA

  11. Novel ion imprinted magnetic mesoporous silica for selective magnetic solid phase extraction of trace Cd followed by graphite furnace atomic absorption spectrometry detection

    NASA Astrophysics Data System (ADS)

    Zhao, Bingshan; He, Man; Chen, Beibei; Hu, Bin

    2015-05-01

    Determination of trace Cd in environmental, biological and food samples is of great significance to toxicological research and environmental pollution monitoring. While the direct determination of Cd in real-world samples is difficult due to its low concentration and the complex matrix. Herein, a novel Cd(II)-ion imprinted magnetic mesoporous silica (Cd(II)-II-MMS) was prepared and was employed as a selective magnetic solid-phase extraction (MSPE) material for extraction of trace Cd in real-world samples followed by graphite furnace atomic absorption spectrometry (GFAAS) detection. Under the optimized conditions, the detection limit of the proposed method was 6.1 ng L- 1 for Cd with the relative standard deviation (RSD) of 4.0% (c = 50 ng L- 1, n = 7), and the enrichment factor was 50-fold. To validate the proposed method, Certified Reference Materials of GSBZ 50009-88 environmental water, ZK018-1 lyophilized human urine and NIES10-b rice flour were analyzed and the determined values were in a good agreement with the certified values. The proposed method exhibited a robust anti-interference ability due to the good selectivity of Cd(II)-II-MMS toward Cd(II). It was successfully employed for the determination of trace Cd(II) in environmental water, human urine and rice samples with recoveries of 89.3-116%, demonstrating that the proposed method has good application potential in real world samples with complex matrix.

  12. Determination of macro and trace elements in multivitamin dietary supplements by high-resolution continuum source graphite furnace atomic absorption spectrometry with slurry sampling.

    PubMed

    Krawczyk, Magdalena

    2014-01-01

    In this research, three different commercially available multivitamin dietary supplements were analyzed by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS) with slurry sampling. The concentrations of Cr, Cu, Fe, Mn, and Se were determined and compared to the amounts stated by producers. The safety of multivitamin dietary supplements depends on various factors including the manufacturing process and the purity and origins of the raw ingredients. For this reason, this research determined concentrations of several toxic elements (As, Cd, and Pb). Microwave-assisted high pressure Teflon bomb digestion was used to determine total amounts of elements in samples. Samples were prepared as slurries at a concentration of 0.1% (m/v) for macro elements (Cr, Cu, Fe, Mn, and Se) and at a concentration of % (m/v) for trace elements (As, Cd, and Pb) in acidic media (3M HNO3). The influence of acid concentration, Triton X-100 addition, sonication time, and sonication power on absorbance was investigated. The accuracy of this method was validated by analyses of NRCC LUTS-1 (Lobster hepatopancreas), NRCC DORM-1 (Dogfish Muscle), NRCC DOLT-2 (Dogfish Liver), NBS SRM 1570 (Spinach Leaves) and NBS SRM 1573 (Tomato Leaves) certified reference materials. The measured elements contents in these reference materials (except NRCC DOLT-2) were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Determination of Ultra-trace Rhodium in Water Samples by Graphite Furnace Atomic Absorption Spectrometry after Cloud Point Extraction Using 2-(5-Iodo-2-Pyridylazo)-5-Dimethylaminoaniline as a Chelating Agent.

    PubMed

    Han, Quan; Huo, Yanyan; Wu, Jiangyan; He, Yaping; Yang, Xiaohui; Yang, Longhu

    2017-03-24

    A highly sensitive method based on cloud point extraction (CPE) separation/preconcentration and graphite furnace atomic absorption spectrometry (GFAAS) detection has been developed for the determination of ultra-trace amounts of rhodium in water samples. A new reagent, 2-(5-iodo-2-pyridylazo)-5-dimethylaminoaniline (5-I-PADMA), was used as the chelating agent and the nonionic surfactant TritonX-114 was chosen as extractant. In a HAc-NaAc buffer solution at pH 5.5, Rh(III) reacts with 5-I-PADMA to form a stable chelate by heating in a boiling water bath for 10 min. Subsequently, the chelate is extracted into the surfactant phase and separated from bulk water. The factors affecting CPE were investigated. Under the optimized conditions, the calibration graph was linear in the range of 0.1-6.0 ng/mL, the detection limit was 0.023 ng/mL for rhodium and relative standard deviation was 3.67% ( c = 1.0 ng/mL, n = 11).The method has been applied to the determination of trace rhodium in water samples with satisfactory results.

  14. Cupola Furnace Computer Process Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seymour Katz

    2004-12-31

    The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloymore » elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).« less

  15. Automatic Control of Arc Process for Making Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Pulumbarit, Robert B.; Victor, Joe

    2004-01-01

    An automatic-control system has been devised for a process in which carbon nanotubes are produced in an arc between a catalyst-filled carbon anode and a graphite cathode. The control system includes a motor-driven screw that adjusts the distance between the electrodes. The system also includes a bridge circuit that puts out a voltage proportional to the difference between (1) the actual value of potential drop across the arc and (2) a reference value between 38 and 40 V (corresponding to a current of about 100 A) at which the yield of carbon nanotubes is maximized. Utilizing the fact that the potential drop across the arc increases with the interelectrode gap, the output of the bridge circuit is fed to a motor-control circuit that causes the motor to move the anode toward or away from the cathode if the actual potential drop is more or less, respectively, than the reference potential. Thus, the system regulates the interelectrode gap to maintain the optimum potential drop. The system also includes circuitry that records the potential drop across the arc and the relative position of the anode holder as function of time.

  16. Comparison of two methods for blood lead analysis in cattle: graphite-furnace atomic absorption spectrometry and LeadCare(R) II system.

    PubMed

    Bischoff, Karyn; Gaskill, Cynthia; Erb, Hollis N; Ebel, Joseph G; Hillebrandt, Joseph

    2010-09-01

    The current study compared the LeadCare(R) II test kit system with graphite-furnace atomic absorption spectrometry for blood lead (Pb) analysis in 56 cattle accidentally exposed to Pb in the field. Blood Pb concentrations were determined by LeadCare II within 4 hr of collection and after 72 hr of refrigeration. Blood Pb concentrations were determined by atomic absorption spectrometry, and samples that were coagulated (n = 12) were homogenized before analysis. There was strong rank correlation (R(2) = 0.96) between atomic absorption and LeadCare II (within 4 hr of collection), and a conversion formula was determined for values within the observed range (3-91 mcg/dl, although few had values >40 mcg/dl). Median and mean blood pb concentrations for atomic absorption were 7.7 and 15.9 mcg/dl, respectively; for LeadCare II, medians were 5.2 mcg/dl at 4 hr and 4.9 mcg/dl at 72 hr, and means were 12.4 and 11.7, respectively. LeadCare II results at 4 hr strongly correlated with 72 hr results (R(2) = 0.96), but results at 72 hr were lower (P < 0.01). There was no significant difference between coagulated and uncoagulated samples run by atomic absorption. Although there have been several articles that compared LeadCare with other analytical techniques, all were for the original system, not LeadCare II. The present study indicated that LeadCare II results correlated well with atomic absorption over a wide range of blood Pb concentrations and that refrigerating samples for up to 72 hr before LeadCare II analysis was acceptable for clinical purposes.

  17. Baking and helium glow discharge cleaning of SST-1 Tokamak with graphite plasma facing components

    NASA Astrophysics Data System (ADS)

    Semwal, P.; Khan, Z.; Raval, D. C.; Dhanani, K. R.; George, S.; Paravastu, Y.; Prakash, A.; Thankey, P.; Ramesh, G.; Khan, M. S.; Saikia, P.; Pradhan, S.

    2017-04-01

    Graphite plasma facing components (PFCs) were installed inside the SST-1 vacuum vessel. Prior to installation, all the graphite tiles were baked at 1000 °C in a vacuum furnace operated below 1.0 × 10-5 mbar. However due to the porous structure of graphite, they absorb a significant amount of water vapour from air during the installation process. Rapid desorption of this water vapour requires high temperature bake-out of the PFCs at ≥ 250 °C. In SST-1 the PFCs were baked at 250 °C using hot nitrogen gas facility to remove the absorbed water vapour. Also device with large graphite surface area has the disadvantage that a large quantity of hydrogen gets trapped inside it during plasma discharges which makes density control difficult. Helium glow discharge cleaning (He-GDC) effectively removes this stored hydrogen as well as other impurities like oxygen and hydrocarbon within few nano-meters from the surface by particle induced desorption. Before plasma operation in SST-1 tokamak, both baking of PFCs and He-GDC were carried out so that these impurities were removed effectively. The mean desorption yield of hydrogen was found to be 0.24. In this paper the results of baking and He-GDC experiments of SST-1 will be presented in detail.

  18. Quantitative imaging of carbon dimer precursor for nanomaterial synthesis in the carbon arc

    DOE PAGES

    Vekselman, V.; Khrabry, A.; Kaganovich, I.; ...

    2018-02-06

    Delineating the dominant processes responsible for nanomaterial synthesis in a plasma environment requires measurements of the precursor species contributing to the growth of nanostructures. Here, we performed comprehensive measurements of spatial and temporal profiles of carbon dimers (C 2) in sub-atmospheric-pressure carbon arc by laser-induced fluorescence. Measured spatial profiles of C 2 coincide with the growth region of carbon nanotubes (Fang et al 2016 Carbon 107 273–80) and vary depending on the arc operation mode, which is determined by the discharge current and the ablation rate of the graphite anode. The C 2 density profile exhibits large spatial and timemore » variations due to motion of the arc core. A comparison of the experimental data with the 2D simulation results of self-consistent arc modeling shows good agreement. The model predicts well the main processes determining spatial profiles of carbon dimers (C 2).« less

  19. Quantitative imaging of carbon dimer precursor for nanomaterial synthesis in the carbon arc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vekselman, V.; Khrabry, A.; Kaganovich, I.

    Delineating the dominant processes responsible for nanomaterial synthesis in a plasma environment requires measurements of the precursor species contributing to the growth of nanostructures. Here, we performed comprehensive measurements of spatial and temporal profiles of carbon dimers (C 2) in sub-atmospheric-pressure carbon arc by laser-induced fluorescence. Measured spatial profiles of C 2 coincide with the growth region of carbon nanotubes (Fang et al 2016 Carbon 107 273–80) and vary depending on the arc operation mode, which is determined by the discharge current and the ablation rate of the graphite anode. The C 2 density profile exhibits large spatial and timemore » variations due to motion of the arc core. A comparison of the experimental data with the 2D simulation results of self-consistent arc modeling shows good agreement. The model predicts well the main processes determining spatial profiles of carbon dimers (C 2).« less

  20. Formation mechanism of the protective layer in a blast furnace hearth

    NASA Astrophysics Data System (ADS)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Xu, Meng; Liu, Feng

    2015-10-01

    A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium- bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, and distribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each component. Finally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layer mainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phase whose major crystalline phase is magnesium melilite (Ca2MgSi2O7) and the main source of the slag phase is coke ash. It is clearly determined that solid particles such as graphite, Ti(C,N) and MgAl2O4 play an important role in the formation of the protective layer, and the key factor for promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.

  1. Method for producing dustless graphite spheres from waste graphite fines

    DOEpatents

    Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  2. Investigations on phosphorus recovery and reuse as soil amendment from electric arc furnace slag filters.

    PubMed

    Bird, Simon C; Drizo, Aleksandra

    2009-11-01

    Electric arc furnace (EAF) steel slag has been identified as an effective filter material for the removal of phosphorus (P) from both point and non-point sources. To determine the feasibility of land-applying P saturated EAF steel slag this study was undertaken to investigate (i) saturated EAF steel slag material's potential as a P fertilizer or soil amendment and (ii) P desorption and metals leachate from saturated EAF steel slag material to surface runoff. Medicago sativa (alfalfa) was planted in a nutrient depleted washed sand media. Phosphorus was added either as saturated EAF steel slag or as a standard commercial phosphate fertilizer in order to assess the plant availability of the P from saturated EAF steel slag. Four different P application levels were tested: a low (20 lbs acre furrow slice(-1) (5.5 g P m(-3))) two medium (40 and 60 lbs. acre f.s.(-1) (11 and 16.5 g P m(-3))) and a high (120 lbs. acre f.s.(-1) (33 g P m(-3))). The above-ground biomass of half of the plants was harvested after 5 weeks and the second half at 10 weeks. All treatments regardless of the P source used showed high rates of germination. At the first harvest period (5 weeks) significantly higher above-ground biomass (p < 0.01) was seen at the 3 highest P amendment rates in treatments with triple super phosphate fertilizer (TSP) than with EAF steel slag. However, by the second harvest (10 weeks) only the highest amendment rate of TSP showed a significantly higher amount of biomass (p < 0.01), suggesting that EAF steel slag might be an effective slow release P source. In a second experiment, a rain simulator was used to assess desorption of DRP, TP and metals from a saturated and semi-saturated EAF steel slag. The results revealed that the total amounts of DRP and TP released to surface runoff from EAF steel slag were negligible when compared to the total quantities of P retained by this material. Overall the results from this study demonstrated that once the EAF steel slag filter

  3. Structural disorder of graphite and implications for graphite thermometry

    NASA Astrophysics Data System (ADS)

    Kirilova, Martina; Toy, Virginia; Rooney, Jeremy S.; Giorgetti, Carolina; Gordon, Keith C.; Collettini, Cristiano; Takeshita, Toru

    2018-02-01

    Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25 megapascal (MPa) and aseismic velocities of 1, 10 and 100 µm s-1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  4. Tube furnace

    DOEpatents

    Foster, Kenneth G.; Frohwein, Eugene J.; Taylor, Robert W.; Bowen, David W.

    1991-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  5. Variable frequency microwave furnace system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bible, D.W.; Lauf, R.J.

    1994-06-14

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal inputmore » to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.« less

  6. Variable frequency microwave furnace system

    DOEpatents

    Bible, D.W.; Lauf, R.J.

    1994-06-14

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

  7. Electrostatic Levitation Furnace for the ISS

    NASA Technical Reports Server (NTRS)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  8. 46 CFR 164.009-11 - Furnace apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Furnace apparatus. 164.009-11 Section 164.009-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS... apparatus. (a) The test furnace apparatus consists of a furnace tube, stabilizer, draft shield, furnace...

  9. 46 CFR 164.009-11 - Furnace apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Furnace apparatus. 164.009-11 Section 164.009-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS... apparatus. (a) The test furnace apparatus consists of a furnace tube, stabilizer, draft shield, furnace...

  10. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of low-level silver by graphite furnace atomic absorption spectrophotometry

    USGS Publications Warehouse

    Damrau, D.L.

    1993-01-01

    Increased awareness of the quality of water in the United States has led to the development of a method for determining low levels (0.2-5.0 microg/L) of silver in water samples. Use of graphite furnace atomic absorption spectrophotometry provides a sensitive, precise, and accurate method for determining low-level silver in samples of low ionic-strength water, precipitation water, and natural water. The minimum detection limit determined for low-level silver is 0.2 microg/L. Precision data were collected on natural-water samples and SRWS (Standard Reference Water Samples). The overall percent relative standard deviation for natural-water samples with silver concentrations more than 0.2 microg/L was less than 40 percent throughout the analytical range. For the SRWS with concentrations more than 0.2 microg/L, the overall percent relative standard deviation was less than 25 percent throughout the analytical range. The accuracy of the results was determined by spiking 6 natural-water samples with different known concentrations of the silver standard. The recoveries ranged from 61 to 119 percent at the 0.5-microg/L spike level. At the 1.25-microg/L spike level, the recoveries ranged from 92 to 106 percent. For the high spike level at 3.0 microg/L, the recoveries ranged from 65 to 113 percent. The measured concentrations of silver obtained from known samples were within the Branch of Quality Assurance accepted limits of 1 1/2 standard deviations on the basis of the SRWS program for Inter-Laboratory studies.

  11. The adaption of coal quality to furnace structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.; Shun, X.

    1996-12-31

    This paper gives the research result of coal quality adaption to furnace structure. The designing of a furnace is based on the coal quality that the furnace would fire. If the coal fired in the furnace differs from the design coal, there would be a lot of problems such as flame stability, coal burn-out rate and slagging problem for the furnace during its operation. In order to know the adaptional range of coal quality for an existing furnace the authors had chosen three different furnaces and 18 kinds of coals in their research work. To understand the coal combustion characteristicsmore » they introduce different indexes to show different processes of coal combustion. These indexes include Fz index which demonstrates the coal combustion based on its utility analyzed result, flame stability index, combustion characteristic index and char burn-out index which are based on the analyzed result of thermogravimetric characteristic. As a furnace is built up and set into operation its flame stability, burn-out rate and ash deposition are definite. If a furnace`s fuel changes its structure characteristics and operation condition will change. A relation between coal quality to furnace structure is based on a lot of regressional analysis results of existing furnaces and their fuels. Based on this relation the adaption of coal quality for a furnace are defined and the kinds of coal furnace fired are optimized to its design fuel.« less

  12. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOEpatents

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  13. [Utilization of a transferred arc-plasma rotating furnace to melt and found oxide mixtures at around 2000 degrees C (presentation of the film VULCANO)].

    PubMed

    Cognet, G; Laffont, G; Jegou, C; Pierre, J; Journeau, C; Sudreau, F; Roubaud, A

    1999-03-01

    Unless security measures are taken, a hypothetical accident resulting from the loss of the cooling circuit in a pressurized water nuclear reactor could cause the heart of the reactor to melt forming a bath, called the corium, mainly composed of uranium, zirconium and iron oxides as well as the structural steel. This type of situation would be similar to the Three Mile Island accident in 1979. In order to limit the consequences of such an accident, the Atomic Energy Commission has implemented a large study program [1] to improve our understanding of corium behavior and determine solutions to stabilize it and avoid its propagation outside the unit. The VULCANO installation was designed in order to perform the trials using real materials which are indispensable to study all the phenomena involved. A film on the VULCANO trials was presented at the Henri Moissan commemorative session organized by the French National Academy of Pharmacy. The rotating furnace used to melt and found the mixture simulating the corium is a direct descendant of the pioneer work by Henri Moissan. An electrical arc is directed at the center of the load to melt which is maintained against the walls by centrifugal force. After six high-temperature trials performed with compositions without uranium oxide, the first trial with real corium showed that the magma spread rather well, a result which is quite favorable for cooling.

  14. Determination of dietary cadmium-induced metallothioneins in rabbit kidneys and cadmium in metallothioneins by anion-exchange high-performance liquid chromatography coupled with graphite furnace atomic absorption spectrometry.

    PubMed

    Peng, S; Shan, X Q; Zheng, Y; Jin, L Z; Xu, W B

    1991-12-06

    A rapid method is described for the determination of dietary cadmium-induced metallothioneins (MTs) in rabbit kidneys by anion-exchange high-performance liquid chromatography. Rabbit kidney MT-I and MT-II were eluted at ca. 15.0 and 18.8 min, respectively, from a DEAE-5PW anion-exchange column with a Tris-HCl buffer (0.01-0.25 M, pH 8.6) and detected by ultraviolet absorbance at 254 nm. A standard calibration curve was constructed using purified standard MT isoforms, which demonstrated an excellent linear correlation between UV absorbance peak heights and the amounts of MT isoforms. Feeding a dose of cadmium for some days resulted in an increase in MT concentrations in rabbit kidneys, but not in the livers. The cadmium concentrations in MT-I and MT-II elutions were determined by graphite furnace atomic absorption spectrometry. MT-I and MT-II showed some differences associated with the oral intake of cadmium. Dietary cadmium also caused zinc to accumulate in kidneys to some extent. The effects of dietary oleic acid on the synthesis of MTs were also studied. Based on the method of standard additions, the recovery of MTs exceeded 93% and replicated injection of samples yielded a relative standard deviation of 2.4% at an MT level of 280 micrograms/g.

  15. Variable frequency microwave furnace system

    DOEpatents

    Bible, Don W.; Lauf, Robert J.

    1994-01-01

    A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  16. 40 CFR 52.1173 - Control strategy: Particulates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Electric Arc Furnaces, Sintering Plants, Blast Furnaces, Heating and Reheating Furnaces. (2) Rules 336.1371... Basic Oxygen Furnaces, Electric Arc Furnaces, Sintering Plants, Blast Furnaces and Heating and Reheating... the receiving car itself during the pushing operation; (b) in the phrase “eight consecutive trips...

  17. 40 CFR 52.1173 - Control strategy: Particulates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Electric Arc Furnaces, Sintering Plants, Blast Furnaces, Heating and Reheating Furnaces. (2) Rules 336.1371... Basic Oxygen Furnaces, Electric Arc Furnaces, Sintering Plants, Blast Furnaces and Heating and Reheating... the receiving car itself during the pushing operation; (b) in the phrase “eight consecutive trips...

  18. 40 CFR 52.1173 - Control strategy: Particulates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Electric Arc Furnaces, Sintering Plants, Blast Furnaces, Heating and Reheating Furnaces. (2) Rules 336.1371... Basic Oxygen Furnaces, Electric Arc Furnaces, Sintering Plants, Blast Furnaces and Heating and Reheating... the receiving car itself during the pushing operation; (b) in the phrase “eight consecutive trips...

  19. 40 CFR 52.1173 - Control strategy: Particulates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Electric Arc Furnaces, Sintering Plants, Blast Furnaces, Heating and Reheating Furnaces. (2) Rules 336.1371... Basic Oxygen Furnaces, Electric Arc Furnaces, Sintering Plants, Blast Furnaces and Heating and Reheating... the receiving car itself during the pushing operation; (b) in the phrase “eight consecutive trips...

  20. The radioactivity estimation of 14C and 3H in graphite waste samples of the KRR-2.

    PubMed

    Reyoung Kim, Hee

    2013-09-01

    The radioactivity of (14)C and (3)H in graphite samples from the dismantled Korea Research Reactor-2 (the KRR-2) site was analyzed by high-temperature oxidation and liquid scintillation counting, and the graphite waste was suggested to be disposed of as a low-level radioactive waste. The graphite samples were oxidized at a high temperature of 800 °C, and their counting rates were measured by using a liquid scintillation counter (LSC). The combustion ratio of the graphite was about 99% on the sample with a maximum weight of 1g. The recoveries from the combustion furnace were around 100% and 90% in (14)C and (3)H, respectively. The minimum detectable activity was 0.04-0.05 Bq/g for the (14)C and 0.13-0.15 Bq/g for the (3)H at the same background counting time. The activity of (14)C was higher than that of (3)H over all samples with the activity ratios of the (14)C to (3)H, (14)C/(3)H, being between 2.8 and 25. The dose calculation was carried out from its radioactivity analysis results. The dose estimation gave a higher annual dose than the domestic legal limit for a clearance. It was thought that the sampled graphite waste from the dismantled research reactor was not available for reuse or recycling and should be monitored as low-level radioactive waste. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Displacement-dispersive liquid-liquid microextraction based on solidification of floating organic drop of trace amounts of palladium in water and road dust samples prior to graphite furnace atomic absorption spectrometry determination.

    PubMed

    Ghanbarian, Maryam; Afzali, Daryoush; Mostafavi, Ali; Fathirad, Fariba

    2013-01-01

    A new displacement-dispersive liquid-liquid microextraction method based on the solidification of floating organic drop was developed for separation and preconcentration of Pd(ll) in road dust and aqueous samples. This method involves two steps of dispersive liquid-liquid microextraction based on solidification. In Step 1, Cu ions react with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which is extracted by dispersive liquid-liquid microextraction based on a solidification procedure using 1-undecanol (extraction solvent) and ethanol (dispersive solvent). In Step 2, the extracted complex is first dispersed using ethanol in a sample solution containing Pd ions, then a dispersive liquid-liquid microextraction based on a solidification procedure is performed creating an organic drop. In this step, Pd(ll) replaces Cu(ll) from the pre-extracted Cu-DDTC complex and goes into the extraction solvent phase. Finally, the Pd(ll)-containing drop is introduced into a graphite furnace using a microsyringe, and Pd(ll) is determined using atomic absorption spectrometry. Several factors that influence the extraction efficiency of Pd and its subsequent determination, such as extraction and dispersive solvent type and volume, pH of sample solution, centrifugation time, and concentration of DDTC, are optimized.

  2. Magnetic solid-phase extraction combined with graphite furnace atomic absorption spectrometry for speciation of Cr(III) and Cr(VI) in environmental waters.

