Science.gov

Sample records for graphite design gatlinburg

  1. 15. Gatlinburg spur with little Pigeon River, looking toward Pigeon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Gatlinburg spur with little Pigeon River, looking toward Pigeon Forge. - Great Smoky Mountains National Park Roads & Bridges, Foothills Parkway, From Chilowee to Walland & from Cosby to I-40, Gatlinburg, Sevier County, TN

  2. Gatlinburg conference: barometer of progress in analytical chemistry

    SciTech Connect

    Shults, W.D.

    1981-01-01

    Much progress has been made in the field of analytical chemistry over the past twenty-five years. The AEC-ERDA-DOE family of laboratories contributed greatly to this progress. It is not surprising then to find a close correlation between program content of past Gatlinburg conferences and developments in analytical methodology. These conferences have proved to be a barometer of technical status.

  3. Graphitic nanocapsules: design, synthesis and bioanalytical applications.

    PubMed

    Ding, Ding; Xu, Yiting; Zou, Yuxiu; Chen, Long; Chen, Zhuo; Tan, Weihong

    2017-08-03

    Graphitic nanocapsules are emerging nanomaterials which are gaining popularity along with the development of carbon nanomaterials. Their unique physical and chemical properties, as well as good biocompatibility, make them desirable agents for biomedical and bioanalytical applications. Through rational design, integrating graphitic nanocapsules with other materials provides them with additional properties which make them versatile nanoplatforms for bioanalysis. In this feature article, we present the use and performance of graphitic nanocapsules in a variety of bioanalytical applications. Based on their chemical properties, the specific merits and limitations of magnetic, hollow, and noble metal encapsulated graphitic nanocapsules are discussed. Detection, multi-modal imaging, and therapeutic applications are included. Future directions and potential solutions for further biomedical applications are also suggested.

  4. AESOP XX: summary of proceedings. [Gatlinburg, Tennessee, April 24 to 26, 1979

    SciTech Connect

    1980-03-01

    The 20th meeting of the Association for Energy Systems, Operations, and Programming (AESOP) was held in Gatlinburg, Tennessee, on April 24 to 26, 1979. Representatives of DOE Headquarters discussed the effects that new security and privacy regulations will have on automatic data processing operations. The status and future possibilities of the Business Management Information System (BMIS) were also discussed. Then representatives of various DOE offices and contractors presented reports on various topics. This report contains two-page summaries of the papers presented at the meeting. Session topics and titles of papers were as follows: Washington report (New ADP issues; BMIS: the Business Management Information System; Nuclear weapons and the computer); Improving the productivity of the computing analyst/programer (What productivity improvement tools are available; Rocky Flats experience with SDM/70; Albuquerque Operations Office experience with SDM/70; Planning and project management; Minicomputer standards and programer productivity; MRC productivity gains through applications development tools); User viewpoints and expectations of data processing (User perspectives on computer applications; User viewpoints on environmental studies; Planning and implementing a procurement system; Two sides of the DP coin); Data base management (Use of data base systems within DOE; Future trends in data base hardware; Future trends in data base software; Toward automating the data base design process); and Management discussions. Complete versions of three of the papers have already been cited in ERA. These can be located by reference to the entry CONF-790431-- in the Report Number Index. (RWR)

  5. Design development of graphite primary structures enables SSTO success

    SciTech Connect

    Biagiotti, V.A.; Yahiro, J.S.; Suh, D.E.; Hodges, E.R.; Prior, D.J.

    1997-01-01

    This paper describes the development of a graphite composite wing and a graphite composite intertank primary structure for application toward Single-Stage to Orbit space vehicles such as those under development in NASA{close_quote}s X-33/Reusable Launch Vehicle (RLV) Program. The trade study and designs are based on a Rockwell vertical take-off and horizontal landing (VTHL) wing-body RLV vehicle. Northrop Grumman{close_quote}s approach using a building block development technique is described. Composite Graphite/Bismaleimide (Gr/BMI) material characterization test results are presented. Unique intertank and wing composite subcomponent test article designs are described and test results to date are presented. Wing and intertank Full Scale Section Test Article (FSTA) objectives and designs are outlined. Trade studies, supporting building block testing, and FSTA demonstrations combine to develop graphite primary structure composite technology that enables developing X-33/RLV design programs to meet critical SSTO structural weight and operations performance criteria. {copyright} {ital 1997 American Institute of Physics.}

  6. Design for a Unitary Graphite Composite Instrument Boom

    NASA Technical Reports Server (NTRS)

    Alexander, Wes; Carlos, Rene; Sturm, James; Rossoni, Peter

    2004-01-01

    This paper describes development of a Unitary graphite composite instrument boom that incorporates carpenter-tape like hinges for stowage. While light and stiff, graphite composite is not ordinarily thought of as a flexible material. This design has taken advantage of the stiffness of the composite in tubular geometry, yet leveraged its thin- section behavior to place flexibility at the required locations. Key is the proprietary layup, which results in a tough yet flexible hinge capable of rotating over 90 degrees in each direction. When the boom deploys, there is enough torque to overcome parasitic resistance from harness, etc. It will snap to the fully extended, rigid shape. The design has addressed materials issues such as out-of-plane bending, edge cracking, and interlaminar ply separation.

  7. Development of design data for graphite reinforced epoxy and polyimide composites

    NASA Technical Reports Server (NTRS)

    Scheck, W. G.

    1974-01-01

    Processing techniques and design data were characterized for a graphite/epoxy composite system that is useful from 75 K to 450 K, and a graphite/polyimide composite system that is useful from 75 K to 589 K. The Monsanto 710 polyimide resin was selected as the resin to be characterized and used with the graphite fiber reinforcement. Material was purchased using the prepreg specification for the design data generation for both the HT-S/710 and HM-S/710 graphite/polyimide composite system. Lamina and laminate properties were determined at 75 K, 297 K, and 589 K. The test results obtained on the skin-stringer components proved that graphite/polyimide composites can be reliably designed and analyzed much like graphite/epoxy composites. The design data generated in the program includes the standard static mechanical properties, biaxial strain data, creep, fatigue, aging, and thick laminate data.

  8. Designing a TAC thermometer from a VHTR graphite structure

    SciTech Connect

    Smith, James A. Kotter, Dale; Garrett, Steven L.; Ali, Randall A.

    2015-03-31

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. Very High Temperature Reactors are pushing the in core temperatures even higher. A unique sensing approach will be discussed to address the necessary high temperature measurements. Thermoacoustic thermometry exploits high temperatures and uses materials that are immune to the effects of ionizing radiation to create a temperature sensor that is self-powered and wireless. In addition, the form-factor for the Thermoacoustic Thermometer (TACT) can be designed to be integrated within common in-pile structures. There are no physical moving parts required for TACT and the sensor is self-powered, as it uses the nuclear fuel for its heat source. TACT data will be presented from a laboratory prototype mimicking the design necessary for a VHTR graphite structure.

  9. Designing a TAC thermometer from a VHTR graphite structure

    NASA Astrophysics Data System (ADS)

    Smith, James A.; Kotter, Dale; Garrett, Steven L.; Ali, Randall A.

    2015-03-01

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. Very High Temperature Reactors are pushing the in core temperatures even higher. A unique sensing approach will be discussed to address the necessary high temperature measurements. Thermoacoustic thermometry exploits high temperatures and uses materials that are immune to the effects of ionizing radiation to create a temperature sensor that is self-powered and wireless. In addition, the form-factor for the Thermoacoustic Thermometer (TACT) can be designed to be integrated within common in-pile structures. There are no physical moving parts required for TACT and the sensor is self-powered, as it uses the nuclear fuel for its heat source. TACT data will be presented from a laboratory prototype mimicking the design necessary for a VHTR graphite structure.

  10. Design and development of high efficiency 140W space TWT with graphite collector

    NASA Astrophysics Data System (ADS)

    Srivastava, V.; Purohit, G.; Sharma, R. K.; Sharma, S. M.; Bera, A.; Bhaskar, P. V.; Singh, R. R.; Prasad, K.; Kiran, V.

    2008-05-01

    4-stage graphite collector assembly has been designed and developed for a 140W Ku-band space TWT to achieve the collector efficiency more than 80%. The UHV compatible, high density, copper impregnated POCO graphite (DFP-1C) was used to fabricate the four collector electrodes of the 4-stage depressed collector. Copper impregnated graphite material is used for the collector electrodes because of its low secondary electron emission coefficient, high thermal and electrical conductivities, easy machining and brazing, low thermal expansion coefficient and low weight. The graphite material was characterized for the UHV compatibility. The collector electrodes were precisely fabricated by careful machining, and technology was developed for brazing of graphite electrodes with high voltage alumina insulators. Complete TWT with four-stage graphite collector was developed and 140W output power at gain more than 55 dB was achieved. The TWT was pumped from both the gun and the collector ends.

  11. Design of Modern Reactors for Synthesis of Thermally Expanded Graphite

    NASA Astrophysics Data System (ADS)

    Strativnov, Eugene V.

    2015-05-01

    One of the most progressive trends in the development of modern science and technology is the creation of energy-efficient technologies for the synthesis of nanomaterials. Nanolayered graphite (thermally exfoliated graphite) is one of the key important nanomaterials of carbon origin. Due to its unique properties (chemical and thermal stability, ability to form without a binder, elasticity, etc.), it can be used as an effective absorber of organic substances and a material for seal manufacturing for such important industries as gas transportation and automobile. Thermally expanded graphite is a promising material for the hydrogen and nuclear energy industries. The development of thermally expanded graphite production is resisted by high specific energy consumption during its manufacturing and by some technological difficulties. Therefore, the creation of energy-efficient technology for its production is very promising.

  12. Design of Modern Reactors for Synthesis of Thermally Expanded Graphite.

    PubMed

    Strativnov, Eugene V

    2015-12-01

    One of the most progressive trends in the development of modern science and technology is the creation of energy-efficient technologies for the synthesis of nanomaterials. Nanolayered graphite (thermally exfoliated graphite) is one of the key important nanomaterials of carbon origin. Due to its unique properties (chemical and thermal stability, ability to form without a binder, elasticity, etc.), it can be used as an effective absorber of organic substances and a material for seal manufacturing for such important industries as gas transportation and automobile. Thermally expanded graphite is a promising material for the hydrogen and nuclear energy industries. The development of thermally expanded graphite production is resisted by high specific energy consumption during its manufacturing and by some technological difficulties. Therefore, the creation of energy-efficient technology for its production is very promising.

  13. Design and evaluation of artificial cornea with core-skirt design using polyhydroxyethyl methacrylate and graphite.

    PubMed

    Sinha, Mukty; Gupte, Tanvi

    2017-06-10

    Artificial cornea is the effective treatment option for corneal blindness. One of the challenges with the artificial cornea is limited, or no tissue integration necessitates reimplantation due to necrosis or corneal melting. We propose here a new formulation approach for core-skirt incorporating graphite in the outer skirt region to improve cell adhesion. Hydroxyethyl methacrylate (HEMA) and ethylene glycol dimethacrylate were procured from Sigma-Aldrich. Polyhydroxyethyl methacrylate (PHEMA) was synthesized by free radical polymerization of HEMA. PHEMA hydrogel core with graphite incorporated skirt was developed with the help of mould and spacer. Pores were introduced into the skirt by salt leaching technique using sodium chloride as porogen. The porous skirt was improved for its aesthetic appeal of black colour and mechanical strength to sustain intraocular pressure by incorporating graphite. The material properties of the newly developed design were evaluated in terms of wetting behaviour, mechanical strength, water vapour permeability, degradation profile and cell adhesion. The polymerization of HEMA was confirmed by thin layer chromatography and FTIR. Water content of the polymeric film was optimized at 50% where maximum transparency with required refractive index of 1.4 was obtained. The concentration of salt vital for the essential porosity was also optimized using optical microscopy and scanning electron microscopy. Other properties, namely mechanical strength, water vapour transmission rate and degradation behaviour, showed that the developed design is suitable for ocular applications. Furthermore, cell adhesion study confirmed tissue adhesion in the skirt region but absent in the core. The core-skirt design may offer an efficient cornea replacement alternative with enhanced tissue integration in addition to desired mechanical behaviour with a clear and aesthetic vision.

  14. Preliminary design of graphite composite wing panels for commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Byers, B. A.; Stoecklin, R. L.

    1980-01-01

    Subjectively assessed practical and producible graphite/epoxy designs were subjected to a multilevel screening procedure which considered structural functions, efficiency, manufacturing and producibility, costs, maintainability, and inspectability. As each progressive screening level was reviewed, more definitive information on the structural efficiency (weight), manufacturing, and inspection procedures was established to support the design selection. The configuration features that enhance producibility of the final selected design can be used as a generic base for application to other wing panel designs. The selected panel design showed a weight saving of 25 percent over a conventional aluminum design meeting the same design requirements. The estimated cost reduction in manufacturing was 20 percent, based on 200 aircraft and projected 1985 automated composites manufacturing capability. The panel design background information developed will be used in the follow-on tasks to ensure that future panel development represents practical and producible design approaches to graphite/epoxy wing surface panels.

  15. Development of design allowable data for Celion 6000/LARC-160, graphite/polyimide composite laminates

    NASA Technical Reports Server (NTRS)

    Ehret, R. M.; Scanlan, P. R.; Rosen, C. D.

    1982-01-01

    A design allowables test program was conducted on Celion 6000/LARC-160 graphite polyimide composite to establish material performance over a 116 K (-250 F) to 589 K (600 F) temperature range. Tension, compression, in-plane shear and short beam shear properties were determined for uniaxial, quasi-isotropic and + or - 45 deg laminates. Effects of thermal aging and moisture saturation on mechanical properties were also evaluated. Celion 6000/LARC-160 graphite/polyimide can be considered an acceptable material system for structural applications to 589 K (600 F).

  16. Design, fabrication and test of graphite/epoxy metering truss structure components, phase 3

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design, materials, tooling, manufacturing processes, quality control, test procedures, and results associated with the fabrication and test of graphite/epoxy metering truss structure components exhibiting a near zero coefficient of thermal expansion are described. Analytical methods were utilized, with the aid of a computer program, to define the most efficient laminate configurations in terms of thermal behavior and structural requirements. This was followed by an extensive material characterization and selection program, conducted for several graphite/graphite/hybrid laminate systems to obtain experimental data in support of the analytical predictions. Mechanical property tests as well as the coefficient of thermal expansion tests were run on each laminate under study, the results of which were used as the selection criteria for the single most promising laminate. Further coefficient of thermal expansion measurement was successfully performed on three subcomponent tubes utilizing the selected laminate.

  17. Saturated Fractional Design of Experiments: Toughness and Graphite Phase Optimizing in Nihard Cast Irons

    NASA Astrophysics Data System (ADS)

    Asensio-Lozano, J.; Álvarez-Antolín, J. F.

    2008-04-01

    The aim of the present research is to identify the manufacturing factors that exert an active influence on the graphite phase formation in mottled Nihard cast irons constituting the roll shells of duplex work rolls processed by the double pour method during centrifugal casting. The studied rolls, referred to as alloy indefinite chill, were processed at industrial scale and had a core consisting of spheroidal graphite cast iron with a matrix of ferrite and pearlite. An additional aim of this study was to evaluate the effect and extent of these factors on the dynamic toughness response of the roll shell material. The research methodology employed consisted of the application of a saturated design of experiments with seven factors, eight experiments, and resolution III. The measured responses for graphite were: the volume fraction, count number per unit area, and morphology, determined by quantitative metallography. Impact testing was characterized by Charpy tests on U-notched specimens at 350 °C. The manufacturing factors studied were: the final weight percent of silicon, sulfur, and manganese; the liquidus and the casting temperatures; and, finally, inoculation with SiCaMn and A-type FeSi (with Zr). The statistical experimental method conducted allowed us to confirm the significance of factors such as the %Si, the liquidus temperature and inoculation with SiCaMn on the precipitation of graphite in a white cast iron such as the Nihard irons used in the roll shell, in agreement with the precipitation of graphite in gray cast irons widely reported in the literature. It was also shown that the development of lamellar graphite shapes were favored by an increase in the total equivalent carbon and also by the increase in the amount of A-type FeSi added. Furthermore, the impact toughness was shown to improve with the increase in both the %Si and the liquidus temperature.

  18. Analysis on Thermal Conductivity of Graphite/Al Composite by Experimental and Modeling Study

    NASA Astrophysics Data System (ADS)

    Xue, C.; Bai, H.; Tao, P. F.; Jiang, N.; Wang, S. L.

    2017-01-01

    Graphite/Al composites were fabricated by vacuum hot pressing technology in this study. The main factors affecting the thermal conductivity (TC) of graphite/Al composites were deeply investigated by experimental and modeling study. The results showed that the TC of graphite/Al composite can be improved via designing the preferred orientation of graphite flakes, selecting graphite flakes with large diameter, increasing the content of graphite flakes in graphite/Al composite and solving the poor wettability between Al and graphite. The modified model can well predict the heat transfer behavior of graphite/Al composite.

  19. Design and testing of thermal-expansion-molded graphite-epoxy hat-stiffened sandwich panels

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1989-01-01

    Minimum weight configurations for two types of graphite-epoxy hat-stiffened compression-loaded panels fabricated by the thermal-expansion-molding (TEM) manufacturing process were evaluated analytically and experimentally for designs with load index Nx/L values ranging from 100 to 800. The two types of panels contain graphite-epoxy face sheets with a foam core and hat stiffeners which are either open or filled with foam. Constraints on the extensional and shear stiffnesses are imposed on the design so that the panels will satisfy typical constraints for aircraft wing structures. Optimal structurally efficient TEM panels are compared to commercially available aluminum aircraft structures. Predicted load-strain relationships agree well with experimental results. Significant impact damage to the unstiffened face sheet and foam core does not noticeably reduce the load carrying ability of the panels, but damage to the stiffened face sheet reduces the failure load by 20 percent compared to unimpacted panels.

  20. Brazing graphite to graphite

    DOEpatents

    Peterson, George R.

    1976-01-01

    Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of virtually graphite.

  1. Design, fabrication, and test of a graphite/epoxy metering truss. [as applied to the LST

    NASA Technical Reports Server (NTRS)

    Oken, S.; Skoumal, D. E.

    1975-01-01

    A graphite/epoxy metering truss as applied to the large space telescope was investigated. A full-scale truss was designed, fabricated and tested. Tests included static limit loadings, a modal survey and thermal-vacuum distortion evaluation. The most critical requirement was the demonstration of the dimensional stability provided by the graphite/epoxy truss concept. Crucial to the attainment of this objective was the ability to make very sophisticated thermal growth measurements which was provided by a seven beam laser interferometer. The design of the basic truss elements were tuned to provide the high degree of dimensional stability and stiffness required by the truss. The struts and spider assembly were fabricated with Fiberite's AS/934 and HMS/934 broadgoods. The rings utilized T300 graphite fabricate with the same materials. The predicted performance of the truss was developed using the NASTRAN program. These results showed conformance with the critical stiffness and thermal distortion requirements and correlated well with the test results.

  2. Conceptual design of a high throughput electrorefining of a uranium by using graphite cathode

    SciTech Connect

    Lee, J.H.; Kang, Y.H.; Hwang, S.C.; Park, S.B.; Shim, J.B.; Lee, H.S.; Kim, E.H.; Park, S.W.

    2007-07-01

    Conceptual designing of a high throughput electro-refiner was performed by using basic experimental data and a commercial computational fluid dynamic code, CFX. An electro-refiner concept equipped with a graphite cathode bundle was designed to recover a high purity uranium product continuously without a noble metal contamination. The performance of the process for a decontamination of a noble metal in a uranium product was evaluated as a function of the process parameters such as the rotation speeds of the stirrer and the anode basket. (authors)

  3. Controlling the number of graphene sheets exfoliated from graphite by designed normal loading and frictional motion

    SciTech Connect

    Lee, Seungjun; Lu, Wei

    2014-07-14

    We use molecular dynamics to study the exfoliation of patterned nanometer-sized graphite under various normal loading conditions for friction-induced exfoliation. Using highly ordered pyrolytic graphite (HOPG) as well as both amorphous and crystalline SiO{sub 2} substrate as example systems, we show that the exfoliation process is attributed to the corrugation of the HOPG surface and the atomistic roughness of the substrate when they contact under normal loading. The critical normal strain, at which the exfoliation occurs, is higher on a crystalline substrate than on an amorphous substrate. This effect is related to the atomistic flatness and stiffness of the crystalline surface. We observe that an increase of the van der Waals interaction between the graphite and the substrate results in a decrease of the critical normal strain for exfoliation. We find that the magnitude of the normal strain can effectively control the number of exfoliated graphene layers. This mechanism suggests a promising approach of applying designed normal loading while sliding to pattern controlled number of graphene layers or other two-dimensional materials on a substrate surface.

  4. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of several types of graphite/polyimide (GR/PI) bonded and bolted joints is reported. The program consists of two concurrent tasks: (1) design and test of specific built up attachments; and (2) evaluation of standard advanced bonded joint concepts. A data base for the design and analysis of advanced composite joints for use at elevated temperatures (561K (550 deg F)) to design concepts for specific joining applications, and the fundamental parameters controlling the static strength characteristics of such joints are evaluated. Data for design and build GR/PI of lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Results for compression and interlaminar shear strengths of Celion 6000/PMR-15 laminates are given. Static discriminator test results for type 3 and type 4 bonded and bolted joints and final joint designs for TASK 1.4 scale up fabrication and testing are presented.

  5. Design and fabrication of graphite-epoxy bolted wing skin splice specimens

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Mccarty, J. E.

    1977-01-01

    Graphite-epoxy bolted joint specimens were designed and fabricated. These specimens were to be representative of a side-of-body wing skin splice with a 20-year life expectancy in a commercial transport environment. Preliminary tests were performed to determine design values of bearing and net tension stresses. Based upon the information developed, a three-fastener-wide representative wing skin splice was designed for a load of 2627 KN/m (15,000 lbf/in.). One joint specimen was fabricated and tested at NASA. The wing skin splice failed at 106 percent of design ultimate load. This joint design achieved all static load objectives. Fabrication of six specimens, together with their loading fixtures, was completed, and the specimens were delivered to NASA-LRC.

  6. Design and Fabrication of a Ring-Stiffened Graphite-Epoxy Corrugated Cylindrical Shell

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.

    1978-01-01

    Design and fabrication of supplement test panels that represent key portions of the cylinder are described, as are supporting tests of coupons, sample joints, and stiffening ring elements. The cylindrical shell is a ring-stiffened, open corrugation design that uses T300/5208 graphite-epoxy tape as the basic material for the shell wall and stiffening rings. The test cylinder is designed to withstand bending loads producing the relatively low maximum load intensity in the shell wall of 1,576 N/cm. The resulting shell wall weight, including stiffening rings and fasteners, is 0.0156 kg/m. The shell weight achieved in the graphite-epoxy cylinder represents a weight saving of approximately 23 percent, compared to a comparable aluminum shell. A unique fabrication approach was used in which the cylinder wall was built in three flat segments, which were then wrapped to the cylindrical shape. Such an approach, made possible by the flexibility of the thin corrugated wall in a radial direction, proved to be a simple approach to building the test cylinder. Based on tooling and fabrication methods in this program, the projected costs of a production run of 100 units are reported.

  7. Graphite Technology Development Plan

    SciTech Connect

    W. Windes; T. Burchell; M.Carroll

    2010-10-01

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled High Temperature Gas Reactor (HTGR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Graphite has been used effectively as a structural and moderator material in both research and commercial high-temperature gas-cooled reactors. This development has resulted in graphite being established as a viable structural material for HTGRs. While the general characteristics necessary for producing nuclear grade graphite are understood, historical “nuclear” grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermomechanical design of the structural graphite in NGNP is based. This Technology Development Plan outlines the research and development (R&D) activities and associated rationale necessary to qualify nuclear grade graphite for use within the NGNP reactor.

  8. Multidisciplinary Simulation of Graphite-Composite and Cermet Fuel Elements for NTP Point of Departure Designs

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2015-01-01

    This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.

  9. Design, fabrication and test of graphite/polyimide composite joints and attachments. [spacecraft control surfaces

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1982-01-01

    The design, analysis, and testing performed to develop four types of graphite/polyimide (Gr/PI) bonded and bolted composite joints for lightly loaded control surfaces on advanced space transportation systems that operate at temperatures up to 561 K (550 F) are summarized. Material properties and small specimen tests were conducted to establish design data and to evaluate specific design details. Static discriminator tests were conducted on preliminary designs to verify structural adequacy. Scaled up specimens of the final joint designs, representative of production size requirements, were subjected to a series of static and fatigue tests to evaluate joint strength. Effects of environmental conditioning were determined by testing aged (125 hours at 589 K (600 F)) and thermal cycled (116 K to 589 K (-250 F to 600 F), 125 times) specimens. It is concluded Gr/PI joints can be designed and fabricated to carry the specified loads. Test results also indicate a possible resin loss or degradation of laminates after exposure to 589 K (600 F) for 125 hours.

  10. Design, fabrication and test of graphite/polymide composite joints and attachments: Summary

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1983-01-01

    The design, analysis and testing performed to develop four types of graphite/polyimide (Gr/PI) bonded and bolted composite joints for lightly loaded control surfaces on advanced space transportation systems that operate at temperatures up to 561K (550 F) are summarized. Material properties and 'small specimen' tests were conducted to establish design data and to evaluate specific design details. 'Static discriminator' tests were conducted on preliminary designs to verify structural adequacy. Scaled up specimens of the final joint designs, representative of production size requirements, were subjected to a series of static and fatigue tests to evaluate joint strength. Effects of environmental conditioning were determined by testing aged (125 hours 589K (600 F)) and thermal cycled (116K to 589K (-250 F to 600 F), 125 times) specimens. It is concluded Gr/PI joints can be designed and fabricated to carry the specified loads. Test results also indicate a possible resin loss or degradation of laminates after exposure to 589K (600 F) for 125 hours.

  11. Molecular design driving tetraporphyrin self-assembly on graphite: a joint STM, electrochemical and computational study

    NASA Astrophysics Data System (ADS)

    El Garah, M.; Santana Bonilla, A.; Ciesielski, A.; Gualandi, A.; Mengozzi, L.; Fiorani, A.; Iurlo, M.; Marcaccio, M.; Gutierrez, R.; Rapino, S.; Calvaresi, M.; Zerbetto, F.; Cuniberti, G.; Cozzi, P. G.; Paolucci, F.; Samorì, P.

    2016-07-01

    Tuning the intermolecular interactions among suitably designed molecules forming highly ordered self-assembled monolayers is a viable approach to control their organization at the supramolecular level. Such a tuning is particularly important when applied to sophisticated molecules combining functional units which possess specific electronic properties, such as electron/energy transfer, in order to develop multifunctional systems. Here we have synthesized two tetraferrocene-porphyrin derivatives that by design can selectively self-assemble at the graphite/liquid interface into either face-on or edge-on monolayer-thick architectures. The former supramolecular arrangement consists of two-dimensional planar networks based on hydrogen bonding among adjacent molecules whereas the latter relies on columnar assembly generated through intermolecular van der Waals interactions. Scanning Tunneling Microscopy (STM) at the solid-liquid interface has been corroborated by cyclic voltammetry measurements and assessed by theoretical calculations to gain multiscale insight into the arrangement of the molecule with respect to the basal plane of the surface. The STM analysis allowed the visualization of these assemblies with a sub-nanometer resolution, and cyclic voltammetry measurements provided direct evidence of the interactions of porphyrin and ferrocene with the graphite surface and offered also insight into the dynamics within the face-on and edge-on assemblies. The experimental findings were supported by theoretical calculations to shed light on the electronic and other physical properties of both assemblies. The capability to engineer the functional nanopatterns through self-assembly of porphyrins containing ferrocene units is a key step toward the bottom-up construction of multifunctional molecular nanostructures and nanodevices.Tuning the intermolecular interactions among suitably designed molecules forming highly ordered self-assembled monolayers is a viable approach to

  12. Molecular design driving tetraporphyrin self-assembly on graphite: a joint STM, electrochemical and computational study.

    PubMed

    El Garah, M; Santana Bonilla, A; Ciesielski, A; Gualandi, A; Mengozzi, L; Fiorani, A; Iurlo, M; Marcaccio, M; Gutierrez, R; Rapino, S; Calvaresi, M; Zerbetto, F; Cuniberti, G; Cozzi, P G; Paolucci, F; Samorì, P

    2016-07-14

    Tuning the intermolecular interactions among suitably designed molecules forming highly ordered self-assembled monolayers is a viable approach to control their organization at the supramolecular level. Such a tuning is particularly important when applied to sophisticated molecules combining functional units which possess specific electronic properties, such as electron/energy transfer, in order to develop multifunctional systems. Here we have synthesized two tetraferrocene-porphyrin derivatives that by design can selectively self-assemble at the graphite/liquid interface into either face-on or edge-on monolayer-thick architectures. The former supramolecular arrangement consists of two-dimensional planar networks based on hydrogen bonding among adjacent molecules whereas the latter relies on columnar assembly generated through intermolecular van der Waals interactions. Scanning Tunneling Microscopy (STM) at the solid-liquid interface has been corroborated by cyclic voltammetry measurements and assessed by theoretical calculations to gain multiscale insight into the arrangement of the molecule with respect to the basal plane of the surface. The STM analysis allowed the visualization of these assemblies with a sub-nanometer resolution, and cyclic voltammetry measurements provided direct evidence of the interactions of porphyrin and ferrocene with the graphite surface and offered also insight into the dynamics within the face-on and edge-on assemblies. The experimental findings were supported by theoretical calculations to shed light on the electronic and other physical properties of both assemblies. The capability to engineer the functional nanopatterns through self-assembly of porphyrins containing ferrocene units is a key step toward the bottom-up construction of multifunctional molecular nanostructures and nanodevices.

  13. Design of the Next Generation Nuclear Plant Graphite Creep Experiments for Irradiation in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2009-05-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain seven separate stacks of graphite specimens. Six of the specimen stacks will have half of their graphite specimens under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will be organized into pairs with a different compressive load being applied to the top half of each pair of specimen stacks. The seventh stack will not have a compressive load on the graphite specimens during irradiation. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any

  14. Design Allowables Test Program, Celion 3000/PMR-15 and Celion 6000/PMR-15, Graphite/Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.

    1982-01-01

    A design allowables test program was conducted on Celion 3000/PRM-15 and Celion 6000/PMR-15 graphite/polyimide composite to establish material performance over a 116 K (-250 F) to 589 K (600 F) temperature range. Effects of aging, thermal cycling and moisture were also evaluated. Tension, compression and in plane shear properties were determined for uniaxial, pseudoisotropic and +45 laminates. Test results show sufficient strength and stiffness to substantiate graphite/polyimide composites as an acceptable structural material for high temperature structural applications.

  15. Design and test of a graphite target system for in-flight fragment separator

    NASA Astrophysics Data System (ADS)

    Hong, S. G.; Kim, J. H.; Kim, M. J.; Song, J. S.; Kim, J. W.

    2014-07-01

    A graphite target system to produce rare isotope beams using in-flight fragmentation method has been designed for the rare isotope science project in Korea. A main primary beam to bombard the target is 238U in the energy of 200 MeV/u with a maximum power of 400 kW, in which the beam power deposit on the target amounts up to 100 kW. A multi-slice target concept was adopted to enhance radiation cooling effect. A finite element program ANSYS was used to analyze thermo-mechanical behavior of a single and multi-slice targets. To validate the design, an electron beam at the energy of 50 keV was used to test a single slice target. A good agreement of the hot spot temperature was achieved between the simulation and measurement. For multi-slice targets a series of ANSYS analysis was performed in search of the optimal design. Target design parameters for the isotope beam production, which can sustain an incident 400-kW 238U beam, have been found.

  16. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.

    1980-01-01

    Results of an experimental program to develop several types of graphite/polyimide (GR/PI) bonded and bolted joints for lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Tasks accomplished include: a literature survey; design of static discriminator specimens; design allowables testing; fabrication of test panels and specimens; small specimen testing; and standard joint testing. Detail designs of static discriminator specimens for each of the four major attachment types are presented. Test results are given for the following: (1) transverse tension of Celion 3000/PMR-15 laminate; (2) net tension of a laminate for both a loaded and unloaded bolt hole; (3) comparative testing of bonded and co-cured doublers along with pull-off tests of single and double bonded angles; (4) single lap shear tests, transverse tension and coefficient of thermal expansion tests of A7F (LARC-13 amide-imide modified) adhesive; and (5) tension tests of standard single lap, double lap, and symmetric step lap bonded joints. Also, included are results of a finite element analysis of a single lap bonded composite joint.

  17. Neutronic analysis of graphite-moderated solid breeder design for INTOR

    SciTech Connect

    Jung, J.; Abdou, M.A.

    1981-01-01

    An in-depth analysis of the INTOR tritium-production-blanket design is presented. A ternary system of solid silicate breeder, lead neutron multiplier, and graphite moderator is explored primary from safety and blanket tritium-inventory considerations. Lithium-silicate (Li/sub 2/SiO/sub 3/) breeder systems are studied along with water (H/sub 2/O/D/sub 2/O) and Type 316 stainless steel as coolant and structural material, respectively. The analysis examines the neutronics effects on tritium-production regarding: (1) coolant choice; (2) moderator choice; (3) moderator location; (4) multiplier thickness; (5) /sup 6/Li enrichment; and (6) /sup 6/Li burnup. The tritium-breeding-blanket modules are located at the top, outboard, and bottom (outer) parts of the torus, resulting in a breeding coverage of approx. 60% at the first-wall surface. It is found that the reference INTOR design yields, based on a three-dimensional analysis, a net tritium breeding ratio (BR) of approx. 0.65 at the beginning of reactor operation, satisfying the design criterion of BR > 0.6.

  18. Material Based Structure Design: Numerical Analysis Thermodynamic Response of Thermal Pyrolytic Graphite /Al Sandwich Composites

    NASA Astrophysics Data System (ADS)

    Wang, Junxia; Yan, Shilin; Yu, Dingshan

    2016-12-01

    Amine-grafted multiwalled carbon nanotubes (MWCNTs) based thermally conductive adhesive (TCA) was studied in the previous paper and applied here in thermal pyrolytic graphite (TPG)/Al radiator due to its high thermal conductivity, toughness and cohesiveness. In this paper, in an attempt to confirm the application of TCA to TPG/Al sandwich radiator, the thermodynamic response in TPG/Al sandwich composites associated with key material properties and structural design was investigated using finite element simulation with commercial available ANSYS software. The induced thermal stress in TCA layer is substantial due to the thermal expansion mismatch between Al plate and TPG. The maximum thermal stress is located near the edge of TCA layer with the von Mises stress value of 4.02 MPa and the shear stress value of 1.66 MPa. The reasonable adjustment of physical-mechanical properties including thermal conductivity, thermal expansion, Young,s modulus and the thickness of TCA layer, Al plate and TPG are beneficial for reducing the temperature of the top surface of the upper skin and their effects on the reduction of thermal structural response in some ways. These findings will highlight the structural optimization of TPG/Al radiator for future application.

  19. Visible-Light-Responsive Graphitic Carbon Nitride: Rational Design and Photocatalytic Applications for Water Treatment.

    PubMed

    Zheng, Qinmin; Durkin, David P; Elenewski, Justin E; Sun, Yingxue; Banek, Nathan A; Hua, Likun; Chen, Hanning; Wagner, Michael J; Zhang, Wen; Shuai, Danmeng

    2016-12-06

    Graphitic carbon nitride (g-C3N4) has recently emerged as a promising visible-light-responsive polymeric photocatalyst; however, a molecular-level understanding of material properties and its application for water purification were underexplored. In this study, we rationally designed nonmetal doped, supramolecule-based g-C3N4 with improved surface area and charge separation. Density functional theory (DFT) simulations indicated that carbon-doped g-C3N4 showed a thermodynamically stable structure, promoted charge separation, and had suitable energy levels of conduction and valence bands for photocatalytic oxidation compared to phosphorus-doped g-C3N4. The optimized carbon-doped, supramolecule-based g-C3N4 showed a reaction rate enhancement of 2.3-10.5-fold for the degradation of phenol and persistent organic micropollutants compared to that of conventional, melamine-based g-C3N4 in a model buffer system under the irradiation of simulated visible sunlight. Carbon-doping but not phosphorus-doping improved reactivity for contaminant degradation in agreement with DFT simulation results. Selective contaminant degradation was observed on g-C3N4, likely due to differences in reactive oxygen species production and/or contaminant-photocatalyst interfacial interactions on different g-C3N4 samples. Moreover, g-C3N4 is a robust photocatalyst for contaminant degradation in raw natural water and (partially) treated water and wastewater. In summary, DFT simulations are a viable tool to predict photocatalyst properties and oxidation performance for contaminant removal, and they guide the rational design, fabrication, and implementation of visible-light-responsive g-C3N4 for efficient, robust, and sustainable water treatment.

  20. Graphite on graphite

    NASA Astrophysics Data System (ADS)

    Volovik, G. E.; Pudalov, V. M.

    2016-12-01

    We propose potential geometry for fabrication of the graphite sheets with atomically smooth edges. For such sheets with Bernal stacking, the electron-electron interaction and topology should cause sufficiently high density of states resulting in the high temperature of either spin ordering or superconducting pairing.

  1. Graphite-based photovoltaic cells

    DOEpatents

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  2. Design and Fabrication of E-Glass /carbon/graphite epoxy hybrid composite leaf spring

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, T.; Raja, M.; Jothi Prakash, V. M.; Gnanavel, C.

    2017-03-01

    The Automobile Industry has shown increase interest for replacement of steel leaf spring with that of composite leaf spring. Substituting composite materials for conventional metallic materials has many advantages because of higher specific stiffness, strength and fatigue resistance etc. This work deals with the replacement of conventional steel leaf spring with a hybrid Composite leaf spring using E -Glass/Carbon/Graphite/Epoxy. The hybrid composite is obtained by introducing more than one fiber in the reinforcement phase. The hybrid composite is fabricated by the vacuum bag technique. The result shows that introduction of carbon and graphite fiber in the reinforcement phase increases the stiffness of the composite.

  3. Design, fabrication and performance of small, graphite electrode, multistage depressed collectors with 200-W, CW, 8- to 18-GHz traveling-wave tubes

    NASA Technical Reports Server (NTRS)

    Ebihara, Ben T.; Ramins, Peter

    1987-01-01

    Small multistage depressed collectors (MDC's) which used pyrolytic graphite, ion-beam-textured pyrolytic graphite, and isotropic graphite electrodes were designed, fabricated, and evaluated in conjuntion with 200-W, continuous wave (CW), 8- to 18-GHz traveling-wave tubes (TWT's). The design, construction, and performance of the MDC's are described. The bakeout performance of the collectors, in terms of gas evolution, was indistinguishable from that of typical production tubes with copper collectors. However, preliminary results indicate that some additional radiofrequency (RF) and dc beam processing time (and/or longer or higher temperature bakeouts) may be needed beyond that of typical copper electrode collectors. This is particularly true for pyrolytic graphite electrodes and for TWT's without appendage ion pumps. Extended testing indicated good long-term stability of the textured pyrolytic graphite and isotropic graphite electrode surfaces. The isotropic graphite in particular showed considerable promise as an MDC electrode material because of its high purity, low cost, simple construction, potential for very compact overall size, and relatively low secondary electron emission yield characteristics in the as-machined state. However, considerably more testing experience is required before definitive conclusions on its suitability for electronic countermeasure systems and space TWT's can be made.

  4. Cooperative program for design, fabrication, and testing of graphite/epoxy composite helicopter shafting

    NASA Technical Reports Server (NTRS)

    Wright, C. C.; Baker, D. J.; Corvelli, N.; Thurston, L.; Clary, R.; Illg, W.

    1971-01-01

    The fabrication of UH-1 helicopter tail rotor drive shafts from graphite/epoxy composite materials is discussed. Procedures for eliminating wrinkles caused by lack of precure compaction are described. The development of the adhesive bond between aluminum end couplings and the composite tube is analyzed. Performance tests to validate the superiority of the composite materials are reported.

  5. Optimum design of swept-forward high-aspect-ration graphite-epoxy wings

    NASA Technical Reports Server (NTRS)

    Shuart, Mark J.; Haftka, Raphael T.; Campbell, R. L.

    1989-01-01

    An analytical investigation of a swept-forward high-aspect-ratio graphite-epoxy transport wing is described. The objectives of this investigation are to illustrate an effective usage of the unique properties of composite materials by exploiting material tailoring and to demonstrate an integrated multidisciplinary approach for conducting this investigation.

  6. Self-assembled monolayers of shape-persistent macrocycles on graphite: interior design and conformational polymorphism

    PubMed Central

    Vollmeyer, Joscha; Eberhagen, Friederike; Höger, Sigurd

    2014-01-01

    Summary Three shape-persistent naphthylene–phenylene–acetylene macrocycles of identical backbone structures and extraannular substitution patterns but different (empty, apolar, polar) nanopore fillings are self-assembled at the solid/liquid interface of highly oriented pyrolytic graphite and 1,2,4-trichlorobenzene. Submolecularly resolved images of the resulting two-dimensional (2D) crystalline monolayer patterns are obtained by in situ scanning tunneling microscopy. A concentration-dependent conformational polymorphism is found, and open and more dense packing motifs are observed. For all three compounds alike lattice parameters are found, therefore the intermolecular macrocycle distances are mainly determined by their size and symmetry. This is an excellent example that the graphite acts as a template for the macrocycle organization independent from their specific interior. PMID:25550743

  7. Self-assembled monolayers of shape-persistent macrocycles on graphite: interior design and conformational polymorphism.

    PubMed

    Vollmeyer, Joscha; Eberhagen, Friederike; Höger, Sigurd; Jester, Stefan-S

    2014-01-01

    Three shape-persistent naphthylene-phenylene-acetylene macrocycles of identical backbone structures and extraannular substitution patterns but different (empty, apolar, polar) nanopore fillings are self-assembled at the solid/liquid interface of highly oriented pyrolytic graphite and 1,2,4-trichlorobenzene. Submolecularly resolved images of the resulting two-dimensional (2D) crystalline monolayer patterns are obtained by in situ scanning tunneling microscopy. A concentration-dependent conformational polymorphism is found, and open and more dense packing motifs are observed. For all three compounds alike lattice parameters are found, therefore the intermolecular macrocycle distances are mainly determined by their size and symmetry. This is an excellent example that the graphite acts as a template for the macrocycle organization independent from their specific interior.

  8. The Design and Testing of a High-Temperature Graphite Dilatometer

    DTIC Science & Technology

    1992-06-24

    26 11. Data from three-point-bend samples of PAA, phenolic, and furfural resin samples that were...TEMPERATURE (0C) Fig. 11. Data from three-point-bend samples of (a) PAA, (b) phenolic, and (c) furfural resin samples that were precured to 350*C. The max- imum...graphitization tempera- tures (20000C); and furfural resin carbon absorbs less at all temperatures. 28 V. CONCLUSIONS The dilatometer system described

  9. GRAPHITE EXTRUSIONS

    DOEpatents

    Benziger, T.M.

    1959-01-20

    A new lubricant for graphite extrusion is described. In the past, graphite extrusion mixtures have bcen composed of coke or carbon black, together with a carbonaceous binder such as coal tar pitch, and a lubricant such as petrolatum or a colloidal suspension of graphite in glycerin or oil. Sinee sueh a lubricant is not soluble in, or compatible with the biiider liquid, such mixtures were difficult to extrude, and thc formed pieees lacked strength. This patent teaches tbe use of fatty acids as graphite extrusion lubricants and definite improvemcnts are realized thereby since the fatty acids are soluble in the binder liquid.

  10. Graphite Technology Development Plan

    SciTech Connect

    W. Windes; T. Burchell; R. Bratton

    2007-09-01

    This technology development plan is designed to provide a clear understanding of the research and development direction necessary for the qualification of nuclear grade graphite for use within the Next Generation Nuclear Plant (NGNP) reactor. The NGNP will be a helium gas cooled Very High Temperature Reactor (VHTR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Considerable effort will be required to ensure that the graphite performance is not compromised during operation. Based upon the perceived requirements the major data needs are outlined and justified from the perspective of reactor design, reatcor performance, or the reactor safety case. The path forward for technology development can then be easily determined for each data need. How the data will be obtained and the inter-relationships between the experimental and modeling activities will define the technology development for graphite R&D. Finally, the variables affecting this R&D program are discussed from a general perspective. Factors that can significantly affect the R&D program such as funding, schedules, available resources, multiple reactor designs, and graphite acquisition are analyzed.

  11. Design, fabrication, and test of a Graphite/Epoxy Metering Shell (GEMS). [for the large space telescope

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A program to design, fabricate and test a dimensionally stable metering structure in support of the large space telescope (LST) program is discussed. Graphite/epoxy was the material selected as the only viable candidate material which can meet the stringent thermal expansion criteria of the LST. A metering shell was designed and fabricated, with emphasis on dimensional stability in conjunction with low cost. Thermal expansion test coupons extracted from the layups of the skin panels indicated the attainment of a coefficient of thermal expansion of 0.0666 micrometers/m K. Subsequent thermal vacuum chamber tests on the complete metering shell demonstrated an expansion of the 2.95-meter overall length of 0.27 micrometers/K. Static and dynamics tests, which demonstrated adequacy with respect to limit loads and stiffness, were also accomplished.

  12. Graphite technology development plan

    SciTech Connect

    1986-07-01

    This document presents the plan for the graphite technology development required to support the design of the 350 MW(t) Modular HTGR within the US National Gas-Cooled Reactor Program. Besides descriptions of the required technology development, cost estimates, and schedules, the plan also includes the associated design functions and design requirements.

  13. Graphite fiber reinforced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Navak, R. C.

    1977-01-01

    The results of a program designed to optimize the fabrication procedures for graphite thermoplastic composites are described. The properties of the composites as a function of temperature were measured and graphite thermoplastic fan exit guide vanes were fabricated and tested. Three thermoplastics were included in the investigation: polysulfone, polyethersulfone, and polyarylsulfone. Type HMS graphite was used as the reinforcement. Bending fatigue tests of HMS graphite/polyethersulfone demonstrated a gradual shear failure mode which resulted in a loss of stiffness in the specimens. Preliminary curves were generated to show the loss in stiffness as a function of stress and number of cycles. Fan exit guide vanes of HMS graphite polyethersulfone were satisfactorily fabricated in the final phase of the program. These were found to have stiffness and better fatigue behavior than graphite epoxy vanes which were formerly bill of material.

  14. Graphite Revisited

    NASA Astrophysics Data System (ADS)

    Draine, B. T.

    2016-11-01

    Laboratory measurements are used to constrain the dielectric tensor for graphite, from microwave to X-ray frequencies. The dielectric tensor is strongly anisotropic even at X-ray energies. The discrete dipole approximation is employed for accurate calculations of absorption and scattering by single-crystal graphite spheres and spheroids. For randomly oriented single-crystal grains, the so-called 1/3{--}2/3 approximation for calculating absorption and scattering cross sections is exact in the limit a/λ \\to 0 and provides better than ∼10% accuracy in the optical and UV even when a/λ is not small, but becomes increasingly inaccurate at infrared wavelengths, with errors as large as ∼40% at λ =10 μ {{m}}. For turbostratic graphite grains, the Bruggeman and Maxwell Garnett treatments yield similar cross sections in the optical and ultraviolet, but diverge in the infrared, with predicted cross sections differing by over an order of magnitude in the far-infrared. It is argued that the Maxwell Garnett estimate is likely to be more realistic, and is recommended. The out-of-plane lattice resonance of graphite near 11.5 μm may be observable in absorption with the MIRI spectrograph on James Webb Space Telescope. Aligned graphite grains, if present in the interstellar medium, could produce polarized X-ray absorption and polarized X-ray scattering near the carbon K edge.

  15. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Koumal, D. E.

    1979-01-01

    The design and evaluation of built-up attachments and bonded joint concepts for use at elevated temperatures is documented. Joint concept screening, verification of GR/PI material, fabrication of design allowables panels, definition of test matrices, and analysis of bonded and bolted joints are among the tasks completed. The results provide data for the design and fabrication of lightly loaded components for advanced space transportation systems and high speed aircraft.

  16. Addendum to papers from the GANIL (Grand Accélérateur National d'Ions Lourds) GANISOL Team, published in Proceedings of the 13th International Conference on Ion Sources, Gatlinburg, Tennessee, September 2009

    NASA Astrophysics Data System (ADS)

    Alahari, N.; Bajeat, O.; Barué, C.; Chautard, F.; Clément, E.; Delahaye, P.; De Oliveira, F.; Dubois, M.; Fadil, M.; Frânberg-Delahaye, H.; Jacquot, B.; Jardin, P.; Saint-Laurent, M. G.; Lecesne, N.; Lehérissier, P.; Leroy, R.; Lewitowicz, M.; Lhersonneau, G.; Maunoury, L.; Méry, A.; Roussel-Chomaz, P.; Pacquet, J. Y.; Pichard, A.; Thomas, J. C.

    2010-02-01

    This addendum applies to the paper authored by contributors from the Grand Accélérateur National d'Ions Lourds (GANIL) published in the February 2010 issue of Review of Scientific Instruments, within the Proceedings of the 13th International Conference on Ion Sources, Gatlinburg, Tennessee, September 2009 (Key Scientific coordinator: P. Delahaye; Technical coordinator: P. Jardin; SPIRAL 2 coordinator: R. Leroy and H. Frånberg-Delahaye; GPI leader: P. Lehérissier; and Direction correspondant: P. Roussel-Chomaz). This addendum provides the full list of GANISOL contributors and their affiliations.

  17. Baseline Graphite Characterization: First Billet

    SciTech Connect

    Mark C. Carroll; Joe Lords; David Rohrbaugh

    2010-09-01

    The Next Generation Nuclear Plant Project Graphite Research and Development program is currently establishing the safe operating envelope of graphite core components for a very high temperature reactor design. To meet this goal, the program is generating the extensive amount of quantitative data necessary for predicting the behavior and operating performance of the available nuclear graphite grades. In order determine the in-service behavior of the graphite for the latest proposed designs, two main programs are underway. The first, the Advanced Graphite Creep (AGC) program, is a set of experiments that are designed to evaluate the irradiated properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences, and compressive loads. Despite the aggressive experimental matrix that comprises the set of AGC test runs, a limited amount of data can be generated based upon the availability of space within the Advanced Test Reactor and the geometric constraints placed on the AGC specimens that will be inserted. In order to supplement the AGC data set, the Baseline Graphite Characterization program will endeavor to provide supplemental data that will characterize the inherent property variability in nuclear-grade graphite without the testing constraints of the AGC program. This variability in properties is a natural artifact of graphite due to the geologic raw materials that are utilized in its production. This variability will be quantified not only within a single billet of as-produced graphite, but also from billets within a single lot, billets from different lots of the same grade, and across different billets of the numerous grades of nuclear graphite that are presently available. The thorough understanding of this variability will provide added detail to the irradiated property data, and provide a more thorough understanding of the behavior of graphite that will be used in reactor design and licensing. This report covers the

  18. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Skoumal, D. E.

    1980-01-01

    Bonded and bolted designs are presented for each of four major attachment types. Prepreg processing problems are discussed and quality control data are given for lots 2W4604, 2W4632 and 2W4643. Preliminary design allowables test results for tension tests and compression tests of laminates are included. The final small specimen test matrix is defined and the configuration of symmetric step-lap joint specimens are shown. Finite element modeling studies of a double lap joint were performed to evaluate the number of elements required through the adhesive thickness to assess effects of various joint parameters on stress distributions. Results of finite element analyses assessing the effect of an adhesive fillet on the stress distribution in a double lap joint are examined.

  19. AGC-2 Graphite Preirradiation Data Package

    SciTech Connect

    David Swank; Joseph Lord; David Rohrbaugh; William Windes

    2012-10-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterized prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.

  20. Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing.

    PubMed

    Lightcap, Ian V; Kamat, Prashant V

    2013-10-15

    Graphene not only possesses interesting electrochemical behavior but also has a remarkable surface area and mechanical strength and is naturally abundant, all advantageous properties for the design of tailored composite materials. Graphene-semiconductor or -metal nanoparticle composites have the potential to function as efficient, multifunctional materials for energy conversion and storage. These next-generation composite systems could possess the capability to integrate conversion and storage of solar energy, detection, and selective destruction of trace environmental contaminants or achieve single-substrate, multistep heterogeneous catalysis. These advanced materials may soon become a reality, based on encouraging results in the key areas of energy conversion and sensing using graphene oxide as a support structure. Through recent advances, chemists can now integrate such processes on a single substrate while using synthetic designs that combine simplicity with a high degree of structural and composition selectivity. This progress represents the beginning of a transformative movement leveraging the advancements of single-purpose chemistry toward the creation of composites designed to address whole-process applications. The promising field of graphene nanocomposites for sensing and energy applications is based on fundamental studies that explain the electronic interactions between semiconductor or metal nanoparticles and graphene. In particular, reduced graphene oxide is a suitable composite substrate because of its two-dimensional structure, outstanding surface area, and electrical conductivity. In this Account, we describe common assembly methods for graphene composite materials and examine key studies that characterize its excited state interactions. We also discuss strategies to develop graphene composites and control electron capture and transport through the 2D carbon network. In addition, we provide a brief overview of advances in sensing, energy conversion

  1. Design and Development of Expanded Graphite-Based Non-metallic and Flexible Metamaterial Absorber for X-band Applications

    NASA Astrophysics Data System (ADS)

    Borah, Dipangkar; Bhattacharyya, Nidhi S.

    2017-01-01

    The possibility of using expanded graphite instead of a metallic layer as unit cells and ground planes for metamaterial absorbers in X-band is investigated. A metamaterial absorber was fabricated on a flexible linear low-density polyethylene substrate using an expanded graphite-based circular ring as the unit cell structure. The unit cell was simulated and optimized for which the metamaterial absorber exhibited 98.9% absorption at 11.22 GHz. The fabricated expanded graphite-based absorber showed a reflection loss of -24.51 dB at 11.56 GHz with -10 dB bandwidth of 0.39 GHz (3.37%). The performance of the same structure with copper was also measured. The expanded graphite-based metamaterial absorber showed enhanced performance as compared to the copper-based metamaterial absorber. The width of the ring was varied to tune the reflection loss. The proposed expanded graphite-based metamaterial absorber possesses the advantages of being ultra-thin, flexible and non-corrosive.

  2. Thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  3. AGC-3 Graphite Preirradiation Data Analysis Report

    SciTech Connect

    William Windes; David Swank; David Rohrbaugh; Joseph Lord

    2013-09-01

    This report describes the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the third Advanced Graphite Capsule (AGC-3) irradiation capsule. The AGC-3 capsule is third in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. The general design of AGC-3 test capsule is similar to the AGC-2 test capsule, material property tests were conducted on graphite specimens prior to loading into the AGC-3 irradiation assembly. However the 6 major nuclear graphite grades in AGC-2 were modified; two previous graphite grades (IG-430 and H-451) were eliminated and one was added (Mersen’s 2114 was added). Specimen testing from three graphite grades (PCEA, 2114, and NBG-17) was conducted at Idaho National Laboratory (INL) and specimen testing for two grades (IG-110 and NBG-18) were conducted at Oak Ridge National Laboratory (ORNL) from May 2011 to July 2013. This report also details the specimen loading methodology for the graphite specimens inside the AGC-3 irradiation capsule. The AGC-3 capsule design requires "matched pair" creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-3 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce "matched pairs" of graphite samples above and below the AGC-3 capsule elevation mid-point to

  4. Bridged graphite oxide materials

    NASA Technical Reports Server (NTRS)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  5. Nuclear graphite

    SciTech Connect

    Mercuri, R. A.; Criscione, J. M.

