Science.gov

Sample records for graphite furnace atomic

  1. Improved graphite furnace atomizer

    DOEpatents

    Siemer, D.D.

    1983-05-18

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  2. Graphite furnace atomic absorption elemental analysis of ecstasy tablets.

    PubMed

    French, Holly E; Went, Michael J; Gibson, Stuart J

    2013-09-10

    Six metals (copper, magnesium, barium, nickel, chromium and lead) were determined in two separate batches of seized ecstasy tablets by graphite furnace atomic absorption spectroscopy (GFAAS) following digestion with nitric acid and hydrogen peroxide. Large intra-batch variations were found as expected for tablets produced in clandestine laboratories. For example, nickel in batch 1 was present in the range 0.47-13.1 parts per million (ppm) and in batch 2 in the range 0.35-9.06 ppm. Although batch 1 had significantly higher 3,4-methylenedioxy-N-methamphetamine (MDMA) content than batch 2, barium was the only element which discriminated between the two ecstasy seizures (batch 1: 0.19-0.66 ppm, batch 2: 3.77-5.47 ppm).

  3. Rapid analysis with transversely heated graphite furnace atomic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Zhang; Carnrick, Glen; Slavin, Walter

    1993-09-01

    A new graphite furnace instrument using a transversely heated furnace tube with a longitudinal Zeeman correction system has been specifically designed to provide more nearly stabilized temperature platform furnace (STPF) conditions than previous furnace systems. Because there are no cold ends on this furnace tube on which to condense analyte and matrix materials, the vapor phase interferences are expected to be smaller. Also, the cooldown step can be avoided, thus saving time. This instrument permits the delivery of sample into a furnace already heated. The delivery rate of the autosampler can be slowed. These opportunities make it feasible for the sample to be dry on the platform by the time the delivery is complete. Several elements of environmental significance were chosen for test: As, Pb, Se, Tl, Cd, Cu, Cr and V. In almost all of these situations, the analyte was fully recovered without using a matrix modifier or a pyrolysis step. However, As and Pb in urine and As in sediment required a modifier and pyrolysis step for accurate results. A new fast furnace protocol was developed to accommodate use of a matrix modifier and this new protocol was successful for Pb and As in these matrices. All the procedures required less than 1 min total cycle times and produced results in agreement with certified values. This is in contrast with conventional methods which require 2-3 min per firing. These results confirm that graphite furnace methods can be accomplished with a throughput greater than 60 determinations per hour, and eventually, it may be possible to increase this rate beyond 100 determinations per hour.

  4. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    EPA Science Inventory

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  5. Analysis of lithium in deep basalt groundwaters using graphite furnace atomic absorption spectrophotometry

    SciTech Connect

    Dill, J.A.; Marcy, A.D.

    1986-05-01

    Lithium is under consideration for use as a reactive (sorptive) tracer in experiments designed to provide information regarding natural attenuation processes in a basalt-groundwater environment. In support of these activities, background lithium concentrations in samples obtained from a variety of test horizons have been determined using graphite furnace atomic absorption spectrophotometry. Significant interference was observed in these determinations and was found to be due to the presence of silicate in the samples. It was found that these problems could be circumvented through the use of alkaline silicate or synthetic groundwater matrix modifiers. This matrix effect was examined in some detail. Results obtained using the graphite furnace were compared to results obtained using inductively coupled plasma atomic emission spectroscopy.

  6. Method 200.12 - Determination of Trace Elements in Marine Waters by StabilizedTemperature Graphite Furnace Atomic Absorption

    EPA Science Inventory

    This method provides procedures for the determination of total recoverable elements by graphite furnace atomic absorption (GFAA) in marine waters, including estuarine, ocean and brines with salinities of up to 35 ppt.

  7. Determination of total tin in silicate rocks by graphite furnace atomic absorption spectrometry

    USGS Publications Warehouse

    Elsheimer, H.N.; Fries, T.L.

    1990-01-01

    A method is described for the determination of total tin in silicate rocks utilizing a graphite furnace atomic absorption spectrometer with a stabilized-temperature platform furnace and Zeeman-effect background correction. The sample is decomposed by lithium metaborate fusion (3 + 1) in graphite crucibles with the melt being dissolved in 7.5% hydrochloric acid. Tin extractions (4 + 1 or 8 + 1) are executed on portions of the acid solutions using a 4% solution of tricotylphosphine oxide in methyl isobutyl ketone (MIBK). Ascorbic acid is added as a reducing agent prior to extraction. A solution of diammonium hydrogenphosphate and magnesium nitrate is used as a matrix modifier in the graphite furnace determination. The limit of detection is > 10 pg, equivalent to > 1 ??g l-1 of tin in the MIBK solution or 0.2-0.3 ??g g-61 in the rock. The concentration range is linear between 2.5 and 500 ??g l-1 tin in solution. The precision, measured as relative standard deviation, is < 20% at the 2.5 ??g l-1 level and < 7% at the 10-30 ??g l-1 level of tin. Excellent agreement with recommended literature values was found when the method was applied to the international silicate rock standards BCR-1, PCC-1, GSP-1, AGV-1, STM-1, JGb-1 and Mica-Fe. Application was made to the determination of tin in geological core samples with total tin concentrations of the order of 1 ??g g-1 or less.

  8. Solid sampling determination of magnesium in lithium niobate crystals by graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Dravecz, Gabriella; Laczai, Nikoletta; Hajdara, Ivett; Bencs, László

    2016-12-01

    The vaporization/atomization processes of Mg in high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS) were investigated by evaporating solid (powder) samples of lithium niobate (LiNbO3) optical single crystals doped with various amounts of Mg in a transversally heated graphite atomizer (THGA). Optimal analytical conditions were attained by using the Mg I 215.4353 nm secondary spectral line. An optimal pyrolysis temperature of 1500 °C was found for Mg, while the compromise atomization temperature in THGAs (2400 °C) was applied for analyte vaporization. The calibration was performed against solid (powered) lithium niobate crystal standards. The standards were prepared with exactly known Mg content via solid state fusion of the oxide components of the matrix and analyte. The correlation coefficient (R value) of the linear calibration was not worse than 0.9992. The calibration curves were linear in the dopant concentration range of interest (0.74-7.25 mg/g Mg), when dosing 3-10 mg of the powder samples into the graphite sample insertion boats. The Mg content of the studied 19 samples was in the range of 1.69-4.13 mg/g. The precision of the method was better than 6.3%. The accuracy of the results was verified by means of flame atomic absorption spectrometry with solution sample introduction after digestion of several crystal samples.

  9. Determination of beryllium in urine by graphite furnace atomic absorption spectrophotometry

    SciTech Connect

    Thorat, D.D.; Bhat, P.N.; Mahadevan, T.N.

    1995-08-01

    A method for the determination of beryllium in urine samples by Graphite Furnace Atomic Absorption Spectrophotometry (GFAAS) has been developed. The background correction problem due to the sample matrix was overcome by solvent extraction step. Urine samples were digested with a mixture of concentrated nitric and sulphuric acids. Beryllium in solution was complexed with acetylacetone, extracted in chloroform at pH 8.5 and back extracted in 2%(v/v) nitric acid for final analysis by AAS. The range of concentrations of beryllium observed in urine samples covering both occupational and control subject was 0.03 - 0.37 ng Be/ml.

  10. Determination of Copper by Graphite Furnace Atomic Absorption Spectrophotometry: A Student Exercise in Instrumental Methods of Analysis.

    ERIC Educational Resources Information Center

    Williamson, Mark A.

    1989-01-01

    Discusses a student exercise which requires the optimizing of the charring and atomization temperatures by producing a plot of absorbance versus temperature for each temperature parameter. Notes that although the graphite furnace atomic absorption spectroscopy technique has widespread industrial use, there are no published, structured experiments…

  11. [Determination of trace selenium in edible fungi with graphite furnace atomic absorption spectroscopy].

    PubMed

    Tie, Mei; Zhang, Wei; Li, Jing; Jing, Kui; Zang, Shu-liang; Li, Hua-wei

    2006-01-01

    In the present article, samples were digested by a quartz high-pressure digestion pot, reducing the loss of selenium in digestion. The content of selenium in edible fungi was determined by using graphite furnace atomic absorption spectroscopy, and the results showed that when the content of selenium in edible fungi was determined by using 1% Ni(NO3)2 as a matrix modifier, ashing temperature of 500 degreed C, and atomization temperature of 2 500 degrees C, and rectifying background by deuterium light, the recovery was in the range of 92.1%-115.5%, the relative standard deviation of the method was 1.28%, and the limit of detection was 15.8 microg x L(-1). The method was suitable for the determination of trace selenium in edible fungi with the advantages of being simple, rapid, sensitive, stable and accurate etc., and the results were satisfactory.

  12. Determination of ruthenium in pharmaceutical compounds by graphite furnace atomic absorption spectroscopy.

    PubMed

    Jia, Xiujuan; Wang, Tiebang; Bu, Xiaodong; Tu, Qiang; Spencer, Sandra

    2006-04-11

    A graphite furnace atomic absorption (GFAA) spectrometric method for the determination of ruthenium (Rh) in solid and liquid pharmaceutical compounds has been developed. Samples are dissolved or diluted in dimethyl sulfoxide (DMSO) without any other treatment before they were analyzed by GFAA with a carefully designed heating program to avoid pre-atomization signal loss and to achieve suitable sensitivity. Various inorganic and organic solvents were tested and compared and DMSO was found to be the most suitable. In addition, ruthenium was found to be stable in DMSO for at least 5 days. Spike recoveries ranged from 81 to 100% and the limit of quantitation (LOQ) was determined to be 0.5 microg g(-1) for solid samples or 0.005 microg ml(-1) for liquid samples based a 100-fold dilution. The same set of samples was also analyzed by ICP-MS with a different sample preparation method, and excellent agreement was achieved.

  13. Method for the determination of cobalt from biological products with graphite furnace atomic absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Zamfir, Oana-Liliana; Ionicǎ, Mihai; Caragea, Genica; Radu, Simona; Vlǎdescu, Marian

    2016-12-01

    Cobalt is a chemical element with symbol Co and atomic number 27 and atomic weight 58.93. 59 Co is the only stable cobalt isotope and the only isotope to exist naturally on Earth. Cobalt is the active center of coenzymes called cobalamin or cyanocobalamin the most common example of which is vitamin B12. Vitamin B12 deficiency can potentially cause severe and irreversible damage, especially to the brain and nervous system in the form of fatigue, depression and poor memory or even mania and psychosis. In order to study the degree of deficiency of the population with Co or the correctness of treatment with vitamin B12, a modern optoelectronic method for the determination of metals and metalloids from biological samples has been developed, Graphite Furnace - Atomic Absorption Spectrometer (GF- AAS) method is recommended. The technique is based on the fact that free atoms will absorb light at wavelengths characteristic of the element of interest. Free atoms of the chemical element can be produced from samples by the application of high temperatures. The system GF-AAS Varian used as biological samples, blood or urine that followed the digest of the organic matrix. For the investigations was used a high - performance GF-AAS with D2 - background correction system and a transversely heated graphite atomizer. As result of the use of the method are presented the concentration of Co in the blood or urine of a group of patient in Bucharest. The method is sensitive, reproducible relatively easy to apply, with a moderately costs.

  14. Development of mixed-waste analysis capability for graphite furnace atomic absorption spectrophotometry

    SciTech Connect

    Bass, D.A.; TenKate, L.B.; Wroblewski, A.

    1995-03-01

    Graphite furnace atomic absorption spectrophotometer (GFAAS) are typically configured with ventilation to capture potentially toxic and corrosive gases emitted from the vaporization of sample aliquots. When radioactive elements are present, additional concerns (such as meeting safety guidelines and ALARA principles) must be addressed. This report describes a modification to a GFAAS that provides additional containment of vaporized sample aliquots. The modification was found to increase containment by a factor of 80, given expected operating conditions. The use of the modification allows more mixed-waste samples to be analyzed, permits higher levels of radioactive samples to be analyzed, or exposes the analyst to less airborne radioactivity. The containment apparatus was attached to a Perkin-Elmer Zeeman 5000 spectrophotometer for analysis of mixed-waste samples; however, it could also be used on other systems and in other applications where greater containment of vaporized material is desired.

  15. Determination of tributyltin in tissues and sediments by graphite furnace atomic absorption spectrometry

    SciTech Connect

    Stephenson, M.D.; Smith, D.R.

    1988-04-01

    A method for the determination of tributyltin (TBT) in tissue and sediments has been developed for environmental samples. The technique involves extraction with methylene chloride and isolation of TBT from mono- and dibutyltin with a sodium hydroxide wash. The TBT is then back extracted and converted to elemental Sn with nitric acid. Analysis is by Zeeman graphite furnace atomic absorption spectrophotometry. Recoveries of spiked samples were between 99% and 111% for mussel and fish tissues and 72% and 99% for various sediments. The limit of quantification was 0.0025 ..mu..g/g for tissue (on a wet weight basis). This technique was developed in response to their need to process large numbers of environmental samples with a minimum time investment.

  16. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review.

    PubMed

    de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included.

  17. Determination of palladium by graphite furnace atomic absorption spectroscopy without matrix matching.

    PubMed

    Jia, X; Wang, T; Wu, J

    2001-05-30

    A graphite furnace atomic absorption spectroscopy method for the analysis of the palladium (Pd) content in bulk pharmaceutical drug substances and their intermediates prepared in aqueous solutions is extended to samples prepared in acetonitrile (ACN) and ACN-water mixtures as well to samples prepared in dimethyl sulfoxide (DMSO) and DMSO-water mixtures. The Pd content in samples solubilized in these solvents can be accurately determined with calibration established with standards prepared in aqueous solutions without matrix matching or using the method of standard additions. The validity of this method is demonstrated by spike recovery studies and by the agreement with results for the same samples prepared in these solvents, in concentrated nitric acid, and prepared by a microwave digestion system.

  18. Liquid phase microextraction and ultratrace determination of cadmium by modified graphite furnace atomic absorption spectrometry.

    PubMed

    Nazari, Saeid

    2009-06-15

    A powerful microextraction technique was used for determination of cadmium in water samples using liquid phase microextraction (LPME) followed by graphite furnace atomic absorption spectrometry (GF-AAS). In a preconcentration step, cadmium was extracted from a 2 ml of its aqueous sample in the pH 7 as 5,7-dibromoquinoline-8-ol (DBQ) complex into a 4 microl drop of benzyl alcohol. After extraction, the micro drop was retracted and directly transferred into a graphite tube modified by [W.Rh.Pd](c). Some effective parameters on extraction and complex formation, such as type and volume of organic solvent, pH, concentration of chelating agent, extraction time and stirring rate were optimized. Under the optimum conditions, the enrichment factor and recovery were 450% and 90%, respectively. The calibration graph was linear in the range of 0.008-1 microg L(-1) with correlation coefficient of 0.9961 under the optimum conditions of the recommended procedure. The detection limit based on the 3Sb criterion was 0.0035 microg L(-1) and relative standard deviation (RSD) for eight replicate measurement of 0.1 microg L(-1) and 0.4 microg L(-1) cadmium was 5.2% and 4.5%, respectively. The characteristic concentration was 0.0032 microg L(-1) equivalent to a characteristic mass of 12.8 fg. In order to evaluate the accuracy and recovery of the presented method the procedure was applied to the analysis of reference materials and seawater.

  19. Analytical application of 2f-wavelength modulation for isotope selective diode laser graphite furnace atomic absorption spectroscopy.

    PubMed

    Wizemann, H D

    2000-01-01

    Experiences in the analytical application of the 2f-wavelength modulation technique for isotope selective atomic absorption spectroscopy in a graphite furnace are reported. Experimental as well as calculated results are presented, mainly for the natural lithium isotopes. Sensitivity, linearity, and (isotope) selectivity are studied by intensity modulation and wavelength modulation. High selectivities can be attained, however, on the cost of detection power. It is shown that the method enables the measurement of lithium isotope ratios larger than 2000 by absorption in a low-pressure graphite tube atomizer.

  20. Determination of yttrium and rare-earth elements in rocks by graphite-furnace atomic-absorption spectrometry.

    PubMed

    Gupta, J G

    1981-01-01

    With use of synthetic solutions and several international standard reference materials a method has been developed for determining traces of Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu in rocks by electrothermal atomization in a pyrolytically-coated graphite furnace. Depending on the element, the sensitivity is of the order of 10(-9)-10(-12) g at 2500 degrees . To avoid matrix interferences the lanthanides are separated from the common elements by co-precipitation with calcium and iron as carriers. The data for Canadian reference rock SY-2 (syenite), U.S.G.S. reference rocks W-2 (diabase), DNC-1 (diabase) and BIR-1 (basalt), and South African reference rock NIM-18/69 (carbonatite) obtained by graphite-furnace atomization are compared with the values obtained by flame atomic-absorption. The results are in good agreement with literature values.

  1. Modifiers and coatings in graphite furnace atomic absorption spectrometry—mechanisms of action (A tutorial review)

    NASA Astrophysics Data System (ADS)

    Ortner, H. M.; Bulska, E.; Rohr, U.; Schlemmer, G.; Weinbruch, S.; Welz, B.

    2002-12-01

    furnace atomic absorption spectrometry (GFAAS): sample application and drying; pyrolysis; atomization. Contrary to the vast amount of literature on this topic it tried to provide the analyst working with GFAAS and in an increasing number working with Solid Sampling-GFAAS with a set of most important statements. This might spare the experimentalist a lot of useless optimization procedures but should lead him to a basic understanding of the complex phenomena taking place in his instrument and during his analytical work.

  2. Temporal variations in gas temperature in an atomization stage of cadmium and tellurium evaluated by using the two-line method in graphite furnace atomic absorption spectrometry.

    PubMed

    Shimabukuro, Haruki; Ashino, Tetsuya; Wagatsuma, Kazuaki

    2008-09-01

    In order to discuss the atomization process of an analyte element occurring in a graphite furnace for atomic absorption spectrometry, we measured variations in the characteristic temperature with the progress of an atomization stage, by using a two-line method under the assumption of a Boltzmann distribution. For this purpose, iron was chosen as the analyte element. Also, the atomic absorption of two iron atomic lines, Fe I 372.0 nm and Fe I 373.7 nm, was simultaneously monitored as a probe for the temperature determination. This method enables variations in the gas temperature to be directly traced, yielding a temperature distribution closely related to the diffusion behavior of the probe element in the furnace. This temperature variation was very different from the furnace wall temperatures, which were monitored in conventional temperature control for atomic absorption spectrometry. Correlations between the gas temperature and the charring/atomizing temperatures in the heating program of the furnace were investigated. The atomization of cadmium and tellurium was also investigated by a comparison between the gas temperature with the wall temperature of the furnace. The atomic absorption of cadmium or tellurium appeared to be apart from the absorption of iron while the gas temperature was still low. Therefore, the analyte atoms could be atomized through direct contact with the wall of the graphite furnace, which has a much higher temperature compared to the gas atmosphere during atomization. Their atomization would be caused by conductive heating from the furnace wall rather than by radiant heating in the furnace.

  3. Stability of low concentration calibration standards for graphite furnace atomic absorption spectrophotometry

    SciTech Connect

    Bass, D A; TenKate, L B

    1993-11-01

    Graphite furnace atomic absorption spectrophotometry (GFAAS) is used for determination of ultra-trace metals in environmentally important samples. In the generation of GFAAS calibration curves for many environmental applications, low concentration calibration standards must be prepared dally, as required by the Statement of Work (SOW) for the US Environmental Protection Agency (EPA) Contract Laboratory Program (CLP). This results in significant time and work for the analyst and significant cost to the Analytical Chemistry Laboratory (ACL) for chemicals and waste management. While EPA SW 846 is less prescriptive than the CLP SOW, ACL has been following the CLP guidelines because in-house criteria regarding the stability of GFAAS standards have not been established. A study was conducted to determine the stability of GFAAS standards for analytes commonly used in the ACL (single and mixed) as a function of time. Data were collected over nine months. The results show that GFAAS standards for Sb, Pb, Se, Ag, and TI are stable for a longer period of time than currently assumed by the CLP SOW. Reducing the frequency of preparing these standards will increase efficiency, decrease the handling of hazardous the quantity of hazardous waste generated, and decrease the quantity of hazardous substances to be ordered and stocked by the laboratory. These benefits will improve GFAAS analysis quality, reduce costs, enhance safety, and lower environmental concerns.

  4. High purity polyimide analysis by solid sampling graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Santos, Rafael F.; Carvalho, Gabriel S.; Duarte, Fabio A.; Bolzan, Rodrigo C.; Flores, Erico M. M.

    2017-03-01

    In this work, Cr, Cu, Mn, Na and Ni were determined in high purity polyimides (99.5%) by solid sampling graphite furnace atomic absorption spectrometry (SS-GFAAS) using Zeeman effect background correction system with variable magnetic field, making possible the simultaneous measurement at high or low sensitivity. The following analytical parameters were evaluated: pyrolysis and atomization temperatures, feasibility of calibration with aqueous solution, linear calibration range, sample mass range and the use of chemical modifier. Calibration with aqueous standard solutions was feasible for all analytes. No under or overestimated results were observed and up to 10 mg sample could be introduced on the platform for the determination of Cr, Cu, Mn, Na and Ni. The relative standard deviation ranged from 3 to 20%. The limits of detection (LODs) achieved using the high sensitivity mode were as low as 7.0, 2.5, 1.7, 17 and 0.12 ng g- 1 for Cr, Cu, Mn, Na and Ni, respectively. No addition of chemical modifier was necessary, except for Mn determination where Pd was required. The accuracy was evaluated by analyte spike and by comparison of the results with those obtained by inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry after microwave-assisted digestion in a single reaction chamber system and also by neutron activation analysis. No difference among the results obtained by SS-GFAAS and those obtained by alternative analytical methods using independent techniques. SS-GFAAS method showed some advantages, such as the determination of metallic contaminants in high purity polyimides with practically no sample preparation, very low LODs, calibration with aqueous standards and determination in a wide range of concentration.

  5. Role of a binary metallic modifier in the determination of cadmium in graphite furnace atomic absorption spectrometry.

    PubMed

    Morimoto, Syun; Ashino, Tetsuya; Wagatsuma, Kazuaki

    2010-01-01

    In order to discuss the matrix modifier effect of palladium, iron, and a mixture of palladium and iron for the determination of cadmium in graphite-furnace atomic absorption spectrometry (GF-AAS), we measured the absorption profiles of a cadmium line at various compositions of these elements. Variations in the gas temperature were also estimated with the progress of atomization, by using a two-line method under the assumption of a Boltzmann distribution. The atomic absorption of cadmium appeared on the way of heating from the charring temperature to the atomizing temperature while the gas temperature was still low; it was thus considered that cadmium was atomized through direct conductive heating from the wall of the graphite furnace. Therefore, the effectiveness of modifiers for cadmium would be determined through any reactions on the furnace wall at the programmed charring and atomizing temperatures. The addition of iron, palladium, and an iron-palladium mixture all enhanced the absorption signal of cadmium compared to a pure cadmium sample; however, their effects were different from one another. Each addition of iron or palladium to the sample solution led to an enhancement of the cadmium absorbance, indicating that iron or palladium individually became an effective matrix modifier for the determination of cadmium. However, the addition of palladium was ineffective for the matrix modification in the coexistence of large amounts of iron. Although these phenomena are very complicated, and thus cannot be understood completely, any metallurgical reaction between the constituent elements during heating of the furnace wall, such as the formation of solid solutions and intermetallic compounds, would cause the effect of a matrix modifier in GF-AAS.

  6. [Determination of Pb and Al in blood and hair of child using transverse heated graphite furnace atomic absorption spectroscopy].

    PubMed

    Niu, Feng-lan; Xie, Wen-bing; Li, Chen-xu; Dong, Wei-yan

    2005-04-01

    Pb and Al in blood and hair of child were determined by transverse heated graphite furnace atomic absorption spectrometry with NH4H2PO4 and Mg(NO3)2 as a modifier, which enhanced the temperature of ashing, eliminated the matrix interference and memorial effect. The method is rapid, simple and accurate. The characteristic mass of the method was 2.3 x 10(-11) g and 2.2 x 10(-11) g for Pb and Al respectively. The relative standard deviation of Pb and Al was 3.0% and 11.4%, respectively, and the recovery was 96%-102%.

  7. Graphite furnace atomic absorption spectrophotometry--a novel method to quantify blood volume in experimental models of intracerebral hemorrhage.

    PubMed

    Kashefiolasl, Sepide; Foerch, Christian; Pfeilschifter, Waltraud

    2013-02-15

    Intracerebral hemorrhage (ICH) accounts for 10% of all strokes and has a significantly higher mortality than cerebral ischemia. For decades, ICH has been neglected by experimental stroke researchers. Recently, however, clinical trials on acute blood pressure lowering or hyperacute supplementation of coagulation factors in ICH have spurred an interest to also design and improve translational animal models of spontaneous and anticoagulant-associated ICH. Hematoma volume is a substantial outcome parameter of most experimental ICH studies. We present graphite furnace atomic absorption spectrophotometric analysis (AAS) as a suitable method to precisely quantify hematoma volumes in rodent models of ICH.

  8. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    USGS Publications Warehouse

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  9. Determination of trace chromium in water by graphite furnace atomic absorption spectrophotometry after preconcentration on a soluble membrane filter

    SciTech Connect

    Gao Piying; Feng Ruolan; Zhang Huaizhu; Li Zhiqiang

    1998-04-01

    A new concentration and determination method has been described for the determination of lower than 0.1 {micro}g L{sup {minus}1} levels of chromium (VI) in water, based on the reaction between chromium (VI) and phenylfluorone (PF) to form an anionic chelate and the collection of the ternary ion-associate of the chelate with cetyltrimethylammonium bromide (CTMAB) (a cationic surfactant) on an organic solvent-soluble membrane filter. Determination of the solution obtained after dissolving the membrane and analyte in a suitable solvent is achieved using graphite furnace atomic absorption spectrophotometry. The ternary complex (Cr(VI)-PF-CTMAB = 1:2:2) is collected on a 0.45 {micro}m nitrocellulose filter and the filter and analyte are dissolved in a small volume of 2-methoxyethanol acidified with dilute sulfuric acid. The chromium is determined by graphite furnace atomic absorption spectrophotometry under optimum experimental conditions. A good linear relationship exists in the range 0.05--0.30 {micro}g chromium in 5.0 ml, with satisfactory reproducibility. The detection limit, defined as three times the standard deviation of the blank, is 0.06 {micro}g L{sup {minus}1} with 20 fold preconcentration. The ions normally present in water do not interfere under the experimental conditions used. The proposed method has been applied to the concentration and determination of chromium (VI) in water samples from several sources by means of direct graphic furnace atomic absorption spectrophotometry; the recoveries of chromium (VI) added to the samples are quantitative, and results found are satisfactory.

  10. Determination of vanadium in soils and sediments by the slurry sampling graphite furnace atomic absorption spectrometry using permanent modifiers.