    PubMed

    Jiang, Hong-mei; Yang, Ting; Wang, Yan-hong; Lian, Hong-zhen; Hu, Xin

    2013-11-15

    A new approach of magnetic solid phase extraction (MSPE) coupled with graphite furnace atomic absorption spectrometry (GFAAS) has been developed for the speciation of Cr(III) and Cr(VI) using zincon-immobilized silica-coated magnetic Fe3O4 nanoparticles (Zincon-Si-MNPs) as the MSPE absorbent. Cr(III) was quantitatively reserved on the absorbent at pH 9.1 while total Cr was reserved at pH 6.5. The absorbed Cr species were eluted by using 2 mol/L HCl and detected by GFAAS. The concentration of Cr(VI) could be calculated by subtracting Cr(III) from total Cr. All the parameters affecting the separation and extraction efficiency of Cr species such as pH, extraction time, concentration and volume of eluent, sample volume and influence of co-existing ions were systematically examined and the optimized conditions were established accordingly. The detection limit (LOD) of the method was 0.016 and 0.011 ng mL(-1) for Cr(III) and Cr(VI), respectively, with the enrichment factor of 100 and 150. The precisions of this method (Relative standard deviation, RSD, n=7) for Cr(III) and Cr(VI) at 0.1 ng mL(-1) were 6.0% and 6.2%, respectively. In order to validate the proposed method, a certified reference material of environmental water was analyzed, and the result of Cr speciation was in good agreement with the certified value. This MSPE-GFAAS method has been successfully applied for the speciation of Cr(III) and Cr(VI) in lake and tap waters with the recoveries of 88-109% for the spiked samples. Moreover, the MSPE separation mechanism of Cr(III) and Cr(VI) based on their adsorption-desorption on Zincon-Si-MNPs has been explained through various spectroscopic characterization. © 2013 Elsevier B.V. All rights reserved.

  3. Study on the Fluid Flow Characteristics of Coherent Jets with CO2 and O2 Mixed Injection in Electric Arc Furnace Steelmaking Processes

    NASA Astrophysics Data System (ADS)

    Wei, Guangsheng; Zhu, Rong; Wu, Xuetao; Yang, Lingzhi; Dong, Kai; Cheng, Ting; Tang, Tianping

    2018-06-01

    As an efficient oxygen supplying technology, coherent jets are widely applied in electric arc furnace (EAF) steelmaking processes to strengthen chemical energy input, speed up smelting rhythm, and promote the uniformity of molten bath temperature and compositions. Recently, the coherent jet with CO2 and O2 mixed injection (COMI) was proposed and demonstrated great application potentiality in reducing the dust production in EAF steelmaking. In the present study, based on the eddy dissipation concept model, a computational fluid dynamics model of coherent jets with COMI was built with the overall and detailed chemical kinetic mechanisms (GRI-Mech 3.0). Compared with one-step combustion reaction, GRI-Mech 3.0 consists of 325 elementary reactions with 53 components and can predict more accurate results. The numerical simulation results were validated by the combustion experiment data. The jet behavior and the fluid flow characteristics of coherent jets with COMI under 298 K and 1700 K (25 °C and 1427 °C) were studied and the results showed that for coherent jets with COMI, the chemical effect of CO2 significantly weakened the shrouding combustion reactions of CH4 and the relative importance of the chemical effect of CO2 increases with CO2 concentration increasing. The potential core length of coherent jet decreases with the volume fraction of CO2 increasing. Moreover, it also can be found that the potential core length of coherent jets was prolonged with higher ambient temperature.

  4. Study on the Fluid Flow Characteristics of Coherent Jets with CO2 and O2 Mixed Injection in Electric Arc Furnace Steelmaking Processes

    NASA Astrophysics Data System (ADS)

    Wei, Guangsheng; Zhu, Rong; Wu, Xuetao; Yang, Lingzhi; Dong, Kai; Cheng, Ting; Tang, Tianping

    2018-03-01

    As an efficient oxygen supplying technology, coherent jets are widely applied in electric arc furnace (EAF) steelmaking processes to strengthen chemical energy input, speed up smelting rhythm, and promote the uniformity of molten bath temperature and compositions. Recently, the coherent jet with CO2 and O2 mixed injection (COMI) was proposed and demonstrated great application potentiality in reducing the dust production in EAF steelmaking. In the present study, based on the eddy dissipation concept model, a computational fluid dynamics model of coherent jets with COMI was built with the overall and detailed chemical kinetic mechanisms (GRI-Mech 3.0). Compared with one-step combustion reaction, GRI-Mech 3.0 consists of 325 elementary reactions with 53 components and can predict more accurate results. The numerical simulation results were validated by the combustion experiment data. The jet behavior and the fluid flow characteristics of coherent jets with COMI under 298 K and 1700 K (25 °C and 1427 °C) were studied and the results showed that for coherent jets with COMI, the chemical effect of CO2 significantly weakened the shrouding combustion reactions of CH4 and the relative importance of the chemical effect of CO2 increases with CO2 concentration increasing. The potential core length of coherent jet decreases with the volume fraction of CO2 increasing. Moreover, it also can be found that the potential core length of coherent jets was prolonged with higher ambient temperature.

  5. List of EPA Certified Forced-Air Furnaces

    EPA Pesticide Factsheets

    The EPA-Certified Forced-Air Furnace list contains EPA-certified forced-air furnaces that meet the 2015 NSPS for New Residential Wood Heaters, New Residential Hydronic Heaters and Forced-Air Furnaces.

  6. A multi-zone muffle furnace design

    NASA Technical Reports Server (NTRS)

    Rowe, Neil D.; Kisel, Martin

    1993-01-01

    A Multi-Zone Muffle-Tube Furnace was designed, built, and tested for the purpose of providing an in-house experience base with tubular furnaces for materials processing in microgravity. As such, it must not only provide the desired temperatures and controlled thermal gradients at several discrete zones along its length but must also be capable of sustaining the rigors of a Space Shuttle launch. The furnace is insulated to minimize radial and axial heat losses. It is contained in a water-cooled enclosure for purposes of dissipating un-wanted residual heat, keeping the outer surfaces of the furnace at a 'touch-safe' temperature, and providing a rugged housing. This report describes the salient features of the furnace, testing procedures and results, and concluding remarks evaluating the overall design.

  7. High temperature furnace

    DOEpatents

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  8. General purpose rocket furnace

    NASA Technical Reports Server (NTRS)

    Aldrich, B. R.; Whitt, W. D. (Inventor)

    1979-01-01

    A multipurpose furnace for space vehicles used for material processing experiments in an outer space environment is described. The furnace contains three separate cavities designed to process samples of the widest possible range of materials and thermal requirements. Each cavity contains three heating elements capable of independent function under the direction of an automatic and programmable control system. A heat removable mechanism is also provided for each cavity which operates in conjunction with the control system for establishing an isothermally heated cavity or a wide range of thermal gradients and cool down rates. A monitoring system compatible with the rocket telemetry provides furnace performance and sample growth rate data throughout the processing cycle.

  9. Filtered pulsed cathodic arc deposition of fullerene-like carbon and carbon nitride films

    NASA Astrophysics Data System (ADS)

    Tucker, Mark D.; Czigány, Zsolt; Broitman, Esteban; Näslund, Lars-Åke; Hultman, Lars; Rosen, Johanna

    2014-04-01

    Carbon and carbon nitride films (CNx, 0 ≤ x ≤ 0.26) were deposited by filtered pulsed cathodic arc and were investigated using transmission electron microscopy and X-ray photoelectron spectroscopy. A "fullerene-like" (FL) structure of ordered graphitic planes, similar to that of magnetron sputtered FL-CNx films, was observed in films deposited at 175 °C and above, with N2 pressures of 0 and 0.5 mTorr. Higher substrate temperatures and significant nitrogen incorporation are required to produce similar FL structure by sputtering, which may, at least in part, be explained by the high ion charge states and ion energies characteristic of arc deposition. A gradual transition from majority sp3-hybridized films to sp2 films was observed with increasing substrate temperature. High elastic recovery, an attractive characteristic mechanical property of FL-CNx films, is evident in arc-deposited films both with and without nitrogen content, and both with and without FL structure.

  10. An improved gas extraction furnace

    NASA Technical Reports Server (NTRS)

    Wilkin, R. B.

    1972-01-01

    Design of glass furnace for analysis of rocks to determine nature and amount of trapped gas is described. Furnace heats specimen in vacuum conditions by radio frequency induction. Diagram of apparatus to show construction and operation is provided.

  11. Validation of NHB 8060.1C, Test 18 Arc Tracking, September 30, 1991

    NASA Technical Reports Server (NTRS)

    Linley, Larry

    2005-01-01

    A test project was conducted to validate Test 18 of NASA Handbook (NHB) 8060.1C and, if necessary, identify and recommend improvements in the procedures or criteria of the test. The NHB 8060.1C, Test 18 test system was modified to produce better discrimination of test results. Changes, and their effects on test results, in the graphite immersion-depth, test timing sequence, and atmospheric conditions were investigated for the wire-insulation constructions tested. Based on the test results, the graphite immersion-depths (between 0.8 mm and 1.6 mm), the timing sequence, and the change in the test conditions from ambient to three environments common in manned spaceflight did not significantly affect test results. The criteria used in Test 18 of NHB 8060.1C was found to be appropriate for qualifying arc-tracking and arc-propagation characteristics of wire-insulation materials, Using the Test 18 criteria, Kapton and ETFE were considered inappropriate for use, while PTFE was considered appropriate. Recommendations from this test project for Test 18 of NHB 8060.1C include changing the experimental setup and configurational tests and performing qualification testing in air rather than in the three environments common in manned spaceflight.

  12. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.

    PubMed

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N

    2017-09-11

    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Challenges in Melt Furnace Tests

    NASA Astrophysics Data System (ADS)

    Belt, Cynthia

    2014-09-01

    Measurement is a critical part of running a cast house. Key performance indicators such as energy intensity, production (or melt rate), downtime (or OEE), and melt loss must all be understood and monitored on a weekly or monthly basis. Continuous process variables such as bath temperature, flue temperature, and furnace pressure should be used to control the furnace systems along with storing the values in databases for later analysis. While using measurement to track furnace performance over time is important, there is also a time and place for short-term tests.

  14. Elements of EAF automation processes

    NASA Astrophysics Data System (ADS)

    Ioana, A.; Constantin, N.; Dragna, E. C.

    2017-01-01

    Our article presents elements of Electric Arc Furnace (EAF) automation. So, we present and analyze detailed two automation schemes: the scheme of electrical EAF automation system; the scheme of thermic EAF automation system. The application results of these scheme of automation consists in: the sensitive reduction of specific consummation of electrical energy of Electric Arc Furnace, increasing the productivity of Electric Arc Furnace, increase the quality of the developed steel, increasing the durability of the building elements of Electric Arc Furnace.

  15. Toxic-Waste Disposal by Drain-in-Furnace Technique

    NASA Technical Reports Server (NTRS)

    Compton, L. E.; Stephens, J. B.; Moynihan, P. I.; Houseman, J.; Kalvinskas, J. J.

    1986-01-01

    Compact furnace moved from site to site. Toxic industrial waste destroyed using furnace concept developed for disposal of toxic munitions. Toxic waste drained into furnace where incinerated immediately. In furnace toxic agent rapidly drained and destroyed in small combustion chamber between upper and lower layers of hot ceramic balls

  16. Carbon transfer from magnesia-graphite ladle refractories to ultra-low carbon steel

    NASA Astrophysics Data System (ADS)

    Russo, Andrew Arthur

    Ultra-low carbon steels are utilized in processes which require maximum ductility. Increases in interstitial carbon lower the ductility of steel; therefore, it is important to examine possible sources of carbon. The refractory ladle lining is one such source. Ladle refractories often contain graphite for its desirable thermal shock and slag corrosion resistance. This graphite is a possible source of carbon increase in ultra-low carbon steels. The goal of this research is to understand and evaluate the mechanisms by which carbon transfers to ultra-low carbon steel from magnesia-graphite ladle refractory. Laboratory dip tests were performed in a vacuum induction furnace under an argon atmosphere to investigate these mechanisms. Commercial ladle refractories with carbon contents between 4-12 wt% were used to investigate the effect of refractory carbon content. Slag-free dip tests and slag-containing dip tests with varying MgO concentrations were performed to investigate the influence of slag. Carbon transfer to the steel was controlled by steel penetrating into the refractory and dissolving carbon in dip tests where no slag was present. The rate limiting step for this mechanism is convective mass transport of carbon into the bulk steel. No detectable carbon transfer occurred in dip tests with 4 and 6 wt%C refractories without slag because no significant steel penetration occurred. Carbon transfer was controlled by the corrosion of refractory by slag in dip tests where slag was present.

  17. “Synthesis-on” and “synthesis-off” modes of carbon arc operation during synthesis of carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yatom, Shurik; Selinsky, Rachel S.; Koel, Bruce E.

    Arc discharge synthesis of single-walled carbon nanotubes (SWCNTs) remains largely uncontrollable, due to incomplete understanding of the synthetic process itself. Here, we show that synthesis of SWCNTs by a carbon arc may not constitute a single continuous process, but may instead consist of two distinct modes. One of these, a “synthesis-on” mode, produces the majority of the nanomaterials. During the synthesis-on mode, proportionally more carbon nanotubes are collected than in another mode, a “synthesis-off” mode. Both synthesis-on and synthesis-off modes for a typical arc configuration, employing a hollow anode filled with a mixture of powdered metal catalyst and graphite, weremore » characterized by using in situ electrical, imaging, and spectroscopic diagnostics, along with ex situ imaging and spectroscopy. The synthesis-on mode duration is rare compared to the total arc run-time, helping to explain the poor selectivity found in the final collected products, a known inadequacy of arc synthesis. Finally, the rarity of the synthesis on mode occurence may be due to the synthesis off mode being more favorable energetically.« less

  18. “Synthesis-on” and “synthesis-off” modes of carbon arc operation during synthesis of carbon nanotubes

    DOE PAGES

    Yatom, Shurik; Selinsky, Rachel S.; Koel, Bruce E.; ...

    2017-09-09

    Arc discharge synthesis of single-walled carbon nanotubes (SWCNTs) remains largely uncontrollable, due to incomplete understanding of the synthetic process itself. Here, we show that synthesis of SWCNTs by a carbon arc may not constitute a single continuous process, but may instead consist of two distinct modes. One of these, a “synthesis-on” mode, produces the majority of the nanomaterials. During the synthesis-on mode, proportionally more carbon nanotubes are collected than in another mode, a “synthesis-off” mode. Both synthesis-on and synthesis-off modes for a typical arc configuration, employing a hollow anode filled with a mixture of powdered metal catalyst and graphite, weremore » characterized by using in situ electrical, imaging, and spectroscopic diagnostics, along with ex situ imaging and spectroscopy. The synthesis-on mode duration is rare compared to the total arc run-time, helping to explain the poor selectivity found in the final collected products, a known inadequacy of arc synthesis. Finally, the rarity of the synthesis on mode occurence may be due to the synthesis off mode being more favorable energetically.« less

  19. Simultaneous determination of V, Ni and Fe in fuel fly ash using solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Cárdenas Valdivia, A; Vereda Alonso, E; López Guerrero, M M; Gonzalez-Rodriguez, J; Cano Pavón, J M; García de Torres, A

    2018-03-01

    A green and simple method has been proposed in this work for the simultaneous determination of V, Ni and Fe in fuel ash samples by solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry (SS HR CS GFAAS). The application of fast programs in combination with direct solid sampling allows eliminating pretreatment steps, involving minimal manipulation of sample. Iridium treated platforms were applied throughout the present study, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9931. The concentrations found in the fuel ash samples analysed ranged from 0.66% to 4.2% for V, 0.23-0.7% for Ni and 0.10-0.60% for Fe. Precision (%RSD) were 5.2%, 10.0% and 9.8% for V, Ni and Fe, respectively, obtained as the average of the %RSD of six replicates of each fuel ash sample. The optimum conditions established were applied to the determination of the target analytes in fuel ash samples. In order to test the accuracy and applicability of the proposed method in the analysis of samples, five ash samples from the combustion of fuel in power stations, were analysed. The method accuracy was evaluated by comparing the results obtained using the proposed method with the results obtained by ICP OES previous acid digestion. The results showed good agreement between them. The goal of this work has been to develop a fast and simple methodology that permits the use of aqueous standards for straightforward calibration and the simultaneous determination of V, Ni and Fe in fuel ash samples by direct SS HR CS GFAAS. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Determination of copper and mercury in phosphate fertilizers employing direct solid sampling analysis and high resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    de Oliveira Souza, Sidnei; François, Luciane Luiza; Borges, Aline Rocha; Vale, Maria Goreti Rodrigues; Araujo, Rennan Geovanny Oliveira

    2015-12-01

    The present study proposes the determination of copper and mercury in phosphate fertilizers by direct solid sampling analysis (SS) employing high resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). For Cu determination, two analytical lines were used: 327.3960 nm and 249.2146 nm. Hg determination was carried out on the line 253.6521 nm and 100 μg KMnO4 was used as chemical modifier. The optimal pyrolysis temperature for Cu determination was 1300 °C. Atomization temperatures for Cu and Hg were 2400 and 1100 °C, respectively. External calibration with aqueous standard solutions was adopted for both elements. The limits of quantification (LoQs) and characteristic mass (m0) obtained for Cu determination were 0.4 μg g- 1 and 1.12 ng, respectively, on line 249.2146 nm, and 64 μg g- 1 and 25 pg on 327.3960 nm. For mercury, LoQ and m0 were 4.8 ng g- 1 and 39 pg, respectively. The accuracy of the proposed methods was confirmed by the analysis of standard reference material (SRM) of Trace Elements in Multi-Nutrient Fertilizer (SRM NIST 695). The precision expressed as relative standard deviation (RSD), was better than 8.2% for Hg and 7.7% for the Cu (n = 5), considered satisfactory for microanalysis in solid sample. Four fertilizer samples acquired in commercial establishments in the city of Salvador, Bahia, Brazil, were analyzed. The optimized analytical methods were simple, fast, accurate, precise and free of spectral interferences for the determination of Cu and Hg in phosphate fertilizer samples by SS-HR-CS GF AAS, avoiding the dissolution of the sample, the use of harmful reagents and the generation of residues.

  1. 40 CFR 63.1652 - Emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... be discharged into the atmosphere from any new or reconstructed submerged arc furnace exhaust gases...) Existing open submerged arc furnaces. No owner or operator shall cause to be discharged into the atmosphere... discharged into the atmosphere from any existing semi-sealed submerged arc furnace exhaust gases (including...

  2. Enhanced ablation of small anodes in a carbon nanotube arc discharge

    NASA Astrophysics Data System (ADS)

    Raitses, Yevgeny; Fetterman, Abraham; Keidar, Michael

    2008-11-01

    An atmospheric pressure helium arc discharge is used for carbon nanotube synthesis. The arc discharge operates in an anodic mode with the ablating anode made from a graphite material. For such conditions, models predict the electron-repelling (negative) anode sheath. In the present experiments, the anode ablation rate is investigated as a function of the anode diameter. It is found that anomalously high ablation occurs for small anode diameters (< 0.4 cm). This result is explained by the formation of an electron-attracting (positive) anode sheath leading to increased power losses on small anodes as compared to larger anodes [1]. The suggested mechanism for the positive anode sheath formation is plasma convergence. The increased ablation rate due to this positive sheath could imply a greater yield of carbon nanotube production. [1] A. J. Fetterman, Y. Raitses and M. Keidar, Carbon (2008).

  3. Refractory of Furnaces to Reduce Environmental Impact

    NASA Astrophysics Data System (ADS)

    Hanzawa, Shigeru

    2011-10-01

    The energy load of furnaces used in the manufacturing process of ceramics is quite large. Most of the environmental impact of ceramics manufacturing is due to the CO2 produced from this high energy load. To improve this situation, R&D has focused on furnace systems and techniques of control in order to reduce energy load. Since furnaces are comprised of refractory, consideration of their mechanical and thermal characteristics is important. Herein are described several refractory types which were chosen through comparison of the characteristics which contribute to heat capacity reduction, heat insulating reinforcement and high emissivity, thereby improving thermal radiation heat transfer efficiency to the ceramic articles. One selected refractory material which will reduce the environmental impact of a furnace, chosen considering low heat capacity and high emissivity characteristics, is SiC. In this study, thermal radiation heat transfer efficiency improvement and its effect on ceramic articles in the furnace and oxidation behaviour were investigated at 1700K. A high density SiC refractory, built into the furnace at construction, has relatively high oxidation durability and has the ability to reduce environmental impact-CO2 by 10 percent by decreasing the furnace's energy load. However, new oxidation prevention techniques for SiC will be necessary for long-term use in industrial furnaces, because passive to active oxidation transition behaviour of commercial SiC refractory is coming to close ideal.

  4. Molten metal holder furnace and casting system incorporating the molten metal holder furnace

    DOEpatents

    Kinosz, Michael J.; Meyer, Thomas N.

    2003-02-11

    A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

  5. Solar Convective Furnace for Metals Processing

    NASA Astrophysics Data System (ADS)

    Patidar, Deepesh; Tiwari, Sheetanshu; Sharma, Piyush; Pardeshi, Ravindra; Chandra, Laltu; Shekhar, Rajiv

    2015-11-01

    Metals processing operations, primarily soaking, heat treatment, and melting of metals are energy-intensive processes using fossil fuels, either directly or indirectly as electricity, to operate furnaces at high temperatures. Use of concentrated solar energy as a source of heat could be a viable "green" option for industrial heat treatment furnaces. This paper introduces the concept of a solar convective furnace which utilizes hot air generated by an open volumetric air receiver (OVAR)-based solar tower technology. The potential for heating air above 1000°C exists. Air temperatures of 700°C have already been achieved in a 1.5-MWe volumetric air receiver demonstration plant. Efforts to retrofit an industrial aluminium soaking furnace for integration with a solar tower system are briefly described. The design and performance of an OVAR has been discussed. A strategy for designing a 1/15th-scale model of an industrial aluminium soaking furnace has been presented. Preliminary flow and thermal simulation results suggest the presence of recirculating flow in existing furnaces that could possibly result in non-uniform heating of the slabs. The multifarious uses of concentrated solar energy, for example in smelting, metals processing, and even fuel production, should enable it to overcome its cost disadvantage with respect to solar photovoltaics.

  6. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    PubMed

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed). Copyright © 2015 Elsevier B.V. All rights reserved.

  7. GRAPHITE EXTRUSIONS

    DOEpatents

    Benziger, T.M.

    1959-01-20

    A new lubricant for graphite extrusion is described. In the past, graphite extrusion mixtures have bcen composed of coke or carbon black, together with a carbonaceous binder such as coal tar pitch, and a lubricant such as petrolatum or a colloidal suspension of graphite in glycerin or oil. Sinee sueh a lubricant is not soluble in, or compatible with the biiider liquid, such mixtures were difficult to extrude, and thc formed pieees lacked strength. This patent teaches tbe use of fatty acids as graphite extrusion lubricants and definite improvemcnts are realized thereby since the fatty acids are soluble in the binder liquid.

  8. Strategic graphite, a survey

    USGS Publications Warehouse

    Cameron, Eugene N.; Weis, Paul L.

    1960-01-01

    Strategic graphite consists of certain grades of lump and flake graphite for which the United States is largely or entirely dependent on sources abroad. Lump graphite of high purity, necessary in the manufacture of carbon brushes, is imported from Ceylon, where it occurs in vein deposits. Flake graphite, obtained from deposits consisting of graphite disseminated in schists and other metamorphic rocks, is an essential ingredient of crucibles used in the nonferrous metal industries and in the manufacture of lubricants and packings. High-quality flake graphite for these uses has been obtained mostly from Madagascar since World War I. Some flake graphite of strategic grade has been produced, however, from deposits in Texas, Alabama, and Pennsylvania. The development of the carbon-bonded crucible, which does not require coarse flake, should lessen the competitive advantage of the Madagascar producers of crucible flake. Graphite of various grades has been produced intermittently in the United States since 1644. The principal domestic deposits of flake graphite are in Texas, Alabama, Pennsylvania, and New York. Reserves of flake graphite in these four States are very large, but production has been sporadic and on the whole unprofitable since World War I, owing principally to competition from producers in Madagascar. Deposits in Madagascar are large and relatively high in content of flake graphite. Production costs are low and the flake produced is of high quality. Coarseness of flake and uniformity of the graphite products marketed are cited as major advantages of Madagascar flake. In addition, the usability of Madagascar flake for various purposes has been thoroughly demonstrated, whereas the usability of domestic flake for strategic purposes is still in question. Domestic graphite deposits are of five kinds: deposits consisting of graphite disseminated in metamorphosed siliceous sediments, deposits consisting of graphite disseminated in marble, deposits formed by

  9. Crystal growth and furnace analysis

    NASA Technical Reports Server (NTRS)

    Dakhoul, Youssef M.

    1986-01-01

    A thermal analysis of Hg/Cd/Te solidification in a Bridgman cell is made using Continuum's VAST code. The energy equation is solved in an axisymmetric, quasi-steady domain for both the molten and solid alloy regions. Alloy composition is calculated by a simplified one-dimensional model to estimate its effect on melt thermal conductivity and, consequently, on the temperature field within the cell. Solidification is assumed to occur at a fixed temperature of 979 K. Simplified boundary conditions are included to model both the radiant and conductive heat exchange between the furnace walls and the alloy. Calculations are performed to show how the steady-state isotherms are affected by: the hot and cold furnace temperatures, boundary condition parameters, and the growth rate which affects the calculated alloy's composition. The Advanced Automatic Directional Solidification Furnace (AADSF), developed by NASA, is also thermally analyzed using the CINDA code. The objective is to determine the performance and the overall power requirements for different furnace designs.