    1985-07-02

    A high strength, high coefficient of thermal expansion fine-grained isotropic graphite article produced from 30% to 70% of attritor milled gilsonite coke or other high CTE carbon filler particles and minor amounts of a binder such a coal tar pitch and petroleum pitch, the article being formed by warm isostatic molding at a temperature of between 50/sup 0/ C. and 70/sup 0/ C. under a pressure between 100 and 1000 psi for a time between 1 and 10 minutes. The particle size of the fillers ranges up to 150 microns.

  6. NGNP Graphite Selection and Acquisition Strategy

    SciTech Connect

    Burchell, T.; Bratton, R.; Windes, W.

    2007-09-30

    The nuclear graphite (H-451) previously used in the United States for High-Temperature Reactors (HTRs) is no longer available. New graphites have been developed and are considered suitable candidates for the Next-Generation Nuclear Plant (NGNP). A complete properties database for these new, available, candidate grades of graphite must be developed to support the design and licensing of NGNP core components. Data are required for the physical, mechanical (including radiation-induced creep), and oxidation properties of graphites. Moreover, the data must be statistically sound and take account of in-billet, between billets, and lot-to-lot variations of properties. These data are needed to support the ongoing development1 of the risk-derived American Society of Mechanical Engineers (ASME) graphite design code (a consensus code being prepared under the jurisdiction of the ASME by gas-cooled reactor and NGNP stakeholders including the vendors). The earlier Fort St. Vrain design of High-Temperature Reactor (HTRs) used deterministic performance models for H-451, while the NGNP will use new graphite grades and risk-derived (probabilistic) performance models and design codes, such as that being developed by the ASME. A radiation effects database must be developed for the currently available graphite materials, and this requires a substantial graphite irradiation program. The graphite Technology Development Plan (TDP)2 describes the data needed and the experiments planned to acquire these data in a timely fashion to support NGNP design, construction, and licensing. The strategy for the selection of appropriate grades of graphite for the NGNP is discussed here. The final selection of graphite grades depends upon the chosen reactor type and vendor because the reactor type (pebble bed or prismatic block) has a major influence on the graphite chosen by the designer. However, the time required to obtain the needed irradiation data for the selected NGNP graphite is sufficiently

  7. Preparation of graphitic articles

    DOEpatents

    Phillips, Jonathan; Nemer, Martin; Weigle, John C.

    2010-05-11

    Graphitic structures have been prepared by exposing templates (metal, metal-coated ceramic, graphite, for example) to a gaseous mixture that includes hydrocarbons and oxygen. When the template is metal, subsequent acid treatment removes the metal to yield monoliths, hollow graphitic structures, and other products. The shapes of the coated and hollow graphitic structures mimic the shapes of the templates.

  8. Superlubricity of Fullerene Intercalated Graphite Composite

    NASA Astrophysics Data System (ADS)

    Miura, Kouji; Tsuda, Daisuke; Itamura, Noriaki; Sasaki, Naruo

    2007-08-01

    A novel superlubric system of fullerene intercalated graphite composite is reported. First, it is clarified that fullerene intercalated graphite films exhibit an ultralow average friction force and an excellent friction coefficient μ <0.001 smaller than μ <0.002 for MoS2 and μ\\cong 0.001 for graphite. Next, it is demonstrated that superlubricity can be controlled by changing the intercalant species. The C60 intercalated graphite film shows much less maximum static friction force than the C70 intercalated graphite film. Finally, we propose one of the simple guidelines on designing a practical superlubric system-reduction in the contact area between the intercalated fullerene and the graphite sheet to the pointlike contact. Our newly developed superlubric system will contribute to solving energy and environmental problems.

  9. Design and optical characterization of high-Q guided-resonance modes in the slot-graphite photonic crystal lattice.

    PubMed

    Martínez, Luis Javier; Huang, Ningfeng; Ma, Jing; Lin, Chenxi; Jaquay, Eric; Povinelli, Michelle L

    2013-12-16

    A new photonic crystal structure is generated by using a regular graphite lattice as the base and adding a slot in the center of each unit cell to enhance field confinement. The theoretical Q factor in an ideal structure is over 4 × 10(5). The structure was fabricated on a silicon-on-insulator wafer and optically characterized by transmission spectroscopy. The resonance wavelength and quality factor were measured as a function of slot height. The measured trends show good agreement with simulation.

  10. Anisotropy in thermal conductivity of graphite flakes–SiC{sub p}/matrix composites: Implications in heat sinking design for thermal management applications

    SciTech Connect

    Molina, J.M.; Louis, E.

    2015-11-15

    Within the frame of heat dissipation for electronics, a very interesting family of anisotropic composite materials, fabricated by liquid infiltration of a matrix into preforms of oriented graphite flakes and SiC particles, has been recently proposed. Aiming to investigate the implications of the inherent anisotropy of these composites on their thermal conductivity, and hence on their potential applications, materials with matrices of Al–12 wt.% Si alloy and epoxy polymer have been fabricated. Samples have been cut at a variable angle with respect to the flakes plane and thermal conductivity has been measured by means of two standard techniques, namely, steady state technique and laser flash method. Experimental results are presented and discussed in terms of current models, from which important technological implications for heat sinking design can be derived. - Highlights: • Anisotropy in thermal conductivity of graphite flakes-based composites is evaluated. • Samples are cut in a direction forming a variable angle with the oriented flakes. • For angles 0° and 90°, thermal conductivity does not depend on sample geometry. • For intermediate angles, thermal conductivity strongly depends on sample geometry. • “Thin” samples must be thicker than 600 μm, “thick” samples must be encapsulated.

  11. Cloud point extraction for the determination of lead and cadmium in urine by graphite furnace atomic absorption spectrometry with multivariate optimization using Box Behnken design

    NASA Astrophysics Data System (ADS)

    Maranhão, Tatiane De A.; Martendal, Edmar; Borges, Daniel L. G.; Carasek, Eduardo; Welz, Bernhard; Curtius, Adilson J.

    2007-09-01

    Cloud point extraction (CPE) is proposed as a pre-concentration procedure for the determination of Pb and Cd in undigested urine by graphite furnace atomic absorption spectrometry (GF AAS). Aliquots of 0.5 mL urine were acidified with HCl and the chelating agent ammonium O,O-diethyl dithiophosphate (DDTP) was added along with the non-ionic surfactant Triton X-114 at the optimized concentrations. Phase separation was achieved by heating the mixture to 50 °C for 15 min. The surfactant-rich phase was analyzed by GF AAS, employing the optimized pyrolysis temperatures of 900 °C for Pb and 800 °C for Cd, using a graphite tube with a platform treated with 500 μg Ru as permanent modifier. The reagent concentrations for CPE (HCl, DDTP and Triton X-114) were optimized using a Box Behnken design. The response surfaces and the optimum values were very similar for aqueous solutions and for the urine samples, demonstrating that aqueous standards submitted to CPE could be used for calibration. Detection limits of 40 and 2 ng L- 1 for Pb and Cd, respectively, were obtained along with an enhancement factor of 16 for both analytes. Three control urine samples were analyzed using this approach, and good agreement was obtained at a 95% statistical confidence level between the certified and determined values. Five real samples have also been analyzed before and after spiking with Pb and Cd, resulting in recoveries ranging from 97 to 118%.

  12. Inhibition of Oxidation in Nuclear Graphite

    SciTech Connect

    Phil Winston; James W. Sterbentz; William E. Windes

    2013-10-01

    Graphite is a fundamental material of high temperature gas cooled nuclear reactors, providing both structure and neutron moderation. Its high thermal conductivity, chemical inertness, thermal heat capacity, and high thermal structural stability under normal and off normal conditions contribute to the inherent safety of these reactor designs. One of the primary safety issues for a high temperature graphite reactor core is the possibility of rapid oxidation of the carbon structure during an off normal design basis event where an oxidizing atmosphere (air ingress) can be introduced to the hot core. Although the current Generation IV high temperature reactor designs attempt to mitigate any damage caused by a postualed air ingress event, the use of graphite components that inhibit oxidation is a logical step to increase the safety of these reactors. Recent experimental studies of graphite containing between 5.5 and 7 wt% boron carbide (B4C) indicate that oxidation is dramatically reduced even at prolonged exposures at temperatures up to 900°C. The proposed addition of B4C to graphite components in the nuclear core would necessarily be enriched in B-11 isotope in order to minimize B-10 neutron absorption and graphite swelling. The enriched boron can be added to the graphite during billet fabrication. Experimental oxidation rate results and potential applications for borated graphite in nuclear reactor components will be discussed.

  13. Chapter 20: Graphite

    SciTech Connect

    Burchell, Timothy D

    2012-01-01

    Graphite is truly a unique material. Its structure, from the nano- to the millimeter scale give it remarkable properties that lead to numerous and diverse applications. Graphite bond anisotropy, with strong in-plane covalent bonds and weak van der Waals type bonding between the planes, gives graphite its unique combination of properties. Easy shear of the crystal, facilitated by weak interplaner bonds allows graphite to be used as a dry lubricant, and is responsible for the substances name! The word graphite is derived from the Greek to write because of graphites ability to mark writing surfaces. Moreover, synthetic graphite contains within its structure, porosity spanning many orders of magnitude in size. The thermal closure of these pores profoundly affects the properties for example, graphite strength increases with temperature to temperatures in excess of 2200 C. Consequently, graphite is utilized in many high temperature applications. The basic physical properties of graphite are reviewed here. Graphite applications include metallurgical; (aluminum and steel production), single crystal silicon production, and metal casting; electrical (motor brushes and commutators); mechanical (seals, bearings and bushings); and nuclear applications, (see Chapter 91, Nuclear Graphite). Here we discuss the structure, manufacture, properties, and applications of Graphite.

  14. Pyrolytic graphite collector development program

    NASA Technical Reports Server (NTRS)

    Wilkins, W. J.

    1982-01-01

    Pyrolytic graphite promises to have significant advantages as a material for multistage depressed collector electrodes. Among these advantages are lighter weight, improved mechanical stiffness under shock and vibration, reduced secondary electron back-streaming for higher efficiency, and reduced outgassing at higher operating temperatures. The essential properties of pyrolytic graphite and the necessary design criteria are discussed. This includes the study of suitable electrode geometries and methods of attachment to other metal and ceramic collector components consistent with typical electrical, thermal, and mechanical requirements.

  15. WE-AB-BRB-01: Development of a Probe-Format Graphite Calorimeter for Practical Clinical Dosimetry: Numerical Design Optimization, Prototyping, and Experimental Proof-Of-Concept

    SciTech Connect

    Renaud, J; Seuntjens, J; Sarfehnia, A

    2015-06-15

    Purpose: In this work, the feasibility of performing absolute dose to water measurements using a constant temperature graphite probe calorimeter (GPC) in a clinical environment is established. Methods: A numerical design optimization study was conducted by simulating the heat transfer in the GPC resulting from irradiation using a finite element method software package. The choice of device shape, dimensions, and materials was made to minimize the heat loss in the sensitive volume of the GPC. The resulting design, which incorporates a novel aerogel-based thermal insulator, and 15 temperature sensitive resistors capable of both Joule heating and measuring temperature, was constructed in house. A software based process controller was developed to stabilize the temperatures of the GPC’s constituent graphite components to within a few 10’s of µK. This control system enables the GPC to operate in either the quasi-adiabatic or isothermal mode, two well-known, and independent calorimetry techniques. Absorbed dose to water measurements were made using these two methods under standard conditions in a 6 MV 1000 MU/min photon beam and subsequently compared against TG-51 derived values. Results: Compared to an expected dose to water of 76.9 cGy/100 MU, the average GPC-measured doses were 76.5 ± 0.5 and 76.9 ± 0.5 cGy/100 MU for the adiabatic and isothermal modes, respectively. The Monte Carlo calculated graphite to water dose conversion was 1.013, and the adiabatic heat loss correction was 1.003. With an overall uncertainty of about 1%, the most significant contributions were the specific heat capacity (type B, 0.8%) and the repeatability (type A, 0.6%). Conclusion: While the quasi-adiabatic mode of operation had been validated in previous work, this is the first time that the GPC has been successfully used isothermally. This proof-of-concept will serve as the basis for further study into the GPC’s application to small fields and MRI-linac dosimetry. This work has been

  16. Design and synthesis of palladium/graphitic carbon nitride/carbon black hybrids as high-performance catalysts for formic acid and methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Qian, Huayu; Huang, Huajie; Wang, Xin

    2015-02-01

    Here we report a facile two-step method to synthesize high-performance palladium/graphitic carbon nitride/carbon black (Pd/g-C3N4/carbon black) hybrids for electrooxidizing formic acid and methanol. The coating of g-C3N4 on carbon black surface is realized by a low-temperature heating treatment, followed by the uniform deposition of palladium nanoparticles (Pd NPs) via a wet chemistry route. Owning to the significant synergistic effects of the individual components, the preferred Pd/g-C3N4/carbon black electrocatalyst exhibits exceptional forward peak current densities as high as 2155 and 1720 mA mg-1Pd for formic acid oxidation in acid media and methanol oxidation in alkaline media, respectively, far outperforming the commercial Pd-C catalyst. The catalyst also shows reliable stability, demonstrating that the newly-designed hybrids have great promise in constructing high-performance portable fuel cell systems.

  17. AGC-2 Graphite Preirradiation Data Analysis Report

    SciTech Connect

    William Windes; W. David Swank; David Rohrbaugh; Joseph Lord

    2013-08-01

    This report described the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the second Advanced Graphite Capsule (AGC-2) irradiation capsule. The AGC-2 capsule is the second in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. Similar to the AGC-1 specimen pre-irradiation examination report, material property tests were conducted on specimens from 18 nuclear graphite types but on an increased number of specimens (512) prior to loading into the AGC-2 irradiation assembly. All AGC-2 specimen testing was conducted at Idaho National Laboratory (INL) from October 2009 to August 2010. This report also details the specimen loading methodology for the graphite specimens inside the AGC-2 irradiation capsule. The AGC-2 capsule design requires “matched pair” creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-2 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce “matched pairs” of graphite samples above and below the AGC-2 capsule elevation mid-point to provide specimens with similar neutron dose levels.

  18. Modelleing the Multiaxial Strength of Nuclear Graphite

    SciTech Connect

    Burchell, Timothy D; Yahr, Terry; Battiste, Rick

    2006-01-01

    The core of a prismatic High Temperature Reactor (HTR) is constructed from an array of nuclear graphite components including replaceable fuel blocks, replaceable and permanent moderator blocks, and core support posts. Similarly, the core of a Pebble Bed Reactor is confined by large graphite blocks which define the (annular) core geometry. In both HTR designs (prismatic and pebble bed) the large graphite components act as neutron moderator and reflector as well as providing mechanical support to the active core. During reactor operation the graphite components of the core are subjected to complex stress states arising from structural loads, thermal gradients, neutron irradiation damage, and seismic events. Structural design of HTR cores requires that the designer have a suitable theory of failure. Both deterministic (e.g. maximum principal stress theory) and probabilistic (e.g., Weibull failure theory) have been considered as candidates. To test candidate theories a multiaxial testing program was conducted at Oak Ridge National Laboratory on grade H-451 graphite, the fuel element and moderator graphite used in the Fort St. Vrain high temperature reactor in the USA. Large test specimens ({approx}27 cm length) were subjected to combined axial stress (both tension and compression) and internal pressure. A total of 59 specimens were tested at 9 stress ratios in the first and fourth stress quadrants. In a parallel effort a physically based fracture model of graphite was developed. The model used a fracture mechanics based failure criteria and has been shown to predict the tensile failure probability of several graphites of widely ranging texture. Here we report the basis and performance of the fracture model and multiaxial strength data for grade H-451 graphite. Moreover, we report the successful extension of the model to predict the failure envelope for H-451 graphite in the first and fourth multiaxial quadrants. The model's predictions are compared to experimental

  19. Fiber release characteristics of graphite hybrid composites

    NASA Technical Reports Server (NTRS)

    Henshaw, J.

    1980-01-01

    The paper considers different material concepts that can be fabricated of hybridized composites which demonstrate improved graphite fiber retention capability in a severe fire without significant reduction to the composite properties. More than 30 panels were fabricated for mechanical and fire tests, the details and results of which are presented. Methods of composite hybridization investigated included the addition of oxidation resistant fillers to the resin, mechanically interlocking the graphite fibers by the use of woven fabrics, and the addition of glass fibers and glass additives designed to melt and fuse the graphite fibers together. It is concluded that a woven fabric with a serving of glass around each graphite tow is by far the superior of those evaluated: not only is there a coalescing effect in each graphite layer, but there is also a definite adhesion of each layer to its neighbor.

  20. Using gold nanostars modified pencil graphite electrode as a novel substrate for design a sensitive and selective Dopamine aptasensor.

    PubMed

    Talemi, Rasoul Pourtaghavi; Mousavi, Seyed Mehdi; Afruzi, Hossein

    2017-04-01

    For the first time, gold nanostars (GNS) were applied for electrostatic and covalent immobilizing a thiol modified Dopamine aptamer on the pencil graphite electrode and signal amplification. Dopamine aptamer was immobilized on the gold nanostars through electrostatic interaction between negatively charged phosphate groups of aptamer and positively charged gold nanostars and AuS well known covalent interaction. In the presence of Dopamine in the test solution, the charge transfer resistance (RCT) on the electrode surface increased with the increase of the Dopamine concentration due to specific interaction between Dopamine aptamer and Dopamine molecules, which made a barrier for electrons and inhibited the electron-transfer. So, the proposed approach showed a high sensitivity and a wide linearity to Dopamine in the range from 1.0 (±0.1) to 100.0 (±0.3) ngL(-1) (ppt) with detection and quantification limits of 0.29 (±0.10) and 0.90 (±0.08) ngL(-1) (ppt), respectively. Finally, the sensor was successfully used for determination of Dopamine in biological (human blood plasma and urine) samples. The results open up the path for manufacturing cost effective aptasensors for other biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design, fabrication, and full supercapacitor demonstrations.

    PubMed

    Xia, Xinhui; Chao, Dongliang; Fan, Zhanxi; Guan, Cao; Cao, Xiehong; Zhang, Hua; Fan, Hong Jin

    2014-03-12

    We attempt to meet the general design requirements for high-performance supercapacitor electrodes by combining the strategies of lightweight substrate, porous nanostructure design, and conductivity modification. We fabricate a new type of 3D porous and thin graphite foams (GF) and use as the light and conductive substrates for the growth of metal oxide core/shell nanowire arrays to form integrated electrodes. The nanowire core is Co3O4, and the shell is a composite of conducting polymer (poly(3,4-ethylenedioxythiophene), PEDOT) and metal oxide (MnO2). To show the advantage of this integrated electrode design (viz., GF + Co3O4/PEDOT-MnO2 core/shell nanowire arrays), three other different less-integrated electrodes are also prepared for comparison. Full supercapacitor devices based on the GF + Co3O4/PEDOT-MnO2 as positive electrodes exhibit the best performance compared to other three counterparts due to an optimal design of structure and a synergistic effect.

  2. AGC-2 Graphite Pre-irradiation Data Package

    SciTech Connect

    David Swank; Joseph Lord; David Rohrbaugh; William Windes

    2010-08-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterized prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.

  3. The Treatment of PPCP-Containing Sewage in an Anoxic/Aerobic Reactor Coupled with a Novel Design of Solid Plain Graphite-Plates Microbial Fuel Cell

    PubMed Central

    Chang, Yi-Tang; Yang, Chu-Wen; Chang, Yu-Jie; Chang, Ting-Chieh; Wei, Da-Jiun

    2014-01-01

    Synthetic sewage containing high concentrations of pharmaceuticals and personal care products (PPCPs, mg/L level) was treated using an anoxic/aerobic (A/O) reactor coupled with a microbial fuel cell (MFC) at hydraulic retention time (HRT) of 8 h. A novel design of solid plain graphite plates (SPGRPs) was used for the high surface area biodegradation of the PPCP-containing sewage and for the generation of electricity. The average CODCr and total nitrogen removal efficiencies achieved were 97.20% and 83.75%, respectively. High removal efficiencies of pharmaceuticals, including acetaminophen, ibuprofen, and sulfamethoxazole, were also obtained and ranged from 98.21% to 99.89%. A maximum power density of 532.61 mW/cm2 and a maximum coulombic efficiency of 25.20% were measured for the SPGRP MFC at the anode. Distinct differences in the bacterial community were presented at various locations including the mixed liquor suspended solids and biofilms. The bacterial groups involved in PPCP biodegradation were identified as Dechloromonas spp., Sphingomonas sp., and Pseudomonas aeruginosa. This design, which couples an A/O reactor with a novel design of SPGRP MFC, allows the simultaneous removal of PPCPs and successful electricity production. PMID:25197659

  4. Thermal design and validation of radiation detector for the ChubuSat-2 micro-satellite with high-thermal-conductive graphite sheets

    NASA Astrophysics Data System (ADS)

    Park, Daeil; Miyata, Kikuko; Nagano, Hosei

    2017-07-01

    This paper describes thermal design of the radiation detector (RD) for the ChubuSat-2 with the use of high-thermal-conductive materials. ChubuSat-2 satellite is a 50-kg-class micro-satellite joint development with Nagoya University and aerospace companies. The main mission equipment of ChubuSat-2 is a RD to observe neutrons and gamma rays. However, the thermal design of the RD encounters a serious problem, such as no heater for RD and electric circuit alignment constrain. To solve this issue, the RD needs a new thermal design and thermal control for successful space missions. This paper proposes high-thermal-conductive graphite sheets to be used as a flexible radiator fin for the RD. Before the fabrication of the device, the optimal thickness and surface area for the flexible radiator fin were determined by thermal analysis. Consequently, the surface area of flexible radiator fin was determined to be 8.6×104 mm2. To verify the effects of the flexible radiator fin, we constructed a verification model and analyzed the temperature distributions in the RD. Also, the thermal vacuum test was performed using a thermal vacuum chamber, which was evacuated at a pressure of around 10-4 Pa, and its internal temperature was cooled at -80 °C by using a refrigerant. As a result, it has been demonstrated that the flexible radiator fin is effective. And the thermal vacuum test results are presented good correlation with the analysis results.

  5. The treatment of PPCP-containing sewage in an anoxic/aerobic reactor coupled with a novel design of solid plain graphite-plates microbial fuel cell.

    PubMed

    Chang, Yi-Tang; Yang, Chu-Wen; Chang, Yu-Jie; Chang, Ting-Chieh; Wei, Da-Jiun

    2014-01-01

    Synthetic sewage containing high concentrations of pharmaceuticals and personal care products (PPCPs, mg/L level) was treated using an anoxic/aerobic (A/O) reactor coupled with a microbial fuel cell (MFC) at hydraulic retention time (HRT) of 8 h. A novel design of solid plain graphite plates (SPGRPs) was used for the high surface area biodegradation of the PPCP-containing sewage and for the generation of electricity. The average CODCr and total nitrogen removal efficiencies achieved were 97.20% and 83.75%, respectively. High removal efficiencies of pharmaceuticals, including acetaminophen, ibuprofen, and sulfamethoxazole, were also obtained and ranged from 98.21% to 99.89%. A maximum power density of 532.61 mW/cm(2) and a maximum coulombic efficiency of 25.20% were measured for the SPGRP MFC at the anode. Distinct differences in the bacterial community were presented at various locations including the mixed liquor suspended solids and biofilms. The bacterial groups involved in PPCP biodegradation were identified as Dechloromonas spp., Sphingomonas sp., and Pseudomonas aeruginosa. This design, which couples an A/O reactor with a novel design of SPGRP MFC, allows the simultaneous removal of PPCPs and successful electricity production.

  6. Graphite-metal brazing for thermal applications

    SciTech Connect

    Hosking, F.M.; Koski, J.A.

    1991-01-01

    Various plasma facing components are being designed and fabricated to support Magnetic Fusion Energy experiments. They typically consist of graphite tiles mechanically or metallurgically attached to metallic cooling substrates. This paper will discuss the active brazing of isotropic and pyrolytic graphite to oxygen free, high conductivity (OFHC) Cu and an alumina-dispersion strengthened Cu with a Ag-Cu-Ti active filler metal. The Ti constituent promotes direct wetting of graphite with the formation of a thin TiC reaction layer. Joint design and materials selection are critical factors since graphite and Cu have large thermal expansion differences that affect residual stresses after brazing and subsequent component thermal performance. Low thermal expansion Mo and compliant Cu interlayers were introduced to lower the residual stresses and extend the thermal life of prototype graphite-Cu braze joints. Although the interlayers showed evidence of reducing the incidence of graphite cracking and spalling under thermal loading when brazed to the dispersion-stengthened Cu, the best graphite braze joints were produced with the more ductile OFHC Cu substrates and no interlayer. These latter joints survived simulated tokamak surface high heat fluxes of 30 MW{center dot}m{sup {minus}2} or greater, while comparable dispersion strengthened Cu samples failed at 10 MW{center dot}m{sup {minus}2}. 23 refs., 14 figs., 2 tabs.

  7. Graphite-metal brazing for thermal applications

    NASA Astrophysics Data System (ADS)

    Hosking, F. M.; Koski, J. A.

    Various plasma facing components are being designed and fabricated to support Magnetic Fusion Energy experiments. They typically consist of graphite tiles mechanically or metallurgically attached to metallic cooling substrates. This paper will discuss the active brazing of isotropic and pyrolytic graphite to oxygen free, high conductivity (OFHC) Cu and an alumina-dispersion strengthened Cu with a Ag-Cu-Ti active filler metal. The Ti constituent promotes direct wetting of graphite with the formation of a thin TiC reaction layer. Joint design and materials selection are critical factors since graphite and Cu have large thermal expansion differences that affect residual stresses after brazing and subsequent component thermal performance. Low thermal expansion Mo and compliant Cu interlayers were introduced to lower the residual stresses and extend the thermal life of prototype graphite-Cu braze joints. Although the interlayers showed evidence of reducing the incidence of graphite cracking and spalling under thermal loading when brazed to the dispersion stengthened Cu, the best graphite braze joints were produced with the more ductile OFHC Cu substrates and no interlayer. These latter joints survived simulated tokamak surface high heat fluxes of 30 MW x m(exp -2) or greater, while comparable dispersion strengthened Cu samples failed at 10 MW x m(exp -2)

  8. THE NEXT GENERATION NUCLEAR PLANT GRAPHITE PROGRAM

    SciTech Connect

    William E. Windes; Timothy D. Burchell; Robert L. Bratton

    2008-09-01

    Developing new nuclear grades of graphite used in the core of a High Temperature Gas-cooled Reactor (HTGR) is one of the critical development activities being pursued within the Next Generation Nuclear Plant (NGNP) program. Graphite’s thermal stability (in an inert gas environment), high compressive strength, fabricability, and cost effective price make it an ideal core structural material for the HTGR reactor design. While the general characteristics necessary for producing nuclear grade graphite are understood, historical “nuclear” grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermo-mechanical design of the structural graphite in NGNP is based. The NGNP graphite R&D program has selected a handful of commercially available types for research and development activities necessary to qualify this nuclear grade graphite for use within the NGNP reactor. These activities fall within five primary areas; 1) material property characterization, 2) irradiated material property characterization, 3) modeling, and 4) ASTM test development, and 5) ASME code development efforts. Individual research and development activities within each area are being pursued with the ultimate goal of obtaining a commercial operating license for the nuclear graphite from the US NRC.

  9. Verification of computer-aided designs of traveling-wave tubes utilizing novel dynamic refocusers and graphite electrodes for the multistage depressed collector

    NASA Technical Reports Server (NTRS)

    Ramins, P.; Kosmahl, H. G.; Force, D. A.; Palmer, R. W.; Dayton, J. A., Jr.

    1985-01-01

    A computational procedure for the design of TWT-refocuser-MDC systems was used to design a short dynamic refocusing system and highly efficient four-stage depressed collector for a 200-W, 8- to 18-GHz, TWT. The computations were carried out with advanced, multidimensional computer programs which model the electron beam as a series of disks of charge and follow their trajectories from the RF input of the TWT, through the slow-wave structure and refocusing section, to their points of impact in the depressed collector. Secondary emission losses in the MDC were treated semi-quantitatively by injecting a representative beam of secondary electrons into the MDC analysis at the point of impact of each primary beam. A comparison of computed and measured TWT and MDC performance showed very good agreement. The electrodes of the MDC were fabricated from a particular form of isotropic graphite that was selected for its low secondary electron yield, ease of machinability, and vacuum properties. This MDC was tested (at CW) for more than 1000 hr with negligible degradation in TWT and MDC performances.

  10. Producing graphite with desired properties

    NASA Technical Reports Server (NTRS)

    Dickinson, J. M.; Imprescia, R. J.; Reiswig, R. D.; Smith, M. C.

    1971-01-01

    Isotropic or anisotropic graphite is synthesized with precise control of particle size, distribution, and shape. The isotropic graphites are nearly perfectly isotropic, with thermal expansion coefficients two or three times those of ordinary graphites. The anisotropic graphites approach the anisotropy of pyrolytic graphite.

  11. Radiation Effects in Graphite

    SciTech Connect

    Burchell, Timothy D

    2012-01-01

    The requirements for a solid moderator are reviewed and the reasons that graphite has become the solid moderator of choice discussed. The manufacture and properties of some currently available near-isotropic and isotropic grades are described. The major features of a graphite moderated reactors are briefly outlined. Displacement damage and the induced structural and dimensional changes in graphite are described. Recent characterization work on nano-carbons and oriented pyrolytic graphites that have shed new light on graphite defect structures are reviewed, and the effect of irradiation temperature on the defect structures is highlighted. Changes in the physical properties of nuclear graphite caused by neutron irradiation are reported. Finally, the importance of irradiation induced creep is presented, along with current models and their deficiencies.

  12. Graphite for nuclear reactors

    SciTech Connect

    Virgiliev, Yu.S.; Kalyagina, I.P.

    1993-12-31

    Relative dimensional changes and physical properties of structural graphites - {Gamma}p-280 (nuclear graphite) and {Gamma}p{Pi}-2 (modificated variety of nuclear graphite for the rings of elastic contact) irradiated at temperatures ranging from 320 to 1900K with a fluence of about 2.5.10{sup 22}nvt (E {ge} 0.18 MeV) are represented. In order to ensure a long-time serviceability of the VGM - reactor blocks the high-strength graphite of {Gamma}p-1 grade are developed. The properties and its irradiation changes of {Gamma}p-1 graphite are represented. A secondary swelling of the graphite develops similar to the swelling of metals, alloys and high-melting compounds.

  13. Oxidation Resistant Graphite Studies

    SciTech Connect

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  14. Baseline Graphite Initial Mechanical Test Report

    SciTech Connect

    Mark Carroll; Randy Lloyd

    2009-09-01

    The Next Generation Nuclear Plant (NGNP) Project is tasked with selecting a high temperature gas reactor technology that will be capable of generating electricity and supplying large amounts of process heat. The NGNP is presently being designed as a helium-cooled high temperature gas reactor (HTGR) with a large graphite core. The graphite baseline characterization project is conducting the research and development (R&D) activities deemed necessary to fully qualify nuclear-grade graphite for use in the NGNP reactor. One of the major fundamental objectives of the project is establishing nonirradiated thermomechanical and thermophysical properties by characterizing lot-to-lot and billet-to-billet variations (for probabilistic baseline data needs) through extensive data collection and statistical analysis. The reactor core will be made up of stacks of graphite moderator blocks. In order to gain a more comprehensive understanding of the varying characteristics in a wide range of suitable graphites, any of which can be classified as “nuclear grade,” an experimental program has been initiated to develop an extensive database of the baseline characteristics of numerous candidate graphites. Various factors known to affect the properties of graphite will be investigated, including specimen size, spatial location within a graphite billet, specimen orientation within a billet (either parallel to [P] or transverse to [T] the long axis of the as-produced billet), and billet-to-billet variations within a lot or across different production lots. Because each data point is based on a certain position within a given billet of graphite, particular attention must be paid to the traceability of each specimen and its spatial location and orientation within each billet. The evaluation of these properties is discussed in the Graphite Technology Development Plan (Windes et. al 2007). One of the key components in the evaluation of these graphite types will be mechanical testing of

  15. Induction graphitizing furnace acceptance test report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The induction furnace was designed to provide the controlled temperature and environment required for the post-cure, carbonization and graphitization processes for the fabrication of a fibrous graphite NERVA nozzle extension. The acceptance testing required six tests and a total operating time of 298 hrs. Low temperature mode operations, 120 to 850 C, were completed in one test run. High temperature mode operations, 120 to 2750 C, were completed during five tests.

  16. Graphite nanoreinforcements in polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Fukushima, Hiroyuki

    , or carbon blacks. The exfoliated graphite flakes reached the percolation threshold at 1.93 wt% (1.13 vol%) in an epoxy system and the resistivity of the composite showed 39 ohm•cm with 7 wt% of exfoliated graphite, which is comparable to the high-grade carbon black based systems. The vapor grown carbon fiber based composites showed higher resistivity at the same filler contents while the conventional carbon fiber composites showed much higher resistivity and percolation threshold. Stress distribution analysis by Finite Element Method revealed the stress concentration condition of composite systems is affected by factors such as shape of the reinforcements, aspect ratio, and geological arrangements. Based on these results, an optimal morphology design of nanocomposite system was proposed. Market research revealed that there is a realistic possibility for applying the new process and material in commercial products and a venture business plan was proposed based on this new technology. The venture plan won "The Most Innovative Design" award at the 2002 Michigan Collegiate Entrepreneur's Conference.

  17. Modelling the graphite fracture mechanisms

    SciTech Connect

    Jacquemoud, C.; Marie, S.; Nedelec, M.

    2012-07-01

    In order to define a design criterion for graphite components, it is important to identify the physical phenomena responsible for the graphite fracture, to include them in a more effective modelling. In a first step, a large panel of experiments have been realised in order to build up an important database; results of tensile tests, 3 and 4 point bending tests on smooth and notched specimens have been analysed and have demonstrated an important geometry related effects on the behavior up to fracture. Then, first simulations with an elastic or an elastoplastic bilinear constitutive law have not made it possible to simulate the experimental fracture stress variations with the specimen geometry, the fracture mechanisms of the graphite being at the microstructural scale. That is the reason why a specific F.E. model of the graphite structure has been developed in which every graphite grain has been meshed independently, the crack initiation along the basal plane of the particles as well as the crack propagation and coalescence have been modelled too. This specific model has been used to test two different approaches for fracture initiation: a critical stress criterion and two criteria of fracture mechanic type. They are all based on crystallographic considerations as a global critical stress criterion gave unsatisfactory results. The criteria of fracture mechanic type being extremely unstable and unable to represent the graphite global behaviour up to the final collapse, the critical stress criterion has been preferred to predict the results of the large range of available experiments, on both smooth and notched specimens. In so doing, the experimental observations have been correctly simulated: the geometry related effects on the experimental fracture stress dispersion, the specimen volume effects on the macroscopic fracture stress and the crack propagation at a constant stress intensity factor. In addition, the parameters of the criterion have been related to

  18. Graphite/Thermoplastic-Pultrusion Die

    NASA Technical Reports Server (NTRS)

    Wilson, Maywood L.; Frye, Mark W.; Johnson, Gary S.; Stanfield, Clarence E.

    1990-01-01

    Attachment to extruder produces thermoplastic-impregnated graphite tape. Consists of profile die, fiber/resin collimator, and crosshead die body. Die designed to be attached to commercially available extrusion machine capable of extruding high-performance thermoplastics. Simple attachment to commercial extruder enables developers of composites to begin experimenting with large numbers of proprietary resins, fibers, and hybrid composite structures. With device, almost any possible fiber/resin combination fabricated.

  19. Graphite/Thermoplastic-Pultrusion Die

    NASA Technical Reports Server (NTRS)

    Wilson, Maywood L.; Frye, Mark W.; Johnson, Gary S.; Stanfield, Clarence E.

    1990-01-01

    Attachment to extruder produces thermoplastic-impregnated graphite tape. Consists of profile die, fiber/resin collimator, and crosshead die body. Die designed to be attached to commercially available extrusion machine capable of extruding high-performance thermoplastics. Simple attachment to commercial extruder enables developers of composites to begin experimenting with large numbers of proprietary resins, fibers, and hybrid composite structures. With device, almost any possible fiber/resin combination fabricated.

  20. A Taiji-principle-designed magnetic porous C-doped graphitic carbon nitride for environment-friendly solid phase extraction of pollutants from water samples.

    PubMed

    Wang, Man; Yuan, Hao; Deng, Wenjing; Bi, Wentao; Yang, Xiaodi

    2015-09-18

    A new magnetic porous carbon-doped graphitic carbon nitride nanocomposite and experimental strategies were environment-friendly designed for solid phase extraction of brominated flame retardants from water sample. The easily synthesized and low cost nanocomposite was characterized using techniques, including Fourier transform infrared spectroscopy, X-ray diffraction spectrometry, elemental analysis, and transmission electron microscopy. The large surface area and enhanced interactions of this nanocomposite with its adsorption behavior in Taiji principle (a balance of hydrophilicity and hydrophobicity) in aqueous phase benefit the extraction. Magnetic solid phase extraction has advantages such as low solvent consumption and reusability of the sorbent, and was therefore employed in this study. In addition, a quicker and less laborious statistical method, known as response surface methodology, was used to investigate and optimize some crucial factors that affected the adsorption. The combined use of this new nanocomposite and experimental strategy showed excellent precision (2.7-5.2%) and sensitivity (limits of detection (S/N=3): 0.1-0.2 μg L(-1)). This method was successfully applied to the analysis of real water samples giving good spiked recoveries over the range of 92.4-99.8%. This research provides an environment-friendly strategy to prepare suitable sorbents for extraction or adsorption of various compounds within different matrices.

  1. Preparation of graphite oxide by sodium cholate intercalation and sonication from Indonesian natural graphite

    NASA Astrophysics Data System (ADS)

    Panatarani, Camellia; Maulana, Ayu Oktama; Rianto, Anton; Joni, I. Made

    2016-02-01

    Graphite oxide is widely use in renewable energy application such as solar cells, fuel-cells, battery electrodes, catalyst support, etc. This paper reports the preparation of graphite oxide from Indonesian natural graphite by sodium cholate intercalation. The enrichment process of as received graphite with carbon content of 60% was carried out by using acid leaching (HF) method. The enrichment process successfully obtained graphite with carbon content 95.61% with contaminant minerals observed by EDS were magnesium and aluminum. Purified graphite was then intercalated by sodium cholate at various concentration and sonication time. The XRD results shows that preparation with concentration of sodium cholate 2 Wt.% and sonication 10 hours formed a peak characteristic of graphite oxide at 2θ=15°. In addition, the successful oxidation process designated by the C/O ratio of 15.75 observed from EDS and supported by the present of functional C-H and C-O obtained from the FTIR observation. It is concluded that the graphite oxide successfully prepared by intercalation using sodium cholate and sonication.

  2. Method for producing dustless graphite spheres from waste graphite fines

    DOEpatents

    Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  3. Coating method for graphite

    DOEpatents

    Banker, John G.; Holcombe, Jr., Cressie E.

    1977-01-01

    A method of limiting carbon contamination from graphite ware used in induction melting of uranium alloys is provided comprising coating the graphite surface with a suspension of Y.sub.2 O.sub.3 particles in water containing about 1.5 to 4% by weight sodium carboxymethylcellulose.

  4. Coating method for graphite

    DOEpatents

    Banker, J.G.; Holcombe, C.E. Jr.

    1975-11-06

    A method of limiting carbon contamination from graphite ware used in induction melting of uranium alloys is provided. The graphite surface is coated with a suspension of Y/sub 2/O/sub 3/ particles in water containing about 1.5 to 4 percent by weight sodium carboxymethylcellulose.

  5. Postbuckling behavior of graphite-epoxy panels

    NASA Technical Reports Server (NTRS)

    Starnes, J. H., Jr.; Dickson, J. N.; Rouse, M.

    1984-01-01

    Structurally efficient fuselage panels are often designed to allow buckling to occur at applied loads below ultimate. Interest in applying graphite-epoxy materials to fuselage primary structure led to several studies of the post-buckling behavior of graphite-epoxy structural components. Studies of the postbuckling behavior of flat and curved, unstiffened and stiffened graphite-epoxy panels loaded in compression and shear were summarized. The response and failure characteristics of specimens studied experimentally were described, and analytical and experimental results were compared. The specimens tested in the studies described were fabricated from commercially available 0.005-inch-thick unidirectional graphite-fiber tapes preimpregnated with 350 F cure thermosetting epoxy resins.

  6. Three-dimensional architecture of lithium-anodes made from graphite fibers coated with thin-films of silicon oxycarbide: Design, performance and manufacturability

    NASA Astrophysics Data System (ADS)

    Saleh, Ibrahim; Raj, Rishi

    2016-04-01

    Silicon oxycarbide (SiCO) is an amorphous molecular network of Sisbnd Csbnd O tetrahedra anchored to graphene-like carbon. The graphene forms a three dimensional cellular network with a domain size of ∼5 nm. Therefore nanometer thick films of SiCO grown on graphite may be expected to have unusual behavior. We grow these films on a bed of commercially available graphite fibers that serve the dual function of a current collector. The electrochemical behavior of the composite is measured as a function of the thickness of the SiCO films. Thick films approach the typical behavior of bulk SiCO (which has three times the capacity of graphite, but suffers from poor first cycle efficiency). However, films, approximately 100 nm thick, show high first cycle efficiency as well as high capacity. The composite performs better than the prediction from the rule-of-mixtures, which further substantiates the unusual behavior of the thin-film architecture. The Raman spectra of these thin films also differ from bulk SiCO. The development of thin graphite fibers, with a high surface to volume ratio that have the same capacity as the current graphite-powder technology, coupled with manufacturing of these thin-films by a liquid-polymer precursor based process, can propel these results toward commercialization.

  7. Status of ASME Section III Task Group on Graphite Support Core Structures

    SciTech Connect

    Robert L. Bratton; Tim D. Burchell

    2005-08-01

    This report outlines the roadmap that the ASME Project Team on Graphite Core Supports is pursuing to establish design codes for unirradiated and irradiated graphite core components during its first year of operation. It discusses the deficiencies in the proposed Section III, Division 2, Subsection CE graphite design code and the different approaches the Project Team has taken to address those deficiencies.

  8. NEW METHOD OF GRAPHITE PREPARATION

    DOEpatents

    Stoddard, S.D.; Harper, W.T.

    1961-08-29

    BS>A method is described for producing graphite objects comprising mixing coal tar pitch, carbon black, and a material selected from the class comprising raw coke, calcined coke, and graphite flour. The mixture is placed in a graphite mold, pressurized to at least 1200 psi, and baked and graphitized by heating to about 2500 deg C while maintaining such pressure. (AEC)

  9. Graphite for fusion energy applications

    SciTech Connect

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source. (JDH)

  10. Superlubricity of graphite.

    PubMed

    Dienwiebel, Martin; Verhoeven, Gertjan S; Pradeep, Namboodiri; Frenken, Joost W M; Heimberg, Jennifer A; Zandbergen, Henny W

    2004-03-26

    Using a home-built frictional force microscope that is able to detect forces in three dimensions with a lateral force resolution down to 15 pN, we have studied the energy dissipation between a tungsten tip sliding over a graphite surface in dry contact. By measuring atomic-scale friction as a function of the rotational angle between two contacting bodies, we show that the origin of the ultralow friction of graphite lies in the incommensurability between rotated graphite layers, an effect proposed under the name of "superlubricity" [Phys. Rev. B 41, 11 837 (1990)

  11. Intercalated graphite electrical conductors

    NASA Technical Reports Server (NTRS)

    Banks, B. A.

    1983-01-01

    For years NASA has wanted to reduce the weight of spacecraft and aircraft. Experiments are conducted to find a lightweight synthetic metal to replace copper. The subject of this paper, intercalated graphite, is such a material. Intercalated graphite is made by heating petroleum or coal to remove the hydrogen and to form more covalent bonds, thus increasing the molecular weight. The coal or petroleum eventually turns to pitch, which can then be drawn into a fiber. With continued heating the pitch-based fiber releases hydrogen and forms a carbon fiber. The carbon fiber, if heated sufficiently, becomes more organized in parallel layers of hexagonally arranged carbon atoms in the form of graphite. A conductor of intercalated graphite is potentially useful for spacecraft or aircraft applications because of its low weight.

  12. Silicon on graphite cloth

    SciTech Connect

    Rand, J.A.; Cotter, J.E.; Thomas, C.J.; Ingram, A.E.; Bai, Y.B.; Ruffins, T.R.; Barnett, A.M.

    1994-12-31

    A new polycrystalline silicon solar cell has been developed that utilizes commercially available graphite cloth as a substrate. This solar cell has achieved an energy conversion efficiency of 13.4% (AM1.5G). It is believed that this is a record efficiency for a silicon solar cell formed on a graphite substrate. The silicon-on-fabric structure is comprised of a thin layer of polycrystalline silicon grown directly on the graphite fabric substrate. The structure is fabricated by a low-cost ribbon process that avoids the expense and waste of wafering. The fabric substrate gives structural support to the thin device. Critical to the achievement of device quality silicon layers is control over impurities in the graphite fabric. The silicon-on-fabric technology has the potential to supply lightweight, low-cost solar cells to weight-sensitive markets at a fraction of the cost of conventionally thinned wafers.

  13. Design of an electrolyte composition for stable and rapid charging-discharging of a graphite negative electrode in a bis(fluorosulfonyl)imide-based ionic liquid

    NASA Astrophysics Data System (ADS)

    Matsui, Yukiko; Yamagata, Masaki; Murakami, Satoshi; Saito, Yasuteru; Higashizaki, Tetsuya; Ishiko, Eriko; Kono, Michiyuki; Ishikawa, Masashi

    2015-04-01

    We evaluate the effects of lithium salt on the charge-discharge performance of a graphite negative electrode in 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMImFSI) ionic liquid-based electrolytes. Although the graphite negative electrode exhibits good cyclability and rate capability in both 0.43 mol dm-3 LiFSI/EMImFSI and LiTFSI/EMImFSI (TFSI- = bis(trifluoromethylsulfonyl)imide) at room temperature, only the LiFSI/EMImFSI system enables the graphite electrode to be operated with sufficient discharge capacity at the low temperature of 0 °C, even though there is no noticeable difference in ionic conductivity, compared with LiTFSI/EMImFSI. Furthermore, a clear difference in the low-temperature behaviors of the two cells composed of EMImFSI with a high-concentration of lithium salts is observed. Additionally, charge-discharge operation of the graphite electrode at C-rate of over 5.0 can be achieved using of the high-concentration LiFSI/EMImFSI electrolyte. Considering the low-temperature characteristics in both high-concentration electrolytes, the stable and rapid charge-discharge operation in the high-concentration LiFSI/EMImFSI is presumably attributed to a suitable electrode/electrolyte interface with low resistivity. These results suggest that optimization of the electrolyte composition can realize safe and high-performance lithium-ion batteries that utilize ionic liquid-based electrolytes.

  14. Carbon-14 Graphitization Chemistry

    NASA Astrophysics Data System (ADS)

    Miller, James; Collon, Philippe; Laverne, Jay

    2014-09-01

    Accelerator Mass Spectrometry (AMS) is a process that allows for the analysis of mass of certain materials. It is a powerful process because it results in the ability to separate rare isotopes with very low abundances from a large background, which was previously impossible. Another advantage of AMS is that it only requires very small amounts of material for measurements. An important application of this process is radiocarbon dating because the rare 14C isotopes can be separated from the stable 14N background that is 10 to 13 orders of magnitude larger, and only small amounts of the old and fragile organic samples are necessary for measurement. Our group focuses on this radiocarbon dating through AMS. When performing AMS, the sample needs to be loaded into a cathode at the back of an ion source in order to produce a beam from the material to be analyzed. For carbon samples, the material must first be converted into graphite in order to be loaded into the cathode. My role in the group is to convert the organic substances into graphite. In order to graphitize the samples, a sample is first combusted to form carbon dioxide gas and then purified and reduced into the graphite form. After a couple weeks of research and with the help of various Physics professors, I developed a plan and began to construct the setup necessary to perform the graphitization. Once the apparatus is fully completed, the carbon samples will be graphitized and loaded into the AMS machine for analysis.

  15. Fission Product Sorptivity in Graphite

    SciTech Connect

    Tompson, Jr., Robert V.; Loyalka, Sudarshan; Ghosh, Tushar; Viswanath, Dabir; Walton, Kyle; Haffner, Robert

    2015-04-01

    graduate student meant that data acquisition with the packed bed systems ended up competing for the graduate student’s available time with the electrodynamic balance redesign and assembly portions of the project. This competition for available time was eventually mitigated to some extent by the later recruitment of an undergraduate student to help with data collection using the packed bed system. It was only the recruitment of the second student that allowed the single particle balance design and construction efforts to proceed as far as they did during the project period. It should be added that some significant time was also spent by the graduate student cataloging previous work involving graphite. This eventually resulted in a review paper being submitted and accepted (“Adsorption of Iodine on Graphite in High Temperature Gas-Cooled Reactor Systems: A Review,” Kyle L. Walton, Tushar K. Ghosh, Dabir S. Viswanath, Sudarshan K. Loyalka, Robert V. Tompson). Our specific revised objectives in this project were as follows: Experimentally obtain isotherms of Iodine for reactor grade IG-110 samples of graphite particles over a range of temperatures and pressures using an EDB and a temperature controlled EDB; Experimentally obtain isotherms of Iodine for reactor grade IG-110 samples of graphite particles over a range of temperatures and pressures using a packed column bed apparatus; Explore the effect that charge has on the adsorption isotherms of iodine by varying the charges on and the voltages used to suspend the microscopic particles in the EDB; and To interpret these results in terms of the existing models (Langmuir, BET, Freundlich, and others) which we will modify as necessary to include charge related effects.

  16. Graphite matrix materials for nuclear waste isolation

    SciTech Connect

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept.

  17. Transition from glass to graphite in manufacture of composite aircraft structure

    NASA Technical Reports Server (NTRS)

    Buffum, H. E.; Thompson, V. S.

    1978-01-01

    The transition from fiberglass reinforced plastic composites to graphite reinforced plastic composites is described. Structural fiberglass design and manufacturing background are summarized. How this experience provides a technology base for moving into graphite composite secondary structure and then to composite primary structure is considered. The technical requirements that must be fulfilled in the transition from glass to graphite composite structure are also included.

  18. Vibratory compaction tests on graphite powders for neutron shielding

    SciTech Connect

    Morgan, W.C.

    1982-05-01

    Mistures of three size ranges of graphite powders have been vibratory packed to densities as high as 1.40 gm/cm/sup 3/, which is 87.5 percent of the design density for the graphte segment of the FMIT test cell shield. Ultrasonic resonance vibration of the particles was determined to be an impractical method for achieving the required density. Possible options for fabricating the shield are: (1) revert to solid graphite, rather than vibratory packed powder, or (2) develop the mechanical vibratory compaction method, which would require (a) designing for the higher heat-load attendant with the reduced graphite density, or (b) increasing the thickness of the graphite segment by 15 percent or (c) seeking a new source of graphite powder with higher particle density.

  19. Graphite Gamma Scan Results

    SciTech Connect

    Mark W. Drigert

    2014-04-01

    This report documents the measurement and data analysis of the radio isotopic content for a series of graphite specimens irradiated in the first Advanced Graphite Creep (AGC) experiment, AGC-1. This is the first of a series of six capsules planned as part of the AGC experiment to fully characterize the neutron irradiation effects and radiation creep behavior of current nuclear graphites. The AGC-1 capsule was irradiated in the Advanced Test Reactor (ATR) at INL at approximately 700 degrees C and to a peak dose of 7 dpa (displacements per atom). Details of the irradiation conditions and other characterization measurements performed on specimens in the AGC-1 capsule can be found in “AGC-1 Specimen Post Irradiation Data Report” ORNL/TM 2013/242. Two specimens from six different graphite types are analyzed here. Each specimen is 12.7 mm in diameter by 25.4 mm long. The isotope with the highest activity was 60Co. Graphite type NBG-18 had the highest content of 60Co with an activity of 142.89 µCi at a measurement distance of 47 cm.

  20. Recompressed exfoliated graphite articles

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2013-08-06

    This invention provides an electrically conductive, less anisotropic, recompressed exfoliated graphite article comprising a mixture of (a) expanded or exfoliated graphite flakes; and (b) particles of non-expandable graphite or carbon, wherein the non-expandable graphite or carbon particles are in the amount of between about 3% and about 70% by weight based on the total weight of the particles and the expanded graphite flakes combined; wherein the mixture is compressed to form the article having an apparent bulk density of from about 0.1 g/cm.sup.3 to about 2.0 g/cm.sup.3. The article exhibits a thickness-direction conductivity typically greater than 50 S/cm, more typically greater than 100 S/cm, and most typically greater than 200 S/cm. The article, when used in a thin foil or sheet form, can be a useful component in a sheet molding compound plate used as a fuel cell separator or flow field plate. The article may also be used as a current collector for a battery, supercapacitor, or any other electrochemical cell.

  1. Irradiation Creep in Graphite

    SciTech Connect

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  2. Coatings for graphite fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Graphite fibers released from composites during burning or an explosion caused shorting of electrical and electronic equipment. Silicon carbide, silica, silicon nitride and boron nitride were coated on graphite fibers to increase their electrical resistances. Resistances as high as three orders of magnitude higher than uncoated fiber were attained without any significant degradation of the substrate fiber. An organo-silicone approach to produce coated fibers with high electrical resistance was also used. Celion 6000 graphite fibers were coated with an organo-silicone compound, followed by hydrolysis and pyrolysis of the coating to a silica-like material. The shear and flexural strengths of composites made from high electrically resistant fibers were considerably lower than the shear and flexural strengths of composites made from the lower electrically resistant fibers. The lower shear strengths of the composites indicated that the coatings on these fibers were weaker than the coating on the fibers which were pyrolyzed at higher temperature.

  3. Cesium diffusion in graphite

    SciTech Connect

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of /sup 137/Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of /sup 137/Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000/sup 0/C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ..delta..E of the equation D/epsilon = (D/epsilon)/sub 0/ exp (-..delta..E/RT) are about 4 x 10/sup -2/ cm/sup 2//s and 30 kcal/mole, respectively.

  4. Superlubricity of Graphite

    NASA Astrophysics Data System (ADS)

    Dienwiebel, Martin; Verhoeven, Gertjan S.; Pradeep, Namboodiri; Frenken, Joost W.; Heimberg, Jennifer A.; Zandbergen, Henny W.