    PubMed

    Dobrowolski, Ryszard; Adamczyk, Agnieszka; Otto, Magdalena

    2013-09-15

    A new analytical procedure for vanadium (V) determination in soils and sediments by the slurry sampling graphite furnace atomic absorption spectrometry (slurry sampling GFAAS) using the mixed permanent modifiers is described. Moreover, the comparison of action of the modifiers based on the iridium (Ir) and carbide-forming elements: tungsten (W) and niobium (Nb) deposited on the graphite tubes is studied, especially in terms of their analytical utility and determination sensitivity. The mechanism of their action was investigated using an X-ray diffraction technique (XRD) and scanning electron microscopy (SEM) equipped with an energy dispersive X-ray detector (EDX). Finally, the mixture of 0.3 μg of Ir and 0.04 μg of Nb was used for the graphite tube permanent modification. The analytical procedure was optimized on the basis of the data from pyrolysis and atomization temperature curves studies. The results obtained for the four certified reference materials (marine sediments: PACS-1 and MESS-1, lake sediment: SL-1, soil: San Joaquin Soil SRM 2709), using the slurry sampling GFAAS and the standard calibration method, were in good agreement with the certified values. The detection and quantification limits and characteristic mass calculated for the proposed procedure were 0.04 µg/g, 0.16 µg/g and 11.9 pg, respectively. The precision (RSD% less than 8%) and the accuracy of vanadium determination in the soil and sediment samples were acceptable.

  11. Determination of bismuth in environmental samples by slurry sampling graphite furnace atomic absorption spectrometry using combined chemical modifiers.

    PubMed

    Dobrowolski, Ryszard; Dobrzyńska, Joanna; Gawrońska, Barbara

    2015-01-01

    Slurry sampling graphite furnace atomic absorption spectrometry technique was applied for the determination of Bi in environmental samples. The study focused on the effect of Zr, Ti, Nb and W carbides, as permanent modifiers, on the Bi signal. Because of its highest thermal and chemical stability and ability to substantially increase Bi signal, NbC was chosen as the most effective modifier. The temperature programme applied for Bi determination was optimized based on the pyrolysis and atomization curves obtained for slurries prepared from certified reference materials (CRMs) of the soil and sediments. To overcome interferences caused by sulfur compounds, Ba(NO₃)₂ was used as a chemical modifier. Calibration was performed using the aqueous standard solutions. The analysis of the CRMs confirmed the reliability of the proposed analytical method. The characteristic mass for Bi was determined to be 16 pg with the detection limit of 50 ng/g for the optimized procedure at the 5% (w/v) slurry concentration.

  12. Determination of Pb in Biological Samples by Graphite Furnace Atomic Absorption Spectrophotometry: An Exercise in Common Interferences and Fundamental Practices in Trace Element Determination

    ERIC Educational Resources Information Center

    Spudich, Thomas M.; Herrmann, Jennifer K.; Fietkau, Ronald; Edwards, Grant A.

    2004-01-01

    An experiment is conducted to ascertain trace-level Pb in samples of bovine liver or muscle by applying graphite furnace atomic absorption spectrophotometry (GFAAS). The primary objective is to display the effects of physical and spectral intrusions in determining trace elements, and project the usual methods employed to minimize accuracy errors…

  13. Determination of total tin in geological materials by electrothermal atomic-absorption spectrophotometry using a tungsten-impregnated graphite furnace

    USGS Publications Warehouse

    Zhou, L.; Chao, T.T.; Meier, A.L.

    1984-01-01

    An electrothermal atomic-absorption spectrophotometric method is described for the determination of total tin in geological materials, with use of a tungsten-impregnated graphite furnace. The sample is decomposed by fusion with lithium metaborate and the melt is dissolved in 10% hydrochloric acid. Tin is then extracted into trioctylphosphine oxide-methyl isobutyl ketone prior to atomization. Impregnation of the furnace with a sodium tungstate solution increases the sensitivity of the determination and improves the precision of the results. The limits of determination are 0.5-20 ppm of tin in the sample. Higher tin values can be determined by dilution of the extract. Replicate analyses of eighteen geological reference samples with diverse matrices gave relative standard deviations ranging from 2.0 to 10.8% with an average of 4.6%. Average tin values for reference samples were in general agreement with, but more precise than, those reported by others. Apparent recoveries of tin added to various samples ranged from 95 to 111% with an average of 102%. ?? 1984.

  14. Determination of cadmium in spring water by graphite-furnace atomic absorption spectrometry after coprecipitation with ytterbium hydroxide.

    PubMed

    Atsumi, Kousuke; Minami, Tomoharu; Ueda, Joichi

    2005-06-01

    A coprecipitation method with ytterbium hydroxide was studied for the determination of cadmium in water samples by graphite-furnace atomic absorption spectrometry. Up to 40 ng of cadmium in water samples was quantitatively coprecipitated with ytterbium hydroxide at pH 8.0-11.2. The concentration factor was 100 fold. The coprecipitated cadmium was sensitively determined without any influence of ytterbium and the calibration curve was linear from 0.1 to 4 ng/mL of cadmium. The detection limit (signal/noise = 2) was 2.9 pg/mL in 100 mL of the initial sample solution. Twenty-nine diverse ions tested did not interfere with the determination in at least a 10000-fold mass ratio to cadmium. The proposed method was successfully applied to the determination of cadmium in spring water.

  15. Evaluation of ammonia as diluent for serum sample preparation and determination of selenium by graphite furnace atomic absorption spectrometry*1

    NASA Astrophysics Data System (ADS)

    Hernández-Caraballo, Edwin A.; Burguera, Marcela; Burguera, José L.

    2002-12-01

    A method for the determination of total selenium in serum samples by graphite furnace atomic absorption spectrometry was evaluated. The method involved direct introduction of 1:5 diluted serum samples (1% v/v NH 4OH+0.05% w/v Triton X-100 ®) into transversely heated graphite tubes, and the use of 10 μg Pd+3 μg Mg(NO 3) 2 as chemical modifier. Optimization of the modifier mass and the atomization temperature was conducted by simultaneously varying such parameters and evaluating both the integrated absorbance and the peak height/peak area ratio. The latter allowed the selection of compromise conditions rendering good sensitivity and adequate analyte peak profiles. A characteristic mass of 49 pg and a detection limit (3s) of 6 μg 1 -1 Se, corresponding to 30 μg l -1 Se in the serum sample, were obtained. The analyte addition technique was used for calibration. The accuracy was assessed by the determination of total selenium in Seronorm™ Trace Elements Serum Batch 116 (Nycomed Pharma AS). The method was applied for the determination of total selenium in ten serum samples taken from individuals with no known physical affection. The selenium concentration ranged between 79 and 147 μg l -1, with a mean value of 114±22 μg l -1.

  16. Slurry sampling graphite furnace atomic absorption spectrometry: determination of trace metals in mineral coal.

    PubMed

    Silva, M M; Goreti, M; Vale, R; Caramão, E B

    1999-12-06

    A procedure for lead, cadmium and copper determination in coal samples based on slurry sampling using an atomic absorption spectrometer equipped with a transversely heated graphite tube atomizer is proposed. The slurries were prepared by weighing the samples directly into autosampler cups (5-30 mg) and adding a 1.5 ml aliquot of a diluent mixture of 5% v/v HNO(3), 0.05% Triton X-100 and 10% ethanol. The slurry was homogenized by manual stirring before measurement. Slurry homogenization using ultrasonic agitation was also investigated for comparison. The effect of particle size and the use of different diluent compositions on the slurry preparation were investigated. The temperature programmes were optimized on the basis of pyrolysis and atomization curves. Absorbance characteristics with and without the addition of a palladium-magnesium modifier were compared. The use of 0.05% m/v Pd and 0.03% m/v Mg was found satisfactory for stabilizing Cd and Pb. The calibration was performed with aqueous standards. In addition, a conventional acid digestion procedure was applied to verify the efficiency of the slurry sampling. Better recoveries of the analytes were obtained when the particle size was reduced to <37 mum. Several certified coal reference materials (BCR Nos. 40, 180, and 181) were analyzed, and good agreement was obtained between the results from the proposed slurry sampling method and the certificate values.

  17. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively.

  18. Study of the roles of chemical modifiers in determining boron using graphite furnace atomic absorption spectrometry and optimization of the temperature profile during atomization.

    PubMed

    Yamamoto, Yuhei; Shirasaki, Toshihiro; Yonetani, Akira; Imai, Shoji

    2015-01-01

    The measurement conditions for determining boron using graphite furnace-atomic absorption spectrometry (GF-AAS) were investigated. Differences in the boron absorbance profiles were found using three different commercially available GF-AAS instruments when the graphite atomizers in them were not tuned. The boron absorbances found with and without adjusting the graphite atomizers suggested that achieving an adequate absorbance for the determination of boron requires a sharp temperature profile that overshoots the target temperature during the atomization process. Chemical modifiers that could improve the boron absorbance without the need for using coating agents were tested. Calcium carbonate improved the boron absorbance but did not suppress variability in the peak height. Improvement of boron absorbance was comparatively less using iron nitrate or copper nitrate than using calcium carbonate, but variability in the peak height was clearly suppressed using iron nitrate or copper nitrate. The limit of detection was 0.0026 mg L(-1) when iron nitrate was used. It appears that iron nitrate is a useful new chemical modifier for the quick and simple determination of boron using GF-AAS.

  19. Direct determination of Pb in raw milk by graphite furnace atomic absorption spectrometry (GF AAS) with electrothermal atomization sampling from slurries.

    PubMed

    de Oliveira, Tatiane Milão; Augusto Peres, Jayme; Lurdes Felsner, Maria; Cristiane Justi, Karin

    2017-08-15

    Milk is an important food in the human diet due to its physico-chemical composition; therefore, it is necessary to monitor contamination by toxic metals such as Pb. Milk sample slurries were prepared using Triton X-100 and nitric acid for direct analysis of Pb using graphite furnace atomic absorption spectrometry - GF AAS. After dilution of the slurries, 10.00µl were directly introduced into the pyrolytic graphite tube without use of a chemical modifier, which acts as an advantage considering this type of matrix. The limits of detection and quantification were 0.64 and 2.14µgl(-1), respectively. The figures of merit studied showed that the proposed methodology without pretreatment of the raw milk sample and using external standard calibration is suitable. The methodology was applied in milk samples from the Guarapuava region, in Paraná State (Brazil) and Pb concentrations ranged from 2.12 to 37.36µgl(-1).

  20. Antimony in drinking water, red blood cells, and serum: development of analytical methodology using transversely heated graphite furnace atomization-atomic absorption spectrometry.

    PubMed

    Subramanian, K S; Poon, R; Chu, I; Connor, J W

    1997-05-01

    An atomic absorption spectrometric (AAS) method has been developed for determining microg/L levels of Sb in samples of water and blood. The AAS method is based on the concept of stabilized temperature platform furnace atomization (STPF) realized through the use of a transversely heated graphite atomizer (THGA) furnace, longitudinal Zeeman-effect background correction, and matrix modification with palladium nitrate-magnesium nitrate-nitric acid. The method of standard additions is not mandatory. The detection limit (3 standard deviations of the blank) is 2.6 microg Sb/L for the water, red blood cells (RBCs), and serum samples. Data are presented on the degree of accuracy and precision. The THGA-AAS method is simple, fast, and contamination-free because the entire operation from sampling to AAS measurement is carried out in the same tube. The method has been applied to the determination of Sb in some leachate tap water samples derived from a static copper plumbing system containing Sn/Sb solders, and in small samples (0.5 ml) of RBCs and serum derived from rats given Sb-supplemented drinking water.

  1. Effect of magnesium acetylacetonate on the signal of organic forms of vanadium in graphite furnace atomic absorption spectrometry.

    PubMed

    Kowalewska, Zofia; Welz, Bernhard; Castilho, Ivan N B; Carasek, Eduardo

    2013-01-15

    The aim of this work was to investigate the influence of magnesium acetylacetonate (MgA) on the signal of organic forms of vanadium in xylene solution by graphite furnace atomic absorption spectrometry. MgA alone or mixed with palladium acetylacetonate (PdA) was considered as a chemical modifier. It has been found that MgA does not improve, but decreases significantly the integrated absorbance of V in the form of alkyl-aryl sulfonates, acetylacetonates, porphyrins and in lubricating oils, while its effect is negligible in the case of "dark products" from petroleum distillation, i.e., heavy oil fractions and residues. The decrease is also observed in the presence of Pd. The MgA (or MgA+PdA) effect on the integrated absorbance of V has been studied using the following variants: different ways of modifier application, various pyrolysis temperature, additional application of air ashing, preliminary pretreatment with iodine and methyltrioctylammonium chloride, application of various graphite furnace heating systems (longitudinal or transverse) and various optical and background correction systems (medium-resolution line source spectrometer with deuterium background correction or high-resolution continuum source spectrometer). The experiments indicate formation of more refractory compounds as a possible reason for the decrease of the integrated absorbance for some forms of V in the presence of MgA. The application of MgA as a chemical modifier in V determination is not recommended. Results of this work have general importance as, apart from the intentional use of MgA as a modifier, organic Mg compounds, present in petroleum products for other reason (e.g. as an additive), can influence the signal of V compounds and hence the accuracy in V determination. Generally, petroleum products with known amount of V are recommended as standards; however, lubricating oils can be inadequate for "dark products" from petroleum distillation. In the case of unknown samples it is

  2. Selective speciation of inorganic antimony on tetraethylenepentamine bonded silica gel column and its determination by graphite furnace atomic absorption spectrometry.

    PubMed

    Mendil, Durali; Bardak, Hilmi; Tuzen, Mustafa; Soylak, Mustafa

    2013-03-30

    A speciation system for antimony (III) and antimony (V) ions that based on solid phase extraction on tetraethylenepentamine bonded silica gel has been established. Antimony was determined by graphite furnace atomic absorption spectrometry (GF-AAS). Analytical conditions including pH, sample volume, etc., were studied for the quantitative recoveries of Sb (III) and Sb (V). Matrix effects on the recovery were also investigated. The recovery values and detection limit for antimony (III) at optimal conditions were found as >95% and 0.020 μg L(-1), respectively. Preconcentration factor was calculated as 50. The capacity of adsorption for the tetraethylenepentamine bonded silica gel was 7.9 mg g(-1). The validation was checked by analysis of NIST SRM 1573a Tomato laves and GBW 07605 Tea certified reference materials. The procedure was successfully applied to speciation of antimony in tap water, mineral water and spring water samples. Total antimony was determined in refined salt, unrefined salt, black tea, rice, tuna fish and soil samples after microwave digestion and presented enrichment method combination.

  3. Determination of cadmium and lead in beverages after leaching from pewter cups using graphite furnace atomic absorption spectrometry.

    PubMed

    Dessuy, Morgana B; Vale, Maria Goreti R; Welz, Bernhard; Borges, Aline R; Silva, Márcia M; Martelli, Patrícia B

    2011-07-15

    Two simple methods have been developed to determine cadmium and lead in different kinds of beverages and vinegar leached from pewter cups produced in Brazil. Leaching experiments have been carried out with different solutions: beer, sugar cane spirit, red and white wine, vinegar and a 3% acetic acid solution. The solutions were kept in cups with and without solder for 24h. Lead and cadmium have been determined using graphite furnace atomic absorption spectrometry with deuterium background correction. The limits of detection were 0.05 and 1.4 μg L(-1), and the characteristic mass was 1.0 pg and 19 pg for Cd and Pb, respectively. With the developed methods it was possible to determine accurately cadmium and lead by direct analysis in these liquids and to evaluate the leaching of these metals from pewter cups. The results presented in this work show that pewter cups are not cadmium- and lead-free; this point goes against the manufacturers' declaration that their products are lead-free.

  4. Determination of tributyltin in toluene extract from sea water by graphite furnace atomic absorption spectrometry with a new matrix modifier.

    PubMed

    Gong, B; Liu, Y; Xu, Y; Lin, T

    1997-06-01

    A new matrix modifier composed of calcium and chromium[VI] was proposed for the determination of tributyltin (TBT) in toluene extract from sea water containing sediment by graphite furnace atomic absorption spectrometry (GFAAS). Fourteen inorganic and organic compounds (barium, calcium, chromium[VI], lanthanum, magnesium, nickel, palladium, strontium, calcium-chromium[VI], calcium-strontium, nickel isocaprylate, 5%-, 10%-aqueous solution of ascorbic acid and toluene-saturated solution of ascorbic acid) as a matrix modifier were comparatively studied and a matrix modifier composed from 5 microg of calcium and 1 microg of chromium[VI] was found to give the best performance. The interference effects of co-existing elements in sea water containing sediment (aluminium, iron, magnesium, sodium and strontium) were studied. TBT in eight toluene extracts was determined by GFAAS with the proposed matrix modifier. The relative standard deviation was 3.0% for 63 ng ml(-1) of TBT (n = 11). The recoveries were 88-104%. The characteristic mass was 7 pg. The linearity range was 0-250 ng mg(-1).

  5. Flame and graphite furnace atomic absorption spectrometry for trace element determination in vegetable oils, margarine and butter after sample emulsification.

    PubMed

    Ieggli, C V S; Bohrer, D; Do Nascimento, P C; De Carvalho, L M

    2011-05-01

    Trace element analysis plays an important role in oil characterisation and in the detection of oil adulteration because the quality of edible oils and fats is affected by their trace metal content. In this study, the quantification of selected metals in various oils and fats (rice oil, canola oil, sunflower oil, corn oil, soy oil, olive oil, light margarine, regular margarine and butter) was carried out using flame atomic absorption spectrometry (FAAS) and graphite furnace atomic absorption spectrometry (GFAAS) after sample emulsification. FAAS was used to determine the Na, K, Ca, Mg, Zn and Fe levels in the samples, while GFAAS was used for quantifying Cr, Ni, As, Pb, Cd, Cu and Mn, as these elements appeared in the samples at much lower concentrations. Tween-80 and Triton X-100 were employed as surfactants, and emulsions were prepared by a conventional method that involved heating and mixing of the constituents. Complete stabilisation was achieved through magnetic stirring for 15 min at room temperature. The evaluated figures of merit were linearity, accuracy and sensitivity, which were determined by the characteristic concentration and mass. Analysis of spiked samples demonstrated accuracy, which ranged from 90% (Na) to 112% (Fe) for FAAS and from 83% (Cd) to 121% (Pb) for GFAAS measurements. Atomic absorption spectrometry proved to be a promising approach for the analysis of metals in emulsified edible oils and fats. Additionally, under appropriate emulsification conditions (formulation, stirring time and temperature), the emulsions were homogeneous, had excellent stability, and had appropriate viscosity. The proposed method has proved to be simple, sensitive, reproducible, and economical.

  6. Optimization of high-resolution continuum source graphite furnace atomic absorption spectrometry for direct analysis of selected trace elements in whole blood samples.

    PubMed

    Wójciak-Kosior, Magdalena; Szwerc, Wojciech; Strzemski, Maciej; Wichłacz, Zoltan; Sawicki, Jan; Kocjan, Ryszard; Latalski, Michał; Sowa, Ireneusz

    2017-04-01

    Trace analysis plays an important role in medicine for diagnosis of various disorders; however, the appropriate sample preparation is required mostly including mineralization. Although graphite furnace atomic absorption spectrometry (GF AAS) allows the investigation of biological samples such as blood, serum, and plasma without this step, it is rarely used for direct analysis because the residues of the rich organic matrix inside the furnace are difficult to remove and this may cause spectral/matrix interferences and decrease the lifetime of the graphite tube. In our work, the procedure for determination of Se, Cr, Mn, Co, Ni, Cd and Pb with the use of the high resolution continuum source GF-AAS technique in whole blood samples with minimum sample pre-treatment was elaborated. The pyrolysis and atomization temperature as well as the time of signal integration were optimized to obtain the highest intensity and repeatability of the analytical signal. Moreover, due to the apparatus modification, an additional step was added in the for graphite furnace temperature program with minimal argon flow and maximal flow of air during pyrolysis stage to increase the oxidative condition for better matrix removal. The accuracy and precision of the optimized method was verified using certified reference material (CRM) Seronorm Trace Elements Whole Blood L-1 and the developed method was applied for trace analysis of blood samples from volunteer patients of the Orthopedics Department.

  7. Speciation of platinum in blood plasma and urine by micelle-mediated extraction and graphite furnace atomic absorption spectrometry.

    PubMed

    Mortada, Wael I; Hassanien, Mohammed M; El-Asmy, Ahmed A

    2013-10-01

    A highly sensitive and selective technique for the speciation of platinum by cloud point extraction prior to determination by graphite furnace atomic absorption spectrometry (GFAAS) was described. The separation of Pt(II) from Pt(IV) was performed in the presence of 4-(p-chlorophenyl)-1-(pyridin-2-yl)thiosemicarbazide (HCPTS) as chelating agent and Triton X-114 as a non-ionic surfactant. The extraction of Pt(II)-HCPTS complex needs temperature higher than the cloud point temperature of Triton X-114 and pH = 7, while Pt(IV) remains in the aqueous phase. The Pt(II) in the surfactant phase was analyzed by GFAAS, and the concentration of Pt(IV) was calculated by subtraction of Pt(II) from total platinum which was directly determined by GFAAS. The effect of pH, concentration of chelating agent, surfactant, and equilibration temperature were investigated. An enrichment factor of 42 was obtained for the preconcentration of Pt(II) with 50 mL solution. Under the optimum experimental conditions, the calibration curve was linear up to 30 μgL(-1) with detection limit of 0.08 μgL(-1) and the relative standard deviation was 1.8%. No considerable interference was observed due to the presence of coexisting anions and cations. The accuracy of the results was verified by analyzing different spiked samples (tap water, blood plasma and urine). The proposed method was applied to the speciation analysis of Pt in blood plasma and urine with satisfactory results.

  8. Selective cloud point extraction and graphite furnace atomic absorption spectrometric determination of molybdenum (VI) ion in seawater samples.

    PubMed

    Filik, Hayati; Cengel, Tayfun; Apak, Reşat

    2009-09-30

    A cloud point extraction process using the nonionic surfactant Triton X-114 to extract molybdenum from aqueous solutions was investigated. The method is based on the complexation reaction of Mo(VI) with 1,2,5,8-tetrahydroxyanthracene-9,10-dione (quinalizarine: QA) and micelle-mediated extraction of the complex. The enriched analyte in the surfactant-rich phase was determined by graphite furnace atomic absorption spectrometry (GFAAS). The optimal extraction and reaction conditions (e.g. pH, reagent and surfactant concentrations, temperature, incubation and centrifugation times) were evaluated and optimized. Under the optimized experimental conditions, the limit of detection (LOD) for Mo(VI) was 7.0 ng L(-1) with an preconcentration factor of approximately 25 when 10 mL of sample solution was preconcentrated to 0.4 mL. The proposed method (with extraction) showed linear calibration within the range 0.03-0.6 microg L(-1). The relative standard deviation (RSD) was found to be 3.7% (C(Mo(VI))=0.05 microg L(-1), n=5) for pure standard solutions, whereas RSD for the recoveries from real samples ranged between 2 and 8% (mean RSD=3.9%). The method was applied to the determination of Mo(VI) in seawater and tap water samples with a recovery for the spiked samples in the range of 98-103%. The interference effect of some cations and anions was also studied. In the presence of foreign ions, no significant interference was observed. In order to verify the accuracy of the method, a certified reference water sample was analysed and the results obtained were in good agreement with the certified values.

  9. Comparison of different sample preparation methods for platinum determination in cultured cells by graphite furnace atomic absorption spectrometry

    PubMed Central

    Cai, Jing; Jia, Jinghui; Zhang, Yuzeng; Dong, Weihong

    2017-01-01

    Background Platinum-based agents are widely used in chemotherapy against solid tumors and insufficient intracellular drug accumulation is one of the leading causes of platinum resistance which is associated with poor survival of tumor patients. Thus, the detection of intracellular platinum is pivotal for studies aiming to overcome platinum resistance. In the present study, we aimed to establish a reliable graphite furnace atomic absorption spectrometry (GFAAS)-based assay to quantify the intracellular platinum content for cultured cells. Methods Several most commonly applied cell preparation methods, including 0.2% HNO3, 0.2% Triton X-100, concentrated nitric acid, RIPA combined with concentrated nitric acid and hydroxide, followed by GFAAS for platinum detection were compared in ovarian, cervical and liver cancer cell lines to obtain the optimal one, and parameters regarding linearity, accuracy, precision and sensitivity were evaluated. Influence of other metals on platinum detection and the storage conditions of samples were also determined. Results The treatment of cells with 0.2% HNO3 was superior to other approaches with fewer platinum loss and better repeatability. The recovery rate and precision of this method were 97.3%–103.0% and 1.4%–3.8%, respectively. The average recoveries in the presence of other metals were 95.1%–103.1%. The detection limit was 13.23 ug/L. The recovery rate of platinum remained acceptable even in cell samples stored in −20 °C or −80 °C for two months. Discussion After comparison, we found that 0.2% HNO3 was optimal for intracellular platinum quantification based on GFAAS, which presented values compatible with that of inductively-coupled plasma mass-spectrometry (ICP-MS), and this is partially attributed to the simplicity of this method. Moreover, the assay was proved to be accurate, sensitive, cost-effective and suitable for the research of platinum-based antitumor therapy. PMID:28123908

  10. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-07-20

    Total chlorine in milk was determined via the molecular absorption of diatomic strontium monochloride at 635.862 nm using high-resolution continuum source graphite furnace atomic absorption spectrometry. The effects of coating the graphite furnace, using different modifiers, amount of molecule-forming element, and different calibrants were investigated and optimized. Chlorine concentrations in milk samples were determined in a Zr-coated graphite furnace using 25 μg of Sr as the molecule-forming reagent and applying a pyrolysis temperature of 600 °C and a molecule-forming temperature of 2300 °C. Linearity was maintained up to 500 μg mL(-1) of Cl. The method was tested by analyzing a certified reference wastewater. The results were in the uncertainty limits of the certified value. The limit of detection of the method was 1.76 μg mL(-1). The chlorine concentrations in various cow milk samples taken from the market were found in the range of 588-1472 mg L(-1).

  11. Determination of mercury in sewage sludge by direct slurry sampling graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Baralkiewicz, Danuta; Gramowska, Hanka; Kózka, Małgorzata; Kanecka, Anetta

    2005-03-01

    Ultrasonic slurry sampling electrothermal atomic absorption spectrometry (ETAAS) method was elaborated to the determination of Hg in sewage sludge samples with the use of KMnO 4+Pd modifier. The minimum sample amount required for slurry preparation with respect to sample homogeneity was evaluated by weighting masses between 3 and 30 mg directly into the autosampler cups. Validation of the proposed method was performed with the use of Certified Reference Materials of sewage sludge, CRM 007-040 and CRM 144R. Two sewage sludge samples from Poznañ (Poland) city were analysed using the present direct method and a method with sample digestion, resulting in no difference within statistical error.

  12. Direct determination of cadmium and copper in seawater using a transversely heated graphite furnace atomic absorption spectrometer with Zeeman-effect background corrector.

    PubMed

    Chan, M S; Huang, S D

    2000-02-07

    Methods for the direct determination of copper and cadmium in seawater were described using a graphite furnace atomic absorption spectrometer (GFAAS) equipped with a transversely heated graphite atomizer (THGA) and a longitudinal Zeeman effect background corrector. Ammonium nitrate was used as the chemical modifier to determine copper. The mixture of di-ammonium hydrogen phosphate and ammonium nitrate was used as the chemical modifier to determine cadmium. The matrix interference was removed completely so that a simple calibration curve method could be applied. This work is the first one with the capability of determining cadmium in unpolluted seawater directly with GFAAS using calibration curve based on simple aqueous standards. The accuracy of the methods was confirmed by analysis of three kinds of certified reference saline waters. The detection limits (LODs), with injection of a 20-mul aliquot of seawater sample, were 0.06 mug l(-1) for copper and 0.005 mug l(-1) for cadmium.

  13. Cadmium accumulation in the crayfish, Procambarus clarkii, using graphite furnace atomic absorption spectroscopy

    SciTech Connect

    Diaz-Mayans, J.; Hernandez, F.; Medina, J.; Del Ramo, J.; Torreblanca, A.