  10. Postbuckling behavior of axially compressed graphite-epoxy cylindrical panels with circular holes

    NASA Technical Reports Server (NTRS)

    Knight, N. F., Jr.; Starnes, J. H., Jr.

    1984-01-01

    The results of an experimental and analytical study of the effects of circular holes on the postbuckling behavior of graphite-epoxy cylindrical panels loaded in axial compression are presented. The STAGSC-1 general shell analysis computer code is used to determine the buckling and postbuckling response of the panels. The loaded, curved ends of the specimens were clamped by fixtures and the unloaded, straight edges were simply supported by knife-edge restraints. The panels are loaded by uniform end shortening to several times the end shortening at buckling. The unstable equilibrium path of the postbuckling response is obtained analytically by using a method based on controlling an equilibrium-path-arc-length parameter instead of the traditional load parameter. The effects of hole diameter, panel radius, and panel thickness on postbuckling response are considered in the study. Experimental results are compared with the analytical results and the failure characteristics of the graphite-epoxy panels are described.

  11. Comprehensive Numerical Modeling of the Blast Furnace Ironmaking Process

    NASA Astrophysics Data System (ADS)

    Zhou, Chenn; Tang, Guangwu; Wang, Jichao; Fu, Dong; Okosun, Tyamo; Silaen, Armin; Wu, Bin

    2016-05-01

    Blast furnaces are counter-current chemical reactors, widely utilized in the ironmaking industry. Hot reduction gases injected from lower regions of the furnace ascend, reacting with the descending burden. Through this reaction process, iron ore is reduced into liquid iron that is tapped from the furnace hearth. Due to the extremely harsh environment inside the blast furnace, it is difficult to measure or observe internal phenomena during operation. Through the collaboration between steel companies and the Center for Innovation through Visualization and Simulation, multiple computational fluid dynamics (CFD) models have been developed to simulate the complex multiphase reacting flow in the three regions of the furnace, the shaft, the raceway, and the hearth. The models have been used effectively to troubleshoot and optimize blast furnace operations. In addition, the CFD models have been integrated with virtual reality. An interactive virtual blast furnace has been developed for training purpose. This paper summarizes the developments and applications of blast furnace CFD models and the virtual blast furnace.

  12. Arc Voltage Between Deion Grid Affected by Division of Arc in Magnetic Driven Arc

    NASA Astrophysics Data System (ADS)

    Inuzuka, Yutaro; Yamato, Takashi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    Magnetic driven arc has been applied to DC breaker and fault current limiters. However, it has not been researched, especially stagnation and re-strike of the arc. In this paper, the arc voltage between deion grid affected by division of arc in magnetic driven arc and arc behavior are measured by using the oscilloscope and HSVC (High Speed Video Camera). As a result, arc voltage increased because of division of the arc. The arc mean moving speed increases with increasing the external magnetic field. However, when the arc was not stalemate, the arc moving speed does not change so much. The arc re-strike time increases and stalemate time decreases with increasing the external magnetic field. Therefore, the anode spot moving speed increases 8 times because arc re-strike occurs easily with the external magnetic field. Thus, the erosion of electrodes decreases and the arc movement becomes the smooth. When the arc is divided, the arc voltage increased because of the electrode fall voltage. Therefore, the arc voltage increases with increasing the number of deion grid.

  13. Tubular graphite cones.

    PubMed

    Zhang, Guangyu; Jiang, Xin; Wang, Enge

    2003-04-18

    We report the synthesis of tubular graphite cones using a chemical vapor deposition method. The cones have nanometer-sized tips, micrometer-sized roots, and hollow interiors with a diameter ranging from about 2 to several tens of nanometers. The cones are composed of cylindrical graphite sheets; a continuous shortening of the graphite layers from the interior to the exterior makes them cone-shaped. All of the tubular graphite cones have a faceted morphology. The constituent graphite sheets have identical chiralities of a zigzag type across the entire diameter, imparting structural control to tubular-based carbon structures. The tubular graphite cones have potential for use as tips for scanning probe microscopy, but with greater rigidity and easier mounting than currently used carbon nanotubes.

  14. Sealed rotary hearth furnace with central bearing support

    DOEpatents

    Docherty, James P.; Johnson, Beverly E.; Beri, Joseph

    1989-01-01

    The furnace has a hearth which rotates inside a stationary closed chamber and is supported therein on vertical cylindrical conduit which extends through the furnace floor and is supported by a single center bearing. The charge is deposited through the furnace roof on the rim of the hearth as it rotates and is moved toward the center of the hearth by rabbles. Externally generated hot gases are introduced into the furnace chamber below the hearth and rise through perforations in the hearth and up through the charge. Exhaust gases are withdrawn through the furnace roof. Treated charge drops from a center outlet on the hearth into the vertical cylindrical conduit which extends downwardly through the furnace floor to which it is also sealed.

  15. Thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  16. Crystal growth furnace with trap doors

    DOEpatents

    Sachs, Emanual M.; Mackintosh, Brian H.

    1982-06-15

    An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

  17. Crystal growth furnace with trap doors

    NASA Technical Reports Server (NTRS)

    Sachs, Emanual M. (Inventor); Mackintosh, Brian H. (Inventor)

    1982-01-01

    An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

  18. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    PubMed

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    Recently, various solid wastes from industry such as glass waste, fly ash, sewage sludge and slag have been recycled into various value-added products such as ceramic tile. The conventional solutions of dumping the wastes in landfills or incineration, including in Malaysia are getting obsolete as the annual huge amount of the solid wastes would boost-up disposal cost and may cause permanent damage to the flora and fauna. This recent waste recycling approach is much better and greener as it can resolve problems associated with over-limit storage of industrial wastes and reduce exploration of natural resources for ceramic tile to continuously sustain the nature. Therefore, in this project, an attempt was made to recycle electric arc furnace (EAF) slag waste, obtained from Malaysia's steel making industry, into ceramic tile via conventional powder compaction method. The research work was divided into two stages. The first stage was to evaluate the suitability of EAF slag in ceramic tile by varying weight percentage of EAF slag (40 wt.%, 50 wt.% and 60 wt.%) and ball clay (40 wt.%, 50 wt.% and 60 wt.%), with no addition of silica and potash feldspar. In the second stage, the weight percentage of EAF slag was fixed at 40 wt.% and the percentage of ball clay (30 wt.% and 40 wt.%), feldspar (10 wt.% and 20 wt.%) and silica (10 wt.% and 20 wt.%) added was varied accordingly. Results obtained show that as weight percentage of EAF slag increased up to 60 wt.%, the percentage of apparent porosity and water absorption also rose, with a reduction in tile flexural strength and increased porosity. On the other hand, limiting the weight percentage of EAF slag to 40 wt.% while increasing the weight percentage of ball clay led to a higher total percentage of anorthite and wollastonite minerals, resulting in higher flexural strength. It was found that introduction of silica and feldspar further improved the flexural strength due to optimization of densification process. The highest

  19. A comparison of laser ablation-inductively coupled plasma-mass spectrometry and high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of bromine in polymers

    NASA Astrophysics Data System (ADS)

    de Gois, Jefferson S.; Van Malderen, Stijn J. M.; Cadorim, Heloisa R.; Welz, Bernhard; Vanhaecke, Frank

    2017-06-01

    This work describes the development and comparison of two methods for the direct determination of Br in polymer samples via solid sampling, one using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and the other using high-resolution continuum source graphite furnace molecular absorption spectrometry with direct solid sample analysis (HR-CS SS-GF MAS). The methods were optimized and their accuracy was evaluated by comparing the results obtained for 6 polymeric certified reference materials (CRMs) with the corresponding certified values. For Br determination with LA-ICP-MS, the 79Br+ signal could be monitored interference-free. For Br determination via HR-CS SS-GF MAS, the CaBr molecule was monitored at 625.315 nm with integration of the central pixel ± 1. Bromine quantification by LA-ICP-MS was performed via external calibration against a single CRM while using the 12C+ signal as an internal standard. With HR-CS SS-GF MAS, Br quantification could be accomplished using external calibration against aqueous standard solutions. Except for one LA-ICP-MS result, the concentrations obtained with both techniques were in agreement with the certified values within the experimental uncertainty as evidenced using a t-test (95% confidence level). The limit of quantification was determined to be 100 μg g- 1 Br for LA-ICP-MS and 10 μg g- 1 Br for HR-CS SS-GF MAS.

  20. Programmable multi-zone furnace for microgravity research

    NASA Technical Reports Server (NTRS)

    Rosenthal, Bruce N.; Krolikowski, Cathryn R.

    1991-01-01

    In order to provide new furnace technology to accommodate microgravity research studies and commercial applications in material processes, research has been initiated on the development of the Programmable-Multi-zone Furnace (PMZF). The PMZF is described as a multi-user materials processing furnace facility that is composed of thirty or more heater elements in series on a muffle tube or in a stacked ring-type configuration and independently controlled by a computer. One of the aims of the PMZF project is to allow furnace thermal gradient profiles to be reconfigured without physical modification of the hardware by creating the capability of reconfiguring thermal profiles in response to investigators' requests. The future location of the PMZF facility is discussed; the preliminary science survey results and preliminary conceptual designs for the PMZF are presented; and a review of multi-zone furnace technology is given.

  1. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  2. Purification and preparation of graphite oxide from natural graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panatarani, C., E-mail: c.panatarani@phys.unpad.ac.id; Muthahhari, N.; Joni, I. Made

    2016-03-11

    Graphite oxide has attracted much interest as a possible route for preparation of natural graphite in the large-scale production and manipulation of graphene as a material with extraordinary electronic properties. Graphite oxide was prepared by modified Hummers method from purified natural graphite sample from West Kalimantan. We demonstrated that natural graphite is well-purified by acid leaching method. The purified graphite was proceed for intercalating process by modifying Hummers method. The modification is on the reaction time and temperature of the intercalation process. The materials used in the intercalating process are H{sub 2}SO{sub 4} and KMNO{sub 4}. The purified natural graphitemore » is analyzed by carbon content based on Loss on Ignition test. The thermo gravimetricanalysis and the Fouriertransform infrared spectroscopy are performed to investigate the oxidation results of the obtained GO which is indicated by the existence of functional groups. In addition, the X-ray diffraction and energy dispersive X-ray spectroscopy are also applied to characterize respectively for the crystal structure and elemental analysis. The results confirmed that natural graphite samples with 68% carbon content was purified into 97.68 % carbon content. While the intercalation process formed a formation of functional groups in the obtained GO. The results show that the temperature and reaction times have improved the efficiency of the oxidation process. It is concluded that these method could be considered as an important route for large-scale production of graphene.« less

  3. An update on blast furnace granular coal injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, D.G.; Strayer, T.J.; Bouman, R.W.

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke andmore » results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.« less

  4. Filtered pulsed cathodic arc deposition of fullerene-like carbon and carbon nitride films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Mark D., E-mail: martu@ifm.liu.se; Broitman, Esteban; Näslund, Lars-Åke

    Carbon and carbon nitride films (CN{sub x}, 0 ≤ x ≤ 0.26) were deposited by filtered pulsed cathodic arc and were investigated using transmission electron microscopy and X-ray photoelectron spectroscopy. A “fullerene-like” (FL) structure of ordered graphitic planes, similar to that of magnetron sputtered FL-CN{sub x} films, was observed in films deposited at 175 °C and above, with N{sub 2} pressures of 0 and 0.5 mTorr. Higher substrate temperatures and significant nitrogen incorporation are required to produce similar FL structure by sputtering, which may, at least in part, be explained by the high ion charge states and ion energies characteristic of arc deposition. A gradualmore » transition from majority sp{sup 3}-hybridized films to sp{sup 2} films was observed with increasing substrate temperature. High elastic recovery, an attractive characteristic mechanical property of FL-CN{sub x} films, is evident in arc-deposited films both with and without nitrogen content, and both with and without FL structure.« less

  5. Use of Different Furnaces to Study Repeatability and Reproducibility of Three Pd-C Cells

    NASA Astrophysics Data System (ADS)

    Battuello, M.; Florio, M.; Girard, F.

    2010-09-01

    Three different Pd-C eutectic fixed-point cells were prepared and investigated at INRIM. Several tens of phase transition runs were carried out and recorded with both a Si-based radiation thermometer at 950 nm and a precision InGaAs-based thermometer at 1.6 μm. Two of the cells were of the same design with an inner volume of 12 cm3. The third one was smaller with a useful inner volume of 3.6 cm3. The three cells were filled with palladium powder 4N5 or 4N8 pure and graphite powder 6N pure. The repeatability and stability of the inflection point were investigated over a period of 1 year. The noticeably different external dimensions of the two cells, namely, 110 mm and 40 mm in length, allowed the influence of the longitudinal temperature distribution to be investigated. For this purpose, two different furnaces, a single-zone with SiC heaters and a three-zone with MoSi2 heaters, were used. Different operative conditions, namely, temperature steps, melting rate, longitudinal temperature distributions, and position of cells within the furnace, were tested to investigate the reproducibility of the cells. Effects on the duration and shape of the plateaux were also studied. This article gives details of the measurement setup and analyses of the melting plateaux obtained with the different conditions.

  6. Cobalt internal standard for Ni to assist the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis.

    PubMed

    de Babos, Diego Victor; Bechlin, Marcos André; Barros, Ariane Isis; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta; de Oliveira, Silvana Ruella

    2016-05-15

    A new method is proposed for the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS), employing direct solid sample analysis (DSS) and internal standardization (IS). Cobalt was used as internal standard to minimize matrix effects during Ni determinations, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9937. The performance of the method was checked by analysis of six plant certified reference materials, and the results for Mo and Ni were in agreement with the certified values (95% confidence level, t-test). Analysis was made of different types of plant materials used as renewable sources of energy, including sugarcane leaves, banana tree fiber, soybean straw, coffee pods, orange bagasse, peanut hulls, and sugarcane bagasse. The concentrations found for Mo and Ni ranged from 0.08 to 0.63 ng mg(-1) and from 0.41 to 6.92 ng mg(-1), respectively. Precision (RSD) varied from 2.1% to 11% for Mo and from 3.7% to 10% for Ni. Limits of quantification of 0.055 and 0.074 ng were obtained for Mo and Ni, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Halloysite nanotubes as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the determination of bismuth in water samples using high-resolution continuum source graphite-furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Krawczyk-Coda, Magdalena

    2017-03-01

    In this research, a simple, accurate, and inexpensive preconcentration procedure was developed for the determination of bismuth in water samples, using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS). During the preconcentration step, halloysite nanotubes (HNTs) were used as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction (USA DMSPE). The influence of the pH of the sample solution, amount of HNTs, and extraction time, as well as of the main parameters of HR CS GFAAS, on absorbance was investigated. The limit of detection was 0.005 μg L- 1. The preconcentration factor achieved for bismuth was 32. The relative standard deviation (RSD) was 4%. The accuracy of this method was validated by analyses of NIST SRM 1643e (Trace elements in water) and TMDA-54.5 (A high level fortified sample for trace elements) certified reference materials. The measured bismuth contents in these certified reference materials were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. The proposed method has been successfully applied to the determination of bismuth in five different real water samples (seawater, lake water, river water, stream water and rain water).

  8. Optical cavity furnace for semiconductor wafer processing

    DOEpatents

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  9. Blast furnace supervision and control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remorino, M.; Lingiardi, O.; Zecchi, M.

    1997-12-31

    On December 1992, a group of companies headed by Techint, took over Somisa, the state-owned integrated steel plant located at San Nicolas, Province of Buenos Aires, Argentina, culminating an ambitious government privatization scheme. The blast furnace 2 went into a full reconstruction and relining in January 1995. After a 140 MU$ investment the new blast furnace 2 was started in September 1995. After more than one year of operation of the blast furnace the system has proven itself useful and reliable. The main reasons for the success of the system are: same use interface for all blast furnace areas --more » operation, process, maintenance and management, (full horizontal and vertical integration); and full accessibility to all information and process tools though some restrictions apply to field commands (people empowerment). The paper describes the central system.« less

  10. Effects of body formulation and firing temperature to properties of ceramic tile incorporated with electric arc furnace (EAF) slag waste

    NASA Astrophysics Data System (ADS)

    Sharif, Nurulakmal Mohd; Lim, Chi Yang; Teo, Pao Ter; Seman, Anasyida Abu

    2017-07-01

    Significant quantities of sludge and slag are generated as waste materials or by-products from steel industries. One of the by-products is Electric Arc Furnace (EAF) steel slag which consists of oxides such as CaO, Al2O3 and FeO. This makes it possible for slag to partially replace the raw materials in ceramic tile production. In our preliminary assessment of incorporating the EAF slag into ceramic tile, it was revealed that at fixed firing temperature of 1150°C, the tile of composition 40 wt.% EAF slag - 60 wt.% ball clay has comparable properties with commercial ceramic tile. Thus, this current study would focus on effects of body formulation (different weight percentages of K-feldspar and silica) and different firing temperatures to properties of EAF slag added ceramic tile. EAF slag from Southern Steel Berhad (SSB) was crushed into micron size (EAF slag content was 40 wt.%) and milled with ball clay, K-feldspar and silica before compacted and fired at 1125°C and 1150°C. The EAF slag added tile was characterized in terms of water absorption, apparent porosity, bulk density, modulus of rupture (MOR) and phase analysis via X-ray diffraction (XRD). The composition of 40 wt.% EAF slag - 30 wt.% ball clay - 10 wt.% K-feldspar - 20 wt.% silica (10F_20S), fired at 1150°C showed the lowest water absorption, apparent porosity and highest bulk density due to enhancement of densification process during firing. However, the same composition of ceramic tile (10F_20S) had the highest MOR at lower firing temperature of 1125°C, contributed by presence of the highest total amount of anorthite and wollastonite reinforcement crystalline phases (78.40 wt.%) in the tile. Overall, both the water absorption and MOR of all ceramic tiles surpassed the requirement regulated by MS ISO 13006:2014 Standard (Annex G: Dry-pressed ceramic tile with low water absorption, Eb ≤ 0.50 % and minimum MOR of 35 MPa).

  11. Application of AI techniques to blast furnace operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iida, Osamu; Ushijima, Yuichi; Sawada, Toshiro

    1995-10-01

    It was during the first stages of application of artificial intelligence (AI) to industrial fields, that the ironmaking division of Mizushima works at Kawasaki Steel recognized its potential. Since that time, the division has sought applications for these techniques to solve various problems. AI techniques applied to control the No. 3 blast furnace operations at the Mizushima works include: Blast furnace control by a diagnostic type of expert system that gives guidance to the actions required for blast furnace operation as well as control of furnace heat by automatically setting blast temperature; Hot stove combustion control by a combination ofmore » fuzzy inference and a physical model to insure good thermal efficiency of the stove; and blast furnace burden control using neural networks makes it possible to connect the pattern of gas flow distribution with the condition of the furnace. Experience of AI to control the blast furnace and other ironmaking operations has proved its capability for achieving automation and increased operating efficiency. The benefits are very high. For these reasons, the applications of AI techniques will be extended in the future and new techniques studied to further improve the power of AI.« less

  12. A high-temperature furnace for applications in microgravity

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Technology in the area of material processing and crystal growth has been greatly furthered by research in microgravity environments. The role of efficient, lightweight furnaces with reliable performance is crucial in these experiments. A need exists for the development of a readily duplicated, high-temperature furnace satisfying stringent weight, volume, and power constraints. A furnace was designed and is referred to as the UAH SHIELD. Stringent physical and operating characteristics for the system were specified, including a maximum weight of 20 kg, a maximum power requirement of 60 W, and a volume of the furnace assembly, excluding the batteries, limited to half a Get-Away-Special canister. The UAH SHIELD furnace uses radiation shield and vacuum technology applied in the form of a series of concentric cylinders enclosed on either end with disks. Thermal testing of a furnace prototype was performed in addition to some thermal and structural analysis. Results indicate the need for spacing of the shields to accommodate the thermal expansion during furnace operation. In addition, a power dissipation of approximately 100 W and system weight of approximately 30 kg was found for the current design.

  13. The Modification of Carbon with Iron Oxide Synthesized in Electrolysis Using the Arc Discharge Method

    NASA Astrophysics Data System (ADS)

    Endah Saraswati, Teguh; Dewi Indah Prasiwi, Oktaviana; Masykur, Abu; Handayani, Nestri; Anwar, Miftahul

    2017-02-01

    The modification of carbon-based nanomaterials with metals is widely studied due to its unique properties. Here, the modification of carbon nanomaterial with iron oxide has been successfully carried out. This modification was achieved using arc discharge in 50% ethanol liquid media. The anode used in the arc discharge was prepared from a mixture of carbon and iron oxide that was synthesized in electrolysis and was then calcined at 250°C with silicon binder with a mass ratio of 3:1:1, and the cathode used was graphite rod. Both electrodes were set in the nearest gap that could provide an arc during arc-discharging, leading to carbon-based nanoparticle formation. The diffractogram pattern of the X-ray diffraction of the fabricated nanoparticles confirmed the typical peak of carbon, iron oxide and iron. The magnetization value of the result analysis of the vibrating sample magnetometer was 9.9 emu/g. The bandgap energy measurement using diffuse reflectance ultra violet was estimated to be 2.18 eV. Using the transmission electron microscopy, the structure of the nanomaterial produced was observed as carbon-encapsulated iron compound nanoparticles.

  14. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: circuitry and mechanical design.

    PubMed

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  15. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 {mu}s. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through themore » graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.« less

  16. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    NASA Astrophysics Data System (ADS)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  17. Graphene prepared by thermal reduction–exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dao, Trung Dung; Jeong, Han Mo, E-mail: hmjeong@mail.ulsan.ac.kr

    Highlights: • Effect of raw graphite particle size on properties of GO and graphene is reported. • Size of raw graphite affects oxidation degree and chemical structure of GO. • Highly oxidized GO results in small-sized but well-exfoliated graphene. • GO properties affect reduction degree, structure, and conductivity of graphene. - Abstract: We report the effect of raw graphite size on the properties of graphite oxide and graphene prepared by thermal reduction–exfoliation of graphite oxide. Transmission electron microscope analysis shows that the lateral size of graphene becomes smaller when smaller size graphite is used. X-ray diffraction analysis confirms that graphitemore » with smaller size is more effectively oxidized, resulting in a more effective subsequent exfoliation of the obtained graphite oxide toward graphene. X-ray photoelectron spectroscopy demonstrates that reduction of the graphite oxide derived from smaller size graphite into graphene is more efficient. However, Raman analysis suggests that the average size of the in-plane sp{sup 2}-carbon domains on graphene is smaller when smaller size graphite is used. The enhanced reduction degree and the reduced size of sp{sup 2}-carbon domains contribute contradictively to the electrical conductivity of graphene when the particle size of raw graphite reduces.« less

  18. Monolithic porous graphitic carbons obtained through catalytic graphitization of carbon xerogels

    NASA Astrophysics Data System (ADS)

    Kiciński, Wojciech; Norek, Małgorzata; Bystrzejewski, Michał

    2013-01-01

    Pyrolysis of organic xerogels accompanied by catalytic graphitization and followed by selective-combustion purification was used to produce porous graphitic carbons. Organic gels impregnated with iron(III) chloride or nickel(II) acetate were obtained through polymerization of resorcinol and furfural. During the pyrolysis stage graphitization of the gel matrix occurs, which in turn develops mesoporosity of the obtained carbons. The evolution of the carbon into graphitic structures is strongly dependent on the concentrations of the transition metal. Pyrolysis leads to monoliths of carbon xerogel characterized by substantially enhanced mesoporosity resulting in specific surface areas up to 400 m2/g. Removal of the amorphous carbon by selective-combustion purification reduces the xerogels' mesoporosity, occasionally causing loss of their mechanical strength. The graphitized carbon xerogels were investigated by means of SEM, XRD, Raman scattering, TG-DTA and N2 physisorption. Through this procedure well graphitized carbonaceous materials can be obtained as bulk pieces.

  19. Producing graphite with desired properties

    NASA Technical Reports Server (NTRS)

    Dickinson, J. M.; Imprescia, R. J.; Reiswig, R. D.; Smith, M. C.

    1971-01-01

    Isotropic or anisotropic graphite is synthesized with precise control of particle size, distribution, and shape. The isotropic graphites are nearly perfectly isotropic, with thermal expansion coefficients two or three times those of ordinary graphites. The anisotropic graphites approach the anisotropy of pyrolytic graphite.