    2004-03-01

    Using a home-built frictional force microscope that is able to detect forces in three dimensions with a lateral force resolution down to 15 pN, we have studied the energy dissipation between a tungsten tip sliding over a graphite surface in dry contact. By measuring atomic-scale friction as a function of the rotational angle between two contacting bodies, we show that the origin of the ultralow friction of graphite lies in the incommensurability between rotated graphite layers, an effect proposed under the name of “superlubricity” [

    M. Hirano and K. Shinjo, Phys. Rev. BPRBMDO0163-1829 41, 11 837 (1990)10.1103/PhysRevB.41.11837
    ].

  5. Lithium-Graphite Secondary Battery.

    DTIC Science & Technology

    1976-12-01

    Used in the experiment that studied the effect of operating current. 6. Li/LiClO 4, PC (0.9M)/Graphite + Graphite glue on carbon cloth. 7. Li/ LiBF4 ...DMSU (1.0M)/Graphite + Graphite glue on carbon cloth. 8. Li/ LiBF4 , PC (1.5M)/Graphite + Graphite glue on carbon cloth. 9. Li/LiClO4, DMSU (2.1M)/Pt. 10... LiBF4 , PC(1.5 M)/Graphite + Graphite glue on carbon cloth. Cycles 1 and 2 51 24. Same as 23. Cycle no. 3, 1-6.3 mA, Q n=2.17 mEq 52 25. Typical

  6. Modeling the Multiaxial Strength of H-451 Nuclear Grade Graphite

    SciTech Connect

    Burchell, Timothy D; Yahr, Terry; Battiste, Rick

    2007-01-01

    The core of a prismatic High Temperature Reactor (HTR) is constructed from an array of nuclear graphite components. Similarly, the core of a Pebble Bed HTR is confined by large graphite blocks which define the (annular) core geometry. In both HTR designs the large graphite components act as neutron moderator and reflector as well as providing mechanical support to the active core. During reactor operation the graphite components of the core are subjected to complex stress states. Consequently, core designers need a suitable theory of failure. Both deterministic (e.g., maximum principal stress theory) and probabilistic (e.g., Weibull failure theory) have been considered. To test candidate failure theories a multiaxial testing program was conducted at Oak Ridge National Laboratory on H-451 graphite. Large specimens ({approx}27 cm length) were subjected to combined axial stress (tension and compression) and internal pressure. A total of 59 specimens were tested at 9 stress ratios in the first and fourth stress quadrants. Here, we report the basis and performance of a microstructurally based graphite fracture model and multiaxial strength data for grade H-451 graphite, along with the application of the model to predict the failure envelope for H-451 graphite in the first and fourth multiaxial quadrants.

  7. Improved graphite furnace atomizer

    DOEpatents

    Siemer, D.D.

    1983-05-18

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  8. Graphite as a structural material in HTR plants

    NASA Astrophysics Data System (ADS)

    Theymann, W.; Schmidt, A.

    1990-04-01

    Graphite has been selected as a structural material in HTR plants because of its favourable characteristics. The low ductility and the low tensile strength of this material as well as its behaviour under the impact of fast neutron irradiation require special construction directives and design criteria. It is demonstrated that by an appropriate structural design it is possible to separate the tasks and functions of the individual graphite components, which permits a classification of each component into one of three classes of qualitity assurance. Adequate stress criteria have been developed for the graphite internals of HTR based on probabilistic methods.

  9. Carbon Characterization Laboratory Readiness to Receive Irradiated Graphite Samples

    SciTech Connect

    Karen A. Moore

    2011-05-01

    The Carbon Characterization Laboratory (CCL) is located in Labs C19 and C20 of the Idaho National Laboratory Research Center. The CCL was established under the Next Generation Nuclear Plant Project to support graphite and ceramic composite research and development activities. The research conducted in this laboratory will support the Advanced Graphite Creep experiments—a major series of material irradiation experiments within the Next Generation Nuclear Plant Graphite program. The CCL is designed to characterize and test low activated irradiated materials such as high purity graphite, carbon-carbon composites, silicon-carbide composite, and ceramic materials. The laboratory is fully capable of characterizing material properties for both irradiated and nonirradiated materials. Major infrastructural modifications were undertaken to support this new radiological facility at Idaho National Laboratory. Facility modifications are complete, equipment has been installed, radiological controls and operating procedures have been established and work management documents have been created to place the CCL in readiness to receive irradiated graphite samples.

  10. (Irradiation creep of graphite)

    SciTech Connect

    Kennedy, C.R.

    1990-12-21

    The traveler attended the Conference, International Symposium on Carbon, to present an invited paper, Irradiation Creep of Graphite,'' and chair one of the technical sessions. There were many papers of particular interest to ORNL and HTGR technology presented by the Japanese since they do not have a particular technology embargo and are quite open in describing their work and results. In particular, a paper describing the failure of Minor's law to predict the fatigue life of graphite was presented. Although the conference had an international flavor, it was dominated by the Japanese. This was primarily a result of geography; however, the work presented by the Japanese illustrated an internal program that is very comprehensive. This conference, a result of this program, was better than all other carbon conferences attended by the traveler. This conference emphasizes the need for US participation in international conferences in order to stay abreast of the rapidly expanding HTGR and graphite technology throughout the world. The United States is no longer a leader in some emerging technologies. The traveler was surprised by the Japanese position in their HTGR development. Their reactor is licensed and the major problem in their graphite program is how to eliminate it with the least perturbation now that most of the work has been done.

  11. GRAPHITE BONDING METHOD

    DOEpatents

    King, L.D.P.

    1964-02-25

    A process for bonding or joining graphite members together in which a thin platinum foil is placed between the members, heated in an inert atmosphere to a temperature of 1800 deg C, and then cooled to room temperature is described. (AEC)

  12. Coatings for Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Several approaches for applying high resistance coatings continuously to graphite yarn were investigated. Two of the most promising approaches involved (1) chemically vapor depositing (CVD) SiC coatings on the surface of the fiber followed by oxidation, and (2) drawing the graphite yarn through an organo-silicone solution followed by heat treatments. In both methods, coated fibers were obtained which exhibited increased electrical resistances over untreated fibers and which were not degraded. This work was conducted in a previous program. In this program, the continuous CVD SiC coating process used on HTS fiber was extended to the coating of HMS, Celion 6000, Celion 12000 and T-300 graphite fiber. Electrical resistances three order of magnitude greater than the uncoated fiber were measured with no significant degradation of the fiber strength. Graphite fibers coated with CVD Si3N4 and BN had resistances greater than 10(exp 6) ohm/cm. Lower pyrolysis temperatures were used in preparing the silica-like coatings also resulting in resistances as high as three orders of magnitude higher than the uncoated fiber. The epoxy matrix composites prepared using these coated fibers had low shear strengths indicating that the coatings were weak.

  13. Structural graphitic carbon foams

    SciTech Connect

    Kearns, K.M.; Anderson, H.J.

    1998-12-31

    Graphitic carbon foams are a unique material form with very high structural and thermal properties at a light weight. A process has been developed to produce microcellular, open-celled graphitic foams. The process includes heating a mesophase pitch preform above the pitch melting temperature in a pressurized reactor. At the appropriate time, the pressure is released, the gas nucleates bubbles, and these bubbles grow forming the pitch into the foam structure. The resultant foamed pitch is then stabilized in an oxygen environment. At this point a rigid structure exists with some mechanical integrity. The foam is then carbonized to 800 C followed by a graphitization to 2700 C. The shear action from the growing bubbles aligns the graphitic planes along the foam struts to provide the ideal structure for good mechanical properties. Some of these properties have been characterized for some of the foam materials. It is known that variations of the blowing temperature, blowing pressure and saturation time result in foams of variously sized with mostly open pores; however, the mechanism of bubble nucleation is not known. Therefore foams were blown with various gases to begin to determine the nucleation method. These gases are comprised of a variety of molecular weights as well as a range of various solubility levels. By examining the resultant structures of the foam, differences were noted to develop an explanation of the foaming mechanism.

  14. Development and fabrication of a graphite polyimide box beam

    NASA Technical Reports Server (NTRS)

    Nadler, M. A.; Darms, F. J.

    1972-01-01

    The state-of-the-art of graphite/polyimide structures was evaluated and key design and fabrication issues to be considered in future hardware programs are defined. The fabrication and testing at 500 F of a graphite/polyimide center wing box beam using OV-10A aircraft criteria was accomplished. The baseline design of this box was developed in a series of studies of other advanced composite materials: glass/epoxy, boron/epoxy, and boron/polyimide. The use of this basic design permits ready comparison of the performance of graphite/polyimide with these materials. Modifications to the baseline composite design were made only in those areas effected by the change of materials. Processing studies of graphite fiber polyimide resins systems resulted in the selection of a Modmor II/Gemon L material.

  15. Deconstructing graphite: graphenide solutions.

    PubMed

    Pénicaud, Alain; Drummond, Carlos

    2013-01-15

    Growing interest in graphene over past few years has prompted researchers to find new routes for producing this material other than mechanical exfoliation or growth from silicon carbide. Chemical vapor deposition on metallic substrates now allows researchers to produce continuous graphene films over large areas. In parallel, researchers will need liquid, large scale, formulations of graphene to produce functional graphene materials that take advantage of graphene's mechanical, electrical, and barrier properties. In this Account, we describe methods for creating graphene solutions from graphite. Graphite provides a cheap source of carbon, but graphite is insoluble. With extensive sonication, it can be dispersed in organic solvents or water with adequate additives. Nevertheless, this process usually creates cracks and defects in the graphite. On the other hand, graphite intercalation compounds (GICs) provide a means to dissolve rather than disperse graphite. GICS can be obtained through the reaction of alkali metals with graphite. These compounds are a source of graphenide salts and also serve as an excellent electronic model of graphene due to the decoupling between graphene layers. The graphenide macroions, negatively charged graphene sheets, form supple two-dimensional polyelectrolytes that spontaneously dissolve in some organic solvents. The entropic gain from the dissolution of counterions and the increased degrees of freedom of graphene in solution drives this process. Notably, we can obtain graphenide solutions in easily processable solvents with low boiling points such as tetrahydrofuran or cyclopentylmethylether. We performed a statistical analysis of high resolution transmission electronic micrographs of graphene sheets deposited on grids from GICs solution to show that the dissolved material has been fully exfoliated. The thickness distribution peaks with single layers and includes a few double- or triple-layer objects. Light scattering analysis of the

  16. Magnetic frustration of graphite oxide

    NASA Astrophysics Data System (ADS)

    Lee, Dongwook; Seo, Jiwon

    2017-03-01

    Delocalized π electrons in aromatic ring structures generally induce diamagnetism. In graphite oxide, however, π electrons develop ferromagnetism due to the unique structure of the material. The π electrons are only mobile in the graphitic regions of graphite oxide, which are dispersed and surrounded by sp3-hybridized carbon atoms. The spin-glass behavior of graphite oxide is corroborated by the frequency dependence of its AC susceptibility. The magnetic susceptibility data exhibit a negative Curie temperature, field irreversibility, and slow relaxation. The overall results indicate that magnetic moments in graphite oxide slowly interact and develop magnetic frustration.

  17. Magnetic frustration of graphite oxide

    PubMed Central

    Lee, Dongwook; Seo, Jiwon

    2017-01-01

    Delocalized π electrons in aromatic ring structures generally induce diamagnetism. In graphite oxide, however, π electrons develop ferromagnetism due to the unique structure of the material. The π electrons are only mobile in the graphitic regions of graphite oxide, which are dispersed and surrounded by sp3-hybridized carbon atoms. The spin-glass behavior of graphite oxide is corroborated by the frequency dependence of its AC susceptibility. The magnetic susceptibility data exhibit a negative Curie temperature, field irreversibility, and slow relaxation. The overall results indicate that magnetic moments in graphite oxide slowly interact and develop magnetic frustration. PMID:28327606

  18. A graphite-lined regeneratively cooled thrust chamber

    NASA Technical Reports Server (NTRS)

    Stubbs, V. R.

    1972-01-01

    Design concepts, based on use of graphite as a thermal barrier for regeneratively cooled FLOX-methane thrust chambers, have been screened and concepts selected for detailed thermodynamic, stress, and fabrication analyses. A single design employing AGCarb-101, a fibrous graphite composite material, for a thermal barrier liner and an electroformed nickel structure with integral coolant passages was selected for fabrication and testing. The fabrication processes and the test results are described and illustrated.

  19. Hydrogenation of graphitic nanocarbons

    NASA Astrophysics Data System (ADS)

    Berber, Savas; Tománek, David; Kim, Eunja; Weck, Philippe F.; Miller, Glen P.

    2008-03-01

    We apply ab initio density functional calculations to study the hydrogenation of graphitic nanocarbons including fullerenes, onions and nanotubes using diethylenetriamine (DETA) as hydrogenation reagent. Our results indicate that transfer of atomic hydrogen from the amine end-group of chemisorbed DETA molecules to nanocarbons is an exothermic reaction. We explore the optimum pathway for the hydrogenation reaction and find the activation energy associated with sigmatropic rearrangement of chemisorbed hydrogen atoms to lie near 1 eV, thus facilitating formation of energetically favorable adsorbate structures by surface diffusion. Chemisorbed hydrogen assists in a local sp^2 to sp^3 bonding conversion of the graphitic nanocarbons, causing large-scale structural changes ranging from local relaxations in nanotubes to shell opening in multi-wall onions.

  20. Intercalated Graphite Fiber Conductor.

    DTIC Science & Technology

    1980-12-01

    Lightweight electrical conductors were developed from graphitic fibers inter- calated with highly electrophilic intercalants. Conductance increases of...intercalated with highly electrophilic molecules ("intercalants") to en- hance their electrical conductivity. Evaluation of the elec- trical resistance of two...corrosion resistant to fluorine containing chemicals. Since the moisture permeability of the TFE is much less than that of the FEP, attempts were made to

  1. Microcracks in nuclear graphite and highly oriented pyrolytic graphite (HOPG)

    NASA Astrophysics Data System (ADS)

    Wen, Keyun; Marrow, James; Marsden, Barry

    2008-10-01

    Microcracks with varied length and width are observed in nuclear grade graphite and highly oriented pyrolytic graphite (HOPG) by transmission electron microscopy. In situ observations show that these cracks tend to close up on heating the sample. The crystal dimensional change from in situ electron-irradiation also causes the closure of the cracks. Although some of the cracks may be identifiable as accommodation porosity (i.e. Mrozowski cracks), others appear to have already formed prior to carbonization and graphitization.

  2. Graphite-Conjugated Pyrazines as Molecularly Tunable Heterogeneous Electrocatalysts.

    PubMed

    Fukushima, Tomohiro; Drisdell, Walter; Yano, Junko; Surendranath, Yogesh

    2015-09-02

    Condensation of ortho-phenylenediamine derivatives with ortho-quinone moieties at edge planes of graphitic carbon generates graphite-conjugated pyrazines (GCPs) that are active for oxygen reduction electrocatalysis in alkaline aqueous electrolyte. Catalytic rates of oxygen reduction are positively correlated with the electrophilicity of the active site pyrazine unit and can be tuned by over 70-fold by appending electron-withdrawing substituents to the phenylenediamine precursors. Discrete molecular analogs containing pyrazine moieties display no activity above background under identical conditions. This simple bottom up method for constructing molecularly well-defined active sites on ubiquitous graphitic solids enables the rational design of tunable heterogeneous catalysts.

  3. Enhanced thermoelectric performance in graphitic ZnO (0001) nanofilms

    NASA Astrophysics Data System (ADS)

    Li, Yan-Li; Fan, Zheyong; Zheng, Jin-Cheng

    2013-02-01

    We investigate the thermoelectric properties of ultrathin graphitic ZnO (0001) nanofilms based on first-principles calculations and Boltzmann transport theory. Staircase-like densities of states induced by quantum confinement in the nanofilms give rise to improved Seebeck coefficients and electrical conductivities. The optimized figure of merit for the single-layer graphitic ZnO (0001) nanofilm is estimated to be 0.6 at 300 K, which is about 120 times larger than that of bulk ZnO (0.005). Our results suggest that the graphitic ZnO (0001) nanofilms can be designed for high performance thermoelectric applications.

  4. METHOD OF FABRICATING A GRAPHITE MODERATED REACTOR

    DOEpatents

    Kratz, H.R.

    1963-05-01

    S>A nuclear reactor formed of spaced bodies of uranium and graphite blocks is improved by diffusing helium through the graphite blocks in order to replace the air in the pores of the graphite with helium. The helium-impregnated graphite conducts heat better, and absorbs neutrons less, than the original air- impregnated graphite. (AEC)

  5. CMB-13 research on carbon and graphite

    NASA Technical Reports Server (NTRS)

    Smith, M. C.

    1972-01-01

    Preliminary results of the research on carbon and graphite accomplished during this report period are presented. Included are: particle characteristics of Santa Maria fillers, compositions and density data for hot-molded Santa Maria graphites, properties of hot-molded Santa Maria graphites, and properties of hot-molded anisotropic graphites. Ablation-resistant graphites are also discussed.

  6. Industrial Applications of Graphite Fluoride Fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Kucera, Donald

    1991-01-01

    Based on fluorination technology developed during 1934 to 1959, and the fiber technology developed during the 1970s, a new process was developed to produce graphite fluoride fibers. In the process, pitch based graphitized carbon fibers are at first intercalated and deintercalated several times by bromine and iodine, followed by several cycles of nitrogen heating and fluorination at 350 to 370 C. Electrical, mechanical, and thermal properties of this fiber depend on the fluorination process and the fluorine content of the graphite fluoride product. However, these properties are between those of graphite and those of PTFE (Teflon). Therefore, it is considered to be a semiplastic. The physical properties suggest that this new material may have many new and unexplored applications. For example, it can be a thermally conductive electrical insulator. Its coefficient of thermal expansion (CTE) can be adjusted to match that of silicon, and therefore, it can be a heat sinking printed circuit board which is CTE compatible with silicon. Using these fibers in printed circuit boards may provide improved electrical performance and reliability of the electronics on the board over existing designs. Also, since it releases fluorine at 300 C or higher, it can be used as a material to store fluorine and to conduct fluorination. This application may simplify the fluorination process and reduce the risk of handling fluorine.

  7. Specific heat of pristine and brominated graphite fibers, composites and HOPG. [Highly Oriented Pyrolytic Graphite

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Chen; Maciag, Carolyn

    1987-01-01

    Differential scanning calorimetry was used to obtain specific heat values of pristine and brominated P-100 graphite fibers and brominated P-100/epoxy composite as well as pristine and brominated highly oriented pyrolytic graphite (HOPG) for comparison. Based on the experimental results obtained, specific heat values are calculated for several different temperatures, with a standard deviation estimated at 1.4 percent of the average values. The data presented here are useful in designing heat transfer devices (such as airplane de-icing heaters) from bromine fibers.

  8. Heat exchanger using graphite foam

    DOEpatents

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  9. Filament-wound graphite/epoxy rocket motor case

    NASA Technical Reports Server (NTRS)

    Humphrey, W. D.; Schmidt, W. W.

    1972-01-01

    The fabrication procedures are described for a filament-wound rocket motor case, approximately 56 cm long x 71 cm diameter, utilizing high tensile strength graphite fibers. The process utilized Fiberite Hy-E-1330B prepreg tape which consists of Courtaulds HTS fibers in a temperature-sensitive epoxy matrix. This fabrication effort, with resultant design, material and process recommendations, substantiates the manufacturing feasibility of graphite/epoxy rocket motor cases in the 56 cm x 71 cm size range.

  10. Graphite Oxidation Simulation in HTR Accident Conditions

    SciTech Connect

    El-Genk, Mohamed

    2012-10-19

    Massive air and water ingress, following a pipe break or leak in steam-generator tubes, is a design-basis accident for high-temperature reactors (HTRs). Analysis of these accidents in both prismatic and pebble bed HTRs requires state-of-the-art capability for predictions of: 1) oxidation kinetics, 2) air helium gas mixture stratification and diffusion into the core following the depressurization, 3) transport of multi-species gas mixture, and 4) graphite corrosion. This project will develop a multi-dimensional, comprehensive oxidation kinetics model of graphite in HTRs, with diverse capabilities for handling different flow regimes. The chemical kinetics/multi-species transport model for graphite burning and oxidation will account for temperature-related changes in the properties of graphite, oxidants (O2, H2O, CO), reaction products (CO, CO2, H2, CH4) and other gases in the mixture (He and N2). The model will treat the oxidation and corrosion of graphite in geometries representative of HTR core component at temperatures of 900°C or higher. The developed chemical reaction kinetics model will be user-friendly for coupling to full core analysis codes such as MELCOR and RELAP, as well as computational fluid dynamics (CFD) codes such as CD-adapco. The research team will solve governing equations for the multi-dimensional flow and the chemical reactions and kinetics using Simulink, an extension of the MATLAB solver, and will validate and benchmark the model's predictions using reported experimental data. Researchers will develop an interface to couple the validated model to a commercially available CFD fluid flow and thermal-hydraulic model of the reactor , and will perform a simulation of a pipe break in a prismatic core HTR, with the potential for future application to a pebble-bed type HTR.

  11. Purification and preparation of graphite oxide from natural graphite

    SciTech Connect

    Panatarani, C. Muthahhari, N.; Joni, I. Made; Rianto, Anton

    2016-03-11

    Graphite oxide has attracted much interest as a possible route for preparation of natural graphite in the large-scale production and manipulation of graphene as a material with extraordinary electronic properties. Graphite oxide was prepared by modified Hummers method from purified natural graphite sample from West Kalimantan. We demonstrated that natural graphite is well-purified by acid leaching method. The purified graphite was proceed for intercalating process by modifying Hummers method. The modification is on the reaction time and temperature of the intercalation process. The materials used in the intercalating process are H{sub 2}SO{sub 4} and KMNO{sub 4}. The purified natural graphite is analyzed by carbon content based on Loss on Ignition test. The thermo gravimetricanalysis and the Fouriertransform infrared spectroscopy are performed to investigate the oxidation results of the obtained GO which is indicated by the existence of functional groups. In addition, the X-ray diffraction and energy dispersive X-ray spectroscopy are also applied to characterize respectively for the crystal structure and elemental analysis. The results confirmed that natural graphite samples with 68% carbon content was purified into 97.68 % carbon content. While the intercalation process formed a formation of functional groups in the obtained GO. The results show that the temperature and reaction times have improved the efficiency of the oxidation process. It is concluded that these method could be considered as an important route for large-scale production of graphene.

  12. Atomic resolution images of graphite in air

    SciTech Connect

    Grigg, D.A.; Shedd, G.M.; Griffis, D.; Russell, P.E.

    1988-12-01

    One sample used for proof of operation for atomic resolution in STM is highly oriented pyrolytic graphite (HOPG). This sample has been imaged with many different STM`s obtaining similar results. Atomic resolution images of HOPG have now been obtained using an STM designed and built at the Precision Engineering Center. This paper discusses the theoretical predictions and experimental results obtained in imaging of HOPG.

  13. Criticality Studies of Graphite Moderated Production Reactors

    DTIC Science & Technology

    1980-01-01

    o Tn II 1.4’, 1 I 1 1 eIc (ei pwr I rea -II 1Ii67 I , . I II II I I++ + Fi If67 It + : i ’’I if I if I If II l ~ l I.. . . I -- . . . I... tritium ). Moderator grade graphites also are designed for minimum distortion and gas evolution under irradiation. These physical characteristics are

  14. Metallic Coatings for Graphite/Epoxy Composites

    DTIC Science & Technology

    1980-08-01

    Aero Structures Dept -. Radomes Section B-2 DISTRIBUTION (cont.)K COPIES * U. S. Army Air Mobility R&D Laboratory 1II 1Fort Eustis, VA ATTN: SAVDL-EU...for graphite/epoxy laminated aircraft structures were developed to provide protection against moisture penetration, electro’)- magnetic interference...performance * aircraft. Utilization of advanced composite structures to their design limits neces- sitates the protection of these structures against

  15. Graphitic packing removal tool

    SciTech Connect

    Meyers, K.E.; Kolsun, G.J.

    1997-11-11

    Graphitic packing removal tools for removal of the seal rings in one piece are disclosed. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal. 5 figs.

  16. Graphitic packing removal tool

    SciTech Connect

    Meyers, K.E.; Kolsun, G.J.

    1996-12-31

    Graphitic packing removal tools are described for removal of the seal rings in one piece from valves and pumps. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  17. Graphitic packing removal tool

    DOEpatents

    Meyers, Kurt Edward; Kolsun, George J.

    1997-01-01

    Graphitic packing removal tools for removal of the seal rings in one piece. he packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  18. Graphitic packing removal tool

    DOEpatents

    Meyers, K.E.; Kolsun, G.J.

    1997-11-11

    Graphitic packing removal tools for removal of the seal rings in one piece are disclosed. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal. 5 figs.

  19. Graphite fluoride fibers and their applications in the space industry

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Chen; Long, Martin; Dever, Therese

    1990-01-01

    Characterization and potential space applications of graphite fluoride fibers from commercially available graphitized carbon fibers are presented. Graphite fluoride fibers with fluorine to carbon ratios of 0.65 and 0.68 were found to have electrical resistivity values of 10(exp 4) and 10(exp 11) Ohms-cm, respectively, and thermal conductivity values of 24 and 5 W/m-K, respectively. At this fluorine content range, the fibers have tensile strength of 0.25 + or - 0.10 GPa (36 + or - 14 ksi), Young's modulus of 170 + or - 30 GPa (25 + or - 5 Msi). The coefficient of thermal expansion value of a sample with fluorine to carbon ratio of 0.61 was found to be 7 ppm/C. These properties change and approach the graphite value as the fluorine content approach 0. Electrically insulative graphite fluoride fiber is at least five times more thermally conductive than fiberglass. Therefore, it can be used as a heat sinking printed circuit board material for low temperature, long life power electronics in spacecraft. Also, partially fluorinated fiber with tailor-made physical properties to meet the requirements of certain engineering design can be produced. For example, a partially fluorinated fiber could have a predetermined CTE value in -1.5 to 7 ppm/C range and would be suitable for use in solar concentrators in solar dynamic power systems. It could also have a predetermined electrical resistivity value suitable for use as a low observable material. Experimental data indicate that slightly fluorinated graphite fibers are more durable in the atomic oxygen environment than pristine graphite. Therefore, fluorination of graphite used in the construction of spacecraft that would be exposed to the low Earth orbit atomic oxygen may protect defect sites in atomic oxygen protective coatings and therefore decrease the rate of degradation of graphite.

  20. Graphite fluoride fibers and their applications in the space industry

    SciTech Connect

    Hung, Chingchen; Long, M.; Dever, T.

    1990-08-01

    Characterization and potential space applications of graphite fluoride fibers from commercially available graphitized carbon fibers are presented. Graphite fluoride fibers with fluorine to carbon ratios of 0.65 and 0.68 were found to have electrical resistivity values of 10(exp 4) and 10(exp 11) Ohms-cm, respectively, and thermal conductivity values of 24 and 5 W/m-K, respectively. At this fluorine content range, the fibers have tensile strength of 0.25 + or - 0.10 GPa (36 + or - 14 ksi), Young's modulus of 170 + or - 30 GPa (25 + or - 5 Msi). The coefficient of thermal expansion value of a sample with fluorine to carbon ratio of 0.61 was found to be 7 ppm/C. These properties change and approach the graphite value as the fluorine content approach 0. Electrically insulative graphite fluoride fiber is at least five times more thermally conductive than fiberglass. Therefore, it can be used as a heat sinking printed circuit board material for low temperature, long life power electronics in spacecraft. Also, partially fluorinated fiber with tailor-made physical properties to meet the requirements of certain engineering design can be produced. For example, a partially fluorinated fiber could have a predetermined CTE value in -1.5 to 7 ppm/C range and would be suitable for use in solar concentrators in solar dynamic power systems. It could also have a predetermined electrical resistivity value suitable for use as a low observable material. Experimental data indicate that slightly fluorinated graphite fibers are more durable in the atomic oxygen environment than pristine graphite. Therefore, fluorination of graphite used in the construction of spacecraft that would be exposed to the low Earth orbit atomic oxygen may protect defect sites in atomic oxygen protective coatings and therefore decrease the rate of degradation of graphite.

  1. Cryotribology of diamond and graphite

    SciTech Connect

    Iwasa, Yukikazu; Ashaboglu, A.F.; Rabinowicz, E.R.

    1996-12-31

    An experimental study was carried out on the tribological behavior of materials of interest in cryogenic applications, focusing on diamond and graphite. Both natural diamond (referred in the text as diamond) and chemical-vapor-deposition (CVD) diamond (CVD-diamond) were used. The experiment was carried out using a pin-on-disk tribometer capable of operating at cryogenic temperatures, from 4.2 to 293 K. Two basic scenarios of testing were used: (1) frictional coefficient ({mu}) vs velocity (v) characteristics at constant temperatures; (2) {mu} vs temperature (T) behavior at fixed sliding speeds. For diamond/CVD-diamond, graphite/CVD-diamond, stainless steel/CVD-diamond pairs, {mu}`s are virtually velocity independent. For each of diamond/graphite, alumina/graphite, and graphite/graphite pairs, the {partial_derivative}{mu}/{partial_derivative}v characteristic is favorable, i.e., positive. For diamond/CVD-diamond and graphite/CVD-diamond pairs, {mu}`s are nearly temperature independent between in the range 77 - 293 K. Each {mu} vs T plot for pin materials sliding on graphite disks has a peak at a temperature in the range 100 - 200 K.

  2. REFRACTORY COATING FOR GRAPHITE MOLDS

    DOEpatents

    Stoddard, S.D.

    1958-06-24

    Refractory coating for graphite molds used in the casting of uranium is described. The coating is an alumino-silicate refractory composition which may be used as a mold surface in solid form or as a coating applied to the graphite mold. The composition consists of a mixture of ball clay, kaolin, alumina cement, alumina, water, sodium silicate, and sodium carbonate.

  3. Review of thermal properties of graphite composite materials

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.

    1987-01-01

    Flammability, thermal, and selected mechanical properties of composites fabricated with epoxy and other thermally stable resin matrices are described. Properties which were measured included limiting-oxygen index, smoke evolution, thermal degradation products, total-heat release, heat-release rates, mass loss, flame spread, ignition resistance, thermogravimetric analysis, and selected mechanical properties. The properties of 8 different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: XU71775/H795, a blend of vinyl polystyryl pyridine and bismaleimide; H795, a bismaleimide; Cycom 6162, a phenolic; and PSP 6022M, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that the blend of vinyl polystyryl pyridine and bismaleimide (XU71775/H795) with the graphite tape was the optimum design giving the lowest heat release rate.

  4. Review of thermal properties of graphite composite materials

    SciTech Connect

    Kourtides, D.A.

    1987-12-01

    Flammability, thermal, and selected mechanical properties of composites fabricated with epoxy and other thermally stable resin matrices are described. Properties which were measured included limiting-oxygen index, smoke evolution, thermal degradation products, total-heat release, heat-release rates, mass loss, flame spread, ignition resistance, thermogravimetric analysis, and selected mechanical properties. The properties of 8 different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: XU71775/H795, a blend of vinyl polystyryl pyridine and bismaleimide; H795, a bismaleimide; Cycom 6162, a phenolic; and PSP 6022M, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that the blend of vinyl polystyryl pyridine and bismaleimide (XU71775/H795) with the graphite tape was the optimum design giving the lowest heat release rate.

  5. Pristine graphite oxide.

    PubMed

    Dimiev, Ayrat; Kosynkin, Dmitry V; Alemany, Lawrence B; Chaguine, Pavel; Tour, James M

    2012-02-08

    Graphite oxide (GO) is a lamellar substance with an ambiguous structure due to material complexity. Recently published GO-related studies employ only one out of several existing models to interpret the experimental data. Because the models are different, this leads to confusion in understanding the nature of the observed phenomena. Lessening the structural ambiguity would lead to further developments in functionalization and use of GO. Here, we show that the structure and properties of GO depend significantly on the quenching and purification procedures, rather than, as is commonly thought, on the type of graphite used or oxidation protocol. We introduce a new purification protocol that produces a product that we refer to as pristine GO (pGO) in contrast to the commonly known material that we will refer to as conventional GO (cGO). We explain the differences between pGO and cGO by transformations caused by reaction with water. We produce ultraviolet-visible spectroscopic, Fourier transform infrared spectroscopic, solid-state nuclear magnetic resonance spectroscopic, thermogravimetric, and scanning electron microscopic analytical evidence for the structure of pGO. This work provides a new explanation for the acidity of GO solutions and allows us to add critical details to existing GO models.

  6. PMR Graphite Engine Duct Development

    NASA Technical Reports Server (NTRS)

    Stotler, C. L.; Yokel, S. A.

    1989-01-01

    The objective was to demonstrate the cost and weight advantages that could be obtained by utilizing the graphite/PMR15 material system to replace titanium in selected turbofan engine applications. The first component to be selected as a basis for evaluation was the outer bypass duct of the General Electric F404 engine. The operating environment of this duct was defined and then an extensive mechanical and physical property test program was conducted using material made by processing techniques which were also established by this program. Based on these properties, design concepts to fabricate a composite version of the duct were established and two complete ducts fabricated. One of these ducts was proof pressure tested and then run successfully on a factory test engine for over 1900 hours. The second duct was static tested to 210 percent design limit load without failure. An improved design was then developed which utilized integral composite end flanges. A complete duct was fabricated and successfully proof pressure tested. The net results of this effort showed that a composite version of the outer duct would be 14 percent lighter and 30 percent less expensive that the titanium duct. The other type of structure chosen for investigation was the F404 fan stator assembly, including the fan stator vanes. It was concluded that it was feasible to utilize composite materials for this type structure but that the requirements imposed by replacing an existing metal design resulted in an inefficient composite design. It was concluded that if composites were to be effectively used in this type structure, the design must be tailored for composite application from the outset.

  7. Graphitic heat shields for solar probe missions

    NASA Technical Reports Server (NTRS)

    Lundell, J. H.

    1981-01-01

    The feasibility of using a graphitic heat-shield system on a solar probe going to within 4 solar radii of the center of the sun is investigated. An analysis of graphite vaporization, with commonly used vaporization coefficients, indicates that the maximum mass-loss rate from a conical shield as large as 4 m in diameter can be kept low enough to avoid interference with measurements of the solar environment. In addition to the mass-loss problem, the problem of protecting the payload from the high-temperature (up to 2300 K) primary shield must be solved. An analysis of radiation exchange between concentric disks provides a technique for designing the intermediate shielding. The technique is applied to the design of a system for the Starprobe spacecraft, and it is found that a system with 10 shields and a payload surface temperature of 600 K will have a payload diameter of 2.45 m. Since this is 61% of the 4-m diameter of the primary shield, it is concluded that a graphitic heat-shield system is feasible for the Starprobe mission.

  8. Graphite thermal expansion reference for high temperature

    NASA Technical Reports Server (NTRS)

    Gaal, P. S.

    1974-01-01

    The design requirements of the aerospace and high-temperature nuclear reactor industries necessitate reliable thermal expansion data for graphite and other carbonaceous materials. The feasibility of an acceptable reference for calibration of expansion measuring systems that operate in carbon-rich atmospheres at temperatures ranging to 2500 C is the prime subject of this work. Present-day graphite technology provides acceptable materials for stable, reproducible references, as reflected by some of the candidate materials. The repeatability for a single specimen in a given expansion measuring system was found to be plus or minus 1%, while the combined results of several tests made on a number of samples fell within a plus or minus 2.5% band.

  9. Graphite Isotope Ratio Method Development Report: Irradiation Test Demonstration of Uranium as a Low Fluence Indicator

    SciTech Connect

    Reid, B.D.; Gerlach, D.C.; Love, E.F.; McNeece, J.P.; Livingston, J.V.; Greenwood, L.R.; Petersen, S.L.; Morgan, W.C.

    1999-10-20

    This report describes an irradiation test designed to investigate the suitability of uranium as a graphite isotope ratio method (GIRM) low fluence indicator. GIRM is a demonstrated concept that gives a graphite-moderated reactor's lifetime production based on measuring changes in the isotopic ratio of elements known to exist in trace quantities within reactor-grade graphite. Appendix I of this report provides a tutorial on the GIRM concept.

  10. Design optimization of LiNi0.6Co0.2Mn0.2O2/graphite lithium-ion cells based on simulation and experimental data

    NASA Astrophysics Data System (ADS)

    Appiah, Williams Agyei; Park, Joonam; Song, Seonghyun; Byun, Seoungwoo; Ryou, Myung-Hyun; Lee, Yong Min

    2016-07-01

    LiNi0.6Co0.2Mn0.2O2 cathodes of different thicknesses and porosities are prepared and tested, in order to optimize the design of lithium-ion cells. A mathematical model for simulating multiple types of particles with different contact resistances in a single electrode is adopted to study the effects of the different cathode thicknesses and porosities on lithium-ion transport using the nonlinear least squares technique. The model is used to optimize the design of LiNi0.6Co0.2Mn0.2O2/graphite lithium-ion cells by employing it to generate a number of Ragone plots. The cells are optimized for cathode porosity and thickness, while the anode porosity, anode-to-cathode capacity ratio, thickness and porosity of separator, and electrolyte salt concentration are held constant. Optimization is performed for discharge times ranging from 10 h to 5 min. Using the Levenberg-Marquardt method as a fitting technique, accounting for multiple particles with different contact resistances, and employing a rate-dependent solid-phase diffusion coefficient results in there being good agreement between the simulated and experimentally determined discharge curves. The optimized parameters obtained from this study should serve as a guide for the battery industry as well as for researchers for determining the optimal cell design for different applications.

  11. Mineral resource of the month: graphite

    USGS Publications Warehouse

    ,

    2008-01-01

    The article presents facts about graphite ideal for industrial applications. Among the characteristics of graphite are its metallic luster, softness, perfect basal cleavage and electrical conductivity. Batteries, brake linings and powdered metals are some of the products that make use of graphite. It attributes the potential applications for graphite in high-technology fields to innovations in thermal technology and acid-leaching techniques.

  12. Method of Obtaining Uniform Coatings on Graphite

    DOEpatents

    Campbell, I. E.

    1961-04-01

    A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.

  13. METHOD OF OBTAINING UNIFORM COATINGS ON GRAPHITE

    DOEpatents

    Campbell, I.E.

    1961-04-01

    A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.

  14. Graphitized needle cokes and natural graphites for lithium intercalation

    SciTech Connect

    Tran, T.D.; Spellman, L.M.; Pekala, R.W.; Goldberger, W.M.; Kinoshita, K.

    1996-05-10

    This paper examined effects of heat treatment and milling (before or after heat treatment) on the (electrochemical) intercalating ability of needle petroleum coke; natural graphite particles are included for comparison. 1 tab, 4 figs, 7 refs.

  15. Density of intercalated graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Slabe, Melissa E.

    1989-01-01

    The density of Amoco P-55, P-75, P-100, and P-120 pitch-based graphite fibers and their intercalation compounds with bromine, iodine monochloride, and copper (II) chloride have been measured using a density gradient column. The distribution of densities within a fiber type is found to be a sensitive indicator of the quality of the intercalation reaction. In all cases the density was found to increase, indicating that the mass added to the graphite is dominant over fiber expansion. Density increases are small (less than 10 percent) giving credence to a model of the intercalated graphite fibers which have regions which are intercalated and regions which are not.

  16. Density of intercalated graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Slabe, Melissa E.

    1990-01-01

    The density of Amoco P-55, P-75, P-100, and P-120 pitch-based graphite fibers and their intercalation compounds with bromine, iodine monochloride, and copper (II) chloride have been measured using a density gradient column. The distribution of densities within a fiber type is found to be a sensitive indicator of the quality of the intercalation reaction. In all cases the density was found to increase, indicating that the mass added to the graphite is dominant over fiber expansion. Density increases are small (less than 10 percent) giving credence to a model of the intercalated graphite fibers which have regions which are intercalated and regions which are not.

  17. Spent graphite fuel element processing

    SciTech Connect

    Holder, N.D.; Olsen, C.W.

    1981-07-01

    The Department of Energy currently sponsors two programs to demonstrate the processing of spent graphite fuel elements. General Atomic in San Diego operates a cold pilot plant to demonstrate the processing of both US and German high-temperature reactor fuel. Exxon Nuclear Idaho Company is demonstrating the processing of spent graphite fuel elements from Rover reactors operated for the Nuclear Rocket Propulsion Program. This work is done at Idaho National Engineering Laboratory, where a hot facility is being constructed to complete processing of the Rover fuel. This paper focuses on the graphite combustion process common to both programs.

  18. Fillers for improved graphite fiber retention by polymer matrix composites

    NASA Technical Reports Server (NTRS)

    House, E. E.; Sheppard, C. H.

    1981-01-01

    The results of a program designed to determine the extent to which elemental boron and boron containing fillers added to the matrix resin of graphite/epoxy composites prevent the release of graphite fibers when the composites are exposed to fire and impact conditions are described. The fillers evaluated were boron, boron carbide and aluminum boride. The conditions evaluated were laboratory simulations of those that could exist in the event of an aircraft crash and burn situation. The baseline (i.e., unfilled) laminates evaluated were prepared from commercially available graphite/epoxy. The baseline and filled laminates' mechanical properties, before and after isothermal and humidity aging, also were compared. It was found that a small amount of graphite fiber was released from the baseline graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that the addition of boron and boron containing fillers to the resin matrix eliminated this fiber release. Mechanical properties of laminates containing the boron and boron containing fillers were lower than those of the baseline laminates. These property degradations for two systems: boron (5 micron) at 2.5 percent filler loading, and boron (5 micron) at 5.0 percent filler loading do not appear severe enough to preclude their use in structural composite applications.

  19. Development of lead-free copper alloy-graphite casting. Annual report, January--December 1994

    SciTech Connect

    Rohatgi, P.K.

    1996-02-01

    Water model experiments were conducted to develop a two-stage stirring method for obtaining higher yields and a more uniform distribution of particles in copper alloys. This was followed by several melts for synthesis of copper-graphite alloys in which T1 was used as a wetting agent to improve the wettability of graphite in the copper melt. In the first stage, a vortex method was employed to facilitate the suction of graphite particles into the copper melt. In the second stage, the specially designed stirrer was used to avoid the formation of vortex in melt. The two stage stirring was found to considerably improve the recovery of graphite, over those obtained with the prior practice of single stage stirring. In addition, graphite recoveries increased with increasing Ti content. Flotation, fluidity, and directional solidification experiments were also conducted on copper-graphite alloys synthesized in this study. Tests showed that the spiral fluidity length of the yellow brass alloy increased with temperature and decreased with graphite. The fluidity of copper-graphite alloys investigated to date remained adequate to make a variety of castings. The observations of microstructure of directional solidification and flotation showed that in certain castings the graphite particles were agglomerated and they float to the upper part of the castings where they reduced the size of grains. However, in the agglomerated form, the graphite particles improved the machinability of copper alloys in a manner similar to lead. The result of the first years work provide an improved method of synthesis of lead free copper graphite alloys with improved machinability and adequate fluidity. Future work will continue to further improve the distribution of graphite particles in casting while retaining adequate fluidity and improved machinability. Techniques like centrifugal casting will be developed to concentrate graphite in regions where it is required for machinability in bearings.

  20. Tunable Graphitic Carbon Nano-Onions Development in Carbon Nanofibers for Multivalent Energy Storage

    SciTech Connect

    Schwarz, Haiqing L.

    2016-01-01

    We developed a novel porous graphitic carbon nanofiber material using a synthesis strategy combining electrospinning and catalytic graphitization. RF hydrogel was used as carbon precursors, transition metal ions were successfully introduced into the carbon matrix by binding to the carboxylate groups of a resorcinol derivative. Transition metal particles were homogeneously distributed throughout the carbon matrix, which are used as in-situ catalysts to produce graphitic fullerene-like nanostructures surrounding the metals. The success design of graphitic carbons with enlarged interlayer spacing will enable the multivalent ion intercalation for the development of multivalent rechargeable batteries.

  1. Microstructural characterisation of nuclear grade graphite

    NASA Astrophysics Data System (ADS)

    Jones, A. N.; Hall, G. N.; Joyce, M.; Hodgkins, A.; Wen, K.; Marrow, T. J.; Marsden, B. J.

    2008-10-01

    Field emission and transmission electron microscopy are used to characterise the microstructure and morphology of baked carbon block and graphitized grades (from the same carbon block stock) of nuclear graphite. Quantitative analysis using Raman and energy dispersive spectroscopy (EDS) were used to investigate the decrease of crystallinity with graphitization and sample purity. Both baked carbon and graphitized nuclear graphites show no sensitivity of the Raman band shift to strain, consistent with strain accommodation by the porous structure.

  2. Bonded and Bolted Graphite/Polyimide Composite Joints

    NASA Technical Reports Server (NTRS)

    Skoumal, D. E.; Cushman, J. B.

    1985-01-01

    Four types of high-temperature joints designed for control surfaces. Design, analysis, and testing performed to develop four types of graphite/polyimide bonded and bolted composite joints for lightly loaded control surfaces on advanced transportation systems that operate at temperatures up to 550 degrees F (288 degrees C).

  3. CALANDRIA TYPE SODIUM GRAPHITE REACTOR

    DOEpatents

    Peterson, R.M.; Mahlmeister, J.E.; Vaughn, N.E.; Sanders, W.J.; Williams, A.C.

    1964-02-11

    A sodium graphite power reactor in which the unclad graphite moderator and fuel elements are contained within a core tank is described. The core tank is submersed in sodium within the reactor vessel. Extending longitudinally through the core thnk are process tubes with fuel elements positioned therein. A bellows sealing means allows axial expansion and construction of the tubes. Within the core tank, a leakage plenum is located below the graphite, and above the graphite is a gas space. A vent line regulates the gas pressure in the space, and another line removes sodium from the plenum. The sodium coolant flows from the lower reactor vessel through the annular space between the fuel elements and process tubes and out into the reactor vessel space above the core tank. From there, the heated coolant is drawn off through an outlet line and sent to the heat exchange. (AEC)

  4. Graphite-reinforced bone cement

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.

    1976-01-01

    Chopped graphite fibers added to surgical bone cement form bonding agent with mechanical properties closely matched to those of bone. Curing reaction produces less heat, resulting in reduced traumatization of body tissues. Stiffness is increased without affecting flexural strength.

  5. Intercalated hybrid graphite fiber composite

    NASA Technical Reports Server (NTRS)

    Gaier, James R. (Inventor)

    1993-01-01

    The invention is directed to a highly conductive lightweight hybrid material and methods of producing the same. The hybrid composite is obtained by weaving strands of a high strength carbon or graphite fiber into a fabric-like structure, depositing a layer of carbon onto the structure, heat treating the structure to graphitize the carbon layer, and intercalating the graphitic carbon layer structure. A laminate composite material useful for protection against lightning strikes comprises at least one layer of the hybrid material over at least one layer of high strength carbon or graphite fibers. The composite material of the present invention is compatible with matrix compounds, has a coefficient of thermal expansion which is the same as underlying fiber layers, and is resistant to galvanic corrosion in addition to being highly conductive. These materials are useful in the aerospace industry, in particular as lightning strike protection for airplanes.

  6. Graphite for the nuclear industry

    SciTech Connect

    Burchell, T.D.; Fuller, E.L.; Romanoski, G.R.; Strizak, J.P.

    1991-01-01

    Graphite finds applications in both fission and fusion reactors. Fission reactors harness the energy liberated when heavy elements, such as uranium or plutonium, fragment or fission''. Reactors of this type have existed for nearly 50 years. The first nuclear fission reactor, Chicago Pile No. 1, was constructed of graphite under a football stand at Stagg Field, University of Chicago. Fusion energy devices will produce power by utilizing the energy produced when isotopes of the element hydrogen are fused together to form helium, the same reaction that powers our sun. The role of graphite is very different in these two reactor systems. Here we summarize the function of the graphite in fission and fusion reactors, detailing the reasons for their selection and discussing some of the challenges associated with their application in nuclear fission and fusion reactors. 10 refs., 15 figs., 1 tab.

  7. Role of nuclear grade graphite in controlling oxidation in modular HTGRs

    SciTech Connect

    Windes, Willaim; Strydom, G.; Kane, J.; Smith, R.

    2014-11-01

    The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of core environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.

  8. Irradiation Induced Creep of Graphite

    SciTech Connect

    Burchell, Timothy D; Murty, Prof K.L.; Eapen, Dr. Jacob

    2010-01-01

    The current status of graphite irradiation induced creep strain prediction is reviewed and the major creep models are described. The ability of the models to quantitatively predict the irradiation induced creep strain of graphite is reported. Potential mechanisms of in-crystal creep are reviewed as are mechanisms of pore generation under stress. The case for further experimental work is made and the need for improved creep models across multi-scales is highlighted.

  9. Electrostatic properties of graphitic nanostructures

    NASA Astrophysics Data System (ADS)

    Erbahar, Dogan

    2014-03-01

    Carbon nanostructures are considered to be one of the most important candidates of circuit elements for future nanoelectronics. However, being one of the main issues of conventional circuitry used today, charge accumulation on circuit elements can also be expected to have important effects on the performance of the nanoscale devices. In this work we investigated charge accumulation on various graphitic systems by simulated charge doping. We report ab initio density functional theory (DFT) calculations of electrostatically charged multilayered carbon nano structures. We investigate the effect of total and background charge on charge distribution profiles on the systems under consideration varying from multilayered graphene to multiwalled carbon nanotubes. We show that the charge distribution profile on the inner layers are mainly induced from the background charge which is imposed by the code on periodic systems. Our population anaylsis indicates that the outermost two layers effectively shields the inner layers electrostatically. Illuminating the typical skin depth of those systems our results could give important insights for designing the nanocircuit elements.

  10. Graphite to Inconel brazing using active filler metal

    SciTech Connect

    King, J.F.; Baity, F.W.; Walls, J.C.; Hoffman, D.J.

    1989-01-01

    Ion cyclotron resonant frequency (ICRF) antennas are designed to supply large amounts of auxiliary heating power to fusion-grade plasmas in the Toroidal Fusion Test Reactor (TFTR) and Tore Supra fusion energy experiments. A single Faraday shield structure protects a pair of resonant double loops which are designed to launch up to 2 MW of power per loop. The shield consists of two tiers of actively cooled Inconel alloy tubes with the front tier being covered with semicircular graphite tiles. Successful operation of the antenna requires the making of high integrity bonds between the Inconel tubes and graphite tiles by brazing. This paper discusses this process.

  11. Machining graphite composites with polycrystalline diamond end mills

    NASA Astrophysics Data System (ADS)

    Kohkonen, Kent E.; Anderson, Scott; Strong, A. B.

    One area of focus in developing light-strong materials has been the development of graphite/epoxy composites. The graphite/epoxy materials have created challenges in the area of fabrication and machining. The research objective was to determine if cutting tool material and style of cutting edge showed any significant differences in tool life. The cutting tool materials and cutter styles included helical carbide-end mills and straight and helical polycrystalline diamond-end mill cutters. The experimental design was developed using a fractional factorial design running twelve tests. Results were taken from cutting tool flank edge wear, composite part surface finish, and visual delamination of the part.

  12. Effects of temperature on internal friction of Graphit-iC graphite-like carbon coatings

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-yong; Shi, Wen; Wan, Zi; Yuan, Jun-feng; Li, Xiao

    2013-12-01

    Graphit-iC graphite-like carbon coatings were deposited on SDC90 cold work die steel by using an unbalanced magnetron sputtering technology. Effects of the temperature on microstructure and internal friction of the carbon coatings were characterized by Raman spectroscopy (Raman) and a low-frequency mechanical analyzer (LMA-1) testing system. The results indicate that the internal friction of the two-side deposited carbon coatings is small (2.17×10-4), being higher than one of the substrate (1.63×10-4), and increases with temperature. However, there is an internal friction peak at 250°C accompanied with partial sp3 transferred to sp2 and increasing the intensity ratio ID/IG. There is gradual graphitization tendency of the carbon coatings as temperatures increase from 25°C to 350 °C. This would be progressive transformation from amorphous to crystalline.

  13. Ferric chloride graphite intercalation compounds prepared from graphite fluoride

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1994-01-01

    The reaction between graphite fluoride and ferric chloride was observed in the temperature range of 300 to 400 C. The graphite fluorides used for this reaction have an sp3 electronic structure and are electrical insulators. They can be made by fluorinating either carbon fibers or powder having various degrees of graphitization. Reaction is fast and spontaneous and can occur in the presence of air. The ferric chloride does not have to be predried. The products have an sp2 electronic structure and are electrical conductors. They contain first stage FeCl3 intercalated graphite. Some of the products contain FeCl2*2H2O, others contain FeF3 in concentrations that depend on the intercalation condition. The graphite intercalated compounds (GIC) deintercalated slowly in air at room temperature, but deintercalated quickly and completely at 370 C. Deintercalation is accompanied by the disappearing of iron halides and the formation of rust (hematite) distributed unevenly on the fiber surface. When heated to 400 C in pure N2 (99.99 vol %), this new GIC deintercalates without losing its molecular structure. However, when the compounds are heated to 800 C in quartz tube, they lost most of its halogen atoms and formed iron oxides (other than hematite), distributed evenly in or on the fiber. This iron-oxide-covered fiber may be useful in making carbon-fiber/ceramic-matrix composites with strong bonding at the fiber-ceramic interface.

  14. Ferrix Chloride-Graphite Intercalation Compounds Prepared From Graphite Flouride

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1995-01-01

    The reaction between graphite fluoride and ferric chloride was observed in the temperature range of 300 to 400 C. The graphite fluorides used for this reaction have an sp(sup 3) electronic structure and are electrical insulators. They can be made by fluorinating either carbon fibers or powder having various degrees of graphitization. Reaction is fast and spontaneous and can occur in the presence of air. The ferric chloride does not have to be predried. The products have an sp(sup 2) electronic structure and are electrical conductors. They contain first-stage FeCl3 intercalated graphite. Some of the products contain FeCl2 (center dot) 2H2O, others contain FeF3, in concentrations that depend on the intercalation condition. The graphite intercalated compounds (GIC) deintercalated slowly in air at room temperature, but deintercalated quickly and completely at 370 C. Deintercalation is accompanied by the disappearance of iron halides and the formation of rust (hematite) distributed unevenly on the fiber surface. When heated to 400 C in pure N2 (99.99 vol%), this new GIC deintercalates without losing its molecular structure. However, when the compounds are exposed to 800 C N2, in a quartz tube, they lost most of their halogen atoms and formed iron oxides (other than hematite), distributed evenly in or on the fiber.

  15. Ferrix Chloride-Graphite Intercalation Compounds Prepared From Graphite Flouride

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1995-01-01

    The reaction between graphite fluoride and ferric chloride was observed in the temperature range of 300 to 400 C. The graphite fluorides used for this reaction have an sp(sup 3) electronic structure and are electrical insulators. They can be made by fluorinating either carbon fibers or powder having various degrees of graphitization. Reaction is fast and spontaneous and can occur in the presence of air. The ferric chloride does not have to be predried. The products have an sp(sup 2) electronic structure and are electrical conductors. They contain first-stage FeCl3 intercalated graphite. Some of the products contain FeCl2 (center dot) 2H2O, others contain FeF3, in concentrations that depend on the intercalation condition. The graphite intercalated compounds (GIC) deintercalated slowly in air at room temperature, but deintercalated quickly and completely at 370 C. Deintercalation is accompanied by the disappearance of iron halides and the formation of rust (hematite) distributed unevenly on the fiber surface. When heated to 400 C in pure N2 (99.99 vol%), this new GIC deintercalates without losing its molecular structure. However, when the compounds are exposed to 800 C N2, in a quartz tube, they lost most of their halogen atoms and formed iron oxides (other than hematite), distributed evenly in or on the fiber.