    1986-11-01

    Lake Albufera and the surrounding rice-field waters are being subject to very heavy loads of sewage and toxic industrial residues (including heavy metals and pesticides) from the many urban and wastewaters in this area. The American red crayfish Procambarus clarkii is native to the Louisiana marshes (USA). In 1978, the crayfish appeared in Lake Albufera near Valencia (Spain), and presently, without adequate sanitary controls, the crayfish is being fished commercially for human consumption. In view of this interest, it is important to have accurate information on concentrations of cadmium in natural waters and cadmium levels of tissues of freshwaters animals used as human food, as well as the accumulation rates of this metal in this animal. In the present study, the authors investigated the accumulation of cadmium in several tissues of the red crayfish, P clarkii (Girard) from Lake Albufera following cadmium exposure. Determinations of cadmium were made by flameless atomic absorption spectroscopy and the standard additions method. Digestion of samples was made by wet ashing in open flasks with concentrated HNO/sub 3/ at 80-90/sup 0/C.

  14. On the possibilities of high-resolution continuum source graphite furnace atomic absorption spectrometry for the simultaneous or sequential monitoring of multiple atomic lines

    NASA Astrophysics Data System (ADS)

    Resano, M.; Rello, L.; Flórez, M.; Belarra, M. A.

    2011-05-01

    This paper explores the potential of commercially available high-resolution continuum source graphite furnace atomic absorption spectrometry instrumentation for the simultaneous or sequential monitoring of various atomic lines, in an attempt to highlight the analytical advantages that can be derived from this strategy. In particular, it is demonstrated how i) the monitoring of multiplets may allow for the simple expansion of the linear range, as shown for the measurement of Ni using the triplet located in the vicinity of 234.6 nm; ii) the use of a suitable internal standard may permit improving the precision and help in correcting for matrix-effects, as proved for the monitoring of Ni in different biological samples; iii) direct and multi-element analysis of solid samples may be feasible on some occasions, either by monitoring various atomic lines that are sufficiently close (truly simultaneous monitoring, as demonstrated in the determination of Co, Fe and Ni in NIST 1566a Oyster tissue) or, alternatively, by opting for a selective and sequential atomization of the elements of interest during every single replicate. Determination of Cd and Ni in BCR 679 White cabbage is attempted using both approaches, which permits confirming that both methods can offer very similar and satisfactory results. However, it is important to stress that the second approach provides more flexibility, since analysis is no longer limited to those elements that show very close atomic lines (closer than 0.3 nm in the ultraviolet region) with a sensitivity ratio similar to the concentration ratio of the analytes in the samples investigated.

  15. [A Zeeman graphite furnace atomic absorption spectrometric method for the determination of trace copper and chromium in drinking water].

    PubMed

    Wang, Z

    1999-08-01

    The determination of trace copper and chromium in drinking water is described in this paper using transverse heated graphite atomizer (THGA) with the technique of Zeeman effect background correction without any other matrix modifiers. The method is fast, and simple with low detection limit which makes it possible to be used for routine analysis of drinking water.

  16. Molecular characterization and profile identifications of vanadyl compounds in heavy crude petroleums by liquid chromatography/graphite furnace atomic absorption spectrometry

    SciTech Connect

    Fish, R.H.; Komlenic, J.J.

    1984-03-01

    Four heavy crude petroleums, Boscan, Cerro Negro, Wilmington, and Prudhoe Bay, have been examined by high-performance liquid chromatography in combination with graphite furnace atomic absorption detection (HPLC/GFAA) to provide both a vanadium fingerprint and a molecular weight categorization of the vanadyl porphyrin and non-porphyrin compounds present. We have also attempted to speciate the vanadyl porphyrin and non-porphyrin compounds in these heavy crude oils by comparison of their size exclusion and polar aminocyano separated vanadium histograms to authentic compounds. 35 references, 8 figures, 3 tables.

  17. Development of an analytical method for the determination of arsenic in gasoline samples by hydride generation-graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, Emilene M.; Dessuy, Morgana B.; Boschetti, Wiliam; Vale, Maria Goreti R.; Ferreira, Sérgio L. C.; Welz, Bernhard

    2012-05-01

    The purpose of the present work was to optimize the conditions for the determination of arsenic in gasoline with hydride generation-graphite furnace atomic absorption spectrometry after acid digestion using a full two-level factorial design with center point. The arsine was generated in a batch system and collected in a graphite tube coated with 150 μg Ir as a permanent modifier. The sample volume, the pre-reduction conditions, the temperature program and modifier mass were kept fixed for all experiments. The estimated main effects were: reducing agent concentration (negative effect), acid concentration (negative effect) and trapping temperature (positive effect). It was observed that there were interactions between the variables. Moreover, the curvature was significant, indicating that the best conditions were at the center point. The optimized parameters for arsine generation were 2.7 mol L- 1 hydrochloric acid and 1.6% (w/v) sodium tetrahydroborate. The optimized conditions to collect arsine in the graphite furnace were a trapping temperature of 250 °C and a collection time of 30 s. The limit of detection was 6.4 ng L- 1 and the characteristic mass was 24 pg. Two different systems for acid digestion were used: a digester block with cold finger and a microwave oven. The concentration of arsenic found with the proposed method was compared with that obtained using a detergentless microemulsion and direct graphite furnace determination. The results showed that the factorial design is a simple tool that allowed establishing the appropriate conditions for sample preparation and also helped in evaluating the interaction between the factors investigated.

  18. Determination of cobalt in biological samples by line-source and high-resolution continuum source graphite furnace atomic absorption spectrometry using solid sampling or alkaline treatment

    NASA Astrophysics Data System (ADS)

    Ribeiro, Anderson Schwingel; Vieira, Mariana Antunes; da Silva, Alessandra Furtado; Borges, Daniel L. Gallindo; Welz, Bernhard; Heitmann, Uwe; Curtius, Adilson José

    2005-06-01

    Two procedures for the determination of Co in biological samples by graphite furnace atomic absorption spectrometry (GF AAS) were compared: solid sampling (SS) and alkaline treatment with tetramethylammonium hydroxide (TMAH) using two different instruments for the investigation: a conventional line-source (LS) atomic absorption spectrometer and a prototype high-resolution continuum source atomic absorption spectrometer. For the direct introduction of the solid samples, certified reference materials (CRM) were ground to a particle size ≤50 μm. Alkaline treatment was carried out by placing about 250 mg of the sample in polypropylene flasks, adding 2 mL of 25% m/v tetramethylammonium hydroxide and de-ionized water. Due to its unique capacity of providing a 3-D spectral plot, a high-resolution continuum source (HR-CS) graphite furnace atomic absorption spectrometry was used as a tool to evaluate potential spectral interferences, including background absorption for both sample introduction procedures, revealing that a continuous background preceded the atomic signal for pyrolysis temperatures lower than 700 °C. Molecular absorption bands with pronounced rotational fine structure appeared for atomization temperatures >1800 °C probably as a consequence of the formation of PO. After optimization had been carried out using high resolution continuum source atomic absorption spectrometry, the optimized conditions were adopted also for line-source atomic absorption spectrometry. Six biological certified reference materials were analyzed, with calibration against aqueous standards, resulting in agreement with the certified values (according to the t-test for a 95% confidence level) and in detection limits as low as 5 ng g -1.

  19. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of chromium in water by graphite furnace atomic absorption spectrophotometry

    USGS Publications Warehouse

    McLain, B.J.

    1993-01-01

    Graphite furnace atomic absorption spectrophotometry is a sensitive, precise, and accurate method for the determination of chromium in natural water samples. The detection limit for this analytical method is 0.4 microg/L with a working linear limit of 25.0 microg/L. The precision at the detection limit ranges from 20 to 57 percent relative standard deviation (RSD) with an improvement to 4.6 percent RSD for concentrations more than 3 microg/L. Accuracy of this method was determined for a variety of reference standards that was representative of the analytical range. The results were within the established standard deviations. Samples were spiked with known concentrations of chromium with recoveries ranging from 84 to 122 percent. In addition, a comparison of data between graphite furnace atomic absorption spectrophotometry and direct-current plasma atomic emission spectrometry resulted in suitable agreement between the two methods, with an average deviation of +/- 2.0 microg/L throughout the analytical range.

  20. Direct determination of silicon in powdered aluminium oxide by use of slurry sampling with in situ fusion graphite-furnace atomic-absorption spectrometry.

    PubMed

    Minami, H; Yoshida, T; Okutsu, K; Zhang, Q; Inoue, S; Atsuya, I

    2001-08-01

    A direct method for determination of silicon in powdered high-purity aluminium oxide samples, by slurry sampling with in situ fusion graphite-furnace atomic-absorption spectrometry (GF-AAS), has been established. A slurry sample was prepared by 10-min ultrasonication of a powdered sample in an aqueous solution containing both sodium carbonate and boric acid as a mixed flux. An appropriate portion of the slurry was introduced into a pyrolytic graphite furnace equipped with a platform. Silicon compounds to be determined and aluminium oxide were fused by the in situ fusion process with the flux in the furnace under optimized heating conditions, and the silicon absorbance was then measured directly. The calibration curve was prepared by use of a silicon standard solution containing the same concentration of the flux as the slurry sample. The accuracy of the proposed method was confirmed by analysis of certified reference materials. The proposed method gave statistically accurate values at the 95% confidence level. The detection limit was 3.3 microg g(-1) in solid samples, when 300 mg/20 mL slurry was prepared and a 10 microL portion of the slurry was measured. The precision of the determination (RSD for more than four separate determinations) was 14% and 2%, respectively, for levels of 10 and 100 microg g(-1) silicon in aluminium oxide.

  1. Determination of zinc in serum, blood, and ultrafiltrate fluid from patients on hemofiltration by graphite furnace/atomic absorption spectroscopy or flow injection analysis/atomic absorption spectroscopy.

    PubMed

    de Blas, O J; Rodriguez, R S; Mendez, J H; Tomero, J A; Gomez, B de L; Gonzalez, S V

    1994-01-01

    Two methods were optimized for the determination of zinc in samples of blood, serum, and ultrafiltrate fluid from patients with chronic renal impairment undergoing hemofiltration. In the first procedure, after acid digestion of the samples, Zn in blood and serum is determined by a system coupled to flow injection analysis and atomic absorption spectroscopy. The method is rapid, automated, simple, needs small amounts of sample, and has acceptable analytical characteristics. The analytical characteristics obtained were as follows: determination range of method, 0.05-2.0 ppm of Zn; precision as coefficient of variation (CV), 5.3%; recovery, 95-105%; and detection limit (DL), 0.02 ppm. The second method is optimized for ultrafiltrate fluid because the sensitivity of the first procedure is not suitable for the levels of Zn (ppb or ng/mL) in these samples. The technique chosen was atomic absorption spectroscopy with electrothermal atomization in a graphite furnace. The analytical characteristics obtained were as follows: determination range of method, 0.3-2.0 ppb Zn; CV, 5.7%; recovery, 93-107%; and DL, 0.12 ppb. The methods were used to determine zinc in samples of blood, serum, and ultrafiltrate fluid from 5 patients with chronic renal impairment undergoing hemofiltration to discover whether there were significant differences in the zinc contents of blood, serum, and ultrafiltrate fluid after the hemofiltration process. An analysis of variance of the experimental data obtained from a randomly selected group of 5 patients showed that zinc concentrations in the ultrafiltrate fluid, venous blood, and venous serum do not vary during hemofiltration (p < 0.05), whereas in arterial blood and serum, the time factor has a significant effect.

  2. Simultaneous and direct determination of iron and nickel in biological solid samples by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Gómez-Nieto, Beatriz; Gismera, Ma Jesús; Sevilla, Ma Teresa; Procopio, Jesús R

    2013-11-15

    The simultaneous and direct determination of nickel and iron in plants and lichens has been investigated using high-resolution continuum source graphite furnace atomic absorption spectrometry. The primary resonance line for nickel at 232.003 nm and the adjacent secondary line for iron at 232.036 nm have been used for this purpose. The optimization of the experimental conditions was performed using a pine needles certified reference material (SRM 1575a). The influence of pyrolysis and atomization temperatures, the amount of solid sample introduced into the graphite furnace and the use of aqueous or solid standard for calibration were studied. The spectral interferences caused by absorption of the concomitants of the solid sample were detected and corrected using a least square algorithm. Aliquots of 0.1-1mg of the solid samples were weighed onto the solid sampling platforms and analyzed directly, without addition of any reagents. The limits of detection were 25 µg kg(-1) for nickel and 0.40 mg kg(-1) for iron and the precision, expressed as the relative standard deviation, ranged from 7% to 12%. The proposed method was used to determine both metals in different bioindicator samples with successful results.

  3. Fast and direct screening of copper in micro-volumes of distilled alcoholic beverages by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Ajtony, Zsolt; Laczai, Nikoletta; Dravecz, Gabriella; Szoboszlai, Norbert; Marosi, Áron; Marlok, Bence; Streli, Christina; Bencs, László

    2016-12-15

    HR-CS-GFAAS methods were developed for the fast determination of Cu in domestic and commercially available Hungarian distilled alcoholic beverages (called pálinka), in order to decide if their Cu content exceeds the permissible limit, as legislated by the WHO. Some microliters of samples were directly dispensed into the atomizer. Graphite furnace heating programs, effects/amounts of the Pd modifier, alternative wavelengths (e.g., Cu I 249.2146nm), external calibration and internal standardization methods were studied. Applying a fast graphite furnace heating program without any chemical modifier, the Cu content of a sample could be quantitated within 1.5min. The detection limit of the method is 0.03mg/L. Calibration curves are linear up to 10-15mg/L Cu. Spike-recoveries ranged from 89% to 119% with an average of 100.9±8.5%. Internal calibration could be applied with the assistance of Cr, Fe, and/or Rh standards. The accuracy of the GFAAS results was verified by TXRF analyses.

  4. Determination of subnanogram per cubic meter concentrations of metals in the air of a trace metal clean room by impaction graphite furnace atomic absorption and laser excited atomic fluorescence spectrometry.

    PubMed

    Liang, Z W; Wei, G T; Irwin, R L; Walton, A P; Michel, R G; Sneddon, J

    1990-07-15

    Air, drawn by vacuum through a jet, was impacted against the inside surface of an atomic absorption graphite electrothermal atomizer (ETA). The amounts of the particles thus collected were determined at the ng m-3 level by graphite furnace atomic absorption or at the pg m-3 level by laser excited atomic fluorescence. The overall reproducibility of two sets of measurements, made 7 months apart, was 23%, with no significant difference between the two sets of data, based on Student's "t" test at the 95% confidence level. Short-term reproducibility varied from 13% to 34% depending upon the air concentration of the metal. The method shows promise for monitoring long-term effectiveness of the filtering systems in trace metal clean rooms. It was not possible to test for accuracy, due to the low concentrations involved, but accuracy was expected to be within a factor of 2 or 3 of the actual value, based on theoretical aspects of impaction.

  5. Feasibility of using solid sampling graphite furnace atomic absorption spectrometry for speciation analysis of volatile and non-volatile compounds of nickel and vanadium in crude oil.

    PubMed

    Silva, Márcia M; Damin, Isabel C F; Vale, Maria Goreti R; Welz, Bernhard

    2007-03-30

    A method for the direct determination of volatile and non-volatile nickel and vanadium compounds in crude oil without previous treatment using direct solid sampling graphite furnace atomic absorption spectrometry is proposed. The crude oil samples were weighed directly onto solid sampling platforms using a microbalance and introduced into a transversely heated solid sampling graphite tube. In previous work of our group losses of volatile nickel and vanadium compounds have been detected, whereas other nickel and vanadium compounds were thermally stable up to 1300 and 1600 degrees C, respectively. In order to avoid this problem different chemical modifiers (conventional and permanent) have been investigated. With 400microg of iridium as permanent modifier, the signal started to drop already after two atomization cycles, possibly because of an interaction of nickel (which is a catalyst poison) with iridium. Twenty micrograms of palladium applied in each determination was found to be optimum for both elements. The palladium was deposited on the platform and submitted to a drying step at 150 degrees C for 75s. After that the sample was added onto the platform and submitted to the furnace program. The influence of sample mass on the linearity of the response and on potential measurement errors was also investigated using four samples with different nickel content. For the sample with the lowest nickel concentration the relationship between mass and integrated absorbance was found to be non-linear when a high sample mass was introduced. It was suspected that the modifier had not covered the entire platform surface, which resulted in analyte losses. This problem could be avoided by using 40microL of 0.5g L(-1) Pd with 0.05% Triton X-100. Calibration curves were established with and without modifier, with aqueous standards, oil-in-water emulsions and the certified reference material NIST SRM 1634c (trace metals in residual fuel oil). The sensitivity for aqueous standards

  6. Redox speciation analysis of dissolved iron in estuarine and coastal waters with on-line solid phase extraction and graphite furnace atomic absorption spectrometry detection.

    PubMed

    Chen, Yaojin; Feng, Sichao; Huang, Yongming; Yuan, Dongxing

    2015-05-01

    An automatic on-line solid phase extraction (SPE) system employing the flow injection (FI) technique directly coupled to a graphite furnace atomic absorption spectrometer (GFAAS) was established for speciation and determination of dissolved iron in estuarine and coastal waters. Fe(II) was mixed with ferrozine solution in a sample stream to form the Fe(II)-ferrozine complex which was extracted onto a C18 SPE cartridge, eluted with eluent and detected with GFAAS. In a parallel flow channel, Fe(III) was reduced to Fe(II) with ascorbic acid and then detected in the same way as Fe(II). The home-made interface between FI-SPE and GFAAS efficiently realized the sample introduction to the furnace in a semi-automated way. Parameters of the FI-SPE system and graphite furnace program were optimized based on a univariate experimental design and an orthogonal array design. The salinity effect on the method sensitivity was investigated. The proposed method provided a detection limit of 1.38 nmol L(-1) for Fe(II) and 1.87 nmol L(-1) for Fe(II+III). With variation of the sample loading volume, a broadened determination range of 2.5-200 nmol L(-1) iron could be obtained. The proposed method was successfully applied to analyze iron species in samples collected from the Jiulongjiang Estuary, Fujian, China. With the 2-cartridge FI-SPE system developed, on-line simultaneous determination of Fe species with GFAAS was achieved for the first time.

  7. Graphite filter atomizer in atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri A.

    2007-09-01

    Graphite filter atomizers (GFA) for electrothermal atomic absorption spectrometry (ETAAS) show substantial advantages over commonly employed electrothermal vaporizers and atomizers, tube and platform furnaces, for direct determination of high and medium volatility elements in matrices associated with strong spectral and chemical interferences. Two factors provide lower limits of detection and shorter determination cycles with the GFA: the vaporization area in the GFA is separated from the absorption volume by a porous graphite partition; the sample is distributed over a large surface of a collector in the vaporization area. These factors convert the GFA into an efficient chemical reactor. The research concerning the GFA concept, technique and analytical methodology, carried out mainly in the author's laboratory in Russia and South Africa, is reviewed. Examples of analytical applications of the GFA in AAS for analysis of organic liquids and slurries, bio-samples and food products are given. Future prospects for the GFA are discussed in connection with analyses by fast multi-element AAS.

  8. Trace and Essential Elements Analysis in Cymbopogon citratus (DC.) Stapf Samples by Graphite Furnace-Atomic Absorption Spectroscopy and Its Health Concern

    PubMed Central

    Anal, Jasha Momo H.

    2014-01-01

    Cymbopogon citratus (DC.) Stapf commonly known as lemon grass is used extensively as green tea and even as herbal tea ingredient across the world. Plants have the ability to uptake metals as nutrient from the soil and its environment which are so essential for their physiological and biochemical growth. Concentrations of these twelve trace elements, namely, Mg, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Mo, As, Cd, and Pb, are analysed by graphite furnace-atomic absorption spectroscopy (GF-AAS) and are compared with the permissible limits of FAO/WHO, ICMR, and NIH, USA, which are found to be within permissible limits. Toxic metals like As, Cd, and Pb, analysed are within the tolerable daily diet limit and at low concentration. PMID:25525430

  9. Trace and Essential Elements Analysis in Cymbopogon citratus (DC.) Stapf Samples by Graphite Furnace-Atomic Absorption Spectroscopy and Its Health Concern.

    PubMed

    Anal, Jasha Momo H

    2014-01-01

    Cymbopogon citratus (DC.) Stapf commonly known as lemon grass is used extensively as green tea and even as herbal tea ingredient across the world. Plants have the ability to uptake metals as nutrient from the soil and its environment which are so essential for their physiological and biochemical growth. Concentrations of these twelve trace elements, namely, Mg, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Mo, As, Cd, and Pb, are analysed by graphite furnace-atomic absorption spectroscopy (GF-AAS) and are compared with the permissible limits of FAO/WHO, ICMR, and NIH, USA, which are found to be within permissible limits. Toxic metals like As, Cd, and Pb, analysed are within the tolerable daily diet limit and at low concentration.

  10. Influence of experimental parameters on the determination of antimony in seawater by atomic absorption spectrometry using a transversely heated graphite furnace with Zeeman-effect background correction.

    PubMed

    Cabon, Jean Yves

    2002-12-01

    Spectroscopic and electrothermal conditions for the determination of antimony in seawater using a transversely heated graphite furnace with Zeeman-effect background correction have been optimized with the use of an a priori calculation of the detection limit. The lowest limit of detection was obtained with a 2 nm spectral curvatures bandwidth and the use of an electrodeless discharge lamp; however, these experimental conditions resulted in strong premature curvature of calibration curves. Pd(NO(3))(2) can be recommended as a chemical modifier because seawater interference effects are minimized and pretreatment curves up to 1500 degrees C can be used permitting the removal of the major part of the saline matrix before atomization. Under optimized spectroscopic and electrothermal conditions the obtained limit of detection of Sb in seawater was about 0.4 microg L(-1).

  11. Graphite furnace and hydride generation atomic absorption spectrometric determination of cadmium, lead, and tin traces in natural surface waters: study of preconcentration technique performance.

    PubMed

    Tsogas, George Z; Giokas, Dimosthenis L; Vlessidis, Athanasios G

    2009-04-30

    In this study three major types of preconcentration methods based upon different principles (cation exchange, physical absorption and hydrophobic extraction) were evaluated and optimized for the extraction and determination of three highly toxic heavy metals namely Cd, Pb and Sn by graphite furnace and hybrid generation atomic absorption spectrometry in real samples. The optimum analytical conditions were examined and the analytical features of each method were revealed and compared. Detection limits as low as 0.003-0.025 microg L(-1) for Cd(2+), 0.05-0.10 microg L(-1) for Pb(2+) and 0.1-0.25 microg L(-1) for Sn(4+) depending on the extraction method were obtained with RSD values between 3.08% and 6.11%. A preliminary assessment of the pollution status of three important natural ecosystems in Epirus region (NW Greece) was performed and some early conclusions were drawn and discussed.

  12. Induction graphitizing furnace acceptance test report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The induction furnace was designed to provide the controlled temperature and environment required for the post-cure, carbonization and graphitization processes for the fabrication of a fibrous graphite NERVA nozzle extension. The acceptance testing required six tests and a total operating time of 298 hrs. Low temperature mode operations, 120 to 850 C, were completed in one test run. High temperature mode operations, 120 to 2750 C, were completed during five tests.

  13. [Direct determination of lead and cadmium in soil by slurry-sampling graphite furnace atomic absorption spectrometry using matrix modification technique].

    PubMed

    Sun, Han-Wen; Wen, Xiao-Hua; Liang, Shu-Xuan

    2006-05-01

    A method for the direct determination of lead and cadmium in soil by slurry-sampling graphite furnace-atomic absorption spectrometry using NH4 H2 PO4 as matrix modifier was developed. The effects of slurry stability, particle size of sample, matrix modifiers, ashing temperature, atomization temperature and common coexistent components on the signal intensities of lead and cadmium were investigated. The apparent activation energies of lead and cadmium were measured based on the linear relationship between the logarithm value of atomization peak time and atomization temperature. The mechanism of matrix modification was discussed. Under optimized conditions, the detection limit was 9.05 x 10(-10) g x mL(-1) for Pb and 1.76 x 10(-11) g x mL(-1) for Cd. The recoveries were in the range of 91%-97% for Pb and 93%-109% for Cd. The relative standard deviations were in the range of 4.2%-7.8%.

  14. Development of rapid slurry methods for flame and direct current plasma emission and graphite furnace atomic absorption analysis of solid animal tissue

    SciTech Connect

    Fietkau, R.

    1986-01-01

    Studies are presented describing developments in the rapid, direct atomic spectrochemical analysis of meat samples by the technique of slurry atomization. The number of elements that can be determined in meat slurry samples has been increased and the concentration range that can be detected extended to included analysis at the part per billion as well as the percent level. Slurry atomization involves the rapid preparation procedure whereby the sample is simple homogenized with deionized distilled water prior to analysis. In this manner, rapid, quantitative analysis of hot dogs (processed meat) for dietary salt (Na, K) was achieved by premixed air-natural gas flame emission spectrometry. Quantitative analysis of mechanically separated meat for residual bone fragments (as Ca) was attained using a simple photometer when the premixed air-acetylene flame was used. The phosphate interference of the Ca emission signal was overcome by placing an insert in the spray chamber which decreased the droplet size of the aerosol reaching the flame. Slight matrix modification in the form of 2% nitric acid was necessary to solubilize the Ca from the bone fragments. Determining elements present at very low concentrations i.e. part per billion levels, in homogenized beef liver was evaluated using graphite furnace atomic absorption and shown to be viable for determinations of Pb, Cd, Cr, and Ni. Qualitative multielement analysis of several types of meat slurries by direct current plasma (DCP) emission spectrometry using both photographic and electronic modes of detection was reported for the first time.

  15. Cloud point extraction for the determination of lead and cadmium in urine by graphite furnace atomic absorption spectrometry with multivariate optimization using Box Behnken design

    NASA Astrophysics Data System (ADS)

    Maranhão, Tatiane De A.; Martendal, Edmar; Borges, Daniel L. G.; Carasek, Eduardo; Welz, Bernhard; Curtius, Adilson J.

    2007-09-01

    Cloud point extraction (CPE) is proposed as a pre-concentration procedure for the determination of Pb and Cd in undigested urine by graphite furnace atomic absorption spectrometry (GF AAS). Aliquots of 0.5 mL urine were acidified with HCl and the chelating agent ammonium O,O-diethyl dithiophosphate (DDTP) was added along with the non-ionic surfactant Triton X-114 at the optimized concentrations. Phase separation was achieved by heating the mixture to 50 °C for 15 min. The surfactant-rich phase was analyzed by GF AAS, employing the optimized pyrolysis temperatures of 900 °C for Pb and 800 °C for Cd, using a graphite tube with a platform treated with 500 μg Ru as permanent modifier. The reagent concentrations for CPE (HCl, DDTP and Triton X-114) were optimized using a Box Behnken design. The response surfaces and the optimum values were very similar for aqueous solutions and for the urine samples, demonstrating that aqueous standards submitted to CPE could be used for calibration. Detection limits of 40 and 2 ng L- 1 for Pb and Cd, respectively, were obtained along with an enhancement factor of 16 for both analytes. Three control urine samples were analyzed using this approach, and good agreement was obtained at a 95% statistical confidence level between the certified and determined values. Five real samples have also been analyzed before and after spiking with Pb and Cd, resulting in recoveries ranging from 97 to 118%.