  20. High-Flux Solar Furnace Facility | Concentrating Solar Power | NREL

    Science.gov Websites

    High-Flux Solar Furnace Facility High-Flux Solar Furnace Facility NREL's High-Flux Solar Furnace (HFSF) is a 10-kW optical furnace for testing high-temperature processes or applications requiring high range of technologies with a diverse set of experimental requirements. The high heating rates create the

  1. 78 FR 13052 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... Furnaces and Argon Oxygen Decarburization Vessels (Renewal) AGENCY: Environmental Protection Agency (EPA... www.regulations.gov . Title: NSPS for Steel Plants: Electric Arc Furnaces and Argon Oxygen.... Respondents/Affected Entities: Owners or operator of electric arc furnaces and argon oxygen decarburization...

  2. Laser-induced incandescence (LII) diagnostic for in situ monitoring of nanoparticle synthesis in a high-pressure arc discharge

    NASA Astrophysics Data System (ADS)

    Yatom, Shurik; Vekselman, Vladislav; Mitrani, James; Stratton, Brentley; Raitses, Yevgeny; LaboratoryPlasma Nanosynthesis Team

    2016-10-01

    A DC arc discharge is commonly used for synthesis of carbon nanoparticles, including buckyballs, carbon nanotubes, and graphene flakes. In this work we show the first results of nanoparticles monitored during the arc discharge. The graphite electrode is vaporized by high current (60 A) in a buffer Helium gas leading to nanoparticle synthesis in a low temperature plasma. The arc was shown to oscillate, which can possibly influence the nano-synthesis. To visualize the nanoparticles in-situ we employ the LII technique. The nanoparticles with radii >50 nm, emerging from the arc area are heated with a short laser pulse and incandesce. The resulting radiation is captured with an ICCD camera, showing the location of the generated nanoparticles. The images of incandescence are studied together with temporally synchronized fast-framing imaging of C2 emission, to connect the dynamics of arc instabilities, C2 molecules concentration and nanoparticles. The time-resolved incandescence signal is analyzed with combination of ex-situ measurements of the synthesized nanoparticles and LII modeling, to provide the size distribution of produced nanoparticles. This work was supported by US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  3. Preparation of graphitic articles

    DOEpatents

    Phillips, Jonathan; Nemer, Martin; Weigle, John C.

    2010-05-11

    Graphitic structures have been prepared by exposing templates (metal, metal-coated ceramic, graphite, for example) to a gaseous mixture that includes hydrocarbons and oxygen. When the template is metal, subsequent acid treatment removes the metal to yield monoliths, hollow graphitic structures, and other products. The shapes of the coated and hollow graphitic structures mimic the shapes of the templates.

  4. Graphene oxide-TiO2 composite solid phase extraction combined with graphite furnace atomic absorption spectrometry for the speciation of inorganic selenium in water samples.

    PubMed

    Zhang, Yanan; Chen, Beibei; Wu, Shaowei; He, Man; Hu, Bin

    2016-07-01

    In this paper, a method of graphene oxide (GO)-TiO2 composite solid phase extraction followed by graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the speciation of inorganic selenium in environmental waters. The adsorption behavior of inorganic Se(IV) and Se(VI) on the GO-TiO2(1:1) composite was investigated. It was found that Se(IV) was quantitatively retained on the GO-TiO2 composites within a wide pH range of 0.5-10, while Se(VI) was quantitatively adsorbed on GO-TiO2(1:1) composite at pH 0.5-2, and no obvious adsorption of Se(VI) within the pH range of 4-10 was found. By selecting pH 6.0, Se(IV) could be easily determined. After reduction of Se(VI), total Se was determined by the proposed method, and Se(VI) was calculated as the difference between the total Se and Se(IV). The factors affecting the separation/preconcentration of Se(IV) and Se(VI) were studied. Under the optimum conditions, the isothermal adsorption of Se(IV) on the GO-TiO2(1:1) composite fitted Langmuir model; a linear range over 0.1-12ngmL(-1) was obtained. The limit of detection (LOD) and precision of the method for Se(IV) was 0.04ngmL(-1) and 9.4% (cSe(IV)=0.5ngmL(-1), n=7), respectively. In order to verify the accuracy of the method, a standard water sample (GSBZ50031-94) was analyzed, and the determined value was in a good agreement to the certified value. The established method was applied to inorganic Se speciation in environmental water samples and the recovery of 87.4-102% was obtained for the spiked samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Note: Arc discharge plasma source with plane segmented LaB{sub 6} cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhmetov, T. D., E-mail: t.d.akhmetov@inp.nsk.su; Davydenko, V. I.; Ivanov, A. A.

    2016-05-15

    A plane cathode composed of close-packed hexagonal LaB{sub 6} (lanthanum hexaboride) segments is described. The 6 cm diameter circular cathode is heated by radiation from a graphite foil flat spiral. The cathode along with a hollow copper anode is used for the arc discharge plasma production in a newly developed linear plasma device. A separately powered coil located around the anode is used to change the magnetic field strength and geometry in the anode region. Different discharge regimes were realized using this coil.

  6. ArcS, the cognate sensor kinase in an atypical Arc system of Shewanella oneidensis MR-1.

    PubMed

    Lassak, Jürgen; Henche, Anna-Lena; Binnenkade, Lucas; Thormann, Kai M

    2010-05-01

    The availability of oxygen is a major environmental factor for many microbes, in particular for bacteria such as Shewanella species, which thrive in redox-stratified environments. One of the best-studied systems involved in mediating the response to changes in environmental oxygen levels is the Arc two-component system of Escherichia coli, consisting of the sensor kinase ArcB and the cognate response regulator ArcA. An ArcA ortholog was previously identified in Shewanella, and as in Escherichia coli, Shewanella ArcA is involved in regulating the response to shifts in oxygen levels. Here, we identified the hybrid sensor kinase SO_0577, now designated ArcS, as the previously elusive cognate sensor kinase of the Arc system in Shewanella oneidensis MR-1. Phenotypic mutant characterization, transcriptomic analysis, protein-protein interaction, and phosphotransfer studies revealed that the Shewanella Arc system consists of the sensor kinase ArcS, the single phosphotransfer domain protein HptA, and the response regulator ArcA. Phylogenetic analyses suggest that HptA might be a relict of ArcB. Conversely, ArcS is substantially different with respect to overall sequence homologies and domain organizations. Thus, we speculate that ArcS might have adopted the role of ArcB after a loss of the original sensor kinase, perhaps as a consequence of regulatory adaptation to a redox-stratified environment.

  7. Crystal growth furnace safety system validation

    NASA Technical Reports Server (NTRS)

    Mackowski, D. W.; Hartfield, R.; Bhavnani, S. H.; Belcher, V. M.

    1994-01-01

    The findings are reported regarding the safe operation of the NASA crystal growth furnace (CGF) and potential methods for detecting containment failures of the furnace. The main conclusions are summarized by ampoule leak detection, cartridge leak detection, and detection of hazardous species in the experiment apparatus container (EAC).

  8. 40 CFR 420.46 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... new source subject to this subpart which introduces pollutants into a publicly owned treatment works...) Basic oxygen furnace steelmaking—semi-wet; and electric arc furnace steelmaking—semi-wet. No discharge... combustion; electric arc furnace steelmaking—wet. Subpart D Pollutant or pollutant property Pretreatment...

  9. 40 CFR 420.46 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... new source subject to this subpart which introduces pollutants into a publicly owned treatment works...) Basic oxygen furnace steelmaking—semi-wet; and electric arc furnace steelmaking—semi-wet. No discharge... combustion; electric arc furnace steelmaking—wet. Subpart D Pollutant or pollutant property Pretreatment...

  10. 40 CFR 420.46 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... new source subject to this subpart which introduces pollutants into a publicly owned treatment works...) Basic oxygen furnace steelmaking—semi-wet; and electric arc furnace steelmaking—semi-wet. No discharge... combustion; electric arc furnace steelmaking—wet. Subpart D Pollutant or pollutant property Pretreatment...

  11. 40 CFR 420.46 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... new source subject to this subpart which introduces pollutants into a publicly owned treatment works...) Basic oxygen furnace steelmaking—semi-wet; and electric arc furnace steelmaking—semi-wet. No discharge... combustion; electric arc furnace steelmaking—wet. Subpart D Pollutant or pollutant property Pretreatment...

  12. Bridged graphite oxide materials

    NASA Technical Reports Server (NTRS)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  13. Numerical Study of the Reduction Process in an Oxygen Blast Furnace

    NASA Astrophysics Data System (ADS)

    Zhang, Zongliang; Meng, Jiale; Guo, Lei; Guo, Zhancheng

    2016-02-01

    Based on computational fluid dynamics, chemical reaction kinetics, principles of transfer in metallurgy, and other principles, a multi-fluid model for a traditional blast furnace was established. The furnace conditions were simulated with this multi-fluid mathematical model, and the model was verified with the comparison of calculation and measurement. Then a multi-fluid model for an oxygen blast furnace in the gasifier-full oxygen blast furnace process was established based on this traditional blast furnace model. With the established multi-fluid model for an oxygen blast furnace, the basic characteristics of iron ore reduction process in the oxygen blast furnace were summarized, including the changing process of the iron ore reduction degree and the compositions of the burden, etc. The study found that compared to the traditional blast furnace, the magnetite reserve zone in the furnace shaft under oxygen blast furnace condition was significantly reduced, which is conducive to the efficient operation of blast furnace. In order to optimize the oxygen blast furnace design and operating parameters, the iron ore reduction process in the oxygen blast furnace was researched under different shaft tuyere positions, different recycling gas temperatures, and different allocation ratios of recycling gas between the hearth tuyere and the shaft tuyere. The results indicate that these three factors all have a substantial impact on the ore reduction process in the oxygen blast furnace. Moderate shaft tuyere position, high recycling gas temperature, and high recycling gas allocation ratio between hearth and shaft could significantly promote the reduction of iron ore, reduce the scope of the magnetite reserve zone, and improve the performance of oxygen blast furnace. Based on the above findings, the recommendations for improvement of the oxygen blast furnace design and operation were proposed.

  14. Information modeling system for blast furnace control

    NASA Astrophysics Data System (ADS)

    Spirin, N. A.; Gileva, L. Y.; Lavrov, V. V.

    2016-09-01

    Modern Iron & Steel Works as a rule are equipped with powerful distributed control systems (DCS) and databases. Implementation of DSC system solves the problem of storage, control, protection, entry, editing and retrieving of information as well as generation of required reporting data. The most advanced and promising approach is to use decision support information technologies based on a complex of mathematical models. The model decision support system for control of blast furnace smelting is designed and operated. The basis of the model system is a complex of mathematical models created using the principle of natural mathematical modeling. This principle provides for construction of mathematical models of two levels. The first level model is a basic state model which makes it possible to assess the vector of system parameters using field data and blast furnace operation results. It is also used to calculate the adjustment (adaptation) coefficients of the predictive block of the system. The second-level model is a predictive model designed to assess the design parameters of the blast furnace process when there are changes in melting conditions relative to its current state. Tasks for which software is developed are described. Characteristics of the main subsystems of the blast furnace process as an object of modeling and control - thermal state of the furnace, blast, gas dynamic and slag conditions of blast furnace smelting - are presented.

  15. Application of Argonne's Glass Furnace Model to longhorn glass corporation oxy-fuel furnace for the production of amber glass.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golchert, B.; Shell, J.; Jones, S.

    2006-09-06

    The objective of this project is to apply the Argonne National Laboratory's Glass Furnace Model (GFM) to the Longhorn oxy-fuel furnace to improve energy efficiency and to investigate the transport of gases released from the batch/melt into the exhaust. The model will make preliminary estimates of the local concentrations of water, carbon dioxide, elemental oxygen, and other subspecies in the entire combustion space as well as the concentration of these species in the furnace exhaust gas. This information, along with the computed temperature distribution in the combustion space may give indications on possible locations of crown corrosion. An investigation intomore » the optimization of the furnace will be performed by varying several key parameters such as the burner firing pattern, exhaust number/size, and the boost usage (amount and distribution). Results from these parametric studies will be analyzed to determine more efficient methods of operating the furnace that reduce crown corrosion. Finally, computed results from the GFM will be qualitatively correlated to measured values, thus augmenting the validation of the GFM.« less

  16. Multiple hearth furnace for reducing iron oxide

    DOEpatents

    Brandon, Mark M [Charlotte, NC; True, Bradford G [Charlotte, NC

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  17. Thermal emittance enhancement of graphite-copper composites for high temperature space based radiators

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Forkapa, Mark J.; Cooper, Jill M.

    1991-01-01

    Graphite-copper composites are candidate materials for space based radiators. The thermal emittance of this material, however, is a factor of two lower than the desired emittance for these systems of greater than or equal to 0.85. Arc texturing was investigated as a surface modification technique for enhancing the emittance of the composite. Since the outer surface of the composite is copper, and samples of the composite could not be readily obtained for testing, copper was used for optimization testing. Samples were exposed to various frequencies and currents of arcs during texturing. Emittances near the desired goal were achieved at frequencies less than 500 Hz. Arc current did not appear to play a major role under 15 amps. Particulate carbon was observed on the surface, and was easily removed by vibration and handling. In order to determine morphology adherence, ultrasonic cleaning was used to remove the loosely adherent material. This reduced the emittance significantly. Emittance was found to increase with increasing frequency for the cleaned samples up to 500 Hz. The highest emittance achieved on these samples over the temperature range of interest was 0.5 to 0.6, which is approximately a factor of 25 increase over the untextured copper emittance.

  18. A novel post-arc current measuring equipment based on vacuum arc commutation and arc blow

    NASA Astrophysics Data System (ADS)

    Liao, Minfu; Ge, Guowei; Duan, Xiongying; Huang, Zhihui

    2017-07-01

    The paper proposes a novel post-arc current measuring equipment (NPACME), which is based on the vacuum arc commutation and magnetic arc blow. The NPACME is composed of the vacuum circuit breaker (VCB), shunt resistor, protective gap, high-precision current sensor and externally applied transverse magnetic field (ETMF). The prototype of the NPACME is designed and controlled by optical fiber communications. The vacuum arc commutation between the vacuum arc and the shunt resistor with ETMF is investigated. The test platform is established in the synthetic short-circuit test and the vacuum arc is observed by the high speed CMOS camera. The mathematic description of the vacuum arc commutation is obtained. Based on the current commutation characteristic, the parameters of the NPACME are optimized and the post-arc current is measured. The measuring result of the post-arc current is accurate with small interference and the post-arc charge is obtained. The experimental results verify that the NPACME is correct and accurate, which can be used to measure the post-arc characteristic in breaking test.

  19. ARC and Melting Efficiency of Plasma ARC Welds

    NASA Technical Reports Server (NTRS)

    McClure, J. C.; Nunes, A. C.; Evans, D. M.

    1999-01-01

    A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 Aluminum. Arc efficiency was measured calorimetrically and ranged between 48% and 66% for the conditions of the welds. Arc efficiency depends in different ways on voltage and current. The voltage effect dominates. Raising voltage while reducing current increases arc efficiency. Longer, higher voltage arcs are thought to transfer a greater portion of arc power to the workpiece through shield gas convection. Melting efficiency depends upon weld pool shape as well as arc efficiency. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Increased plasma gas flow does the same thing. Higher currents are thought to raise arc pressure and depress liquid at the bottom of the weld pool. More arc power then transfers to the workpiece through increasing plasma gas convection. If the power is held constant, the reduced voltage lowers the arc efficiency, while the pool shape change increases the melting efficiency,

  20. Influence of Metal-Coated Graphite Powders on Microstructure and Properties of the Bronze-Matrix/Graphite Composites

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-hua; Li, Pu; Tang, Qi; Zhang, Yan-qing; He, Jian-sheng; He, Ke

    2017-02-01

    In this study, the bronze-matrix/x-graphite (x = 0, 1, 3 and 5%) composites were fabricated by powder metallurgy route by using Cu-coated graphite, Ni-coated graphite and pure graphite, respectively. The microstructure, mechanical properties and corrosive behaviors of bronze/Cu-coated-graphite (BCG), bronze/Ni-coated-graphite (BNG) and bronze/pure-graphite (BPG) were characterized and investigated. Results show that the Cu-coated and Ni-coated graphite could definitely increase the bonding quality between the bronze matrix and graphite. In general, with the increase in graphite content in bronze-matrix/graphite composites, the friction coefficients, ultimate density and wear rates of BPG, BCG and BNG composites all went down. However, the Vickers microhardness of the BNG composite would increase as the graphite content increased, which was contrary to the BPG and BCG composites. When the graphite content was 3%, the friction coefficient of BNG composite was more stable than that of BCG and BPG composites, indicating that BNG composite had a better tribological performance than the others. Under all the values of applied loads (10, 20, 40 and 60N), the BCG and BNG composites exhibited a lower wear rate than BPG composite. What is more, the existence of nickel in graphite powders could effectively improve the corrosion resistance of the BNG composite.

  1. Application of Carbon Composite Bricks for Blast Furnace Hearth

    NASA Astrophysics Data System (ADS)

    Zuo, Haibin; Wang, Cong; Zhang, Jianliang; Zhao, Yongan; Jiao, Kexin

    Traditional refractory materials for blast furnace hearth lining are mainly composed of carbon bricks and the ceramic cup. However, these materials can't meet the demands for long service life design of blast furnaces. In this paper, a new refractory called carbon composite brick (CCB) was introduced, which combined the advantages of carbon bricks and the ceramic cup. In this case, the resistance of the CCB against corrosion was equal to the ceramic cup and the thermal conductivity of the CCB was equal to carbon bricks. From the results of more than 20 blast furnaces, the CCB could be well used in small blast furnaces and large blast furnaces. In the bad condition of low grade burden and high smelting intensity, the CCB gave full play to the role of cooling system, and effectively resisted the erosion of hot metal to improve the service life of blast furnaces.

  2. Poly(1-vinylimidazole) functionalized magnetic ion imprinted polymer for fast and selective extraction of trace gold in geological, environmental and biological samples followed by graphite furnace atomic absorption spectrometry detection

    NASA Astrophysics Data System (ADS)

    Zhao, Bingshan; He, Man; Chen, Beibei; Xu, Hongrun; Hu, Bin

    2018-05-01

    In this study, poly(1-vinylimidazole) functionalized gold ion imprinted polymer coated magnetic nanoparticles (MNPs@PVIM-Au-IIP) were prepared and characterized. The adsorption behaviors of the prepared MNPs@PVIM-Au-IIP toward gold ions (Au(III)) were studied, it was found that MNPs@PVIM-Au-IIP has good selectivity, high adsorption capacity (185.4 mg g-1) and fast adsorption kinetic for Au(III). Based on it, a new method of ion imprinted magnetic solid phase extraction (II-MSPE) coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the analysis of trace Au(III) in real samples with complicated matrix. Factors affecting MSPE including sample pH, desorption reagent, elution concentration and volume, elution time, sample volume and adsorption time were optimized. With high enrichment factor of 100-fold, the detection limit of the proposed method is 7.9 ng L-1 for Au(III) with the relative standard deviation of 7.4% (c = 50 ng L-1, n = 7). In order to validate the accuracy of the proposed method, the Certified Reference Material of GBW07293 geological sample (platinpalladium ore) was analyzed, and the determined value was in good agreement with the certified value. The proposed II-MSPE-GFAAS method is simple, fast, selective, sensitive and has been successfully applied in the determination of trace Au in ore, sediment, environmental water and human urine samples with satisfactory results.

  3. Energy Saving Devices on Gas Furnaces.

    DTIC Science & Technology

    1980-03-01

    AO-A082 0715 JOHNS - MANVILLE SALES CORP DENVER CO RESEARCH AND DEV--ETC FIG 1311 ENERGY SAVING DEVICES ON GAS FURNACES.(U) MAR B0 T E BRISBANE, P B...DEVICES FOR GAS FURNACES THOMAS E. BRISBANE ,o"’ P. B. SHEPHERD JOHNS - MANVILLE SALES CORPORATION RESEARCH & DEVELOPMENT CENTER KEN-CARYL RANCH, DENVER

  4. Water-cooled furnace heads for use with standard muffle tube furnaces

    NASA Technical Reports Server (NTRS)

    Williams, R. J.; Mullins, O.

    1975-01-01

    The design of water-cooled furnace seals for use in high-temperature controlled-atmosphere gas and vacuum studies is presented in detailed engineering drawings. Limiting design factors and advantages are discussed.

  5. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  6. Control of arc length during gas metal arc welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madigan, R.B.; Quinn, T.P.

    1994-12-31

    An arc-length control system has been developed for gas metal arc welding (GMAW) under spray transfer welding conditions. The ability to monitor and control arc length during arc welding allows consistent weld characteristics to be maintained and therefore improves weld quality. Arc length control has only been implemented for gas tungsten arc welding (GTAW), where an automatic voltage control (AVC) unit adjusts torch-to-work distance. The system developed here compliments the voltage- and current-sensing techniques commonly used for control of GMAW. The system consists of an arc light intensity sensor (photodiode), a Hall-effect current sensor, a personal computer and software implementingmore » a data interpretation and control algorithms. Arc length was measured using both arc light and arc current signals. Welding current was adjusted to maintain constant arc length. A proportional-integral-derivative (PID) controller was used. Gains were automatically selected based on the desired welding conditions. In performance evaluation welds, arc length varied from 2.5 to 6.5 mm while welding up a sloped workpiece (ramp in CTWD) without the control. Arc length was maintained within 1 mm of the desired (5 mm ) with the control.« less

  7. Predictive control of thermal state of blast furnace

    NASA Astrophysics Data System (ADS)

    Barbasova, T. A.; Filimonova, A. A.

    2018-05-01

    The work describes the structure of the model for predictive control of the thermal state of a blast furnace. The proposed model contains the following input parameters: coke rate; theoretical combustion temperature, comprising: natural gas consumption, blasting temperature, humidity, oxygen, blast furnace cooling water; blast furnace gas utilization rate. The output parameter is the cast iron temperature. The results for determining the cast iron temperature were obtained following the identification using the Hammerstein-Wiener model. The result of solving the cast iron temperature stabilization problem was provided for the calculated values of process parameters of the target area of the respective blast furnace operation mode.

  8. 75 FR 76026 - United States v. Graftech International Ltd., Et al.; Proposed Final Judgment and Competitive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... and other inputs to form cylinders that are shot through with electricity and baked to produce... electricity into the furnace, heating the furnace and melting scrap steel. 11. Graphite electrodes oxidize and... consumption of graphite electrodes. 12. Petroleum needle coke, relative to other varieties of coke, is...

  9. Effect of graphite target power density on tribological properties of graphite-like carbon films

    NASA Astrophysics Data System (ADS)

    Dong, Dan; Jiang, Bailing; Li, Hongtao; Du, Yuzhou; Yang, Chao

    2018-05-01

    In order to improve the tribological performance, a series of graphite-like carbon (GLC) films with different graphite target power densities were prepared by magnetron sputtering. The valence bond and microstructure of films were characterized by AFM, TEM, XPS and Raman spectra. The variation of mechanical and tribological properties with graphite target power density was analyzed. The results showed that with the increase of graphite target power density, the deposition rate and the ratio of sp2 bond increased obviously. The hardness firstly increased and then decreased with the increase of graphite target power density, whilst the friction coefficient and the specific wear rate increased slightly after a decrease with the increasing graphite target power density. The friction coefficient and the specific wear rate were the lowest when the graphite target power density was 23.3 W/cm2.

  10. 6. Photocopied August 1978. LINEUP OF HORRY ROTARY FURNACES ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopied August 1978. LINE-UP OF HORRY ROTARY FURNACES ON THE SECOND FLOOR OF THE MICHIGAN LAKE SUPERIOR POWER COMPANY POWER HOUSE. THE HOPPERS WHICH FED THE RAW MATERIALS INTO THE FURNACES ARE SHOWN ABOVE THE FURNACES. AS THE 'SPOOL' OF THE FURNACE ROTATED PAST THE ELECTRODES PLATES WERE ADDED TO HOLD THE FINISHED PRODUCT AND THE DESCENDING RAW MATERIALS IN PLACE. THE DIRECTION OF ROTATION OF THE FURNACES SHOWN IN THIS PHOTO IS CLOCKWISE, (M). - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  11. 40 CFR 60.270a - Applicability and designation of affected facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...

  12. 40 CFR 60.270a - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...

  13. 40 CFR 60.270a - Applicability and designation of affected facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...

  14. 40 CFR 60.270a - Applicability and designation of affected facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...

  15. 40 CFR 60.270a - Applicability and designation of affected facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...

  16. 20. Detail, Furnace A, shows the drill used to tap ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Detail, Furnace A, shows the drill used to tap the furnace (at center left) and the 'mud gun' used to close it up with a clay plug (at lower right). Metal chute at center (next to drill) was used to clean out furnace prior to its abandonment. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  17. Metal halide arc discharge lamp having short arc length

    NASA Technical Reports Server (NTRS)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  18. Control of carbon balance in a silicon smelting furnace

    DOEpatents

    Dosaj, Vishu D.; Haines, Cathryn M.; May, James B.; Oleson, John D.