  16. Kinetics of Chronic Oxidation of NBG-17 Nuclear Graphite by Water Vapor

    SciTech Connect

    Contescu, Cristian I; Burchell, Timothy D; Mee, Robert

    2015-05-01

    This report presents the results of kinetic measurements during accelerated oxidation tests of NBG-17 nuclear graphite by low concentration of water vapor and hydrogen in ultra-high purity helium. The objective is to determine the parameters in the Langmuir-Hinshelwood (L-H) equation describing the oxidation kinetics of nuclear graphite in the helium coolant of high temperature gas-cooled reactors (HTGR). Although the helium coolant chemistry is strictly controlled during normal operating conditions, trace amounts of moisture (predictably < 0.2 ppm) cannot be avoided. Prolonged exposure of graphite components to water vapor at high temperature will cause very slow (chronic) oxidation over the lifetime of graphite components. This behavior must be understood and predicted for the design and safe operation of gas-cooled nuclear reactors. The results reported here show that, in general, oxidation by water of graphite NBG-17 obeys the L-H mechanism, previously documented for other graphite grades. However, the characteristic kinetic parameters that best describe oxidation rates measured for graphite NBG-17 are different than those reported previously for grades H-451 (General Atomics, 1978) and PCEA (ORNL, 2013). In some specific conditions, certain deviations from the generally accepted L-H model were observed for graphite NBG-17. This graphite is manufactured in Germany by SGL Carbon Group and is a possible candidate for the fuel elements and reflector blocks of HTGR.

  17. Seam bonding of graphite reinforced composite panels

    NASA Technical Reports Server (NTRS)

    Buckley, John D.; Fox, Robert L.; Tyeryar, James R.

    1986-01-01

    An account is given of the design features and operating characteristics of a method for the joining of composite parts, at a rate of 2 to 6 inches/min, in which the heating process responsible for adhesive flow at 800 F is focused upon the overlapped seam. The heating element is a self-tuning solid state power oscillator whose ferrite's toroid geometry generates a uniform, concentrated magnetic flux in the component to be bonded. Specimens cut from graphite/epoxy panels bonded with epoxy-phenolic adhesive by this process have exhibited average lap-shear strengths of the order of 3400 lbs/sq in.

  18. Drilling Holes in Graphite/Epoxy

    NASA Technical Reports Server (NTRS)

    Minlionica, Ronald

    1987-01-01

    Relatively long-lived bit produces high-quality holes. Effective combination of cutting-tool design, feed, and speed determined for drilling 3/16-and-1/4-in. (0.48-and 0.65-cm) diameter holes in 0.18 in. (0.46cm) thick GM3013A or equivalent graphite/epoxy corrugated spar without backup material and without coolant. Developed to produce holes in blind areas, optimal techniques yielded holes of high quality, with minimal or acceptable delamination and/or fiber extension on drill-exit side.

  19. Graphite Formation in Cast Iron

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.

    1985-01-01

    In the first phase of the project it was proven that by changing the ratio between the thermal gradient and the growth rate for commercial cast iron samples solidifying in a Bridgman type furnace, it is possible to produce all types of graphite structures, from flake to spheroidal, and all types of matrices, from ferritic to white at a certain given level of cerium. KC-135 flight experiments have shown that in a low-gravity environment, no flotation occurs even in spheroidal graphite cast irons with carbon equivalent as high as 5%, while extensive graphite flotation occurred in both flake and spheroidal graphite cast irons, in high carbon samples solidified in a high gravity environment. This opens the way for production of iron-carbon composite materials, with high carbon content (e.g., 10%) in a low gravity environment. By using KC-135 flights, the influence of some basic elements on the solidification of cast iron will be studied. The mechanism of flake to spheroidal graphite transition will be studied, by using quenching experiments at both low and one gravity for different G/R ratios.

  20. NGNP Graphite Testing and Qualification Specimen Selection Strategy

    SciTech Connect

    Robert Bratton

    2005-05-01

    The available grades of graphite for the NGNP are reviewed. A selection matrix is presented outlining the available grades for the NGNP graphite irradiation program based upon input from potential NGNP vendors, graphite manufactures, and graphite experts.

  1. Development of polyphenylquinoxaline graphite composites.

    NASA Technical Reports Server (NTRS)

    Shdo, J. G.; Hoggatt, J. T.

    1973-01-01

    The potential of polyphenylquinoxaline (PPQ)/graphite composites to serve as structural material at 316 C (600 F) has been demonstrated using a block copolymer, BICo(1:3), PPQ derivative. Initially, 13 polyphenylquinoxalines were evaluated. From this work, four candidate polymers were selected for preliminary evaluation as matrices for HMS graphite fiber reinforced composites. The preliminary composite evaluation enabled selection of one of the four polymers for advanced composite preparation and testing. Using an experimentally established cure schedule for each of the four polymers, preliminary laminates of 50% resin volume content, prepared without postcure, were tested for flexure strength and modulus, interlaminar shear strength (short beam), tensile strength, and modulus of ambient temperature. The potential of PPQ/graphite laminates to serve as short term structural materials at temperatures up to 371 C (700 F) was demonstrated through weight loss experiments.

  2. Thermal Pyrolytic Graphite Enhanced Components

    NASA Technical Reports Server (NTRS)

    Hardesty, Robert E. (Inventor)

    2015-01-01

    A thermally conductive composite material, a thermal transfer device made of the material, and a method for making the material are disclosed. Apertures or depressions are formed in aluminum or aluminum alloy. Plugs are formed of thermal pyrolytic graphite. An amount of silicon sufficient for liquid interface diffusion bonding is applied, for example by vapor deposition or use of aluminum silicon alloy foil. The plugs are inserted in the apertures or depressions. Bonding energy is applied, for example by applying pressure and heat using a hot isostatic press. The thermal pyrolytic graphite, aluminum or aluminum alloy and silicon form a eutectic alloy. As a result, the plugs are bonded into the apertures or depressions. The composite material can be machined to produce finished devices such as the thermal transfer device. Thermally conductive planes of the thermal pyrolytic graphite plugs may be aligned in parallel to present a thermal conduction path.

  3. Comparison of irradiation behaviour of HTR graphite grades

    NASA Astrophysics Data System (ADS)

    Heijna, M. C. R.; de Groot, S.; Vreeling, J. A.

    2017-08-01

    The INNOGRAPH irradiations were executed in the High Flux Reactor (HFR) in Petten by NRG supported by the European Framework programs HTR-M, RAPHAEL, and ARCHER to generate data on the irradiation behaviour of graphite grades for High Temperature Reactor (HTR) application available at that time. Samples of the graphite grades NBG-10, NBG-17, NBG-18, NBG-20, NBG-25, PCEA, PPEA, PCIB, and IG-110 have been irradiated at 750 °C and 950 °C. The inherent scatter induced by the probabilistic material behaviour of graphite requires uncertainty and scatter induced by test conditions and post-irradiation examination to be minimized. The INNOGRAPH irradiations supplied an adequate number of irradiated samples to enable accurate determination of material properties and their evolution under irradiation. This allows comparison of different graphite grades and a qualitative assessment of their appropriateness for HTR applications, as a basis of selection, design and core component lifetime. The results indicate that coarse grained graphite grades exhibit more favourable behaviour for application in HTRs due to their low dimensional anisotropy and fracture propagation resilience.

  4. Effective Thermal Conductivity of Graphite Materials with Cracks

    NASA Astrophysics Data System (ADS)

    Pestchaanyi, S. E.; Landman, I. S.

    The dependence of effective thermal diffusivity on temperature caused by volumetric cracks is modelled for macroscopic graphite samples using the three-dimensional thermomechanics code Pegasus-3D. At high off-normal heat loads typical of the divertor armour, thermostress due to the anisotropy of graphite grains is much larger than that due to the temperature gradient. Numerical simulation demonstrated that the volumetric crack density both in fine grain graphites and in the CFC matrix depends mainly on the local sample temperature, not on the temperature gradient. This allows to define an effective thermal diffusivity for graphite with cracks. The results obtained are used to explain intense cracking and particle release from carbon based materials under electron beam heat load. Decrease of graphite thermal diffusivity with increase of the crack density explains particle release mechanism in the experiments with CFC where a clear energy threshold for the onset of particle release has been observed in J. Linke et al. Fusion Eng. Design, in press, Bazyler et al., these proceedings. Surface temperature measurement is necessary to calibrate the Pegasus-3D code for simulation of ITER divertor armour brittle destruction.

  5. Systems and methods for forming defects on graphitic materials and curing radiation-damaged graphitic materials

    DOEpatents

    Ryu, Sunmin; Brus, Louis E.; Steigerwald, Michael L.; Liu, Haitao

    2012-09-25

    Systems and methods are disclosed herein for forming defects on graphitic materials. The methods for forming defects include applying a radiation reactive material on a graphitic material, irradiating the applied radiation reactive material to produce a reactive species, and permitting the reactive species to react with the graphitic material to form defects. Additionally, disclosed are methods for removing defects on graphitic materials.

  6. Development of lightweight graphite/polyimide sandwich panels.

    NASA Technical Reports Server (NTRS)

    Poesch, J. G.

    1972-01-01

    Lightweight graphite/polyimide composite honeycomb core and sandwich panels were fabricated and tested. Honeycomb cores of 1/4-in. and 3/8-in. cell sizes of hexagonal configuration were produced from thin plus or minus 45 deg cross plied sheets of prepreg producing core weights between 1.8 and 3.6 lb/cu ft. Thin gauge prepreg using Hercules graphite tow and Monsanto Skybond 710 polyimide resin were manufactured to produce cured ply thicknesses of 0.001 to 0.002 in. Graphite core properties measured at temperatures from -150 to 600 F are reported. Core properties which are superior to available materials were obtained. Sandwich panels weighing less than 0.5 lb/sq ft were designed and fabricated which meet the support structure loads for the shuttle orbiter thermal protection system.

  7. Development of lightweight graphite/polyimide sandwich panels.

    NASA Technical Reports Server (NTRS)

    Poesch, J. G.

    1972-01-01

    Lightweight graphite/polyimide composite honeycomb core and sandwich panels were fabricated and tested. Honeycomb cores of 1/4-in. and 3/8-in. cell sizes of hexagonal configuration were produced from thin plus or minus 45 deg cross plied sheets of prepreg producing core weights between 1.8 and 3.6 lb/cu ft. Thin gauge prepreg using Hercules graphite tow and Monsanto Skybond 710 polyimide resin were manufactured to produce cured ply thicknesses of 0.001 to 0.002 in. Graphite core properties measured at temperatures from -150 to 600 F are reported. Core properties which are superior to available materials were obtained. Sandwich panels weighing less than 0.5 lb/sq ft were designed and fabricated which meet the support structure loads for the shuttle orbiter thermal protection system.

  8. The irradiation dimensional changes of grade TSX graphite

    SciTech Connect

    Kennedy, C R; Woodruff, E M

    1988-01-01

    Grade TSX graphite is used as a moderator in the N Reactor which has operated since 1963. This reactor, designed for a 25-year life, is under study to determine the possibility of significantly extending the operating life. One limiting factor is dimensional growth of the graphite lattice making up the core of the reactor. Since the original demands (25-year life) were modest, the dimensional change behavior was derived from a compendium of irradiation data from other grades and only confirmed by a few low-exposure irradiation experiments. Therefore, to generate actual dimensional change data for grade TSX to exposures relevant to the life extension plans, a series of irradiations of TSX graphite were run in the High Flux Isotope Reactor (HFIR) at Oak Ridge. This report contains experimental results of such testing. 5 refs., 3 figs.

  9. Method of Joining Graphite Fibers to a Substrate

    NASA Technical Reports Server (NTRS)

    Beringer, Durwood M. (Inventor); Caron, Mark E. (Inventor); Taddey, Edmund P. (Inventor); Gleason, Brian P. (Inventor)

    2014-01-01

    A method of assembling a metallic-graphite structure includes forming a wetted graphite subassembly by arranging one or more layers of graphite fiber material including a plurality of graphite fibers and applying a layer of metallization material to ends of the plurality of graphite fibers. At least one metallic substrate is secured to the wetted graphite subassembly via the layer of metallization material.

  10. Graphite fiber reinforced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1975-01-01

    Mechanical properties of neat resin samples and graphite fiber reinforced samples of thermoplastic resins were characterized with particular emphasis directed to the effects of environmental exposure (humidity, temperature and ultraviolet radiation). Tensile, flexural, interlaminar shear, creep and impact strengths were measured for polysulfone, polyarylsulfone and a state-of-the-art epoxy resin samples. In general, the thermoplastic resins exhibited environmental degradation resistance equal to or superior to the reference epoxy resin. Demonstration of the utility and quality of a graphite/thermoplastic resin system was accomplished by successfully thermoforming a simulated compressor blade and a fan exit guide vane.

  11. Graphite filament wound pressure vessels

    NASA Technical Reports Server (NTRS)

    Feldman, A.; Damico, J. J.

    1972-01-01

    Filament wound NOL rings, 4-inch and 8-inch diameter closed-end vessels involving three epoxy resin systems and three graphite fibers were tested to develop property data and fabrication technology for filament wound graphite/epoxy pressure vessels. Vessels were subjected to single-cycle burst tests at room temperature. Manufacturing parameters were established for tooling, winding, and curing that resulted in the development of a pressure/vessel performance factor (pressure x volume/weight) or more than 900,000 in. for an oblate spheroid specimen.

  12. RECOVERY OF VALUABLE MATERIAL FROM GRAPHITE BODIES

    DOEpatents

    Fromm, L.W. Jr.

    1959-09-01

    An electrolytic process for recovering uranium from a graphite fuel element is described. The uraniumcontaining graphite body is disposed as the anode of a cell containing a nitric acid electrolyte and a 5 amp/cm/sup 2/ current passed to induce a progressive disintegration of the graphite body. The dissolved uranium is quickly and easily separated from the resulting graphite particles by simple mechanical means, such as centrifugation, filtration, and decontamination.

  13. Raman characterization of bulk ferromagnetic nanostructured graphite

    NASA Astrophysics Data System (ADS)

    Pardo, Helena; Divine Khan, Ngwashi; Faccio, Ricardo; Araújo-Moreira, F. M.; Fernández-Werner, Luciana; Makarova, Tatiana; Mombrú, Álvaro W.

    2012-08-01

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm-1 showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  14. Composition and method for brazing graphite to graphite

    DOEpatents

    Taylor, Albert J.; Dykes, Norman L.

    1984-01-01

    The present invention is directed to a brazing material for joining graphite structures that can be used at temperatures up to about 2800.degree. C. The brazing material formed of a paste-like composition of hafnium carbide and uranium oxide with a thermosetting resin. The uranium oxide is converted to uranium dicarbide during the brazing operation and then the hafnium carbide and uranium dicarbide form a liquid phase at a temperature about 2600.degree. C. with the uranium diffusing and vaporizing from the joint area as the temperature is increased to about 2800.degree. C. so as to provide a brazed joint consisting essentially of hafnium carbide. This brazing temperature for hafnium carbide is considerably less than the eutectic temperature of hafnium carbide of about 3150.degree. C. The brazing composition also incorporates the thermosetting resin so that during the brazing operation the graphite structures may be temporarily bonded together by thermosetting the resin so that machining of the structures to final dimensions may be completed prior to the completion of the brazing operation. The resulting brazed joint is chemically and thermally compatible with the graphite structures joined thereby and also provides a joint of sufficient integrity so as to at least correspond with the strength and other properties of the graphite.

  15. Separation medium containing thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Herrera-Alonso, Margarita (Inventor)

    2012-01-01

    A separation medium, such as a chromatography filling or packing, containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g, wherein the thermally exfoliated graphite oxide has a surface that has been at least partially functionalized.

  16. CMB-13 research on carbon and graphite

    NASA Technical Reports Server (NTRS)

    Smith, M. C.

    1972-01-01

    The research on graphite and carbon for this period is reported. Topics discussed include: effects of grinding on the Santa Marie graphites, properties and purities of coal-tar, resin-bonded graphite, carbonization of resin components, and glass-like carbon filler.

  17. High speed hydrogen/graphite interaction

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Hamman, R.; Sharma, O. P.; Harrje, D. T.

    1974-01-01

    Various aspects of a research program on high speed hydrogen/graphite interaction are presented. Major areas discussed are: (1) theoretical predictions of hydrogen/graphite erosion rates; (2) high temperature, nonequilibrium hydrogen flow in a nozzle; and (3) molecular beam studies of hydrogen/graphite erosion.

  18. Graphitization behaviour of chemically derived graphene sheets.

    PubMed

    Long, Donghui; Li, Wei; Qiao, Wenming; Miyawaki, Jin; Yoon, Seong-Ho; Mochida, Isao; Ling, Licheng

    2011-09-01

    Graphene sheets were prepared via chemical reduction of graphite oxides and then graphitized at 2800 °C. The structure changes from pristine graphite to graphitized graphene sheets were monitored using X-ray diffraction and Raman spectroscopy. It was found that the graphitized graphene sheets exhibited relatively low degree of graphitization and high level of structural defects. XPS spectra revealed that oxygen functionalities could be completely eliminated after graphitization. Morphology observations indicated that graphitization could induce the coalescence and connection of the crumpled graphene agglomerations into compressed grains. The connections included the joint of graphitic sheets along the c-axis with van der Waals force between graphitic sheets and the joint of sheets in the in-plane with covalent bond between carbon atoms. New structures such as the formation of loop at the tip of graphene sheets and the formation of 3D concentric graphene nanoparticles occurred in the graphitized graphene sheets, as a result of self-organization to achieve their lowest potential energy. Our findings should provide some experimental implications for understanding of graphitization behaviour and thermal stability of strictly 2D graphene monolayers.

  19. Reinforcement of cement-based matrices with graphite nanomaterials

    NASA Astrophysics Data System (ADS)

    Sadiq, Muhammad Maqbool

    micro-scale fibers were used for comparison purposes at different volume fractions. Replicated mixes and tests were considered to provide the basis for statistically reliable inferences. Theoretical studies were conducted in order to develop insight into the reinforcement mechanisms of properly functionalized graphite nanomaterials. The results suggested that modified graphite nanomaterials improve the mechanical performance of cement-based matrices primarily through control of microcrack size and propagation, relying on their close spacing within matrix and dissipation of substantial energy by debonding and frictional pullout over their enormous surface areas. The gains in barrier qualities of cement-based materials with introduction of modified graphite nanomaterials could be attributed to the increased tortuosity of diffusion paths in the presence of closely spaced nanomaterials. Experimental investigations were designed and implemented towards identification of the optimum (nano- and micro-scale) reinforcement systems for high-performance concrete through RSA (Response Surface Analysis). A comprehensive experimental data base was developed on the mechanical, physical and durability characteristics as well as the structure and composition of high-performance cementitious nanocomposites reinforced with modified graphite nanomaterials and/ or different micro-fibers.

  20. Treatment of Irradiated Graphite from French Bugey Reactor - 13424

    SciTech Connect

    Brown, Thomas; Poncet, Bernard

    2013-07-01

    Beginning in 2009, in order to determine an alternative to direct disposal for decommissioned irradiated graphite from EDF's Bugey NPP, Studsvik and EDF began a test program to determine if graphite decontamination and destruction were practicable using Studsvik's thermal organic reduction (THOR) technology. The testing program focused primarily on the release of C-14, H-3, and Cl-36 and also monitored graphite mass loss. For said testing, a bench-scale steam reformer (BSSR) was constructed with the capability of flowing various compositions of gases at temperatures up to 1300 deg. C over uniformly sized particles of graphite for fixed amounts of time. The BSSR was followed by a condenser, thermal oxidizer, and NaOH bubbler system designed to capture H-3 and C-14. Also, in a separate series of testing, high concentration acid and peroxide solutions were used to soak the graphite and leach out and measure Cl-36. A series of gasification tests were performed to scope gas compositions and temperatures for graphite gasification using steam and oxygen. Results suggested higher temperature steam (1100 deg. C vs. 900 deg. C) yielded a practicable gasification rate but that lower temperature (900 deg. C) gasification was also a practicable treatment alternative if oxygen is fed into the process. A series of decontamination tests were performed to determine the release behavior of and extent to which C-14 and H-3 were released from graphite in a high temperature (900-1300 deg. C), low flow roasting gas environment. In general, testing determined that higher temperatures and longer roasting times were efficacious for releasing H-3 completely and the majority (80%) of C-14. Manipulating oxidizing and reducing gas environments was also found to limit graphite mass loss. A series of soaking tests was performed to measure the amount of Cl-36 in the samples of graphite before and after roasting in the BSSR. Similar to C-14 release, these soaking tests revealed that 70-80% Cl-36

  1. High-strain-rate characterization of TPOs and graphite/epoxy and graphite/peek composites

    NASA Astrophysics Data System (ADS)

    Brar, N. S.; Simha, H.; Pratap, A.

    2001-06-01

    Tensile and compressive stress-strain response of two types of TPOs and graphite-epoxy composites are investigated at strain rates in the range 0.001/s-1000/s. Specimen strain in the low strain rate regime 0.001-100/s was determined using an optical extensometer in conjunction with standard MTS machine. Tensile test at high strain rate were performed on newly developed tensile version of All- Polymeric Split Hopkinson Bar. Tensile TPO specimens in the dog-bone configuration are placed in specially designed grips fabricated from nylatron. Compression response of TPO specimens at high strain rate is determined using 25.4-mm diameter aluminum bars. Peak compressive stress increases from 10 MPa at a strain rate of 100/s to 35 MPa at a strain rate of 1000/s. Preliminary data on high strain rate tensile response of graphite-epoxy and graphite-peek composites are presented. These data are intended to develop a material model incorporating strain rate sensitivity for TPOs and to be used in car crash simulations.

  2. Progress in Developing Finite Element Models Replicating Flexural Graphite Testing

    SciTech Connect

    Robert Bratton

    2010-06-01

    This report documents the status of flexural strength evaluations from current ASTM procedures and of developing finite element models predicting the probability of failure. This work is covered under QLD REC-00030. Flexural testing procedures of the American Society for Testing and Materials (ASTM) assume a linear elastic material that has the same moduli for tension and compression. Contrary to this assumption, graphite is known to have different moduli for tension and compression. A finite element model was developed and demonstrated that accounts for the difference in moduli tension and compression. Brittle materials such as graphite exhibit significant scatter in tensile strength, so probabilistic design approaches must be used when designing components fabricated from brittle materials. ASTM procedures predicting probability of failure in ceramics were compared to methods from the current version of the ASME graphite core components rules predicting probability of failure. Using the ASTM procedures yields failure curves at lower applied forces than the ASME rules. A journal paper was published in the Journal of Nuclear Engineering and Design exploring the statistical models of fracture in graphite.

  3. Ag-catalyzed InAs nanowires grown on transferable graphite flakes

    NASA Astrophysics Data System (ADS)

    Meyer-Holdt, Jakob; Kanne, Thomas; Sestoft, Joachim E.; Gejl, Aske; Zeng, Lunjie; Johnson, Erik; Olsson, Eva; Nygård, Jesper; Krogstrup, Peter

    2016-09-01

    Semiconducting nanowires grown by quasi-van-der-Waals epitaxy on graphite flakes are a new class of hybrid materials that hold promise for scalable nanostructured devices within opto-electronics. Here we report on high aspect ratio and stacking fault free Ag-seeded InAs nanowires grown on exfoliated graphite flakes by molecular beam epitaxy. Ag catalyzes the InAs nanowire growth selectively on the graphite flakes and not on the underlying InAs substrates. This allows for easy transfer of the flexible graphite flakes with as-grown nanowire ensembles to arbitrary substrates by a micro-needle manipulator. Besides the possibilities for fabricating novel nanostructure device designs, we show how this method is used to study the parasitic growth and bicrystal match between the graphite flake and the nanowires by transmission electron microscopy.

  4. Ag-catalyzed InAs nanowires grown on transferable graphite flakes.

    PubMed

    Meyer-Holdt, Jakob; Kanne, Thomas; Sestoft, Joachim E; Gejl, Aske; Zeng, Lunjie; Johnson, Erik; Olsson, Eva; Nygård, Jesper; Krogstrup, Peter

    2016-09-09

    Semiconducting nanowires grown by quasi-van-der-Waals epitaxy on graphite flakes are a new class of hybrid materials that hold promise for scalable nanostructured devices within opto-electronics. Here we report on high aspect ratio and stacking fault free Ag-seeded InAs nanowires grown on exfoliated graphite flakes by molecular beam epitaxy. Ag catalyzes the InAs nanowire growth selectively on the graphite flakes and not on the underlying InAs substrates. This allows for easy transfer of the flexible graphite flakes with as-grown nanowire ensembles to arbitrary substrates by a micro-needle manipulator. Besides the possibilities for fabricating novel nanostructure device designs, we show how this method is used to study the parasitic growth and bicrystal match between the graphite flake and the nanowires by transmission electron microscopy.

  5. Investigation of the strength of H440 graphite when subjected to combined primary and secondary stress

    SciTech Connect

    Anderson, C.A.; Fly, G.W.; Lundberg, L.B.; Romero, J.A.

    1986-04-01

    An experimental and analytical investigation of the strength of a fine-grained graphite, H440, under combined mechanical and thermal stress is described. Small sample laboratory tests were carried out to establish a mechanical property data base from which statistical parameters could be determined and then used in finite element codes for predicting failure probabilities of large graphite structural components under load. The theory was applied to graphite rings under an imposed thermal stress from a heat flux applied to the inner surface of the rings and under mechhanical stress caused by diametrically opposed concentrated loads applied to the outer surface of the rings. Rings of H440 graphite were fabricated in two sizes and tested to the combined thermal and mechanical loadings. From the results of theory and the experiments, a design rule for combining mechanical and thermal stress in graphite structural components is proposed.

  6. Graphite oral tattoo: case report.

    PubMed

    Moraes, Renata Mendonça; Gouvêa Lima, Gabriela de Morais; Guilhermino, Marinaldo; Vieira, Mayana Soares; Carvalho, Yasmin Rodarte; Anbinder, Ana Lia

    2015-10-16

    Pigmented oral lesions compose a large number of pathological entities, including exogenous pigmentat oral tattoos, such as amalgam and graphite tattoos. We report a rare case of a graphite tattoo on the palate of a 62-year-old patient with a history of pencil injury, compare it with amalgam tattoos, and determine the prevalence of oral tattoos in our Oral Pathology Service. We also compare the clinical and histological findings of grafite and amalgam tattoos. Oral tattoos affect women more frequently in the region of the alveolar ridge. Graphite tattoos occur in younger patients when compared with the amalgam type. Histologically, amalgam lesions represent impregnation of the reticular fibers of vessels and nerves with silver, whereas in cases of graphite tattoos, this impregnation is not observed, but it is common to observe a granulomatous inflammatory response, less evident in cases of amalgam tattoos. Both types of lesions require no treatment, but in some cases a biopsy may be done to rule out melanocytic lesions.

  7. Fabrication of Reticulated Graphitic Foam.

    DTIC Science & Technology

    2007-11-02

    mesophase pitch (MP). Mesophase pitch is...goes through several heat treatments to stabilize the mesophase pitch , burn out the polyurethane, carbonize and finally graphitize the foam, all the while maintaining the same morphology as the initial polyurethane foam....struts gives some initial molecular orientation. The dipped foam is dried, leaving behind a the polyurethane foam coated with the pitch . The foam

  8. Igneous Graphite in Enstatite Chondrites

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1997-01-01

    Igneous graphite. a rare constituent in terrestrial mafic and ultramafic rocks. occurs in three EH and one EL enstatite chondrite impact-melt breccias as 2-150 Ilm long euhedrallaths. some with pyramidal terminations. In contrast. graphite in most enstatite chondrites exsolved from metallic Fe-Ni as polygonal. rounded or irregular aggregates. Literature data for five EH chondrites on C combusting at high temperatures show that Abee contains the most homogeneous C isotopes (i.e. delta(sup 13)C = -8.1+/-2.1%); in addition. Abee's mean delta(sup l3)C value is the same as the average high-temperature C value for the set of five EH chondrites. This suggests that Abee scavenged C from a plurality of sources on its parent body and homogenized the C during a large-scale melting event. Whereas igneous graphite in terrestrial rocks typically forms at relatively high pressure and only moderately low oxygen fugacity (e.g., approx. 5 kbar. logfO2, approx. -10 at 1200 C ). igneous graphite in asteroidal meteorites formed at much lower pressures and oxygen fugacities.

  9. Igneous Graphite in Enstatite Chondrites

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1997-01-01

    Igneous graphite. a rare constituent in terrestrial mafic and ultramafic rocks. occurs in three EH and one EL enstatite chondrite impact-melt breccias as 2-150 Ilm long euhedrallaths. some with pyramidal terminations. In contrast. graphite in most enstatite chondrites exsolved from metallic Fe-Ni as polygonal. rounded or irregular aggregates. Literature data for five EH chondrites on C combusting at high temperatures show that Abee contains the most homogeneous C isotopes (i.e. delta(sup 13)C = -8.1+/-2.1%); in addition. Abee's mean delta(sup l3)C value is the same as the average high-temperature C value for the set of five EH chondrites. This suggests that Abee scavenged C from a plurality of sources on its parent body and homogenized the C during a large-scale melting event. Whereas igneous graphite in terrestrial rocks typically forms at relatively high pressure and only moderately low oxygen fugacity (e.g., approx. 5 kbar. logfO2, approx. -10 at 1200 C ). igneous graphite in asteroidal meteorites formed at much lower pressures and oxygen fugacities.

  10. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.

    1977-01-01

    The results of research for the origination of graphite-fiber reinforced glass matrix composites are presented. The method selected to form the composites consisted of pulling the graphite fiber through a slurry containing powdered glass, winding up the graphite fiber and the glass it picks up on a drum, drying, cutting into segments, loading the tape segment into a graphite die, and hot pressing. During the course of the work, composites were made with a variety of graphite fibers in a glass matrix.

  11. Optimized Conditioning of Activated Reactor Graphite

    SciTech Connect

    Tress, G.; Doehring, L.; Pauli, H.; Beer, H.-F.

    2002-02-25

    The research reactor DIORIT at the Paul Scherrer Institute was decommissioned in 1993 and is now being dismantled. One of the materials to be conditioned is activated reactor graphite, approximately 45 tons. A cost effective conditioning method has been developed. The graphite is crushed to less than 6 mm and added to concrete and grout. This graphite concrete is used as matrix for embedding dismantling waste in containers. The waste containers that would have been needed for separate conditioning and disposal of activated reactor graphite are thus saved. Applying the new method, the cost can be reduced from about 55 SFr/kg to about 17 SFr/kg graphite.

  12. On the superconductivity of graphite interfaces

    NASA Astrophysics Data System (ADS)

    Esquinazi, P.; Heikkilä, T. T.; Lysogorskiy, Y. V.; Tayurskii, D. A.; Volovik, G. E.

    2014-11-01

    We propose an explanation for the appearance of superconductivity at the interfaces of graphite with Bernal stacking order. A network of line defects with flat bands appears at the interfaces between two slightly twisted graphite structures. Due to the flat band the probability to find high temperature superconductivity at these quasi one-dimensional corridors is strongly enhanced. When the network of superconducting lines is dense it becomes effectively two-dimensional. The model provides an explanation for several reports on the observation of superconductivity up to room temperature in different oriented graphite samples, graphite powders as well as graphite-composite samples published in the past.

  13. Catalytic properties of lamellar compounds of graphite

    NASA Astrophysics Data System (ADS)

    Novikov, Yu. N.; Vol'pin, M. E.

    1981-05-01

    In heterogenous catalysis, the supports derived from graphite and carbon-graphite materials constitute a unique and exceptionally attractive group. The lamellar compounds of graphite with various kinds of electron acceptors and donors show catalytic activities on the following reactions: the oxidation of organic compounds with molecular oxygen, many sorts of polymerization, alcohol and formic acid dehydrogenation, hydrogenation and isomerization of olefins and acetylenes, ammonia synthesis from nitrogen and hydrogen, and also CO hydrogenation. Furthermore, the transition metal lamellar compounds of graphite are highly active catalysts in the process of the graphite-to-diamond conversion.

  14. Understanding the reaction of nuclear graphite with molecular oxygen: Kinetics, transport, and structural evolution

    NASA Astrophysics Data System (ADS)

    Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.; Strydom, Gerhard; Windes, William E.

    2017-09-01

    For the next generation of nuclear reactors, HTGRs specifically, an unlikely air ingress warrants inclusion in the license applications of many international regulators. Much research on oxidation rates of various graphite grades under a number of conditions has been undertaken to address such an event. However, consequences to the reactor result from the microstructural changes to the graphite rather than directly from oxidation. The microstructure is inherent to a graphite's properties and ultimately degradation to the graphite's performance must be determined to establish the safety of reactor design. To understand the oxidation induced microstructural change and its corresponding impact on performance, a thorough understanding of the reaction system is needed. This article provides a thorough review of the graphite-molecular oxygen reaction in terms of kinetics, mass and energy transport, and structural evolution: all three play a significant role in the observed rate of graphite oxidation. These provide the foundations of a microstructurally informed model for the graphite-molecular oxygen reaction system, a model kinetically independent of graphite grade, and capable of describing both the observed and local oxidation rates under a wide range of conditions applicable to air-ingress.

  15. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.

    PubMed

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N

    2017-09-11

    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Composition and method for brazing graphite to graphite

    DOEpatents

    Taylor, A.J.; Dykes, N.L.

    1982-08-10

    A brazing material is described for joining graphite structures that can be used up to 2800/sup 0/C. The brazing material is formed of a paste-like composition of hafnium carbide and uranium oxide with a thermosetting resin. The uranium oxide is converted to uranium dicarbide during the brazing operation and then the hafnium carbide and uranium dicarbide form a liquid phase at a temperature about 2600/sup 0/C with the uranium diffusing and vaporizing from the joint area as the temperature is increased to about 2800/sup 0/C so as to provide a brazed joint consisting essentially of hafnium carbide. The resulting brazed joint is chemically and thermally compatible with the graphite structures.

  17. Evidence of graphitic AB stacking order of graphite oxides.

    PubMed

    Jeong, Hae-Kyung; Lee, Yun Pyo; Lahaye, Rob J W E; Park, Min-Ho; An, Kay Hyeok; Kim, Ick Jun; Yang, Cheol-Woong; Park, Chong Yun; Ruoff, Rodney S; Lee, Young Hee

    2008-01-30

    Graphite oxide (GO) samples were prepared by a simplified Brodie method. Hydroxyl, epoxide, carboxyl, and some alkyl functional groups are present in the GO, as identified by solid-state 13C NMR, Fourier-transform infrared spectroscopy, and X-ray photoemission spectroscopy. Starting with pyrolytic graphite (interlayer separation 3.36 A), the average interlayer distance after 1 h of reaction, as determined by X-ray diffraction, increased to 5.62 A and then increased with further oxidation to 7.37 A after 24 h. A smaller signal in 13C CPMAS NMR compared to that in 13C NMR suggests that carboxyl and alkyl groups are at the edges of the flakes of graphite oxide. Other aspects of the chemical bonding were assessed from the NMR and XPS data and are discussed. AB stacking of the layers in the GO was inferred from an electron diffraction study. The elemental composition of GO prepared using this simplified Brodie method is further discussed.

  18. Graphite Foam Heat Exchangers for Thermal Management

    SciTech Connect

    Klett, J.W.

    2004-06-07

    Improved thermal management is needed to increase the power density of electronic and more effectively cool electronic enclosures that are envisioned in future aircraft, spacecraft and surface ships. Typically, heat exchanger cores must increase in size to more effectively dissipate increased heat loads, this would be impossible in many cases, thus improved heat exchanger cores will be required. In this Phase I investigation, MRi aimed to demonstrate improved thermal management using graphite foam (Gr-foam) core heat exchangers. The proposed design was to combine Gr-foams from POCO with MRi's innovative low temperature, active metal joining process (S-Bond{trademark}) to bond Gr-foam to aluminum, copper and aluminum/SiC composite faceplates. The results were very favorable, so a Phase II SBIR with the MDA was initiated. This had primarily 5 tasks: (1) bonding, (2) thermal modeling, (3) cooling chip scale packages, (4) evaporative cooling techniques and (5) IGBT cold plate development. The bonding tests showed that the ''reflow'' technique with S-Bond{reg_sign}-220 resulted in the best and most consistent bond. Then, thermal modeling was used to design different chip scale packages and IGBT cold plates. These designs were used to fabricate many finned graphite foam heat sinks specifically for two standard type IC packages, the 423 and 478 pin chips. These results demonstrated several advantages with the foam. First, the heat sinks with the foam were lighter than the copper/aluminum sinks used as standards. The sinks for the 423 design made from foam were not as good as the standard sinks. However, the sinks made from foam for the 478 pin chips were better than the standard heat sinks used today. However, this improvement was marginal (in the 10-20% better regime). However, another important note was that the epoxy bonding technique resulted in heat sinks with similar results as that with the S-bond{reg_sign}, slightly worse than the S-bond{reg_sign}, but still

  19. Initial Comparison of Baseline Physical and Mechanical Properties for the VHTR Candidate Graphite Grades

    SciTech Connect

    Carroll, Mark C.

    2014-09-01

    High-purity graphite is the core structural material of choice in the Very High Temperature Reactor (VHTR) design, a graphite-moderated, helium-cooled configuration capable of producing thermal energy for power generation as well as process heat for industrial applications that require temperatures higher than the outlet temperatures of present nuclear reactors. The Baseline Graphite Characterization Program is establishing accurate as-manufactured mechanical and physical property distributions in nuclear-grade graphites by providing comprehensive data that captures the level of variation in measured values. In addition to providing a thorough comparison between these values in different graphite grades, the program is also carefully tracking individual specimen source, position, and orientation information in order to provide comparisons both in specific properties and in the associated variability between different lots, different billets, and different positions from within a single billet. This report is a preliminary comparison between each of the grades of graphite that are considered “candidate” grades from four major international graphite producers. These particular grades (NBG-18, NBG-17, PCEA, IG-110, and 2114) are the major focus of the evaluations presently underway on irradiated graphite properties through the series of Advanced Graphite Creep (AGC) experiments. NBG-18, a medium-grain pitch coke graphite from SGL from which billets are formed via vibration molding, was the favored structural material in the pebble-bed configuration. NBG-17 graphite from SGL is essentially NBG-18 with the grain size reduced by a factor of two. PCEA, petroleum coke graphite from GrafTech with a similar grain size to NBG-17, is formed via an extrusion process and was initially considered the favored grade for the prismatic layout. IG-110 and 2114, from Toyo Tanso and Mersen (formerly Carbone Lorraine), respectively, are fine-grain grades produced via an isomolding

  20. Thermal charging study of compressed expanded natural graphite/phase change material composites

    SciTech Connect

    Mallow, Anne; Abdelaziz, Omar; Graham, Jr., Samuel

    2016-08-12

    The thermal charging performance of paraffin wax combined with compressed expanded natural graphite foam was studied for different graphite bulk densities. Constant heat fluxes between 0.39 W/cm2 and 1.55 W/cm2 were applied, as well as a constant boundary temperature of 60 °C. Thermal charging experiments indicate that, in the design of thermal batteries, thermal conductivity of the composite alone is an insufficient metric to determine the influence of the graphite foam on the thermal energy storage. By dividing the latent heat of the composite by the time to end of melt for each applied boundary condition, the energy storage performance was calculated to show the effects of composite thermal conductivity, graphite bulk density, and latent heat capacity. For the experimental volume, the addition of graphite beyond a graphite bulk density of 100 kg/m3 showed limited benefit on the energy storage performance due to the decrease in latent heat storage capacity. These experimental results are used to validate a numerical model to predict the time to melt and for future use in the design of heat exchangers with graphite-foam based phase change material composites. As a result, size scale effects are explored parametrically with the validated model.

  1. Thermal charging study of compressed expanded natural graphite/phase change material composites

    SciTech Connect

    Mallow, Anne; Abdelaziz, Omar; Graham, Jr., Samuel

    2016-08-12

    The thermal charging performance of paraffin wax combined with compressed expanded natural graphite foam was studied for different graphite bulk densities. Constant heat fluxes between 0.39 W/cm2 and 1.55 W/cm2 were applied, as well as a constant boundary temperature of 60 °C. Thermal charging experiments indicate that, in the design of thermal batteries, thermal conductivity of the composite alone is an insufficient metric to determine the influence of the graphite foam on the thermal energy storage. By dividing the latent heat of the composite by the time to end of melt for each applied boundary condition, the energy storage performance was calculated to show the effects of composite thermal conductivity, graphite bulk density, and latent heat capacity. For the experimental volume, the addition of graphite beyond a graphite bulk density of 100 kg/m3 showed limited benefit on the energy storage performance due to the decrease in latent heat storage capacity. These experimental results are used to validate a numerical model to predict the time to melt and for future use in the design of heat exchangers with graphite-foam based phase change material composites. As a result, size scale effects are explored parametrically with the validated model.

  2. Thermal charging study of compressed expanded natural graphite/phase change material composites

    DOE PAGES

    Mallow, Anne; Abdelaziz, Omar; Graham, Jr., Samuel

    2016-08-12

    The thermal charging performance of paraffin wax combined with compressed expanded natural graphite foam was studied for different graphite bulk densities. Constant heat fluxes between 0.39 W/cm2 and 1.55 W/cm2 were applied, as well as a constant boundary temperature of 60 °C. Thermal charging experiments indicate that, in the design of thermal batteries, thermal conductivity of the composite alone is an insufficient metric to determine the influence of the graphite foam on the thermal energy storage. By dividing the latent heat of the composite by the time to end of melt for each applied boundary condition, the energy storage performancemore » was calculated to show the effects of composite thermal conductivity, graphite bulk density, and latent heat capacity. For the experimental volume, the addition of graphite beyond a graphite bulk density of 100 kg/m3 showed limited benefit on the energy storage performance due to the decrease in latent heat storage capacity. These experimental results are used to validate a numerical model to predict the time to melt and for future use in the design of heat exchangers with graphite-foam based phase change material composites. As a result, size scale effects are explored parametrically with the validated model.« less

  3. Graphite moderated (252)Cf source.

    PubMed

    Sajo-Bohus, Laszlo; Barros, Haydn; Greaves, Eduardo D; Vega-Carrillo, Hector Rene

    2015-06-01

    The Thorium molten-salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid-fuel reactor. The neutron source to run this subcritical reactor is a (252)Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the (252)Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. 3He on preplated graphite

    NASA Astrophysics Data System (ADS)

    Gordillo, M. C.; Boronat, J.

    2016-10-01

    By using the diffusion Monte Carlo method, we obtained the full phase diagram of 3He on top of graphite preplated with a solid layer of 4He. All the 4He atoms of the substrate were explicitly considered and allowed to move during the simulation. We found that the ground state is a liquid of density 0.007 ±0.001 Å-2, in good agreement with available experimental data. This is significantly different from the case of 3He on clean graphite, in which both theory and experiment agree on the existence of a gas-liquid transition at low densities. Upon an increase in 3He density, we predict a first-order phase transition between a dense liquid and a registered 7/12 phase, the 4/7 phase being found metastable in our calculations. At larger second-layer densities, a final transition is produced to an incommensurate triangular phase.

  5. Dispersive interactions in graphitic nanostructures

    NASA Astrophysics Data System (ADS)

    Woods, L. M.; Popescu, A.; Drosdoff, D.; Bondarev, I. V.

    2013-02-01

    The Casimir interaction between graphitic nanostructures, such as carbon nanotubes and graphene sheets, is investigated at the quantum mechanical limit (T = 0 K) using a quantum electrodynamical approach for absorbing and dispersive media. It is found that the nanotube/nanotube interaction in a double wall carbon nanotube configuration is profoundly affected by the collective low frequency excitations of individual nanotubes. It is shown that pronounced, low frequency peaks in the nanotube electron energy loss spectra are a main factor contributing to the strength of the intertube attraction. The graphene/graphene force is also investigated. It is obtained that the graphene optical transparency is the main reason for the reduced attraction as compared to the one for perfect metals. This study presents a unified approach for electromagnetic interactions in graphitic nanostructures, which is able to account for their unique electronic and response properties and geometry configurations.

  6. 3D-graphite structure

    SciTech Connect

    Belenkov, E. A. Ali-Pasha, V. A.

    2011-01-15

    The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.

  7. Nonlinear Deformation of Graphitic Materials

    DTIC Science & Technology

    1975-02-01

    is not _justied. -aically, the stress Iradient is Wilieved-to be- the- main - cause diffences- between predcttd -nd measureds insfor the.specimen idet...wall stress of 3550 psi. The predicted strains for the (0:1) stress ratio case do not coincide with the average experimental strains be- cause the...on te.v’s, eldet ifete .. ,my ond Idonflv by block nuember) Graphite, Composite Materials, Stress Analysis, Orthotropy, Material Modeling 20 ABSTRACT

  8. Poco Graphite Mirror Metrology Report

    NASA Technical Reports Server (NTRS)

    Kester, Thomas J.

    2005-01-01

    Recently a lightweight mirror technology was tested at Marshall Space Flight Center's Space Optic Manufacturing Technology Center (MSFC, SOMTC). The mirror is a Poco Graphite CVD Si clad SiC substrate. It was tested for cryogenic (cryo) survivability to 20deg Kelvin in SOMTC's X-ray Calibration and Cryogenic Test Facility. The surface figure of the mirror was measured before and after cry0 cycling. The test technique and results are discussed.

  9. Synthetic Metals from Intercalated Graphite

    DTIC Science & Technology

    1988-05-09

    transition in the bromine-GIC system at elevated temperature, predicted theoretically in 1949. We have now identified a new novel commensurate-incommensurate...maintained upon intercalate melting (# 85). 2.2.4 Model for Staging in Intercalated Graphite A model for staging has been developed (# 21) based on an...calculations have been used to identify the magnetic phases (# 52). A model based on magnon drag effects has been developed to account for the resistivity

  10. Development of polyphenylquinoxaline graphite composites

    NASA Technical Reports Server (NTRS)

    Hoggatt, J. T.; Hergenrother, P. M.; Shdo, J. G.

    1973-01-01

    The potential of polyphenylquinoxaline (PPQ)/graphite composites to serve as structural material at 316 C (600 F)has been demonstrated using a block copolymer, BlCo(13), PPQ derivative. Initially, thirteen polyphenylquinoxalines were evaluated. From this work, four candidate polymers were selected for preliminary evaluation as matrices for HMS graphite fiber reinforced composites. The preliminary composite evaluation enabled selection of one of the four polymers for advanced composite preparation and testing. Using an experimentally established cure schedule for each of the four polymers, preliminary laminates of 50% resin volume content, prepared without postcure, were tested for flexure strength and modulus, interlaminar shear strength (short beam), and tensile strength and modulus at ambient temperature. A block copolymer (Bl Co 13) derived from one mole p-bis (phenylglyoxalyl) benzene, one fourth mole 3,3'-diaminobenzidine and three-fourths mole 3,3', 4,4'-tetraminobenzophenone was selected for extensive study. Tensile, flexural, and interlaminar shear values were obtained after aging and testing postcured BlCo(13) laminates at 316 C (600 F). The potential of PPQ/graphite laminates to serve as short term structural materials at temperatures up to 371 C (700 F) was demonstrated through weight loss experiments.

  11. Graphite Nanoreinforcements for Aerospace Nanocomposites

    NASA Technical Reports Server (NTRS)

    Drzal, Lawrence T.

    2005-01-01

    New advances in the reinforcement of polymer matrix composite materials are critical for advancement of the aerospace industry. Reinforcements are required to have good mechanical and thermal properties, large aspect ratio, excellent adhesion to the matrix, and cost effectiveness. To fulfill the requirements, nanocomposites in which the matrix is filled with nanoscopic reinforcing phases having dimensions typically in the range of 1nm to 100 nm show considerably higher strength and modulus with far lower reinforcement content than their conventional counterparts. Graphite is a layered material whose layers have dimensions in the nanometer range and are held together by weak Van der Waals forces. Once these layers are exfoliated and dispersed in a polymer matrix as nano platelets, they have large aspect ratios. Graphite has an elastic modulus that is equal to the stiffest carbon fiber and 10-15 times that of other inorganic reinforcements, and it is also electrically and thermally conductive. If the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with excellent mechanical properties, superior thermal stability, and very good electrical and thermal properties at very low reinforcement loadings.

  12. Structural state of expanded graphite prepared from intercalation compounds

    SciTech Connect

    Teplykh, A. E. Bogdanov, S. G.; Dorofeev, Yu. A.; Pirogov, A. N.; Skryabin, Yu. N.; Makotchenko, V. G.; Nazarov, A. S.; Fedorov, V. E.

    2006-12-15

    The structural state of nanocrystalline samples of expanded graphite is investigated using X-ray diffraction and neutron diffraction analyses. The expanded graphite samples are prepared by a rapid thermal decomposition of intercalation compounds of oxidized graphite based on fluorinated graphite, graphite oxide, and graphite aminofluoride. It is established that the main phase of expanded graphite belongs to the hexagonal crystal system (space group P6{sub 3}/mmc) and that carbon atoms in the structure occupy the 2b and 2c positions. The unit cell parameters and the unit cell volume in the structure of expanded graphite samples are larger than those in the structure of massive graphite.

  13. Preliminary economic evaluation of the use of graphite composite materials in surface transportation, phase 1 results

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Composite materials are discussed with emphasis on the identification of the characteristics of those materials that make them attractive for use in surface transportation. Potential uses of graphite composites are given including automotive applications and the effects of materials substitution on vehicle characteristics and performance. Preliminary estimates of the economic effects of the use of graphite composite materials on vehicle manufacturers and consumers are included. The combined impact on the national economy of vehicle design changes to meet mandated fuel efficiency requirements and the extensive use of graphite composite materials in the automotive industry is considered.

  14. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  15. Pyrolytic graphite film thermal straps: Characterization testing

    NASA Astrophysics Data System (ADS)

    McKinley, Ian M.; Smith, Colin H.; Ramsey, Perry G.; Rodriguez, Jose I.

    2016-12-01

    This paper reports on the experimentally-measured conductance, stiffness, and particulate contamination of pyrolytic graphite film thermal straps. This work was aimed at assessing the feasibility of replacing standard aluminum foil in thermal straps with graphite film, which is more conductive and lighter. Four different U-shaped straps with similar cross-sections and terminals were tested in the study. Three of the straps had a three-inch long flexible section. One of these was made from aluminum 1100 foil, and two were made from Pyrovo pyrolytic graphite film (PGF). One of the PGF straps was fabricated with an aluminized mylar blanket that was sealed at the terminals. The last strap was made from PGF, was blanketed, and was six inches long. The conductance of each strap was measured as a function of mean strap temperature ranging from 60 K to 300 K. The peak measured conductance of the three-inch PGF and aluminum straps were 1.0 W/K at 162 K and 0.28 W/K at 64 K, respectively. The conductance of all straps converged to around 0.3 W/K as the mean strap temperature approached 60 K. In addition, the peak conductance of the six-inch PGF strap was 0.83 W/K at 150 K. The fact that its peak conductance was near the conductance of the three-inch PGF strap indicated that the thermal resistance of the terminals in the PGF straps was significant. For a given temperature, the conductance varied by as much as 15% for two units of the same strap design. One of the straps was thermally cycled from 300 K to 60 K ten times. Its conductance was unchanged by the thermal cycling. Furthermore, one of the six-inch long PGF straps was subjected to random vibration. The random vibration spectrum was designed so that one terminal achieved a maximum displacement of ± 0.25 in. from its neutral position in three orthogonal axes while the other was held stationary. The conductance of this strap was unaffected by the random vibration test. The straps were also tested for the level of

  16. Reversible Intercalation of Fluoride-Anion Receptor Complexes in Graphite

    NASA Technical Reports Server (NTRS)

    West, William C.; Whitacre, Jay F.; Leifer, Nicole; Greenbaum, Steve; Smart, Marshall; Bugga, Ratnakumar; Blanco, Mario; Narayanan, S. R.

    2007-01-01

    We have demonstrated a route to reversibly intercalate fluoride-anion receptor complexes in graphite via a nonaqueous electrochemical process. This approach may find application for a rechargeable lithium-fluoride dual-ion intercalating battery with high specific energy. The cell chemistry presented here uses graphite cathodes with LiF dissolved in a nonaqueous solvent through the aid of anion receptors. Cells have been demonstrated with reversible cathode specific capacity of approximately 80 mAh/g at discharge plateaus of upward of 4.8 V, with graphite staging of the intercalant observed via in situ synchrotron X-ray diffraction during charging. Electrochemical impedance spectroscopy and B-11 nuclear magnetic resonance studies suggest that cointercalation of the anion receptor with the fluoride occurs during charging, which likely limits the cathode specific capacity. The anion receptor type dictates the extent of graphite fluorination, and must be further optimized to realize high theoretical fluorination levels. To find these optimal anion receptors, we have designed an ab initio calculations-based scheme aimed at identifying receptors with favorable fluoride binding and release properties.

  17. A Comparison of the Irradiation Creep Behavior of Several Graphites

    SciTech Connect

    Burchell, Timothy D; Windes, Will

    2016-01-01

    Graphite creep strain data from the irradiation creep capsule Advanced Graphite Creep-1 (AGC-1) are reported. This capsule was the first (prototype) of a series of five or six capsules planned as part of the AGC experiment, which was designed to fully characterize the effects of neutron irradiation and the radiation creep behavior of current nuclear graphite. The creep strain data and analysis are reported for the six graphite grades incorporated in the capsule. The AGC-1 capsule was irradiated in the Advanced Test Reactor at Idaho National Laboratory (INL) at approximately 700 C and to a peak dose of 7 dpa (displacements per atom). The specimen s final dose, temperature, and stress conditions have been reported by INL and were used during this analysis. The derived creep coefficients (K) were calculated for each grade and were found to compare well to literature data for the creep coefficient, even under the wide range of AGC-1 specimen temperatures. Comparisons were made between AGC-1 data and historical grade data for creep coefficients.

  18. Reversible Intercalation of Fluoride-Anion Receptor Complexes in Graphite

    NASA Technical Reports Server (NTRS)

    West, William C.; Whitacre, Jay F.; Leifer, Nicole; Greenbaum, Steve; Smart, Marshall; Bugga, Ratnakumar; Blanco, Mario; Narayanan, S. R.

    2007-01-01

    We have demonstrated a route to reversibly intercalate fluoride-anion receptor complexes in graphite via a nonaqueous electrochemical process. This approach may find application for a rechargeable lithium-fluoride dual-ion intercalating battery with high specific energy. The cell chemistry presented here uses graphite cathodes with LiF dissolved in a nonaqueous solvent through the aid of anion receptors. Cells have been demonstrated with reversible cathode specific capacity of approximately 80 mAh/g at discharge plateaus of upward of 4.8 V, with graphite staging of the intercalant observed via in situ synchrotron X-ray diffraction during charging. Electrochemical impedance spectroscopy and B-11 nuclear magnetic resonance studies suggest that cointercalation of the anion receptor with the fluoride occurs during charging, which likely limits the cathode specific capacity. The anion receptor type dictates the extent of graphite fluorination, and must be further optimized to realize high theoretical fluorination levels. To find these optimal anion receptors, we have designed an ab initio calculations-based scheme aimed at identifying receptors with favorable fluoride binding and release properties.