  16. Feasibility of using in situ fusion for the determination of Co, Cr and Mn in Portland cement by direct solid sampling graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Intima, Danielle Polidorio; de Oliveira, Elisabeth; Oliveira, Pedro Vitoriano

    2009-06-01

    In situ fusion on the boat-type graphite platform has been used as a sample pretreatment for the direct determination of Co, Cr and Mn in Portland cement by solid sampling graphite furnace atomic absorption spectrometry (SS-GF AAS). The 3-field Zeeman technique was adopted for background correction to decrease the sensitivity during measurements. This strategy allowed working with up to 200 µg of sample. The in situ fusion was accomplished using 10 µL of a flux mixture 4.0% m/v Na 2CO 3 + 4.0% m/v ZnO + 0.1% m/v Triton® X-100 added over the cement sample and heated at 800 °C for 20 s. The resulting mould was completely dissolved with 10 µL of 0.1% m/v HNO 3. Limits of detection were 0.11 µg g - 1 for Co, 1.1 µg g - 1 for Cr and 1.9 µg g - 1 for Mn. The accuracy of the proposed method has been evaluated by the analysis of certified reference materials. The values found presented no statistically significant differences compared to the certified values (Student's t-test, p < 0.05). In general, the relative standard deviation was lower than 12% ( n = 5).

  17. Determination of cadmium in coal using solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry.

    PubMed

    da Silva, Alessandra Furtado; Borges, Daniel L G; Lepri, Fábio Grandis; Welz, Bernhard; Curtius, Adilson J; Heitmann, Uwe

    2005-08-01

    This work describes the development of a method to determine cadmium in coal, in which iridium is used as a permanent chemical modifier and calibration is performed against aqueous standards by high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). This new instrumental concept makes the whole spectral environment in the vicinity of the analytical line accessible, providing a lot more data than just the change in absorbance over time available from conventional instruments. The application of Ir (400 microg) as a permanent chemical modifier, thermally deposited on the pyrolytic graphite platform surface, allowed pyrolysis temperatures of 700 degrees C to be used, which was sufficiently high to significantly reduce the continuous background that occurred before the analyte signal at pyrolysis temperatures <700 degrees C. Structured background absorption also occurred after the analyte signal when atomization temperatures of >1600 degrees C were used, which arose from the electron-excitation spectrum (with rotational fine structure) of a diatomic molecule. Under optimized conditions (pyrolysis at 700 degrees C and atomization at 1500 degrees C), interference-free determination of cadmium in seven certified coal reference materials and two real samples was achieved by direct solid sampling and calibrating against aqueous standards, resulting in good agreement with the certified values (where available) at the 95% confidence level. A characteristic mass of 0.4 pg and a detection limit of 2 ng g(-1), calculated for a sample mass of 1.0 mg coal, was obtained. A precision (expressed as the relative standard deviation, RSD) of <10% was typically obtained when coal samples in the mass range 0.6-1.2 mg were analyzed.

  18. Freon (CHF3)-assisted atomization for the determination of titanium using ultrasonic slurry sampling-graphite furnace atomic absorption spectrometry (USS-GFAAS): a simple and advantageous method for solid samples.

    PubMed

    Asfaw, Alemayehu; Wibetoe, Grethe

    2004-06-01

    A simple and advantageous method for the determination of titanium using graphite furnace atomic absorption spectrometry with slurry sampling has been developed. Titanium is one of the refractory elements that form thermally stable carbides in the graphite tube, which leads to severe memory effects. Trifluoromethane (Freon-23) was applied in the purge gas during the atomization step or alternatively just prior to the atomization to successfully eliminate the problems of carbide formation and increase the lifetime of the furnace tube which could be used for more than 600 heating cycles. A flow rate of 40 mL min(-1) (5% of Freon in argon) was used to obtain symmetrical peaks with no tailing. However, when the gas flow rate was too high (250 mL min(-1)) the peak-tailing and memory effects reappeared. Ti was determined in various materials covering a wide range of concentrations, from 2.8 microg g(-1) to 12% (m/m) Ti. The accuracy of the method was confirmed by analyzing certified reference materials (CRMs) or by comparing the results with those obtained using inductively coupled plasma-atomic emission spectrometry (ICP-AES) after decomposition of the samples. The materials analyzed were soil, plant, human hair, coal, urban particulate matters, toothpaste, and powdered paint.

  19. Multivariate approach in the optimization procedures for the direct determination of manganese in serum samples by graphite furnace atomic absorption spectrometry.

    PubMed

    Fabrino, Henrique José Ferraz; Silveira, Josianne Nicácio; Neto, Waldomiro Borges; Goes, Alfredo Miranda; Beinner, Mark Anthony; da Silva, José Bento Borba

    2011-10-01

    A method for direct determination of manganese (Mn) in human serum by graphite furnace atomic absorption spectrometry (GFAAS) was proposed in this work. The samples were only diluted 1:4 with nitric acid 1% (v/v) and Triton(®) X-100 0.1% (v/v). The optimization of the instrumental conditions was made using multivariate approach. A factorial design (2(3)) was employed to investigate the tendency of the most intense absorbance signal. The pyrolysis and atomization temperatures and the use of modifier were available and only the parameter modifier use did not have a significant effect on the response. A Center Composed Design (CCD) presented best temperatures of 430 °C and 2568 °C for pyrolysis and atomization, respectively. The method allowed the determination of manganese with a curve varying from 0.7 to 3.3 μg/L. Recovery studies in three concentration levels (n=7 for each level) presented results from 98 ± 5 to 102 ± 7 %. The detection limit was 0.2 μg/L, the quantifying limit was 0.7 μg/L, and the characteristic mass, 1.3 ± 0.2 pg. Intra- and interassay studies showed coefficients of variation of 4.7-7.0% (n=21) and 6-8%(n=63), respectively. The method was applied for the determination of manganese in 53 samples obtaining concentrations from 3.9 to 13.7 μg/L.

  20. Comparison of two methods for blood lead analysis in cattle: graphite-furnace atomic absorption spectrometry and LeadCare(R) II system.

    PubMed

    Bischoff, Karyn; Gaskill, Cynthia; Erb, Hollis N; Ebel, Joseph G; Hillebrandt, Joseph

    2010-09-01

    The current study compared the LeadCare(R) II test kit system with graphite-furnace atomic absorption spectrometry for blood lead (Pb) analysis in 56 cattle accidentally exposed to Pb in the field. Blood Pb concentrations were determined by LeadCare II within 4 hr of collection and after 72 hr of refrigeration. Blood Pb concentrations were determined by atomic absorption spectrometry, and samples that were coagulated (n = 12) were homogenized before analysis. There was strong rank correlation (R(2) = 0.96) between atomic absorption and LeadCare II (within 4 hr of collection), and a conversion formula was determined for values within the observed range (3-91 mcg/dl, although few had values >40 mcg/dl). Median and mean blood pb concentrations for atomic absorption were 7.7 and 15.9 mcg/dl, respectively; for LeadCare II, medians were 5.2 mcg/dl at 4 hr and 4.9 mcg/dl at 72 hr, and means were 12.4 and 11.7, respectively. LeadCare II results at 4 hr strongly correlated with 72 hr results (R(2) = 0.96), but results at 72 hr were lower (P < 0.01). There was no significant difference between coagulated and uncoagulated samples run by atomic absorption. Although there have been several articles that compared LeadCare with other analytical techniques, all were for the original system, not LeadCare II. The present study indicated that LeadCare II results correlated well with atomic absorption over a wide range of blood Pb concentrations and that refrigerating samples for up to 72 hr before LeadCare II analysis was acceptable for clinical purposes.

  1. Process stability assessed by selecting Shewhart's psi statistical analysis technique of the influence of matrix modifier and furnace program in the optimization and precision of zinc determinations by graphite furnace atomic absorption spectroscopy.

    PubMed

    Al-Tufail, M; Akram, M; Haq, A

    1999-03-01

    The method previously used in the Toxicology Laboratories of King Faisal Specialist Hospital and Research Center for determining the zinc concentration in serum by Zeeman atomic absorption spectrometer was improved by modifying the matrix modifier and by changing the heated graphite furnace atomization (HGA) program. After trying several methods we failed to achieve the required precision and the accuracy of methods for serum zinc determination. We changed the matrix modifier to a fifty percent mixture (v/v) of 3.90 grams per liter of ammonium phosphate in Type 1 water with 0.2% nitric acid and 1.0 gram per liter of magnesium nitrate in acidic water (0.2% HNO3) with 0.1% triton X-100 was used as matrix modifier. A twenty-five fold dilution of the sample in matrix modifier was injected on the L'vov's platform of the furnace. In order to reduce the high sensitivity of Zn the furnace program was modified. The method is found very robust. The average reproducibility between inter-runs and intra-run is less than 1.59% with a high degree of accuracy. We used two levels of controls i.e. normal or low level and abnormal or high level. The linearity and the detection limit of the assay were 0.9992 and 0.010 micromol/L respectively. Average recovery of the analyte was 98.65%. The X-Bar and R charts were constructed by using Shewhart's statistical analysis technique to assess the test methodology. It was found that the assay is capable and stable for routine clinical and research analysis. The capability index (C(P)) of the assay, an indicator of the precision, was calculated.

  2. A simple and selective approach for determination of trace Hg(II) using electromembrane extraction followed by graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Kamyabi, Mohammad Ali; Aghaei, Ali

    2017-02-01

    The present study proposes the determination of trace Hg(II) using electromembrane extraction followed by graphite furnace atomic absorption spectrometry (GFAAS). Hg(II) migrated from 5 mL of an aqueous donor phase across a thin layer of supported liquid membrane, immobilized inside pores of a hollow fiber, into 10 μL of an acidic acceptor phase present inside the lumen of the fiber. The final analysis of the extracted Hg(II) performed using GFAAS (350 °C and 1400 °C for the ashing and atomization temperatures, respectively). Under optimal conditions, Hg(II) was effectively extracted with recoveries in the range of 41-43%, which corresponded to enrichment factors in the range of 102-108. The calibration curve was investigated in the range of 0.5-10 μg/L and a good linearity was achieved with a coefficient factor of 0.998. Detection limit (3σ) was found to be 0.5 μg/L and repeatability for 5 replicate determinations of three different concentration level of Hg(II) were found to be within the range of 6.2-7.1%. The reliability of the proposed method was examined by analyzing different real waters samples.

  3. Determination of mercury in airborne particulate matter collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling

    NASA Astrophysics Data System (ADS)

    Araujo, Rennan G. O.; Vignola, Fabíola; Castilho, Ivan N. B.; Borges, Daniel L. G.; Welz, Bernhard; Vale, Maria Goreti R.; Smichowski, Patricia; Ferreira, Sérgio L. C.; Becker-Ross, Helmut

    2011-05-01

    A study has been undertaken to assess the capability of high-resolution continuum source graphite furnace atomic absorption spectrometry for the determination of mercury in airborne particulate matter (APM) collected on glass fiber filters using direct solid sampling. The main Hg absorption line at 253.652 nm was used for all determinations. The certified reference material NIST SRM 1648 (Urban Particulate Matter) was used to check the accuracy of the method, and good agreement was obtained between published and determined values. The characteristic mass was 22 pg Hg. The limit of detection (3σ), based on ten atomizations of an unexposed filter, was 40 ng g - 1 , corresponding to 0.12 ng m - 3 in the air for a typical air volume of 1440 m 3 collected within 24 h. The limit of quantification was 150 ng g -1, equivalent to 0.41 ng m -3 in the air. The repeatability of measurements was better than 17% RSD (n = 5). Mercury concentrations found in filter samples loaded with APM collected in Buenos Aires, Argentina, were between < 40 ng g -1 and 381 ± 24 ng g -1. These values correspond to a mercury concentration in the air between < 0.12 ng m -3 and 1.47 ± 0.09 ng m -3. The proposed procedure was found to be simple, fast and reliable, and suitable as a screening procedure for the determination of mercury in APM samples.

  4. Evaluation of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for direct determination of chromium in medicinal plants

    NASA Astrophysics Data System (ADS)

    Virgilio, Alex; Nóbrega, Joaquim A.; Rêgo, Jardes F.; Neto, José A. Gomes

    2012-12-01

    A method for Cr determination in medicinal plants using direct solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry was developed. Modifiers were dispensable. Pyrolysis and atomization temperatures were 1500 °C and 2400 °C, respectively. Slopes of calibration curves (50-750 pg Cr, R2 > 0.999) using aqueous and solid standards coincides in 96%, indicated feasibility of aqueous calibration for solid sampling of medicinal plants. Accuracy was checked by analysis of four plant certified reference materials. Results were in agreement at 95% confidence level with certified and non-certified values. Ten samples of medicinal plants were analyzed and Cr contents were in the 1.3-17.7 μg g- 1 Cr range. The highest RSD (n = 5) was 15.4% for the sample Melissa officinalis containing 13.9 ± 2.1 μg g- 1 Cr. The limit of detection was 3.3 ng g- 1 Cr.

  5. Evaluation of solid sampling for determination of Mo, Ni, Co, and V in soil by high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Babos, Diego Victor; Barros, Ariane Isis; Ferreira, Edilene Cristina; Neto, José Anchieta Gomes

    2017-04-01

    New methods are proposed for the determination of Mo, Ni, Co, and V in soils using high-resolution continuum source graphite furnace atomic absorption spectrometry with direct solid sampling. Cobalt and V were simultaneously determined, and different analytical lines of Ni and V were monitored to adjust sensitivity for each sample. Accuracy was checked by means of soil certified reference materials, and also by flame atomic absorption spectrometry as comparative technique. The results for Mo, Ni, Co, and V found by proposed methods were in agreement with certified values and with those obtained by the comparative technique at 95% confidence level. The concentrations found in different soil samples were in the ranges 0.19-1.84 mg kg- 1 (Mo), 9.2-22.7 mg kg- 1 (Ni), 1.1-10.7 mg kg- 1 (Co), and 35.6-426.1 mg kg- 1 (V). The relative standard deviations were in the ranges 3.2-10% (Mo), 2.8-9.8% (Ni), 4.0-9.2% (Co), and 1.2-8.0% (V). The limits of quantification for Mo, Ni, Co, and V were 0.027, 0.071, 0.15, and 1.43 ng, respectively.

  6. Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Pereira, Éderson R; de Almeida, Tarcísio S; Borges, Daniel L G; Carasek, Eduardo; Welz, Bernhard; Feldmann, Jörg; Campo Menoyo, Javier Del

    2016-04-01

    High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method.

  7. Sequential determination of Cd and Cr in biomass samples and their ashes using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis.

    PubMed

    Duarte, Alvaro T; Dessuy, Morgana B; Vale, Maria Goreti R; Welz, Bernhard; de Andrade, Jailson B

    2013-10-15

    High-resolution continuum source graphite furnace atomic absorption spectrometry, because of the use of only one radiation source for all elements, offers the possibility of sequential determination of two or more elements from the same sample aliquot if their volatilities are significantly different. Cd and Cr were determined sequentially in samples of biomass and biomass ashes employing direct solid sample analysis. The use of a chemical modifier was found to be not necessary, and calibration could be carried out using aqueous standard solutions. A pyrolysis temperature of 400°C and an atomization temperature of 1500°C were used for the determination of Cd; no losses of Cr were observed at this temperature. After the atomization of Cd the wavelength was changed and Cr atomized at 2600°C. The limits of detection (LOD) and quantification (LOQ) were 1.1 μg kg(-1) and 3.7 μg kg(-1), respectively, for Cd and 21 μg kg(-1) and 70 μg kg(-1), respectively, for Cr using the most sensitive line at 357.869 nm, or 90 μg kg(-1) and 300 μg kg(-1), respectively, using the less sensitive line at 428.972 nm. The precision, expressed as relative standard deviation was around 10%, which is typical for direct solid sample analysis. The values found for Cd in biomass samples were between <1.1 µg kg(-1) and 789 µg kg(-1), whereas those for Cr were between 7.9 mg kg(-1) and 89 mg kg(-1); the values found in the ashes were significantly lower for Cd, between <1.1 µg kg(-1) and 6.3 µg kg(-1), whereas the trend was not so clear for Cr, where the values were between 3.4 mg kg(-1) and 28 mg kg(-1).

  8. Development and validation of a general non-digestive method for the determination of palladium in bulk pharmaceutical chemicals and their synthetic intermediates by graphite furnace atomic absorption spectroscopy.

    PubMed

    Wang, T; Walden, S; Egan, R

    1997-02-01

    A simple, selective, sensitive, accurate and relatively inexpensive method for the determination of palladium in bulk pharmaceutical chemicals (BPC) and their synthetic intermediates by graphite furnace atomic absorption spectroscopy has been developed and validated. Sample preparation by direct dissolution of sample in 70% nitric acid is simple and effective without adverse effects. The limit of detection and the limit of quantitation of the method were determined to be 0.7 ppm and 2 ppm respectively in BPC.

  9. Determination of chromium(VI) and lead(II) in drinking water by electrokinetic flow analysis system and graphite furnace atomic absorption spectrometry.

    PubMed

    Yang, L; He, Y Z; Gan, W E; Li, M; Qu, Q S; Lin, X Q

    2001-08-30

    An electrokinetic flow analysis system (EKFA) using an electroosmotic pump (Peo) and a bi-directional electrostacking (BDES) unit is introduced in this paper. Large flow range, moderate carrier pressure, low performance voltage and stable flow rate, especially in mulmin(-1) level, are the main specialties of the Peo. Diethanolamine, 0.5 mM, is selected as its carrier to improve the pump efficiency and stability further. Moreover, BDES, a feasibility investigation for the simultaneous separation and pre-concentration of cations and anions, and graphite furnace atomic absorption spectrometry (GFAAS) determination are presented. The calibration series for both of Cr(VI) and Pb(II) are from 0.2 to 40 mugl(-1) with 10 mul pipette volume and GFAAS determination directly. The detection limit of Cr(VI) and Pb(II) with 10 min BDES is 10 and 13 ngl(-1)(3sigma of blank, n=11), respectively. The recovery of Cr(VI) and Pb(II) is (103-105)+/-1% and (95.9-96.9)+/-1.0% with three independent determinations, respectively. The investigated method is also suitable for the simultaneous separation and pre-concentration of trace cations and anions in low conductivity sample solutions with different detection instruments.

  10. Lead and cadmium in human placentas and maternal and neonatal blood (in a heavily polluted area) measured by graphite furnace atomic absorption spectrometry.

    PubMed Central

    Baranowska, I

    1995-01-01

    OBJECTIVE--To measure the concentrations of the trace elements lead and cadmium in human placenta and in maternal and neonatal (cord) blood. To assess the influence of the strongly polluted environment on the content of metals in tissues and on the permeability of placenta to cadmium and lead. Various methods of mineralisation were tested before analysis. METHODS--Graphite furnace atomic absorption spectrometry was used for the determination of lead and cadmium. The samples for analysis were prepared by mineralisation under pressure in a Teflon bomb (HNO3, 110 degrees C), by wet ashing under normal pressure (HNO3 + H2O2 for 12 hours), and by microwave digestion in concentrated nitric acid. RESULTS--In analysed samples the following mean concentrations of cadmium and lead were found: in venous blood Pb = 72.50 ng/ml, Cd = 4.90 ng/ml; in placenta Pb = 0.50 microgram/g, Cd = 0.11 microgram/g; in cord blood Pb = 38.31 ng/ml, Cd = 1.13 ng/ml. CONCLUSION--High concentrations of lead and cadmium were found in placentas and in maternal blood whereas in neonatal blood there was an increased concentration of lead and only traces of cadmium. It is concluded that the placenta is a better barrier for cadmium than for lead. Among the examined methods of mineralisation, microwave digestion was the best. PMID:7795737

  11. Determination of trace lead in water samples by graphite furnace atomic absorption spectrometry after preconcentration with nanometer titanium dioxide immobilized on silica gel.

    PubMed

    Liu, Rui; Liang, Pei

    2008-03-21

    Nanometer titanium dioxide immobilized on silica gel (immobilized nanometer TiO2) was prepared by sol-gel method and characterized using X-ray diffraction (XRD) and scanning electron microscope (SEM). The adsorptive capability of immobilized nanometer TiO2 for lead was assessed in this work using column method. It was found that lead can be quantitatively retained by immobilized nanometer TiO2 in the pH range 4-7, then eluted completely with 1.0molL(-1) HCl. The adsorption capacity of immobilized nanometer TiO2 for Pb was found to be 3.16mgg(-1). A new method has been developed for the determination of trace lead based on preconcentration with a microcolumn packed with immobilized nanometer TiO2 prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS). The detection limit of this method for Pb was 9.5ngL(-1) with an enrichment factor of 50, and the relative standard deviations (R.S.D.s) was 3.2% at the 10ngmL(-1) Pb level. The method was validated using a certified reference material, and was applied for the determination of trace lead in water samples.

  12. Fast arsenic speciation in water by on-site solid phase extraction and high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mihucz, Victor G.; Bencs, László; Koncz, Kornél; Tatár, Enikő; Weiszburg, Tamás; Záray, Gyula

    2017-02-01

    A method of high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS), combined with on-site separation/solid phase extraction (SPE) has been developed for the speciation of inorganic As (iAs) in geothermal and drinking water samples. The HR-CS-GFAAS calibration curves were linear up to 200 μg/L As, but using second order polynomial fitting, accurate calibration could be performed up to 500 μg/L. It has been demonstrated that sample pH should not be higher than 8 for an accurate speciation of As(V) with a recovery of ≈ 95%. Geothermal water had fairly high salt content (≈ 2200 mg/L) due to the presence of chlorides and sulfates at mg/L levels. Therefore, a two-fold dilution of these types of samples before SPE is recommended, especially, for total As determinations, when the As concentration is as high as 400 μg/L. For drinking water, sampled from public wells with records of As concentrations higher than the 10 μg/L in the past, the reduction of As contamination below the WHO's health limit value could be observed. However, the electrical conductivity was close to 2500 μS/cm, i.e., the guideline limit for drinking water, which was due to their higher chloride content. The proposed fit-for-purpose SPE-HR-CS-GFAAS method could be a candidate for screening drinking water quality.

  13. Solidified floating organic drop microextraction (SFODME) for simultaneous separation/preconcentration and determination of cobalt and nickel by graphite furnace atomic absorption spectrometry (GFAAS).

    PubMed

    Bidabadi, Mahboubeh Shirani; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji

    2009-07-15

    Solidified floating organic drop microextraction (SFODME), combined with graphite furnace atomic absorption spectrometry (GFAAS) was proposed for simultaneous separation/enrichment and determination of trace amounts of nickel and cobalt in surface waters and sea water. 1-(2-Pyridylazo)-2-naphthol (PAN) was used as chelating agent. The main parameters affecting the performance of SFODME, such as pH, concentration of PAN, extraction time, stirring rate, extraction temperature, sample volume and nature of the solvent were optimized. Under the optimum experimental conditions, a good relative standard deviation for six determination of 20 ng l(-1) of Co(II) and Ni(II) were 4.6 and 3.6%, respectively. An enrichment factor of 502 and 497 and detection limits of 0.4 and 0.3 ng l(-1) for cobalt and nickel were obtained, respectively. The procedure was applied to tap water, well water, river water and sea water, and accuracy was assessed through the analysis of certified reference water or recovery experiments.

  14. Determination of Lead in Water Samples Using a New Vortex-Assisted, Surfactant-Enhanced Emulsification Liquid-Liquid Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry.

    PubMed

    Peng, Guilong; He, Qiang; Lu, Ying; Mmereki, Daniel; Pan, Weiliang; Tang, Xiaohui; Zhou, Guangming; Mao, Yufeng; Su, Xaioxuan

    2016-04-01

    A low toxic solvent-based vortex-assisted surfactant-enhanced emulsification liquid-liquid microextraction (LT-VSLLME) combined with graphite furnace atomic absorption spectrometry was developed for the extraction and determination of lead (Pb) in water samples. In the LT-VSLLME method, the extraction solvent was dispersed into the aqueous samples by the assistance of vortex agitator. Meanwhile, the addition of a surfactant, which acted as an emulsifier, could enhance the speed of the mass-transfer from aqueous samples to the extraction solvent. The influences of analytical parameters, including extraction solvent type and its volume, surfactant type and its volume, pH, concentration of chelating agent, salt effect and extraction time were investigated. Under the optimized conditions, a good relative standard deviation of 3.69% at 10 ng L(-1) was obtained. The calibration graph showed a linear pattern in the ranges of 5-30 ngL(-1), with a limit of detection of 0.76 ng L(-1). The linearity was obtained by five points in the concentration range of 5-30 ngL(-1). The enrichment factor was 320. The procedure was applied to wastewater and river water, and the accuracy was assessed through the analysis of the recovery experiments.

  15. Ultrasound-Assisted Emulsification Microextraction Based on Solidification Floating Organic Drop Trace Amounts of Manganese Prior to Graphite Furnace Atomic Absorption Spectrometry Determination

    PubMed Central

    Mohadesi, Alireza; Falahnejad, Masoumeh

    2012-01-01

    In the present study, an ultrasound-assisted emulsification microextraction based on solidification floating organic drop method is described for preconcentration of trace amounts of Mn (II). 2-(5-Bromo-2-pyridylazo)-5 diethylaminophenol was added to a solution of Mn+2 at ph = 10.0. After this, 1-undecanol was added to the solution as an extraction solvent, and solution was stirred. Several factors influencing the microextraction efficiency, such as pH, the amount of chelating agent, nature and volume of extraction solvent, the volume of sample solution, stirring rate, and extraction time were investigated and optimized. Then sample vial was cooled by inserting into an ice bath, and the solidified was transferred into a suitable vial for immediate melting. Finally the sample was injected into a graphite furnace atomic absorption spectrometry. Under the optimum condition the linear dynamic range was 0.50–10.0 ng mL−1 with a correlation coefficient of 0.9926, and the detection limit of 0.3 ng mL−1 was obtained. The enrichment factor was 160. The proposed method was successfully applied for separation and determination of manganese in sea, rain, tap, and river water samples. PMID:22645504

  16. Study of the versatility of a graphite furnace atomic absorption spectrometric method for the determination of cadmium in the environmental field.

    PubMed

    Rucandio, M Isabel; Petit-Domínguez, M Dolores

    2002-01-01

    Cadmium is a representative example of trace elements that are insidious and widespread health hazards. In contemporary environmental analysis, there is a clear trend toward its determination over a wide range of concentrations in complex matrixes. This paper describes a versatile method for the determination of Cd at various levels (0.1-500 microg/g) in several sample types, such as soils, sediments, coals, ashes, sewage sludges, animal tissues, and plants, by graphite furnace atomic absorption spectrometry with Zeeman background correction. The effect of the individual presence of about 50 elements, with an interference/analyte concentration ratio of up to 10(5), was tested; recoveries of Cd ranged from 93 to 106%. The influence of different media, such as HNO3, HCI, HF, H2SO4, HClO4, acetic acid, hydroxylammonium chloride, and ammonium acetate, in several concentrations, was also tested. From these studies it can be concluded that the analytical procedure is scarcely matrix dependent, and the results obtained for a wide diversity of reference materials are in good agreement with the certified values.

  17. Determination of trace aluminum in biological and water samples by cloud point extraction preconcentration and graphite furnace atomic absorption spectrometry detection.

    PubMed

    Sang, Hongbo; Liang, Pei; Du, Dan

    2008-06-15

    A cloud point extraction (CPE) method for the preconcentration of trace aluminum prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) has been developed. The CPE method is based on the complex of Al(III) with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP), and then entrapped in non-ionic surfactant Triton X-114. PMBP was used not only as chelating reagent in CPE preconcentration, but also as chemical modifier in GFAAS determination. The main factors affecting CPE efficiency, such as pH of sample solution, concentration of PMBP and Triton X-114, equilibration temperature and time, were investigated in detail. An enrichment factor of 37 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of this method for Al(III) is 0.09 ng mL(-1), and the relative standard deviation is 4.7% at 10 ng mL(-1) Al(III) level (n=7). The proposed method has been applied for determination of trace amount of aluminum in biological and water samples with satisfactory results.