    1992-12-29

    The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

  19. EXPLORATORY DEVELOPMENT OF GRAPHITE MATERIALS.

    DTIC Science & Technology

    COMPOSITE MATERIALS), (* GRAPHITE , (*FIBERS, GRAPHITE ), (*LAMINATED PLASTICS, GRAPHITE ), MOLDINGS, EXTRUSION, VACUUM, EPOXY RESINS, FILAMENTS, STRESSES, TENSILE PROPERTIES, OXIDATION, PHYSICAL PROPERTIES.

  20. Gas arc constriction for plasma arc welding

    NASA Technical Reports Server (NTRS)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  1. Feasibility Study of Regenerative Burners in Aluminum Holding Furnaces

    NASA Astrophysics Data System (ADS)

    Hassan, Mohamed I.; Al Kindi, Rashid

    2014-09-01

    Gas-fired aluminum holding reverberatory furnaces are currently considered to be the lowest efficiency fossil fuel system. A considerable volume of gas is consumed to hold the molten metal at temperature that is much lower than the flame temperature. This will lead to more effort and energy consumption to capture the excessive production of the CO2. The concern of this study is to investigate the feasibility of the regenerative-burners' furnaces to increase the furnace efficiency to reduce gas consumption per production and hence result in less CO2 production. Energy assessments for metal holding furnaces are considered at different operation conditions. Onsite measurements, supervisory control and data acquisition data, and thermodynamics analysis are performed to provide feasible information about the gas consumption and CO2 production as well as area of improvements. In this study, onsite measurements are used with thermodynamics modeling to assess a 130 MT rectangular furnace with two regenerative burners and one cold-air holding burner. The assessment showed that the regenerative burner furnaces are not profitable in saving energy, in addition to the negative impact on the furnace life. However, reducing the holding and door opening time would significantly increase the operation efficiency and hence gain the benefit of the regenerative technology.

  2. Ferrix Chloride-Graphite Intercalation Compounds Prepared From Graphite Flouride

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1995-01-01

    The reaction between graphite fluoride and ferric chloride was observed in the temperature range of 300 to 400 C. The graphite fluorides used for this reaction have an sp(sup 3) electronic structure and are electrical insulators. They can be made by fluorinating either carbon fibers or powder having various degrees of graphitization. Reaction is fast and spontaneous and can occur in the presence of air. The ferric chloride does not have to be predried. The products have an sp(sup 2) electronic structure and are electrical conductors. They contain first-stage FeCl3 intercalated graphite. Some of the products contain FeCl2 (center dot) 2H2O, others contain FeF3, in concentrations that depend on the intercalation condition. The graphite intercalated compounds (GIC) deintercalated slowly in air at room temperature, but deintercalated quickly and completely at 370 C. Deintercalation is accompanied by the disappearance of iron halides and the formation of rust (hematite) distributed unevenly on the fiber surface. When heated to 400 C in pure N2 (99.99 vol%), this new GIC deintercalates without losing its molecular structure. However, when the compounds are exposed to 800 C N2, in a quartz tube, they lost most of their halogen atoms and formed iron oxides (other than hematite), distributed evenly in or on the fiber.

  3. 46 CFR 164.009-11 - Furnace apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., and three thermocouples (a furnace thermocouple to measure furnace temperature, a surface thermocouple to measure temperature at the surface of a specimen, and a specimen thermocouple to measure... apparatus may be obtained from the Commandant (CG-521). (b) Temperatures measured by the thermocouples are...

  4. 46 CFR 164.009-11 - Furnace apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., and three thermocouples (a furnace thermocouple to measure furnace temperature, a surface thermocouple to measure temperature at the surface of a specimen, and a specimen thermocouple to measure... apparatus may be obtained from the Commandant (CG-521). (b) Temperatures measured by the thermocouples are...

  5. 46 CFR 164.009-11 - Furnace apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., and three thermocouples (a furnace thermocouple to measure furnace temperature, a surface thermocouple to measure temperature at the surface of a specimen, and a specimen thermocouple to measure... apparatus may be obtained from the Commandant (CG-521). (b) Temperatures measured by the thermocouples are...

  6. Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet) (in Chinese; English)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from themore » furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air

  7. Furnace assembly

    DOEpatents

    Panayotou, Nicholas F.; Green, Donald R.; Price, Larry S.

    1985-01-01

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  8. Furnace assembly

    DOEpatents

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  9. 2. EXTERIOR VIEW LOOKING SOUTHEAST AT ELECTRIC FURNACE BUILDING AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EXTERIOR VIEW LOOKING SOUTHEAST AT ELECTRIC FURNACE BUILDING AND ELECTRIC FURNACE OFFICE & CHEMICAL LABORATORY BUILDING. INGOT MOLDS IN RIGHT FOREGROUND. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  10. Graphite-based photovoltaic cells

    DOEpatents

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  11. Fabrication of inorganic molybdenum disulfide fullerenes by arc in water

    NASA Astrophysics Data System (ADS)

    Sano, Noriaki; Wang, Haolan; Chhowalla, Manish; Alexandrou, Ioannis; Amaratunga, Gehan A. J.; Naito, Masakazu; Kanki, Tatsuo

    2003-01-01

    Closed caged fullerene-like molybdenum disulfide (MoS 2) nano-particles were obtained via an arc discharge between a graphite cathode and a molybdenum anode filled with microscopic MoS 2 powder submerged in de-ionized water. A statistical study of over 150 polyhedral fullerene-like MoS 2 nano-particles in plan view transmission electron microscopy revealed that the majority consisted of 2-3 layers with diameters of 5-15 nm. We show that the nano-particles are formed by seamless folding of MoS 2 sheets. A model based on the agglomeration of MoS 2 fragments over an extreme temperature gradient around a plasma ball in water is proposed to explain the formation of nano-particles.

  12. Ion irradiation to simulate neutron irradiation in model graphites: Consequences for nuclear graphite

    NASA Astrophysics Data System (ADS)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2017-10-01

    Due to its excellent moderator and reflector qualities, graphite was used in CO2-cooled nuclear reactors such as UNGG (Uranium Naturel-Graphite-Gaz). Neutron irradiation of graphite resulted in the production of 14C which is a key issue radionuclide for the management of the irradiated graphite waste. In order to elucidate the impact of neutron irradiation on 14C behavior, we carried out a systematic investigation of irradiation and its synergistic effects with temperature in Highly Oriented Pyrolitic Graphite (HOPG) model graphite used to simulate the coke grains of nuclear graphite. We used 13C implantation in order to simulate 14C displaced from its original structural site through recoil. The collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic damage. However, a part of the recoil carbon atom energy is also transferred to the graphite lattice through electronic excitation. The effects of the different irradiation regimes in synergy with temperature were simulated using ion irradiation by varying Sn(nuclear)/Se(electronic) stopping power. Thus, the samples were irradiated with different ions of different energies. The structure modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry. The results show that temperature generally counteracts the disordering effects of irradiation but the achieved reordering level strongly depends on the initial structural state of the graphite matrix. Thus, extrapolating to reactor conditions, for an initially highly disordered structure, irradiation at reactor temperatures (200 - 500 °C) should induce almost no change of the initial structure. On the contrary, when the structure is initially less disordered, there should be a "zoning" of the reordering: In "cold" high flux irradiated zones where the ballistic damage is important, the structure should be poorly reordered; In "hot" low flux irradiated zones where the ballistic

  13. Characterisation of the sintering behaviour of Waelz slag from electric arc furnace (EAF) dust recycling for use in the clay ceramics industry.

    PubMed

    Quijorna, N; de Pedro, M; Romero, M; Andrés, A

    2014-01-01

    Waelz slag is an industrial by-product from the recovery of electric arc furnace (EAF) dust which is mainly sent to landfills. Despite the different chemical and mineralogical compositions of Waelz slag compared to traditional clays, previous experiments have demonstrated its potential use as a clay substitute in ceramic processes. Indeed, clayey products containing Waelz slag could improve mechanical and environmental performance, fixing most of the metallic species and moreover decreasing the release of some potential pollutants during firing. However, a deeper understanding of the complex phase transformations during its thermal treatment and the connection of this behaviour with the end properties is desirable in order to explain the role that is played by the Waelz slag and its potential contribution to the ceramic process. For this purpose, in the present study, the chemical, mineralogical, thermal and environmental behaviour of both (i) unfired powdered samples, and (ii) pressed specimen of Waelz slag fired up to different temperatures within the typical range of clay based ceramic production, has been studied. The effect of the heating temperature on the end properties of the fired samples has been assessed. In general, an increase of the firing temperature promotes sintering and densification of the products and decreases the open porosity and water absorption which also contributes to the fixation of heavy metals. On the contrary, an increase in the leaching of Pb, Cr and Mo from the fired specimens is observed. This can be attributed to the creation of Fe and Ca molybdates and chromates that are weakly retained in the alkali matrix. On the other side, at temperature above 950 °C a weight gain related to the emission of evolved gases is observed. In conclusion, the firing temperature of the ceramic process is a key parameter that affects not only the technical properties but also strongly affects the leaching behaviour and the process emissions

  14. Long arc stabilities with various arc gas flow rates

    NASA Astrophysics Data System (ADS)

    Maruyama, K.; Takeda, K.; Sugimoto, M.; Noguchi, Y.

    2014-11-01

    A new arc torch for use in magnetically driven arc device was developed with a commercially available TIG welding arc torch. The torch has a water-cooling system to the torch nozzle and has a nozzle nut to supply a swirling-free plasma gas flow. Its endurance against arc thermal load is examined. Features of its generated arc are investigated.

  15. NEW METHOD OF GRAPHITE PREPARATION

    DOEpatents

    Stoddard, S.D.; Harper, W.T.

    1961-08-29

    BS>A method is described for producing graphite objects comprising mixing coal tar pitch, carbon black, and a material selected from the class comprising raw coke, calcined coke, and graphite flour. The mixture is placed in a graphite mold, pressurized to at least 1200 psi, and baked and graphitized by heating to about 2500 deg C while maintaining such pressure. (AEC)

  16. Correction-free pyrometry in radiant wall furnaces

    NASA Technical Reports Server (NTRS)

    Thomas, Andrew S. W. (Inventor)

    1994-01-01

    A specular, spherical, or near-spherical target is located within a furnace having inner walls and a viewing window. A pyrometer located outside the furnace 'views' the target through pyrometer optics and the window, and it is positioned so that its detector sees only the image of the viewing window on the target. Since this image is free of any image of the furnace walls, it is free from wall radiance, and correction-free target radiance is obtained. The pyrometer location is determined through a nonparaxial optical analysis employing differential optical ray tracing methods to derive a series of exact relations for the image location.

  17. Ferric chloride graphite intercalation compounds prepared from graphite fluoride

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1994-01-01

    The reaction between graphite fluoride and ferric chloride was observed in the temperature range of 300 to 400 C. The graphite fluorides used for this reaction have an sp3 electronic structure and are electrical insulators. They can be made by fluorinating either carbon fibers or powder having various degrees of graphitization. Reaction is fast and spontaneous and can occur in the presence of air. The ferric chloride does not have to be predried. The products have an sp2 electronic structure and are electrical conductors. They contain first stage FeCl3 intercalated graphite. Some of the products contain FeCl2*2H2O, others contain FeF3 in concentrations that depend on the intercalation condition. The graphite intercalated compounds (GIC) deintercalated slowly in air at room temperature, but deintercalated quickly and completely at 370 C. Deintercalation is accompanied by the disappearing of iron halides and the formation of rust (hematite) distributed unevenly on the fiber surface. When heated to 400 C in pure N2 (99.99 vol %), this new GIC deintercalates without losing its molecular structure. However, when the compounds are heated to 800 C in quartz tube, they lost most of its halogen atoms and formed iron oxides (other than hematite), distributed evenly in or on the fiber. This iron-oxide-covered fiber may be useful in making carbon-fiber/ceramic-matrix composites with strong bonding at the fiber-ceramic interface.

  18. Composition and method for brazing graphite to graphite

    DOEpatents

    Taylor, Albert J.; Dykes, Norman L.

    1984-01-01

    The present invention is directed to a brazing material for joining graphite structures that can be used at temperatures up to about 2800.degree. C. The brazing material formed of a paste-like composition of hafnium carbide and uranium oxide with a thermosetting resin. The uranium oxide is converted to uranium dicarbide during the brazing operation and then the hafnium carbide and uranium dicarbide form a liquid phase at a temperature about 2600.degree. C. with the uranium diffusing and vaporizing from the joint area as the temperature is increased to about 2800.degree. C. so as to provide a brazed joint consisting essentially of hafnium carbide. This brazing temperature for hafnium carbide is considerably less than the eutectic temperature of hafnium carbide of about 3150.degree. C. The brazing composition also incorporates the thermosetting resin so that during the brazing operation the graphite structures may be temporarily bonded together by thermosetting the resin so that machining of the structures to final dimensions may be completed prior to the completion of the brazing operation. The resulting brazed joint is chemically and thermally compatible with the graphite structures joined thereby and also provides a joint of sufficient integrity so as to at least correspond with the strength and other properties of the graphite.

  19. BPM Motors in Residential Gas Furnaces: What are theSavings?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutz, James; Franco, Victor; Lekov, Alex

    2006-05-12

    Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured staticmore » pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.« less

  20. Systems and methods for forming defects on graphitic materials and curing radiation-damaged graphitic materials

    DOEpatents

    Ryu, Sunmin; Brus, Louis E.; Steigerwald, Michael L.; Liu, Haitao

    2012-09-25

    Systems and methods are disclosed herein for forming defects on graphitic materials. The methods for forming defects include applying a radiation reactive material on a graphitic material, irradiating the applied radiation reactive material to produce a reactive species, and permitting the reactive species to react with the graphitic material to form defects. Additionally, disclosed are methods for removing defects on graphitic materials.

  1. Residential Two-Stage Gas Furnaces - Do They Save Energy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lekov, Alex; Franco, Victor; Lutz, James

    2006-05-12

    Residential two-stage gas furnaces account for almost a quarter of the total number of models listed in the March 2005 GAMA directory of equipment certified for sale in the United States. Two-stage furnaces are expanding their presence in the market mostly because they meet consumer expectations for improved comfort. Currently, the U.S. Department of Energy (DOE) test procedure serves as the method for reporting furnace total fuel and electricity consumption under laboratory conditions. In 2006, American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE) proposed an update to its test procedure which corrects some of the discrepancies found in themore » DOE test procedure and provides an improved methodology for calculating the energy consumption of two-stage furnaces. The objectives of this paper are to explore the differences in the methods for calculating two-stage residential gas furnace energy consumption in the DOE test procedure and in the 2006 ASHRAE test procedure and to compare test results to research results from field tests. Overall, the DOE test procedure shows a reduction in the total site energy consumption of about 3 percent for two-stage compared to single-stage furnaces at the same efficiency level. In contrast, the 2006 ASHRAE test procedure shows almost no difference in the total site energy consumption. The 2006 ASHRAE test procedure appears to provide a better methodology for calculating the energy consumption of two-stage furnaces. The results indicate that, although two-stage technology by itself does not save site energy, the combination of two-stage furnaces with BPM motors provides electricity savings, which are confirmed by field studies.« less

  2. 57. GENERAL VIEW OF FURNACES No. 3 AND No. 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. GENERAL VIEW OF FURNACES No. 3 AND No. 4 TO THE LEFT OF THE FURNACES IS THE ORE BRIDGE, THE TURBO-GENERATOR BUILDING, AND THE WATER FILTER TANKS. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  3. 56. GENERAL VIEW OF FURNACES No. 3 AND No. 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. GENERAL VIEW OF FURNACES No. 3 AND No. 4 TO THE LEFT OF THE FURNACES IS THE ORE BRIDGE, THE TURBO-GENERATOR BUILDING, AND THE WATER FILTER TANKS. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  4. Arcmon for Process Control in Silicomanganese Production: A Case Study

    NASA Astrophysics Data System (ADS)

    Steenkamp, Joalet Dalene; Hockaday, Christopher James; Gous, Johan Petrus; Clark, Wilma; Corfield, Archie

    2017-12-01

    Arcmon is a device that is used to quantify the amount of arcing (expressed as arc power fraction) that takes place in submerged-arc furnaces (SAFs). During a trial installation on a 48-MVA SAF used for the production of SiMn, differences in arcing behavior between the three different electrodes were observed, with the amount of arcing on one electrode being significantly higher than on the other two. During the subsequent excavation of the SAF, the increased amount of arcing had been attributed to the presence of a hard build-up below the electrode. Phase chemical analysis of the hard build-up indicated that it consisted primarily of portlandite (a reaction product of calcium carbide that probably reacted with the water used to cool down the burden during excavation) and silicon carbide. In comparison, the coke-bed below one of the other electrodes consisted mainly of graphite, silicon carbide, and phases which will typically precipitate from slag upon cooling, i.e. phases expected to be present in a coke-bed. The presence of such a large build-up of carbide material is undesirable as it effectively reduces the volume of coke-bed available for the reduction reactions to occur. The study indicated that Arcmon could potentially be applied as an early warning system to identify the presence of such a build-up.

  5. Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace.

    PubMed

    Zhao, Peng; Ni, Guohua; Jiang, Yiman; Chen, Longwei; Chen, Mingzhou; Meng, Yuedong

    2010-09-15

    Due to the toxicity of dioxins, furans and heavy metals, there is a growing environmental concern on municipal solid waste incinerator (MSWI) fly ash in China. The purpose of this study is directed towards the volume-reduction of fly ash without any additive by thermal plasma and recycling of vitrified slag. This process uses extremely high-temperature in an oxygen-starved environment to completely decompose complex waste into very simple molecules. For developing the proper plasma processes to treat MSWI fly ash, a new crucible-type plasma furnace was built. The melting process metamorphosed fly ash to granulated slag that was less than 1/3 of the volume of the fly ash, and about 64% of the weight of the fly ash. The safety of the vitrified slag was tested. The properties of the slag were affected by the differences in the cooling methods. Water-cooled and composite-cooled slag showed more excellent resistance against the leaching of heavy metals and can be utilized as building material without toxicity problems. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Automatic thermocouple positioner for use in vacuum furnaces

    DOEpatents

    Mee, D.K.; Stephens, A.E.

    1980-06-06

    The invention is a simple and reliable mechanical arrangement for automatically positioning a thermocouple-carrying rod in a vacuum-furnace assembly of the kind including a casing, a furnace mounted in the casing, and a charge-containing crucible mounted in the furnace for vertical movement between a lower (loading) position and a raised (charge-melting) position. In a preferred embodiment, a welded-diaphragm metal bellows is mounted above the furnace, the upper end of the bellows being fixed against movement and the lower end of the bellows being affixed to support means for a thermocouple-carrying rod which is vertically oriented and extends freely through the furnace lid toward the mouth of the crucible. The support means and rod are mounted for relative vertical movement. Before pumpdown of the furnace, the differential pressure acting on the bellows causes it to contract and lift the thermocouple rod to a position where it will not be contacted by the crucible charge when the crucible is elevated to its raised position. During pumpdown, the bellows expands downward, lowering the thermocouple rod and its support. The bellows expands downward beyond a point where downward movement of the thermocouple rod is arrested by contact with the crucible charge and to a point where the upper end of the thermocouple extends well above the thermocouple support. During subsequent melting of the charge, the thermocouple sinks into the melt to provide an accurate measurement of melt temperatures.

  7. Automatic thermocouple positioner for use in vacuum furnaces

    DOEpatents

    Mee, David K.; Stephens, Albert E.

    1981-01-01

    The invention is a simple and reliable mechanical arrangement for automatically positioning a thermocouple-carrying rod in a vacuum-furnace assembly of the kind including a casing, a furnace mounted in the casing, and a charge-containing crucible mounted in the furnace for vertical movement between a lower (loading) position and a raised (charge-melting) position. In a preferred embodiment, a welded-diaphragm metal bellows is mounted above the furnace, the upper end of the bellows being fixed against movement and the lower end of the bellows being affixed to support means for a thermocouple-carrying rod which is vertically oriented and extends freely through the furnace lid toward the mouth of the crucible. The support means and rod are mounted for relative vertical movement. Before pumpdown of the furnace, the differential pressure acting on the bellows causes it to contract and lift the thermocouple rod to a position where it will not be contacted by the crucible charge when the crucible is elevated to its raised position. During pumpdown, the bellows expands downward, lowering the thermocouple rod and its support. The bellows expands downward beyond a point where downward movement of the thermocouple rod is arrested by contact with the crucible charge and to a point where the upper end of the thermocouple extends well above the thermocouple support. During subsequent melting of the charge, the thermocouple sinks into the melt to provide an accurate measurement of melt temperatures.

  8. Hydrogen-atmosphere induction furnace has increased temperature range

    NASA Technical Reports Server (NTRS)

    Caves, R. M.; Gresslin, C. H.

    1966-01-01

    Improved hydrogen-atmosphere induction furnace operates at temperatures up to 5,350 deg F. The furnace heats up from room temperature to 4,750 deg F in 30 seconds and cools down to room temperature in 2 minutes.

  9. AMTEC powered residential furnace and auxiliary power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanenok, J.F. III; Sievers, R.K.

    1996-12-31

    Residential gas furnaces normally rely on utility grid electric power to operate the fans and/or the pumps used to circulate conditioned air or water and they are thus vulnerable to interruptions of utility grid service. Experience has shown that such interruptions can occur during the heating season, and can lead to serious consequences. A gas furnace coupled to an AMTEC conversion system retains the potential to produce heat and electricity (gas lines are seldom interrupted during power outages), and can save approximately $47/heating season compared to a conventional gas furnace. The key to designing a power system is understanding, andmore » predicting, the cell performance characteristics. The three main processes that must be understood and modeled to fully characterize an AMTEC cell are the electro-chemical, sodium vapor flow, and heat transfer. This paper will show the results of the most recent attempt to model the heat transfer in a multi-tube AMTEC cell and then discusses the conceptual design of a self-powered residential furnace.« less

  10. 6. GENERAL VIEW OF FURNACES No. 3 AND No. 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. GENERAL VIEW OF FURNACES No. 3 AND No. 4 TO THE LEFT OF THE FURNACES ARE THE ORE BRIDGE, THE TURBO-GENERATOR BUILDING, AND THE WATER FILTER TANKS. Jet Lowe, Photographer, 1989. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  11. INTERIOR VIEW SHOWING QBOP FURNACE IN BLOW. OXYGEN AND NATURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING Q-BOP FURNACE IN BLOW. OXYGEN AND NATURAL GAS ARE BLOWN INTO THE FURNACE THROUGH THE TUYERES TO CHARGE 460,000 LBS. OF HOT METAL, 100,000 LBS. OF SCRAP WITH 30,000 LBS. OF LIME. BLOW TIME IS 16 MINUTES. THE TIME TO BLOW AND TAP THE FURNACES OF THE RESULTING 205,000 TONS OF STEEL AND SLAG IS 35 MINUTES. - U.S. Steel, Fairfield Works, Q-Bop Furnace, North of Valley Road & West of Ensley, Pleasant Grove Road, Fairfield, Jefferson County, AL

  12. 28. RW Sugar Mill: 18761889. Boilingrange Furnace and Clarifier position. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. RW Sugar Mill: 1876-1889. Boiling-range Furnace and Clarifier position. View: In the boiling range all of the clarification, evaporation, and concentration of cane juice took place in open pans over the Continuous flue leading from this furnace. The furnace door through the exterior wall is at the end of the furnace. In the original installation, two copper clarifiers, manufactured by John Nott & Co. occupied this space directly above the furnace. In the clarifiers, lime was added to the cane juice so that impurities would coagulate into a scum on top of the near-boiling juice. The clarifiers have been removed since the closing of the mill. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  13. 29. RW Meyer Sugar Mill: 18761889. Boilingrange furnace and clarifier ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. RW Meyer Sugar Mill: 1876-1889. Boiling-range furnace and clarifier position. View: In the boiling range all of the concentration, evaporation, and concentration of cane juice took place in open pans over the continous flue leaving this furnace. The furnace door through the exterior wall is at the end of the furnace. In the original installation two copper clarifiers, manufactured by John Nott & Co. occupied this space directly above the furnace. In the clarifier lime was added to the cane juice so that impurities would coagulate into a scum on top of the near-boiling juice. The clarifiers have been removed since the closing of the mill. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  14. Graphite fiber reinforced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Navak, R. C.

    1977-01-01

    The results of a program designed to optimize the fabrication procedures for graphite thermoplastic composites are described. The properties of the composites as a function of temperature were measured and graphite thermoplastic fan exit guide vanes were fabricated and tested. Three thermoplastics were included in the investigation: polysulfone, polyethersulfone, and polyarylsulfone. Type HMS graphite was used as the reinforcement. Bending fatigue tests of HMS graphite/polyethersulfone demonstrated a gradual shear failure mode which resulted in a loss of stiffness in the specimens. Preliminary curves were generated to show the loss in stiffness as a function of stress and number of cycles. Fan exit guide vanes of HMS graphite polyethersulfone were satisfactorily fabricated in the final phase of the program. These were found to have stiffness and better fatigue behavior than graphite epoxy vanes which were formerly bill of material.