  19. Measurement of damping of graphite epoxy materials

    NASA Technical Reports Server (NTRS)

    Crocker, M. J.

    1985-01-01

    The design of an experiment to measure the damping of a cylindrical graphite-epoxy specimen with a three point support and a knife edge support is described as well as equipment used in tests conducted to determine the influence of the support at the two ends of the specimen and to simulate an idealized free-free boundary condition at the two edges. A curve fitting technique is being used to process the frequency response data obtained. Experiments conducted on the thin plate specimen also reveal the influence of the end support condition on the damping ratio of the specimen. The damping ratio values measured for both specimens appear to be strongly influenced by the shape of the specimen and appear to depend on length and fiber orientation as well as the presence of discontinuities such as sharp bends, corners, and notches.

  20. Pyrolytic graphite gauge for measuring heat flux

    NASA Technical Reports Server (NTRS)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  1. METHOD FOR COATING GRAPHITE WITH METALLIC CARBIDES

    DOEpatents

    Steinberg, M.A.

    1960-03-22

    A method for producing refractory coatings of metallic carbides on graphite was developed. In particular, the graphite piece to be coated is immersed in a molten solution of 4 to 5% by weight of zirconium, titanium, or niobium dissolved in tin. The solution is heated in an argon atmosphere to above 1400 deg C, whereby the refractory metal reacts with the surface of the graphite to form a layer of metalic carbide. The molten solution is cooled to 300 to 400 deg C, and the graphite piece is removed. Excess tin is wiped from the graphite, which is then heated in vacuum to above 2300 deg C. The tin vaporizes from the graphite surface, leaving the surface coated with a tenacious layer of refractory metallic carbide.

  2. Uranium Oxide Aerosol Transport in Porous Graphite

    SciTech Connect

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  3. Electrochemical Ultracapacitors Using Graphitic Nanostacks

    NASA Technical Reports Server (NTRS)

    Marotta, Christopher

    2012-01-01

    Electrochemical ultracapacitors (ECs) have been developed using graphitic nanostacks as the electrode material. The advantages of this technology will be the reduction of device size due to superior power densities and relative powers compared to traditional activated carbon electrodes. External testing showed that these materials display reduced discharge response times compared to state-of-the-art materials. Such applications are advantageous for pulsed power applications such as burst communications (satellites, cell phones), electromechanical actuators, and battery load leveling in electric vehicles. These carbon nanostructures are highly conductive and offer an ordered mesopore network. These attributes will provide more complete electrolyte wetting, and faster release of stored charge compared to activated carbon. Electrochemical capacitor (EC) electrode materials were developed using commercially available nanomaterials and modifying them to exploit their energy storage properties. These materials would be an improvement over current ECs that employ activated carbon as the electrode material. Commercially available graphite nanofibers (GNFs) are used as precursor materials for the synthesis of graphitic nanostacks (GNSs). These materials offer much greater surface area than graphite flakes. Additionally, these materials offer a superior electrical conductivity and a greater average pore size compared to activated carbon electrodes. The state of the art in EC development uses activated carbon (AC) as the electrode material. AC has a high surface area, but its small average pore size inhibits electrolyte ingress/egress. Additionally, AC has a higher resistivity, which generates parasitic heating in high-power applications. This work focuses on fabricating EC from carbon that has a very different structure by increasing the surface area of the GNF by intercalation or exfoliation of the graphitic basal planes. Additionally, various functionalities to the GNS

  4. Removal of carbon-14 from irradiated graphite

    NASA Astrophysics Data System (ADS)

    Dunzik-Gougar, Mary Lou; Smith, Tara E.

    2014-08-01

    Approximately 250,000 tonnes of irradiated graphite waste exists worldwide and that quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation IV gas-cooled, graphite moderated reactors. This situation indicates the need for a graphite waste management strategy. On of the isotopes of great concern for long-term disposal of irradiated graphite is carbon-14 (14C), with a half-life of 5730 years. Study of irradiated graphite from some nuclear reactors indicates 14C is concentrated on the outer 5 mm of the graphite structure. The aim of the research presented here is to develop a practical method by which 14C can be removed. In parallel with these efforts, the same irradiated graphite material is being characterized to identify the chemical form of 14C in irradiated graphite. A nuclear-grade graphite, NBG-18, and a high-surface-area graphite foam, POCOFoam®, were exposed to liquid nitrogen (to increase the quantity of 14C precursor) and neutron-irradiated (1013 neutrons/cm2/s). During post-irradiation thermal treatment, graphite samples were heated in the presence of an inert carrier gas (with or without the addition of an oxidant gas), which carries off gaseous products released during treatment. Graphite gasification occurs via interaction with adsorbed oxygen complexes. Experiments in argon only were performed at 900 °C and 1400 °C to evaluate the selective removal of 14C. Thermal treatment also was performed with the addition of 3 and 5 vol% oxygen at temperatures 700 °C and 1400 °C. Thermal treatment experiments were evaluated for the effective selective removal of 14C. Lower temperatures and oxygen levels correlated to more efficient 14C removal.

  5. METHOD FOR COATING GRAPHITE WITH NIOBIUM CARBIDE

    DOEpatents

    Kane, J.S.; Carpenter, J.H.; Krikorian, O.H.

    1962-01-16

    A method is given for coating graphite with a hard, tenacious layer of niobium carbide up to 30 mils or more thick. The method makes use of the discovery that niobium metal, if degassed and heated rapidly below the carburization temperature in contact with graphite, spreads, wets, and penetrates the graphite without carburization. The method includes the obvious steps of physically contacting niobium powders or other physical forms of niobium with graphite, degassing the assembly below the niobium melting point, e.g., 1400 deg C, heating to about 2200 to 2400 deg C within about 15 minutes while outgassing at a high volume throughput, and thereafter carburizing the niobium. (AEC)

  6. Nickel coated graphite fiber conductive composites

    SciTech Connect

    Evans, R.E.; Hall, D.E.; Luxon, B.A.

    1986-07-01

    Nickel coated graphite (NCG) fiber, consisting of a thin continuous plating of high purity nickel over an aerospace-grade graphite core, offers performance added features by combining the lightweight and high structural reinforcement of graphite fiber with the thermal and electrical conductivity of nickel. These NCG filaments, which are composite constructions in their own right, can be processed and impregnated with thermosetting or thermoplastic resins in the same manner that graphite fiber tows are processed and impregnated to produce roving, tape or fabric prepreg. Therefore, NCG fibers can be readily integrated into structural laminate assemblies using established composites-manufacturing practices.

  7. AC induction field heating of graphite foam

    DOEpatents

    Klett, James W.; Rios, Orlando; Kisner, Roger

    2017-08-22

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam. An energy conversion device utilizes heat energy from the heated graphite foam to perform a heat energy consuming function. A device for heating a fluid and a method of converting energy are also disclosed.

  8. Low temperature vapor phase digestion of graphite

    DOEpatents

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  9. Nanostructured carbon films with oriented graphitic planes

    SciTech Connect

    Teo, E. H. T.; Kalish, R.; Kulik, J.; Kauffmann, Y.; Lifshitz, Y.

    2011-03-21

    Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphitic planes under different conditions.

  10. Formation of self-supporting porous graphite structures by Spark Plasma Sintering of nickel-amorphous carbon mixtures

    NASA Astrophysics Data System (ADS)

    Bokhonov, Boris B.; Dudina, Dina V.; Ukhina, Arina V.; Korchagin, Michail A.; Bulina, Natalia V.; Mali, Vyacheslav I.; Anisimov, Alexander G.

    2015-01-01

    Graphitization of amorphous carbon in the presence of nickel has been reported for various configurations of the metal-carbon interface; however, no study has been performed to evaluate a possibility of forming self-supporting networks by sintering of the in situ formed graphite. In this work, we have shown that Spark Plasma Sintering (SPS) of nickel-amorphous carbon mixtures containing 50 vol% of Ni at 1000 °C results in the formation of networks formed by sintered graphite platelets 50-200 nm thick and 0.3-2 μm in diameter. Upon selective dissolution of nickel, a self-supporting porous 3D skeleton was revealed in 20 mm-diameter compacts. Starting from the mechanically milled Ni-C mixture, porous graphite of uniform microstructure and containing submicron pores was obtained. A model study has been performed, in which a thin amorphous carbon film graphitized during annealing and formed a continuous graphite film with micron-sized grains covering an area of 2 cm×2 cm of the surface of a Ni foil. We discuss the role of the in situ formation of graphite by nickel-assisted graphitization in the formation of networks consisting of well sintered platelets during the SPS and the design possibilities of porous carbon materials produced by phase separation in nickel-graphite composites.

  11. A new ring-shaped graphite monitor ionization chamber

    NASA Astrophysics Data System (ADS)

    Yoshizumi, M. T.; Caldas, L. V. E.

    2010-07-01

    A ring-shaped monitor ionization chamber was developed at the Instituto de Pesquisas Energéticas e Nucleares. This ionization chamber presents an entrance window of aluminized polyester foil. The guard ring and collecting electrode are made of graphite coated Lucite plates. The main difference between this new ionization chamber and commercial monitor chambers is its ring-shaped design. The new monitor chamber has a central hole, allowing the passage of the direct radiation beam without attenuation; only the penumbra radiation is measured by the sensitive volume. This kind of ionization chamber design has already been tested, but using aluminium electrodes. By changing the electrode material from aluminium to a graphite coating, an improvement in the chamber response stability was expected. The pre-operational tests, as saturation curve, recombination loss and polarity effect showed satisfactory results. The repeatability and the long-term stability tests were also evaluated, showing good agreement with international recommendations.

  12. Graphitized-carbon fiber/carbon char fuel

    DOEpatents

    Cooper, John F.

    2007-08-28

    A method for recovery of intact graphitic fibers from fiber/polymer composites is described. The method comprises first pyrolyzing the graphite fiber/polymer composite mixture and then separating the graphite fibers by molten salt electrochemical oxidation.

  13. Anisotropic Tuning of Graphite Thermal Conductivity by Lithium Intercalation.

    PubMed

    Qian, Xin; Gu, Xiaokun; Dresselhaus, Mildred S; Yang, Ronggui

    2016-11-17

    Understanding thermal transport in lithium intercalated layered materials is not only important for managing heat generation and dissipation in lithium ion batteries but also the understanding potentially provides a novel way to design materials with reversibly tunable thermal conductivity. In this work, the thermal conductivity of lithium-graphite intercalation compounds (LixC6) is calculated using molecular dynamics simulations as a function of the amount of lithium intercalated. We found that intercalation of lithium has an anisotropic effect on tuning the thermal conductivity: the thermal conductivity in the basal plane decreases monotonically from 1232 W/m·K of pristine graphite to 444 W/m·K of the fully lithiated LiC6, while the thermal conductivity along the c-axis decreases first from 6.5 W/m·K for graphite to 1.3 W/m·K for LiC18 and then increases to 5.0 W/m·K for LiC6 as the lithium composition increases. More importantly, we provide the very first atomic-scale insight into the effect of lithium intercalation on the spectral phonon properties of graphite. The intercalated lithium ions are found to suppress the phonon lifetime and to reduce the group velocity of phonons parallel to the basal plane but significantly to increase the phonon group velocity along the c-axis, which anisotropically tunes the thermal conductivity of lithiated graphite compounds. This work could shed some light on the search for tunable thermal conductivity materials and might have strong impacts on the thermal management of lithium ion batteries.

  14. AMS-C14 analysis of graphite obtained with an Automated Graphitization Equipment (AGE III) from aerosol collected on quartz filters

    NASA Astrophysics Data System (ADS)

    Solís, C.; Chávez, E.; Ortiz, M. E.; Andrade, E.; Ortíz, E.; Szidat, S.; Wacker, L.

    2015-10-01

    AMS-14C applications often require the analysis of small samples. Such is the case of atmospheric aerosols where frequently only a small amount of sample is available. The ion beam physics group at the ETH, Zurich, has designed an Automated Graphitization Equipment (AGE III) for routine graphite production for AMS analysis from organic samples of approximately 1 mg. In this study, we explore the potential use of the AGE III for graphitization of particulate carbon collected in quartz filters. In order to test the methodology, samples of reference materials and blanks with different sizes were prepared in the AGE III and the graphite was analyzed in a MICADAS AMS (ETH) system. The graphite samples prepared in the AGE III showed recovery yields higher than 80% and reproducible 14C values for masses ranging from 50 to 300 μg. Also, reproducible radiocarbon values were obtained for aerosol filters of small sizes that had been graphitized in the AGE III. As a study case, the tested methodology was applied to PM10 samples collected in two urban cities in Mexico in order to compare the source apportionment of biomass and fossil fuel combustion. The obtained 14C data showed that carbonaceous aerosols from Mexico City have much lower biogenic signature than the smaller city of Cuernavaca.

  15. The action of macrosounds on graphite ore and derived products

    NASA Technical Reports Server (NTRS)

    Bradeteanu, C.; Dragan, O.

    1974-01-01

    A suspension of graphite ore, floated graphite, and the gangue left over from flotation were subjected to the action of macrosounds under determinant conditions. The following was found: (1) The graphite ore undergoes an efficient settling action. (2) The floated graphite is strongly crushed down to the dimensions of colloidal graphite. (3) The gangue left over from flotation can be further processed to recuperate graphite from its nuclei.

  16. Gasifiable carbon-graphite fibers

    NASA Technical Reports Server (NTRS)

    Humphrey, Marshall F. (Inventor); Ramohalli, Kumar N. R. (Inventor); Dowler, Warren L. (Inventor)

    1982-01-01

    Fine, carbon-graphite fibers do not combust during the combustion of a composite and are expelled into the air as fine conductive particles. Coating of the fibers with a salt of a metal having a work function below 4.2 eV such as an alkaline earth metal salt, e.g., calcium acetate, catalytically enhances combustion of the fibers at temperatures below 1000.degree. C. such that the fibers self-support combustion and burn to produce a non-conductive ash. Fire-polishing the fibers before application of the coating is desirable to remove sizing to expose the carbon surface to the catalyst.

  17. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Jones, R. J.; Vaughan, R. W.

    1972-01-01

    High temperature resin matrices suitable for use in advanced graphite fiber composites for jet engine applications were evaluated. A series of planned, sequential screening experiments with resin systems in composite form were performed to reduce the number of candidates to a single A-type polyimide resin that repetitively produced void-free, high strength and modulus composites acceptable for use in the 550 F range for 1000 hours. An optimized processing procedure was established for this system. Extensive mechanical property studies characterized this single system, at room temperature, 500 F, 550 F and 600 F, for various exposure times.

  18. The effect of neutron irradiation damage on the properties of grade NBG-10 graphite

    NASA Astrophysics Data System (ADS)

    Burchell, Timothy D.; Snead, Lance L.

    2007-09-01

    Nuclear block graphite-10 (NBG-10) is a medium-grain, near-isotropic graphite manufactured by SGL Carbon Company at their plant in Chedde, France. NBG-10 graphite was developed as a candidate core structural material for the pebble bed modular reactor (PBMR) currently being designed in South Africa, and for prismatic reactor concepts being developed in the USA and Europe. NBG-10 is one of several graphites included in the US-DOE Very High Temperature Reactor (VHTR) program. Thirty-six NBG-10 graphite flexure bars have been successfully irradiated in a series of 18 HFIR PTT capsules at ORNL. The capsule irradiation temperatures were 294 ± 25, 360 ± 25 and 691 ± 25 °C. The peak doses attained were 4.93, 6.67, and 6.69 × 10 25 n/m 2 [ E > 0.1 MeV] at ˜294, ˜360, and ˜691 °C, respectively. The high temperature irradiation volume and dimensional change behavior, and flexure strength and elastic modulus changes of NBG-10 were similar to other extruded, near-isotropic grades, such as H-451, which has been irradiated previously at ORNL. The low temperature (˜294 °C) irradiation volume and dimensional change behavior was also as expected for extruded graphites, i.e., exhibiting low dose swelling prior to shrinkage. This behavior was attributed to the relaxation of internal stress arising from the graphite manufacturing process and specimen machining. While the data reported here do not represent a complete database for NBG-10 graphite, they give a measure of confidence that the current generation of nuclear graphites will behave in a familiar and well understood manner.

  19. The Effect of Neutron Irradiation Damage on the Properties of Grade NBG-10 Graphite

    SciTech Connect

    Burchell, Timothy D; Snead, Lance Lewis

    2007-01-01

    Nuclear Block Graphite-10 (NBG-10) is a medium-grain, near-isotropic graphite manufactured by SGL Carbon Company at their plant in Chedde, France. NBG-10 graphite was developed as a candidate core structural material for the Pebble Bed Modular Reactor (PBMR) currently being designed in South Africa, and for prismatic reactor concepts being developed in the USA and Europe. NBG-10 is one of several graphites included in the US-DOE Very High Temperature Reactor (VHTR) program. Thirty-six NBG-10 graphite flexure bars have been successfully irradiated in a series of eighteen HFIR PTT capsules at ORNL. The capsule irradiation temperatures were 294 25, 360 25 and 691 25 C. The peak doses attained were 4.93, 6.67, and 6.69 x 1025 n/m2 [E>0.1 MeV] at ~294, ~360, and ~691 C, respectively. The high temperature irradiation volume and dimensional change behavior, and flexure strength and elastic modulus changes of NBG-10 were similar to other extruded, near-isotropic grades, such as H-451, which has been irradiated previously at ORNL. The low temperature (~294 C) irradiation volume and dimensional change behavior was also as expected for extruded graphites, i.e., exhibiting low dose swelling prior to shrinkage. This behavior was attributed to the relaxation of internal stress arising from the graphite manufacturing process and specimen machining. While the data reported here do not represent a complete database for NBG-10 graphite, they give a measure of confidence that the current generation of nuclear graphites will behave in a familiar and well understood manner.

  20. Effect of graphite surface structure on initial irreversible reaction in graphite anodes

    SciTech Connect

    Suzuki, Kimihito; Hamada, Takeshi; Sugiura, Tsutomu

    1999-03-01

    The initial irreversible reaction that occurs in graphite anodes during the first lithium intercalation in lithium rechargeable batteries was studied in view of graphite surface structure. Graphitized mesophase spheres and pitch-based carbon fibers, which show low irreversible capacity, were shown to have turbostatic surface regions and highly graphitized cores using Ar-ion laser Raman spectroscopy. Burning off these surface regions resulted in remarkable increases of initial irreversible capacity. Those results can be explained by a proposed model that a turbostatic structure of the graphite surface region resists drastic swelling of interlayer spaces arising from cointercalation of solvated ions and depresses the side reaction.

  1. Analysis of Wigner energy release process in graphite stack of shut-down uranium-graphite reactor

    NASA Astrophysics Data System (ADS)

    Bespala, E. V.; Pavliuk, A. O.; Kotlyarevskiy, S. G.

    2015-10-01

    Data, which finding during thermal differential analysis of sampled irradiated graphite are presented. Results of computational modeling of Winger energy release process from irradiated graphite staking are demonstrated. It's shown, that spontaneous combustion of graphite possible only in adiabatic case.

  2. Evaluation of co-cokes from bituminous coal with vacuum resid or decant oil, and evaluation of anthracites, as precursors to graphite

    NASA Astrophysics Data System (ADS)

    Nyathi, Mhlwazi S.

    2011-12-01

    Graphite is utilized as a neutron moderator and structural component in some nuclear reactor designs. During the reactor operaction the structure of graphite is damaged by collision with fast neutrons. Graphite's resistance to this damage determines its lifetime in the reactor. On neutron irradiation, isotropic or near-isotropic graphite experiences less structural damage than anisotropic graphite. The degree of anisotropy in a graphite artifact is dependent on the structure of its precursor coke. Currently, there exist concerns over a short supply of traditional precursor coke, primarily due to a steadily increasing price of petroleum. The main goal of this study was to study the anisotropic and isotropic properties of graphitized co-cokes and anthracites as a way of investigating the possibility of synthesizing isotropic or near-isotropic graphite from co-cokes and anthracites. Demonstrating the ability to form isotropic or near-isotropic graphite would mean that co-cokes and anthracites have a potential use as filler material in the synthesis of nuclear graphite. The approach used to control the co-coke structure was to vary the reaction conditions. Co-cokes were produced by coking 4:1 blends of vacuum resid/coal and decant oil/coal at temperatures of 465 and 500 °C for reaction times of 12 and 18 hours under autogenous pressure. Co-cokes obtained were calcined at 1420 °C and graphitized at 3000 °C for 24 hours. Optical microscopy, X-ray diffraction, temperature-programmed oxidation and Raman spectroscopy were used to characterize the products. It was found that higher reaction temperature (500 °C) or shorter reaction time (12 hours) leads to an increase in co-coke structural disorder and an increase in the amount of mosaic carbon at the expense of textural components that are necessary for the formation of anisotropic structure, namely, domains and flow domains. Characterization of graphitized co-cokes showed that the quality, as expressed by the degree of

  3. Tire containing thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A tire, tire lining or inner tube, containing a polymer composite, made of at least one rubber and/or at least one elastomer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g.

  4. Mineral Resource of the Month: Graphite

    USGS Publications Warehouse

    Olson, Donald W.

    2008-01-01

    Graphite, a grayish black opaque mineral with a metallic luster, is one of four forms of pure crystalline carbon (the others are carbon nanotubes, diamonds and fullerenes). It is one of the softest minerals and it exhibits perfect basal (one-plane) cleavage. Graphite is the most electrically and thermally conductive of the nonmetals, and it is chemically inert.

  5. Seismic study of high-temperature engineering test reactor core graphite structures

    SciTech Connect

    Iyoku, T.; Inagaki, Y.; Shiozawa, S. . Oarai Research Establishment); Nishiguchi, I. )

    1992-08-01

    This paper discusses the High-Temperature Engineering Test Reactor (HTTR) a 30-MW (thermal) helium gas-cooled reactor with a core composed of prismatic graphite blocks piled on core support structures. Safety analyses have been made for the seismic design of the HTTR core using a two-dimensional seismic analysis code called SONATINA-2V, which was developed by the Japan Atomic Energy Research Institute. To evaluate the validity of the SONATINA-2V code and confirm the structural integrity of the core graphite blocks, large-scale seismic tests are conducted using a half-scale vertical section model and a full-scale seven-column model of the core graphite blocks and the core support structures. The test results are in good agreement with the analytical ones, and the validity of the analysis code is confirmed. The structural integrity of the core graphite blocks is confirmed by both analytical and test results.

  6. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs

    SciTech Connect

    Burchell, Timothy D; Bratton, Rob; Marsden, Barry; Srinivasan, Makuteswara; Penfield, Scott; Mitchell, Mark; Windes, Will

    2008-03-01

    Here we report the outcome of the application of the Nuclear Regulatory Commission (NRC) Phenomena Identification and Ranking Table (PIRT) process to the issue of nuclear-grade graphite for the moderator and structural components of a next generation nuclear plant (NGNP), considering both routine (normal operation) and postulated accident conditions for the NGNP. The NGNP is assumed to be a modular high-temperature gas-cooled reactor (HTGR), either a gas-turbine modular helium reactor (GTMHR) version [a prismatic-core modular reactor (PMR)] or a pebble-bed modular reactor (PBMR) version [a pebble bed reactor (PBR)] design, with either a direct- or indirect-cycle gas turbine (Brayton cycle) system for electric power production, and an indirect-cycle component for hydrogen production. NGNP design options with a high-pressure steam generator (Rankine cycle) in the primary loop are not considered in this PIRT. This graphite PIRT was conducted in parallel with four other NRC PIRT activities, taking advantage of the relationships and overlaps in subject matter. The graphite PIRT panel identified numerous phenomena, five of which were ranked high importance-low knowledge. A further nine were ranked with high importance and medium knowledge rank. Two phenomena were ranked with medium importance and low knowledge, and a further 14 were ranked medium importance and medium knowledge rank. The last 12 phenomena were ranked with low importance and high knowledge rank (or similar combinations suggesting they have low priority). The ranking/scoring rationale for the reported graphite phenomena is discussed. Much has been learned about the behavior of graphite in reactor environments in the 60-plus years since the first graphite rectors went into service. The extensive list of references in the Bibliography is plainly testament to this fact. Our current knowledge base is well developed. Although data are lacking for the specific grades being considered for Generation IV (Gen IV

  7. SIMPLIFIED SODIUM GRAPHITE REACTOR SYSTEM

    DOEpatents

    Dickinson, R.W.

    1963-03-01

    This patent relates to a nuclear power reactor comprising a reactor vessel, shielding means positioned at the top of said vessel, means sealing said reactor vessel to said shielding means, said vessel containing a quantity of sodium, a core tank, unclad graphite moderator disposed in said tank, means including a plurality of process tubes traversing said tank for isolating said graphite from said sodium, fuel elements positioned in said process tubes, said core tank being supported in spaced relation to the walls and bottom of said reactor vessel and below the level of said sodium, neutron shielding means positioned adjacent said core tank between said core tank and the walls of said vessel, said neutron shielding means defining an annuiar volume adjacent the inside wall of said reactor vessel, inlet plenum means below said core tank for providing a passage between said annular volume and said process tubes, heat exchanger means removably supported from the first-named shielding means and positioned in said annular volume, and means for circulating said sodium over said neutron shielding means down through said heat exchanger, across said inlet plenum and upward through said process tubes, said last-named means including electromagnetic pumps located outside said vessel and supported on said vessel wall between said heat exchanger means and said inlet plenum means. (AEC)

  8. Hydrogen storage in graphite nanofibers

    SciTech Connect

    Park, C.; Tan, C.D.; Hidalgo, R.; Baker, R.T.K.; Rodriguez, N.M.

    1998-08-01

    Graphite nanofibers (GNF) are a type of material that is produced by the decomposition of carbon containing gases over metal catalyst particles at temperatures around 600 C. These molecularly engineered structures consist of graphene sheets perfectly arranged in a parallel, perpendicular or at angle orientation with respect to the fiber axis. The most important feature of the material is that only edges are exposed. Such an arrangement imparts the material with unique properties for gas adsorption because the evenly separated layers constitute the most ordered set of nanopores that can accommodate an adsorbate in the most efficient manner. In addition, the non-rigid pore walls can also expand so as to accommodate hydrogen in a multilayer conformation. Of the many varieties of structures that can be produced the authors have discovered that when gram quantities of a selected number of GNF are exposed to hydrogen at pressures of {approximately} 2,000 psi, they are capable of adsorbing and storing up to 40 wt% of hydrogen. It is believed that a strong interaction is established between hydrogen and the delocalized p-electrons present in the graphite layers and therefore a new type of chemistry is occurring within these confined structures.

  9. Development of polyphenylquinoxaline graphite composites

    NASA Technical Reports Server (NTRS)

    Hoggatt, J. T.; Hill, S. G.; Shdo, J. G.

    1974-01-01

    This exploratory program was divided into four basic tasks. The initial phase was devoted toward investigating processing variables associated with previously developed PPO resins. These polymers were derived from p-bis(phenyl glyoxalyl)benzene reacted with 3,3'-diamino benzidine and/or 3,3',4,4'-tetramino benzophenone. Four new phenyl quinoxaline polymers were synthesized and characterized in Tasks 2 and 3. These consisted of a hydroxyl group containing PPQ synthesized from 3,3'-diamino benzidine (DAB), m-bis(phenyl glyoxal)benzene and m-bis(p'-hydroxy phenyl glyoxalyl) benzene; a cyano group containing PPQ from the reaction of DAB and p-bis(p'-cyano phenoxy phenyl glyoxalyl)benzene; an end-capped block copolymer; and a polymer from the reaction of 3,3',4,4'-tetraamino benzo phenone and m-bis(phenyl glyoxalyl)benzene. The latter two polymers were chosen for composite studies in the latter two tasks of the program. Mechanical properties of the graphite reinforced PPQ composites were determined over the temperature range of +21 C to 316 C. Flexural strengths of the HMS graphite fiber composites were in excess of 8.97 X 10 to the 8th power N/sq m (130,000 psi) at +21 C (70 F) with over 50% strength retention at +316 C.

  10. Status of Graphite Oxidation Work

    SciTech Connect

    Rebecca Smith

    2010-05-01

    Data were developed to compare the extent of structural damage associated with high temperature exposure to an air leak. Two materials, NBG-18 graphite and unpurified PCEA graphite have been tested as of this report. The scope was limited to isothermal oxidation at a single temperature, 750°C. Ambient post-oxidation compression strength testing was performed for three levels of burn off (1%, 5%, and 10% mass loss) for two leak scenarios: 100% air and 10% air in helium. Temperature, gas flow, and dynamic mass loss oxidation conditions were monitored and recorded for each sample. The oxidation period was controlled with flow of inert gas during the thermal ramp and upon cool down with a constant 10 liter per minute flow maintained throughout furnace operation. Compressive strengths of parallel un-oxidized samples were tested to assess the relative mass loss effects. In addition to baseline samples matching the un-oxidized dimensions of the oxidized samples, two sets of mechanically reduced samples were prepared. One set was trimmed to achieve the desired mass loss by removing an effectively uniform depth from the geometric surface of the sample. The other set was cored to produce a full penetration axial hole down the center of each sample.

  11. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.; Thompson, E. R.

    1978-01-01

    A composite that can be used at temperatures up to 875 K with mechanical properties equal or superior to graphite fiber reinforced epoxy composites is presented. The composite system consist of graphite fiber, uniaxially or biaxially, reinforced borosilicate glass. The mechanical and thermal properties of such a graphite fiber reinforced glass composite are described, and the system is shown to offer promise as a high performance structural material. Specific properties that were measured were: a modified borosilicate glass uniaxially reinforced by Hercules HMS graphite fiber has a three-point flexural strength of 1030 MPa, a four-point flexural strength of 964 MPa, an elastic modulus of 199 GPa and a failure strain of 0.0052. The preparation and properties of similar composites with Hercules HTS, Celanese DG-102, Thornel 300 and Thornel Pitch graphite fibers are also described.

  12. Structure of different grades of nuclear graphite

    NASA Astrophysics Data System (ADS)

    Mironov, B. E.; Westwood, A. V. K.; Scott, A. J.; Brydson, R.; Jones, A. N.

    2012-07-01

    Owing to its low neutron absorption cross-section, large scattering cross section and thermal and chemical stability, graphite is a key component of operational nuclear reactors where it is used as a moderator, reflector and as major structural component for 90% of current UK nuclear plants. It is also of interest for use in developing the future high temperature gas-cooled reactors. The properties of the nuclear graphite are influenced by its structural characteristics, which change as a function of neutron irradiation, temperature and oxidation. The principal structural changes during neutron irradiation that affect the integrity and dimensions of nuclear graphite components, thereby affecting service lifetime, are that the a-axis contracts and the c-axis expands in the crystallites. Characterization of virgin graphite structure and of the damage evolution after irradiation of nuclear graphite has an important role to play in the understanding and development of materials used in current and future nuclear reactors, respectively.

  13. Microstructural characterization of next generation nuclear graphites.

    PubMed

    Karthik, Chinnathambi; Kane, Joshua; Butt, Darryl P; Windes, William E; Ubic, Rick

    2012-04-01

    This article reports the microstructural characteristics of various petroleum and pitch based nuclear graphites (IG-110, NBG-18, and PCEA) that are of interest to the next generation nuclear plant program. Bright-field transmission electron microscopy imaging was used to identify and understand the different features constituting the microstructure of nuclear graphite such as the filler particles, microcracks, binder phase, rosette-shaped quinoline insoluble (QI) particles, chaotic structures, and turbostratic graphite phase. The dimensions of microcracks were found to vary from a few nanometers to tens of microns. Furthermore, the microcracks were found to be filled with amorphous carbon of unknown origin. The pitch coke based graphite (NBG-18) was found to contain higher concentration of binder phase constituting QI particles as well as chaotic structures. The turbostratic graphite, present in all of the grades, was identified through their elliptical diffraction patterns. The difference in the microstructure has been analyzed in view of their processing conditions.

  14. Graphite to Diamond: Origin for Kinetics Selectivity.

    PubMed

    Xie, Yao-Ping; Zhang, Xiao-Jie; Liu, Zhi-Pan

    2017-02-22

    Under mild static compression (15 GPa), graphite preferentially turns into hexagonal diamond, not cubic diamond, the selectivity of which is against thermodynamics. Here we, via novel potential energy surface global exploration, report seven types low energy intermediate structures at the atomic level that are key to the kinetics of graphite to diamond solid phase transition. On the basis of quantitative kinetics data, we show that hexagonal diamond has a facile initial nucleation mechanism inside graphite matrix and faster propagation kinetics owing to the presence of three coherent graphite/hexagonal diamond interfaces, forming coherent nuclei in graphite matrix. By contrast, for the lack of coherent nucleus core, the growth of cubic diamond is at least 40 times slower and its growth is inevitably mixing with that of hexagonal diamond.

  15. Preparation of graphite nanoplatelets and graphene sheets.

    PubMed

    Geng, Yan; Wang, Shu Jun; Kim, Jang-Kyo

    2009-08-15

    A novel route is proposed to produce graphite nanoplatelets (GNPs) and graphene sheets. The natural graphite flakes were directly exfoliated by ultrasonication in formic acid. A stable graphene aqueous dispersion was obtained using the as-produced GNPs after two processing steps: (i) chemical oxidation of GNPs to graphite oxide nanoplatelets (GONPs); and (ii) chemical reduction of graphite oxide nanoplatelets to graphene. The total duration for oxidation and production of stable graphite oxide colloid was significantly shortened due to the use of exfoliated GNPs with large surface area. The work proposed here has several advantages over the previous methods, including a high efficiency of exfoliation process, the use of a non-toxic, environmental-friendly intercalant and the capability for mass production of graphene for industrial applications.

  16. Microstructural Characterization of Next Generation Nuclear Graphites

    SciTech Connect

    Karthik Chinnathambi; Joshua Kane; Darryl P. Butt; William E. Windes; Rick Ubic

    2012-04-01

    This article reports the microstructural characteristics of various petroleum and pitch based nuclear graphites (IG-110, NBG-18, and PCEA) that are of interest to the next generation nuclear plant program. Bright-field transmission electron microscopy imaging was used to identify and understand the different features constituting the microstructure of nuclear graphite such as the filler particles, microcracks, binder phase, rosette-shaped quinoline insoluble (QI) particles, chaotic structures, and turbostratic graphite phase. The dimensions of microcracks were found to vary from a few nanometers to tens of microns. Furthermore, the microcracks were found to be filled with amorphous carbon of unknown origin. The pitch coke based graphite (NBG-18) was found to contain higher concentration of binder phase constituting QI particles as well as chaotic structures. The turbostratic graphite, present in all of the grades, was identified through their elliptical diffraction patterns. The difference in the microstructure has been analyzed in view of their processing conditions.

  17. Model experiments of superlubricity of graphite

    NASA Astrophysics Data System (ADS)

    Dienwiebel, Martin; Pradeep, Namboodiri; Verhoeven, Gertjan S.; Zandbergen, Henny W.; Frenken, Joost W. M.

    2005-02-01

    Graphite is known to be a good solid lubricant. The low-friction behavior is traditionally ascribed to the low resistance to shear. We have recently observed that the ultra-low friction found in friction force microscopy experiments on graphite is due to a effect called superlubricity [M. Dienwiebel, G. S. Verhoeven, N. Pradeep, J.W.M. Frenken, J.A. Heimberg, H.W. Zandbergen, Phys. Rev. Lett. 92 (2004) 126101]. Here, we provide additional experimental evidence that superlubricity has been taken place between a small graphite flake attached to the scanning tip and the graphite surface. Finally, we speculate about the significance of this for the lubricating properties of graphite.

  18. Modeling Fission Product Sorption in Graphite Structures

    SciTech Connect

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission

  19. Statistical Comparison of the Baseline Mechanical Properties of NBG-18 and PCEA Graphite

    SciTech Connect

    Mark C. Carroll; David T. Rohrbaugh

    2013-08-01

    High-purity graphite is the core structural material of choice in the Very High Temperature Reactor (VHTR), a graphite-moderated, helium-cooled design that is capable of producing process heat for power generation and for industrial process that require temperatures higher than the outlet temperatures of present nuclear reactors. The Baseline Graphite Characterization Program is endeavoring to minimize the conservative estimates of as-manufactured mechanical and physical properties by providing comprehensive data that captures the level of variation in measured values. In addition to providing a comprehensive comparison between these values in different nuclear grades, the program is also carefully tracking individual specimen source, position, and orientation information in order to provide comparisons and variations between different lots, different billets, and different positions from within a single billet. This report is a preliminary comparison between the two grades of graphite that were initially favored in the two main VHTR designs. NBG-18, a medium-grain pitch coke graphite from SGL formed via vibration molding, was the favored structural material in the pebble-bed configuration, while PCEA, a smaller grain, petroleum coke, extruded graphite from GrafTech was favored for the prismatic configuration. An analysis of the comparison between these two grades will include not only the differences in fundamental and statistically-significant individual strength levels, but also the differences in variability in properties within each of the grades that will ultimately provide the basis for the prediction of in-service performance. The comparative performance of the different types of nuclear grade graphites will continue to evolve as thousands more specimens are fully characterized from the numerous grades of graphite being evaluated.

  20. Heptagraphene: Tunable Dirac Cones in a Graphitic Structure

    NASA Astrophysics Data System (ADS)

    Lopez-Bezanilla, Alejandro; Martin, Ivar; Littlewood, Peter B.

    2016-09-01

    We predict the existence and dynamical stability of heptagraphene, a new graphitic structure formed of rings of 10 carbon atoms bridged by carbene groups yielding seven-membered rings. Despite the rectangular unit cell, the band structure is topologically equivalent to that of strongly distorted graphene. Density-functional-theory calculations demonstrate that heptagraphene has Dirac cones on symmetry lines that are robust against biaxial strain but which open a gap under shear. At high deformation values bond reconstructions lead to different electronic band arrangements in dynamically stable configurations. Within a tight-binding framework this richness of the electronic behavior is identified as a direct consequence of the symmetry breaking within the cell which, unlike other graphitic structures, leads to band gap opening. A combined approach of chemical and physical modification of graphene unit cell unfurls the opportunity to design carbon-based systems in which one aims to tune an electronic band gap.

  1. Fillers for improved graphite fiber retention by polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Sheppard, C. H.; Simpson, F. H.; House, E. E., Jr.

    1980-01-01

    This program was designed to develop technology for fabrication of graphite/epoxy composites containing selected boron and boron-containing fillers, determine the effects of the fillers on physical and mechanical properties of composites, and evaluate the effectiveness of the boron fillers for fiber retention when the composites are exposed to fire conditions followed by impact. Fillers evaluated were crystalline and amorphous boron, boron carbide, and aluminum boride. The fillers were evaluated by mixing with Narmco 5208 resin matrix at quantities up to 5%. Graphite composites were fabricated and evaluated with respect to their mechanical properties, resistance to humidity, and burning characteristics. Also, the mechanism by which the fillers prevented fiber release was studied.

  2. Aging behavior and life prediction of graphite composites

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Raasch, David

    1989-01-01

    This paper presents experimental data from two independent tests, designed to determine the long-term reliability of composite materials. The technique of accelerated aging at elevated temperatures is employed. In the first set, graphite fiber, epoxy composites in five ply layups are manufactured and tested in the standard short-beam shear mode. In the second set, Nomex honeycomb, graphite fiber/epoxy composite face and rear sheet sandwich coupons are tested. After satisfying simple consistency checks, data interpretation is attempted within the framework of an Arrhenius degradation model. The elevated temperature is assumed to influence the degradation according to this temperature-dependent rate law. From these tests on five-ply composites and honeycomb sandwiches, it is concluded that aging is not a serious problem.

  3. Evaluation of failure criterion for graphite/epoxy fabric laminates

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Wharram, G. E.

    1985-01-01

    The development and application of the tensor polynomial failure criterion for composite laminate analysis is described. Emphasis is given to the fabrication and testing of Narmco Rigidite 5208-WT300, a plain weave fabric of Thornel 300 Graphite fibers impregnated with Narmco 5208 Resin. The quadratic-failure criterion with F sub 12=0 provides accurate estimates of failure stresses for the graphite/epoxy investigated. The cubic failure criterion was recast into an operationally easier form, providing design curves that can be applied to laminates fabricated from orthotropic woven fabric prepregs. In the form presented, no interaction strength tests are required, although recourse to the quadratic model and the principal strength parameters is necessary. However, insufficient test data exist at present to generalize this approach for all prepreg constructions, and its use must be restricted to the generic materials and configurations investigated to date.

  4. Heptagraphene: Tunable dirac cones in a graphitic structure

    SciTech Connect

    Lopez-Bezanilla, Alejandro; Martin, Ivar; Littlewood, Peter B.

    2016-09-13

    Here, we predict the existence and dynamical stability of heptagraphene, a new graphitic structure formed of rings of 10 carbon atoms bridged by carbene groups yielding seven-membered rings. Despite the rectangular unit cell, the band structure is topologically equivalent to that of strongly distorted graphene. Density-functional-theory calculations demonstrate that heptagraphene has Dirac cones on symmetry lines that are robust against biaxial strain but which open a gap under shear. At high deformation values bond reconstructions lead to different electronic band arrangements in dynamically stable configurations. Within a tight-binding framework this richness of the electronic behavior is identified as a direct consequence of the symmetry breaking within the cell which, unlike other graphitic structures, leads to band gap opening. A combined approach of chemical and physical modification of graphene unit cell unfurls the opportunity to design carbon-based systems in which one aims to tune an electronic band gap.

  5. Heptagraphene: Tunable dirac cones in a graphitic structure

    DOE PAGES

    Lopez-Bezanilla, Alejandro; Martin, Ivar; Littlewood, Peter B.

    2016-09-13

    Here, we predict the existence and dynamical stability of heptagraphene, a new graphitic structure formed of rings of 10 carbon atoms bridged by carbene groups yielding seven-membered rings. Despite the rectangular unit cell, the band structure is topologically equivalent to that of strongly distorted graphene. Density-functional-theory calculations demonstrate that heptagraphene has Dirac cones on symmetry lines that are robust against biaxial strain but which open a gap under shear. At high deformation values bond reconstructions lead to different electronic band arrangements in dynamically stable configurations. Within a tight-binding framework this richness of the electronic behavior is identified as a directmore » consequence of the symmetry breaking within the cell which, unlike other graphitic structures, leads to band gap opening. A combined approach of chemical and physical modification of graphene unit cell unfurls the opportunity to design carbon-based systems in which one aims to tune an electronic band gap.« less

  6. Heptagraphene: Tunable Dirac Cones in a Graphitic Structure.

    PubMed

    Lopez-Bezanilla, Alejandro; Martin, Ivar; Littlewood, Peter B

    2016-09-13

    We predict the existence and dynamical stability of heptagraphene, a new graphitic structure formed of rings of 10 carbon atoms bridged by carbene groups yielding seven-membered rings. Despite the rectangular unit cell, the band structure is topologically equivalent to that of strongly distorted graphene. Density-functional-theory calculations demonstrate that heptagraphene has Dirac cones on symmetry lines that are robust against biaxial strain but which open a gap under shear. At high deformation values bond reconstructions lead to different electronic band arrangements in dynamically stable configurations. Within a tight-binding framework this richness of the electronic behavior is identified as a direct consequence of the symmetry breaking within the cell which, unlike other graphitic structures, leads to band gap opening. A combined approach of chemical and physical modification of graphene unit cell unfurls the opportunity to design carbon-based systems in which one aims to tune an electronic band gap.

  7. Heptagraphene: Tunable Dirac Cones in a Graphitic Structure

    PubMed Central

    Lopez-Bezanilla, Alejandro; Martin, Ivar; Littlewood, Peter B.

    2016-01-01

    We predict the existence and dynamical stability of heptagraphene, a new graphitic structure formed of rings of 10 carbon atoms bridged by carbene groups yielding seven-membered rings. Despite the rectangular unit cell, the band structure is topologically equivalent to that of strongly distorted graphene. Density-functional-theory calculations demonstrate that heptagraphene has Dirac cones on symmetry lines that are robust against biaxial strain but which open a gap under shear. At high deformation values bond reconstructions lead to different electronic band arrangements in dynamically stable configurations. Within a tight-binding framework this richness of the electronic behavior is identified as a direct consequence of the symmetry breaking within the cell which, unlike other graphitic structures, leads to band gap opening. A combined approach of chemical and physical modification of graphene unit cell unfurls the opportunity to design carbon-based systems in which one aims to tune an electronic band gap. PMID:27622775

  8. A technique for brazing graphite/graphite and stainless steel/high-carbon steel joints

    SciTech Connect

    Ohmura, H.; Kawashiri, K. . Dept. of Metals and Inorganic Materials); Yoshida, T. . Vehicle Machine Engineering Dept.); Yoshimoto, O. . Quality Control Dept.)

    1994-10-01

    A new brazing technique for joining graphite to itself or to metals such as Mo, W, or Cu, with conventional brazing filler metals has been developed. Essentially, it is impossible to braze graphite with Cu filler metal because no wetting occurs. However, when a graphite base material is combined with an Fe base metal in Cu brazing, the Fe base metal dissolves in molten Cu. Simultaneously, the dissolved Fe grows as part of a columnar Fe-9 [approximately] 6Cu-1.6C alloy phase at the graphite interface at a constant brazing temperature, that is, the dissolution and deposit of base metal takes place. By placing an Fe foil insert between both graphite base materials, therefore, the columnar phase is formed at both graphite faces and grows toward the Fe foil during heating. As a result, both graphite base materials are united by the columnar phase through the Fe foil. In the same way, a graphite/Mo or /W joint can be produced. Moreover, when using BAu-1, which has a lower melting point than that of BCu-1, it is also possible to braze graphite to Cu. The shear strength of a graphite/graphite joint with a 0.12-mm thick Fe foil at room temperature was about 32 MPa. Further, the bending strength of the graphite/graphite and /Cu joints at 873 K (1,112 F), as measured using the four-point bending test, was 35 and 11 MPa, respectively. In addition, the technique can be applied to the brazing of AISI 304 stainless steel to high-C steel with BCu-1 where, normally, Cr[sub 23]C[sub 6] and Cr[sub 7]C[sub 3] layers are formed at the high-C steel braze interface; these carbide layers result in the loss of mechanical properties of the joint.

  9. Graphite Composite Booms with Integral Hinges

    NASA Technical Reports Server (NTRS)

    Alexander, Wes; Carlos, Rene; Rossoni, Peter; Sturm, James

    2006-01-01

    A document discusses lightweight instrument booms under development for use aboard spacecraft. A boom of this type comprises a thin-walled graphite fiber/ matrix composite tube with an integral hinge that can be bent for stowage and later allowed to spring back to straighten the boom for deployment in outer space. The boom design takes advantage of both the stiffness of the composite in tubular geometry and the flexibility of thin sections of the composite. The hinge is formed by machining windows in the tube at diametrically opposite locations so that there remain two opposing cylindrical strips resembling measuring tapes. Essential to the design is a proprietary composite layup that renders the hinge tough yet flexible enough to be bendable as much as 90 in either of two opposite directions. When the boom is released for deployment, the torque exerted by the bent hinge suffices to overcome parasitic resistance from harnesses and other equipment, so that the two sections of the hinge snap to a straight, rigid condition in the same manner as that of measuring tapes. Issues addressed in development thus far include selection of materials, out-of-plane bending, edge cracking, and separation of plies.

  10. Polymeric photocatalysts based on graphitic carbon nitride.

    PubMed

    Cao, Shaowen; Low, Jingxiang; Yu, Jiaguo; Jaroniec, Mietek

    2015-04-01

    Semiconductor-based photocatalysis is considered to be an attractive way for solving the worldwide energy shortage and environmental pollution issues. Since the pioneering work in 2009 on graphitic carbon nitride (g-C3N4) for visible-light photocatalytic water splitting, g-C3N4 -based photocatalysis has become a very hot research topic. This review summarizes the recent progress regarding the design and preparation of g-C3N4 -based photocatalysts, including the fabrication and nanostructure design of pristine g-C3N4 , bandgap engineering through atomic-level doping and molecular-level modification, and the preparation of g-C3N4 -based semiconductor composites. Also, the photo-catalytic applications of g-C3N4 -based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non-noble-metal cocatalysts, and Z-scheme heterojunctions. Finally, the concluding remarks are presented and some perspectives regarding the future development of g-C3N4 -based photocatalysts are highlighted. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Development of polyphenylquinoxaline graphite composites

    NASA Technical Reports Server (NTRS)

    Shdo, J. D.

    1976-01-01

    Six polyphenylquinoxalines (PPQ) containing pendant cyano (CN) groups were synthesized. The polymers were characterized in terms of inherent viscosity, glass transition temperature, softening temperature and weight loss due to aging in air at 316 C (600 F). The potential for crosslinking PPQs by trimerization of pendant CN groups was investigated. A polymer derived from 1 mole 3,3,4,4 -tetraaminobenzophenone, .2 mole p-bis(p -cyanophenoxyphenylglyoxalyl)benzene and .8 mole p-bis(phenylglyoxalyl)benzene was selected for more extensive characterization in HM-S graphite fiber-reinforced composites. Mechanical properties were determined using composites made from HM-S fiber and polymer and composites made from HM-S fiber, polymer and a potential CN group trimerization catalyst. Composite mechanical properties, inter-laminar shear strength and flexure properties, were determined over the temperature range of +21 C to 316 C.

  12. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Processing techniques were developed for the fabrication of both polyphenylquinoxaline and polyimide composites by the in situ polymerization of monomeric reactants directly on the graphite reinforcing fibers, rather than using previously prepared prepolymer varnishes. Void-free polyphenylquinoxaline composites were fabricated and evaluated for room and elevated flexure and shear properties. The technology of the polyimide system was advanced to the point where the material is ready for commercial exploitation. A reproducible processing cycle free of operator judgment factors was developed for fabrication of void-free composites exhibiting excellent mechanical properties and a long time isothermal life in the range of 288 C to 316 C. The effects of monomer reactant stoichiometry and process modification on resin flow were investigated. Demonstration of the utility and quality of this polyimide system was provided through the successful fabrication and evaluation of four complex high tip speed fan blades.

  13. Superconductivity in graphite intercalation compounds

    DOE PAGES

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; ...

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less

  14. Superconductivity in graphite intercalation compounds

    NASA Astrophysics Data System (ADS)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-07-01

    The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC6 and YbC6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  15. Retention of hydrogen in graphite

    SciTech Connect

    Langley, R.A.

    1986-10-01

    The retention of hydrogen in POCO AXF-5Q graphite has been measured at room temperature as a function of fluence and flux for H/sub 2//sup +/ ions at energies from 250 to 500 eV provided by a glow discharge. More than 2 x 10/sup 18/ H/cm/sup 2/ has been retained, and no indication of saturation has been observed to a fluence of 5 x 10/sup 19/ H/cm/sup 2/. In this experiment, retention was found to increase linearly with fluence for constant flux. A flux dependence was observed; that is, the retention rate was observed to decrease monotonically as the flux increased. A change-over experiment, deuterium to hydrogen, was conducted; the results show that significant change-over occurs (i.e., about 30% change-over for a fluence of 5 x 10/sup 17/ D/cm/sup 2/).

  16. Superconductivity in graphite intercalation compounds

    SciTech Connect

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  17. The characterization of fluorinated graphite

    SciTech Connect

    Hagaman, E.W.; Gakh, A.A.; Annis, B.K.

    1995-12-31

    The characterization of solid fossil fuels by chemical and spectroscopic methods requires extensive modelling in less complex systems for chemical proof of principle and technique development. In previous work coal was fluorinated with dilute, elemental fluorine under conditions that were expected to lead to materials that contain only fluoromethine moieties. The solid state, cross polarization/magic angle spinning (CP/MAS) {sup 13}C NMR spectra of the fluorinated coal are complex, indicating more chemical modification than originally anticipated. Our goal in the coal derivatization was to sequentially increase the severity of the fluorination and observe by {sup 19}F and {sup 13}C NMR the type and concentration of fluorine functional groups created in the coal milieu. This requires the ability to discriminate between C, CF, CF{sub 2}, and CF, moieties in the coal matrix. The task can be accomplished by implementing the spectral editing technique of Wu and Zilm which distinguishes different kinds of carbon resonances, especially CH and CH{sub 2} resonances. These experiments utilize cross polarization (CP) and polarization inversion (PI) to effect the discrimination. Our version of this experiment is a triple resonance experiment that incorporates {sup 19}F-{sup 13}C CP, PI, and simultaneous {sup 1}H and {sup 19}F dipolar decoupling. In order to evaluate the elemental fluorine chemistry in a matrix simpler than coal, fluorinated graphite was prepared. X-ray photoelectron spectroscopy (XPS) was used to characterize the surface species, i.e., count CF, CF{sub 2} and CF{sub 3} species. These well-characterized samples are the models we will use to test the NIVIR editing experiments. The XPS and atomic force microscopy (AFM) data on the first fluorinated graphites we have prepared are reported in this paper.

  18. Method for molding threads in graphite panels

    DOEpatents

    Short, William W.; Spencer, Cecil

    1994-01-01

    A graphite panel (10) with a hole (11) having a damaged thread (12) is repaired by drilling the hole (11) to remove all of the thread and make a new hole (13) of larger diameter. A bolt (14) with a lubricated thread (17) is placed in the new hole (13) and the hole (13) is packed with graphite cement (16) to fill the hole and the thread on the bolt. The graphite cement (16) is cured, and the bolt is unscrewed therefrom to leave a thread (20) in the cement (16) which is at least as strong as that of the original thread (12).

  19. Adsorption of lead over graphite oxide.

    PubMed

    Olanipekun, Opeyemi; Oyefusi, Adebola; Neelgund, Gururaj M; Oki, Aderemi

    2014-01-24

    The adsorption efficiency and kinetics of removal of lead in presence of graphite oxide (GO) was determined using the Atomic Absorption Spectrophotometer (AAS). The GO was prepared by the chemical oxidation of graphite and characterized using FTIR, SEM, TGA and XRD. The adsorption efficiency of GO for the solution containing 50, 100 and 150 ppm of Pb(2+) was found to be 98%, 91% and 71% respectively. The adsorption ability of GO was found to be higher than graphite. Therefore, the oxidation of activated carbon in removal of heavy metals may be a viable option to reduce pollution in portable water. Published by Elsevier B.V.

  20. Adsorption of lead over Graphite Oxide

    PubMed Central

    Olanipekun, Opeyemi; Oyefusi, Adebola; Neelgund, Gururaj M.; Oki, Aderemi

    2014-01-01

    The adsorption efficiency and kinetics of removal of lead in presence of graphite oxide (GO) was determined using the Atomic Absorption spectrophotometer (AAS). The GO was prepared by the chemical oxidation of graphite and characterized using FTIR, SEM, TGA and XRD. The adsorption efficiency of GO for the solution containing 50, 100 and 150 ppm of Pb2+ was found to be 98, 91 and 71% respectively. The adsorption ability of GO was found to be higher than graphite. Therefore, the oxidation of activated carbon in removal of heavy metals may be a viable option to reduce pollution in portable water. PMID:24152870

  1. Method for molding threads in graphite panels

    DOEpatents

    Short, W.W.; Spencer, C.