  18. Graphite furnace atomic absorption spectrometric detection of vanadium in water and food samples after solid phase extraction on multiwalled carbon nanotubes.

    PubMed

    Wadhwa, Sham Kumar; Tuzen, Mustafa; Gul Kazi, Tasneem; Soylak, Mustafa

    2013-11-15

    Vanadium(V) ions as 8-hydroxyquinoline chelates were loaded on multiwalled carbon nanotubes (MWNTs) in a mini chromatographic column. Vanadium was determined by graphite furnace atomic absorption spectrometry (GFAAS). Various analytical parameters including pH of the working solutions, amounts of 8-hydroxyquinoline, eluent type, sample volume, and flow rates were investigated. The effects of matrix ions and some transition metals were also studied. The column can be reused 250 times without any loss in its sorption properties. The preconcentration factor was found as 100. Detection limit (3 s) and limit of quantification (10 s) for the vanadium in the optimal conditions were observed to be 0.012 µg L(-1) and 0.040 μg L(-1), respectively. The capacity of adsorption was 9.6 mg g(-1). Relative standard deviation (RSD) was found to be 5%. The validation of the method was confirmed by using NIST SRM 1515 Apple leaves, NIST SRM 1570a Spinach leaves and GBW 07605 Tea certified reference materials. The procedure was applied to the determination of vanadium in tap water and bottled drinking water samples. The procedure was also successfully applied to microwave digested food samples including black tea, coffee, tomato, cabbage, zucchini, apple and chicken samples.

  19. The study of applicability of dithiocarbamate-coated fullerene C 60 for preconcentration of palladium for graphite furnace atomic absorption spectrometric determination in environmental samples

    NASA Astrophysics Data System (ADS)

    Leśniewska, Barbara A.; Godlewska, Iwona; Godlewska—Żyłkiewicz, Beata

    2005-03-01

    The present method comprises an off-line enrichment of Pd on the fullerene, C 60, coated with ammonium pyrrolidinedithiocarbamate (APDC), followed by the elution of formed Pd-chelate with ethanol and the subsequent determination of Pd from the eluate by graphite furnace atomic absorption spectrometry. By using fullerene loaded with 0.1% APDC, the analytical system is simplified as the sample can be directly preconcentrated on the column. The following parameters affecting the preconcentration of Pd on C 60 were optimized: amount of ligand used for the coating of fullerene, sample pH, kind of eluent, sample and eluent flow rates, volume and number of fractions of eluent used. The sorption efficiency for Pd on coated fullerene was 99.2±1.1%. The best elution efficiency for Pd from the column was obtained with 0.6 ml of ethanol at a flow rate of 0.2 ml min -1. The limit of detection was 0.044 ng ml -1. The effect of sample pretreatment procedure on the preconcentration of Pd by evaluated method is discussed. The content of Pd in road dust (179.2±17.4 ng g -1) determined by proposed method was in agreement with the results obtained with a reference method. The low recovery of analyte (64%) was obtained for geological material CRM SARM-7 (platinum ore) due to the much higher concentration of interfering elements.

  20. A novel assay of cell rubidium uptake using graphite furnace atomic absorption: application to rats on a magnesium-deficient diet.

    PubMed

    Zhen, Yueying; Franz, Kay B; Graves, Steven W

    2005-05-01

    The [Na,K]ATPase or sodium pump (SP) is a ubiquitous membrane cation transport system. Because of its potential participation in the pathophysiology of essential hypertension and cataract formation, the SP is under active investigation to detail its function and control. In this paper, we describe a novel, nonradioactive method of measuring SP ion transport activity in intact red blood cells (RBCs) using graphite furnace atomic absorption measurement of rubidium ion (Rb) uptake. This method provided sensitivity comparable to radioactive techniques, as assessed by experiments with human red blood cells (RBC) and ouabain, a known SP inhibitor, but this analytical approach eliminates the use of radioisotopes common to other Rb uptake assay methods. As a demonstration of its broader utility, the assay was used to assess the effects of dietary magnesium intake on SP-mediated ion transport in the RBCs of diet-controlled rats. Rats on 7 weeks of a magnesium-deficient (MgD) diet showed significant reductions in serum magnesium concentration, although levels remained in the lower region of the reference interval for healthy, magnesium replete animals. Red cell Rb uptake was significantly reduced in cells from the magnesium-restricted animals, demonstrating the sensitivity of Rb uptake to reduced magnesium intake, despite serum levels that fell within the reported normal range, and the utility of this Rb uptake assay in measuring physiological changes in SP function.

  1. Ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometric for selenium speciation in foods and beverages.

    PubMed

    Tuzen, Mustafa; Pekiner, Ozlem Zeynep

    2015-12-01

    A rapid and environmentally friendly ultrasound assisted ionic liquid dispersive liquid liquid microextraction (USA-IL-DLLME) was developed for the speciation of inorganic selenium in beverages and total selenium in food samples by using graphite furnace atomic absorption spectrometry. Some analytical parameters including pH, amount of complexing agent, extraction time, volume of ionic liquid, sample volume, etc. were optimized. Matrix effects were also investigated. Enhancement factor (EF) and limit of detection (LOD) for Se(IV) were found to be 150 and 12 ng L(-1), respectively. The relative standard deviation (RSD) was found 4.2%. The accuracy of the method was confirmed with analysis of LGC 6010 Hard drinking water and NIST SRM 1573a Tomato leaves standard reference materials. Optimized method was applied to ice tea, soda and mineral water for the speciation of Se(IV) and Se(VI) and some food samples including beer, cow's milk, red wine, mixed fruit juice, date, apple, orange, grapefruit, egg and honey for the determination of total selenium.

  2. Magnetic stirrer induced dispersive ionic-liquid microextraction for the determination of vanadium in water and food samples prior to graphite furnace atomic absorption spectrometry.

    PubMed

    Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa

    2015-04-01

    A new dispersive liquid-liquid microextraction, magnetic stirrer induced dispersive ionic-liquid microextraction (MS-IL-DLLME) was developed to quantify the trace level of vanadium in real water and food samples by graphite furnace atomic absorption spectrometry (GFAAS). In this extraction method magnetic stirrer was applied to obtained a dispersive medium of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] in aqueous solution of (real water samples and digested food samples) to increase phase transfer ratio, which significantly enhance the recovery of vanadium - 4-(2-pyridylazo) resorcinol (PAR) chelate. Variables having vital role on desired microextraction methods were optimised to obtain the maximum recovery of study analyte. Under the optimised experimental variables, enhancement factor (EF) and limit of detection (LOD) were achieved to be 125 and 18 ng L(-1), respectively. Validity and accuracy of the desired method was checked by analysis of certified reference materials (SLRS-4 Riverine water and NIST SRM 1515 Apple leaves). The relative standard deviation (RSD) for 10 replicate determinations at 0.5 μg L(-1) of vanadium level was found to be <5.0%. This method was successfully applied to real water and acid digested food samples.

  3. One-step displacement dispersive liquid-liquid microextraction coupled with graphite furnace atomic absorption spectrometry for the selective determination of methylmercury in environmental samples.

    PubMed

    Liang, Pei; Kang, Caiyan; Mo, Yajun

    2016-01-01

    A novel method for the selective determination of methylmercury (MeHg) was developed by one-step displacement dispersive liquid-liquid microextraction (D-DLLME) coupled with graphite furnace atomic absorption spectrometry. In the proposed method, Cu(II) reacted with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which was used as the chelating agent instead of DDTC for the dispersive liquid-liquid microextraction (DLLME) of MeHg. Because the stability of MeHg-DDTC is higher than that of Cu-DDTC, MeHg can displace Cu from the Cu-DDTC complex and be preconcentrated in a single DLLME procedure. MeHg could be extracted into the extraction solvent phase at pH 6 while Hg(II) remained in the sample solution. Potential interference from co-existing metal ions with lower DDTC complex stability was largely eliminated without the need of any masking reagent. Under the optimal conditions, the limit of detection of this method was 13.6ngL(-1) (as Hg), and an enhancement factor of 81 was achieved with a sample volume of 5.0mL. The proposed method was successfully applied for the determination of trace MeHg in some environmental samples with satisfactory results.

  4. Ionic liquid-based extraction followed by graphite-furnace atomic absorption spectrometry for the determination of trace heavy metals in high-purity iron metal.

    PubMed

    Matsumiya, Hiroaki; Kato, Tatsuya; Hiraide, Masataka

    2014-02-01

    The analysis of high-purity materials for trace impurities is an important and challenging task. The present paper describes a facile and sensitive method for the determination of trace heavy metals in high-purity iron metal. Trace heavy metals in an iron sample solution were rapidly and selectively preconcentrated by the extraction into a tiny volume of an ionic liquid [1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide] for the determination by graphite-furnace atomic absorption spectrometry (GFAAS). A nitrogen-donating neutral ligand, 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ), was found to be effective in the ionic liquid-based selective extraction, allowing the nearly complete (~99.8%) elimination of the iron matrix. The combination with the optimized GFAAS was successful. The detectability reached sub-μg g(-1) levels in iron metal. The novel use of TPTZ in ionic liquid-based extraction followed by GFAAS was successfully applied to the determination of traces of Co, Ni, Cu, Cd, and Pb in certified reference materials for high-purity iron metal.

  5. Determination of macro and trace elements in multivitamin dietary supplements by high-resolution continuum source graphite furnace atomic absorption spectrometry with slurry sampling.

    PubMed

    Krawczyk, Magdalena

    2014-01-01

    In this research, three different commercially available multivitamin dietary supplements were analyzed by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS) with slurry sampling. The concentrations of Cr, Cu, Fe, Mn, and Se were determined and compared to the amounts stated by producers. The safety of multivitamin dietary supplements depends on various factors including the manufacturing process and the purity and origins of the raw ingredients. For this reason, this research determined concentrations of several toxic elements (As, Cd, and Pb). Microwave-assisted high pressure Teflon bomb digestion was used to determine total amounts of elements in samples. Samples were prepared as slurries at a concentration of 0.1% (m/v) for macro elements (Cr, Cu, Fe, Mn, and Se) and at a concentration of % (m/v) for trace elements (As, Cd, and Pb) in acidic media (3M HNO3). The influence of acid concentration, Triton X-100 addition, sonication time, and sonication power on absorbance was investigated. The accuracy of this method was validated by analyses of NRCC LUTS-1 (Lobster hepatopancreas), NRCC DORM-1 (Dogfish Muscle), NRCC DOLT-2 (Dogfish Liver), NBS SRM 1570 (Spinach Leaves) and NBS SRM 1573 (Tomato Leaves) certified reference materials. The measured elements contents in these reference materials (except NRCC DOLT-2) were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level.

  6. Ultrasound-assisted ion-pair dispersive liquid-liquid microextraction of trace amounts of lead in water samples prior to graphite furnace atomic absorption spectrometry determination.

    PubMed

    Afzali, Daryoush; Mohadesi, Ali Reza; Falahnejad, Masoumeh; Bahadori, Behnoosh

    2013-01-01

    A new ion-pair dispersive liquid-liquid microextraction method is described for separation and preconcentration of trace amounts of lead in different water samples. Graphite furnace atomic absorption spectrometry was used for determination of lead. The ion association complex between lead and iodide ions that forms is PbI4(-2)-tetradecyl-dimethylbenzylammonium, which is extracted into fine droplets of chlorobenzene. In order to reach the optimized experimental conditions, the influence of different parameters, such as concentration of KI, nature and volume of extraction solvents, pH effect, extraction time, and the period and speed of sonication and centrifugation, were optimized. The LOD was 0.08 ng/mL and the linear dynamic range was 0.20-8.0 ng/mL in initial solution with a correlation coefficient of 0.9985. Under the optimum conditions, the enrichment factor was 555.5. The proposed method was successfully applied for separation and determination of lead in sea, rain, river, and drinking water samples.

  7. Determination of lead in medicinal plants by high-resolution continuum source graphite furnace atomic absorption spectrometry using direct solid sampling.

    PubMed

    Figuerêdo Rêgo, Jardes; Virgilio, Alex; Nóbrega, Joaquim A; Gomes Neto, José A

    2012-10-15

    A procedure is proposed for Pb determination in medicinal plants by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) using direct solid sampling. Among Pd(NO(3))(2), Pd/Mg(NO(3))(2), NH(4)H(2)PO(4) and the W-coated platform tested as chemical modifiers, Pd(NO(3))(2) presented the best performance. Calibration plots (10-1000 pg Pb) with regression coefficients better than 0.999 were typically obtained. Accuracy was checked for Pb determination in five plant certified reference materials. Results were in agreement with reference values at a 95% confidence level (paired t-test). Medicinal plant samples were analyzed by the proposed procedure and line-source GF AAS using slurry sampling as a comparative technique. The RSD was 10% (n=3) for a sample containing 0.88 μg g(-1) Pb. The limit of quantification (dry mass) was 0.024 μg g(-1). The contents of Pb in medicinal plant samples varied in the 0.30-1.94 μg g(-1) range.

  8. Novel ion imprinted magnetic mesoporous silica for selective magnetic solid phase extraction of trace Cd followed by graphite furnace atomic absorption spectrometry detection

    NASA Astrophysics Data System (ADS)

    Zhao, Bingshan; He, Man; Chen, Beibei; Hu, Bin

    2015-05-01

    Determination of trace Cd in environmental, biological and food samples is of great significance to toxicological research and environmental pollution monitoring. While the direct determination of Cd in real-world samples is difficult due to its low concentration and the complex matrix. Herein, a novel Cd(II)-ion imprinted magnetic mesoporous silica (Cd(II)-II-MMS) was prepared and was employed as a selective magnetic solid-phase extraction (MSPE) material for extraction of trace Cd in real-world samples followed by graphite furnace atomic absorption spectrometry (GFAAS) detection. Under the optimized conditions, the detection limit of the proposed method was 6.1 ng L- 1 for Cd with the relative standard deviation (RSD) of 4.0% (c = 50 ng L- 1, n = 7), and the enrichment factor was 50-fold. To validate the proposed method, Certified Reference Materials of GSBZ 50009-88 environmental water, ZK018-1 lyophilized human urine and NIES10-b rice flour were analyzed and the determined values were in a good agreement with the certified values. The proposed method exhibited a robust anti-interference ability due to the good selectivity of Cd(II)-II-MMS toward Cd(II). It was successfully employed for the determination of trace Cd(II) in environmental water, human urine and rice samples with recoveries of 89.3-116%, demonstrating that the proposed method has good application potential in real world samples with complex matrix.

  9. Investigation of chemical modifiers for the determination of lead in fertilizers and limestone using graphite furnace atomic absorption spectrometry with Zeeman-effect background correction and slurry sampling

    NASA Astrophysics Data System (ADS)

    Borges, Aline R.; Becker, Emilene M.; Dessuy, Morgana B.; Vale, Maria Goreti R.; Welz, Bernhard

    2014-02-01

    In this work, chemical modifiers in solution (Pd/Mg, NH4H2PO4 and NH4NO3/Pd) were compared with permanent modifiers (Ir and Ru) for the determination of lead in fertilizer and limestone samples using slurry sampling and graphite furnace atomic absorption spectrometry with Zeeman-effect background correction. The analytical line at 283.3 nm was used due to some spectral interference observed at 217.0 nm. The NH4H2PO4 was abandoned due to severe spectral interference even at the 283.3-nm line. For Pd/Mg and NH4NO3/Pd the optimum pyrolysis and atomization temperatures were 900 °C and 1900 °C, respectively. For Ru and Ir, the integrated absorbance signal was stable up to pyrolysis temperatures of 700 °C and 900 °C, respectively, and up to atomization temperature of 1700 °C. The limit of detection (LOD) was 17 ng g- 1 using Pd/Mg and 29 ng g- 1 using NH4NO3/Pd. Among the permanent modifiers investigated, the LOD was 22 ng g- 1 Pb for Ir and 10 ng g- 1 Pb for Ru. The accuracy of the method was evaluated using the certified reference material NIST SRM 695. Although Ru provided lower LOD, which can be attributed to a lower blank signal, only the modifiers in solution showed concordant values of Pb concentration for the NIST SRM 695 and the most of analyzed samples. Moreover, the Pd/Mg modifier provided the highest sensitivity and for this reason it is more suitable for the determination of Pb in fertilizers samples in slurry; besides this it presented a better signal-to-noise ratio than NH4NO3/Pd.

  10. Simultaneous determination of iron and nickel in fluoropolymers by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Soares, Bruno M; Santos, Rafael F; Bolzan, Rodrigo C; Muller, Edson I; Primel, Ednei G; Duarte, Fabio A

    2016-11-01

    This paper reports the development of a method of simultaneous determination of iron and nickel in fluoropolymers by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) with direct solid sampling. In order to carry out simultaneous measurements, both the main resonance line of nickel (232.003nm) and the adjacent secondary line of iron (232.036nm) were monitored in the same spectral window. The proposed method was optimized with a perfluoroalkoxy (PFA) sample and was applied to the determination of iron and nickel in fluorinated ethylene propylene (FEP) and modified polytetrafluoroethylene (PTFE-TFM) samples. Pyrolysis and atomization temperatures, as well as the use of Pd and H2 (during pyrolysis) as chemical modifiers, were carefully investigated. Compromise temperatures for pyrolysis and atomization of both analytes were achieved at 800 and 2300°C, respectively, using only 0.5Lmin(-1) H2 as chemical modifier during pyrolysis. Calibration curves were performed with aqueous standards by using a single solution which contained both analytes. Limits of detection were 221 and 9.6ngg(-1) for iron and nickel, respectively. Analyte concentrations in all samples ranged from 3.53 to 12.4µgg(-1) for iron and from 37 to 78ngg(-1) for nickel, with relative standard deviation less than 19%. Accuracy was evaluated by comparing these results with those obtained by inductively coupled plasma mass spectrometry after sample digestion by microwave-induced combustion and no significant statistical difference was observed.

  11. Direct solid sample analysis with graphite furnace atomic absorption spectrometry—a fast and reliable screening procedure for the determination of inorganic arsenic in fish and seafood.

    PubMed

    Zmozinski, Ariane V; Llorente-Mirandes, Toni; Damin, Isabel C F; López-Sánchez, José F; Vale, Maria Goreti R; Welz, Bernhard; Silva, Márcia M

    2015-03-01

    Direct solid sample analysis with graphite furnace atomic absorption spectrometry (SS-GF AAS) was investigated initially with the intention of developing a method for the determination of total As in fish and other seafood. A mixture of 0.1% Pd+0.06% Mg+0.06% Triton X-100 was used as the chemical modifier, added in solution over the solid samples, making possible the use of pyrolysis and atomization temperatures of 1200 °C and 2400 °C, respectively. The sample mass had to be limited to 0.25 mg, as the integrated absorbance did not increase further with increasing sample mass. Nevertheless, the recovery of As from several certified reference materials was of the order of 50% lower than the certified value. Strong molecular absorption due to the phosphorus monoxide molecule (PO) was observed with high-resolution continuum source AAS (HR CS AAS), which, however, did not cause any spectral interference. A microwave-assisted digestion with HNO3/H2O2 was also investigated to solve the problem; however, the results obtained for several certified reference materials were statistically not different from those found with direct SS-GF AAS. Accurate values were obtained using inductively coupled plasma mass spectrometry (ICP-MS) to analyze the digested samples, which suggested that organic As compounds are responsible for the low recoveries. HPLC-ICP-MS was used to determine the arsenobetaine (AB) concentration. Accurate results that were not different from the certified values were obtained when the AB concentration was added to the As concentration found by SS-GF AAS for most certified reference materials (CRM) and samples, suggesting that SS-GF AAS could be used as a fast screening procedure for inorganic As determination in fish and seafood.

  12. Determination of copper and mercury in phosphate fertilizers employing direct solid sampling analysis and high resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    de Oliveira Souza, Sidnei; François, Luciane Luiza; Borges, Aline Rocha; Vale, Maria Goreti Rodrigues; Araujo, Rennan Geovanny Oliveira

    2015-12-01

    The present study proposes the determination of copper and mercury in phosphate fertilizers by direct solid sampling analysis (SS) employing high resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). For Cu determination, two analytical lines were used: 327.3960 nm and 249.2146 nm. Hg determination was carried out on the line 253.6521 nm and 100 μg KMnO4 was used as chemical modifier. The optimal pyrolysis temperature for Cu determination was 1300 °C. Atomization temperatures for Cu and Hg were 2400 and 1100 °C, respectively. External calibration with aqueous standard solutions was adopted for both elements. The limits of quantification (LoQs) and characteristic mass (m0) obtained for Cu determination were 0.4 μg g- 1 and 1.12 ng, respectively, on line 249.2146 nm, and 64 μg g- 1 and 25 pg on 327.3960 nm. For mercury, LoQ and m0 were 4.8 ng g- 1 and 39 pg, respectively. The accuracy of the proposed methods was confirmed by the analysis of standard reference material (SRM) of Trace Elements in Multi-Nutrient Fertilizer (SRM NIST 695). The precision expressed as relative standard deviation (RSD), was better than 8.2% for Hg and 7.7% for the Cu (n = 5), considered satisfactory for microanalysis in solid sample. Four fertilizer samples acquired in commercial establishments in the city of Salvador, Bahia, Brazil, were analyzed. The optimized analytical methods were simple, fast, accurate, precise and free of spectral interferences for the determination of Cu and Hg in phosphate fertilizer samples by SS-HR-CS GF AAS, avoiding the dissolution of the sample, the use of harmful reagents and the generation of residues.

  13. Direct and simultaneous determination of Cr and Fe in crude oil using high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Dittert, Ingrid M.; Silva, Jessee S. A.; Araujo, Rennan G. O.; Curtius, Adilson J.; Welz, Bernhard; Becker-Ross, Helmut

    2009-06-01

    A simple, fast and sensitive direct method for the simultaneous determination of Cr and Fe in crude oil samples is proposed using high-resolution continuum source graphite furnace atomic absorption spectrometry. No sample preparation is used except for a 10-minute homogenization in an ultrasonic bath. Aliquots of 0.1-4 mg of the samples are weighed onto solid sampling platforms and analyzed directly using aqueous standards for calibration. The simultaneous determination was possible because there is a secondary Fe line at 358.120 nm in the vicinity of the most sensitive Cr line at 357.868 nm, and both absorption lines were within the wavelength interval covered by the linear charge-coupled device array detector. It has also been of advantage that the sensitivity ratio between the two analytical lines corresponded roughly to the concentration ratio of the two elements found in crude oil, and that both analytes have very similar volatility, so that no compromises had to be made regarding pyrolysis and atomization temperatures. Two oil reference materials have been analyzed and the results were in agreement with the certified or reported values. Characteristic masses of 3.6 pg and 0.5 ng were obtained for Cr and Fe, respectively. The limits of detection (3 σ, n = 10) were 1 µg kg - 1 for Cr and 0.6 mg kg - 1 for Fe, and the precision, expressed as the relative standard deviation, ranged from 4 to 20%, which is often acceptable for a rapid direct analytical procedure. Five crude oils samples were analyzed.

  14. Direct determination of Hg in polymers by solid sampling-graphite furnace atomic absorption spectrometry. A comparison of the performance of line source and continuum source instrumentation

    NASA Astrophysics Data System (ADS)

    Resano, M.; Briceño, J.; Belarra, M. A.

    2009-06-01

    This work explores the potential of solid sampling-graphite furnace atomic absorption spectrometry (SS-GFAAS) for the fast and direct determination of Hg in polymers. Eight certified reference materials with different composition (polyethylene-PE-, polystyrene-PS-, poly vinyl chloride-PVC- and acrylonitrile butadiene styrene-ABS-) were selected for the study, covering a wide Hg content range (from 20 to 1100 μg g - 1 ). The difficulties found in achieving a selective atomization of the analyte from these samples were partially mitigated by the maintenance of the Ar flow during the atomization step, leading to an improved signal-to-background ratio. Even then, when a line source (LS) GFAAS instrument was employed for analysis, it was only possible to develop truly accurate procedures relying on the use of aqueous standards for calibration for PE and PVC samples, and different atomization conditions (1200 °C and 1300 °C, respectively) were needed for the two types of samples. The use of high-resolution continuum source (HR-CS) GFAAS instrumentation permitted to improve this situation significantly thanks to its higher potential for the correction of high and fast changing background. With such an instrument, satisfactory results could be obtained for all the samples under study using the same atomization conditions (1200 °C) and aqueous standard solutions for calibration. Additionally, the HR-CS GFAAS technique presented a lower limit of detection (0.6 μg g - 1 for CS and 2.2 μg g - 1 for LS), a broader linear range (10 to 320 Hg ng for CS, and 20 to 200 ng for LS), and a somewhat improved sensitivity (approximately 0.0030 s ng - 1 for CS using the three central pixels for quantification, and approximately 0.0025 s ng - 1 for LS). Overall, the use of HR-CS GFAAS permits obtaining significant advantages for the determination of this complex analyte in plastics, such as straightforward calibration with aqueous standards, a high sample throughput (15 min per

  15. Investigation of chemical modifiers for phosphorus in a graphite furnace using high-resolution continuum source atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Lepri, Fábio G.; Dessuy, Morgana B.; Vale, Maria Goreti R.; Borges, Daniel L. G.; Welz, Bernhard; Heitmann, Uwe

    2006-08-01

    Phosphorus is not one of the elements that are typically determined by atomic absorption spectrometry, but this technique nevertheless offers several advantages that make it attractive, such as the relatively great freedom from interferences. As the main resonance lines for phosphorus are in the vacuum-ultraviolet, inaccessible by conventional atomic absorption spectrometry equipment, Ĺvov and Khartsyzov proposed to use the non-resonance doublet at 213.5 / 213.6 nm. Later it turned out that with conventional equipment it is necessary to use a chemical modifier in order to get reasonable sensitivity, and lanthanum was the first one suggested for that purpose. In the following years more than 30 modifiers have been proposed for the determination of this element, and there is no consensus about the best one. In this work high-resolution continuum source atomic absorption spectrometry has been used to investigate the determination of phosphorus without a modifier and with the addition of selected modifiers of very different nature, including the originally recommended lanthanum modifier, several palladium-based modifiers and sodium fluoride. As high-resolution continuum source atomic absorption spectrometry is revealing the spectral environment of the analytical line at high resolution, it became obvious that without the addition of a modifier essentially no atomic phosphorus is formed, even at 2700 °C. The absorption measured with line source atomic absorption spectrometry in this case is due to the PO molecule, the spectrum of which is overlapping with the atomic line. Palladium, with or without the addition of calcium or ascorbic acid, was found to be the only modifier to produce almost exclusively atomic phosphorus. Lanthanum and particularly sodium fluoride produced a mixture of P and PO, depending on the atomization temperature. This fact can explain at least some of the discrepancies found in the literature and some of the phenomena observed in the

  16. Multiple response optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry with sample injection as detergent emulsion

    NASA Astrophysics Data System (ADS)

    Brum, Daniel M.; Lima, Claudio F.; Robaina, Nicolle F.; Fonseca, Teresa Cristina O.; Cassella, Ricardo J.