  15. FennoFlakes: a project for identifying flake graphite ores in the Fennoscandian shield and utilizing graphite in different applications

    NASA Astrophysics Data System (ADS)

    Palosaari, Jenny; Eklund, O.; Raunio, S.; Lindfors, T.; Latonen, R.-M.; Peltonen, J.; Smått, J.-H.; Kauppila, J.; Lund, S.; Sjöberg-Eerola, P.; Blomqvist, R.; Marmo, J.

    2016-04-01

    Natural graphite is a strategic mineral, since the European Commission stated (Report on critical raw materials for the EU (2014)) that graphite is one of the 20 most critical materials for the European Union. The EU consumed 13% of all flake graphite in the world but produced only 3%, which stresses the demand of the material. Flake graphite, which is a flaky version of graphite, forms under high metamorphic conditions. Flake graphite is important in different applications like batteries, carbon brushes, heat sinks etc. Graphene (a single layer of graphite) can be produced from graphite and is commonly used in many nanotechnological applications, e.g. in electronics and sensors. The steps to obtain pure graphene from graphite ore include fragmentation, flotation and exfoliation, which can be cumbersome and resulting in damaging the graphene layers. We have started a project named FennoFlakes, which is a co-operation between geologists and chemists to fill the whole value chain from graphite to graphene: 1. Exploration of graphite ores (geological and geophysical methods). 2. Petrological and geochemical analyses on the ores. 3. Development of fragmentation methods for graphite ores. 4. Chemical exfoliation of the enriched flake graphite to separate flake graphite into single and multilayer graphene. 5. Test the quality of the produced material in several high-end applications with totally environmental friendly and disposable material combinations. Preliminary results show that flake graphite in high metamorphic areas has better qualities compared to synthetic graphite produced in laboratories.

  16. Improved Graphite Fiber.

    DTIC Science & Technology

    1982-10-01

    The purpose of the program was to develop a production method for improved graphite fibers. A goal of 750 x 10 to the 3rd power psi tensile strength...at 60-65 x 10 to the 6th power psi modulus was set for the program. Improved 3-4 micron diameter boron strengthened graphite fibers were successfully... graphite fiber. An average tensile strength of 550 x 10 to the 3rd power psi at the 60 x 10 to the 6th power psi modulus level was achieved through a preliminary optimization of the plant processing conditions.

  17. Preparation of graphite dispersed copper composite with intruding graphite particles in copper plate

    NASA Astrophysics Data System (ADS)

    Noor, Abdul Muizz Mohd; Ishikawa, Yoshikazu; Yokoyama, Seiji

    2017-01-01

    In this study, it was attempted that copper-graphite composite was prepared locally on the surface of a copper plate with using a spot welding machine. Experiments were carried out with changing the compressive load, the repetition number of the compression and the electrical current in order to study the effect of them on carbon content and Vickers hardness on the copper plate surface. When the graphite was pushed into copper plate only with the compressive load, the composite was mainly hardened by the work hardening. The Vickers hardness increased linearly with an increase in the carbon content. When an electrical current was energized through the composite at the compression, the copper around the graphite particles were heated to the temperature above approximately 2100 K and melted. The graphite particles partially or entirely dissolved into the melt. The graphite particles were precipitated from the melt under solidification. In addition, this high temperature caused the improvement of wetting of copper to graphite. This high temperature caused the annealing, and reduced the Vickers hardness. Even in this case, the Vickers hardness increased with an increase in the carbon content. This resulted from the dispersion hardening.

  18. Formation mechanism of graphite hexagonal pyramids by argon plasma etching of graphite substrates

    NASA Astrophysics Data System (ADS)

    Glad, X.; de Poucques, L.; Bougdira, J.

    2015-12-01

    A new graphite crystal morphology has been recently reported, namely the graphite hexagonal pyramids (GHPs). They are hexagonally-shaped crystals with diameters ranging from 50 to 800 nm and a constant apex angle of 40°. These nanostructures are formed from graphite substrates (flexible graphite and highly ordered pyrolytic graphite) in low pressure helicon coupling radiofrequency argon plasma at 25 eV ion energy and, purportedly, due to a physical etching process. In this paper, the occurrence of peculiar crystals is shown, presenting two hexagonal orientations obtained on both types of samples, which confirms such a formation mechanism. Moreover, by applying a pretreatment step with different time durations of inductive coupling radiofrequency argon plasma, for which the incident ion energy decreases at 12 eV, uniform coverage of the surface can be achieved with an influence on the density and size of the GHPs.

  19. Determination of palladium, platinum and rhodium in used automobile catalysts and active pharmaceutical ingredients using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis

    NASA Astrophysics Data System (ADS)

    Resano, Martín; Flórez, María del Rosario; Queralt, Ignasi; Marguí, Eva

    2015-03-01

    This work investigates the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for the direct determination of Pd, Pt and Rh in two samples of very different nature. While analysis of active pharmaceutical ingredients is straightforward and it is feasible to minimize matrix effects, to the point that calibration can be carried out against aqueous standard solutions, the analysis of used automobile catalysts is more challenging requiring the addition of a chemical modifier (NH4F·HF) to help in releasing the analytes, a more vigorous temperature program and the use of a solid standard (CRM ERM®-EB504) for calibration. However, in both cases it was possible to obtain accurate results and precision values typically better than 10% RSD in a fast and simple way, while only two determinations are needed for the three analytes, since Pt and Rh can be simultaneously monitored in both types of samples. Overall, the methods proposed seem suited for the determination of these analytes in such types of samples, offering a greener and faster alternative that circumvents the traditional problems associated with sample digestion, requiring a small amount of sample only (0.05 mg per replicate for catalysts, and a few milligrams for the pharmaceuticals) and providing sufficient sensitivity to easily comply with regulations. The LODs achieved were 6.5 μg g- 1 (Pd), 8.3 μg g- 1 (Pt) and 9.3 μg g- 1 (Rh) for catalysts, which decreased to 0.08 μg g- 1 (Pd), 0.15 μg g- 1 (Pt) and 0.10 μg g- 1 (Rh) for pharmaceuticals.

  20. 46 CFR 59.15-5 - Stayed furnaces and combustion chambers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Stayed furnaces and combustion chambers. 59.15-5 Section... and combustion chambers. (a) Where the plate forming the walls of stayed furnaces or combustion... wall of a stayed furnace or combustion chamber, the defective portion of the plate shall be cut away...

  1. 46 CFR 59.15-5 - Stayed furnaces and combustion chambers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Stayed furnaces and combustion chambers. 59.15-5 Section... and combustion chambers. (a) Where the plate forming the walls of stayed furnaces or combustion... wall of a stayed furnace or combustion chamber, the defective portion of the plate shall be cut away...

  2. 46 CFR 59.15-5 - Stayed furnaces and combustion chambers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Stayed furnaces and combustion chambers. 59.15-5 Section... and combustion chambers. (a) Where the plate forming the walls of stayed furnaces or combustion... wall of a stayed furnace or combustion chamber, the defective portion of the plate shall be cut away...

  3. 46 CFR 59.15-5 - Stayed furnaces and combustion chambers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Stayed furnaces and combustion chambers. 59.15-5 Section... and combustion chambers. (a) Where the plate forming the walls of stayed furnaces or combustion... wall of a stayed furnace or combustion chamber, the defective portion of the plate shall be cut away...

  4. 46 CFR 59.15-5 - Stayed furnaces and combustion chambers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Stayed furnaces and combustion chambers. 59.15-5 Section... and combustion chambers. (a) Where the plate forming the walls of stayed furnaces or combustion... wall of a stayed furnace or combustion chamber, the defective portion of the plate shall be cut away...

  5. Development and Validation of a 3-Dimensional CFB Furnace Model

    NASA Astrophysics Data System (ADS)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  6. Prostate volumetric‐modulated arc therapy: dosimetry and radiobiological model variation between the single‐arc and double‐arc technique

    PubMed Central

    Jiang, Runqing

    2013-01-01

    This study investigates the dosimetry and radiobiological model variation when a second photon arc was added to prostate volumetric‐modulated arc therapy (VMAT) using the single‐arc technique. Dosimetry and radiobiological model comparison between the single‐arc and double‐arc prostate VMAT plans were performed on five patients with prostate volumes ranging from 29−68.1 cm3. The prescription dose was 78 Gy/39 fractions and the photon beam energy was 6 MV. Dose‐volume histogram, mean and maximum dose of targets (planning and clinical target volume) and normal tissues (rectum, bladder and femoral heads), dose‐volume criteria in the treatment plan (D99% of PTV; D30%,D50%,V17Gy and V35Gy of rectum and bladder; D5% of femoral heads), and dose profiles along the vertical and horizontal axis crossing the isocenter were determined using the single‐arc and double‐arc VMAT technique. For comparison, the monitor unit based on the RapidArc delivery method, prostate tumor control probability (TCP), and rectal normal tissue complication probability (NTCP) based on the Lyman‐Burman‐Kutcher algorithm were calculated. It was found that though the double‐arc technique required almost double the treatment time than the single‐arc, the double‐arc plan provided a better rectal and bladder dose‐volume criteria by shifting the delivered dose in the patient from the anterior–posterior direction to the lateral. As the femoral head was less radiosensitive than the rectum and bladder, the double‐arc technique resulted in a prostate VMAT plan with better prostate coverage and rectal dose‐volume criteria compared to the single‐arc. The prostate TCP of the double‐arc plan was found slightly increased (0.16%) compared to the single‐arc. Therefore, when the rectal dose‐volume criteria are very difficult to achieve in a single‐arc prostate VMAT plan, it is worthwhile to consider the double‐arc technique. PACS number: 87.55.D‐, 87.55.dk, 87.55.K

  7. Method for treating reactive metals in a vacuum furnace

    DOEpatents

    Hulsey, W.J.

    1975-10-28

    The invention is directed to a method for reducing the contamination of reactive metal melts in vacuum furnaces due to the presence of residual gaseous contaminants in the furnace atmosphere. This reduction is achieved by injecting a stream of inert gas directly over the metal confined in a substantially closed crucible with the flow of the gas being sufficient to establish a pressure differential between the interior of the crucible and the furnace atmosphere.

  8. High speed hydrogen/graphite interaction

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Hamman, R.; Sharma, O. P.; Harrje, D. T.

    1974-01-01

    Various aspects of a research program on high speed hydrogen/graphite interaction are presented. Major areas discussed are: (1) theoretical predictions of hydrogen/graphite erosion rates; (2) high temperature, nonequilibrium hydrogen flow in a nozzle; and (3) molecular beam studies of hydrogen/graphite erosion.

  9. SiC Nanowires Synthesized by Rapidly Heating a Mixture of SiO and Arc-Discharge Plasma Pretreated Carbon Black.

    PubMed

    Wang, Feng-Lei; Zhang, Li-Ying; Zhang, Ya-Fei

    2008-11-22

    SiC nanowires have been synthesized at 1,600 degrees C by using a simple and low-cost method in a high-frequency induction furnace. The commercial SiO powder and the arc-discharge plasma pretreated carbon black were mixed and used as the source materials. The heating-up and reaction time is less than half an hour. It was found that most of the nanowires have core-shell SiC/SiO(2) nanostructures. The nucleation, precipitation, and growth processes were discussed in terms of the oxide-assisted cluster-solid mechanism.

  10. SiC Nanowires Synthesized by Rapidly Heating a Mixture of SiO and Arc-Discharge Plasma Pretreated Carbon Black

    PubMed Central

    2009-01-01

    SiC nanowires have been synthesized at 1,600 °C by using a simple and low-cost method in a high-frequency induction furnace. The commercial SiO powder and the arc-discharge plasma pretreated carbon black were mixed and used as the source materials. The heating-up and reaction time is less than half an hour. It was found that most of the nanowires have core-shell SiC/SiO2nanostructures. The nucleation, precipitation, and growth processes were discussed in terms of the oxide-assisted cluster-solid mechanism. PMID:20596456

  11. 29. Blast furnace plant, looking southeast. The Machine Shop and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Blast furnace plant, looking southeast. The Machine Shop and Turbo Blower Building are at left, the pig-casting machine and Furnace A at center right. In foregound are the 50-ton ladle cars used to transport hot metal to Valley Mould & Iron Co. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  12. Chemical stabilization of graphite surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bistrika, Alexander A.; Lerner, Michael M.

    Embodiments of a device, or a component of a device, including a stabilized graphite surface, methods of stabilizing graphite surfaces, and uses for the devices or components are disclosed. The device or component includes a surface comprising graphite, and a plurality of haloaryl ions and/or haloalkyl ions bound to at least a portion of the graphite. The ions may be perhaloaryl ions and/or perhaloalkyl ions. In certain embodiments, the ions are perfluorobenzenesulfonate anions. Embodiments of the device or component including stabilized graphite surfaces may maintain a steady-state oxidation or reduction surface current density after being exposed to continuous oxidation conditionsmore » for a period of at least 1-100 hours. The device or component is prepared by exposing a graphite-containing surface to an acidic aqueous solution of the ions under oxidizing conditions. The device or component can be exposed in situ to the solution.« less

  13. Feasibility study of a high temperature radiation furnace for space applications

    NASA Technical Reports Server (NTRS)

    Eiss, A.; Dussan, B.; Shadis, W.; Frank, L.

    1973-01-01

    The feasibility was investigated of a high temperature general purpose furnace for use in space. It was determined that no commercial furnaces exist which could, even with extensive modifications, meet the goals of temperature, power, weight, volume, and versatility originally specified in the contract Statement of Work. A feasible furnace design which does substantially meet these goals while employing many of the advanced features of the commercial furnaces is developed and presented.

  14. ARC Operations

    Science.gov Websites

    Walter Bryzik Government Leader (1994-2007) Dr. Walter Bryzik ARC Director (2002-2009) Prof. Dennis Assanis Dennis Assanis Zoran Filipi ARC Assistant Director (2002-2009) ARC Deputy Director (2009-2011

  15. Determination of diphenylarsinic acid, phenylarsonic acid and inorganic arsenic in drinking water by graphite-furnace atomic-absorption spectrometry after simultaneous separation and preconcentration with solid-phase extraction disks.

    PubMed

    Hagiwara, Kenta; Inui, Tetsuo; Koike, Yuya; Nakamura, Toshihiro

    2013-01-01

    A simple method of graphite-furnace atomic-absorption spectrometry (GFAAS) after solid-phase extraction (SPE) was developed for the determination of diphenylarsinic acid (DPAA), phenylarsonic acid (PAA), and inorganic arsenic (iAs) in drinking water. This method involves the simultaneous collection of DPAA, PAA, and iAs using three stacked SPE disks, i.e., an Empore SDB-XD disk (the upper layer), an activated carbon disk (the middle layer), and a Cation-SR disk loaded with Zr and Ca (ZrCa-CED; the lower layer). A 200-mL aqueous sample was adjusted to pH 3 with nitric acid and passed through the SPE disks at a flow rate of 15 mL min(-1), to concentrate DPAA on the SDB-XD disk, PAA on the activated carbon disk, and iAs on the ZrCa-CED. The As compounds were eluted from the disks with 10 mL of ethanol containing 0.5 mol L(-1) ammonia solution for DPAA, 20 mL of 1 mol L(-1) ammonia solution for PAA, and 20 mL of 6 mol L(-1) hydrochloric acid for iAs. The eluates of DPAA, PAA, and iAs were diluted to 20, 25, and 25 mL, respectively, with deionized water, and then analyzed by GFAAS. The detection limits of As (three-times the standard deviation (n = 3) of the blank values) were 0.13 and 0.16 μg L(-1) at enrichment factors of 10 and 8, respectively, using a 200-mL water sample. Spike tests with 2 μg (10 μg L(-1)) of DPAA, PAA, and iAs in 200 mL of tap water and bottled drinking water showed good recoveries (96.1-103.8%).

  16. Comparison between the Strength Levels of Baseline Nuclear-Grade Graphite and Graphite Irradiated in AGC-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Mark Christopher

    2015-07-01

    This report details the initial comparison of mechanical strength properties between the cylindrical nuclear-grade graphite specimens irradiated in the second Advanced Graphite Creep (AGC-2) experiment with the established baseline, or unirradiated, mechanical properties compiled in the Baseline Graphite Characterization program. The overall comparative analysis will describe the development of an appropriate test protocol for irradiated specimens, the execution of the mechanical tests on the AGC-2 sample population, and will further discuss the data in terms of developing an accurate irradiated property distribution in the limited amount of irradiated data by leveraging the considerably larger property datasets being captured in themore » Baseline Graphite Characterization program. Integrating information on the inherent variability in nuclear-grade graphite with more complete datasets is one of the goals of the VHTR Graphite Materials program. Between “sister” specimens, or specimens with the same geometry machined from the same sub-block of graphite from which the irradiated AGC specimens were extracted, and the Baseline datasets, a comprehensive body of data will exist that can provide both a direct and indirect indication of the full irradiated property distributions that can be expected of irradiated nuclear-grade graphite while in service in a VHTR system. While the most critical data will remain the actual irradiated property measurements, expansion of this data into accurate distributions based on the inherent variability in graphite properties will be a crucial step in qualifying graphite for nuclear use as a structural material in a VHTR environment.« less

  17. Alternative fuels for multiple-hearth furnaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bracken, B.D.; Lawson, T.U.

    1980-04-01

    A study of alternative procedures for reducing the consumption of No. 2 fuel oil at the Lower Molonglo Water Quality Control Centre near Canberra, Aust., indicated that in comparison with the present system of incineration with heat supplied by burning fuel oil, the installation of a sludge drying operation, consisting of a rotary dryer heated by furnace exhaust gases with the dried sludge used to fuel the furnace, would become economically desirable by 1985 if afterburning is not required, and would be justified immediately if afterburning is required to meet air pollution control regulations. The substitution of any of fourmore » waste fuels (refuse-derived fuel, waste paper, wood waste, or waste oil) or of coal for the No. 2 fuel oil would not be cost-effective through 1989. The furnace system, including afterburning and fuel oil requirements, the envisioned alternative fuel use systems, sludge processing alternatives, heat balance results, and economics are discussed.« less

  18. Miniaturized King furnace permits absorption spectroscopy of small samples

    NASA Technical Reports Server (NTRS)

    Ercoli, B.; Tompkins, F. S.

    1968-01-01

    Miniature King-type furnace, consisting of an inductively heated, small diameter tantalum tube supported in a radiation shield eliminates the disadvantages of the conventional furnace in obtaining absorption spectra of metal vapors.

  19. Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes

    NASA Astrophysics Data System (ADS)

    Pietsch, Patrick; Westhoff, Daniel; Feinauer, Julian; Eller, Jens; Marone, Federica; Stampanoni, Marco; Schmidt, Volker; Wood, Vanessa

    2016-09-01

    Despite numerous studies presenting advances in tomographic imaging and analysis of lithium ion batteries, graphite-based anodes have received little attention. Weak X-ray attenuation of graphite and, as a result, poor contrast between graphite and the other carbon-based components in an electrode pore space renders data analysis challenging. Here we demonstrate operando tomography of weakly attenuating electrodes during electrochemical (de)lithiation. We use propagation-based phase contrast tomography to facilitate the differentiation between weakly attenuating materials and apply digital volume correlation to capture the dynamics of the electrodes during operation. After validating that we can quantify the local electrochemical activity and microstructural changes throughout graphite electrodes, we apply our technique to graphite-silicon composite electrodes. We show that microstructural changes that occur during (de)lithiation of a pure graphite electrode are of the same order of magnitude as spatial inhomogeneities within it, while strain in composite electrodes is locally pronounced and introduces significant microstructural changes.

  20. Stable dispersions of polymer-coated graphitic nanoplatelets

    NASA Technical Reports Server (NTRS)

    Nguyen, Sonbinh T. (Inventor); Stankovich, Sasha (Inventor); Ruoff, Rodney S. (Inventor)

    2011-01-01

    A method of making a dispersion of reduced graphite oxide nanoplatelets involves providing a dispersion of graphite oxide nanoplatelets and reducing the graphite oxide nanoplatelets in the dispersion in the presence of a reducing agent and a polymer. The reduced graphite oxide nanoplatelets are reduced to an extent to provide a higher C/O ratio than graphite oxide. A stable dispersion having polymer-treated reduced graphite oxide nanoplatelets dispersed in a dispersing medium, such as water or organic liquid is provided. The polymer-treated, reduced graphite oxide nanoplatelets can be distributed in a polymer matrix to provide a composite material.

  1. Interior of shop, showing the reheat furnaces; the vehicle in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of shop, showing the reheat furnaces; the vehicle in the center is a charging machine the operator of which manipulates steel ingots in the furnace, as well as in the adjacent forging hammers - Bethlehem Steel Corporation, South Bethlehem Works, Tool Steel-Electric Furnace Shop, Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  2. Recompressed exfoliated graphite articles

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2013-08-06

    This invention provides an electrically conductive, less anisotropic, recompressed exfoliated graphite article comprising a mixture of (a) expanded or exfoliated graphite flakes; and (b) particles of non-expandable graphite or carbon, wherein the non-expandable graphite or carbon particles are in the amount of between about 3% and about 70% by weight based on the total weight of the particles and the expanded graphite flakes combined; wherein the mixture is compressed to form the article having an apparent bulk density of from about 0.1 g/cm.sup.3 to about 2.0 g/cm.sup.3. The article exhibits a thickness-direction conductivity typically greater than 50 S/cm, more typically greater than 100 S/cm, and most typically greater than 200 S/cm. The article, when used in a thin foil or sheet form, can be a useful component in a sheet molding compound plate used as a fuel cell separator or flow field plate. The article may also be used as a current collector for a battery, supercapacitor, or any other electrochemical cell.

  3. BLAST FURNACE CAST HOUSE EMISSION CONTROL TECHNOLOGY ASSESSMENT

    EPA Science Inventory

    The study describes the state-of-the-art of controlling fumes escaping from blast furnace cast houses. Background information is based on: a study of existing literature; visits to blast furnaces in the U.S., Japan, and Europe; meetings with an ad hoc group of experienced blast f...

  4. In situ synthesis of semiconducting single-walled carbon nanotubes by modified arc discharging method

    NASA Astrophysics Data System (ADS)

    Zhao, Tingkai; Ji, Xianglin; Jin, Wenbo; Yang, Wenbo; Zhao, Xing; Dang, Alei; Li, Hao; Li, Tiehu

    2017-02-01

    Semiconducting single-walled carbon nanotubes (s-SWCNTs) were in situ synthesized by a temperature-controlled arc discharging furnace with DC electric field using Co-Ni alloy powder as catalyst in helium gas. The microstructures of s-SWCNTs were characterized using high-resolution transmission electron microscopy, electron diffraction, and Raman spectrometry apparatus. The experimental results indicated that the best voltage value in DC electric field is 54 V, and the environmental temperature of the reaction chamber is 600 °C. The mean diameter of s-SWCNTs was estimated about 1.3 nm. The chiral vector ( n, m) of s-SWCNTs was calculated to be (10, 10) type according to the electron diffraction patterns.

  5. CMB-13 research on carbon and graphite

    NASA Technical Reports Server (NTRS)

    Smith, M. C.

    1972-01-01

    Preliminary results of the research on carbon and graphite accomplished during this report period are presented. Included are: particle characteristics of Santa Maria fillers, compositions and density data for hot-molded Santa Maria graphites, properties of hot-molded Santa Maria graphites, and properties of hot-molded anisotropic graphites. Ablation-resistant graphites are also discussed.

  6. METHOD OF FABRICATING A GRAPHITE MODERATED REACTOR

    DOEpatents

    Kratz, H.R.

    1963-05-01

    S>A nuclear reactor formed of spaced bodies of uranium and graphite blocks is improved by diffusing helium through the graphite blocks in order to replace the air in the pores of the graphite with helium. The helium-impregnated graphite conducts heat better, and absorbs neutrons less, than the original air- impregnated graphite. (AEC)

  7. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of arsenic and selenium in water and sediment by graphite furnace atomic absorption spectrometry

    USGS Publications Warehouse

    Jones, Sandra R.; Garbarino, John R.