    1994-11-29

    A graphite panel with a hole having a damaged thread is repaired by drilling the hole to remove all of the thread and making a new hole of larger diameter. A bolt with a lubricated thread is placed in the new hole and the hole is packed with graphite cement to fill the hole and the thread on the bolt. The graphite cement is cured, and the bolt is unscrewed therefrom to leave a thread in the cement which is at least as strong as that of the original thread. 8 figures.

  2. Self-Retracting Motion of Graphite Microflakes

    NASA Astrophysics Data System (ADS)

    Zheng, Quanshui; Jiang, Bo; Liu, Shoupeng; Weng, Yuxiang; Lu, Li; Xue, Qikun; Zhu, Jing; Jiang, Qing; Wang, Sheng; Peng, Lianmao

    2008-02-01

    We report the observation of a novel phenomenon, the self-retracting motion of graphite, in which tiny flakes of graphite, after being displaced to various suspended positions from islands of highly orientated pyrolytic graphite, retract back onto the islands under no external influences. Reports of this phenomenon have not been found in the literature for single crystals of any kind. Models that include the van der Waals force, electrostatic force, and shear strengths were considered to explain the observed phenomenon. These findings may conduce to create nanoelectromechanical systems with a wide range of mechanical frequency from megahertz to gigahertz.

  3. Adsorption of lead over graphite oxide

    NASA Astrophysics Data System (ADS)

    Olanipekun, Opeyemi; Oyefusi, Adebola; Neelgund, Gururaj M.; Oki, Aderemi

    2014-01-01

    The adsorption efficiency and kinetics of removal of lead in presence of graphite oxide (GO) was determined using the Atomic Absorption Spectrophotometer (AAS). The GO was prepared by the chemical oxidation of graphite and characterized using FTIR, SEM, TGA and XRD. The adsorption efficiency of GO for the solution containing 50, 100 and 150 ppm of Pb2+ was found to be 98%, 91% and 71% respectively. The adsorption ability of GO was found to be higher than graphite. Therefore, the oxidation of activated carbon in removal of heavy metals may be a viable option to reduce pollution in portable water.

  4. Interface structure between tetraglyme and graphite

    NASA Astrophysics Data System (ADS)

    Minato, Taketoshi; Araki, Yuki; Umeda, Kenichi; Yamanaka, Toshiro; Okazaki, Ken-ichi; Onishi, Hiroshi; Abe, Takeshi; Ogumi, Zempachi

    2017-09-01

    Clarification of the details of the interface structure between liquids and solids is crucial for understanding the fundamental processes of physical functions. Herein, we investigate the structure of the interface between tetraglyme and graphite and propose a model for the interface structure based on the observation of frequency-modulation atomic force microscopy in liquids. The ordering and distorted adsorption of tetraglyme on graphite were observed. It is found that tetraglyme stably adsorbs on graphite. Density functional theory calculations supported the adsorption structure. In the liquid phase, there is a layered structure of the molecular distribution with an average distance of 0.60 nm between layers.

  5. Status of Chronic Oxidation Studies of Graphite

    SciTech Connect

    Contescu, Cristian I.; Mee, Robert W.

    2016-05-01

    Graphite will undergo extremely slow, but continuous oxidation by traces of moisture that will be present, albeit at very low levels, in the helium coolant of HTGR. This chronic oxidation may cause degradation of mechanical strength and thermal properties of graphite components if a porous oxidation layer penetrates deep enough in the bulk of graphite components during the lifetime of the reactor. The current research on graphite chronic oxidation is motivated by the acute need to understand the behavior of each graphite grade during prolonged exposure to high temperature chemical attack by moisture. The goal is to provide the elements needed to develop predictive models for long-time oxidation behavior of graphite components in the cooling helium of HTGR. The tasks derived from this goal are: (1) Oxidation rate measurements in order to determine and validate a comprehensive kinetic model suitable for prediction of intrinsic oxidation rates as a function of temperature and oxidant gas composition; (2) Characterization of effective diffusivity of water vapor in the graphite pore system in order to account for the in-pore transport of moisture; and (3) Development and validation of a predictive model for the penetration depth of the oxidized layer, in order to assess the risk of oxidation caused damage of particular graphite grades after prolonged exposure to the environment of helium coolant in HTGR. The most important and most time consuming of these tasks is the measurement of oxidation rates in accelerated oxidation tests (but still under kinetic control) and the development of a reliable kinetic model. This report summarizes the status of chronic oxidation studies on graphite, and then focuses on model development activities, progress of kinetic measurements, validation of results, and improvement of the kinetic models. Analysis of current and past results obtained with three grades of showed that the classical Langmuir-Hinshelwood model cannot reproduce all

  6. Crystal Structure of Cold Compressed Graphite

    NASA Astrophysics Data System (ADS)

    Amsler, Maximilian; Flores-Livas, José A.; Lehtovaara, Lauri; Balima, Felix; Ghasemi, S. Alireza; Machon, Denis; Pailhès, Stéphane; Willand, Alexander; Caliste, Damien; Botti, Silvana; San Miguel, Alfonso; Goedecker, Stefan; Marques, Miguel A. L.

    2012-02-01

    Through a systematic structural search we found an allotrope of carbon with Cmmm symmetry which we predict to be more stable than graphite for pressures above 10 GPa. This material, which we refer to as Z-carbon, is formed by pure sp3 bonds and it provides an explanation to several features in experimental x-ray diffraction and Raman spectra of graphite under pressure. The transition from graphite to Z-carbon can occur through simple sliding and buckling of graphene sheets. Our calculations predict that Z-carbon is a transparent wide band-gap semiconductor with a hardness comparable to diamond.

  7. High electrical resistivity carbon/graphite fibers

    NASA Technical Reports Server (NTRS)

    Vogel, F. L.; Forsman, W. C.

    1980-01-01

    Carbon/graphite fibers were chemically oxidized in the liquid phase to fibers of graphite oxide. Resistivity increases as high as 10,000 times were obtained, the oxidized fiber decomposed on exposure to atmosphere. A factor of 1,000 remained as a stable increment. The largest change observed was 1,000,000 times. Best results were obtained on the most highly graphitized fibers. Electrochemical oxidation yielded a lower increase--about 10 times, but provided a controllable method of synthesis and insight to the mechanism of reaction. Tensile tests indicated that the strength of the fiber on oxidation was decreased by no more than 25 percent.

  8. Graphite Fluoride Fiber Composites For Heat Sinking

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Long, Martin; Stahl, Mark

    1989-01-01

    Graphite fluoride fiber/polymer composite materials consist of graphite fluoride fibers in epoxy, polytetrafluoroethylene, or polyimide resin. Combines high electrical resistivity with high thermal conductivity and solves heat-transfer problems of many electrical systems. Commercially available in powder form, for use as dry lubricant or cathode material in lithium batteries. Produced by direct fluorination of graphite powder at temperature of 400 to 650 degree C. Applications include printed-circuit boards for high-density power electronics, insulators for magnetic-field cores like those found in alternators and transformers, substrates for thin-film resistors, and electrical-protection layers in aircraft de-icers.

  9. Fabrication of graphite/polyimide composite structures.

    NASA Technical Reports Server (NTRS)

    Varlas, M.

    1972-01-01

    Selection of graphite/polyimide composite as a prime candidate for high-temperature structural applications involving long-duration temperature environments of 400 to 600 F. A variety of complex graphite/polyimide components has been fabricated, using a match-metal die approach developed for making fiber-reinforced resin composites. Parts produced include sections of a missile adapter skin flange, skin frame section, and I-beam and hat-section stringers, as well as unidirectional (0 deg) and plus or minus 45 deg oriented graphite/polyimide tubes in one-, two-, and six-inch diameters.

  10. Synthesis of soluble graphite and graphene.

    PubMed

    Kelly, K F; Billups, W E

    2013-01-15

    Because of graphene's anticipated applications in electronics and its thermal, mechanical, and optical properties, many scientists and engineers are interested in this material. Graphene is an isolated layer of the π-stacked hexagonal allotrope of carbon known as graphite. The interlayer cohesive energy of graphite, or exfoliation energy, that results from van der Waals attractions over the interlayer spacing distance of 3.34 Å (61 meV/C atom) is many times weaker than the intralayer covalent bonding. Since graphene itself does not occur naturally, scientists and engineers are still learning how to isolate and manipulate individual layers of graphene. Some researchers have relied on the physical separation of the sheets, a process that can sometimes be as simple as peeling of sheets from crystalline graphite using Scotch tape. Other researchers have taken an ensemble approach, where they exploit the chemical conversion of graphite to the individual layers. The typical intermediary state is graphite oxide, which is often produced using strong oxidants under acidic conditions. Structurally, researchers hypothesize that acidic functional groups functionalize the oxidized material at the edges and a network of epoxy groups cover the sp(2)-bonded carbon network. The exfoliated material formed under these conditions can be used to form dispersions that are usually unstable. However, more importantly, irreversible defects form in the basal plane during oxidation and remain even after reduction of graphite oxide back to graphene-like material. As part of our interest in the dissolution of carbon nanomaterials, we have explored the derivatization of graphite following the same procedures that preserve the sp(2) bonding and the associated unique physical and electronic properties in the chemical processing of single-walled carbon nanotubes. In this Account, we describe efficient routes to exfoliate graphite either into graphitic nanoparticles or into graphene without

  11. Ion irradiation of 37Cl implanted nuclear graphite: Effect of the energy deposition on the chlorine behavior and consequences for the mobility of 36Cl in irradiated graphite

    NASA Astrophysics Data System (ADS)

    Toulhoat, N.; Moncoffre, N.; Bérerd, N.; Pipon, Y.; Blondel, A.; Galy, N.; Sainsot, P.; Rouzaud, J.-N.; Deldicque, D.

    2015-09-01

    Graphite is used in many types of nuclear reactors due to its ability to slow down fast neutrons without capturing them. Whatever the reactor design, the irradiated graphite waste management has to be faced sooner or later regarding the production of long lived or dose determining radioactive species such as 14C, 3H or 36Cl. The first carbon dioxide cooled, graphite moderated nuclear reactors resulted in a huge quantity of irradiated graphite waste for which the management needs a previous assessment of the radioactive inventory and the radionuclide's location and speciation. As the detection limits of usual spectroscopic methods are generally not adequate to detect the low concentration levels (<1 ppm) of the radionuclides, we used an indirect approach based on the implantation of 37Cl, to simulate the presence of 36Cl. Our previous studies show that temperature is one of the main factors to be considered regarding the structural evolution of nuclear graphite and chlorine mobility during reactor operation. However, thermal release of chlorine cannot be solely responsible for the depletion of the 36Cl inventory. We propose in this paper to study the impact of irradiation and its synergetic effects with temperature on chlorine release. Indeed, the collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic collisions. However, a small part of the recoil carbon atom energy is also transferred to the lattice through electronic excitation. This paper aims at elucidating the effects of the different irradiation regimes (ballistic and electronic) using ion irradiation, on the mobility of implanted 37Cl, taking into account the initial disorder level of the nuclear graphite.

  12. Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces.

    PubMed

    Patel, Anisha N; McKelvey, Kim; Unwin, Patrick R

    2012-12-19

    Graphite-based electrodes (graphite, graphene, and nanotubes) are used widely in electrochemistry, and there is a long-standing view that graphite step edges are needed to catalyze many reactions, with the basal surface considered to be inert. In the present work, this model was tested directly for the first time using scanning electrochemical cell microscopy reactive patterning and shown to be incorrect. For the electro-oxidation of dopamine as a model process, the reaction rate was measured at high spatial resolution across a surface of highly oriented pyrolytic graphite. Oxidation products left behind in a pattern defined by the scanned electrochemical cell served as surface-site markers, allowing the electrochemical activity to be correlated directly with the graphite structure on the nanoscale. This process produced tens of thousands of electrochemical measurements at different locations across the basal surface, unambiguously revealing it to be highly electrochemically active, with step edges providing no enhanced activity. This new model of graphite electrodes has significant implications for the design of carbon-based biosensors, and the results are additionally important for understanding electrochemical processes on related sp(2)-hybridized materials such as pristine graphene and nanotubes.

  13. Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

    DOE PAGES

    To, John W. F.; Chen, Zheng; Yao, Hongbin; ...

    2015-05-18

    Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 °C with record-high surface area (4073 m2 g–1), large poremore » volume (2.26 cm–3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium–sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications.« less

  14. ICP-MS measurement of iodine diffusion in IG-110 graphite for HTGR/VHTR

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.

    2016-05-01

    Graphite functions as a structural material and as a barrier to fission product release in HTGR/VHTR designs, and elucidation of transport parameters for fission products in reactor-grade graphite is thus required for reactor source terms calculations. We measured iodine diffusion in spheres of IG-110 graphite using a release method based on Fickain diffusion kinetics. Two sources of iodine were loaded into the graphite spheres; molecular iodine (I2) and cesium iodide (CsI). Measurements of the diffusion coefficient were made over a temperature range of 873-1293 K. We have obtained the following Arrhenius expressions for iodine diffusion:DI , CsI infused =(6 ×10-12 2/s) exp(30,000 J/mol RT) And,DI , I2 infused =(4 ×10-10 m2/s) exp(-11,000 J/mol RT ) The results indicate that iodine diffusion in IG-110 graphite is not well-described by Fickan diffusion kinetics. To our knowledge, these are the first measurements of iodine diffusion in IG-110 graphite.

  15. Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

    PubMed Central

    2015-01-01

    Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 °C with record-high surface area (4073 m2 g–1), large pore volume (2.26 cm–3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium–sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications. PMID:27162953

  16. Electrical resistivity studies on graphite at high pressure and low temperature

    SciTech Connect

    Hockey, R.L.

    1985-01-01

    High pressure is shown to give a valuable insight into the intrinsic c-axis resistivity of Highly Oriented Pyrolitic Graphite (HOPG). For the purpose of improving the understanding of the fundamental behavior of this technologically important material, additional forms of graphitic material such as Grafoil, Single Crystal Graphite (SCG) and polycrystalline natural graphite were explored for a comparative analysis. A novel technique utilizing a gasketed diamond-anvil cell is described that permits four probe resistivity measurements at pressures of up to 40 kbar and temperatures extending down to 2 K while maintaining the integrity of samples as fragile as graphite. The four-lead arrangement is designed to avoid contact and lead-wire resistances which might otherwise obscure the comparatively small resistance changes of interest typical of highly conductive materials. The data on HOPG can be fitted well to a model describing conduction along the c-axis as composed of two components acting in parallel: an ordinary metallic one and a tunnelling conduction between crystallites. The total conductivity was found to be a superposition of both conductivities, and their respective weights depend on the quality of the graphite material.

  17. Monolithic porous graphitic carbons obtained through catalytic graphitization of carbon xerogels

    NASA Astrophysics Data System (ADS)

    Kiciński, Wojciech; Norek, Małgorzata; Bystrzejewski, Michał

    2013-01-01

    Pyrolysis of organic xerogels accompanied by catalytic graphitization and followed by selective-combustion purification was used to produce porous graphitic carbons. Organic gels impregnated with iron(III) chloride or nickel(II) acetate were obtained through polymerization of resorcinol and furfural. During the pyrolysis stage graphitization of the gel matrix occurs, which in turn develops mesoporosity of the obtained carbons. The evolution of the carbon into graphitic structures is strongly dependent on the concentrations of the transition metal. Pyrolysis leads to monoliths of carbon xerogel characterized by substantially enhanced mesoporosity resulting in specific surface areas up to 400 m2/g. Removal of the amorphous carbon by selective-combustion purification reduces the xerogels' mesoporosity, occasionally causing loss of their mechanical strength. The graphitized carbon xerogels were investigated by means of SEM, XRD, Raman scattering, TG-DTA and N2 physisorption. Through this procedure well graphitized carbonaceous materials can be obtained as bulk pieces.

  18. Structural efficiency study of graphite-epoxy aircraft rib structures

    NASA Technical Reports Server (NTRS)

    Swanson, Gary D.; Gurdal, Zafer; Starnes, James H., Jr.

    1988-01-01

    Attention is given to the structural efficiencies obtainable with optimally designed graphite/epoxy wing rib panel configurations that are potentially economically manufacturable. Some ribs are commonly used as fuel cell closeout panels, and are accordingly subjected to out-of-plane pressure loads in addition to the in-plane axial compressive and shear loads resulting from the wing loading. The present minimum-weight panel designs satisfy buckling and strength constraints for wing rib panels subjected to a wide range of combined load conditions.

  19. Graphite/Larc-160 technology demonstration segment test results

    NASA Technical Reports Server (NTRS)

    Morita, W. H.; Graves, S. R.

    1983-01-01

    A structural test program was conducted on a Celion/LARC-160 graphite/polyimide technology demonstration segment (TDS) to verify the technology. The 137 x 152 cm (54 x 60 in.) TDS simulates a full-scale section of the orbiter composite body flap design incorporating three ribs and extending from the forward cove back to the rear spar. The TDS was successfully subjected to mechanical loads and thermal environments (-170 to 316 C) simulating 100 shuttle orbiter missions. Successful completion of the test program verified the design, analysis, and fabrication methodology for bonded Gr/PI honeycomb sandwich structure and demonstration that Gr/PI composite technology readiness is established.

  20. Stable dispersions of polymer-coated graphitic nanoplatelets

    NASA Technical Reports Server (NTRS)

    Stankovich, Sasha (Inventor); Nguyen, Sonbinh T. (Inventor); Ruoff, Rodney S. (Inventor)

    2011-01-01

    A method of making a dispersion of reduced graphite oxide nanoplatelets involves providing a dispersion of graphite oxide nanoplatelets and reducing the graphite oxide nanoplatelets in the dispersion in the presence of a reducing agent and a polymer. The reduced graphite oxide nanoplatelets are reduced to an extent to provide a higher C/O ratio than graphite oxide. A stable dispersion having polymer-treated reduced graphite oxide nanoplatelets dispersed in a dispersing medium, such as water or organic liquid is provided. The polymer-treated, reduced graphite oxide nanoplatelets can be distributed in a polymer matrix to provide a composite material.

  1. Superhydrophilic graphite surfaces and water-dispersible graphite colloids by electrochemical exfoliation

    SciTech Connect

    Li, Yueh-Feng; Chen, Shih-Ming; Lai, Wei-Hao; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2013-08-14

    Superhydrophilic graphite surfaces and water-dispersible graphite colloids are obtained by electrochemical exfoliation with hydrophobic graphite electrodes. Such counterintuitive characteristics are caused by partial oxidation and investigated by examining both graphite electrodes and exfoliated particles after electrolysis. The extent of surface oxidation can be explored through contact angle measurement, scanning electron microscope, electrical sheet resistance, x-ray photoelectron spectroscopy, zeta-potential analyzer, thermogravimetric analysis, UV-visible, and Raman spectroscopy. The degree of wettability of the graphite anode can be altered by the electrolytic current and time. The water contact angle declines generally with increasing the electrolytic current or time. After a sufficient time, the graphite anode becomes superhydrophilic and its hydrophobicity can be recovered by peeling with adhesive tape. This consequence reveals that the anodic graphite is oxidized by oxygen bubbles but the oxidation just occurs at the outer layers of the graphite sheet. Moreover, the characteristics of oxidation revealed by UV peak shift, peak ratio between D and G bands, and negative zeta-potential indicate the presence of graphite oxide on the outer shell of the exfoliated colloids. However, thermogravimetric analysis for the extent of decomposition of oxygen functional groups verifies that the amount of oxygen groups is significantly less than that of graphite oxide prepared via Hummer method. The structure of this partially oxidized graphite may consist of a graphite core covered with an oxidized shell. The properties of the exfoliated colloids are also influenced by pH of the electrolytic solution. As pH is increased, the extent of oxidation descends and the thickness of oxidized shell decreases. Those results reveal that the degree of oxidation of exfoliated nanoparticles can be manipulated simply by controlling pH.

  2. Superhydrophilic graphite surfaces and water-dispersible graphite colloids by electrochemical exfoliation

    NASA Astrophysics Data System (ADS)

    Li, Yueh-Feng; Chen, Shih-Ming; Lai, Wei-Hao; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2013-08-01

    Superhydrophilic graphite surfaces and water-dispersible graphite colloids are obtained by electrochemical exfoliation with hydrophobic graphite electrodes. Such counterintuitive characteristics are caused by partial oxidation and investigated by examining both graphite electrodes and exfoliated particles after electrolysis. The extent of surface oxidation can be explored through contact angle measurement, scanning electron microscope, electrical sheet resistance, x-ray photoelectron spectroscopy, zeta-potential analyzer, thermogravimetric analysis, UV-visible, and Raman spectroscopy. The degree of wettability of the graphite anode can be altered by the electrolytic current and time. The water contact angle declines generally with increasing the electrolytic current or time. After a sufficient time, the graphite anode becomes superhydrophilic and its hydrophobicity can be recovered by peeling with adhesive tape. This consequence reveals that the anodic graphite is oxidized by oxygen bubbles but the oxidation just occurs at the outer layers of the graphite sheet. Moreover, the characteristics of oxidation revealed by UV peak shift, peak ratio between D and G bands, and negative zeta-potential indicate the presence of graphite oxide on the outer shell of the exfoliated colloids. However, thermogravimetric analysis for the extent of decomposition of oxygen functional groups verifies that the amount of oxygen groups is significantly less than that of graphite oxide prepared via Hummer method. The structure of this partially oxidized graphite may consist of a graphite core covered with an oxidized shell. The properties of the exfoliated colloids are also influenced by pH of the electrolytic solution. As pH is increased, the extent of oxidation descends and the thickness of oxidized shell decreases. Those results reveal that the degree of oxidation of exfoliated nanoparticles can be manipulated simply by controlling pH.

  3. Investigation of Ceramic, Graphite, and Chrome-plated Graphite Nozzles on Rocket Engine

    NASA Technical Reports Server (NTRS)

    Kinney, George R; Lidman, William G

    1949-01-01

    The use of ceramic material for rocket nozzles and the effectiveness of preventing oxidation and erosion of graphite nozzles by chrome-plating the internal surface were investigated. A supported ceramic nozzle, cracked by initial operation, was operated a second time without further cracking or damage. Chrome-plating the internal surface of graphite nozzles effectively prevented oxidation and erosion that occurred during operation with unprotected graphite.

  4. FennoFlakes: a project for identifying flake graphite ores in the Fennoscandian shield and utilizing graphite in different applications

    NASA Astrophysics Data System (ADS)

    Palosaari, Jenny; Eklund, O.; Raunio, S.; Lindfors, T.; Latonen, R.-M.; Peltonen, J.; Smått, J.-H.; Kauppila, J.; Lund, S.; Sjöberg-Eerola, P.; Blomqvist, R.; Marmo, J.

    2016-04-01

    Natural graphite is a strategic mineral, since the European Commission stated (Report on critical raw materials for the EU (2014)) that graphite is one of the 20 most critical materials for the European Union. The EU consumed 13% of all flake graphite in the world but produced only 3%, which stresses the demand of the material. Flake graphite, which is a flaky version of graphite, forms under high metamorphic conditions. Flake graphite is important in different applications like batteries, carbon brushes, heat sinks etc. Graphene (a single layer of graphite) can be produced from graphite and is commonly used in many nanotechnological applications, e.g. in electronics and sensors. The steps to obtain pure graphene from graphite ore include fragmentation, flotation and exfoliation, which can be cumbersome and resulting in damaging the graphene layers. We have started a project named FennoFlakes, which is a co-operation between geologists and chemists to fill the whole value chain from graphite to graphene: 1. Exploration of graphite ores (geological and geophysical methods). 2. Petrological and geochemical analyses on the ores. 3. Development of fragmentation methods for graphite ores. 4. Chemical exfoliation of the enriched flake graphite to separate flake graphite into single and multilayer graphene. 5. Test the quality of the produced material in several high-end applications with totally environmental friendly and disposable material combinations. Preliminary results show that flake graphite in high metamorphic areas has better qualities compared to synthetic graphite produced in laboratories.

  5. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition.

    NASA Astrophysics Data System (ADS)

    Sharma, Uttam; Chauhan, Sachin S.; Sharma, Jayshree; Sanyasi, A. K.; Ghosh, J.; Choudhary, K. K.; Ghosh, S. K.

    2016-10-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS.

  6. Overview of SBIR Phase II Work on Hollow Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Stallcup, Michael; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Ultra-Lightweight materials are enabling for producing space based optical components and support structures. Heretofore, innovative designs using existing materials has been the approach to produce lighter-weight optical systems. Graphite fiber reinforced composites, because of their light weight, have been a material of frequent choice to produce space based optical components. Hollow graphite fibers would be lighter than standard solid graphite fibers and, thus, would save weight in optical components. The Phase I SBIR program demonstrated it is possible to produce hollow carbon fibers that have strengths up to 4.2 GPa which are equivalent to commercial fibers, and composites made from the hollow fibers had substantially equivalent composite strengths as commercial fiber composites at a 46% weight savings. The Phase II SBIR program will optimize processing and properties of the hollow carbon fiber and scale-up processing to produce sufficient fiber for fabricating a large ultra-lightweight mirror for delivery to NASA. Information presented here includes an overview of the strength of some preliminary hollow fibers, photographs of those fibers, and a short discussion of future plans.

  7. Overview of SBIR Phase II Work on Hollow Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Stallcup, Michael; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Ultra-Lightweight materials are enabling for producing space based optical components and support structures. Heretofore, innovative designs using existing materials has been the approach to produce lighter-weight optical systems. Graphite fiber reinforced composites, because of their light weight, have been a material of frequent choice to produce space based optical components. Hollow graphite fibers would be lighter than standard solid graphite fibers and, thus, would save weight in optical components. The Phase I SBIR program demonstrated it is possible to produce hollow carbon fibers that have strengths up to 4.2 GPa which are equivalent to commercial fibers, and composites made from the hollow fibers had substantially equivalent composite strengths as commercial fiber composites at a 46% weight savings. The Phase II SBIR program will optimize processing and properties of the hollow carbon fiber and scale-up processing to produce sufficient fiber for fabricating a large ultra-lightweight mirror for delivery to NASA. Information presented here includes an overview of the strength of some preliminary hollow fibers, photographs of those fibers, and a short discussion of future plans.

  8. Feasibility of intercalated graphite railgun armatures

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Gooden, Clarence E.; Yashan, Doreen; Naud, Steven

    1990-01-01

    Graphite intercalation compounds may provide an excellent material for the fabrication of electro-magnetic railgun armatures. As a pulse of power is fed into the armature the intercalate could be excited into the plasma state around the edges of the armature, while the bulk of the current would be carried through the graphite block. Such an armature would have the desirable characteristics of both diffuse plasma armatures and bulk conduction armatures. In addition, the highly anisotropic nature of these materials could enable the electrical and thermal conductivity to be tailored to meet the specific requirements of electromagnetic railgun armatures. Preliminary investigations were performed in an attempt to determine the feasibility of using graphite intercalation compounds as railgun armatures. Issues of fabrication, resistivity, stability, and electrical current spreading are addressed for the case of highly oriented pyrolytic graphite.

  9. Bonding changes in compressed superhard graphite.

    PubMed

    Mao, Wendy L; Mao, Ho-kwang; Eng, Peter J; Trainor, Thomas P; Newville, Matthew; Kao, Chi-chang; Heinz, Dion L; Shu, Jinfu; Meng, Yue; Hemley, Russell J

    2003-10-17

    Compressed under ambient temperature, graphite undergoes a transition at approximately 17 gigapascals. The near K-edge spectroscopy of carbon using synchrotron x-ray inelastic scattering reveals that half of the pi-bonds between graphite layers convert to sigma-bonds, whereas the other half remain as pi-bonds in the high-pressure form. The x-ray diffraction pattern of the high-pressure form is consistent with a distorted graphite structure in which bridging carbon atoms between graphite layers pair and form sigma-bonds, whereas the nonbridging carbon atoms remain unpaired with pi-bonds. The high-pressure form is superhard, capable of indenting cubic-diamond single crystals.

  10. Liquid-phase exfoliation of flaky graphite

    NASA Astrophysics Data System (ADS)

    Pavlova, Alexandra S.; Obraztsova, Ekaterina A.; Belkin, Alexey V.; Monat, Christelle; Rojo-Romeo, Pedro; Obraztsova, Elena D.

    2016-01-01

    The majority of currently available methods of graphene production have certain drawbacks limiting its scaling. Unlike the others, liquid-phase exfoliation of graphite is a promising technique for high-yield graphene production. In this work, we present our results on one- to four-layer graphene production using various solvents and surfactants from flaky graphite. We suppose that the initial graphite in the form of millimeter-size flakes can be more advantageous for extended graphene flake acquisition than graphite powder consisting of tiny particles used in previous works. Half-centimeter-size graphene films were obtained by depositing exfoliated flakes on an arbitrary substrate. Such films can be useful for electronic and photonic applications.

  11. Graphitization in high carbon commercial steels

    NASA Astrophysics Data System (ADS)

    Neri, M. A.; Colás, R.; Valtierra, S.

    1998-08-01

    Graphitization kinetics in two commercial high carbon steels, AISI types 1075 and 1095, are studied by conducting a series of isothermal annealing treatments in the temperature range of 560 to 680‡ C for periods of time ranging from 20 to 500 h. The samples selected were collected along the processing route in a commercial production line dedicated to the fabrication of thin strip. The structures studied were those of hot rolling (consisting of fine pearlite), cold rolling (spheroidized carbides within a deformed ferritic matrix), and subcritical annealing (spheroidized carbides in undeformed ferrite). The samples obtained from hot rolled coils do not graphitize, whereas those cold rolled graphitize at a rate that depends on the type of steel and degree of deformation. No graphite was found in samples from the lower carbon steel, which were subcritically annealed, although they were observed in specimens from the other steel, which were cold rolled to a reduction of 50% prior to the subcritical annealing.

  12. Hydrogen chemisorption on a graphite surface

    NASA Astrophysics Data System (ADS)

    Klose, S.

    1992-07-01

    Using a perturbational approach we consider the chemisorption of a H-atom on a graphite (001) basal surface, having in mind that the graphite-H system reflects to some degree the interaction between an interstellar grain with graphitic parts and a H-atom. The theoretical model we have developed is based on the assumption that the graphite surface can be considered as a rigid network of identical carbon clusters representing the surface lattice geometry. We find, in agreement with previous studies, that the energetically preferred position of the chemisorbed H-atom is above a C-atom and that the wall-height between two adjacent binding sites of the H-atom is about 0.1 eV.

  13. Analysis of Picosecond Pulsed Laser Melted Graphite

    DOE R&D Accomplishments Database

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  14. Immobilization of Rocky Flats Graphite Fines Residue

    SciTech Connect

    Rudisill, T.S.

    1999-04-06

    The development of the immobilization process for graphite fines has proceeded through a series of experimental programs. The experimental procedures and results from each series of experiments are discussed in this report.

  15. GRAPHITE PRODUCTION UTILIZING URANYL NITRATE HEXAHYDRATE CATALYST

    DOEpatents

    Sheinberg, H.; Armstrong, J.R.; Schell, D.H.

    1964-03-10

    ABS>The graphitizing of a mixture composed of furfuryl alcohol binder and uranyl nitrate hexahydrate hardener and the subsequent curing, baking, and graphitizing with pressure being initially applied prior to curing are described. The pressure step may be carried out by extrusion, methyl cellulose being added to the mixture before the completion of extrusion. Uranium oxide may be added to the graphitizable mixture prior to the heating and pressure steps. The graphitizable mixture may consist of discrete layers of different compositions. (AEC)

  16. Structure-Property Relationships in Intercalated Graphite.

    DTIC Science & Technology

    1984-10-15

    2% 293 (1984). 45. "Raman Microprobe Studies of the Structure of SbCls-Graphite Intercalation Compounds’, L.E. McNeil, J. Steinbeck , L. Salamanca-Riba...Using the Rutherford Backscattering-Channeling Teachnique’, G. Braunstein, B. Elman, J. Steinbeck , M.S. Dresseihaus, T. Venkatesan and B. Wilkens, to be...8217Razuan Mcroprobe Observation of Intercalate Contraction In Graphite Inter- calation Compounds’, L.E. McNeil, J. Steinbeck , L. Salamancar-Riba, and G

  17. Decay of neutron pulses in graphite assemblies

    SciTech Connect

    Malik, U.; Kothari, L.S.

    1982-09-01

    A new neutron scattering kernel for graphite has been developed with the frequency distribution function generated by the authors using the unfolding technique. This has been used to study the decay of neutron pulses in different graphite assemblies. This kernel (with theta /SUB D/ = 2000 K) can give a slightly better explanation of the experimental results than those based on the Krumhansl and Brooks model or the Young and Koppel model of lattice vibrations.

  18. Tribology of alumina-graphite composites

    NASA Astrophysics Data System (ADS)

    Yu, Chih-Yuan

    Alumina-graphite composites, which combine high wear resistance and self-lubricity, are a potential and promising candidate for advanced tribological applications. The processing, mechanical properties and tribology of alumina-graphite composites are discussed. Full density is difficult to achieve by a pressureless sintering route. Porosity of the composites increases with graphite content which causes the strength, modulus of elasticity, and hardness of the composites to decrease. The increased porosity does cause the fracture toughness to slightly increases. Tribology of alumina-graphite composites was studied with a pin-on-disk tribometer with emphasis on the following aspects: the graphite content in both pin and disk, the graphite flake size and the orientation of the graphite flakes. Scan electronic microscopy (SEM) and X-ray diffraction are utilized to examine and characterize the wear debris and the worn surface. Results confirmed that it is necessary to optimize the structure and the supply of lubricant to improve the tribological behavior and that the arrangements of sliding couples also affect the tribology of self-lubricated ceramic composites. Continuous measurements of the friction coefficients were collected at high frequency in an attempt to correlate the tribology of alumina-graphite composites to vibrations introduced by friction. While these measurements indicate that the time frequency behavior of tribology is an important area of study, conclusions regarding the frequency response of different sliding couples could not be definitively stated. Finally, a new concept connecting instantaneous wear coefficient and instantaneous contact stress is proposed for prediction of wear behavior of brittle materials.

  19. Graphitized Carbon Foam with Phase Change Material

    DTIC Science & Technology

    2006-03-01

    conductivity of the graphite ligaments in the foam allows rapid transfer of heat throughout the PCM volume. The PCM, chosen for its high heat capacity and... transfer . The bulk thermal conductivity for the foam is lower than the conductivity of the graphite in its ligaments, but is still very high with...which heat is transferred With selection of paraffin as the PCM, the TESD should be able to undergo cycling without degradation of performance

  20. Albumin (BSA) adsorption onto graphite stepped surfaces

    NASA Astrophysics Data System (ADS)

    Rubio-Pereda, Pamela; Vilhena, J. G.; Takeuchi, Noboru; Serena, Pedro A.; Pérez, Rubén

    2017-06-01

    Nanomaterials are good candidates for the design of novel components with biomedical applications. For example, nano-patterned substrates may be used to immobilize protein molecules in order to integrate them in biosensing units. Here, we perform long MD simulations (up to 200 ns) using an explicit solvent and physiological ion concentrations to characterize the adsorption of bovine serum albumin (BSA) onto a nano-patterned graphite substrate. We have studied the effect of the orientation and step size on the protein adsorption and final conformation. Our results show that the protein is stable, with small changes in the protein secondary structure that are confined to the contact area and reveal the influence of nano-structuring on the spontaneous adsorption, protein-surface binding energies, and protein mobility. Although van der Waals (vdW) interactions play a dominant role, our simulations reveal the important role played by the hydrophobic lipid-binding sites of the BSA molecule in the adsorption process. The complex structure of these sites, that incorporate residues with different hydrophobic character, and their flexibility are crucial to understand the influence of the ion concentration and protein orientation in the different steps of the adsorption process. Our study provides useful information for the molecular engineering of components that require the immobilization of biomolecules and the preservation of their biological activity.

  1. Albumin (BSA) adsorption onto graphite stepped surfaces.

    PubMed

    Rubio-Pereda, Pamela; Vilhena, J G; Takeuchi, Noboru; Serena, Pedro A; Pérez, Rubén

    2017-06-07

    Nanomaterials are good candidates for the design of novel components with biomedical applications. For example, nano-patterned substrates may be used to immobilize protein molecules in order to integrate them in biosensing units. Here, we perform long MD simulations (up to 200 ns) using an explicit solvent and physiological ion concentrations to characterize the adsorption of bovine serum albumin (BSA) onto a nano-patterned graphite substrate. We have studied the effect of the orientation and step size on the protein adsorption and final conformation. Our results show that the protein is stable, with small changes in the protein secondary structure that are confined to the contact area and reveal the influence of nano-structuring on the spontaneous adsorption, protein-surface binding energies, and protein mobility. Although van der Waals (vdW) interactions play a dominant role, our simulations reveal the important role played by the hydrophobic lipid-binding sites of the BSA molecule in the adsorption process. The complex structure of these sites, that incorporate residues with different hydrophobic character, and their flexibility are crucial to understand the influence of the ion concentration and protein orientation in the different steps of the adsorption process. Our study provides useful information for the molecular engineering of components that require the immobilization of biomolecules and the preservation of their biological activity.

  2. Measurement of the cleavage energy of graphite

    PubMed Central

    Wang, Wen; Dai, Shuyang; Li, Xide; Yang, Jiarui; Srolovitz, David J.; Zheng, Quanshui

    2015-01-01

    The basal plane cleavage energy (CE) of graphite is a key material parameter for understanding many of the unusual properties of graphite, graphene and carbon nanotubes. Nonetheless, a wide range of values for the CE has been reported and no consensus has yet emerged. Here we report the first direct, accurate experimental measurement of the CE of graphite using a novel method based on the self-retraction phenomenon in graphite. The measured value, 0.37±0.01 J m−2 for the incommensurate state of bicrystal graphite, is nearly invariant with respect to temperature (22 °C≤T≤198 °C) and bicrystal twist angle, and insensitive to impurities from the atmosphere. The CE for the ideal ABAB graphite stacking, 0.39±0.02 J m−2, is calculated based on a combination of the measured CE and a theoretical calculation. These experimental measurements are also ideal for use in evaluating the efficacy of competing theoretical approaches. PMID:26314373

  3. Structure and functionality of bromine doped graphite.

    PubMed

    Hamdan, Rashid; Kemper, A F; Cao, Chao; Cheng, H P

    2013-04-28

    First-principles calculations are used to study the enhanced in-plane conductivity observed experimentally in Br-doped graphite, and to study the effect of external stress on the structure and functionality of such systems. The model used in the numerical calculations is that of stage two doped graphite. The band structure near the Fermi surface of the doped systems with different bromine concentrations is compared to that of pure graphite, and the charge transfer between carbon and bromine atoms is analyzed to understand the conductivity change along different high symmetry directions. Our calculations show that, for large interlayer separation between doped graphite layers, bromine is stable in the molecular form (Br2). However, with increased compression (decreased layer-layer separation) Br2 molecules tend to dissociate. While in both forms, bromine is an electron acceptor. The charge exchange between the graphite layers and Br atoms is higher than that with Br2 molecules. Electron transfer to the Br atoms increases the number of hole carriers in the graphite sheets, resulting in an increase of conductivity.

  4. Structure and functionality of bromine doped graphite

    SciTech Connect

    Hamdan, Rashid; Kemper, A. F.; Cao Chao; Cheng, H. P.

    2013-04-28

    First-principles calculations are used to study the enhanced in-plane conductivity observed experimentally in Br-doped graphite, and to study the effect of external stress on the structure and functionality of such systems. The model used in the numerical calculations is that of stage two doped graphite. The band structure near the Fermi surface of the doped systems with different bromine concentrations is compared to that of pure graphite, and the charge transfer between carbon and bromine atoms is analyzed to understand the conductivity change along different high symmetry directions. Our calculations show that, for large interlayer separation between doped graphite layers, bromine is stable in the molecular form (Br{sub 2}). However, with increased compression (decreased layer-layer separation) Br{sub 2} molecules tend to dissociate. While in both forms, bromine is an electron acceptor. The charge exchange between the graphite layers and Br atoms is higher than that with Br{sub 2} molecules. Electron transfer to the Br atoms increases the number of hole carriers in the graphite sheets, resulting in an increase of conductivity.

  5. Graphite Composite Panel Polishing Fixture

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Strojny, Carl; Budinoff, Jason

    2011-01-01

    The use of high-strength, lightweight composites for the fixture is the novel feature of this innovation. The main advantage is the light weight and high stiffness-to-mass ratio relative to aluminum. Meter-class optics require support during the grinding/polishing process with large tools. The use of aluminum as a polishing fixture is standard, with pitch providing a compliant layer to allow support without deformation. Unfortunately, with meter-scale optics, a meter-scale fixture weighs over 120 lb (.55 kg) and may distort the optics being fabricated by loading the mirror and/or tool used in fabrication. The use of composite structures that are lightweight yet stiff allows standard techniques to be used while providing for a decrease in fixture weight by almost 70 percent. Mounts classically used to support large mirrors during fabrication are especially heavy and difficult to handle. The mount must be especially stiff to avoid deformation during the optical fabrication process, where a very large and heavy lap often can distort the mount and optic being fabricated. If the optic is placed on top of the lapping tool, the weight of the optic and the fixture can distort the lap. Fixtures to support the mirror during fabrication are often very large plates of aluminum, often 2 in. (.5 cm) or more in thickness and weight upwards of 150 lb (68 kg). With the addition of a backing material such as pitch and the mirror itself, the assembly can often weigh over 250 lb (.113 kg) for a meter-class optic. This innovation is the use of a lightweight graphite panel with an aluminum honeycomb core for use as the polishing fixture. These materials have been used in the aerospace industry as structural members due to their light weight and high stiffness. The grinding polishing fixture consists of the graphite composite panel, fittings, and fixtures to allow interface to the polishing machine, and introduction of pitch buttons to support the optic under fabrication. In its

  6. Graphite/epoxy composite adapters for the Space Shuttle/Centaur vehicle

    NASA Technical Reports Server (NTRS)

    Kasper, Harold J.; Ring, Darryl S.

    1990-01-01

    The decision to launch various NASA satellite and Air Force spacecraft from the Space Shuttle created the need for a high-energy upper stage capable of being deployed from the cargo bay. Two redesigned versions of the Centaur vehicle which employed a graphite/epoxy composite material for the forward and aft adapters were selected. Since this was the first time a graphite/epoxy material was used for Centaur major structural components, the development of the adapters was a major effort. An overview of the composite adapter designs, subcomponent design evaluation test results, and composite adapter test results from a full-scale vehicle structural test is presented.

  7. Thermal cycling graphite-polyimide

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Hagaman, J. A.

    1979-01-01

    The effects of repetitive thermal cycling on the temperature-thermal deformation relation of graphite-polyimide were determined. The bending and axial strains, measured with strain gages, of unsymmetric 0 deg sub 2/90 deg sub 2 and 0 deg sub 4/90 deg sub 4 laminates were used as an indication of thermal deformation. The strains were measured as a function of temperature and two temperature ranges were used, room temperature to 180 C and room temperature to 315 C. Five cycles were run in each temperature range and the cycling was done in quasistatic fashion. The response of a flat 0 deg sub 8 laminate was measured as were the effects of repetitive cycling on the strain gages themselves. A piece-wise linear theory, based on classical lamination theory and using the variation of mechanical and thermal expansion properties with temperature, was compared with the experimental results. The correlation between theoretical predictions and experimental results for the thinner laminate was poor.

  8. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Techniques were developed that provided thermo-oxidatively stable A-type polyimide/graphite fiber composites using the approach of in situ polymerization of monomeric reactants directly on reinforcing fibers, rather than employing separately prepared prepolymer varnish. This was accomplished by simply mixing methylene dianiline and two ester-acids and applying this solution to the fibers for subsequent molding. Five different formulated molecular weight resins were examined, and an optimized die molding procedure established for the 1500 formulated molecular weight system. Extensive ultrasonic inspection of composites was successfully utilized as a technique for monitoring laminate quality. Composite mechanical property studies were conducted with this polyimide resin at room temperature and after various time exposures in a thermo-oxidative environment at 561 K (550 F), 589 K (600 F) and 617 K (650 F). It was determined that such composites have a long term life in the temperature range of 561 K to 589 K. The final phase involved the fabrication and evaluation of a series of demonstration airfoil specimens.

  9. Novel graphite salts of high oxidizing potential

    SciTech Connect

    McCarron, E.M. III

    1980-08-01

    The intercalation of graphite by the third-transition-series metal hexafluorides has yielded the graphite salts, C/sub 8//sup +/OsF/sub 6//sup -/, C/sub 8//sup +/IrF/sub 6//sup -/ and C/sub 12//sup 2 +/PtF/sub 6//sup 2 -/. The fluoroplatinate salt represents the highest electron withdrawal from the graphite network yet achieved. Analogues to the Os and Ir salts have been obtained both by fluorination of Group V pentaflouride intercalates, C/sub 8/MF/sub 5/ (M = As, Sb), and by the interaction of the dioxygenyl salts with graphite (8C + O/sub 2/MF/sub 6/ ..-->.. C/sub 8/MF/sub 6/ + O/sub 2/+). Non-intercalating binary fluorides have been observed to intercalate in the presence of a fluorine-rich environment (e.g., 8C + PF/sub 5/ + 1/2 F/sub 2/ ..-->.. C/sub 8/PF/sub 6/). GeF/sub 4/, which also does not spontaneously intercalate graphite, has been observed to interact with graphite in the presence of 2 atmospheres of fluorine overpressure to give the fluoroplatinate salt analogue, C/sub 12//sup 2 +/GeF/sub 6//sup 2 -/. This material is in equilibrium with the pentafluorogermanate at ordinary pressures and temperatures. C/sub 12//sup 2 +/GeF/sub 6//sup 2 -/ ..-->.. C/sub 12//sup +/GeF/sub 5//sup -/ + 1/2 F/sub 2/. C/sub 12/GeF/sub 6/ must have an oxidizing potential close to that of fluorine itself. The graphite fluorometallate salts are both electronic and ionic (F/sup -/) conductors. For the C/sub 8//sup +/MF/sub 6//sup -/ salts, a maximum electronic conductivity an order of magnitude greater than the parent graphite has been observed for stage two. The high oxidizing potential, coupled with the fluoride ion transport capability of the graphite salts, has been exploited in the construction of solid-state galvanic cells. These cells use the graphite fluorometallate salts as electrode materials in combination with a superionic fluoride-ion-conducting solid electrolyte.

  10. New insights into graphite paper as electrocatalytic substrate for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Ruan, Jinyan; Zhao, Wankun; Wu, Lili; Li, Xiaoxin; Zheng, Xiaoyu; Ye, Qinglan; Xu, Xuetang; Wang, Fan

    2017-02-01

    Designing highly efficient electrocatalysts for oxygen evolution reaction is important to meet the requirement of various renewable energy storage and conversion devices. Generally, the performance of OER catalysts can be significantly improved by synergistic action of the underlying conductive substrate. In this work, a commercial graphite paper was used as a facile substrate with catalytic activity. Graphite paper produced 10 mA cm-2 at an overpotential of 447 mV with a Tafel slope of 62 mV dec-1. By depositing NiFe hydroxide or Mn oxide film onto the graphite paper, the electrode presented a superior activity for water oxidation, which was believed to be synergistically contributed by their available electrochemically active sites associated with the deposited film and the active substrate. High activities were also accompanied by remarkable durability at large current density levels. Our results illustrated a guideline to the design of inexpensive and highly active composite electrode for water oxidation.

  11. First principles study of oxidation behavior of irradiated graphite

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Dong, Limin; Wang, Chen; Liang, Tongxiang; Lai, Wensheng

    2015-06-01

    The relationship between nuclear graphite microstructure and its oxidation resistance underlines the importance of comprehensive oxidation characterization studies of the new grades of nuclear graphite. Periodic DFT calculations are performed to model oxidation behavior of irradiated graphite. O2 molecules adsorbed on perfect and defective graphite surfaces are calculated. The adsorptive energy of O2 on defective graphite adsorption site with one carbon atom missing is approximately 10 times as strong as that on a defect-free perfect graphite surface. Monovacancy and divacancy on graphite surface can easily chemisorb O2 molecule compared to perfect surface. Two oxidation processes including CO and CO2 formation steps are analyzed. For symmetric monovacancy defect, three dangling C atoms are unsaturated and exhibit high adsorption ability, as well as reconstructed monovacancy and divacancy defects. These vacancy defects in irradiated graphite decrease oxidation resistance of nuclear graphite.

  12. Internal features of graphite in cast irons. Confocal microscopy: useful tool for graphite growth imaging.

    PubMed

    Llorca-Isern, N; Tartera, J; Espanol, M; Marsal, M; Bertran, G; Castel, S

    2002-01-01

    Spherulitic crystallisation is a mode of growth of crystals from the melt. Considerable attention has been given to spheroidal graphite formation, providing detailed information about the internal microstructure of the spherulites in spheroidal (SG irons) and compacted graphite irons (CG irons) (Stefanescu, D., 1990. Cast Irons. ASM Handbook, 10th ed., vol. 1). Nevertheless, the mechanisms responsible for this mode of crystallisation are not fully understood. This study deals with the inoculation mechanisms, with particular emphasis on the study of the inclusions for the heterogeneous nucleation of graphite. It is shown that the graphite nuclei are sulfide products of the nodularizing treatment. It has been observed that when rare-earth treatment is applied, the central nucleus consists of a core and an envelope from which the graphite grows. Confocal Scanning Laser Microscopy (CSLM), in reflection mode, was used to study the internal features of the spheroidal graphite growth. Confocal reflection imaging, which has a capacity for optical sectioning of the sample, provides high-resolution images of surface and subsurface regions of interest contained within a semi-transparent sample. Furthermore, three-dimensional reconstruction of these optical sections can provide insight into the mechanism of graphite growth mechanism interpretation. With CSLM the radial growth of graphite was seen. Other techniques, such as TEM, SEM-EDS, WDS, AES and SAM were also used to corroborate the results.

  13. Graphene prepared by thermal reduction–exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene

    SciTech Connect

    Dao, Trung Dung; Jeong, Han Mo

    2015-10-15

    Highlights: • Effect of raw graphite particle size on properties of GO and graphene is reported. • Size of raw graphite affects oxidation degree and chemical structure of GO. • Highly oxidized GO results in small-sized but well-exfoliated graphene. • GO properties affect reduction degree, structure, and conductivity of graphene. - Abstract: We report the effect of raw graphite size on the properties of graphite oxide and graphene prepared by thermal reduction–exfoliation of graphite oxide. Transmission electron microscope analysis shows that the lateral size of graphene becomes smaller when smaller size graphite is used. X-ray diffraction analysis confirms that graphite with smaller size is more effectively oxidized, resulting in a more effective subsequent exfoliation of the obtained graphite oxide toward graphene. X-ray photoelectron spectroscopy demonstrates that reduction of the graphite oxide derived from smaller size graphite into graphene is more efficient. However, Raman analysis suggests that the average size of the in-plane sp{sup 2}-carbon domains on graphene is smaller when smaller size graphite is used. The enhanced reduction degree and the reduced size of sp{sup 2}-carbon domains contribute contradictively to the electrical conductivity of graphene when the particle size of raw graphite reduces.

  14. Controlling the Surface Chemistry of Graphite by Engineered Self-Assembled Peptides

    PubMed Central

    Khatayevich, Dmitriy; So, Christopher R.; Hayamizu, Yuhei; Gresswell, Carolyn; Sarikaya, Mehmet

    2012-01-01

    The systematic control over surface chemistry is a long-standing challenge in biomedical and nanotechnological applications for graphitic materials. As a novel approach, we utilize graphite-binding dodecapeptides that self-assemble into dense domains to form monolayer thick long-range ordered films on graphite. Specifically, the peptides are rationally designed through their amino acid sequences to predictably display hydrophilic and hydrophobic characteristics while maintaining their self-assembly capabilities on the solid substrate. The peptides are observed to maintain a high tolerance for sequence modification, allowing the control over surface chemistry via their amino acid sequence. Furthermore, through a single step co-assembly of two different designed peptides, we predictably and precisely tune the wettability of the resulting functionalized graphite surfaces from 44 to 83 degrees. The modular molecular structures and predictable behavior of short peptides demonstrated here give rise to a novel platform for functionalizing graphitic materials that offers numerous advantages, including non-invasive modification of the substrate, bio-compatible processing in an aqueous environment, and simple fusion with other functional biological molecules. PMID:22428620

  15. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  16. Formation mechanism of graphite hexagonal pyramids by argon plasma etching of graphite substrates

    NASA Astrophysics Data System (ADS)

    Glad, X.; de Poucques, L.; Bougdira, J.

    2015-12-01

    A new graphite crystal morphology has been recently reported, namely the graphite hexagonal pyramids (GHPs). They are hexagonally-shaped crystals with diameters ranging from 50 to 800 nm and a constant apex angle of 40°. These nanostructures are formed from graphite substrates (flexible graphite and highly ordered pyrolytic graphite) in low pressure helicon coupling radiofrequency argon plasma at 25 eV ion energy and, purportedly, due to a physical etching process. In this paper, the occurrence of peculiar crystals is shown, presenting two hexagonal orientations obtained on both types of samples, which confirms such a formation mechanism. Moreover, by applying a pretreatment step with different time durations of inductive coupling radiofrequency argon plasma, for which the incident ion energy decreases at 12 eV, uniform coverage of the surface can be achieved with an influence on the density and size of the GHPs.

  17. Research on Graphite Reinforced Glass Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.

    1977-01-01

    This report contains the results obtained in the first twelve months of research under NASA Langley Contract NAS1-14346 for the origination of graphite-fiber reinforced glass matrix composites. Included in the report is a summary of the research by other investigators in this area. The method selected to form the composites consisted of pulling the graphite fiber through a slurry containing powdered glass, winding up the graphite fiber and the glass it picks up on a drum, drying, cutting into segments, loading the tape segment into a graphite die, and hot pressing. During the course of the work, composites were made with a variety of graphite fibers in a C.G.W. 7740 (Pyrex) glass matrix. The graphite fibers used included Hercules HMS, Hercules HTS, Thornel 300S, and Celanese DG-102 and, of these, the Hercules HMS and Celanese DG-102 graphite fibers in C.G.W. 7740 gave the most interesting but widely different results. Hercules HMS fiber in C.G.W. 7740 glass (Pyrex) showed an average four-point flexural strength of 848 MPa or 127,300 psi. As the test temperature was raised from room temperature to 560 C in argon or vacuum, the strength was higher by 50 percent. However, in air, similar tests at 560 C gave a severe loss in strength. These composites also have good thermal cycle properties in argon or vacuum, greatly increased toughness compared to glass, and no loss in strength in a 100 cycle fatigue test. Celanese DG-102 fiber in C.G.W. 7740 glass (Pyrex) had a much lower flexural strength but did not suffer any loss in this strength when samples were heated to 560 C in air for 4 hrs.