    2011-05-01

    The present paper reports the optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry (GF AAS) employing a strategy based on the injection of the samples as detergent emulsions. The method was optimized in relation to the experimental conditions for the emulsion formation and taking into account that the three analytes (Cu, Fe and Pb) should be measured in the same emulsion. The optimization was performed in a multivariate way by employing a three-variable Doehlert design and a multiple response strategy. For this purpose, the individual responses of the three analytes were combined, yielding a global response that was employed as a dependent variable. The three factors related to the optimization process were: the concentration of HNO 3, the concentration of the emulsifier agent (Triton X-100 or Triton X-114) in aqueous solution used to emulsify the sample and the volume of solution. At optimum conditions, it was possible to obtain satisfactory results with an emulsion formed by mixing 4 mL of the samples with 1 mL of a 4.7% w/v Triton X-100 solution prepared in 10% v/v HNO 3 medium. The resulting emulsion was stable for 250 min, at least, and provided enough sensitivity to determine the three analytes in the five samples tested. A recovery test was performed to evaluate the accuracy of the optimized procedure and recovery rates, in the range of 88-105%; 94-118% and 95-120%, were verified for Cu, Fe and Pb, respectively.

  17. A sensitive magnetic nanoparticle-based immunoassay of phosphorylated acetylcholinesterase using protein cage templated lead phosphate for signal amplification with graphite furnace atomic absorption spectrometry detection.

    PubMed

    Liang, Pei; Kang, Caiyan; Yang, Enjian; Ge, Xiaoxiao; Du, Dan; Lin, Yuehe

    2016-04-07

    We developed a new magnetic nanoparticle sandwich-like immunoassay using protein cage nanoparticles (PCN) for signal amplification together with graphite furnace atomic absorption spectrometry (GFAAS) for the quantification of an organophosphorylated acetylcholinesterase adduct (OP-AChE), the biomarker of exposure to organophosphate pesticides (OPs) and nerve agents. OP-AChE adducts were firstly captured by titanium dioxide coated magnetic nanoparticles (TiO2-MNPs) from the sample matrixes through metal chelation with phospho-moieties, and then selectively recognized by anti-AChE antibody labeled on PCN which was packed with lead phosphate in its cavity (PCN-anti-AChE). The sandwich-like immunoreaction was performed among TiO2-MNPs, OP-AChE and PCN-anti-AChE to form a TiO2-MNP/OP-AChE/PCN-anti-AChE immunocomplex. The complex could be easily isolated from the sample solution with the help of magnet, and the released lead ions from PCN were detected by GFAAS for the quantification of OP-AChE. Greatly enhanced sensitivity was achieved because PCN increased the amount of metal ions in the cavity of each apoferritin. The proposed immunoassay yielded a linear response over a broad range of OP-AChE concentrations from 0.01 nM to 2 nM, with a detection limit of 2 pM, which has enough sensitivity for monitoring of low-dose exposure to OPs. This new method showed an acceptable stability and reproducibility and was validated with OP-AChE spiked human plasma.

  18. Magnetic solid-phase extraction combined with graphite furnace atomic absorption spectrometry for speciation of Cr(III) and Cr(VI) in environmental waters.

    PubMed

    Jiang, Hong-mei; Yang, Ting; Wang, Yan-hong; Lian, Hong-zhen; Hu, Xin

    2013-11-15

    A new approach of magnetic solid phase extraction (MSPE) coupled with graphite furnace atomic absorption spectrometry (GFAAS) has been developed for the speciation of Cr(III) and Cr(VI) using zincon-immobilized silica-coated magnetic Fe3O4 nanoparticles (Zincon-Si-MNPs) as the MSPE absorbent. Cr(III) was quantitatively reserved on the absorbent at pH 9.1 while total Cr was reserved at pH 6.5. The absorbed Cr species were eluted by using 2 mol/L HCl and detected by GFAAS. The concentration of Cr(VI) could be calculated by subtracting Cr(III) from total Cr. All the parameters affecting the separation and extraction efficiency of Cr species such as pH, extraction time, concentration and volume of eluent, sample volume and influence of co-existing ions were systematically examined and the optimized conditions were established accordingly. The detection limit (LOD) of the method was 0.016 and 0.011 ng mL(-1) for Cr(III) and Cr(VI), respectively, with the enrichment factor of 100 and 150. The precisions of this method (Relative standard deviation, RSD, n=7) for Cr(III) and Cr(VI) at 0.1 ng mL(-1) were 6.0% and 6.2%, respectively. In order to validate the proposed method, a certified reference material of environmental water was analyzed, and the result of Cr speciation was in good agreement with the certified value. This MSPE-GFAAS method has been successfully applied for the speciation of Cr(III) and Cr(VI) in lake and tap waters with the recoveries of 88-109% for the spiked samples. Moreover, the MSPE separation mechanism of Cr(III) and Cr(VI) based on their adsorption-desorption on Zincon-Si-MNPs has been explained through various spectroscopic characterization.

  19. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of low-level silver by graphite furnace atomic absorption spectrophotometry

    USGS Publications Warehouse

    Damrau, D.L.

    1993-01-01

    Increased awareness of the quality of water in the United States has led to the development of a method for determining low levels (0.2-5.0 microg/L) of silver in water samples. Use of graphite furnace atomic absorption spectrophotometry provides a sensitive, precise, and accurate method for determining low-level silver in samples of low ionic-strength water, precipitation water, and natural water. The minimum detection limit determined for low-level silver is 0.2 microg/L. Precision data were collected on natural-water samples and SRWS (Standard Reference Water Samples). The overall percent relative standard deviation for natural-water samples with silver concentrations more than 0.2 microg/L was less than 40 percent throughout the analytical range. For the SRWS with concentrations more than 0.2 microg/L, the overall percent relative standard deviation was less than 25 percent throughout the analytical range. The accuracy of the results was determined by spiking 6 natural-water samples with different known concentrations of the silver standard. The recoveries ranged from 61 to 119 percent at the 0.5-microg/L spike level. At the 1.25-microg/L spike level, the recoveries ranged from 92 to 106 percent. For the high spike level at 3.0 microg/L, the recoveries ranged from 65 to 113 percent. The measured concentrations of silver obtained from known samples were within the Branch of Quality Assurance accepted limits of 1 1/2 standard deviations on the basis of the SRWS program for Inter-Laboratory studies.

  20. A dried urine spot test to simultaneously monitor Mo and Ti levels using solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Rello, L.; Lapeña, A. C.; Aramendía, M.; Belarra, M. A.; Resano, M.

    2013-03-01

    Home-based collection protocols for clinical specimens are actively pursued as a means of improving life quality of patients that require frequent controls, such as patients with metallic prosthesis, for whom monitoring the evolution of Mo and Ti in biological fluids may play a decisive role to detect prosthesis mal-functioning. The collection of biological fluids on clinical filter papers provides a simple way to implement these protocols. This work explores the potential of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for the simultaneous and direct determination of Mo and Ti in urine, after its deposition onto clinical filter paper, giving rise to a dried urine spot. The approach used for depositing the sample was found crucial to develop a quantitative method, since the filter paper acts as a chromatographic support and produces a differential distribution of the target analytes. Furthermore, the high spreading of urine onto a filter paper results in a small amount of urine per surface unit, and thus, ultimately, in lack of sensitivity. In order to circumvent these problems, the use of an alternative approach based on the use of pre-cut 17 × 19 mm filter paper pieces onto which larger amounts of sample (500 μL) can be retained by single deposition was proposed and evaluated. In this way, an approximately 12-fold increase in sensitivity and a more homogeneous distribution of the target analytes were obtained, permitting the development of a quantification strategy based on the use of matrix-matched urine samples of known analyte concentrations, which were subjected to the same procedure as the samples. Accuracy of this method, which provides LODs of 1.5 μg L- 1 for Mo and 6.5 μg L- 1 for Ti, was demonstrated after analysis of urine reference materials. Overall, the performance of the method developed is promising, being likely suitable for determination of other analytes in dried urine spots.

  1. Determination of the in vivo pharmacokinetics of palladium-bacteriopheophorbide (WST09) in EMT6 tumour-bearing Balb/c mice using graphite furnace atomic absorption spectroscopy.

    PubMed

    Brun, Pierre Hervé; DeGroot, Jennifer L; Dickson, Eva F Gudgin; Farahani, Mohsen; Pottier, Roy H

    2004-01-01

    Palladium-bacteriopheophorbide (WST09), a novel bacteriochlorophyll derivative, is currently being investigated for use as a photodynamic therapy (PDT) drug due to its strong absorption in the near-infrared region and its ability to efficiently generate singlet oxygen when irradiated. In this study, we determined the pharmacokinetics and tissue distribution of WST09 in female EMT6 tumour-bearing Balb/c mice in order to determine if selective accumulation of this drug occurs in tumour tissue. A total of 41 mice were administered WST09 by bolus injection into the tail vein at a dose level of 5.0 +/- 0.8 mg kg(-1). Three to six mice were sacrificed at each of 0.08, 0.25, 0.5, 1.0, 3.0, 6.0, 9.0, 12, 24, 48, 72, and 96 h post injection, and an additional three control mice were sacrificed without having been administered WST09. Terminal blood samples as well as liver, skin, muscle, kidney and tumour samples were obtained from each mouse and analyzed for palladium content (from WST09) using graphite furnace atomic absorption spectroscopy (GFAAS). The representative concentration of WST09 in the plasma and tissues was then calculated. Biphasic kinetics were observed in the plasma, kidney, and liver with clearance from each of these tissues being relatively rapid. Skin, muscle and tumour did not show any significant accumulation at all time points investigated. No selective drug accumulation was seen in the tumour and normal tissues, relative to plasma. Thus the results of this study indicate that vascular targeting resulting from WST09 in the circulation, as opposed to selective WST09 accumulation in tumour tissues, may be responsible for PDT effects in tumours that have been observed in other WST09 studies.

  2. Laser-Excited Atomic Fluorescence and Ionization in a Graphite Furnace for the Determination of Metals and Nonmetals

    NASA Astrophysics Data System (ADS)

    Butcher, David James

    1990-01-01

    Here is reported novel instrumentation for atomic spectrometry that combined the use of a pulsed laser system as the light source and an electrothermal atomizer as the atom cell. The main goal of the research was to develop instrumentation that was more sensitive for elemental analysis than commercially available instruments and could be used to determine elements in real sample matrices. Laser excited atomic fluorescence spectrometry (LEAFS) in an electrothermal atomizer (ETA) was compared to ETA atomic absorption spectrometry (AAS) for the determination of thallium, manganese, and lead in food and agricultural standard reference materials (SRMs). Compared to ETA AAS, ETA LEAFS has a longer linear dynamic range (LDR) (5-7 orders of magnitude compared to 2-3 orders of magnitude) and higher sensitivity (10 ^{-16} to 10^{ -14} g as compared to 10^{ -13} to 10^{-11} g). Consequently, ETA LEAFS allows elemental analysis to be done over a wider range of concentrations with less dilution steps. Thallium was accurately determined in biological samples by ETA LEAFS at amounts five to one hundred times below the ETA AAS detection limit. ETA AAS and ETA LEAFS were compared for the determination of lead and manganese, and in general, the accuracies and precisions of ETA AAS were the same, with typical precisions between 3% and 6%. Fluorine was determined using laser excited molecular fluorescence spectrometry (LEMOFS) in an ETA. Molecular fluorescence from magnesium fluoride was collected, and the detection limit of 0.3 pg fluorine was two to six orders of magnitude more sensitive than other methods commonly used for the determination of fluorine. Significant interferences from ions were observed, but the sensitivity was high enough that fluorine could be determined in freeze dried urine SRMs by diluting the samples by a factor of one hundred to remove the interferences. Laser enhanced ionization (LEI) in an ETA was used for the determination of metals. For thallium, indium

  3. Robotized sampling device for graphite furnace atomic absorption spectrometry slurry analysis with Varian SpectrAA instruments

    NASA Astrophysics Data System (ADS)

    Hoenig, Michel; Cilissen, Anne

    1993-08-01

    There is a growing interest in the determination by electrothermal atomic absorption spectrometry (ETAAS) of elements in solid samples without a dissolution stage, to avoid contamination and losses during the preparation of the sample. This approach may be particularly convenient when only small amounts of sample are available. Details of the above-mentioned program for the adaptation of the Gilson sample changer to Varian SpectrAA systems (X,Y,Z positions, timings etc.) are available on request.

  4. Determination of lead and cadmium in ceramicware leach solutions by graphite furnace atomic absorption spectroscopy: method development and interlaboratory trial.

    PubMed

    Hight, S C

    2001-01-01

    This method was developed to improve sensitivity and eliminate time consuming, evaporative pre-concentration in AOAC Method 973.82 and American Society for Testing and Materials method C738 for testing foodware. The method was developed using leach solutions obtained by leaching 9 differently decorated ceramic vessels with 4% acetic acid for 24 h at room temperature. Lead and cadmium concentrations in leach solutions were 0.005-17,600 and 0.0004-0.500 microg/mL, respectively. Concentrations were determined using peak area, phosphate chemical modifier (8.3 microg PO4(-3)), and a standard curve for quantitation. Optimized pre-atomization and atomization temperatures were 1,300 and 1,800 degrees C, respectively, for Pb and 1,100 and 1,700 degrees C, respectively, for Cd. Characteristic masses (mo) were 10 and 0.4 pg for Pb and Cd, respectively. Precision of repeated analyses of calibration solutions was < or =3% relative standard deviation. Precision of duplicate leach solution analyses on different days was 0-9% relative difference. Recovery from fortified leach solutions was 96-106%. Results obtained by this method agreed 92-110% with those of confirmatory analyses. Results of certified reference material solutions agreed 94-100% with certificate values. Pb and Cd limits of quantitation (LOQ) were 0.005 and 0.0005 microg/mL, respectively. Results from 3 trial laboratories for 4 leach solutions containing Pb and Cd concentrations of 0.017-1.47 and <0.0005-0.0864 microg/mL, respectively, agreed 89-102% with results of the author. Two attributes of this method were noteworthy: (1) Background absorbance due to organic matter was entirely absent from atomization profiles, making the use of short pre-atomization hold times (2 s) possible. (2) Instrument precision was excellent and only one determination per solution was needed. Acceptance criteria for quality control measurements and a practical procedure for estimating the method LOQ during routine regulatory analyses

  5. Slurry sampling graphite furnace atomic absorption spectrometry: a preliminary examination of results from an international collaborative study

    NASA Astrophysics Data System (ADS)

    Miller-Ihli, N. J.

    1995-06-01

    An international collaborative study was initiated to evaluate the current state-of-the-art for solid sampling. Samples were sent to 28 laboratories and data were received from 18 collaborators, 16 of which reported slurry results. A preliminary check of performance using NIST SRM 1643c acidified water, showed that at least 13 laboratories were able to provide accurate results within ±10% of the mean certified Pb and Cr concentrations. The focus of this work was slurry analytical data reported by collaborators. Average performance by collaborators for the determination of Pb in NIST SRM 2704 Buffalo River Sediment was 103% recovery based on the mean certified reference value and was 84% recovery based on the mean certified reference value for NRCC PACS-1, a marine estuarine sediment, which was identified to collaborators as an unknown sediment. Average performance by collaborators for Cr in SRM 2704 was 96% based on the mean certified reference value and was 78% recovery based on the mean certified reference value for PACS-1. The use of secondary wavelengths and the importance of analysis of a representative subsample are highlighted. Possible problems leading to inaccurate results being reported by collaborators are discussed including the use of mini-flows, matrix modifiers, low atomization temperatures, short atomization times, and expulsion losses.

  6. Method development for the determination of cadmium in fertilizer samples using high-resolution continuum source graphite furnace atomic absorption spectrometry and slurry sampling

    NASA Astrophysics Data System (ADS)

    Borges, Aline R.; Becker, Emilene M.; Lequeux, Céline; Vale, Maria Goreti R.; Ferreira, Sergio L. C.; Welz, Bernhard

    2011-07-01

    The determination of cadmium (Cd) in fertilizers is of major interest, as this element can cause growth problems in plants, and also affect animals and humans. High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) with charge-coupled device (CCD) array detection overcomes several of the limitations encountered with conventional line source AAS, especially the problem of accurate background measurement and correction. In this work an analytical method has been developed to determine Cd in fertilizer samples by HR-CS GF AAS using slurry sampling. Both a mixture of 10 μg Pd + 6 μg Mg in solution and 400 μg of iridium as permanent modifier have been investigated and aqueous standards were used for calibration. Pyrolysis and atomization temperatures were 600 °C and 1600 °C for the Pd-Mg modifier, and 500 °C and 1600 °C for Ir, respectively. The results obtained for Cd in the certified reference material NIST SRM 695 (Trace Elements in Multi-Nutrient Fertilizer) of 16.7 ± 1.3 μg g -1 and 16.4 ± 0.75 μg g -1 for the Pd-Mg and Ir modifier, respectively, were statistically not different from the certified value of 16.9 ± 0.2 μg g -1 on a 95% confidence level; however, the results obtained with the Ir modifier were significantly lower than those for the Pd-Mg modifier for most of the samples. The characteristic mass was 1.0 pg for the Pd-Mg modifier and 1.1 pg Cd for the Ir modifier, and the correlation coefficients (R 2) of the calibration were > 0.99. The instrumental limits of detection were 7.5 and 7.9 ng g -1, and the limits of quantification were 25 and 27 ng g -1 for Pd-Mg and Ir, respectively, based on a sample mass of 5 mg. The cadmium concentration in the investigated samples was between 0.07 and 5.5 μg g -1 Cd, and hence below the maximum value of 20 μg g -1 Cd permitted by Brazilian legislation.

  7. Hollow fiber liquid phase microextraction combined with graphite furnace atomic absorption spectrometry for the determination of methylmercury in human hair and sludge samples

    NASA Astrophysics Data System (ADS)

    Jiang, Hongmei; Hu, Bin; Chen, Beibei; Zu, Wanqing

    2008-07-01

    Two methods, based on hollow fiber liquid-liquid-liquid (three phase) microextraction (HF-LLLME) and hollow fiber liquid phase (two phase) microextraction (HF-LPME), have been developed and critically compared for the determination of methylmercury content in human hair and sludge by graphite furnace atomic absorption spectrometry (GFAAS). In HF-LPME, methylmercury was extracted into the organic phase (toluene) prior to its determination by GFAAS, while inorganic mercury remained as a free species in the sample solution. In HF-LLLME, methylmercury was first extracted into the organic phase (toluene) and then into the acceptor phase (4% thiourea in 1 mol L - 1 HCl) prior to its determination by GFAAS, while inorganic mercury remained in the sample solution. The total mercury was determined by inductively coupled plasma-mass spectrometry (ICP-MS), and the levels of inorganic mercury in both HF-LLLME and HF-LPME were obtained by subtracting methylmercury from total mercury. The factors affecting the microextraction of methylmercury, including organic solvent, extraction time, stirring rate and ionic strength, were investigated and the optimal extraction conditions were established for both HF-LLLPME and HF-LPME. With a consumption of 3.0 mL of the sample solution, the enrichment factors were 204 and 55 for HF-LLLPME and HF-LPME, respectively. The limits of detection (LODs) for methylmercury were 0.1 μg L - 1 and 0.4 μg L - 1 (as Hg) with precisions (RSDs (%), c = 5 μg L - 1 (as Hg), n = 5) of 13% and 11% for HF-LLLPME-GFAAS and HF-LPME-GFAAS, respectively. For ICP-MS determination of total mercury, a limit of detection of 39 ng L - 1 was obtained. Finally, HF-LLLME-GFAAS was applied to the determination of methylmercury content in human hair and sludge, and the recoveries for the spiked samples were in the range of 99-113%. In order to validate the method, HF-LLLME-GFAAS was also applied to the analysis of a certified reference material of NRCC DORM-2 dogfish

  8. Graphene oxide-TiO2 composite solid phase extraction combined with graphite furnace atomic absorption spectrometry for the speciation of inorganic selenium in water samples.

    PubMed

    Zhang, Yanan; Chen, Beibei; Wu, Shaowei; He, Man; Hu, Bin

    2016-07-01

    In this paper, a method of graphene oxide (GO)-TiO2 composite solid phase extraction followed by graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the speciation of inorganic selenium in environmental waters. The adsorption behavior of inorganic Se(IV) and Se(VI) on the GO-TiO2(1:1) composite was investigated. It was found that Se(IV) was quantitatively retained on the GO-TiO2 composites within a wide pH range of 0.5-10, while Se(VI) was quantitatively adsorbed on GO-TiO2(1:1) composite at pH 0.5-2, and no obvious adsorption of Se(VI) within the pH range of 4-10 was found. By selecting pH 6.0, Se(IV) could be easily determined. After reduction of Se(VI), total Se was determined by the proposed method, and Se(VI) was calculated as the difference between the total Se and Se(IV). The factors affecting the separation/preconcentration of Se(IV) and Se(VI) were studied. Under the optimum conditions, the isothermal adsorption of Se(IV) on the GO-TiO2(1:1) composite fitted Langmuir model; a linear range over 0.1-12ngmL(-1) was obtained. The limit of detection (LOD) and precision of the method for Se(IV) was 0.04ngmL(-1) and 9.4% (cSe(IV)=0.5ngmL(-1), n=7), respectively. In order to verify the accuracy of the method, a standard water sample (GSBZ50031-94) was analyzed, and the determined value was in a good agreement to the certified value. The established method was applied to inorganic Se speciation in environmental water samples and the recovery of 87.4-102% was obtained for the spiked samples.

  9. Simultaneous determination of cadmium, iron and tin in canned foods using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Leao, Danilo J; Junior, Mario M S; Brandao, Geovani C; Ferreira, Sergio L C

    2016-06-01

    A method was established to simultaneously determine cadmium, iron and tin in canned-food samples using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). The quantification step has been performed using the primary line (228.802nm) for cadmium and the adjacent secondary lines (228.725nm and 228.668nm) for iron and tin, respectively. The selected chemical modifier was an acid solution that contained a mixture of 0.1% (w/v) Pd and 0.05% (w/v) Mg. The absorbance signals were measured based on the peak area using 3 pixels for cadmium and 5 pixels for iron and tin. Under these conditions, cadmium, iron and tin have been determined in canned-food samples using the external calibration technique based on aqueous standards, where the limits of quantification were 2.10ngg(-1) for cadmium, 1.95mgkg(-1) for iron and 3.00mgkg(-1) for tin, and the characteristic masses were 1.0pg for cadmium, 0.9ng for iron and 1.1ng for tin. The precision was evaluated using two solutions of each metal ion, and the results, which were expressed as the relative standard deviation (RSD%), were 3.4-6.8%. The method accuracy for cadmium and iron was confirmed by analyzing a certified reference material of apple leaves (NIST 1515), which was supplied by NIST. However, for tin, the accuracy was confirmed by comparing the results of the proposed method and another analytical technique (inductively coupled plasma optical emission spectrometry). The proposed procedure was applied to determine cadmium, iron and tin in canned samples of peeled tomato and sardine. Eleven samples were analyzed, and the analyte concentrations were 3.57-62.9ngg(-1), 2.68-31.48mgkg(-1) and 4.06-122.0mgkg(-1) for cadmium, iron and tin, respectively. In all analyzed samples, the cadmium and tin contents were lower than the permissible maximum levels for these metals in canned foods in the Brazilian legislation.

  10. Electrochemical generation of volatile form of cadmium and its in situ trapping in a graphite furnace

    NASA Astrophysics Data System (ADS)

    Nováková, Eliška; Rychlovský, Petr; Resslerová, Tina; Hraníček, Jakub; Červený, Václav

    2016-03-01

    This publication describes the combination of flow-through electrochemical generation (EcVG) of cadmium volatile form with its in situ trapping in a graphite furnace atomizer. Three cathode materials (Pt, Pb, and Ti) and four potentially suitable electrolytes (HCl, H2SO4, HCOOH and NaCl) were tested. Automated sampling equipment for the graphite furnace atomizer with an untreated fused silica capillary was used for the introduction of the cadmium volatile form into the iridium-treated graphite furnace. The limit of detection (LOD) of the electrochemical Cd volatile form generation with in situ collection was 1.0 ng ml- 1 (concentration LOD) or 1.5 ng (absolute LOD). The efficiency of the method was estimated and discussed. The effect of selected concomitant ions was evaluated and the accuracy of the proposed method was established by determination of the Cd content in the NIST SRM 1643e certified reference material.

  11. Characterization and comparison of vanadyl and nickel compounds in heavy crude petroleums and asphaltenes by reverse-phase and size-exclusion liquid chromatography/graphite furnace atomic absorption spectrometry

    SciTech Connect

    Fish, R.H.; Komlenic, J.J.; Wines, B.K.

    1984-11-01

    Vanadyl and nickel non-porphyrin rich fractions have been characterized in pyridine/water extracts of four heavy crude petroleums using reverse-phase high-performance liquid chromatography in combination with element-selective graphite furnace atomic absorption detection (RP-HPLC/GFAA). On the basis of rapid-scan UV-vis data indicating a lack of Soret absorbance associated with separated vanadyl and nickel containing fractions, we have categorized highly polar nickel compounds as non-porphyrin in Boscan, Cerro Negro, Wilmington, and Prudhoe Bay heavy crude petroleums. The presence of lower polarity vanadyl non-porphyrin compounds, occurring primarily in Wilmington and Prudhoe Bay petroleum, has also been confirmed. The vanadium histogrammic profiles, obtained using reverse-phase and size-exclusion HPLC/GFAA analysis for compounds extracted from the n-pentane (40:1) precipitated asphaltenes, were similar when compared to the pyridine/water extracts from the heavy crude petroleums.

  12. Plumbrook Hypersonic Tunnel Facility Graphite Furnace Degradation Mechanisms

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1999-01-01

    A recent rebuild revealed extensive degradation to the large graphite induction furnace in the Hypersonic Tunnel Facility (HTF). This damage to the graphite blocks and insulating felt is examined and modeled with thermochemical equilibrium codes. The primary reactions appear to be with water vapor and the nitrogen purge gas. Based on these conclusions, several changes are recommended. An inert purge gas (e.g. argon or helium) and controlling and monitoring water vapor to about 10 ppm should decrease the damage substantially.

  13. Determination of total selenium content in sediments and natural water by graphite furnace-atomic absorption spectroscopy after collection as a selenium(IV) complex on activated carbon.

    PubMed

    Kubota, T; Suzuki, K; Okutani, T

    1995-07-01

    A trace level of Se was collected on activated carbon (AC) as the Se(IV)-3-phenyl-5-mercapto-1,3,4-thiadiazole-2(3H)-thione (Bismuthiol II) complex. The AC was directly introduced as an AC-suspension into the graphite tube atomizer and the Se concentration was determined by atomic absorption spectroscopy (T. Okutani, T. Kubota, N. Sugiyama and Y. Turuta, Nippon Kagaku Kaishi, (1991) 375). The amount of Se in heavily contaminated samples including sediment, lake water and seawater was determined using this method. The sediments were digested with HNO(3)HClO(4)HF and the interference from AlF(3) was removed using H(3)BO(3)HClO(4). Lake water and seawater were acidified with H(2)SO(4) and digested with KMnO(4). The Se concentrations of these samples were determined by this method with satisfactory results. The above method is simple, rapid and applicable to heavily contaminated samples.

  14. Fast emulsion-based method for simultaneous determination of Co, Cu, Pb and Se in crude oil, gasoline and diesel by graphite furnace atomic absorption spectrometry.