    1999-01-01

    Graphite furnace-atomic absorption spectrometry (GF-AAS) is a sensitive, precise, and accurate technique that can be used to determine arsenic and selenium in samples of water and sediment. The GF-AAS method has been developed to replace the hydride generation-atomic absorption spectrometry (HG-AAS) methods because the method detection limits are similar, bias and variability are comparable, and interferences are minimal. Advantages of the GF-AAS method include shorter sample preparation time, increased sample throughput from simultaneous multielement analysis, reduced amount of chemical waste, reduced sample volume requirements, increased linear concentration range, and the use of a more accurate digestion procedure. The linear concentration range for arsenic and selenium is 1 to 50 micrograms per liter in solution; the current method detection limit for arsenic in solution is 0.9 microgram per liter; the method detection limit for selenium in solution is 1 microgram per liter. This report describes results that were obtained using stop-flow and low-flow conditions during atomization. The bias and variability of the simultaneous determination of arsenic and selenium by GF-AAS under both conditions are supported with results from standard reference materials--water and sediment, real water samples, and spike recovery measurements. Arsenic and selenium results for all Standard Reference Water Samples analyzed were within one standard deviation of the most probable values. Long-term spike recoveries at 6.25, 25.0, 37.5 micrograms per liter in reagent-, ground-, and surface-water samples for arsenic averaged 103 plus or minus 2 percent using low-flow conditions and 104 plus or minus 4 percent using stop-flow conditions. Corresponding recoveries for selenium were 98 plus or minus 13 percent using low-flow conditions and 87 plus or minus 24 percent using stop-flow conditions. Spike recoveries at 25 micrograms per liter in 120 water samples ranged from 97 to 99 percent

  8. A technique for measuring the heat transfer coefficient inside a Bridgman furnace

    NASA Technical Reports Server (NTRS)

    Rosch, W.; Jesser, W.; Debnam, W.; Fripp, A.; Woodell, G.; Pendergrass, T. K.

    1993-01-01

    Knowledge of the amount of heat that is conducted, advected and radiated between an ampoule and the furnace is important for understanding vertical Bridgman crystal growth. This heat transfer depends on the temperature, emissivities and geometries of both the furnace and ampoule, as well as the choice of ambient gas inside the furnace. This paper presents a method which directly measures this heat transfer without the need to know any physical properties of the furnace, the ampoule, or the gaseous environment. Data are given for one specific furnace in which this method was used.

  9. Space Station Furnace Facility. Volume 2: Summary of technical reports

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics, and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. In order to accommodate the furnace modules with the resources required to operate, SSFF developed a design that meets the needs of the wide range of furnaces that are planned for the SSFF. The system design is divided into subsystems which provide the functions of interfacing to the SSF services, conditioning and control for furnace module use, providing the controlled services to the furnace modules, and interfacing to and acquiring data from the furnace modules. The subsystems, described in detail, are as follows: Power Conditioning and Distribution Subsystem; Data Management Subsystem; Software; Gas Distribution Subsystem; Thermal Control Subsystem; and Mechanical Structures Subsystem.

  10. [Spectra and thermal analysis of the arc in activating flux plasma arc welding].

    PubMed

    Chai, Guo-Ming; Zhu, Yi-Feng

    2010-04-01

    In activating flux plasma arc welding the welding arc was analyzed by spectra analysis technique, and the welding arc temperature field was measured by the infrared sensing and computer image technique. The distribution models of welding arc heat flow density of activating flux PAW welding were developed. The composition of welding arc affected by activated flux was studied, and the welding arc temperature field was studied. The results show that the spectral lines of argon atom and ionized argon atom of primary ionization are the main spectra lines of the conventional plasma welding arc. The spectra lines of weld metal are inappreciable in the spectra lines of the conventional plasma welding arc. The gas particle is the main in the conventional plasma welding arc. The conventional plasma welding arc is gas welding arc. The spectra lines of argon atom and ionized argon atom of primary ionization are intensified in the activating flux plasma welding arc, and the spectra lines of Ti, Cr and Fe elements are found in the activating flux plasma welding arc. The welding arc temperature distribution in activating flux plasma arc welding is compact, the outline of the welding arc temperature field is narrow, the range of the welding arc temperature distribution is concentrated, the welding arc radial temperature gradient is large, and the welding arc radial temperature gradient shows normal Gauss distribution.

  11. Mineral resource of the month: graphite

    USGS Publications Warehouse

    ,

    2008-01-01

    The article presents facts about graphite ideal for industrial applications. Among the characteristics of graphite are its metallic luster, softness, perfect basal cleavage and electrical conductivity. Batteries, brake linings and powdered metals are some of the products that make use of graphite. It attributes the potential applications for graphite in high-technology fields to innovations in thermal technology and acid-leaching techniques.

  12. Electric furnace dust: Can you bury the hazard?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManus, G.J.

    1996-04-01

    Electric furnace waste treatment is moving into high gear, but the exact direction is unclear. On one hand, there is a trend toward complete recycling of the dust captured in furnace baghouses. Iron units as well as zinc and other elements are being reclaimed. On the other side, recent actions by regulators indicate recycling may not be required at all. With the correct chemical stabilization, it appears, dust may simply be placed in ordinary landfill. This paper describes three processes for waste treatment of furnace dust: Super Detox, a process for zinc removal from galvanized scrap before melting, and themore » INMETCO process.« less

  13. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    NASA Astrophysics Data System (ADS)

    Takeuchi, T.; Kameda, J.; Nagai, Y.; Toyama, T.; Matsukawa, Y.; Nishiyama, Y.; Onizawa, K.

    2012-06-01

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the δ-ferrite phase but not in the austenitic phase. Thermal aging at 400 °C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the δ-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the γ-austenite and δ-ferrite interface. There were no Cr depleted zones around the carbide.

  14. Biopolymer-modified graphite oxide nanocomposite films based on benzalkonium chloride-heparin intercalated in graphite oxide

    NASA Astrophysics Data System (ADS)

    Meng, Na; Zhang, Shuang-Quan; Zhou, Ning-Lin; Shen, Jian

    2010-05-01

    Heparin is a potent anticoagulant agent that interacts strongly with antithrombin III to prevent the formation of fibrin clots. In the present work, poly(dimethylsiloxane)(PDMS)/graphite oxide-benzalkonium chloride-heparin (PDMS/modified graphite oxide) nanocomposite films were obtained by the solution intercalation technique as a possible drug delivery system. The heparin-benzalkonium chloride (BAC-HEP) was intercalated into graphite oxide (GO) layers to form GO-BAC-HEP (modified graphite oxide). Nanocomposite films were characterized by XRD, SEM, TEM, ATR-FTIR and TGA. The modified graphite oxide was observed to be homogeneously dispersed throughout the PDMS matrix. The effect of modified graphite oxide on the mechanical properties of the nanocomposite film was investigated. When the modified graphite oxide content was lower than 0.2 wt%, the nanocomposites showed excellent mechanical properties. Furthermore, nanocomposite films become delivery systems that release heparin slowly to make the nanocomposite films blood compatible. The in vitro studies included hemocompatibility testing for effects on platelet adhesion, platelet activation, plasma recalcification profiles, and hemolysis. Results from these studies showed that the anticoagulation properties of PDMS/GO-BCA-HEP nanocomposite films were greatly superior to those for no treated PDMS. Cell culture assay indicated that PDMS/GO-BCA-HEP nanocomposite films showed enhanced cell adhesion.

  15. Segmented ceramic liner for induction furnaces

    DOEpatents

    Gorin, Andrew H.; Holcombe, Cressie E.

    1994-01-01

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace.

  16. Segmented ceramic liner for induction furnaces

    DOEpatents

    Gorin, A.H.; Holcombe, C.E.

    1994-07-26

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

  17. 40 CFR 420.47 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... by the application of the best conventional pollutant control technology (BCT). (a) Electric arc... control technology (BCT). 420.47 Section 420.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—open combustion; electric arc furnace steelmaking—wet. [Reserved] (d) Basic oxygen furnace steelmaking...

  18. 40 CFR 420.47 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... by the application of the best conventional pollutant control technology (BCT). (a) Electric arc... control technology (BCT). 420.47 Section 420.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—open combustion; electric arc furnace steelmaking—wet. [Reserved] (d) Basic oxygen furnace steelmaking...

  19. 40 CFR 420.47 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... by the application of the best conventional pollutant control technology (BCT). (a) Electric arc... control technology (BCT). 420.47 Section 420.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—open combustion; electric arc furnace steelmaking—wet. [Reserved] (d) Basic oxygen furnace steelmaking...

  20. 40 CFR 420.47 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... by the application of the best conventional pollutant control technology (BCT). (a) Electric arc... control technology (BCT). 420.47 Section 420.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—open combustion; electric arc furnace steelmaking—wet. [Reserved] (d) Basic oxygen furnace steelmaking...

  1. 40 CFR 420.47 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... by the application of the best conventional pollutant control technology (BCT). (a) Electric arc... control technology (BCT). 420.47 Section 420.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—open combustion; electric arc furnace steelmaking—wet. [Reserved] (d) Basic oxygen furnace steelmaking...

  2. Heat exchanger using graphite foam

    DOEpatents

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  3. Low-energy electron diffraction study of potassium adsorbed on single-crystal graphite and highly oriented pyrolytic graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferralis, N.; Diehl, R.D.; Pussi, K.

    2004-12-15

    Potassium adsorption on graphite has been a model system for the understanding of the interaction of alkali metals with surfaces. The geometries of the (2x2) structure of potassium on both single-crystal graphite (SCG) and highly oriented pyrolytic graphite (HOPG) were investigated for various preparation conditions for graphite temperatures between 55 and 140 K. In all cases, the geometry was found to consist of K atoms in the hollow sites on top of the surface. The K-graphite average perpendicular spacing is 2.79{+-}0.03 A , corresponding to an average C-K distance of 3.13{+-}0.03 A , and the spacing between graphite planes ismore » consistent with the bulk spacing of 3.35 A. No evidence was observed for a sublayer of potassium. The results of dynamical LEED studies for the clean SCG and HOPG surfaces indicate that the surface structures of both are consistent with the truncated bulk structure of graphite.« less

  4. Determination of indium in geological materials by electrothermal-atomization atomic absorption spectrometry with a tungsten-impregnated graphite furance

    USGS Publications Warehouse

    Zhou, L.; Chao, T.T.; Meier, A.L.

    1984-01-01

    The sample is fused with lithium metaborate and the melt is dissolved in 15% (v/v) hydrobromic acid. Iron(III) is reduced with ascorbic acid to avoid its coextraction with indium as the bromide into methyl isobutyl ketone. Impregnation of the graphite furnace with sodium tungstate, and the presence of lithium metaborate and ascorbic acid in the reaction medium improve the sensitivity and precision. The limits of determination are 0.025-16 mg kg-1 indium in the sample. For 22 geological reference samples containing more than 0.1 mg kg-1 indium, relative standard deviations ranged from 3.0 to 8.5% (average 5.7%). Recoveries of indium added to various samples ranged from 96.7 to 105.6% (average 100.2%). ?? 1984.

  5. Production and Physical Metallurgy of Pure Metals - Part V

    DTIC Science & Technology

    1960-07-25

    crucible . The essence of arc melting consists in the ignit- ion of an arc between the specimen placed in an intensively cooled copper crucible , and...water-cooled, and the cooling can be regulated by valves. -14- Universal laboratory arc furnace with cooled copper crucible : LOsend continued on next pag...furnaces by ordinary methods is very difficult and re- quires a fundamentally new method of melting. Such a method is arc melting in a water-cooled copper

  6. Status and Evaluation of Microwave Furnace Capabilities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lizcano, Maricela; Mackey, Jonathan A.

    2014-01-01

    The microwave (MW) furnace is a HY-Tech Microwave Systems, 2 kW 2.45 GHz Single Mode Microwave Applicator operating in continuous wave (CW) with variable power. It is located in Cleveland, Ohio at NASA Glenn Research Center. Until recently, the furnace capabilities had not been fully realized due to unknown failure that subsequently damaged critical furnace components. Although the causes of the problems were unknown, an assessment of the furnace itself indicated operational failure may have been partially caused by power quality. This report summarizes the status of the MW furnace and evaluates its capabilities in materials processing.

  7. Model reduction for experimental thermal characterization of a holding furnace

    NASA Astrophysics Data System (ADS)

    Loussouarn, Thomas; Maillet, Denis; Remy, Benjamin; Dan, Diane

    2017-09-01

    Vacuum holding induction furnaces are used for the manufacturing of turbine blades by loss wax foundry process. The control of solidification parameters is a key factor for the manufacturing of these parts. The definition of the structure of a reduced heat transfer model with experimental identification through an estimation of its parameters is required here. Internal sensors outputs, together with this model, can be used for assessing the thermal state of the furnace through an inverse approach, for a better control. Here, an axisymmetric furnace and its load have been numerically modelled using FlexPDE, a finite elements code. The internal induction heat source as well as the transient radiative transfer inside the furnace are calculated through this detailed model. A reduced lumped body model has been constructed to represent the numerical furnace. The model reduction and the estimation of the parameters of the lumped body have been made using a Levenberg-Marquardt least squares minimization algorithm, using two synthetic temperature signals with a further validation test.

  8. Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle

    PubMed Central

    Lee, Changyeol; Wada, Ikuko

    2017-01-01

    Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying mantle where majority of arc magmas are generated. The sub-arc mantle is brought in from the back-arc largely by slab-driven mantle wedge flow. Dynamic processes in the back-arc, such as small-scale mantle convection, are likely to cause lateral variations in the back-arc mantle temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the mantle wedge flow pattern and sub-arc mantle temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter mantle and subdued inflow of colder mantle beneath the arc due to the temperature dependence of the mantle viscosity. This causes a three-dimensional mantle flow pattern that amplifies the along-arc variations in the sub-arc mantle temperature, providing a simple mechanism for volcano clustering. PMID:28660880

  9. Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle.

    PubMed

    Lee, Changyeol; Wada, Ikuko

    2017-06-29

    Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying mantle where majority of arc magmas are generated. The sub-arc mantle is brought in from the back-arc largely by slab-driven mantle wedge flow. Dynamic processes in the back-arc, such as small-scale mantle convection, are likely to cause lateral variations in the back-arc mantle temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the mantle wedge flow pattern and sub-arc mantle temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter mantle and subdued inflow of colder mantle beneath the arc due to the temperature dependence of the mantle viscosity. This causes a three-dimensional mantle flow pattern that amplifies the along-arc variations in the sub-arc mantle temperature, providing a simple mechanism for volcano clustering.

  10. 36. REDUCTION PLANT CLOSE VIEW OF FURNACE AND BOILER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. REDUCTION PLANT - CLOSE VIEW OF FURNACE AND BOILER Reduction Plant furnace and boiler used to provide heat for drying the fish and fish offal, in their conversion to meal. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  11. TECHNOLOGY EVALUATION REPORT: RETECH'S PLASMA CENTRIFUGAL FURNACE - VOLUME I

    EPA Science Inventory

    A demonstration of the Retech, Inc. Plasma Centrifugal Furnace (PCF) was conducted under the Superfund Innovative Technology Evaluation (SITE) Program at the Department of Energy's (DOE's) Component Development and Integration Facility in Butte, Montana. The furnace uses heat gen...

  12. Three-dimensional modeling of the plasma arc in arc welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, G.; Tsai, H. L.; Hu, J.

    2008-11-15

    Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such asmore » an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.« less

  13. Graphitized-carbon fiber/carbon char fuel

    DOEpatents

    Cooper, John F [Oakland, CA

    2007-08-28

    A method for recovery of intact graphitic fibers from fiber/polymer composites is described. The method comprises first pyrolyzing the graphite fiber/polymer composite mixture and then separating the graphite fibers by molten salt electrochemical oxidation.

  14. Development Of A Magnetic Directional-Solidification Furnace

    NASA Technical Reports Server (NTRS)

    Aldrich, Bill R.; Lehoczky, Sandor L.

    1996-01-01

    Report describes development of directional-solidification furnace in which axial magnetic field is imposed by surrounding ring permanent magnets and/or electromagnets and pole pieces. Furnace provides controlled axial temperature gradients in multiple zones, through which ampoule containing sample of material to be solidified is translated at controlled speed by low-vibration, lead-screw, stepping-motor-driven mechanism. Intended for use in low-gravity (spaceflight) experiments on melt growth of high-purity semiconductor crystals.

  15. Modeling Specular Exchange Between Concentric Cylinders in a Radiative Shielded Furnace

    NASA Technical Reports Server (NTRS)

    Schunk, Richard Gregory; Wessling, Francis C.

    2000-01-01

    The objective of this research is to develop and validate mathematical models to characterize the thermal performance of a radiative shielded furnace, the University of Alabama in Huntsville (UAH) Isothermal Diffusion Oven. The mathematical models are validated against experimental data obtained from testing the breadboard oven in a terrestrial laboratory environment. It is anticipated that the validation will produce math models capable of predicting the thermal performance of the furnace over a wide range of operating conditions, including those for which no experimental data is available. Of particular interest is the furnace core temperature versus heater power parametric and the transient thermal response of the furnace. Application to a microgravity environment is not considered, although it is conjectured that the removal of any gravity dependent terms from the math models developed for the terrestrial application should yield adequate results in a microgravity environment. The UAH Isothermal Diffusion Oven is designed to provide a thermal environment that is conducive to measuring the diffusion of high temperature liquid metals. In addition to achieving the temperatures required to melt a sample placed within the furnace, reducing or eliminating convective motions within the melt is an important design consideration [1]. Both of these influences are reflected in the design of the furnace. Reducing unwanted heat losses from the furnace is achieved through the use of low conductivity materials and reflective shielding. As evidenced by the highly conductive copper core used to house the sample within the furnace, convective motions can be greatly suppressed by providing an essentially uniform thermal environment. An oven of this design could ultimately be utilized in a microgravity environment, presumably as a experiment payload. Such an application precipitates other design requirements that limit the resources available to the furnace such as power, mass

  16. Propagation of back-arc extension into the arc lithosphere in the southern New Hebrides volcanic arc

    NASA Astrophysics Data System (ADS)

    Patriat, M.; Collot, J.; Danyushevsky, L.; Fabre, M.; Meffre, S.; Falloon, T.; Rouillard, P.; Pelletier, B.; Roach, M.; Fournier, M.

    2015-09-01

    New geophysical data acquired during three expeditions of the R/V Southern Surveyor in the southern part of the North Fiji Basin allow us to characterize the deformation of the upper plate at the southern termination of the New Hebrides subduction zone, where it bends eastward along the Hunter Ridge. Unlike the northern end of the Tonga subduction zone, on the other side of the North Fiji Basin, the 90° bend does not correspond to the transition from a subduction zone to a transform fault, but it is due to the progressive retreat of the New Hebrides trench. The subduction trench retreat is accommodated in the upper plate by the migration toward the southwest of the New Hebrides arc and toward the south of the Hunter Ridge, so that the direction of convergence remains everywhere orthogonal to the trench. In the back-arc domain, the active deformation is characterized by propagation of the back-arc spreading ridge into the Hunter volcanic arc. The N-S spreading axis propagates southward and penetrates in the arc, where it connects to a sinistral strike-slip zone via an oblique rift. The collision of the Loyalty Ridge with the New Hebrides arc, less than two million years ago, likely initiated this deformation pattern and the fragmentation of the upper plate. In this particular geodynamic setting, with an oceanic lithosphere subducting beneath a highly sheared volcanic arc, a wide range of primitive subduction-related magmas has been produced including adakites, island arc tholeiites, back-arc basin basalts, and medium-K subduction-related lavas.

  17. 40 CFR 420.45 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... owned treatment works must comply with 40 CFR part 403 and achieve the following pretreatment standards for existing sources. (a) Electric arc furnace steelmaking—semi-wet. No discharge of process... electric arc furnace steelmaking—wet. Subpart D Pollutant or pollutant property Pretreatment standards for...

  18. 40 CFR 420.45 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... owned treatment works must comply with 40 CFR part 403 and achieve the following pretreatment standards for existing sources. (a) Electric arc furnace steelmaking—semi-wet. No discharge of process... electric arc furnace steelmaking—wet. Subpart D Pollutant or pollutant property Pretreatment standards for...

  19. 40 CFR 420.45 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... owned treatment works must comply with 40 CFR part 403 and achieve the following pretreatment standards for existing sources. (a) Electric arc furnace steelmaking—semi-wet. No discharge of process... electric arc furnace steelmaking—wet. Subpart D Pollutant or pollutant property Pretreatment standards for...

  20. 40 CFR 420.45 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... owned treatment works must comply with 40 CFR part 403 and achieve the following pretreatment standards for existing sources. (a) Electric arc furnace steelmaking—semi-wet. No discharge of process... electric arc furnace steelmaking—wet. Subpart D Pollutant or pollutant property Pretreatment standards for...

  1. Method of Joining Graphite Fibers to a Substrate

    NASA Technical Reports Server (NTRS)

    Beringer, Durwood M. (Inventor); Caron, Mark E. (Inventor); Taddey, Edmund P. (Inventor); Gleason, Brian P. (Inventor)

    2014-01-01

    A method of assembling a metallic-graphite structure includes forming a wetted graphite subassembly by arranging one or more layers of graphite fiber material including a plurality of graphite fibers and applying a layer of metallization material to ends of the plurality of graphite fibers. At least one metallic substrate is secured to the wetted graphite subassembly via the layer of metallization material.

  2. 1. GENERAL EXTERIOR VIEW OF THE ELECTRIC FURNACE STEELMAKING PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL EXTERIOR VIEW OF THE ELECTRIC FURNACE STEELMAKING PLANT LOOKING NORTHEAST. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  3. Electrode Arrangement As Substitute Bottom For An Electrothermic Slag Smelting Furnace.

    DOEpatents

    Aune, Jan Arthur; Brinch, Jon Christian; Johansen, Kai

    2005-12-27

    The electrode arrangement uses vertically oriented electrodes with side wall contacts for an electrothermic smelting furnace for aluminum production. The side wall contacts are radially moveable into the furnace to compensate for wear on the contacts. The side wall contacts can be hollow to allow a slag forming charge to be fed to the furnace.

  4. Weld arc simulator

    DOEpatents

    Burr, Melvin J.

    1990-01-30

    An arc voltage simulator for an arc welder permits the welder response to a variation in arc voltage to be standardized. The simulator uses a linear potentiometer connected to the electrode to provide a simulated arc voltage at the electrode that changes as a function of electrode position.

  5. Comparison of predictive control methods for high consumption industrial furnace.

    PubMed

    Stojanovski, Goran; Stankovski, Mile

    2013-01-01

    We describe several predictive control approaches for high consumption industrial furnace control. These furnaces are major consumers in production industries, and reducing their fuel consumption and optimizing the quality of the products is one of the most important engineer tasks. In order to demonstrate the benefits from implementation of the advanced predictive control algorithms, we have compared several major criteria for furnace control. On the basis of the analysis, some important conclusions have been drawn.

  6. Optimization of the thermogauge furnace for realizing high temperature fixed points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T.; Dong, W.; Liu, F.

    2013-09-11

    The thermogauge furnace was commonly used in many NMIs as a blackbody source for calibration of the radiation thermometer. It can also be used for realizing the high temperature fixed point(HTFP). According to our experience, when realizing HTFP we need the furnace provide relative good temperature uniformity to avoid the possible damage to the HTFP. To improve temperature uniformity in the furnace, the furnace tube was machined near the tube ends with a help of a simulation analysis by 'ansys workbench'. Temperature distributions before and after optimization were measured and compared at 1300 °C, 1700°C, 2500 °C, which roughly correspondmore » to Co-C(1324 °C), Pt-C(1738 °C) and Re-C(2474 °C), respectively. The results clearly indicate that through machining the tube the temperature uniformity of the Thermogage furnace can be remarkably improved. A Pt-C high temperature fixed point was realized in the modified Thermogauge furnace subsequently, the plateaus were compared with what obtained using old heater, and the results were presented in this paper.« less

  7. ROMPS critical design review. Volume 3: Furnace module design documentation

    NASA Technical Reports Server (NTRS)

    Dobbs, M. E.

    1992-01-01

    As part of the furnace module design documentation, the furnace module Easylab programs definitions and command variables are described. Also included are Easylab commands flow charts and fault conditions.

  8. Tellurium speciation analysis using hydride generation in situ trapping electrothermal atomic absorption spectrometry and ruthenium or palladium modified graphite tubes.

    PubMed

    Yildirim, Emrah; Akay, Pınar; Arslan, Yasin; Bakirdere, Sezgin; Ataman, O Yavuz

    2012-12-15

    Speciation of tellurium can be achieved by making use of different kinetic behaviors of Te(IV) and Te(VI) upon their reaction with sodium borohydride using hydride generation. While Te(IV) can form H(2)Te, Te(VI) will not form any volatile species during the course of hydride formation and measurement by atomic absorption spectrometry. Quantitative reduction of Te(VI) was achieved through application of a microwave assisted prereduction of Te(VI) in 6.0 mol/L HCl solution. Enhanced sensitivity was achieved by in situ trapping of the generated H(2)Te species in a previously heated graphite furnace whose surface was modified using Pd or Ru. Overall efficiency for in situ trapping in pyrolytically coated graphite tube surface was found to be 15% when volatile analyte species are trapped for 60s at 300°C. LOD and LOQ values were calculated as 0.086 ng/mL and 0.29 ng/mL, respectively. Efficiency was increased to 46% and 36% when Pd and Ru surface modifiers were used, respectively. With Ru modified graphite tube 173-fold enhancement was obtained over 180 s trapping period with respect to ETAAS; the tubes could be used for 250 cycles. LOD values were 0.0064 and 0.0022 ng/mL for Pd and Ru treated ETAAS systems, respectively, for 180 s collection of 9.6 mL sample solution. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. DUCT RETROFIT STRATEGY TO COMPLEMENT A MODULATING FURNACE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ANDREWS,J.W.