  18. Microwave absorption properties of graphite flakes-phenolic resin composite

    NASA Astrophysics Data System (ADS)

    Gogoi, Jyoti P.; Gogoi, Pragyan J.; Bhattacharyya, Nidhi S.

    2013-01-01

    In the present investigation, microwave absorption properties of a conductor back single layer designed on graphite flakes (GF)-novolac phenolic resin (NPR) composites is studied. The complex permittivity of the developed composite enhance for higher GF percentages. The reflection loss(RL) measured using E8362C VNA shows a maximum RL values -25 dB at 9.8 GHz for 7 wt. % composition with -10 dB bandwidth of 0.3 GHz. The developed composites are being light weight and cost effective shows potential to be used as dielectric absorber.

  19. High-toughness graphite/epoxy composite material experiment

    NASA Technical Reports Server (NTRS)

    Felbeck, David K.

    1993-01-01

    This experiment was designed to measure the effect of near-earth space exposure on three mechanical properties of specially toughened 5208/T300 graphite/epoxy composite materials. The properties measured are elastic modulus, strength, and fracture toughness. Six toughness specimens and nine tensile specimens were mounted on an external frame during the 5.8-year orbit of the Long Duration Exposure Facility (LDEF). Three identical sets of specimens were manufactured at the outset: the flight set, a zero-time non-flight set, and a total-time non-flight set.

  20. Chemical modification of graphite surfaces using chitosan as a mediator

    SciTech Connect

    Hatley, M.E.; Albahadily, F.N.

    1995-12-01

    Several techniques for modifying graphite surfaces have been utilized the last two decades. Some of these techniques have a few limitations which include monolayer coverage and nonspecific binding to the graphite surfaces. In this report, we describe a novel approach to modify graphite surfaces using chitosan. The graphite is coated with an acidic chitosan solution. After drying, a chitosan film is formed on the graphite surfaces. Glutaraldehyde is attached to the chitosan through an amide linkage. The desired modifiers which contain amine groups are then attached to the free end of the glutaraldehyde. Utilization of the modified graphite surfaces in paste electrodes will be discussed.

  1. Method for producing thin graphite flakes with large aspect ratios

    DOEpatents

    Bunnell, L. Roy

    1993-01-01

    A method for making graphite flakes of high aspect ratio by the steps of providing a strong concentrated acid and heating the graphite in the presence of the acid for a time and at a temperature effective to intercalate the acid in the graphite; heating the intercalated graphite at a rate and to a temperature effective to exfoliate the graphite in discrete layers; subjecting the graphite layers to ultrasonic energy, mechanical shear forces, or freezing in an amount effective to separate the layes into discrete flakes.

  2. Influence of Metal-Coated Graphite Powders on Microstructure and Properties of the Bronze-Matrix/Graphite Composites

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-hua; Li, Pu; Tang, Qi; Zhang, Yan-qing; He, Jian-sheng; He, Ke

    2017-01-01

    In this study, the bronze-matrix/x-graphite (x = 0, 1, 3 and 5%) composites were fabricated by powder metallurgy route by using Cu-coated graphite, Ni-coated graphite and pure graphite, respectively. The microstructure, mechanical properties and corrosive behaviors of bronze/Cu-coated-graphite (BCG), bronze/Ni-coated-graphite (BNG) and bronze/pure-graphite (BPG) were characterized and investigated. Results show that the Cu-coated and Ni-coated graphite could definitely increase the bonding quality between the bronze matrix and graphite. In general, with the increase in graphite content in bronze-matrix/graphite composites, the friction coefficients, ultimate density and wear rates of BPG, BCG and BNG composites all went down. However, the Vickers microhardness of the BNG composite would increase as the graphite content increased, which was contrary to the BPG and BCG composites. When the graphite content was 3%, the friction coefficient of BNG composite was more stable than that of BCG and BPG composites, indicating that BNG composite had a better tribological performance than the others. Under all the values of applied loads (10, 20, 40 and 60N), the BCG and BNG composites exhibited a lower wear rate than BPG composite. What is more, the existence of nickel in graphite powders could effectively improve the corrosion resistance of the BNG composite.

  3. Influence of Metal-Coated Graphite Powders on Microstructure and Properties of the Bronze-Matrix/Graphite Composites

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-hua; Li, Pu; Tang, Qi; Zhang, Yan-qing; He, Jian-sheng; He, Ke

    2017-02-01

    In this study, the bronze-matrix/x-graphite (x = 0, 1, 3 and 5%) composites were fabricated by powder metallurgy route by using Cu-coated graphite, Ni-coated graphite and pure graphite, respectively. The microstructure, mechanical properties and corrosive behaviors of bronze/Cu-coated-graphite (BCG), bronze/Ni-coated-graphite (BNG) and bronze/pure-graphite (BPG) were characterized and investigated. Results show that the Cu-coated and Ni-coated graphite could definitely increase the bonding quality between the bronze matrix and graphite. In general, with the increase in graphite content in bronze-matrix/graphite composites, the friction coefficients, ultimate density and wear rates of BPG, BCG and BNG composites all went down. However, the Vickers microhardness of the BNG composite would increase as the graphite content increased, which was contrary to the BPG and BCG composites. When the graphite content was 3%, the friction coefficient of BNG composite was more stable than that of BCG and BPG composites, indicating that BNG composite had a better tribological performance than the others. Under all the values of applied loads (10, 20, 40 and 60N), the BCG and BNG composites exhibited a lower wear rate than BPG composite. What is more, the existence of nickel in graphite powders could effectively improve the corrosion resistance of the BNG composite.

  4. Nuclear Graphite - Fracture Behavior and Modeling

    SciTech Connect

    Burchell, Timothy D; Battiste, Rick; Strizak, Joe P

    2011-01-01

    Evidence for the graphite fracture mechanism is reviewed and discussed. The roles of certain microstructural features in the graphite fracture process are reported. The Burchell fracture model is described and its derivation reported. The successful application of the fracture model to uniaxial tensile data from several graphites with widely ranging structure and texture is reported. The extension of the model to multiaxial loading scenarios using two criteria is discussed. Initially, multiaxial strength data for H-451 graphite were modeled using the fracture model and the Principle of Independent Action. The predicted 4th stress quadrant failure envelope was satisfactory but the 1st quadrant predictions were not conservative and thus were unsatisfactory. Multiaxial strength data from the 1st and 4th stress quadrant for NBG-18 graphite are reported. To improve the conservatism of the predicted 1st quadrant failure envelope for NBG-18 the Shetty criterion has been applied to obtain the equivalent critical stress intensity factor, KIc (Equi), for each applied biaxial stress ratio. The equivalent KIc value is used in the Burchell fracture model to predict the failure envelope. The predicted 1st stress quadrant failure envelope is conservative and thus more satisfactory than achieved previously using the fracture model combined with the Principle of Independent Action.

  5. EMI Shields made from intercalated graphite composites

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Terry, Jennifer

    1995-01-01

    Electromagnetic interference (EMI) shielding typically makes up about twenty percent of the mass of a spacecraft power system. Graphite fiber/polymer composites have significantly lower densities and higher strengths than aluminum, the present material of choice for EMI shields, but they lack the electrical conductivity that enables acceptable shielding effectiveness. Bromine intercalated pitch-based graphite/epoxy composites have conductivities fifty times higher than conventional structural graphite fibers. Calculations are presented which indicate that EMI shields made from such composites can have sufficient shielding at less than 20% of the mass of conventional aluminum shields. EMI shields provide many functions other than EMI shielding including physical protection, thermal management, and shielding from ionizing radiation. Intercalated graphite composites perform well in these areas also. Mechanically, they have much higher specific strength and modulus than aluminum. They also have shorter half thicknesses for x-rays and gamma radiation than aluminum. Thermally, they distribute infra-red radiation by absorbing and re-radiating it rather than concentrating it by reflection as aluminum does. The prospects for intercalated graphite fiber/polymer composites for EMI shielding are encouraging.

  6. Development of a graphite probe calorimeter for absolute clinical dosimetry

    SciTech Connect

    Renaud, James; Seuntjens, Jan; Sarfehnia, Arman; Marchington, David

    2013-02-15

    The aim of this work is to present the numerical design optimization, construction, and experimental proof of concept of a graphite probe calorimeter (GPC) conceived for dose measurement in the clinical environment (U.S. provisional patent 61/652,540). A finite element method (FEM) based numerical heat transfer study was conducted using a commercial software package to explore the feasibility of the GPC and to optimize the shape, dimensions, and materials used in its design. A functioning prototype was constructed inhouse and used to perform dose to water measurements under a 6 MV photon beam at 400 and 1000 MU/min, in a thermally insulated water phantom. Heat loss correction factors were determined using FEM analysis while the radiation field perturbation and the graphite to water absorbed dose conversion factors were calculated using Monte Carlo simulations. The difference in the average measured dose to water for the 400 and 1000 MU/min runs using the TG-51 protocol and the GPC was 0.2% and 1.2%, respectively. Heat loss correction factors ranged from 1.001 to 1.002, while the product of the perturbation and dose conversion factors was calculated to be 1.130. The combined relative uncertainty was estimated to be 1.4%, with the largest contributors being the specific heat capacity of the graphite (type B, 0.8%) and the reproducibility, defined as the standard deviation of the mean measured dose (type A, 0.6%). By establishing the feasibility of using the GPC as a practical clinical absolute photon dosimeter, this work lays the foundation for further device enhancements, including the development of an isothermal mode of operation and an overall miniaturization, making it potentially suitable for use in small and composite radiation fields. It is anticipated that, through the incorporation of isothermal stabilization provided by temperature controllers, a subpercent overall uncertainty will be achieved.

  7. Capacitive behavior of highly-oxidized graphite

    NASA Astrophysics Data System (ADS)

    Ciszewski, Mateusz; Mianowski, Andrzej

    2014-09-01

    Capacitive behavior of a highly-oxidized graphite is presented in this paper. The graphite oxide was synthesized using an oxidizing mixture of potassium chlorate and concentrated fuming nitric acid. As-oxidized graphite was quantitatively and qualitatively analyzed with respect to the oxygen content and the species of oxygen-containing groups. Electrochemical measurements were performed in a two-electrode symmetric cell using KOH electrolyte. It was shown that prolonged oxidation causes an increase in the oxygen content while the interlayer distance remains constant. Specific capacitance increased with oxygen content in the electrode as a result of pseudo-capacitive effects, from 0.47 to 0.54 F/g for a scan rate of 20 mV/s and 0.67 to 1.15 F/g for a scan rate of 5 mV/s. Better cyclability was observed for the electrode with a higher oxygen amount.

  8. Silicone modified resins for graphite fiber laminates

    NASA Technical Reports Server (NTRS)

    Frost, L. W.; Bower, G. M.

    1979-01-01

    The development of silicon modified resins for graphite fiber laminates which will prevent the dispersal of graphite fibers when the composites are burned is discussed. Eighty-five silicone modified resins were synthesized and evaluated including unsaturated polyesters, thermosetting methacrylates, epoxies, polyimides, and phenolics. Neat resins were judged in terms of Si content, homogeneity, hardness, Char formation, and thermal stability. Char formation was estimated by thermogravimetry to 1,000 C in air and in N2. Thermal stability was evaluated by isothermal weight loss measurements for 200 hrs in air at three temperatures. Four silicone modified epoxies were selected for evaluation in unidirectional filament wound graphite laminates. Neat samples of these resins had 1,000 C char residues of 25 to 50%. The highest flexural values measured for the laminates were a strength of 140 kpsi and a modulus of 10 Mpsi. The highest interlaminar shear strength was 5.3 kpsi.

  9. Oxygen-driven unzipping of graphitic materials.

    PubMed

    Li, Je-Luen; Kudin, Konstantin N; McAllister, Michael J; Prud'homme, Robert K; Aksay, Ilhan A; Car, Roberto

    2006-05-05

    Optical microscope images of graphite oxide (GO) reveal the occurrence of fault lines resulting from the oxidative processes. The fault lines and cracks of GO are also responsible for their much smaller size compared with the starting graphite materials. We propose an unzipping mechanism to explain the formation of cracks on GO and cutting of carbon nanotubes in an oxidizing acid. GO unzipping is initiated by the strain generated by the cooperative alignment of epoxy groups on a carbon lattice. We employ two small GO platelets to show that through the binding of a new epoxy group or the hopping of a nearby existing epoxy group, the unzipping process can be continued during the oxidative process of graphite. The same epoxy group binding pattern is also likely to be present in an oxidized carbon nanotube and cause its breakup.

  10. Graphite oxidation modeling for application in MELCOR.

    SciTech Connect

    Gelbard, Fred

    2009-01-01

    The Arrhenius parameters for graphite oxidation in air are reviewed and compared. One-dimensional models of graphite oxidation coupled with mass transfer of oxidant are presented in dimensionless form for rectangular and spherical geometries. A single dimensionless group is shown to encapsulate the coupled phenomena, and is used to determine the effective reaction rate when mass transfer can impede the oxidation process. For integer reaction order kinetics, analytical expressions are presented for the effective reaction rate. For noninteger reaction orders, a numerical solution is developed and compared to data for oxidation of a graphite sphere in air. Very good agreement is obtained with the data without any adjustable parameters. An analytical model for surface burn-off is also presented, and results from the model are within an order of magnitude of the measurements of burn-off in air and in steam.

  11. Preparation of Conductive Polymer Graphite (PG) Composites

    NASA Astrophysics Data System (ADS)

    Munirah Abdullah, Nur; Saddam Kamarudin, M.; Rus, Anika Zafiah M.; Abdullah, M. F. L.

    2017-08-01

    The preparation of conductive polymer graphite (PG) composites thin film is described. The thickness of the PG composites due to slip casting method was set approximately ~0.1 mm. The optical microscope (OM) and fourier transform infra-red spectroscopy (FTIR) has been operated to distinguish the structure-property relationships scheme of PG composites. It shows that the graphite is homogenously dispersed in polymer matrix composites. The electrical characteristics of the PG composite were measured at room temperature and the electrical conductivity (σ) was discovered with respect of its resistivity (Ω). By achieving conductivity of 103 S/m, it is proven that at certain graphite weight loading (PG20, PG25 and PG30) attributes to electron pathway in PG composites.

  12. Understanding the nature of "superhard graphite".

    PubMed

    Boulfelfel, Salah Eddine; Oganov, Artem R; Leoni, Stefano

    2012-01-01

    Numerous experiments showed that on cold compression graphite transforms into a new superhard and transparent allotrope. Several structures with different topologies have been proposed for this phase. While experimental data are compatible with most of these models, the only way to solve this puzzle is to find which structure is kinetically easiest to form. Using state-of-the-art molecular-dynamics transition path sampling simulations, we investigate kinetic pathways of the pressure-induced transformation of graphite to various superhard candidate structures. Unlike hitherto applied methods for elucidating nature of superhard graphite, transition path sampling realistically models nucleation events necessary for physically meaningful transformation kinetics. We demonstrate that nucleation mechanism and kinetics lead to M-carbon as the final product. W-carbon, initially competitor to M-carbon, is ruled out by phase growth. Bct-C₄ structure is not expected to be produced by cold compression due to less probable nucleation and higher barrier of formation.

  13. Thermal percolation in stable graphite suspensions.

    PubMed

    Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Feng, Shien-Ping; Ohtani, Hiroko; Wang, Jinbo; Chen, Gang

    2012-01-11

    Different from the electrical conductivity of conductive composites, the thermal conductivity usually does not have distinctive percolation characteristics. Here we report that graphite suspensions show distinct behavior in the thermal conductivity at the electrical percolation threshold, including a sharp kink at the percolation threshold, below which thermal conductivity increases rapidly while above which the rate of increase is smaller, contrary to the electrical percolation behavior. Based on microstructural and alternating current impedance spectroscopy studies, we interpret this behavior as a result of the change of interaction forces between graphite flakes when isolated clusters of graphite flakes form percolated structures. Our results shed light on the thermal conductivity enhancement mechanisms in nanofluids and have potential applications in energy systems.

  14. Electrostatic Manipulation of Graphene On Graphite

    NASA Astrophysics Data System (ADS)

    Untiedt, Carlos; Rubio-Verdu, Carmen; Saenz-Arce, Giovanni; Martinez-Asencio, Jesús; Milan, David C.; Moaied, Mohamed; Palacios, Juan J.; Caturla, Maria Jose

    2015-03-01

    Here we report the use of a Scanning Tunneling Microscope (STM) under ambient and vacuum conditions to study the controlled exfoliation of the last layer of a graphite surface when an electrostatic force is applied from a STM tip. In this work we have focused on the study of two parameters: the applied voltage needed to compensate the graphite interlayer attractive force and the one needed to break atomic bonds to produce folded structures. Additionally, we have studied the influence of edge structure in the breaking geometry. Independently of the edge orientation the graphite layer is found to tear through the zig-zag direction and the lifled layer shows a zig-zag folding direction. Molecular Dinamics simulations and DFT calculations have been performed to understand our results, showing a strong correlation with the experiments. Comunidad Valenciana through Prometeo project.

  15. Nondestructive evaluation of nuclear-grade graphite

    NASA Astrophysics Data System (ADS)

    Kunerth, D. C.; McJunkin, T. R.

    2012-05-01

    The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.

  16. Observation of Microscale Superlubricity in Graphite

    NASA Astrophysics Data System (ADS)

    Liu, Ze; Yang, Jiarui; Grey, Francois; Liu, Jefferson Zhe; Liu, Yilun; Wang, Yibing; Yang, Yanlian; Cheng, Yao; Zheng, Quanshui

    2012-05-01

    Upon shearing a microscale lithographically defined graphite mesa, the sheared section retracts spontaneously to minimize interface energy. Here, we demonstrate a sixfold symmetry of the self-retraction and provide a first experimental estimate of the frictional force involved, as direct evidence that the self-retraction is due to superlubricity, where ultralow friction occurs between incommensurate surfaces. The effect is remarkable because it occurs reproducibly under ambient conditions and over a contact area of up to 10×10μm2, more than 7 orders of magnitude larger than previous scanning-probe-based studies of superlubricity in graphite. By analyzing the sheared interface, we show how the grain structure of highly oriented pyrolitic graphite determines the probability of self-retraction. Our results demonstrate that such self-retraction provides a novel probe of superlubricity, and the robustness of the phenomenon opens the way for practical applications of superlubricity in micromechanical systems.

  17. Observation of microscale superlubricity in graphite.

    PubMed

    Liu, Ze; Yang, Jiarui; Grey, Francois; Liu, Jefferson Zhe; Liu, Yilun; Wang, Yibing; Yang, Yanlian; Cheng, Yao; Zheng, Quanshui

    2012-05-18

    Upon shearing a microscale lithographically defined graphite mesa, the sheared section retracts spontaneously to minimize interface energy. Here, we demonstrate a sixfold symmetry of the self-retraction and provide a first experimental estimate of the frictional force involved, as direct evidence that the self-retraction is due to superlubricity, where ultralow friction occurs between incommensurate surfaces. The effect is remarkable because it occurs reproducibly under ambient conditions and over a contact area of up to 10×10  μm2, more than 7 orders of magnitude larger than previous scanning-probe-based studies of superlubricity in graphite. By analyzing the sheared interface, we show how the grain structure of highly oriented pyrolitic graphite determines the probability of self-retraction. Our results demonstrate that such self-retraction provides a novel probe of superlubricity, and the robustness of the phenomenon opens the way for practical applications of superlubricity in micromechanical systems.

  18. Nondestructive evaluation of nuclear-grade graphite

    SciTech Connect

    Kunerth, D. C.; McJunkin, T. R.

    2012-05-17

    The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.

  19. Aerosol and graphitic carbon content of snow

    SciTech Connect

    Chy-acute-accentlek, P.; Srivastava, V.; Cahenzli, L.; Pinnick, R.G.; Dod, R.L.; Novakov, T.; Cook, T.L.; Hinds, B.D.

    1987-08-20

    Snow samples from southern New Mexico, west Texas, Antarctica, and Greenland were analyzed for aerosol and graphitic carbon. Graphitic carbon contents were found to be between 2.2 and 25 ..mu..g L/sup -1/ of snow meltwater; water-insoluble aerosol content varied between 0.62 and 8.5 mg L/sup -1/. For comparison, two samples of Camp Century, Greenland, ice core, having approximate ages of 4,000 and 6,000 years, were also analyzed. Ice core graphitic carbon contents were found to be 2.5 and 1.1 ..mu..g L/sup -1/. copyrightAmerican Geophysical Union 1987

  20. Low friction stainless steel coatings graphite doped elaborated by air plasma sprayed

    NASA Astrophysics Data System (ADS)

    Harir, A.; Ageorges, H.; Grimaud, A.; Fauchais, P.; Platon, F.

    2004-10-01

    A new process has been developed to incorporate graphite particles into a stainless steel coating during its formation. Four means have been tested to inject the graphite particles outside the plasma jet and its plume: graphite suspension, a graphite rod rubbed on the rotating sample, powder injection close to the substrate with an injector, or a specially designed guide. The last process has been shown to be the most versatile and the most easily controllable. It allows the incorporation of between 2 and 12 vol.% of graphite particles (2 15 µm) within the plasma sprayed stainless steel coatings. A volume fraction of 2% seems to give the best results with a slight decrease (6%) of the coating hardness. This volume fraction also gave the best results in dry friction on the pin-on-disk apparatus. Depending on the sliding velocity (0.1 0.5 m/s) and loads (3.7 28 N), the dry friction coefficient against a 100C6 pin is reduced by between 1.5 and 4 compared with that obtained with plasma sprayed stainless steel.

  1. Thermal Charging Study of Compressed Expanded Natural Graphite/Phase Change Material Composites

    SciTech Connect

    Mallow, Anne M; Abdelaziz, Omar; Graham, Samuel

    2016-01-01

    The thermal charging performance of phase change materials, specifically paraffin wax, combined with compressed expanded natural graphite foam is studied under constant heat flux and constant temperature conditions. By varying the heat flux between 0.39 W/cm2 and 1.55 W/cm2 or maintaining a boundary temperature of 60 C for four graphite foam bulk densities, the impact on the rate of thermal energy storage is discussed. Thermal charging experiments indicate that thermal conductivity of the composite is an insufficient metric to compare the influence of graphite foam on the rate of thermal energy storage of the PCM composite. By dividing the latent heat of the composite by the time to melt for various boundary conditions and graphite foam bulk densities, it is determined that bulk density selection is dependent on the applied boundary condition. A greater bulk density is advantageous for samples exposed to a constant temperature near the melting temperature as compared to constant heat flux conditions where a lower bulk density is adequate. Furthermore, the anisotropic nature of graphite foam bulk densities greater than 50 kg/m3 is shown to have an insignificant impact on the rate of thermal charging. These experimental results are used to validate a computational model for future use in the design of thermal batteries for waste heat recovery.

  2. Characterization of structural defects in nuclear graphite IG-110 and NBG-18

    SciTech Connect

    Guiqiu Zheng; Peng Xu; Kumar Sridharan; Todd Allen

    2014-03-01

    Nuclear graphite IG-110 and NBG-18 were examined using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM) and high resolution transmission electron microscope (HR-TEM) to understand the structure and microstructure of nuclear graphite. The lattice parameter (a), degree of graphitization ( ), crystallite size parallel and perpendicular to c-direction (Lc and L ), anisotropy (B), as well as in-plane crystallite size (La) were calculated and compared based on XRD patterns and Raman spectra. Results indicate that IG-110 has a larger crystallite size and higher degree of graphitization, but lower anisotropy than NBG-18. These differences are attributed to the properties of coke source and manufacturing processes. Additionally, the shape of the pores and crystallized filler particles, the interface between binders and fillers, Mrozowski cracks and nano-cracks, and the defects of disclination were observed and characterized from SEM and HR-TEM images. The similarities and differences in microstructure between IG-110 and NBG-18 are discussed. The results in this work provide useful information to guide selection of nuclear graphite for the design of next generation nuclear plants (NGNP).

  3. Use of graphite epoxy composites in the Solar-A Soft X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Jurcevich, B. K.; Bruner, M. E.

    1990-01-01

    This paper describes the use of composite materials in the Soft X-Ray Telescope (SXT). One of the primary structural members of the telescope is a graphite epoxy metering tube. The metering tube maintains the structural stability of the telescope during launch as well as the focal length through various environmental conditions. The graphite epoxy metering tube is designed to have a negative coefficient of thermal expansion to compensate for the positive expansion of titanium structural supports. The focus is maintained to + or - 0.001 inch by matching the CTE of the composite tube to the remaining structural elements.

  4. Process development and fabrication of space station type aluminum-clad graphite epoxy struts

    NASA Technical Reports Server (NTRS)

    Ring, L. R.

    1990-01-01

    The manufacture of aluminum-clad graphite epoxy struts, designed for application to the Space Station truss structure, is described. The strut requirements are identified, and the strut material selection rationale is discussed. The manufacturing procedure is described, and shop documents describing the details are included. Dry graphite fiber, Pitch-75, is pulled between two concentric aluminum tubes. Epoxy resin is then injected and cured. After reduction of the aluminum wall thickness by chemical milling the end fittings are bonded on the tubes. A discussion of the characteristics of the manufactured struts, i.e., geometry, weight, and any anomalies of the individual struts is included.

  5. 1. LOOKING WEST ON LEHIGH CANAL, GRAPHITE MILL IN FOREGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. LOOKING WEST ON LEHIGH CANAL, GRAPHITE MILL IN FOREGROUND - Pettinos Brothers Graphite Manufacturing Mill, On Sand Island, south side of Lehigh Canal, west of Hill-to-Hill Bridge, Bethlehem, Northampton County, PA

  6. Coordinated Isotopic and TEM Studies of Presolar Graphites from Murchison

    NASA Astrophysics Data System (ADS)

    Croat, T. K.; Stadermann, F. J.; Zinner, E.; Bernatowicz, T. J.

    2004-03-01

    TEM and NanoSIMS investigations of the same presolar Murchison KFC graphites revealed high Zr, Mo, and Ru content in refractory carbides within the graphites. Along with isotopically light carbon, these suggest a low-metallicity AGB source.

  7. TEM Study of Internal Crystals in Supernova Graphites

    NASA Astrophysics Data System (ADS)

    Croat, T. K.; Bernatowicz, T.; Stadermann, F. J.; Messenger, S.; Amari, S.

    2003-03-01

    A coordinated TEM and isotopic study of ten supernova (SN) graphites from the Murchison meteorite has revealed many internal grains, mostly titanium carbides (TiCs) and TiC-kamacite composite grains, which were accreted during the graphite growth.

  8. Graphite/Polyimide Composites. [conference on Composites for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Dexter, H. B. (Editor); Davis, J. G., Jr. (Editor)

    1979-01-01

    Technology developed under the Composites for Advanced Space Transportation System Project is reported. Specific topics covered include fabrication, adhesives, test methods, structural integrity, design and analysis, advanced technology developments, high temperature polymer research, and the state of the art of graphite/polyimide composites.

  9. Water desorption from nanostructured graphite surfaces.

    PubMed

    Clemens, Anna; Hellberg, Lars; Grönbeck, Henrik; Chakarov, Dinko

    2013-12-21

    Water interaction with nanostructured graphite surfaces is strongly dependent on the surface morphology. In this work, temperature programmed desorption (TPD) in combination with quadrupole mass spectrometry (QMS) has been used to study water ice desorption from a nanostructured graphite surface. This model surface was fabricated by hole-mask colloidal lithography (HCL) along with oxygen plasma etching and consists of a rough carbon surface covered by well defined structures of highly oriented pyrolytic graphite (HOPG). The results are compared with those from pristine HOPG and a rough (oxygen plasma etched) carbon surface without graphite nanostructures. The samples were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The TPD experiments were conducted for H2O coverages obtained after exposures between 0.2 and 55 langmuir (L) and reveal a complex desorption behaviour. The spectra from the nanostructured surface show additional, coverage dependent desorption peaks. They are assigned to water bound in two-dimensional (2D) and three-dimensional (3D) hydrogen-bonded networks, defect-bound water, and to water intercalated into the graphite structures. The intercalation is more pronounced for the nanostructured graphite surface in comparison to HOPG surfaces because of a higher concentration of intersheet openings. From the TPD spectra, the desorption energies for water bound in 2D and 3D (multilayer) networks were determined to be 0.32 ± 0.06 and 0.41 ± 0.03 eV per molecule, respectively. An upper limit for the desorption energy for defect-bound water was estimated to be 1 eV per molecule.

  10. Crack growth resistance in nuclear graphites

    NASA Astrophysics Data System (ADS)

    Ouagne, Pierre; Neighbour, Gareth B.; McEnaney, Brian

    2002-05-01

    Crack growth resistance curves for the non-linear fracture parameters KR, JR and R were measured for unirradiated PGA and IM1-24 graphites that are used as moderators in British Magnox and AGR nuclear reactors respectively. All the curves show an initial rising part, followed by a plateau region where the measured parameter is independent of crack length. JR and R decreased at large crack lengths. The initial rising curves were attributed to development of crack bridges in the wake of the crack front, while, in the plateau region, the crack bridging zone and the frontal process zone, ahead of the crack tip, reached steady state values. The decreases at large crack lengths were attributed to interaction of the frontal zone with the specimen end face. Microscopical evidence for graphite fragments acting as crack bridges showed that they were much smaller than filler particles, indicating that the graphite fragments are broken down during crack propagation. There was also evidence for friction points in the crack wake zone and shear cracking of some larger fragments. Inspection of KR curves showed that crack bridging contributed ~0.4 MPa m0.5 to the fracture toughness of the graphites. An analysis of JR and R curves showed that the development of the crack bridging zone in the rising part of the curves contributed ~20% to the total work of fracture. Energies absorbed during development of crack bridges and steady state crack propagation were greater for PGA than for IM1-24 graphite. These differences reflect the greater extent of irreversible processes occurring during cracking in the coarser microtexture of PGA graphite.

  11. NOVEL GRAPHITE SALTS AND THEIR ELECTRICAL CONDUCTIVITIES

    SciTech Connect

    Bartlett, N.; McCarron, E.M.; McQuillan, B.W.; Thompson, T.E.

    1980-02-01

    A set of novel first stage graphite salts of general formula C{sub 8}{sup +}MF{sub 6}{sup -} has been prepared (M = Os, Ir, As). Single crystal X-ray diffraction studies indicate that these salts are hexagonal with a {approx} 4.9 and c {approx} 8.1 {angstrom}. The unit cell volume indicates that the anions are closely packed in the galleries. Platinum hexafluoride, which is the most powerful oxidizer of the third transition series, forms a first stage compound, which analytical, structural, and magnetic studies establish as C{sub 12}{sup 2+}PtF{sub 6}{sup 2-}. In this salt the anions are not close packed, but the electron withdrawal from the graphite planes is greater than for the C{sub 8}{sup +}MF{sub 6}{sup -} series. The variation in the electrical conductivity (in the a-b plane), as a function of composition, has been investigated with the OsF{sub 6}, IrF{sub 6}, PtF{sub 6} and AsF{sub 5} intercalates. For OsF{sub 6} and IrF{sub 6}, the conductance per plane of graphite is found to be a maximum at approximately C{sub 24}MF{sub 6} (second stage); the conductivity being an order of magnitude greater than that of the parent material. Intercalation beyond C{sub 24}MF{sub 6} leads to a marked decrease in conductivity. C{sub 8}MF{sub 6} is comparable in conductivity with the parent graphite. This behavior contrasts with the graphite/AsF{sub 5} system in which a steady increase in conductance per graphite plane with increasing AsF{sub 5} content is observed. For the PtF{sub 6} system, the second as well as the first stage materials are poorly conducting.

  12. Bimetallic Metal-Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Salunkhe, Rahul R.; Zhang, Huabin; Malgras, Victor; Ahamad, Tansir; Alshehri, Saad M.; Kobayashi, Naoya; Tominaka, Satoshi; Ide, Yusuke; Kim, Jung Ho; Yamauchi, Yusuke

    2016-07-01

    Single metal-organic frameworks (MOFs), constructed from the coordination between one-fold metal ions and organic linkers, show limited functionalities when used as precursors for nanoporous carbon materials. Herein, we propose to merge the advantages of zinc and cobalt metals ions into one single MOF crystal (i.e., bimetallic MOFs). The organic linkers that coordinate with cobalt ions tend to yield graphitic carbons after carbonization, unlike those bridging with zinc ions, due to the controlled catalytic graphitization by the cobalt nanoparticles. In this work, we demonstrate a feasible method to achieve nanoporous carbon materials with tailored properties, including specific surface area, pore size distribution, degree of graphitization, and content of heteroatoms. The bimetallic-MOF-derived nanoporous carbon are systematically characterized, highlighting the importance of precisely controlling the properties of the carbon materials. This can be done by finely tuning the components in the bimetallic MOF precursors, and thus designing optimal carbon materials for specific applications.

  13. Bimetallic Metal-Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons

    PubMed Central

    Tang, Jing; Salunkhe, Rahul R.; Zhang, Huabin; Malgras, Victor; Ahamad, Tansir; Alshehri, Saad M.; Kobayashi, Naoya; Tominaka, Satoshi; Ide, Yusuke; Kim, Jung Ho; Yamauchi, Yusuke

    2016-01-01

    Single metal-organic frameworks (MOFs), constructed from the coordination between one-fold metal ions and organic linkers, show limited functionalities when used as precursors for nanoporous carbon materials. Herein, we propose to merge the advantages of zinc and cobalt metals ions into one single MOF crystal (i.e., bimetallic MOFs). The organic linkers that coordinate with cobalt ions tend to yield graphitic carbons after carbonization, unlike those bridging with zinc ions, due to the controlled catalytic graphitization by the cobalt nanoparticles. In this work, we demonstrate a feasible method to achieve nanoporous carbon materials with tailored properties, including specific surface area, pore size distribution, degree of graphitization, and content of heteroatoms. The bimetallic-MOF-derived nanoporous carbon are systematically characterized, highlighting the importance of precisely controlling the properties of the carbon materials. This can be done by finely tuning the components in the bimetallic MOF precursors, and thus designing optimal carbon materials for specific applications. PMID:27471193

  14. Heat Exchangers for Heavy Vehicles Utilizing High Thermal Conductivity Graphite Foams

    SciTech Connect

    James Klett, Ron Ott; April McMillan

    2000-06-19

    Approximately two thirds of the world's energy consumption is wasted as heat. In an attempt to reduce heat losses, heat exchangers are utilized to recover some of the energy. A unique graphite foam developed at the Oak Ridge National Laboratory (ORNL) and licensed to Poco Graphite, Inc., promises to allow for novel, more efficient heat exchanger designs. This graphite foam, Figure 1, has a density between 0.2 and 0.6 g/cm 3 and a bulk thermal conductivity between 40 and 187 W/m{center_dot}K. Because the foam has a very accessible surface area (> 4 m 2 /g) and is open celled, the overall heat transfer coefficients of foam-based heat exchangers can be up to two orders of magnitude greater than conventional heat exchangers. As a result, foam-based heat exchangers could be dramatically smaller and lighter.

  15. Lightweight, Fire-Resistant Graphite Composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; MING-TA-HSU

    1986-01-01

    Aircraft safety improved with interior paneling made of new laminate with good thermophysical properties. Featuring lightweight graphite composite, laminate more heat-and flame-resistant and produces much less smoke in fire than commonly used epoxy-resin-containing laminates. New laminate prepared without epoxy resin. Graphite unidirectional cloth preimpregnated with blend of vinyl polystyrylpyridine and bismaleimide (VPSP-BMI). Either of two types of VPSP-BMI blend used, depending on method of preparation of chemicals and technique used to fabricate panel.

  16. CMB-13 research on carbon and graphite

    NASA Technical Reports Server (NTRS)

    Smith, M. C.

    1972-01-01

    The effects of grinding on Santa Maria coke are considered, as well as the production of resin-bonded graphite from the coke. Kynol fibers, properties and purities of coal tar pitches, carbonization of resin components, synthesis of gamma BL (4-furfuryl 2-pentenoic acid gamma lactone), and a glass-like carbon powder for use as a filler are also discussed. The hydrogen contents of commercial cokes and graphites are tabulated, and a quantimet image-analyzing computer and its operation are described.

  17. Stability of Bromine Intercalated Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Gaier, J. R.

    1984-01-01

    Previous evidence suggested that bromine intercalation compounds of crystalline graphite spontaneously deintercalate when the bromine atmosphere is removed. However, results show that bromine intercalated P-100 graphite fibers are stable for long periods of time. They are stable under vacuum conditions, high humidity, and current densities up to 24,000 A/sq cm. They are thermally stable to 200 C, and at temperatures as high as 400 C still retain 80 percent of the conductivity gained by intercalation. At temperatures greater than 300 C, there is significant oxidative degradation of the fibers. The environmental stability shown by the bromine compound makes it a promising candidate for practical applications in aerospace technology.

  18. Chemically modified graphite for electrochemical cells

    DOEpatents

    Greinke, Ronald Alfred; Lewis, Irwin Charles

    1998-01-01

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (i) the electrode, (ii) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (iii) a counterelectrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes.

  19. Chemically modified graphite for electrochemical cells

    DOEpatents

    Greinke, R.A.; Lewis, I.C.

    1998-05-26

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (1) the electrode, (2) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (3) a counter electrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes. 3 figs.

  20. Interphase tailoring in graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Subramanian, R. V.; Sanadi, A. R.; Crasto, A. S.

    1988-01-01

    The fiber-matrix interphase in graphite fiber-epoxy matrix composites is presently modified through the electrodeposition of a coating of the polymer poly(styrene-comaleic anhydride), or 'SMA' on the graphite fibers; optimum conditions have been established for the achievement of the requisite thin, uniform coatings, as verified by SEM. A single-fiber composite test has shown the SMA coating to result in an interfacial shear strength to improve by 50 percent over commercially treated fibers without sacrifice in impact strength. It is suggested that the epoxy resin's superior penetration into the SMA interphase results in a tougher fiber/matrix interface which possesses intrinsic energy-absorbing mechanisms.

  1. Large Scale Reduction of Graphite Oxide Project

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Mackey, Paul; Falker, John; Zeitlin, Nancy

    2015-01-01

    This project seeks to develop an optical method to reduce graphite oxide into graphene efficiently and in larger formats than currently available. Current reduction methods are expensive, time-consuming or restricted to small, limited formats. Graphene has potential uses in ultracapacitors, energy storage, solar cells, flexible and light-weight circuits, touch screens, and chemical sensors. In addition, graphite oxide is a sustainable material that can be produced from any form of carbon, making this method environmentally friendly and adaptable for in-situ reduction.

  2. Eddy current inspection of graphite fiber components

    NASA Technical Reports Server (NTRS)

    Workman, G. L.; Bryson, C. C.

    1990-01-01

    The recognition of defects in materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques. The unique capabilities of E-probes and horseshoe probes for inspecting probes for inspecting graphite fiber materials were evaluated and appear to hold great promise once the technology development matures. The initial results are described of modeling eddy current interactions with certain flaws in graphite fiber samples.

  3. HIGH TEMPERATURE REFRACTORY COATING FOR GRAPHITE MOLDS

    DOEpatents

    Stoddard, S.D.

    1958-10-21

    An improved foundry mold coating for use with graphite molds used in the casting of uranium is presented. The refractory mold coating serves to keep the molten uranium from contact with graphite of the mold and thus prevents carbon pickup by the molten metal. The refractory coating is made by dry mixing certain specific amounts of aluminum oxide, bentonite, Tennessee ball clay, and a soluble silicate salt. Water is then added to the mixture and the suspension thus formed is applied by spraying onto the mold.

  4. Thermal Properties of G-348 Graphite

    SciTech Connect

    McEligot, Donald; Swank, W. David; Cottle, David L.; Valentin, Francisco I.

    2016-05-01

    Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08. Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.

  5. First-principles simulations of boron diffusion in graphite.

    PubMed

    Suarez-Martinez, I; El-Barbary, A A; Savini, G; Heggie, M I

    2007-01-05

    Boron strongly modifies electronic and diffusion properties of graphite. We report the first ab initio study of boron interaction with the point defects in graphite, which includes structures, thermodynamics, and diffusion. A number of possible diffusion mechanisms of boron in graphite are suggested. We conclude that boron diffuses in graphite by a kick-out mechanism. This mechanism explains the common activation energy, but large magnitude difference, for the rate of boron diffusion parallel and perpendicular to the basal plane.

  6. First-Principles Simulations of Boron Diffusion in Graphite

    SciTech Connect

    Suarez-Martinez, I.; El-Barbary, A. A.; Savini, G.; Heggie, M. I.

    2007-01-05

    Boron strongly modifies electronic and diffusion properties of graphite. We report the first ab initio study of boron interaction with the point defects in graphite, which includes structures, thermodynamics, and diffusion. A number of possible diffusion mechanisms of boron in graphite are suggested. We conclude that boron diffuses in graphite by a kick-out mechanism. This mechanism explains the common activation energy, but large magnitude difference, for the rate of boron diffusion parallel and perpendicular to the basal plane.

  7. Selection process for trade study: Graphite Composite Primary Structure (GCPS)

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    This TA 2 document describes the selection process that will be used to identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 degree inclination. The most suitable unpressurized graphite composite structures and material selections is within this configuration and will be the prototype design for subsequent design and analysis and the basis for the design and fabrication of payload bay, wing, and thrust structure full scale test articles representing segments of the prototype structures. The selection process for this TA 2 trade study is the same as that for the TA 1 trade study. As the trade study progresses additional insight may result in modifications to the selection criteria within this process. Such modifications will result in an update of this document as appropriate.

  8. Benchmarking of Graphite Reflected Critical Assemblies of UO2

    SciTech Connect

    Margaret A. Marshall; John D. Bess

    2011-11-01

    A series of experiments were carried out in 1963 at the Oak Ridge National Laboratory Critical Experiments Facility (ORCEF) for use in space reactor research programs. A core containing 93.2% enriched UO2 fuel rods was used in these experiments. The first part of the experimental series consisted of 253 tightly-packed fuel rods (1.27 cm triangular pitch) with graphite reflectors [1], the second part used 253 graphite-reflected fuel rods organized in a 1.506 cm triangular pitch [2], and the final part of the experimental series consisted of 253 beryllium-reflected fuel rods with a 1.506 cm triangular pitch. [3] Fission rate distribution and cadmium ratio measurements were taken for all three parts of the experimental series. Reactivity coefficient measurements were taken for various materials placed in the beryllium reflected core. The first part of this experimental series has been evaluated for inclusion in the International Reactor Physics Experiment Evaluation Project (IRPhEP) [4] and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbooks, [5] and is discussed below. These experiments are of interest as benchmarks because they support the validation of compact reactor designs with similar characteristics to the design parameters for a space nuclear fission surface power systems. [6

  9. METHOD OF COATING GRAPHITE WITH STABLE METAL CARBIDES AND NITRIDES

    DOEpatents

    Gurinsky, D.H.

    1959-10-27

    A method is presented for forming protective stable nitride and carbide compounds on the surface of graphite. This is accomplished by contacting the graphite surface with a fused heavy liquid metal such as bismuth or leadbismuth containing zirconium, titanium, and hafnium dissolved or finely dispersed therein to form a carbide and nitride of at least one of the dissolved metals on the graphite surface.

  10. Reaction rates of graphite with ozone measured by etch decoration

    NASA Technical Reports Server (NTRS)

    Hennig, G. R.; Montet, G. L.

    1968-01-01

    Etch-decoration technique of detecting vacancies in graphite has been used to determine the reaction rates of graphite with ozone in the directions parallel and perpendicular to the layer planes. It consists essentially of peeling single atom layers off graphite crystals without affecting the remainder of the crystal.

  11. Comparison of graphite materials for targets of laser ion source.

    PubMed

    Fuwa, Y; Ikeda, S; Kumaki, M; Sekine, M; Munemoto, N; Cinquegrani, D; Romanelli, M; Kanesue, T; Okamura, M; Iwashita, Y

    2014-02-01

    To investigate efficient graphite material for carbon ion production in laser ion source, the plasma properties produced from these materials are measured. Comparing acquired current profile and charge state distribution, the distributions of ions in laser induced plasma from isotropic graphite and single crystal of graphite are different. The produced quantity of C(6+) from isotropic materials is larger than that from single crystal.

  12. Method of making segmented pyrolytic graphite sputtering targets

    DOEpatents

    McKernan, M.A.; Alford, C.S.; Makowiecki, D.M.; Chen, C.W.

    1994-02-08

    Anisotropic pyrolytic graphite wafers are oriented and bonded together such that the graphite's high thermal conductivity planes are maximized along the back surface of the segmented pyrolytic graphite target to allow for optimum heat conduction away from the sputter target's sputtering surface and to allow for maximum energy transmission from the target's sputtering surface. 2 figures.

  13. Applications Of Graphite Fluoride Fibers In Outer Space

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheng; Long, Martin; Dever, Therese

    1993-01-01

    Report characterizes graphite fluoride fibers made from commercially available graphitized carbon fibers and discusses some potential applications of graphite fluoride fibers in outer space. Applications include heat-sinking printed-circuit boards, solar concentrators, and absorption of radar waves. Other applications based on exploitation of increased resistance to degradation by atomic oxygen, present in low orbits around Earth.

  14. Applications Of Graphite Fluoride Fibers In Outer Space

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheng; Long, Martin; Dever, Therese

    1993-01-01

    Report characterizes graphite fluoride fibers made from commercially available graphitized carbon fibers and discusses some potential applications of graphite fluoride fibers in outer space. Applications include heat-sinking printed-circuit boards, solar concentrators, and absorption of radar waves. Other applications based on exploitation of increased resistance to degradation by atomic oxygen, present in low orbits around Earth.

  15. Kinetics of the Formation of Intercalation Compounds in Crystalline Graphite

    NASA Technical Reports Server (NTRS)

    Sharma, P. K.; Hickey, G. S.

    1995-01-01

    Crystalline graphite has a structure that can be best described as an ordered stack of flat aromatic layers. It is known to form intercalation compounds with bromine and nitric acid. Their formation was studied using thermal measurements and analytical techniques. Samples of graphite treated with either bromine or nitric acid were prepared by contacting these reagents with powdered graphite.

  16. Method of making segmented pyrolytic graphite sputtering targets

    DOEpatents

    McKernan, Mark A.; Alford, Craig S.; Makowiecki, Daniel M.; Chen, Chih-Wen

    1994-01-01

    Anisotropic pyrolytic graphite wafers are oriented and bonded together such that the graphite's high thermal conductivity planes are maximized along the back surface of the segmented pyrolytic graphite target to allow for optimum heat conduction away from the sputter target's sputtering surface and to allow for maximum energy transmission from the target's sputtering surface.

  17. Computational prediction of dust production in graphite moderated pebble bed reactors

    NASA Astrophysics Data System (ADS)

    Rostamian, Maziar

    The scope of the work reported here, which is the computational study of graphite wear behavior, supports the Nuclear Engineering University Programs project "Experimental Study and Computational Simulations of Key Pebble Bed Thermomechanics Issues for Design and Safety" funded by the US Department of Energy. In this work, modeling and simulating the contact mechanics, as anticipated in a PBR configuration, is carried out for the purpose of assessing the amount of dust generated during a full power operation year of a PBR. A methodology that encompasses finite element analysis (FEA) and micromechanics of wear is developed to address the issue of dust production and its quantification. Particularly, the phenomenon of wear and change of its rate with sliding length is the main focus of this dissertation. This work studies the wear properties of graphite by simulating pebble motion and interactions of a specific type of nuclear grade graphite, IG-11. This study consists of two perspectives: macroscale stress analysis and microscale analysis of wear mechanisms. The first is a set of FEA simulations considering pebble-pebble frictional contact. In these simulations, the mass of generated graphite particulates due to frictional contact is calculated by incorporating FEA results into Archard's equation, which is a linear correlation between wear mass and wear length. However, the experimental data by Johnson, University of Idaho, revealed that the wear rate of graphite decreases with sliding length. This is because the surfaces of the graphite pebbles become smoother over time, which results in a gradual decrease in wear rate. In order to address the change in wear rate, a more detailed analysis of wear mechanisms at room temperature is presented. In this microscale study, the wear behavior of graphite at the asperity level is studied by simulating the contact between asperities of facing surfaces. By introducing the effect of asperity removal on wear rate, a nonlinear

  18. Electrochemical oxidation of textile industry wastewater by graphite electrodes.

    PubMed

    Bhatnagar, Rajendra; Joshi, Himanshu; Mall, Indra D; Srivastava, Vimal C

    2014-01-01

    In the present article, studies have been performed on the electrochemical (EC) oxidation of actual textile industry wastewater by graphite electrodes. Multi-response optimization of four independent parameters namely initial pH (pHo): 4-10, current density (j): 27.78-138.89 A/m(2), NaCl concentration (w): 0-2 g/L and electrolysis time (t): 10-130 min have been performed using Box-Behnken (BB) experimental design. It was aimed to simultaneously maximize the chemical oxygen demand (COD) and color removal efficiencies and minimize specific energy consumption using desirability function approach. Pareto analysis of variance (ANOVA) showed a high coefficient of determination value for COD (R(2) = 0.8418), color (R(2) = 0.7010) and specific energy (R(2) = 0.9125) between the experimental values and the predicted values by a second-order regression model. Maximum COD and color removal and minimum specific energy consumed was 90.78%, 96.27% and 23.58 kWh/kg COD removed, respectively, were observed at optimum conditions. The wastewater, sludge and scum obtained after treatment at optimum condition have been characterized by various techniques. UV-visible study showed that all azo bonds of the dyes present in the wastewater were totally broken and most of the aromatic rings were mineralized during EC oxidation with graphite electrode. Carbon balance showed that out of the total carbon eroded from the graphite electrodes, 27-29.2% goes to the scum, 71.1-73.3% goes into the sludge and rest goes to the treated wastewater. Thermogravimetric analysis showed that the generated sludge and scum can be dried and used as a fuel in the boilers/incinerators.

  19. Temperature field in Graphite-Silicon-Graphite samples heated in monoellipsoidal mirror furnaces

    NASA Astrophysics Data System (ADS)

    Rivas, Damián; Haya, Rodrigo

    1999-01-01

    The heating of cylindrical compound samples in monoellipsoidal mirror furnaces is analyzed by means of a conduction-radiation model that includes the radiative exchange between the sample and the mirror, and that takes into account the temperature dependence of the physical properties of the materials that form the sample. Graphite-Silicon-Graphite samples are considered. The melting of the Silicon part, and the temperature difference between the two Graphite rods that hold the Silicon melt zone are analyzed. The relative position of the Silicon part in the compound sample turns out to be a very sensitive parameter: it affects (1) the power needed to melt the Silicon zone, and (2) the temperature difference between the solid Graphite rods.

  20. International strategic minerals inventory summary report; natural graphite

    USGS Publications Warehouse

    Krauss, U.H.; Schmidt, H.W.; Taylor, H.A.; Sutphin, D.M.

    1989-01-01

    Natural graphite is a crystalline mineral of pure carbon which normally occurs in the form of platelet-shaped crystals. It has important properties, such as chemical inertness, low thermal expansion, and lubricity, that make it almost irreplaceable for certain uses such as refractories and steelmaking. Graphite ore types are crystalline (flake and lump} or 'amorphous' (cryptocrystalline}. Refractory applications use the largest total amount of natural graphite, while the most important use of crystalline graphite is in crucibles for handling molten metals. All graphite deposits being mined today are found in the following metamorphic environments: (1) contact metamorphosed coal generally is a source of amorphous graphite; (2)disseminated crystalline flake graphite comes from syngenetic metasediments; and (3) crystalline lump graphite is found in epigenetic veins in high-grade metamorphic regions. Graphite may also occur as a trace mineral in ultrabasic rocks and pegmatites, but these are economically insignificant. The world's identified economically exploitable resources of crystalline graphite in major deposits are estimated to be about 9.7 million metric tons of concentrate. In-place resources of amorphous graphite are about 11.5 million metric tons. Of these, less than 2 percent of the crystalline ore and less than 1 percent of the amorphous ore are in western industrial countries. World mining production of natural graphite rose from 347,000 metric tons in 1973 to 659,000 metric tons in 1986, while the proportion produced by central economy countries increased from about 50 percent for the period from 1973 to 1978 to more than 64 percent in 1979 to 1986. It is estimated that crystalline flake graphite accounts for at least 180,000 metric tons of total annual world mining production of natural graphite, and amorphous graphite makes up the rest.

  1. Extinction properties of infinitely long graphite cylinders

    NASA Astrophysics Data System (ADS)

    Jazbi, B.; Hoyle, F.; Wickramasinghe, N. C.

    1991-12-01

    The extinction efficiencies of randomly oriented infinite graphite cylinders, including hollow cylinders are calculated, using the rigorous Kerker-Matijevic formulas. The peak in the mid-UV extinction varies in wavelength with particle radius and cavity size in a way that makes such particles of limited interest as models of interstellar grains.

  2. Ultrafast Multiphoton Thermionic Photoemission from Graphite

    NASA Astrophysics Data System (ADS)

    Tan, Shijing; Argondizzo, Adam; Wang, Cong; Cui, Xuefeng; Petek, Hrvoje

    2017-01-01

    Electronic heating of cold crystal lattices in nonlinear multiphoton excitation can transiently alter their physical and chemical properties. In metals where free electron densities are high and the relative fraction of photoexcited hot electrons is low, the effects are small, but in semimetals, where the free electron densities are low and the photoexcited densities can overwhelm them, the intense femtosecond laser excitation can induce profound changes. In semimetal graphite and its derivatives, strong optical absorption, weak screening of the Coulomb potential, and high cohesive energy enable extreme hot electron generation and thermalization to be realized under femtosecond laser excitation. We investigate the nonlinear interactions within a hot electron gas in graphite through multiphoton-induced thermionic emission. Unlike the conventional photoelectric effect, within about 25 fs, the memory of the excitation process, where resonant dipole transitions absorb up to eight quanta of light, is erased to produce statistical Boltzmann electron distributions with temperatures exceeding 5000 K; this ultrafast electronic heating causes thermionic emission to occur from the interlayer band of graphite. The nearly instantaneous thermalization of the photoexcited carriers through Coulomb scattering to extreme electronic temperatures characterized by separate electron and hole chemical potentials can enhance hot electron surface femtochemistry, photovoltaic energy conversion, and incandescence, and drive graphite-to-diamond electronic phase transition.

  3. Dimensionally Stable Graphite-Fiber/Glass Composites

    NASA Technical Reports Server (NTRS)

    Harris, Robert; Bergen, George J.; Studer, Philip A.

    1992-01-01

    Method of making composites of glass matrices reinforced by graphite fibers provides for control of proportions, orientations, and distributions of fibers in matrices and for fused bonds between fibers and matrices. Enables fabrication of composites of high specific strength and dimensional stability. Method particularly suitable for making low-thermal-expansion platforms for optical instruments.

  4. Ultrasonic Welding of Graphite/Thermoplastic Composite

    NASA Technical Reports Server (NTRS)

    Hardy, S. S.; Page, D. B.

    1982-01-01

    Ultrasonic welding of graphite/thermoplastic composite materials eliminates need for fasteners (which require drilling or punching, add weight, and degrade stiffness) and can be totally automated in beam fabrication and assembly jigs. Feasibility of technique has been demonstrated in laboratory tests which show that neither angular orientation nor vacuum affect weld quality.