    PubMed

    Luz, Maciel S; Nascimento, Angerson N; Oliveira, Pedro V

    2013-10-15

    A method for the simultaneous determination of Co, Cu, Pb and Se in crude oil, gasoline and diesel samples using emulsion-based sampling and GF AAS is proposed. 400mg of sample was weighted in volumetric flask following the sequential addition of 125 µL of hexane and 7.5 mL of Triton X-100(®) (20% mv(-1)). Subsequently, the mixture was stirred in ultrasonic bath, during 30 min, before dilution to 25 mL with deionized water. Aliquots of 20 μL of reference solution or sample emulsion were co-injected into the graphite tube with 10 μL of 2 g L(-1) Pd(NO3)2. The pyrolysis and atomization temperatures were 1300°C and 2250°C, respectively. The limits of detection (n=10, 3σ) and characteristic masses were 0.02 μg g(-1) (0.32 μg L(-1)) and 18 pg for Co, 0.03 μg g(-1) (0.48 μg L(-1)) and 15 pg for Cu, 0.04 μg g(-1) (0.64 μg L(-1)) and 48 pg for Pb, and 0.11 μg g(-1) (1.76 μg L(-1)) and 47 pg for Se. The reliabilities of the proposed method for Co and Se were checked by SRM(®) 1634c Residual Oil analysis. The found values are in accordance to the SRM at 95% confidence level (Student's t-test). Each sample was spiked with 0.18 μg g(-1) of Co, Cu, Pb and Se and the recoveries varied from 92% to 116% for Co, 83% to 117% for Cu, 72% to 117% for Pb, and 82% to 122% for Se.

  15. Comparison of closed-vessel and focused open-vessel microwave dissolution for determination of cadmium, copper, lead, and selenium in wheat, wheat products, corn bran, and rice flour by transverse-heated graphite furnace atomic absorption spectrometry.

    PubMed

    Gawalko, E J; Nowicki, T W; Babb, J; Tkachuk, R; Wu, S

    1997-01-01

    A method is described for the determination of Pb, Cd, Cu, and Se in cereal samples. An atomic absorption spectrometer equipped with a transverse-heated graphite furnace with Zeeman background correction was used for all determinations. Sample preparation was performed by closed-vessel microwave digestion using nitric acid and focused openvessel microwave digestion using nitric acid-hydrogen peroxide. Both techniques were evaluated by using 15 cereal reference materials and comparing results with certified or reference values for each element. Cereal reference standards obtained from the Community Bureau of Reference (Europe), the National Institute of Standards and Technology (USA), the National Institute for Environmental Studies (Japan), the National Research Centre for Certified Reference Materials (People's Republic of China), and the Canadian Grain Commission were used. Application of a series of t-tests, conducted according to Sidak's modified Bonerroni t-procedure, showed that both techniques yielded accurate results for cereal reference materials. Some differences from certified and reference values, however, were found for each element.

  16. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    PubMed

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed).

  17. Use of a novel medium, the ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate, for liquid-liquid extraction of lead in water and its determination by graphite furnace atomic absorption spectrometry.

    PubMed

    Zaijun, Li; Qiping, Peng; Haixia, Shan

    2007-01-01

    The ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate, abbreviated as [C4tmsim][PF6], was developed as a novel medium for liquid-liquid extraction of lead(II) in water, in which dithizone was used as a metal chelator to form a neutral lead-dithizone complex. Under optimal conditions, the complex was extracted into the [C4tmsim][PF6] phase from aqueous solution and back-extracted with nitric acid solution into the aqueous phase that was used directly for the subsequent determination of Pb. The system using the ionic liquid demonstrated good extraction performance; the extraction and back-extraction efficiencies were 99.8 and 99.7%, respectively, for Pb(II) at 20 microg/L. The above procedure, including the extraction and back-extraction, was used to enrich trace levels of Pb(ll) in a relatively large volume of water samples (1000 mL water), and an enrichment factor of 400 was obtained. The enrichment coupled with graphite furnace atomic absorption spectrometry was successfully applied to the determination of Pb in water. The calibration graph was linear at levels near the detection limits up to > or = 100 ng/L Pb(II). The limits of quantitation and detection for lead in real water samples were 2.5 and 1.0 ng/L, respectively. Lead recoveries of 96.2-103.8% from spiked samples demonstrate the accuracy of the proposed method.

  18. Determination of Ultra-trace Rhodium in Water Samples by Graphite Furnace Atomic Absorption Spectrometry after Cloud Point Extraction Using 2-(5-Iodo-2-Pyridylazo)-5-Dimethylaminoaniline as a Chelating Agent.

    PubMed

    Han, Quan; Huo, Yanyan; Wu, Jiangyan; He, Yaping; Yang, Xiaohui; Yang, Longhu

    2017-03-24

    A highly sensitive method based on cloud point extraction (CPE) separation/preconcentration and graphite furnace atomic absorption spectrometry (GFAAS) detection has been developed for the determination of ultra-trace amounts of rhodium in water samples. A new reagent, 2-(5-iodo-2-pyridylazo)-5-dimethylaminoaniline (5-I-PADMA), was used as the chelating agent and the nonionic surfactant TritonX-114 was chosen as extractant. In a HAc-NaAc buffer solution at pH 5.5, Rh(III) reacts with 5-I-PADMA to form a stable chelate by heating in a boiling water bath for 10 min. Subsequently, the chelate is extracted into the surfactant phase and separated from bulk water. The factors affecting CPE were investigated. Under the optimized conditions, the calibration graph was linear in the range of 0.1-6.0 ng/mL, the detection limit was 0.023 ng/mL for rhodium and relative standard deviation was 3.67% (c = 1.0 ng/mL, n = 11).The method has been applied to the determination of trace rhodium in water samples with satisfactory results.

  19. Preparation and characterization of magnetic nanoparticles for the on-line determination of gold, palladium, and platinum in mine samples based on flow injection micro-column preconcentration coupled with graphite furnace atomic absorption spectrometry.

    PubMed

    Ye, Juanjuan; Liu, Shuxia; Tian, Miaomiao; Li, Wanjun; Hu, Bin; Zhou, Weihong; Jia, Qiong

    2014-01-01

    A simple and highly selective procedure for on-line determination of trace levels of Au, Pd, and Pt in mine samples has been developed using flow injection-column adsorption preconcentration coupled with graphite furnace atomic absorption spectrophotometry (FI-column-GFAAS). The precious metals were adsorbed on the as-synthesized magnetic nanoparticles functionalized with 4'-aminobenzo-15-crown-5-ether packed into a micro-column and then eluted with 2% thiourea + 0.1 mol L(-1) HCl solution prior to the determination by GFAAS. The properties of the magnetic adsorbents were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). Various experimental parameters affecting the preconcentration of Au, Pd, and Pt were investigated and optimized. Under the optimal experimental conditions, the detection limits of the developed technique were 0.16 ng mL(-1) for Au, 0.28 ng mL(-1) for Pd, and 1.01 ng mL(-1) for Pt, with enrichment factors of 24.3, 13.9, and 17.8, respectively. Precisions, evaluated as repeatability of results, were 1.1%, 3.9%, and 4.4% respectively for Au, Pd, and Pt. The developed method was validated by the analysis of Au, Pd, and Pt in certified reference materials and mine samples with satisfactory results.

  20. Cobalt internal standard for Ni to assist the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis.

    PubMed

    de Babos, Diego Victor; Bechlin, Marcos André; Barros, Ariane Isis; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta; de Oliveira, Silvana Ruella

    2016-05-15

    A new method is proposed for the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS), employing direct solid sample analysis (DSS) and internal standardization (IS). Cobalt was used as internal standard to minimize matrix effects during Ni determinations, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9937. The performance of the method was checked by analysis of six plant certified reference materials, and the results for Mo and Ni were in agreement with the certified values (95% confidence level, t-test). Analysis was made of different types of plant materials used as renewable sources of energy, including sugarcane leaves, banana tree fiber, soybean straw, coffee pods, orange bagasse, peanut hulls, and sugarcane bagasse. The concentrations found for Mo and Ni ranged from 0.08 to 0.63 ng mg(-1) and from 0.41 to 6.92 ng mg(-1), respectively. Precision (RSD) varied from 2.1% to 11% for Mo and from 3.7% to 10% for Ni. Limits of quantification of 0.055 and 0.074 ng were obtained for Mo and Ni, respectively.

  1. Halloysite nanotubes as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the determination of bismuth in water samples using high-resolution continuum source graphite-furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Krawczyk-Coda, Magdalena

    2017-03-01

    In this research, a simple, accurate, and inexpensive preconcentration procedure was developed for the determination of bismuth in water samples, using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS). During the preconcentration step, halloysite nanotubes (HNTs) were used as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction (USA DMSPE). The influence of the pH of the sample solution, amount of HNTs, and extraction time, as well as of the main parameters of HR CS GFAAS, on absorbance was investigated. The limit of detection was 0.005 μg L- 1. The preconcentration factor achieved for bismuth was 32. The relative standard deviation (RSD) was 4%. The accuracy of this method was validated by analyses of NIST SRM 1643e (Trace elements in water) and TMDA-54.5 (A high level fortified sample for trace elements) certified reference materials. The measured bismuth contents in these certified reference materials were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. The proposed method has been successfully applied to the determination of bismuth in five different real water samples (seawater, lake water, river water, stream water and rain water).

  2. Development of a new green non-dispersive ionic liquid microextraction method in a narrow glass column for determination of cadmium prior to couple with graphite furnace atomic absorption spectrometry.

    PubMed

    Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa; Shah, Faheem; Afridi, Hassan Imran; Citak, Demirhan

    2014-02-17

    Easy and innovative non-dispersive ionic liquid based microextraction (NDILME) has been developed for preconcentration of trace level of cadmium (Cd) in aqueous real surface water samples prior to couple with graphite furnace atomic absorption spectrometry (GFAAS). A 200 cm long narrow glass column containing aqueous solution of standard/sample was used to increase phase transfer ratio by providing more contact area between two medium (aqueous and extractive), which drastically improve the recoveries of labile hydrophobic chelate of Cd ammonium pyrrolidinedithiocarbamate (APDC), into ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6]. Different aspect of the desire method have been investigated and optimized. Under the optimized key experimental variables, limit of detection (LOD) and enhancement factor (EF) were achieved to be 0.5 ng L(-1) and 150, respectively. Reliability of the model method was checked by relative standard deviation (%RSD), which was found to be <5%. Validity and accuracy of the developed method was checked by analysis of certified reference water samples (SLRS-4 Riverine water) using standard addition method. Application of the model method was productively performed by analysis of Cd in real surface water samples (tap and sea).

  3. Zincon-immobilized silica-coated magnetic Fe3O4 nanoparticles for solid-phase extraction and determination of trace lead in natural and drinking waters by graphite furnace atomic absorption spectrometry.

    PubMed

    Jiang, Hong-mei; Yan, Zhong-peng; Zhao, Yue; Hu, Xin; Lian, Hong-zhen

    2012-05-30

    A new protocol using zincon-immobilized silica-coated magnetic Fe(3)O(4) nanoparticles (Zincon-Si-MNPs) as solid-phase extraction (SPE) medium has been developed for the separation and preconcentration of trace lead in water. Various parameters such as pH, extraction time, concentration and volume of eluent, sample volume, and influence of co-existing ions have been investigated in order to establish the optimum conditions for the determination of lead in combination with graphite furnace atomic absorption spectrometry (GFAAS). The detection limit (LOD) of the proposed method for lead based on an enrichment factor of 200 was 10 ng L(-1). The relative standard deviations (RSDs, n=5) were 8.3%, 7.8% and 9.2%, respectively, at 5, 0.5 and 0.05 ng mL(-1) levels. This method has been successfully applied to the analysis of trace lead in natural and drinking water samples and the recoveries for the spiked samples were in the range of 84-104%.

  4. Effect of different precursors on generation of reference spectra for structural molecular background correction by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry: Determination of antimony in cosmetics.

    PubMed

    Barros, Ariane Isis; Victor de Babos, Diego; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta

    2016-12-01

    Different precursors were evaluated for the generation of reference spectra and correction of the background caused by SiO molecules in the determination of Sb in facial cosmetics by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis. Zeolite and mica were the most effective precursors for background correction during Sb determination using the 217.581nm and 231.147nm lines. Full 2(3) factorial design and central composite design were used to optimize the atomizer temperature program. The optimum pyrolysis and atomization temperatures were 1500 and 2100°C, respectively. A Pd(NO3)2/Mg(NO3)2 mixture was employed as the chemical modifier, and calibration was performed at 217.581nm with aqueous standards containing Sb in the range 0.5-2.25ng, resulting in a correlation coefficient of 0.9995 and a slope of 0.1548s ng(-1). The sample mass was in the range 0.15-0.25mg. The accuracy of the method was determined by analysis of Montana Soil (II) certified reference material, together with addition/recovery tests. The Sb concentration found was in agreement with the certified value, at a 95% confidence level (paired t-test). Recoveries of Sb added to the samples were in the range 82-108%. The limit of quantification was 0.9mgkg(-1) and the relative standard deviation (n=3) ranged from 0.5% to 7.1%. From thirteen analyzed samples, Sb was not detected in ten samples (blush, eye shadow and compact powder); three samples (two blush and one eye shadow) presented Sb concentration in the 9.1-14.5mgkg(-1) range.

  5. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of arsenic and selenium in water and sediment by graphite furnace atomic absorption spectrometry

    USGS Publications Warehouse

    Jones, Sandra R.; Garbarino, John R.

    1999-01-01

    Graphite furnace-atomic absorption spectrometry (GF-AAS) is a sensitive, precise, and accurate technique that can be used to determine arsenic and selenium in samples of water and sediment. The GF-AAS method has been developed to replace the hydride generation-atomic absorption spectrometry (HG-AAS) methods because the method detection limits are similar, bias and variability are comparable, and interferences are minimal. Advantages of the GF-AAS method include shorter sample preparation time, increased sample throughput from simultaneous multielement analysis, reduced amount of chemical waste, reduced sample volume requirements, increased linear concentration range, and the use of a more accurate digestion procedure. The linear concentration range for arsenic and selenium is 1 to 50 micrograms per liter in solution; the current method detection limit for arsenic in solution is 0.9 microgram per liter; the method detection limit for selenium in solution is 1 microgram per liter. This report describes results that were obtained using stop-flow and low-flow conditions during atomization. The bias and variability of the simultaneous determination of arsenic and selenium by GF-AAS under both conditions are supported with results from standard reference materials--water and sediment, real water samples, and spike recovery measurements. Arsenic and selenium results for all Standard Reference Water Samples analyzed were within one standard deviation of the most probable values. Long-term spike recoveries at 6.25, 25.0, 37.5 micrograms per liter in reagent-, ground-, and surface-water samples for arsenic averaged 103 plus or minus 2 percent using low-flow conditions and 104 plus or minus 4 percent using stop-flow conditions. Corresponding recoveries for selenium were 98 plus or minus 13 percent using low-flow conditions and 87 plus or minus 24 percent using stop-flow conditions. Spike recoveries at 25 micrograms per liter in 120 water samples ranged from 97 to 99 percent

  6. Determination of palladium, platinum and rhodium in used automobile catalysts and active pharmaceutical ingredients using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis

    NASA Astrophysics Data System (ADS)

    Resano, Martín; Flórez, María del Rosario; Queralt, Ignasi; Marguí, Eva

    2015-03-01

    This work investigates the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for the direct determination of Pd, Pt and Rh in two samples of very different nature. While analysis of active pharmaceutical ingredients is straightforward and it is feasible to minimize matrix effects, to the point that calibration can be carried out against aqueous standard solutions, the analysis of used automobile catalysts is more challenging requiring the addition of a chemical modifier (NH4F·HF) to help in releasing the analytes, a more vigorous temperature program and the use of a solid standard (CRM ERM®-EB504) for calibration. However, in both cases it was possible to obtain accurate results and precision values typically better than 10% RSD in a fast and simple way, while only two determinations are needed for the three analytes, since Pt and Rh can be simultaneously monitored in both types of samples. Overall, the methods proposed seem suited for the determination of these analytes in such types of samples, offering a greener and faster alternative that circumvents the traditional problems associated with sample digestion, requiring a small amount of sample only (0.05 mg per replicate for catalysts, and a few milligrams for the pharmaceuticals) and providing sufficient sensitivity to easily comply with regulations. The LODs achieved were 6.5 μg g- 1 (Pd), 8.3 μg g- 1 (Pt) and 9.3 μg g- 1 (Rh) for catalysts, which decreased to 0.08 μg g- 1 (Pd), 0.15 μg g- 1 (Pt) and 0.10 μg g- 1 (Rh) for pharmaceuticals.

  7. Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop.

    PubMed

    Shamsipur, Mojtaba; Fattahi, Nazir; Assadi, Yaghoub; Sadeghi, Marzieh; Sharafi, Kiomars

    2014-12-01

    A solid phase extraction (SPE) coupled with dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) method, using diethyldithiphosphate (DDTP) as a proper chelating agent, has been developed as an ultra preconcentration technique for the determination of inorganic arsenic in water samples prior to graphite furnace atomic absorption spectrometry (GFAAS). Variables affecting the performance of both steps were thoroughly investigated. Under optimized conditions, 100mL of As(ΙΙΙ) solution was first concentrated using a solid phase sorbent. The extract was collected in 2.0 mL of acetone and 60.0 µL of 1-undecanol was added into the collecting solvent. The mixture was then injected rapidly into 5.0 mL of pure water for further DLLME-SFO. Total inorganic As(III, V) was extracted similarly after reduction of As(V) to As(III) with potassium iodide and sodium thiosulfate and As(V) concentration was calculated by difference. A mixture of Pd(NO3)2 and Mg(NO3)2 was used as a chemical modifier in GFAAS. The analytical characteristics of the method were determined. The calibration graph was linear in the rage of 10-100 ng L(-1) with detection limit of 2.5 ng L(-1). Repeatability (intra-day) and reproducibility (inter-day) of method based on seven replicate measurements of 80 ng L(-1) of As(ΙΙΙ) were 6.8% and 7.5%, respectively. The method was successfully applied to speciation of As(III), As(V) and determination of the total amount of As in water samples and in a certified reference material (NIST RSM 1643e).

  8. Speciation of nickel in airborne particulate matter by means of sequential extraction in a micro flow system and determination by graphite furnace atomic absorption spectrometry and inductively coupled plasma mass spectrometry.

    PubMed

    Fuichtjohann, L; Jakubowski, N; Gladtke, D; Klocko, D; Broekaert, J A

    2001-12-01

    A four-stage sequential extraction procedure for the speciation of nickel has been applied to ambient aerosol samples. The determination of the soluble, sulfidic, metallic and oxidic Ni fractions in particulate matter was carried out by graphite furnace (electrothermal) atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). An EDTA solution, a mixture of diammonium citrate and hydrogen peroxide, and a KCuCl3 solution were used as leaching agents for the determination of the soluble, sulfidic and metallic species, respectively, and nitric acid was used for the determination of oxidic compounds after microwave digestion of particulate matter sampled on filters. A new micro scale filter holder placed in a closed flow injection analysis (FIA) system for use in nickel speciation by means of sequential extraction, and the results of the optimisation of the extraction conditions are described. The temperature program for ETAAS was optimised for all extraction solutions with the aid of temperature curves. Pyrolysis temperatures of 900. 600 and 1,000 degrees C were found to be optimum for EDTA, hydrogen peroxide plus ammonium citrate and KCuCl3-containing solutions, respectively. Airborne dust was sampled on lilters at two locations near to a metallurgical plant in Dortmund, Germany. Concentrations in the low ng m(-3) range down to the detections limits (0.1-0.3 ng m(-3)) and various nickel species were found to be present in the collected dust. The mean fractions of total nickel (sampling period of one month) were found to contain 36+20% of soluble, 6 +/- 4% of sulfidic, 11 +/- 15% of metallic and 48 +/- 18% of oxidic nickel.

  9. Evaluation of Bi as internal standard to minimize matrix effects on the direct determination of Pb in vinegar by graphite furnace atomic absorption spectrometry using Ru permanent modifier with co-injection of Pd/Mg(NO 3) 2

    NASA Astrophysics Data System (ADS)

    de Oliveira, Silvana Ruella; Neto, José Anchieta Gomes

    2007-09-01

    Bismuth was evaluated as an internal standard for the direct determination of Pb in vinegar by graphite furnace atomic absorption spectrometry using Ru as a permanent modifier with co-injection of Pd/Mg(NO 3) 2. The correlation coefficient of the graph plotted from the normalized absorbance signals of Bi versus Pb was r = 0.989. Matrix effects were evaluated by analyzing the slope ratios between the analytical curve obtained from reference solutions prepared in 0.2% (v/v) HNO 3 and analytical curves obtained from Pb additions in red and white wine vinegar samples. The calculated ratios were around 1.04 and 1.02 for analytical curves established applying an internal standard and 1.3 and 1.5 for analytical curves without. Analytical curves in the 2.5-15 μg L - 1 Pb concentration interval were established using the ratio Pb absorbance to Bi absorbance versus analyte concentration, and typical linear correlations of r = 0.999 were obtained. The proposed method was applied for direct determination of Pb in 18 commercial vinegar samples and the Pb concentration varied from 2.6 to 31 μg L - 1 . Results were in agreement at a 95% confidence level (paired t-test) with those obtained for digested samples. Recoveries of Pb added to vinegars varied from 96 to 108% with and from 72 to 86% without an internal standard. Two water standard reference materials diluted in vinegar sample were also analyzed and results were in agreement with certified values at a 95% confidence level. The characteristic mass was 40 pg Pb and the useful lifetime of the tube was around 1600 firings. The limit of detection was 0.3 μg L - 1 and the relative standard deviation was ≤ 3.8% and ≤ 8.3% ( n = 12) for a sample containing 10 μg L - 1 Pb with and without internal standard, respectively.

  10. Separation and preconcentration of platinum-group metals from spent autocatalysts solutions using a hetero-polymeric S, N-containing sorbent and determination by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Eskina, Vasilina V; Dalnova, Olga A; Filatova, Daria G; Baranovskaya, Vasilisa B; Karpov, Yuri A

    2016-10-01

    This paper describes the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for determination of Pt, Pd and Rh after separation and concentration by original in-house developed heterochain polymer S, N-containing sorbent. The methods of sample preparation of spent ceramic-based autocatalysts were considered, two of which were used: autoclave decomposition in mixture of acids HCl:HNO3 (3:1) and high-temperature melting with K2S2O7. Both methods anyway limit the direct determination of analytes by HR CS GFAAS. Using the first method it is an incomplete digestion of spent autocatalysts samples, since the precipitate is Si, and the rhodium metal dissolves with difficulty and partially passes into solution. In contrast to the first method, the second method allow to completely transfer analytes into solution, however, the background signal produced by the chemical composition of the flux, overlaps the analytical zone. It was found, that Pt, Pd and Rh contained in the spent ceramic automotive catalysts could be effectively separated and concentrated by heterochain polymer S, N-containing sorbent, which has high sorption capacity, selectivity and resistant to dilute acids. The chosen HR CS GFAAS analysis conditions enable us to determine Pt, Pd and Rh with good metrological characteristics. The concentrations of Pt, Pd and Rh in two samples of automobile exhaust catalysts were found in range of 0.00015-0.00050; 0.170-0.189; 0.0180-0.0210wt%, respectively. The relative standard deviation obtained by HR CS GFAAS was not more than 5%. Limits of detection by HR CS GFAAS achieved were 6.2·10(-6)wt% for Pt, 1.8·10(-6)wt% for Pd, and 3.4·10(-6)wt% for Rh. Limits of determination achieved by HR CS GFAAS were 1.1·10(-5)wt% for Pt, 6.9·10(-5)wt% for Pd, and 8.3·10(-5)wt% for Rh. To control the accuracy of PGM in sorption concentrates by HR CS GFAAS method, it was appropriate to conduct an inter-method comparative experiment. The

  11. Optimisation of Direct Copper Determination in Human Breast Milk Without Digestion by Zeeman Graphite Furnace Atomic Absorption Spectrophotometry with Two Chemical Modifiers.

    PubMed

    Pineau, Alain; Fauconneau, Bernard; Marrauld, Annie; Lebeau, Alexandra; Hankard, Regis; Guillard, Olivier

    2015-08-01

    Milk is an important food in the human diet, and copper (Cu) in human milk is indispensable to children's normal growth and development. It is consequently important that Cu deficiency, occurring in malnourished women or in malabsorption following bariatric surgery, be prevented. The objective of this work is to provide hospital-based paediatricians with a tool enabling rapid measurement of Cu in human breast milk through a technique that biology laboratories can easily apply. Using electrothermal atomic absorption spectrophotometry with Zeeman correction, we have optimized this method with two chemical modifiers and without digestion for analytical procedure. Detection limits and quantification limits for Cu in human milk were found to be 0.077 and 0.26 μmol/L, respectively. Within-run (n = 30) and between-run (n = 15) variations in a pool of human milk samples were 1.50 and 3.62%, respectively. Average recoveries ranged from 98.67 to 100.61%. The reliability of this method was also confirmed by analysing certified reference material (10%). In breast milk samples collected from 100 lactating mothers, Cu mean (±1 SD) was 7.09 ± 1.60 μmol/L. In conclusion, with minimal preparation and quick determination, the method proposed is suitable for measurement of Cu in human breast milk.

  12. Validated method for the determination of platinum from a liposomal source (SPI-77) in human plasma using graphite furnace Zeeman atomic absorption spectrometry.

    PubMed

    Meerum Terwogt, J M; Tibben, M M; Welbank, H; Schellens, J H; Beijnen, J H

    2000-02-01

    A sensitive analytical method based on flameless atomic absorption spectrometry with Zeeman correction has been validated for the quantitative determination in human plasma of platinum originating from cisplatin in a liposomal source, SPI-77. The performance of the method was acceptable over a sample concentration range of 0. 125-1.25 micromol platinum/L and the lower limit of quantification was determined to be 1.25 micromol platinum/L in undiluted clinical samples. The performance data of the assay were investigated using both a calibration curve with carboplatin in plasma ultrafiltrate and diluted human plasma samples spiked with SPI-77. The recoveries, between-day and the within-day precisions of both methods of calibration were not significantly different allowing carboplatin ultrafiltrate calibration standards to be used to quantify platinum derived from SPI-77 in human plasma. Apparently, the liposomal formulation had no significant influence on the determination of platinum. The usefulness of the presented method was demonstrated in a phase I clinical and pharmacokinetic study. In addition, in vitro experiments were carried out to determine the distribution of SPI-77 in blood. The results indicated that platinum from SPI-77 mainly concentrates in plasma and that binding to and/or endocytosis in red blood cells is negligible.

  13. Modeling of Thermal Phenomena and Economic Aspect of Configuring Furnace Graphite Insulation

    NASA Astrophysics Data System (ADS)

    Sawicki, J.; Gutkowski, A.; Kaczmarek, I.; Paweta, S.; Rylski, A.

    2015-03-01

    The effect of long-term heating on the graphite thermal insulation of a chamber furnace is considered. Mathematical modeling of the process is performed with the help of the ANSYS-FLUENT software. The formation of surface layers is analyzed from the standpoint of economy by comparing furnaces with advanced configuration of the thermal insulation and with the traditional thermal insulation of chamber furnaces. The configuration of the graphite thermal insulation of a furnace is optimized in terms of the heat treatment cost.

  14. A sensitive atomic-absorption spectrometric method for the determination of tin with atomization from impregnated graphite surfaces.

    PubMed

    Fritzsche, H; Wegscheider, W; Knapp, G; Ortner, H M

    1979-03-01

    The atomization of Sn from graphite surfaces is potentially hindered by reactions with the surface. The impregnation of graphite tubes with other carbide-forming elements (W, Zr, Ta, Mo) favourably alters the surface characteristics of the graphite furnace for the atomization of Sn. At the acid concentrations needed to prevent the hydrolysis of Sn, these surfaces are considerably more stable (even after more than 100 atomization cycles) than those of pyrolytic graphite. Two graphite furnaces of different design, the HGA 72 and the HGA 76, were tested. With impregnated graphite tubes the determination of Sn is possible in the HGA 72 with a detection limit of approximately 15 pg. In the HGA 76 the tin determination is vastly improved with respect to prolonged lifetime of the furnaces and stable signals over much longer periods of time. Detailed interference studies reveal that the use of the "gas stop" mode minimizes the influence of many ions that are frequently either introduced by the decomposition reagents or present in the sample itself. The practical potential of this method is demonstrated for the determination of Sn in a slag material and in copper- and aluminium-based alloys.