    2002-10-02

    Some recent work (Walker 2001, Andrews 2002) has indicated that installing a modulating furnace in a conventional duct system may, in many cases, result in a significant degradation in thermal distribution efficiency. The fundamental mechanism was pointed out nearly two decades ago (Andrews and Krajewski 1985). The problem occurs in duct systems that are less-than-perfectly insulated (e.g., R-4 duct wrap) and are located outside the conditioned space. It stems from the fact that when the airflow rate is reduced, as it will be when the modulating furnace reduces its heat output rate, the supply air will have a longer residencemore » time in the ducts and will therefore lose a greater percentage of its heat by conduction than it did at the higher airflow rate. The impact of duct leakage, on the other hand, is not expected to change very much under furnace modulation. The pressures in the duct system will be reduced when the airflow rate is reduced, thus reducing the leakage per unit time. This is balanced by the fact that the operating time will increase in order to meet the same heating load as with the conventional furnace operating at higher output and airflow rates. The balance would be exact if the exponent in the pressure vs. airflow equation were the same as that in the pressure vs. duct leakage equation. Since the pressure-airflow exponent is usually {approx}0.5 and the pressure-leakage exponent is usually {approx}0.6, the leakage loss as a fraction of the load should be slightly lower for the modulating furnace. The difference, however, is expected to be small, determined as it is by a function with an exponent equal to the difference between the above two exponents, or {approx}0.1. The negative impact of increased thermal conduction losses from the duct system may be partially offset by improved efficiency of the modulating furnace itself. Also, the modulating furnace will cycle on and off less often than a single-capacity model, and this may add a small

  10. Hopewell Furnace: A Pennsylvania Iron-Making Plantation. Teaching with Historic Places.

    ERIC Educational Resources Information Center

    Koman, Rita G.

    The rhythmic noises of the turning water wheel and the roar of the furnace blast never stopped at Hopewell Furnace (Pennsylvania) during its years of operation (1771-1883). As long as the furnace was in blast, the ironworkers' jobs were safe. In case of trouble, they could escape to the woods, fields, and creeks of rural Pennsylvania. Now a…

  11. The impact of oil burning on kraft recovery furnace SO sub 2 emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Someshwar, A.V.; Pinkerton, J.E.; Caron, A.L.

    1991-04-01

    Auxiliary fossil fuel, either natural gas or fuel oil, is burned in kraft recovery furnaces during furnace startups and shutdowns, furnace upsets, and periods of substantially reduced rates of black liquor firing. The efficiency of sulfur capture and retention during normal operation of a kraft recovery furnace is inherently high. Consequently, not all the SO{sub 2} from occasional burning of sulfur-containing fuel oil in the furnace would be expected to end up in the stack gases. However, the extent to which such SO{sub 2} is captured by the alkali fume generation processes has not been well documented. In this paper,more » the authors examines the impact that burning oil in kraft recovery furnaces has on the SO{sub 2} emissions. The work included analyses of long-term SO{sub 2} data from a continuous emission monitoring system (CEMS) obtained for four furnaces that burned medium sulfur fuel oil as auxiliary fuel. It also included tests conducted on four furnaces in which varying amounts of oil were co-fired with black liquor.« less

  12. Synthesis of soluble graphite and graphene.

    PubMed

    Kelly, K F; Billups, W E

    2013-01-15

    Because of graphene's anticipated applications in electronics and its thermal, mechanical, and optical properties, many scientists and engineers are interested in this material. Graphene is an isolated layer of the π-stacked hexagonal allotrope of carbon known as graphite. The interlayer cohesive energy of graphite, or exfoliation energy, that results from van der Waals attractions over the interlayer spacing distance of 3.34 Å (61 meV/C atom) is many times weaker than the intralayer covalent bonding. Since graphene itself does not occur naturally, scientists and engineers are still learning how to isolate and manipulate individual layers of graphene. Some researchers have relied on the physical separation of the sheets, a process that can sometimes be as simple as peeling of sheets from crystalline graphite using Scotch tape. Other researchers have taken an ensemble approach, where they exploit the chemical conversion of graphite to the individual layers. The typical intermediary state is graphite oxide, which is often produced using strong oxidants under acidic conditions. Structurally, researchers hypothesize that acidic functional groups functionalize the oxidized material at the edges and a network of epoxy groups cover the sp(2)-bonded carbon network. The exfoliated material formed under these conditions can be used to form dispersions that are usually unstable. However, more importantly, irreversible defects form in the basal plane during oxidation and remain even after reduction of graphite oxide back to graphene-like material. As part of our interest in the dissolution of carbon nanomaterials, we have explored the derivatization of graphite following the same procedures that preserve the sp(2) bonding and the associated unique physical and electronic properties in the chemical processing of single-walled carbon nanotubes. In this Account, we describe efficient routes to exfoliate graphite either into graphitic nanoparticles or into graphene without

  13. Study of high resistance inorganic coatings on graphite fibers. [for graphite-epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Veltri, R. D.; Scola, D. A.

    1979-01-01

    Coatings made of boron, silicon carbide, silica, and silica-like materials were studied to determine their ability to increase resistance of graphite fibers. The most promising results were attained by chemical vapor depositing silicon carbide on graphite fiber followed by oxidation, and drawing graphite fiber through ethyl silicate followed by appropriate heat treatments. In the silicon carbide coating studies, no degradation of the graphite fibers was observed and resistance values as high as three orders of magnitude higher than that of the uncoated fiber was attained. The strength of a composite fabricated from the coated fiber had a strength which compared favorably with those of composites prepared from uncoated fiber. For the silica-like coated fiber prepared by drawing the graphite fiber through an ethyl silicate solution followed by heating, coated fiber resistances about an order of magnitude greater than that of the uncoated fiber were attained. Composites prepared using these fibers had flexural strengths comparable with those prepared using uncoated fibers, but the shear strengths were lower.

  14. Graphite pneumoconiosis

    PubMed Central

    Ranasinha, K. W.; Uragoda, C. G.

    1972-01-01

    Ranasinha, K. W., and Uragoda, C. G. (1972).Brit. J. industr. Med.,29, 178-183. Graphite pneumoconiosis. In this survey, which is the first of its kind in the graphite industry, 344 workers in a large mine in Ceylon were investigated for pulmonary lesions; 22·7% of them had radiographic abnormalities, which included small rounded and irregular opacities, large opacities, and significant enlargement of hilar shadows. They had worked considerably longer in the industry and were, on average, older than the rest. Only 19·2% of the affected workers had respiratory symptoms, of which dyspnoea and cough were the most frequent. Digital clubbing was seen in 21·9%. In an age and sex matched control group, comprising 327 persons from a neighbouring village, only 8 (2·4%) showed radiographic abnormalities. Graphite pneumoconiosis closely resembles coal miners' pneumoconiosis in many respects. It does not appear to be a pure silicosis, neither could it be considered a true carbon pneumoconiosis. It is likely that massive fibrosis is associated with tuberculous infection. Images PMID:5021997

  15. Across-arc versus along-arc Sr-Nd-Pb isotope variations in the Ecuadorian volcanic arc

    NASA Astrophysics Data System (ADS)

    Ancellin, Marie-Anne; Samaniego, Pablo; Vlastélic, Ivan; Nauret, François; Gannoun, Adbelmouhcine; Hidalgo, Silvana

    2017-03-01

    Previous studies of the Ecuadorian arc (1°N-2°S) have revealed across-arc geochemical trends that are consistent with a decrease in mantle melting and slab dehydration away from the trench. The aim of this work is to evaluate how these processes vary along the arc in response to small-scale changes in the age of the subducted plate, subduction angle, and continental crustal basement. We use an extensive database of 1437 samples containing 71 new analyses, of major and trace elements as well as Sr-Nd-Pb isotopes from Ecuadorian and South Colombian volcanic centers. Large geochemical variations are found to occur along the Ecuadorian arc, in particular along the front arc, which encompasses 99% and 71% of the total variations in 206Pb/204Pb and 87Sr/86Sr ratios of Quaternary Ecuadorian volcanics, respectively. The front arc volcanoes also show two major latitudinal trends: (1) the southward increase of 207Pb/204Pb and decrease of 143Nd/144Nd reflect more extensive crustal contamination of magma in the southern part (up to 14%); and (2) the increase of 206Pb/204Pb and decrease of Ba/Th away from ˜0.5°S result from the changing nature of metasomatism in the subarc mantle wedge with the aqueous fluid/siliceous slab melt ratio decreasing away from 0.5°S. Subduction of a younger and warmer oceanic crust in the Northern part of the arc might promote slab melting. Conversely, the subduction of a colder oceanic crust south of the Grijalva Fracture Zone and higher crustal assimilation lead to the reduction of slab contribution in southern part of the arc.

  16. Recent developments in blast furnace process control within British Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, P.W.

    1995-12-01

    British Steel generally operates seven blast furnaces on four integrated works. All furnaces have been equipped with comprehensive instrumentation and data logging computers over the past eight years. The four Scunthorpe furnaces practice coal injection up to 170 kg/tHM (340 lb/THM), the remainder injecting oil at up to 100 kg/tHM (200 lb/THM). Distribution control is effected by Paul Wurth Bell-Less Tops on six of the seven furnaces, and Movable Throat Armour with bells on the remaining one. All have at least one sub burden probe. The blast furnace operator has a vast quantity of data and signals to consider andmore » evaluate when attempting to achieve the objective of providing a consistent supply of hot metal. Techniques have been, and are being, developed to assist the operator to interpret large numbers of signals. A simple operator guidance system has been developed to provide advice, based on current operating procedures and interpreted data. Further development will involve the use of a sophisticated Expert System software shell.« less

  17. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.

    1977-01-01

    The results of research for the origination of graphite-fiber reinforced glass matrix composites are presented. The method selected to form the composites consisted of pulling the graphite fiber through a slurry containing powdered glass, winding up the graphite fiber and the glass it picks up on a drum, drying, cutting into segments, loading the tape segment into a graphite die, and hot pressing. During the course of the work, composites were made with a variety of graphite fibers in a glass matrix.

  18. An Overview of the Thermal Challenges of Designing Microgravity Furnaces

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.

    2001-01-01

    Marshall Space Flight Center is involved in a wide variety of microgravity projects that require furnaces, with hot zone temperatures ranging from 300 C to 2300 C, requirements for gradient processing and rapid quench, and both semi-conductor and metal materials. On these types of projects, the thermal engineer is a key player in the design process. Microgravity furnaces present unique challenges to the thermal designer. One challenge is designing a sample containment assembly that achieves dual containment, yet allows a high radial heat flux. Another challenge is providing a high axial gradient but a very low radial gradient. These furnaces also present unique challenges to the thermal analyst. First, there are several orders of magnitude difference in the size of the thermal 'conductors' between various parts of the model. A second challenge is providing high fidelity in the sample model, and connecting the sample with the rest of the furnace model, yet maintaining some sanity in the number of total nodes in the model. The purpose of this paper is to present an overview of the challenges involved in designing and analyzing microgravity furnaces and how some of these challenges have been overcome. The thermal analysis tools presently used to analyze microgravity furnaces and will be listed. Challenges for the future and a description of future analysis tools will be given.

  19. 42. Casting floor, "B" furnace, pour in progress; mudgun is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Casting floor, "B" furnace, pour in progress; mudgun is to right of furnace; operator takes temperature of iron in trough during pout. Looking south - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  20. 20. DETAILED OBLIQUE VIEW SOUTHWEST FURNACE 2, SHOWING STEEL FRAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DETAILED OBLIQUE VIEW SOUTHWEST FURNACE 2, SHOWING STEEL FRAME BOXES FOR COUNTERWEIGHTS, AND FURNACE HEATING PIPES AT RIGHT. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA

  1. INTERIOR VIEW WITH LADLE POURING MOLTEN IRON INTO QBOP FURNACE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH LADLE POURING MOLTEN IRON INTO Q-BOP FURNACE. - U.S. Steel, Fairfield Works, Q-Bop Furnace, North of Valley Road & West of Ensley, Pleasant Grove Road, Fairfield, Jefferson County, AL

  2. Coating method for graphite

    DOEpatents

    Banker, John G.; Holcombe, Jr., Cressie E.

    1977-01-01

    A method of limiting carbon contamination from graphite ware used in induction melting of uranium alloys is provided comprising coating the graphite surface with a suspension of Y.sub.2 O.sub.3 particles in water containing about 1.5 to 4% by weight sodium carboxymethylcellulose.

  3. Coating method for graphite

    DOEpatents

    Banker, J.G.; Holcombe, C.E. Jr.

    1975-11-06

    A method of limiting carbon contamination from graphite ware used in induction melting of uranium alloys is provided. The graphite surface is coated with a suspension of Y/sub 2/O/sub 3/ particles in water containing about 1.5 to 4 percent by weight sodium carboxymethylcellulose.

  4. 52. Winch located at base of No. 1 Furnace for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Winch located at base of No. 1 Furnace for pulling ladle cars from furnace to pig machine. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  5. International strategic minerals inventory summary report; natural graphite

    USGS Publications Warehouse

    Krauss, U.H.; Schmidt, H.W.; Taylor, H.A.; Sutphin, D.M.

    1989-01-01

    Natural graphite is a crystalline mineral of pure carbon which normally occurs in the form of platelet-shaped crystals. It has important properties, such as chemical inertness, low thermal expansion, and lubricity, that make it almost irreplaceable for certain uses such as refractories and steelmaking. Graphite ore types are crystalline (flake and lump} or 'amorphous' (cryptocrystalline}. Refractory applications use the largest total amount of natural graphite, while the most important use of crystalline graphite is in crucibles for handling molten metals. All graphite deposits being mined today are found in the following metamorphic environments: (1) contact metamorphosed coal generally is a source of amorphous graphite; (2)disseminated crystalline flake graphite comes from syngenetic metasediments; and (3) crystalline lump graphite is found in epigenetic veins in high-grade metamorphic regions. Graphite may also occur as a trace mineral in ultrabasic rocks and pegmatites, but these are economically insignificant. The world's identified economically exploitable resources of crystalline graphite in major deposits are estimated to be about 9.7 million metric tons of concentrate. In-place resources of amorphous graphite are about 11.5 million metric tons. Of these, less than 2 percent of the crystalline ore and less than 1 percent of the amorphous ore are in western industrial countries. World mining production of natural graphite rose from 347,000 metric tons in 1973 to 659,000 metric tons in 1986, while the proportion produced by central economy countries increased from about 50 percent for the period from 1973 to 1978 to more than 64 percent in 1979 to 1986. It is estimated that crystalline flake graphite accounts for at least 180,000 metric tons of total annual world mining production of natural graphite, and amorphous graphite makes up the rest.

  6. Method of Obtaining Uniform Coatings on Graphite

    DOEpatents

    Campbell, I. E.

    1961-04-01

    A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.

  7. METHOD OF OBTAINING UNIFORM COATINGS ON GRAPHITE

    DOEpatents

    Campbell, I.E.

    1961-04-01

    A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.

  8. Influence of arc current and pressure on non-chemical equilibrium air arc behavior

    NASA Astrophysics Data System (ADS)

    Yi, WU; Yufei, CUI; Jiawei, DUAN; Hao, SUN; Chunlin, WANG; Chunping, NIU

    2018-01-01

    The influence of arc current and pressure on the non-chemical equilibrium (non-CE) air arc behavior of a nozzle structure was investigated based on the self-consistent non-chemical equilibrium model. The arc behavior during both the arc burning and arc decay phases were discussed at different currents and different pressures. We also devised the concept of a non-equilibrium parameter for a better understanding of non-CE effects. During the arc burning phase, the increasing current leads to a decrease of the non-equilibrium parameter of the particles in the arc core, while the increasing pressure leads to an increase of the non-equilibrium parameter of the particles in the arc core. During the arc decay phase, the non-CE effect will decrease by increasing the arc burning current and the nozzle pressure. Three factors together—convection, diffusion and chemical reactions—influence non-CE behavior.

  9. Assessing energy efficiency of electric car bottom furnaces intended for thermal energization of minerals

    NASA Astrophysics Data System (ADS)

    Nizhegorodov, A. I.

    2017-01-01

    The paper deals with a new concept of electric furnaces for roasting and thermal energization of vermiculite and other minerals with vibrational transportation of a single-layer mass under constant thermal field. The paper presents performance calculation and comparative assessment of energy data for furnaces of different modifications: flame and electric furnaces with three units, furnaces with six units and ones with series-parallel connection of units, and furnaces of new concept.

  10. Rethinking Recycling in Arcs

    NASA Astrophysics Data System (ADS)

    Kelemen, P.; Behn, M. D.; Jagoutz, O.

    2012-12-01

    Hacker et al EPSL 2011 and Behn et al Nature Geosci 2011 investigated pathways for return of buoyant, subducted material to arc crust. These include (1) diapirs rising into the hot mantle wedge, with extensive melts adding a component to arc magmas, (2) flow of material back up a relatively cold "subduction channel", adding solids to the lower crust and small-degree partial melts to the upper crust, (3) flow from the forearc along the base of arc crust, and (4) imbrication of forearc material into arc crust. These processes add felsic, incompatible-element-rich components to arc crust. The flux of incompatible elements such as Th in arc lavas, thought to be mainly recycled from subducted sediments, is > sediment subduction flux. There are large uncertainties: arc crustal growth rates are imprecise; young, primitive arc lavas may not be representative of magmatic flux into arc crust; sediment subduction flux may have varied. Nevertheless, this result is found for all arcs examined, using recently published growth rates. Perhaps arc growth rates that include subduction erosion are systematically overestimated. Instead or in addition, maybe significant Th comes from material other than sediments. Here, we consider the implications of pathways 1-4 for arc growth rates and incompatible element enrichment, in the context of subduction erosion and arc-arc collision. Subducting arc lithologies can become separated, with only felsic components returned to arc crust. Buoyant lithologies are mobile in viscous instabilities at > 700-800°C. Whereas thin layers such as sediments may become mobile all at once, instabilities may periodically strip the hottest parts from the top of thick buoyant layers, replacing them with hot mantle. In arc-arc collision, the top of a subducting plate starts at about 0°C on the seafloor, so heating is slow. In subduction erosion, forearc material in the subducting package can be > 200°C before erosion so buoyant lithologies reach 700-800

  11. Interlayer interactions in graphites.

    PubMed

    Chen, Xiaobin; Tian, Fuyang; Persson, Clas; Duan, Wenhui; Chen, Nan-xian

    2013-11-06

    Based on ab initio calculations of both the ABC- and AB-stacked graphites, interlayer potentials (i.e., graphene-graphene interaction) are obtained as a function of the interlayer spacing using a modified Möbius inversion method, and are used to calculate basic physical properties of graphite. Excellent consistency is observed between the calculated and experimental phonon dispersions of AB-stacked graphite, showing the validity of the interlayer potentials. More importantly, layer-related properties for nonideal structures (e.g., the exfoliation energy, cleave energy, stacking fault energy, surface energy, etc.) can be easily predicted from the interlayer potentials, which promise to be extremely efficient and helpful in studying van der Waals structures.

  12. Production of fullerenes with concentrated solar flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, M. J.; Fields, C.; Lewandowski, A.

    1994-01-01

    Research at the National Renewable Energy Laboratory (NREL) has demonstrated that fullerenes can be produced using highly concentrated sunlight from a solar furnace. Since they were first synthesized in 1989, fullerenes have been the subject of intense research. They show considerable commercial potential in advanced materials and have potential applications that include semiconductors, superconductors, high-performance metals, and medical technologies. The most common fullerene is C{sub 60}, which is a molecule with a geometry resembling a soccer ball. Graphite vaporization methods such as pulsed-laser vaporization, resistive heating, and carbon arc have been used to produce fullerenes. None of these, however, seemsmore » capable of producing fullerenes economically on a large scale. The use of concentrated sunlight may help avoid the scale-up limitations inherent in more established production processes. Recently, researchers at NREL made fullerenes in NREL`s 10 kW High Flux Solar Furnace (HFSF) with a vacuum reaction chamber designed to deliver a solar flux of 1200 W/cm{sup 2} to a graphite pellet. Analysis of the resulting carbon soot by mass spectrometry and high-pressure liquid chromatography confirmed the existence of fullerenes. These results are very encouraging and we are optimistic that concentrated solar flux can provide a means for large-scale, economical production of fullerenes. This paper presents our method, experimental apparatus, and results of fullerene production research performed with the HFSF.« less

  13. METHOD FOR COATING GRAPHITE WITH METALLIC CARBIDES

    DOEpatents

    Steinberg, M.A.

    1960-03-22

    A method for producing refractory coatings of metallic carbides on graphite was developed. In particular, the graphite piece to be coated is immersed in a molten solution of 4 to 5% by weight of zirconium, titanium, or niobium dissolved in tin. The solution is heated in an argon atmosphere to above 1400 deg C, whereby the refractory metal reacts with the surface of the graphite to form a layer of metalic carbide. The molten solution is cooled to 300 to 400 deg C, and the graphite piece is removed. Excess tin is wiped from the graphite, which is then heated in vacuum to above 2300 deg C. The tin vaporizes from the graphite surface, leaving the surface coated with a tenacious layer of refractory metallic carbide.

  14. Measure Guideline. High Efficiency Natural Gas Furnaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, L.; Rose, W.

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  15. Acoustic Levitator With Furnace And Laser Heating

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Stoneburner, James D.

    1991-01-01

    Acoustic-levitation apparatus incorporates electrical-resistance furnace for uniform heating up to temperature of about 1,000 degrees C. Additional local heating by pair of laser beams raise temperature of sample to more than 1,500 degrees C. High temperature single-mode acoustic levitator generates cylindrical-mode accoustic resonance levitating sample. Levitation chamber enclosed in electrical-resistance furnace. Infrared beams from Nd:YAG laser provide additional local heating of sample. Designed for use in containerless processing of materials in microgravity or in normal Earth gravity.

  16. 4. LOOKING SOUTHEAST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. LOOKING SOUTHEAST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND FLOOR OF CHARGING AISLE. VIEW OF 50 TON CAPACITY CHARGING BUCKET. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  17. 12. SOUTHWEST VIEW OF BASIC OXYGEN FURNACE No. 2 ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. SOUTHWEST VIEW OF BASIC OXYGEN FURNACE No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  18. Reactions in the Tuyere Zone of Ironmaking Blast Furnace

    NASA Astrophysics Data System (ADS)

    Ma, Xiaodong; Zhu, Jinming; Xu, Haifa; Wang, Geoff; Lee, Hae-Geon; Zhao, Baojun

    2018-02-01

    A series of slags can be formed in the lower part of the ironmaking blast furnace that play important roles in smooth furnace operation, and in determining iron quality and productivity. The final slag tapped from the BF has been investigated extensively as it can be collected directly. Unfortunately, difficulties in accessing the interiors of the blast furnace limit the full understanding of other slags such as primary and bosh slags. In this study, different types of samples directly obtained from the tuyere zone of the blast furnace have been systematically analyzed and characterized using scanning electron microscopy (SEM), electron probe X-ray microanalysis (EPMA), and X-ray fluorescence (XRF), with focus on the characteristics of slags formed in the tuyere level. The samples were identified into three groups according to their morphological, mineralogical, and chemical properties: (1) tuyere slags originating from the reactions between ash and dripping slags; (2) bosh slags in the CaO-SiO2-Al2O3-MgO-FeO system, with a CaO/SiO2 weight ratio of around 1.50, and Al2O3 and MgO concentrations close to those of final slags; and (3) coke ash that did not react with bosh slags. These findings will provide useful information on the evaluation of slags inside the blast furnace and the reactions in the tuyere zone.

  19. AGC-2 Graphite Pre-irradiation Data Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Swank; Joseph Lord; David Rohrbaugh

    2010-08-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterizedmore » prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.« less

  20. Composition and method for brazing graphite to graphite

    DOEpatents

    Taylor, A.J.; Dykes, N.L.

    1982-08-10

    A brazing material is described for joining graphite structures that can be used up to 2800/sup 0/C. The brazing material is formed of a paste-like composition of hafnium carbide and uranium oxide with a thermosetting resin. The uranium oxide is converted to uranium dicarbide during the brazing operation and then the hafnium carbide and uranium dicarbide form a liquid phase at a temperature about 2600/sup 0/C with the uranium diffusing and vaporizing from the joint area as the temperature is increased to about 2800/sup 0/C so as to provide a brazed joint consisting essentially of hafnium carbide. The resulting brazed joint is chemically and thermally compatible with the graphite structures.