  5. Static friction in graphite under compression

    NASA Astrophysics Data System (ADS)

    Del Corro, Elena; Taravillo, Mercedes; Baonza, Valentin G.; Abbasi-Perez, David; Marques, Miriam; Menendez, J.; Recio, J.; Otero-de-La-Roza, Alberto

    2013-06-01

    The Raman spectrum of graphite has been studied under different stress conditions, a quantitative comparison of these experiments leads to the unexpected result that in both cases the same pressure slope is observed for the G band, despite this band is originated by an in-plane vibration and therefore only affected by in-plane stress. These results allow us to conclude that when graphite is squeezed between opposed anvils, in-plane stress components appear on the sample. We present a combined experimental and theoretical analysis which allow us to define the main in-plane stress component acting on graphite as the friction forces against sliding, resulting from the confinement of the sample. In our experiments the anvil cell turns into a powerful tool to provide information about the stress dependence of the static friction linked to the relative displacement of the individual graphene layers. Computer simulations in bulk graphite and tri-layer graphene provide boundary values of the static friction coefficient at different relative orientations between the graphene sheets. Our major finding is that the simulated static friction between loaded graphene sheets is comparable to the experimental in-plane stress that yields the blue-shift of the G band.

  6. Analysis of Graphite-Reinforced Cementitious Composites

    NASA Technical Reports Server (NTRS)

    Vaughan, R. E.

    2002-01-01

    Strategically embedding graphite meshes in a compliant cementitious matrix produces a composite material with relatively high tension and compressive properties as compared to steel-reinforced structures fabricated from a standard concrete mix. Although these composite systems are somewhat similar, the methods used to analyze steel-reinforced composites often fail to characterize the behavior of their more advanced graphite-reinforced counterparts. This Technical Memorandum describes some of the analytical methods being developed to determine the deflections and stresses in graphite-reinforced cementitious composites. It is initially demonstrated that the standard transform section method fails to provide accurate results when the elastic moduli ratio exceeds 20. An alternate approach is formulated by using the rule of mixtures to determine a set of effective material properties for the composite. Tensile tests are conducted on composite samples to verify this approach. When the effective material properties are used to characterize the deflections of composite beams subjected to pure bending, an excellent agreement is obtained. Laminated composite plate theory is investigated as a means for analyzing even more complex composites, consisting of multiple graphite layers oriented in different directions. In this case, composite beams are analyzed using the laminated composite plate theory with material properties established from tensile tests. Then, finite element modeling is used to verify the results. Considering the complexity of the samples, a very good agreement is obtained.

  7. Ultrasonic Welding of Graphite/Thermoplastic Composite

    NASA Technical Reports Server (NTRS)

    Hardy, S. S.; Page, D. B.

    1982-01-01

    Ultrasonic welding of graphite/thermoplastic composite materials eliminates need for fasteners (which require drilling or punching, add weight, and degrade stiffness) and can be totally automated in beam fabrication and assembly jigs. Feasibility of technique has been demonstrated in laboratory tests which show that neither angular orientation nor vacuum affect weld quality.

  8. Polymeric Additives For Graphite/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Nir, Z.

    1990-01-01

    Report describes experimental studies of properties of several graphite/epoxy composites containing polymeric additives as flexibilizing or toughening agents. Emphasizes effects of brominated polymeric additives (BPA's) with or without carboxy-terminated butadiene acrylonitrile rubber. Reviews effects of individual and combined additives on fracture toughnesses, environmental stabilities, hot/wet strengths, thermomechanical behaviors, and other mechanical properties of composites.

  9. Induced ferromagnetism in helium bombarded graphite.

    PubMed

    Makarova, Tatiana L; Shelankov, Andrei L; Lyubchik, Svetlana B; Serenkov, Igor T; Sakharov, Vladimir I

    2012-06-01

    Irradiation with helium ions is an effective method for triggering ferromagnetism in graphite. Chemical inertness of helium suggests that local magnetic moment formation is determined solely by the intrinsic carbon defects created during the target damage. Interacting moments are located in two places: in the vicinity of the sample surface and near the point of maximum defect generation.

  10. Microcracking in Graphite-Epoxy Composites

    DTIC Science & Technology

    1980-09-01

    ply Pabric 350 -100 to -320 Kirlin/ Pynchon GY 70/X30 (0/45190/135)s 250 -170 General Dynamics/Convair Division CY 70/934 0. 350 -16 Aerospace...and Glass Matrices," J. Mat. Sci. 7, 676-681 (1972). 17. R. L. Kirlin and G. E. Pynchon , "Dimensional Stability Investigation - Graphite/Epoxy Truss

  11. US graphite reactor D&D experience

    SciTech Connect

    Garrett, S.M.K.; Williams, N.C.

    1997-02-01

    This report describes the results of the U.S. Graphite Reactor Experience Task for the Decommissioning Strategy Plan for the Leningrad Nuclear Power Plant (NPP) Unit 1 Study. The work described in this report was performed by the Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE).

  12. Study of the Al/graphite interface

    NASA Astrophysics Data System (ADS)

    Lu, Hua; Shen, Dian-hong; Deng, Xin-fa; Xue, Qi-kun; Froumin, N.; Polak, M.

    2001-09-01

    Thin Al films with a thickness of 20-30nm were prepared by ultra-high vacuum deposition of Al onto a graphite surface parallel to a (0001) basal plane. The samples were annealed up to 1070K. X-ray photoelectron spectroscopy analysis has shown that for temperatures just higher than 770K, a little carbide occurs in the Al film and only an Al-C phase is present at the Al/graphite interface. After annealing at 970K, the Al4C3 phase can be observed and the binding energy of the Al2p electrons increases continuously from 72.7 to 74.2eV with increasing temperature up to 1070K. Auger electron spectroscopy depth profiles are measured to investigate the phases existing in the Al film as well as at the Al/graphite interface. It is found that the Al4C3 phase at the interface is the final product of a series of Al carbides from the interfacial reaction between Al and graphite.

  13. Silicone modified resins for graphite fiber laminates

    NASA Technical Reports Server (NTRS)

    Frost, L. W.; Bower, G. M.

    1980-01-01

    Six silicone modified resins were selected for evaluation in unidirectional filament wound graphite laminates. Neat samples of these resins had 1,000 C char residues of 6-63%. The highest flexural values measured for the laminates were a strength of 1,220 MPa and a modulus of 105 GPa. The highest interlaminar shear strength was 72 MPa.

  14. Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes

    PubMed Central

    Pietsch, Patrick; Westhoff, Daniel; Feinauer, Julian; Eller, Jens; Marone, Federica; Stampanoni, Marco; Schmidt, Volker; Wood, Vanessa

    2016-01-01

    Despite numerous studies presenting advances in tomographic imaging and analysis of lithium ion batteries, graphite-based anodes have received little attention. Weak X-ray attenuation of graphite and, as a result, poor contrast between graphite and the other carbon-based components in an electrode pore space renders data analysis challenging. Here we demonstrate operando tomography of weakly attenuating electrodes during electrochemical (de)lithiation. We use propagation-based phase contrast tomography to facilitate the differentiation between weakly attenuating materials and apply digital volume correlation to capture the dynamics of the electrodes during operation. After validating that we can quantify the local electrochemical activity and microstructural changes throughout graphite electrodes, we apply our technique to graphite-silicon composite electrodes. We show that microstructural changes that occur during (de)lithiation of a pure graphite electrode are of the same order of magnitude as spatial inhomogeneities within it, while strain in composite electrodes is locally pronounced and introduces significant microstructural changes. PMID:27671269

  15. Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes.

    PubMed

    Pietsch, Patrick; Westhoff, Daniel; Feinauer, Julian; Eller, Jens; Marone, Federica; Stampanoni, Marco; Schmidt, Volker; Wood, Vanessa

    2016-09-27

    Despite numerous studies presenting advances in tomographic imaging and analysis of lithium ion batteries, graphite-based anodes have received little attention. Weak X-ray attenuation of graphite and, as a result, poor contrast between graphite and the other carbon-based components in an electrode pore space renders data analysis challenging. Here we demonstrate operando tomography of weakly attenuating electrodes during electrochemical (de)lithiation. We use propagation-based phase contrast tomography to facilitate the differentiation between weakly attenuating materials and apply digital volume correlation to capture the dynamics of the electrodes during operation. After validating that we can quantify the local electrochemical activity and microstructural changes throughout graphite electrodes, we apply our technique to graphite-silicon composite electrodes. We show that microstructural changes that occur during (de)lithiation of a pure graphite electrode are of the same order of magnitude as spatial inhomogeneities within it, while strain in composite electrodes is locally pronounced and introduces significant microstructural changes.

  16. Preparation of graphite dispersed copper composite with intruding graphite particles in copper plate

    NASA Astrophysics Data System (ADS)

    Noor, Abdul Muizz Mohd; Ishikawa, Yoshikazu; Yokoyama, Seiji

    2017-01-01

    In this study, it was attempted that copper-graphite composite was prepared locally on the surface of a copper plate with using a spot welding machine. Experiments were carried out with changing the compressive load, the repetition number of the compression and the electrical current in order to study the effect of them on carbon content and Vickers hardness on the copper plate surface. When the graphite was pushed into copper plate only with the compressive load, the composite was mainly hardened by the work hardening. The Vickers hardness increased linearly with an increase in the carbon content. When an electrical current was energized through the composite at the compression, the copper around the graphite particles were heated to the temperature above approximately 2100 K and melted. The graphite particles partially or entirely dissolved into the melt. The graphite particles were precipitated from the melt under solidification. In addition, this high temperature caused the improvement of wetting of copper to graphite. This high temperature caused the annealing, and reduced the Vickers hardness. Even in this case, the Vickers hardness increased with an increase in the carbon content. This resulted from the dispersion hardening.

  17. Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes

    NASA Astrophysics Data System (ADS)

    Pietsch, Patrick; Westhoff, Daniel; Feinauer, Julian; Eller, Jens; Marone, Federica; Stampanoni, Marco; Schmidt, Volker; Wood, Vanessa

    2016-09-01

    Despite numerous studies presenting advances in tomographic imaging and analysis of lithium ion batteries, graphite-based anodes have received little attention. Weak X-ray attenuation of graphite and, as a result, poor contrast between graphite and the other carbon-based components in an electrode pore space renders data analysis challenging. Here we demonstrate operando tomography of weakly attenuating electrodes during electrochemical (de)lithiation. We use propagation-based phase contrast tomography to facilitate the differentiation between weakly attenuating materials and apply digital volume correlation to capture the dynamics of the electrodes during operation. After validating that we can quantify the local electrochemical activity and microstructural changes throughout graphite electrodes, we apply our technique to graphite-silicon composite electrodes. We show that microstructural changes that occur during (de)lithiation of a pure graphite electrode are of the same order of magnitude as spatial inhomogeneities within it, while strain in composite electrodes is locally pronounced and introduces significant microstructural changes.

  18. Kish Graphite Flakes as a Cathode Material for an Aluminum Chloride-Graphite Battery.

    PubMed

    Wang, Shutao; Kravchyk, Kostiantyn V; Krumeich, Frank; Kovalenko, Maksym V

    2017-08-30

    Nonaqueous, ionic liquid-based aluminum chloride-graphite batteries (AlCl3-GBs) are a highly promising post-Li-ion technology for low-cost and large-scale storage of electricity because these batteries feature exclusively highly abundant chemical elements and simple fabrication methods. In this work, we demonstrate that synthetic kish graphite, which is a byproduct of steelmaking, can be used as a cathode in AlCl3-GB and exhibits high capacities of ≤142 mAh g(-1). The comprehensive characterization of kish graphite flakes and other forms of graphite by X-ray diffraction, Raman spectroscopy, and Brunauer-Emmett-Teller surface area analysis provides solid evidence that the exceptional electrochemical behavior of kish graphite flakes is mainly determined by the high structural order of carbon atoms, a low level of defects, and a unique "crater morphology". In view of the nonrocking chair operation mechanism of AlCl3-GB, we have tested the achievable energy densities as a function of the composition of chloroaluminate ionic liquid (AlCl3 content) and have obtained energy densities of up to 65 Wh kg(-1). In addition, the kish graphite flakes can rapidly charge and discharge, offering high power densities of up to 4363 W kg(-1).

  19. Recycling Irradiated Nuclear Graphite - A Greener Path Forward

    SciTech Connect

    Burchell, Timothy D; Pappano, Peter J

    2012-01-01

    Here we report the successful recycle of irradiated graphite to fabricate new nuclear graphite using conventional manufacturing processes (albeit on a bench scale). Radiological concerns such as the containment of contamination in industrial scale manufacturing plants, or the release of 14C, were not considered. Moreover, a study of the annealing kinetics was conducted to elucidate the extent of property recovery over a representative temperature range. The goal of the preliminary work reported here was to determine if nuclear graphite, produced through the normal graphite fabrication process, but using crushed, previously irradiated nuclear graphite could be manufactured with sufficient mechanical integrity to warrant further investigation.

  20. Recycling Irradiated Nuclear Graphite - A Greener Path Forward

    SciTech Connect

    Burchell, Timothy D; Pappano, Peter J

    2010-01-01

    Here we report the successful recycle of irradiated graphite to fabricate new nuclear graphite using conventional manufacturing processes (albeit on a on a bench scale). Radiological concerns such as the containment of contamination in industrial scale manufacturing plants, or the release of 14C, were not considered. Moreover, a study of the annealing kinetics was conducted to elucidate the extent of property recovery over a representative temperature range. The goal of the preliminary work reported here was to determine if nuclear graphite, produced through the normal graphite fabrication process, but using crushed, previously irradiated nuclear graphite, could be manufactured with sufficient mechanical integrity to warrant further investigation

  1. Mechanism for direct graphite-to-diamond phase transition

    PubMed Central

    Xie, Hongxian; Yin, Fuxing; Yu, Tao; Wang, Jian-Tao; Liang, Chunyong

    2014-01-01

    Using classical molecular dynamics with a more reliable reactive LCBOPII potential, we have performed a detailed study on the direct graphite-to-diamond phase transition. Our results reveal a new so-called “wave-like buckling and slipping” mechanism, which controls the transformation from hexagonal graphite to cubic diamond. Based on this mechanism, we have explained how polycrystalline cubic diamond is converted from hexagonal graphite, and demonstrated that the initial interlayer distance of compressed hexagonal graphite play a key role to determine the grain size of cubic diamond. These results can broaden our understanding of the high pressure graphite-to-diamond phase transition. PMID:25088720

  2. Heterogeneous Combustion of Porous Graphite Particles in Microgravity

    NASA Technical Reports Server (NTRS)

    Chelliah, Harsha K.; Miller, Fletcher J.

    1997-01-01

    Recent theoretical investigations on graphite particle combustion have employed several levels of heterogeneous reaction models, ranging from global to elementary models, to describe the oxidation of carbon to gaseous products. Unlike the counterpart homogeneous reaction models, these heterogeneous reaction models are not well developed because of the difficulties associated with decoupling the physical characteristics of the solid (e.g. surface area taking part in combustion) from the chemical kinetic data. This is certainly true for porous graphite particle combustion, where heterogeneous and homogeneous reactions occur within the pores and play an important role in the overall oxidation process. As a result, there are considerable uncertainties of physical phenomena predicted using different heterogeneous kinetic models available in the literature. A good example, discussed later in this paper, is the predicted critical particle size below which the mass burning rate becomes exponentially small. The main goal of this study is to understand the basic mechanism controlling such rapid changes in burning rates, by developing a model where physical contributions are decoupled from chemical rate constants in a consistent manner. Another important goal of the proposed study is to develop a truly intrinsic, detailed heterogeneous reaction model for porous graphite combustion at high-temperatures, and to derive a systematically reduced heterogeneous reaction model in terms of the elementary reaction rate constants of the detailed model. The validation of chemical kinetic models describing the heterogeneous and homogeneous combustion in and around a spherically symmetric porous graphite particle can be considerably simplified by experimental measurements obtained under microgravity conditions. A vital component of this study is to conduct such supporting experiments on particle burning rate and surface temperature using NASA microgravity facilities, in close coordination

  3. Development of graphite/metals bondings for fusion reactor applications

    NASA Astrophysics Data System (ADS)

    Brossa, F.; Franconi, E.; Schiller, P.

    1992-09-01

    The need to join graphite and metal components is particularly important in the nuclear industry, especially in the first wall components of fusion machines. The aim of this work was to find brazing agents which can wet steel and graphite without producing excessive alloying, steel dissolution or the formation of fragile components and to determine the best thermal brazing cycles. Direct steel-graphite junctions are very sensitive to thermal cycling. Multiple brazings with three components (AISI 316L-Cu-graphite or AISI 316L-Mo-graphite) and four components (AISI 316L-Cu-W-graphite) were thus made. Layers of W on the graphite were produced using chemical vapour deposition (CVD), while the Mo and some brazing agents were deposited using vacuum plasma spray (VPS). It was found that multiple brazings were clearly more resistant to thermal shocks than simple junctions.

  4. Shear Assisted Electrochemical Exfoliation of Graphite to Graphene.

    PubMed

    Shinde, Dhanraj B; Brenker, Jason; Easton, Christopher D; Tabor, Rico F; Neild, Adrian; Majumder, Mainak

    2016-04-12

    The exfoliation characteristics of graphite as a function of applied anodic potential (1-10 V) in combination with shear field (400-74 400 s(-1)) have been studied in a custom-designed microfluidic reactor. Systematic investigation by atomic force microscopy (AFM) indicates that at higher potentials thicker and more fragmented graphene sheets are obtained, while at potentials as low as 1 V, pronounced exfoliation is triggered by the influence of shear. The shear-assisted electrochemical exfoliation process yields large (∼10 μm) graphene flakes with a high proportion of single, bilayer, and trilayer graphene and small ID/IG ratio (0.21-0.32) with only a small contribution from carbon-oxygen species as demonstrated by X-ray photoelectron spectroscopy measurements. This method comprises intercalation of sulfate ions followed by exfoliation using shear induced by a flowing electrolyte. Our findings on the crucial role of hydrodynamics in accentuating the exfoliation efficiency suggest a safer, greener, and more automated method for production of high quality graphene from graphite.

  5. Pencil Graphite Electrodes: A Versatile Tool in Electroanalysis

    PubMed Central

    2017-01-01

    Due to their electrochemical and economical characteristics, pencil graphite electrodes (PGEs) gained in recent years a large applicability to the analysis of various types of inorganic and organic compounds from very different matrices. The electrode material of this type of working electrodes is constituted by the well-known and easy commercially available graphite pencil leads. Thus, PGEs are cheap and user-friendly and can be employed as disposable electrodes avoiding the time-consuming step of solid electrodes surface cleaning between measurements. When compared to other working electrodes PGEs present lower background currents, higher sensitivity, good reproducibility, and an adjustable electroactive surface area, permitting the analysis of low concentrations and small sample volumes without any deposition/preconcentration step. Therefore, this paper presents a detailed overview of the PGEs characteristics, designs and applications of bare, and electrochemically pretreated and chemically modified PGEs along with the corresponding performance characteristics like linear range and detection limit. Techniques used for bare or modified PGEs surface characterization are also reviewed. PMID:28255500

  6. Viscoelastic properties of 3-D braided PEEK/graphite composites

    SciTech Connect

    Hu, Jian-Ni.

    1992-01-01

    In this study, 3-D braided PEEK/AS4 graphite composites were performed and processed to investigate the viscoelastic behavior of this new system. These manufactured composites were characterized to determine their fiber volume fractions and matrix crystallinity indices using matrix digestion and wide angle x-ray diffraction. After physical characterization, the mechanical response of these composites were evaluated at various temperatures. Experimental results from tensile measurements were compared to an established fabric geometry model (FGM). This model predicts tensile modules based upon fiber and matrix properties, fiber volume fraction, and braiding angle. Model predictions and experimental results are given here, and are in good agreement with each other. In order to study the time-dependent mechanical properties of these 3-D braided composites, their stress relaxation, creep and dynamic mechanical properties were evaluated. These results were then compared to a new composite model. This model combined a Quasi/linear Viscoelastic Model (QVM) for the viscoelastic behavior of PEEK with the FGM approach to predict the viscoelastic behavior of 3-D PEEK composites. The experimental stress relaxation and creep results are in good agreement with the QVM-FGM analysis. Thus, the QVM-FGM approach was used to accurately correlate these viscoelastic properties of 3-D braided PEEK/graphite composites. Through wider use and testing, this QVM/FGM approach may be used to increase our understanding and perhaps facilitate the design of composite structures.

  7. Preparation and characterization of graphite fluorometallate salts and graphite fluorides by chemical and electrochemical methods

    SciTech Connect

    Lerner, M.M.

    1988-09-01

    Graphite intercalation compounds of main-group metal fluorides are prepared utilizing Cl/sub 2/ as an oxidizing agent. The action of Cl/sub 2/ with GeF/sub 4/ and Cl/sub 2//HF with either PF/sub 5/ or BF/sub 3/ on graphite produces fluorometallate salts. The relationship between the calculated enthalpy change for the reduction half-reaction and degree of intercalation is discussed. The electrochemical oxidation of graphite in 49% aqueous HF generates, at the oxidation limit, a 2nd stage graphite fluoride with a charge on carbon of C/sub 10/minus/14//sup /plus//. The fully-oxidized product is a 2nd stage analog of the planar-sheet graphite fluorides produced by the chemical or electrochemical fluorination of graphite in liquid anhydrous hydrogen fluoride (AHF). The fluorometallate salts prepared by electrochemical oxidation of graphite in an AHF/alkali metal fluorometallate salt (M = As, P, B, Sn) electrolyte are examined. The chemical fluorination of 2nd- and 3rd-stage C/sub x/AsF/sub 6/ salts with AHF/F/sub 2/ at ambient temperature produces a planar-sheet graphite fluoride phase with a C/F ratio as low as 1.3 along with a C/sub x/AsF/sub 6/ phase. The reaction of graphite with AHF/SnF/sub 4//F/sub 2/ results in the rapid disappearance of SnF/sub 4/, F/sub 2/ uptake, and color change of the solid from grey to blue-black. Graphite reacts with AHF/K/sub 2/MnF/sub 6/ in a stoichiometric ratio of at least 1 Mn for 6 C to produce MnF/sub 3/ and a C/sub x/F phase. The reaction of excess PF/sub 5/ with a well-evacuated C/sub x/BF/sub 4/ /center dot/ deltaBF/sub 3/ salt yields partial displacement of BF/sub 3/. When PF/sub 5/ /plus/ HF are employed, no BF/sub 3/ is displaced from the fluoroborate salt. 21 refs., 15 figs., 18 tabs.

  8. Analysis of Natural Graphite, Synthetic Graphite, and Thermosetting Resin Candidates for Use in Fuel Compact Matrix

    SciTech Connect

    Trammell, Michael P; Pappano, Peter J

    2011-09-01

    The AGR-1 and AGR-2 compacting process involved overcoating TRISO particles and compacting them in a steel die. The overcoating step is the process of applying matrix to the OPyC layer of TRISO particles in a rotating drum in order to build up an overcoat layer of desired thickness. The matrix used in overcoating is a mixture of natural graphite, synthetic graphite, and thermosetting resin in the ratio, by weight, of 64:16:20. A wet mixing process was used for AGR-1 and AGR-2, in that the graphites and resin were mixed in the presence of ethyl alcohol. The goal of the wet mixing process was to 'resinate' the graphite particles, or coat each individual graphite particle with a thin layer of resin. This matrix production process was similar to the German, Chinese, Japanese, and South African methods, which also use various amount of solvent during mixing. See Appendix 1 for information on these countries matrix production techniques. The resin used for AGR-1 and AGR-2 was provided by Hexion, specifically Hexion grade Durite SC1008. Durite SC1008 is a solvated (liquid) resole phenolic resin. A resole resin does not typically have a hardening agent added. The major constituent of SC1008 is phenol, with minor amounts of formaldehyde. Durite SC1008 is high viscosity, so additional ethyl alcohol was added during matrix production in order to reduce its viscosity and enhance graphite particle resination. The current compacting scale up plan departs from a wet mixing process. The matrix production method specified in the scale up plan is a co-grinding jet mill process where powdered phenolic resin and graphite are all fed into a jet mill at the same time. Because of the change in matrix production style, SC1008 cannot be used in the jet milling process because it is a liquid. The jet milling/mixing process requires that a suite of solid or powdered resins be investigated. The synthetic graphite used in AGR-1 and AGR-2 was provided by SGL Carbon, grade KRB2000. KRB2000 is a

  9. A sensitive atomic-absorption spectrometric method for the determination of tin with atomization from impregnated graphite surfaces.

    PubMed

    Fritzsche, H; Wegscheider, W; Knapp, G; Ortner, H M

    1979-03-01

    The atomization of Sn from graphite surfaces is potentially hindered by reactions with the surface. The impregnation of graphite tubes with other carbide-forming elements (W, Zr, Ta, Mo) favourably alters the surface characteristics of the graphite furnace for the atomization of Sn. At the acid concentrations needed to prevent the hydrolysis of Sn, these surfaces are considerably more stable (even after more than 100 atomization cycles) than those of pyrolytic graphite. Two graphite furnaces of different design, the HGA 72 and the HGA 76, were tested. With impregnated graphite tubes the determination of Sn is possible in the HGA 72 with a detection limit of approximately 15 pg. In the HGA 76 the tin determination is vastly improved with respect to prolonged lifetime of the furnaces and stable signals over much longer periods of time. Detailed interference studies reveal that the use of the "gas stop" mode minimizes the influence of many ions that are frequently either introduced by the decomposition reagents or present in the sample itself. The practical potential of this method is demonstrated for the determination of Sn in a slag material and in copper- and aluminium-based alloys.

  10. Status of the NGNP graphite creep experiments AGC-1 and AGC-2 irradiated in the advanced test reactor

    SciTech Connect

    S. Blaine Grover

    2014-05-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the next generation nuclear plant (NGNP) very high temperature gas reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six peripheral stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six peripheral stacks will have three different compressive loads applied to the top half of three diametrically opposite pairs of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during irradiation of the experiment.

  11. A study of the structural efficiency of fluted core graphite-epoxy panels

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1990-01-01

    The structural efficiency of compression-loaded graphite-epoxy sandwich panels with fluted cores is studied to determine their weight saving potential. Graphite-epoxy equilateral triangular elements are used to construct the fluted cores for the sandwich panels. Two panel configurations are considered. One configuration has two layers of triangular elements in the fluted core and the second configuration has only one layer of triangular elements in the core. An optimization code is used to find the minimum weight design for each panel configuration. Laminate ply orientations are limited to approx. 45, 0, and 90 deg. A constraint on the axial stiffness is included in the design process so the panel will conform to typical constraints for aircraft wing structures. Minimum thickness requirements for each laminate and maximum allowable strains are also included. A comparison is made of the calculated structural efficiency of the fluted core panels to the structural efficiency of aluminum transport aircraft structures and simple blade-stiffened graphite-epoxy panels. Limited experimental results are also included for comparison with the analytical predictions and to identify the critical failure mechanisms of graphite-epoxy fluted-core sandwich panels.

  12. A probabilisitic based failure model for components fabricated from anisotropic graphite

    NASA Astrophysics Data System (ADS)

    Xiao, Chengfeng

    The nuclear moderator for high temperature nuclear reactors are fabricated from graphite. During reactor operations graphite components are subjected to complex stress states arising from structural loads, thermal gradients, neutron irradiation damage, and seismic events. Graphite is a quasi-brittle material. Two aspects of nuclear grade graphite, i.e., material anisotropy and different behavior in tension and compression, are explicitly accounted for in this effort. Fracture mechanic methods are useful for metal alloys, but they are problematic for anisotropic materials with a microstructure that makes it difficult to identify a "critical" flaw. In fact cracking in a graphite core component does not necessarily result in the loss of integrity of a nuclear graphite core assembly. A phenomenological failure criterion that does not rely on flaw detection has been derived that accounts for the material behaviors mentioned. The probability of failure of components fabricated from graphite is governed by the scatter in strength. The design protocols being proposed by international code agencies recognize that design and analysis of reactor core components must be based upon probabilistic principles. The reliability models proposed herein for isotropic graphite and graphite that can be characterized as being transversely isotropic are another set of design tools for the next generation very high temperature reactors (VHTR) as well as molten salt reactors. The work begins with a review of phenomenologically based deterministic failure criteria. A number of this genre of failure models are compared with recent multiaxial nuclear grade failure data. Aspects in each are shown to be lacking. The basic behavior of different failure strengths in tension and compression is exhibited by failure models derived for concrete, but attempts to extend these concrete models to anisotropy were unsuccessful. The phenomenological models are directly dependent on stress invariants. A set of

  13. Graphite Sublimation Tests for the Muon Collider/Neutrino Factory Target Development Program

    SciTech Connect

    Haines, JR

    2002-02-07

    A passively cooled graphite target was proposed for a 1.5 MW neutrino production research facility because of its simplicity and favorable performance as a target material for neutrino production (Ref. 1). The conceptual design for the target in the Reference 1 study was a graphite rod 15 mm in diameter by 800 mm long. Figure 1 shows the graphite target rod supported by graphite spokes, which are mounted to a water-cooled stainless steel support tube. The target is radiatively cooled to the water-cooled surface of the support tube. Based on nuclear analysis results (Ref. 2), the time-averaged power deposition in the target is 35 kW. If this power is deposited uniformly along the axial length of the target, the volumetric power deposition in the target is about 250 MW/m{sup 3}. The target surface temperature required to radiate the deposited power to a water-cooled tube is estimated to be about 1850 C, and the temperature at the center of the target is about 75 C hotter. The sublimation erosion rate (e), estimated assuming that the graphite is submersed in a perfect vacuum environment, can be derived from kinetic theory and is given by: e = p{sub sat} (m/2{pi} kT){sup 1/2} where p{sub sat} is the saturation pressure, m is the molecular weight, k is the Boltzmann constant, and T is the surface temperature. The saturation pressure given in Ref. 3 can be approximated by: p{sub sat} = exp(-A/T + B) where A = 9.47 x 10{sup 3}, B = 24.2, and the units of p{sub sat} and T are atmospheres and K, respectively. Using these equations, the saturation pressure and sublimation erosion rate are plotted in Fig. 2 as a function of temperature. The surface recession rate shown with units of mm/s in Fig. 2 assumes one-sided erosion. At the average power deposition value of 250 MW/m{sup 3}, the surface temperature is 1850 C resulting in a sublimation erosion rate of only 2.2 mm/day. However, if the actual power deposition were peaked by a factor of two in the axial direction, then the

  14. The Next Generation Nuclear Plant Graphite Creep Experiment Irradiation in the Advanced Test Reactor

    SciTech Connect

    Blaine Grover

    2010-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will have differing compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of

  15. Graphite filter atomizer in atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri A.

    2007-09-01

    Graphite filter atomizers (GFA) for electrothermal atomic absorption spectrometry (ETAAS) show substantial advantages over commonly employed electrothermal vaporizers and atomizers, tube and platform furnaces, for direct determination of high and medium volatility elements in matrices associated with strong spectral and chemical interferences. Two factors provide lower limits of detection and shorter determination cycles with the GFA: the vaporization area in the GFA is separated from the absorption volume by a porous graphite partition; the sample is distributed over a large surface of a collector in the vaporization area. These factors convert the GFA into an efficient chemical reactor. The research concerning the GFA concept, technique and analytical methodology, carried out mainly in the author's laboratory in Russia and South Africa, is reviewed. Examples of analytical applications of the GFA in AAS for analysis of organic liquids and slurries, bio-samples and food products are given. Future prospects for the GFA are discussed in connection with analyses by fast multi-element AAS.

  16. Microwave limb sounder, graphite epoxy support structure

    NASA Technical Reports Server (NTRS)

    Pynchon, G.

    1980-01-01

    The manufacturing and processing procedures which were used to fabricate a precision graphite/epoxy support structure for a spherical microwave reflecting surface are described. The structure was made fromm GY-70/930 ultra high modulus graphite prepreg, laminated to achieve an isotropic in plane thermal expansion of less than + or - 0.1 PPM/F. The structure was hand assembled to match the interface of the reflective surface, which was an array of 18 flexure supported, aluminum, spherically contoured tiles. Structural adhesives were used in the final assembly to bond the elements into their final configuration. A eutectic metal coating was applied to the composite surface to reduce dimensional instabilities arising from changes in the composite epoxy moisture content due to environmental effects. Basic materials properties data are reported and the results of a finite element structural analysis are referenced.

  17. Analysis of Graphite Reinforced Cementitious Composites

    NASA Technical Reports Server (NTRS)

    Vaughan, Robert E.; Gilbert, John A.; Spanyer, Karen (Technical Monitor)

    2001-01-01

    This paper describes analytical methods that can be used to determine the deflections and stresses in highly compliant graphite-reinforced cementitious composites. It is demonstrated that the standard transform section fails to provide accurate results when the elastic modulus ratio exceeds 20. So an alternate approach is formulated by using the rule of mixtures to determine a set of effective material properties for the composite. Tensile tests are conducted on composite samples to verify this approach; and, when the effective material properties are used to characterize the deflections of composite beams subject to pure bending, an excellent agreement is obtained. Laminated composite plate theory is also investigated as a means for analyzing even more complex composites, consisting of multiple graphite layers oriented in different directions. In this case, composite beams are analyzed by incorporating material properties established from tensile tests. Finite element modeling is used to verity the results and, considering the complexity of the samples, a very good agreement is obtained.

  18. Scattering by interstellar graphite dust analog

    NASA Astrophysics Data System (ADS)

    Ahmed, Gazi A.; Gogoi, Ankur

    2014-10-01

    The analysis of optical scattering data of interstellar carbonaceous graphite dust analog at 543.5 nm, 594.5 nm and 632.8 nm laser wavelengths by using an original laboratory light scattering setup is presented. The setup primarily consisted of a laser source, optical units, aerosol sprayer, data acquisition system and associated instrumentation. The instrument measured scattered light signals from 10° to 170° in steps of 1°. The results of the measurements of the volume scattering function β(θ) and degree of linear polarization P(θ) of the carbonaceous graphite dust particles that were sprayed in front of the laser beam by using an aerosol sprayer were subsequently compared with theoretically generated Mie plots with estimated parameters.

  19. Physical aging in graphite epoxy composites

    NASA Technical Reports Server (NTRS)

    Kong, E. S. W.

    1981-01-01

    The matrix dominated mechanical behavior of a graphite epoxy composite was found to be affected by sub Tg annealing. Postcured + or - 45 deg 4S specimens of Thornel 300 graphite/Narmco 5208 epoxy were quenched from above Tg and given a sub Tg annealing at 140 C for times up to 10 to the 5th power min. The ultimate tensile strength, strain to break, and toughness of the composite material were found to decrease as functions of sub Tg annealing time. No weight loss was observed during the sub Tg annealing. The time dependent change in mechanical behavior is explained on the basis of free volume changes that are related to the physical aging of the nonequilibrium glassy network epoxy. The results imply possible changes in composite properties with service time.

  20. Phase analysis of quantum oscillations in graphite.

    PubMed

    Luk'yanchuk, Igor A; Kopelevich, Yakov

    2004-10-15

    The quantum de Haas-van Alphen (dHvA) and Shubnikov-de Haas oscillations measured in graphite were decomposed by pass-band filtering onto contributions from three different groups of carriers. Generalizing the theory of dHvA oscillations for 2D carriers with an arbitrary spectrum and by detecting the oscillation frequencies using a method of two-dimensional phase-frequency analysis which we developed, we identified these carriers as (i) minority holes having a 2D parabolic massive spectrum p(2)(perpendicular)/2m(perpendicular), (ii) massive majority electrons with a 3D spectrum and (iii) majority holes with a 2D Dirac-like spectrum +/-vp(perpendicular) which seems to be responsible for the unusual strongly-correlated electronic phenomena in graphite.

  1. Thermal conductivity of graphene and graphite

    NASA Astrophysics Data System (ADS)

    Alofi, A.; Srivastava, G. P.

    2013-03-01

    The thermal conductivities of graphene and graphite are computed within the framework of Callaway's effective relaxation time theory. Analytical expressions derived by Nihira and Iwata for phonon dispersion relations and vibrational density of states are employed, based on the semicontinuum model proposed by Komatsu and Nagamiya. The conductivity of graphene is predicted to be higher than the in-plane conductivity of graphite for all temperatures. Incorporation of the 13C isotope can be expected to produce significant reduction in the conductivity of graphene in the temperature range 50-300 K. In the presence of tensile strain on graphene, the specific heat increases, but the conductivity can decrease or increase depending on the level of the purity and temperature of the sample.

  2. Model calculations of superlubricity of graphite

    NASA Astrophysics Data System (ADS)

    Verhoeven, Gertjan S.; Dienwiebel, Martin; Frenken, Joost W.

    2004-10-01

    In this paper, friction between a finite, nanometer-sized, rigid graphite flake and a rigid graphite surface is analyzed theoretically in the framework of a modified Tomlinson model. Lateral forces are studied as a function of orientational misfit between flake and surface lattices, pulling direction of the flake, flake size and flake shape. The calculations show that the orientation dependence of the friction provides information on the contact size and shape. We find good agreement between the calculations and the experimental results, discussed in a recent publication by Dienwiebel et al. [

    M. Dienwiebel, G. S. Verhoeven, N. Pradeep, J. W. M. Frenken, J. A. Heimberg, and H. W. Zandbergen, Phys. Rev. Lett. 92, 126101 (2004)
    ].

  3. Layering-induced Superlubricity: Gold on Graphite

    NASA Astrophysics Data System (ADS)

    Vanossi, Andrea; Guerra, Roberto; Tosatti, Erio; Nanofriction Group Sissa Team

    2015-03-01

    By means of realistic MD simulations, we explore the static friction trend as a function of the true contact area and the model dimensionality for 2D gold nanoislands and 3D gold nanoclusters deposited on graphite, interesting tribological systems whose slow and fast dynamics have been previously investigated. For increasing island size, because of the relative gold-graphite lattice mismatch, the interface stress energy has the chance to pile up by forming frustrated unmatched (i.e., incommensurate) regions and to develop a continuous solitonic pathway, foreshadowing a possible condition for the occurrence of ultra-low friction regimes. The significant reduction of the depinning threshold, towards superlubricity, with the system dimensionality can be ascribed to a layering-induced effective stiffness of the interface contact, favoring the natural Au-C lattice incommensurability. Partly sponsored under SNSF Sinergia Grant CRSII2 136287/1, EU ERC Grant No. 320796 MODPHYSFRICT, EU COST Action MP1303.

  4. Method for disposing of radioactive graphite and silicon carbide in graphite fuel elements

    SciTech Connect

    Gay, R.L.

    1995-09-12

    Method is described for destroying radioactive graphite and silicon carbide in fuel elements containing small spheres of uranium oxide coated with silicon carbide in a graphite matrix, by treating the graphite fuel elements in a molten salt bath in the presence of air, the salt bath comprising molten sodium-based salts such as sodium carbonate and a small amount of sodium sulfate as catalyst, or calcium-based salts such as calcium chloride and a small amount of calcium sulfate as catalyst, while maintaining the salt bath in a temperature range of about 950 to about 1,100 C. As a further feature of the invention, large radioactive graphite fuel elements, e.g. of the above composition, can be processed to oxidize the graphite and silicon carbide, by introducing the fuel element into a reaction vessel having downwardly and inwardly sloping sides, the fuel element being of a size such that it is supported in the vessel at a point above the molten salt bath therein. Air is bubbled through the bath, causing it to expand and wash the bottom of the fuel element to cause reaction and destruction of the fuel element as it gradually disintegrates and falls into the molten bath. 4 figs.

  5. Study of high resistance inorganic coatings on graphite fibers. [for graphite-epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Veltri, R. D.; Scola, D. A.

    1979-01-01

    Coatings made of boron, silicon carbide, silica, and silica-like materials were studied to determine their ability to increase resistance of graphite fibers. The most promising results were attained by chemical vapor depositing silicon carbide on graphite fiber followed by oxidation, and drawing graphite fiber through ethyl silicate followed by appropriate heat treatments. In the silicon carbide coating studies, no degradation of the graphite fibers was observed and resistance values as high as three orders of magnitude higher than that of the uncoated fiber was attained. The strength of a composite fabricated from the coated fiber had a strength which compared favorably with those of composites prepared from uncoated fiber. For the silica-like coated fiber prepared by drawing the graphite fiber through an ethyl silicate solution followed by heating, coated fiber resistances about an order of magnitude greater than that of the uncoated fiber were attained. Composites prepared using these fibers had flexural strengths comparable with those prepared using uncoated fibers, but the shear strengths were lower.

  6. Cooling of weapons with graphite foam

    DOEpatents

    Klett, James W.; Trammell, Michael P.

    2016-12-27

    Disclosed are examples of an apparatus for cooling a barrel 12 of a firearm 10 and examples of a cooled barrel assembly 32 for installation into an existing firearm 10. When assembled with the barrel 12, a contact surface 16 of a shell 14 is proximate to, and in thermal communication with, the outer surface of the barrel 18. The shell 14 is formed of commercially available or modified graphite foam.

  7. Graphite intercalation compound with arsenic pentafluoride

    SciTech Connect

    Kozlov, S.P.; Nikonorov, Yu.I.

    1987-04-01

    A decrease in the electrical resistance of the graphite compound with arsenic pentafluoride of the composition C/sub 10.2/AsF/sub 5/ is observed in the 293-510/sup 0/K range. It was hypothesized that this is due to elimination of the weakly conducting fluorides in the compound. When C/sub 10.2/AsF/sub 5/ is treated with water and hydrogen fluoride, it decomposes.

  8. Graphite-to-Graphene: Total Conversion.

    PubMed

    Buzaglo, Matat; Bar, Ilan Pri; Varenik, Maxim; Shunak, Liran; Pevzner, Svetlana; Regev, Oren

    2017-02-01

    The rush to develop graphene applications mandates mass production of graphene sheets. However, the currently available complex and expensive production technologies are limiting the graphene commercialization. The addition of a protective diluent to graphite during ball-milling is demonstrated to result in a game-changer yield (>90%) of defect-free graphene, whose size is controlled by the milling energy and the diluent type.

  9. Temperature Dependence of Phonons in Pyrolitic Graphite

    DOE R&D Accomplishments Database

    Brockhouse, B. N.; Shirane, G.

    1977-01-01

    Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4°K and 1500°C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes.

  10. Conductive composites based on exfoliated graphite

    SciTech Connect

    Afanasov, I.M.; Morozov, V.A.; Seleznev, A.N.; Avdeev, V.V.

    2008-06-15

    Conductive composites of exfoliated graphite (EG) and coal-tar pitch have been prepared by mixing the components. The electrical properties of the composites have been studied, and the results have been interpreted in terms of the percolation theory. The threshold EG content for electrical conduction is determined to be similar or equal to 1.5 wt %, independent of the properties of the pitch and EG.

  11. Flammabilities Of Graphite-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1990-01-01

    Report describes tests and comparisons of flammabilities, thermal properties, and selected mechanical properties of composite materials made of epoxy and other matrices reinforced by graphite fibers. Composites also compared with baseline epoxy/fiberglass composite. Considers such properties as limiting oxygen index, smoke evolution, products of thermal degradation, total heat release, heat-release rate, loss of mass, spread of flames, resistance to ignition, and thermal stability.

  12. Electron oxidation of graphite by fluorospecies

    SciTech Connect

    Rosenthal, G.L.

    1984-09-01

    The fluoride-ion affinity (A/sub F/sup -//) of phosphorus pentafluoride was determined to be 100 kcal/mole from the heats of reaction of the Lewis bases SF/sub 4/ and ClO/sub 2/F with PF/sub 5/ near room temperature. The fluoride-ion affinity of boron trifluoride was determined to be 92 kcal/mole from the heat of reaction of ClO/sub 2/F with BF/sub 3/. The crystal structure of ClO/sub 2/BF/sub 4/ was determined and a precise lattice energy was calculated from this structure and used to determined A/sub F/sup -//. Both PF/sub 5/ and BF/sub 3/ were found to react with graphite in the presence of fluorine gas to yield a variety of non-stoichiometric compounds. The fluoride-ion affinity of silicon tetrafluoride is not known, but it does not react with graphite and F/sub 2/ except at high pressures. These and previous results suggested a threshold in oxidizing power of intercalating species below which the oxidative intercalation reaction would not occur. The reduction of C/sub x/PF/sub 6/ by PF/sub 3/ proved that the reaction is thermodynamically controlled to some extent. The displacement of PF/sub 5/ in C/sub x/PF/sub 6/ by BF/sub 3/ (with a smaller A/sub F/sup -//) suggested that two BF/sub 3/ molecules may have a larger fluoride-ion affinity than one PF/sub 5/ and that B/sub 2/F/sub 7//sup -/ may be a stable anion in graphite. Conductivity studies of PF/sub x/ and BF/sub y/ salts showed that a large drop in conductivity when the reaction reaches first stage is due in the most part to direct fluorination of carbon in graphite.

  13. Graphite formation by carbonate reduction during subduction

    NASA Astrophysics Data System (ADS)

    Galvez, Matthieu E.; Beyssac, Olivier; Martinez, Isabelle; Benzerara, Karim; Chaduteau, Carine; Malvoisin, Benjamin; Malavieille, Jacques

    2013-06-01

    Carbon is transported from Earth's surface into its interior at subduction zones. Carbonates in sediments overlying hydrothermally altered rocks (including serpentinites) within the subducted slab are the main carriers of this carbon. Part of the carbon is recycled back to the surface by volcanism, but some is transferred to the deep Earth. Redox transformations during shallow subduction control the transfer and long-term fate of carbon, but are poorly explored. Here we use carbon stable isotopes and Raman spectroscopy to analyse the reduction of carbonate in an exhumed serpentinite-sediment contact in Alpine Corsica, France. We find that highly crystalline graphite was formed during subduction metamorphism and was concentrated in the sediment, within a reaction zone in direct contact with the serpentinite. The graphite in this reaction zone has a carbon isotopic signature (δ13C) of up to 0.8+/-0.1‰, similar to that of the original calcite that composed the sediments, and is texturally associated with the calcium-bearing mineral wollastonite that is also formed in the process. We use mass-balance calculations to show that about 9% of the total carbonaceous matter in the sedimentary unit results from complete calcite reduction in the reaction zone. We conclude that graphite formation, under reducing and low-temperature conditions, provides a mechanism to retain carbon in a subducting slab, aiding transport of carbon into the deeper Earth.

  14. Patternable Solvent-Processed Thermoplastic Graphite Electrodes.

    PubMed

    Klunder, Kevin J; Nilsson, Zach; Sambur, Justin B; Henry, Charles S

    2017-09-13

    Since their invention in the 1950s, composite carbon electrodes have been employed in a wide variety of applications, ranging from batteries and fuel cells to chemical sensors, because they are easy to make and pattern at millimeter scales. Despite their widespread use, traditional carbon composite electrodes have substandard electrochemistry relative to metallic and glassy carbon electrodes. As a result, there is a critical need for new composite carbon electrodes that are highly electrochemically active, have universal and easy fabrication into complex geometries, are highly conductive, and are low cost. Herein, a new solvent-based method is presented for making low-cost composite graphite electrodes containing a thermoplastic binder. The electrodes, which are termed thermoplastic electrodes (TPEs), are easy to fabricate and pattern, give excellent electrochemical performance, and have high conductivity (700 S m(-1)). The thermoplastic binder enables the electrodes to be hot embossed, molded, templated, and/or cut with a CO2 laser into a variety of intricate patterns. Crucially, these electrodes show a marked improvement in peak current, peak separation, and resistance to charge transfer over traditional carbon electrodes. The impact of electrode composition, surface treatment (sanding, polishing, plasma treatment), and graphite source were found to significantly impact fabrication, patterning, conductivity, and electrochemical performance. Under optimized conditions, electrodes generated responses similar to more expensive and difficult to fabricate graphene and highly oriented pyrolytic graphite electrodes. The TPE electrode system reported here provides a new approach for fabricating high performance carbon electrodes with utility in applications ranging from sensing to batteries.

  15. Graphitic carbon-water nonbonded interaction parameters.

    PubMed

    Wu, Yanbin; Aluru, N R

    2013-07-25

    In this study, we develop graphitic carbon-water nonbonded interaction parameters entirely from ab initio calculation data of interaction energies between graphene and a single water molecule. First, we employ the Møller-Plesset perturbation theory of the second order (MP2) method to compute the polycyclic aromatic hydrocarbon (PAH)-water interaction energies, with proper size of basis sets and energy component analysis to extrapolate to infinite-sized graphene limit. Then, we develop graphitic carbon-water interaction parameters based on the MP2 data from this work and the ab initio data available in the literature from other methods such as random-phase approximation (RPA), density functional theory-symmetry-adapted perturbation theory (DFT-SAPT), and coupled cluster treatment with single and double excitations and perturbative triples (CCSD(T)). The accuracy of the interaction parameters is evaluated by predicting water contact angle on graphite and carbon nanotube (CNT) radial breathing mode (RBM) frequency shift and comparing them with experimental data. The interaction parameters obtained from MP2 data predict the CNT RBM frequency shift that is in good agreement with experiments. The interaction parameters obtained from RPA and DFT-SAPT data predict the contact angles and the CNT RBM frequency shift that agree well with experiments. The interaction parameters obtained from CCSD(T) data underestimate the contact angles and overestimate the CNT RBM frequency shift probably due to the use of small basis sets in CCSD(T) calculations.

  16. Nondestructive Evaluation of Nuclear-Grade Graphite

    SciTech Connect

    Dennis C. Kunerth; Timothy R. McJunkin

    2011-07-01

    Nondestructive Evaluation of Nuclear Grade Graphite Dennis C. Kunerth and Timothy R. McJunkin Idaho National Laboratory Idaho Falls, ID, 83415 This paper discusses the nondestructive evaluation of nuclear grade graphite performed at the Idaho National Laboratory. Graphite is a composite material highly dependent on the base material and manufacturing methods. As a result, material variations are expected within individual billets as well billet to billet and lot to lot. Several methods of evaluating the material have been explored. Particular technologies each provide a subset of information about the material. This paper focuses on techniques that are applicable to in-service inspection of nuclear energy plant components. Eddy current examination of the available surfaces provides information on potential near surface structural defects and although limited, ultrasonics can be utilized in conventional volumetric inspection. Material condition (e.g. micro-cracking and porosity induced by radiation and stress) can be derived from backscatter or acousto-ultrasound (AU) methods. Novel approaches utilizing phased array ultrasonics have been attempted to expand the abilities of AU techniques. By combining variable placement of apertures, angle and depth of focus, the techniques provide the potential to obtain parameters at various depths in the material. Initial results of the study and possible procedures for application of the techniques are discussed.

  17. Electrochemical oxidation of phenol using graphite anodes

    SciTech Connect

    Awad, Y.M.; Abuzaid, N.S.

    1999-02-01

    The effects of current and pH on the electrochemical oxidation of phenol on graphite electrodes is investigated in this study. There was no sign of deterioration of the graphite bed after 5 months of operation. Phenol removal efficiency was a function of the current applied and was around 70% at a current of 2.2 A. The increase of phenol removal efficiency with current is attributed to the increase of ionic transport which increases the rate of electrode reactions responsible for the removal process. The percentage of complete oxidation of phenol increases with current, with a maximum value of about 50%. However, at pH 0.2 it is slightly higher than that at pH 0.5 at all currents. The phenol removal rate increases with increases of current and pH. While the current (CO{sub 2}) efficiency reaches a maximum value in the current range of 1.0--1.2 A, it increases with an increase of acid concentration. The findings of this study have important implications: while anodic oxidation of phenol on graphite can achieve acceptable removal of phenol, the extent of oxidation should not be overlooked.

  18. Nitrogen Adsorption on Graphite: Defying Physisorption

    NASA Astrophysics Data System (ADS)

    Tkatchenko, Alexandre; Scheffler, Matthias

    2010-03-01

    The adsorption of a nitrogen molecule at the graphite surface can be considered a paradigm of molecular physisorption [1]. The binding of N2 can be phenomenologically described in terms of a competition between quadrupole--quadrupole and van der Waals dispersion energies. Of particular interest is the relative stability of the so-called ``in-plane'', ``out-of-plane'' and ``pin-wheel'' monolayer structures, in which the nitrogen molecules alternate between parallel and perpendicular configurations on the surface. By combining state-of-the-art electronic structure methods, such as dispersion-corrected density-functional theory and Møller-Plesset second-order perturbation theory along with high-level coupled cluster [CCSD(T)] calculations, we are able to gain quantitative insight into the adsorption mechanism of N2@graphite and achieve very good agreement with experimental desorption enthalpy. We challenge the commonly held view of a closed-shell adsorbed N2 molecule, finding a noticeable charge-density polarization for nitrogen in a perpendicular configuration on the surface. We map out the N2@graphite potential energy surface as a function of sliding and orientation and discuss the influence of quantum zero-point energy for different adsorption sites. [1] D. Marx and H. Wiechert, Adv. Chem. Phys. 95, 213 (1996).

  19. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Thompson, E. R.

    1980-01-01

    High levels of mechanical performance in tension, flexure, fatigue, and creep loading situations of graphite fiber reinforced glass matrix composites are discussed. At test temperatures of up to 813 K it was found that the major limiting factor was the oxidative instability of the reinforcing graphite fibers. Particular points to note include the following: (1) a wide variety of graphite fibers were found to be comparable with the glass matrix composite fabrication process; (2) choice of fiber, to a large extent, controlled resultant composite performance; (3) composite fatigue performance was found to be excellent at both 300 K and 703 K; (4) composite creep and stress rupture at temperatures of up to 813 K was limited by the oxidative stability of the fiber; (5) exceptionally low values of composite thermal expansion coefficient were attributable to the dimensional stability of both matrix and fiber; and (6) component fabricability was demonstrated through the hot pressing of hot sections and brazing using glass and metal joining phases.

  20. Hydrogen adsorption on and solubility in graphites

    SciTech Connect

    Kanashenko, S.L.; Gorodetsky, A.E.; Chernikov, V.N.; Markin, A.V.; Zakharov, A.P.

    1995-12-01

    The experimental data on sorption and solubility of hydrogen isotopes in graphite in a wide ranges of temperature and pressure are reviewed. The Langmuir type adsorption is proposed for the hydrogen -- graphites interaction with taking into account dangling sp{sup 2}{minus}bonds relaxation. Three kinds of traps are proposed: Carbon interstitial loops with the adsorption enthalpy of {minus}4.4 eV/H{sub 2} (Traps l); carbon network edge atoms with the adsorption enthalpy of {minus}2.3 eV/H{sub 2} (Traps 2): Basal planes adsorption sites with enthalpy of +2.43 eV/H{sub 2} (Traps 3). The sorption capacity of every kind of graphite could be described with its own unique set of traps. The number of potential sites for the ``true solubility`` (Traps 3) we assume as 1E+6 appm, or HC=l, but endothermic character of this solubility leads to negligible amount of inventory in comparison with Traps 1 and Traps 2. The irradiation with neutrons or carbon atoms increases the number of Traps 1 and Traps 2. At damage level of {approximately}1 dpa under room temperature irradiation the number of these traps was increased up to 1500 and 5000 appm respectively. Traps 1 and Traps 2 are stable under high temperature annealing.