  15. Graphite electrode DC arc furnace. Innovative technology summary report

    SciTech Connect

    1999-05-01

    The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of

  16. Heating rates in furnace atomic absorption using the L'vov platform

    USGS Publications Warehouse

    Koirtyohann, S.R.; Giddings, R.C.; Taylor, H.E.

    1984-01-01

    Heating rate profiles for the furnace tube wall, the furnace atmosphere, and a L'vov platform were established for a range of conditions in a cyclically heated graphite atomizer. The tube wall profile was made by direct observation with a recording optical pyrometer. The sodium line reversal method was used to establish the heating rate of the furnace atmosphere, and appearance temperatures for a series metals of differing volatility was used to establish platform profiles. The tube wall heating rate was nearly linear at 2240??C s- until the desired temperature was reached after which the temperature remained constant. The furnace atmosphere reached a given temperature 0.2-0.4 s later than the tube wall through most of the atomize cycle. The platform lagged the tube wall 0.5-0.8 s. Under typical operating conditions the furnace atmosphere was 100-200??C cooler than the tube wall and at nearly constant temperature when the analyte vaporized from the platform. The L'vov platform causes the cyclically heated commercial furnace to approximate the behavior of a constant temperature furnace during atomization. ?? 1984.

  17. Atomic resolution images of graphite in air

    SciTech Connect

    Grigg, D.A.; Shedd, G.M.; Griffis, D.; Russell, P.E.

    1988-12-01

    One sample used for proof of operation for atomic resolution in STM is highly oriented pyrolytic graphite (HOPG). This sample has been imaged with many different STM`s obtaining similar results. Atomic resolution images of HOPG have now been obtained using an STM designed and built at the Precision Engineering Center. This paper discusses the theoretical predictions and experimental results obtained in imaging of HOPG.

  18. Atomically resolved graphitic surfaces in air by atomic force microscopy.

    PubMed

    Wastl, Daniel S; Weymouth, Alfred J; Giessibl, Franz J

    2014-05-27

    Imaging at the atomic scale using atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomic resolution of graphite and hydrogen-intercalated graphene on SiC in air. The main challenges arise from the overall surface cleanliness and the water layers which form on almost all surfaces. To further investigate the influence of the water layers, we compare data taken with a hydrophilic bulk-silicon tip to a hydrophobic bulk-sapphire tip. While atomic resolution can be achieved with both tip materials at moderate interaction forces, there are strong differences in force versus distance spectra which relate to the water layers on the tips and samples. Imaging at very low tip-sample interaction forces results in the observation of large terraces of a naturally occurring stripe structure on the hydrogen-intercalated graphene. This structure has been previously reported on graphitic surfaces that are not covered with disordered adsorbates in ambient conditions (i.e., on graphite and bilayer graphene on SiC, but not on monolayer graphene on SiC). Both these observations indicate that hydrogen-intercalated graphene is close to an ideal graphene sample in ambient environments.

  19. Graphitization of Coke and Its Interaction with Slag in the Hearth of a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Li, Kejiang; Zhang, Jianliang; Liu, Yanxiang; Barati, Mansoor; Liu, Zhengjian; Zhong, Jianbo; Su, Buxin; Wei, Mengfang; Wang, Guangwei; Yang, Tianjun

    2016-04-01

    Coke reaction behavior in the blast furnace hearth has yet to be fully understood due to limited access to the high temperature zone. The graphitization of coke and its interaction with slag in the hearth of blast furnace were investigated with samples obtained from the center of the deadman of a blast furnace during its overhaul period. All hearth coke samples from fines to lumps were confirmed to be highly graphitized, and the graphitization of coke in the high temperature zone was convinced to start from the coke surface and lead to the formation of coke fines. It will be essential to perform further comprehensive investigations on graphite formation and its evolution in a coke as well as its multi-effect on blast furnace performance. The porous hearth cokes were found to be filled up with final slag. Further research is required about the capability of coke to fill final slag and the attack of final slag on the hearth bottom refractories since this might be a new degradation mechanism of refractories located in the hearth bottom.

  20. Determination of sodium and potassium in nanoliter volumes of biological fluids by furnace atomic absorption spectrometry

    SciTech Connect

    Nash, L.A.; Peterson, L.N.; Nadler, S.P.; Levine, D.Z.

    1988-11-01

    Renal tubular fluid samples are nanoliter (10/sup -9/ L) volumes containing sodium and potassium concentrations that are within the range of determination by furnace atomic absorption. Modification of nanoliter handling techniques and the use of microboats with the IL 951/655 provided a method for rapid precise analyses (relative standard deviation of 5%). Determinations of sodium and potassium were precise; however, inaccuracies occurred with anion substitution of sodium salts. NaHCO/sub 3/ solutions gave consistently higher peak height absorbance and area absorbance compared with those of NaCl: the peak area absorbance correlated linearly with the concentration of bicarbonate. Pretreatment of the microboat with boric acid eliminated this phenomenon and the associated inaccuracy. Comparison of determination of sodium in nanoliter samples by graphite furnace atomic absorption with macroanalysis by flame emission gave relative errors of less than 2.0%. Addition of sodium and potassium to tubular fluid samples yielded mean recoveries of 102.6% and 99.7%, respectively. The authors conclude that graphite furnace can be an accurate method for measurement of sodium and potassium in nanoliter volumes of biological fluids.

  1. Release of H and He from TiC, stainless steel and graphite by pulsed electron and furnace heating

    SciTech Connect

    Picraux, S.T.; Wampler, W.R.

    1980-01-01

    The release of implanted D and /sup 3/He from TiC coatings, SS 304 and graphite by pulsed electron beam (e-beam) heating and furnace heating has been investigated. Low fluence implants of D or /sup 3/He and saturation fluence D implants have been studied for 0.5 - 1.5 keV D and 3 keV /sup 3/He. The retained D or /sup 3/He was monitored by ion beam analysis. The 50 ns e-beam pulsing resulted in the release of D in all materials and was compared with release during isochronal annealing in a furnace. A substantial enhancement in the fractional D release was found for D saturated TiC (0.25 D to host atom ratio) compared with low fluence implants. In contrast no enhancement of D release was observed for D saturated graphite and SS 304 compared with low fluence implants. Release of /sup 3/He from TiC was also obtained by e-beam pulsed heating and this release was not affected by the presence of saturation concentrations of D. Comparison to furnace anneals and the calculated time evolution of the temperature profiles suggests a simple model for the D release based on diffusion-limited release in the case of pulsed e-beam treatments and trap-limited release in the case of furnace bulk heating. These processes are closely related to hydrogen recycle in tokamaks and have implications for T inventory control and He ash removal.

  2. Formation mechanism of the graphite-rich protective layer in blast furnace hearths

    NASA Astrophysics Data System (ADS)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Feng; Liang, Li-sheng

    2016-01-01

    A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase from hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face temperature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.

  3. Cloud point extraction of iron(III) and vanadium(V) using 8-quinolinol derivatives and Triton X-100 and determination of 10(-7)moldm(-3) level iron(III) in riverine water reference by a graphite furnace atomic absorption spectroscopy.

    PubMed

    Ohashi, Akira; Ito, Hiromi; Kanai, Chikako; Imura, Hisanori; Ohashi, Kousaburo

    2005-01-30

    The cloud point extraction behavior of iron(III) and vanadium(V) using 8-quinolinol derivatives (HA) such as 8-quinolinol (HQ), 2-methyl-8-quinolinol (HMQ), 5-butyloxymethyl-8-quinolinol (HO(4)Q), 5-hexyloxymethyl-8-quinolinol (HO(6)Q), and 2-methyl-5-octyloxymethyl-8-quinolinol (HMO(8)Q) and Triton X-100 solution was investigated. Iron(III) was extracted with HA and 4% (v/v) Triton X-100 in the pH range of 1.70-5.44. Above pH 4.0, more than 95% of iron(III) was extracted with HQ, HMQ, and HMO(8)Q. Vanadium(V) was also extracted with HA and 4% (v/v) Triton X-100 in the pH range of 2.07-5.00, and the extractability increased in the following order of HMQ < HQ < HO(4)Q < HO(6)Q. The cloud point extraction was applied to the determination of iron(III) in the riverine water reference by a graphite furnace atomic absorption spectroscopy. When 1.25 x 10(-3)M HMQ and 1% (v/v) Triton X-100 were used, the found values showed a good agreement with the certified ones within the 2% of the R.S.D. Moreover, the effect of an alkyl group on the solubility of 5-alkyloxymethyl-8-quinolinol and 2-methyl-5-alkyloxymethyl-8-quinolinol in 4% (v/v) Triton X-100 at 25 degrees C was also investigated.

  4. DC graphite arc furnace, a simple system to reduce mixed waste volume

    SciTech Connect

    Wittle, J.K.; Hamilton, R.A.; Trescot, J.

    1995-12-31

    The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE) complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials.

  5. A novel dispersive liquid-liquid microextraction method based on solidification of floating organic drop for preconcentration of Pd(II) by graphite furnace atomic absorption spectrometry after complexation by a thienyl substituted 1,2-ethanediamine.

    PubMed

    Ragheb, Elham; Hashemi, Payman; Alizadeh, Kamal; Ganjali, Mohammad Reza

    2015-01-01

    A novel dispersive liquid-liquid microextraction method based on solidification of floating organic drop (DLLME-SFO) was developed for the preconcentration of ultratrace amounts of palladium (Pd)(II) before its determination by electrothermal atomic absorption spectrometry. Diphenyl ether (m.p. 26°C) was used for the first time as a heavier than water organic solvent in the developed method. Pd was complexed by N,N'-bis(thiophen-2-ylmethylene)ethane-1,2-diamine to be extracted into the dispersed diphenyl ether phase using acetonitril as the disperser solvent. Upon cooling and centrifugation, the organic solvent was sedimented at the bottomn and the aqueous phase was easily decantated. Some factors influencing the extraction efficiency of Pd(II) and its subsequent determination, including extraction and dispersive solvent type and volume, pH of sample solution, concentration of the chelating agent and salting out effect, were studied and optimized both with univariate and multivariate methods. Under the optimized conditions, the calibration graph exhibited linearity over a range of 10 - 120 μg L(-1). The enrichment factor was 83.3, the detection limit for Pd (3σ) was 47 ng L(-1) and the relative standard deviation was 3.2% (n = 10, 1 ng mL(-1)). The method was successfully applied to the determination of trace amounts of Pd(II) in water samples.

  6. Hydrogen Atoms Cause Long-Range Electronic Effects on Graphite

    NASA Astrophysics Data System (ADS)

    Ruffieux, P.; Gröning, O.; Schwaller, P.; Schlapbach, L.; Gröning, P.

    2000-05-01

    We report on long-range electronic effects caused by hydrogen-carbon interaction at the graphite surface. Two types of defects could be distinguished with a combined mode of scanning tunneling microscopy and atomic force microscopy: chemisorption of hydrogen on the basal plane of graphite and atomic vacancy formation. Both types show a \\(3×3\\)R30° superlattice in the local density of states but have a different topographic structure. The range of modifications in the electronic structure, of fundamental importance for electronic devices based on carbon nanostructures, has been found to be of the order of 20-25 lattice constants.

  7. Electrochemical selenium hydride generation with in situ trapping in graphite tube atomizers

    NASA Astrophysics Data System (ADS)

    Šíma, Jan; Rychlovský, Petr

    2003-05-01

    A manifold coupling continuous electrolytic hydride generation of volatile hydrides with atomization in graphite tube atomizers after in situ collection was used for Se(IV) determination. Laboratory-made thin-layer flow-through cells with lead wire (cell I) and granular lead (cell II) as the cathode material were used as the electrolytic generators of volatile selenium hydride. The automatic sampling equipment of the graphite atomizer, with an untreated fused silica capillary, was used both for the introduction of volatile hydride into the atomizer and for pretreatment of the graphite furnace surface with a palladium modifier. The influence of the experimental parameters on the analytical signal was studied and optimum conditions for selenium determination were found. The optimum experimental parameters for hydride generation were: catholyte (1 mol l -1 HCl)/anolyte (2 mol l -1 H 2SO 4) flow rate of 2.0 ml min -1; applied generation current of 1.2 A (cell I) and 0.8 A (cell II); and carrier gas flow rate of 40 (cell I) and 70 ml min -1 (cell II). The hydride generated was collected in the graphite tube (pre-treated with 5 μg of Pd reduced at 800 °C) at a temperature of 400 °C for 30 s. The overall efficiency of H 2Se electrochemical generation, transport and collection was 71±7% for cell I and 80±5% for cell II. The results for electrochemical generation of H 2Se (cell II) (absolute limit of detection 50 pg, 3σ criterion) were compared with the original generation of H 2Se using NaBH 4 as a reduction agent (absolute limit of detection 30 pg) and with conventional liquid sampling. The repeatability at the 1.0 ng ml -1 level was better than 2.4% (relative standard deviation) for electrochemical hydride generation and better than 2.8% for chemical hydride generation.

  8. Atomic intercalation to measure adhesion of graphene on graphite

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Sorescu, Dan C.; Jeon, Seokmin; Belianinov, Alexei; Kalinin, Sergei V.; Baddorf, Arthur P.; Maksymovych, Petro

    2016-10-01

    The interest in mechanical properties of two-dimensional materials has emerged in light of new device concepts taking advantage of flexing, adhesion and friction. Here we demonstrate an effective method to measure adhesion of graphene atop highly ordered pyrolytic graphite, utilizing atomic-scale `blisters' created in the top layer by neon atom intercalates. Detailed analysis of scanning tunnelling microscopy images is used to reconstruct atomic positions and the strain map within the deformed graphene layer, and demonstrate the tip-induced subsurface translation of neon atoms. We invoke an analytical model, originally devised for graphene macroscopic deformations, to determine the graphite adhesion energy of 0.221+/-0.011 J m-2. This value is in excellent agreement with reported macroscopic values and our atomistic simulations. This implies mechanical properties of graphene scale down to a few-nanometre length. The simplicity of our method provides a unique opportunity to investigate the local variability of nanomechanical properties in layered materials.

  9. Revealing the hidden atom in graphite by low-temperature atomic force microscopy.

    PubMed

    Hembacher, Stefan; Giessibl, Franz J; Mannhart, Jochen; Quate, Calvin F

    2003-10-28

    Carbon, the backbone material of life on Earth, comes in three modifications: diamond, graphite, and fullerenes. Diamond develops tetrahedral sp3 bonds, forming a cubic crystal structure, whereas graphite and fullerenes are characterized by planar sp2 bonds. Polycrystalline graphite is the basis for many products of everyday life: pencils, lubricants, batteries, arc lamps, and brushes for electric motors. In crystalline form, highly oriented pyrolytic graphite is used as a diffracting element in monochromators for x-ray and neutron scattering and as a calibration standard for scanning tunneling microscopy (STM). The graphite surface is easily prepared as a clean atomically flat surface by cleavage. This feature is attractive and is used in many laboratories as the surface of choice for "seeing atoms." Despite the proverbial ease of imaging graphite by STM with atomic resolution, every second atom in the hexagonal surface unit cell remains hidden, and STM images show only a single atom in the unit cell. Here we present measurements with a low-temperature atomic force microscope with pico-Newton force sensitivity that reveal the hidden surface atom.

  10. Temporal and spatial temperature distributions in transversely heated graphite tube atomizers and their analytical characteristics for atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Sperling, Michael; Welz, Bernard; Hertzberg, Joachim; Rieck, Christof; Marowsky, Gerd

    1996-07-01

    The important role which temperature plays in atomic absorption spectrometry (AAS) for the formation and detection of atoms in the absorption volume is discussed and the literature is reviewed. Non-homogeneous temperature distribution in the absorption volume is in contradiction to one of the prerequisites for the application of Beer's law used in AAS to convert absorbance into analyte concentration or mass, and is particularly troublesome for an "absolute analysis" envisaged for electrothermal atomic absorption spectrometry (ETAAS). Coherent anti-Stokes Raman scattering (CARS) is used to study the gas-phase temperature distribution in a state-of-the-art transversely heated graphite tube atomizer (THGA). The effect of the internal gas flow on the size of the heated atmosphere is studied by steady-state temperature measurements. Temporally and spatially resolved measurements make it possible to study the temperature field within the atomizer volume in all three dimensions during the rapid heating of the furnace to final temperatures in the range 2173-2673 K. The role of the integrated platform of the THGA on the temperature field is investigated by temperature measurements of the gas phase in the presence and absence of the platform. The platform is identified as the major source of temperature gradients inside the tube volume, which may be as high as 1000 K in the radial direction during rapid heating. These gradients are most pronounced for heating cycles starting at room temperature and gradually decrease with increasing starting temperature. Shortly after the tube wall reaches its final temperature, the gas-phase temperature equilibrates and approaches the wall temperature. Because of the unavoidable contact with the cold environment at the open ends of the tube, minor temperature gradients are observed in the gas phase also in longitudinal direction, which can be further reduced by restricting the openings with end caps. The results obtained for the THGA are

  11. Interaction of atomic oxygen with a graphite surface

    NASA Astrophysics Data System (ADS)

    Mateljevic, Natasa

    This project was a part of the Multi University Research Initiative (MURI) Center for Materials Chemistry in the Space Environment which seeks to develop a quantitative and predictive understanding of how materials degrade or become passivated in the space environment. This is a critical research area for the Department of Defense (DoD) and National Aeronautics and Space Administration (NASA) given the large and increasing dependence on satellites and manned spacecrafts that reside in, or pass through, the low-Earth orbit (LEO) space environment. In this work, we completed three separate projects. First, we carried out ab initio electronic structure studies of the interaction of oxygen atoms with graphite surfaces. The (O3 P) ground state of oxygen interacts weakly with the graphite surface while the excited (O1D) state interacts more strongly with a binding energy sufficient for a high coverage of oxygen to be maintained on the surface. Thus, it requires a transition from O(3P) to O(1D) in order for oxygen to strongly bind. Since graphite is a semi-metal, it requires a vanishingly small energy to remove an electron of up spin from just below the Fermi level, and replace it with a down spin electron just above the Fermi level; spin-orbit interaction is not required to switch the state of the oxygen atom. We have examined this complexity for the first time and developed guidelines for properly describing chemical reactivity on graphite surfaces. The second project is a kinetic Monte Carlo study of the erosion of graphite by energetic oxygen atoms in LEO and in the laboratory. These simulations, in conjunction with experiments by our MURI collaborators, reveal new insights about reaction pathways. Finally, we have developed a new model for accommodation of energy and momentum in collisions of gases with highly corrugated surfaces. This model promises to be valuable in simulating frictional heating and drag of objects moving through the atmosphere.

  12. Atomic intercalation to measure adhesion of graphene on graphite

    DOE PAGES

    Wang, Jun; Sorescu, Dan C.; Jeon, Seokmin; ...

    2016-10-31

    The interest in mechanical properties of layered and 2D materials has reemerged in light of device concepts that take advantage of flexing, adhesion and friction in such systems. Here we provide an effective measurement of the nanoscale elastic adhesion of a graphene sheet atop highly ordered pyrolytic graphite (HOPG) based on the analysis of atomic intercalates in graphite. Atomic intercalation is carried out using conventional ion sputtering, creating blisters in the top-most layer of the HOPG surface. Scanning tunneling microscopy coupled with image analysis and density functional theory are used to reconstruct the atomic positions and the strain map withinmore » the deformed graphene sheet, as well as to demonstrate subsurface diffusion of the ions creating such blisters. To estimate the adhesion energy we invoke an analytical model originally devised for macroscopic deformations of graphene. This model yields a value of 0.221 ± 0.011 J/m-2 for the adhesion energy of graphite, which is in surprisingly good agreement with reported experimental and theoretical values. This implies that macroscopic mechanical properties of graphene scale down to at least a few nanometers length. The simplicity of our method, compared to the macroscale characterization, enables analysis of elastic mechanical properties in two-dimensional layered materials and provides a unique opportunity to investigate the local variability of mechanical properties on the nanoscale.« less

  13. Atomic intercalation to measure adhesion of graphene on graphite

    SciTech Connect

    Wang, Jun; Sorescu, Dan C.; Jeon, Seokmin; Belianinov, Alex; Kalinin, Sergei V.; Baddorf, Arthur P.; Maksymovych, Petro

    2016-10-31

    The interest in mechanical properties of layered and 2D materials has reemerged in light of device concepts that take advantage of flexing, adhesion and friction in such systems. Here we provide an effective measurement of the nanoscale elastic adhesion of a graphene sheet atop highly ordered pyrolytic graphite (HOPG) based on the analysis of atomic intercalates in graphite. Atomic intercalation is carried out using conventional ion sputtering, creating blisters in the top-most layer of the HOPG surface. Scanning tunneling microscopy coupled with image analysis and density functional theory are used to reconstruct the atomic positions and the strain map within the deformed graphene sheet, as well as to demonstrate subsurface diffusion of the ions creating such blisters. To estimate the adhesion energy we invoke an analytical model originally devised for macroscopic deformations of graphene. This model yields a value of 0.221 ± 0.011 J/m-2 for the adhesion energy of graphite, which is in surprisingly good agreement with reported experimental and theoretical values. This implies that macroscopic mechanical properties of graphene scale down to at least a few nanometers length. The simplicity of our method, compared to the macroscale characterization, enables analysis of elastic mechanical properties in two-dimensional layered materials and provides a unique opportunity to investigate the local variability of mechanical properties on the nanoscale.

  14. Determination of phosphorus using high-resolution diphosphorus molecular absorption spectra produced in the graphite furnace

    NASA Astrophysics Data System (ADS)

    Huang, Mao Dong; Becker-Ross, Helmut; Okruss, Michael; Geisler, Sebastian; Florek, Stefan

    2016-01-01

    Molecular absorption of diphosphorus was produced in a graphite furnace and evaluated in view of its suitability for phosphorus determination. Measurements were performed with two different high-resolution continuum source absorption spectrometers. The first system is a newly in-house developed simultaneous broad-range spectrograph, which was mainly used for recording overview absorption spectra of P2 between 193 nm and 245 nm. The region covers the main part of the C 1Σu+ ← X 1Σg+ electronic transition and shows a complex structure with many vibrational bands, each consisting of a multitude of sharp rotational lines. With the help of molecular data available for P2, an assignment of the vibrational bands was possible and the rotational structure could be compared with simulated spectra. The second system is a commercial sequential continuum source spectrometer, which was used for the basic analytical measurements. The P2 rotational line at 204.205 nm was selected and systematically evaluated with regard to phosphorus determination. The conditions for P2 generation were optimized and it was found that the combination of a ZrC modified graphite tube and borate as a chemical modifier were essential for a good production of P2. Serious interferences were found in the case of nitrate and sulfuric acid, although the nitrate interference can be eliminated by a higher pyrolysis temperature. The reliability of the method was proved by analysis of certified samples. Using standard tubes, a characteristic mass of 10 ng and a limit of detection of 7 ng were found. The values could further be improved by a factor of ten using a miniaturized tube with an internal diameter of 2 mm. Compared to the conventional method based on the phosphorus absorption line at 213.618 nm, the advantages of using P2 are the gentle temperature conditions and the potential of performing a simultaneous multi-line evaluation to further improve the limit of detection.

  15. Recombination of hydrogen atoms on fine-grain graphite

    NASA Astrophysics Data System (ADS)

    Drenik, Aleksander; Vesel, Alenka; Kreter, Arkadi; Mozetič, Miran

    2011-04-01

    The probability of recombination of hydrogen atoms on surfaces of fine-grain graphite EK98 was investigated as a function of surface roughness. The source of hydrogen atoms used in this experiment was weakly ionised plasma created with an inductively coupled radiofrequency generator at pressures from 30 Pa to 175 Pa in hydrogen. Hydrogen atom density was measured by means of fibre optic catalytic probes. The recombination coefficient of the graphite samples was determined by observing their impact on the spatial distribution of the atom density in a closed side-arm of the reactor. Smith's diffusion model was used to calculate the values of the recombination coefficient. The measured recombination coefficient was found to increase much faster than the measured effective surface. This discrepancy is explained by the fact that on a surface which is not perfectly flat, there is a finite probability for multiple collisions. Impinging atoms collide more than once with the surface before they are reflected into the surface, which results in a larger probability of recombination.

  16. Atomic intercalation to measure adhesion of graphene on graphite

    PubMed Central

    Wang, Jun; Sorescu, Dan C.; Jeon, Seokmin; Belianinov, Alexei; Kalinin, Sergei V.; Baddorf, Arthur P.; Maksymovych, Petro

    2016-01-01

    The interest in mechanical properties of two-dimensional materials has emerged in light of new device concepts taking advantage of flexing, adhesion and friction. Here we demonstrate an effective method to measure adhesion of graphene atop highly ordered pyrolytic graphite, utilizing atomic-scale ‘blisters' created in the top layer by neon atom intercalates. Detailed analysis of scanning tunnelling microscopy images is used to reconstruct atomic positions and the strain map within the deformed graphene layer, and demonstrate the tip-induced subsurface translation of neon atoms. We invoke an analytical model, originally devised for graphene macroscopic deformations, to determine the graphite adhesion energy of 0.221±0.011 J m−2. This value is in excellent agreement with reported macroscopic values and our atomistic simulations. This implies mechanical properties of graphene scale down to a few-nanometre length. The simplicity of our method provides a unique opportunity to investigate the local variability of nanomechanical properties in layered materials. PMID:27796294

  17. Atomic intercalation to measure adhesion of graphene on graphite.

    PubMed

    Wang, Jun; Sorescu, Dan C; Jeon, Seokmin; Belianinov, Alexei; Kalinin, Sergei V; Baddorf, Arthur P; Maksymovych, Petro

    2016-10-31

    The interest in mechanical properties of two-dimensional materials has emerged in light of new device concepts taking advantage of flexing, adhesion and friction. Here we demonstrate an effective method to measure adhesion of graphene atop highly ordered pyrolytic graphite, utilizing atomic-scale 'blisters' created in the top layer by neon atom intercalates. Detailed analysis of scanning tunnelling microscopy images is used to reconstruct atomic positions and the strain map within the deformed graphene layer, and demonstrate the tip-induced subsurface translation of neon atoms. We invoke an analytical model, originally devised for graphene macroscopic deformations, to determine the graphite adhesion energy of 0.221±0.011 J m(-2). This value is in excellent agreement with reported macroscopic values and our atomistic simulations. This implies mechanical properties of graphene scale down to a few-nanometre length. The simplicity of our method provides a unique opportunity to investigate the local variability of nanomechanical properties in layered materials.

  18. Catalytically active single-atom niobium in graphitic layers

    NASA Astrophysics Data System (ADS)

    Zhang, Xuefeng; Guo, Junjie; Guan, Pengfei; Liu, Chunjing; Huang, Hao; Xue, Fanghong; Dong, Xinglong; Pennycook, Stephen J.; Chisholm, Matthew F.

    2013-05-01

    Carbides of groups IV through VI (Ti, V and Cr groups) have long been proposed as substitutes for noble metal-based electrocatalysts in polymer electrolyte fuel cells. However, their catalytic activity has been extremely limited because of the low density and stability of catalytically active sites. Here we report the excellent performance of a niobium-carbon structure for catalysing the cathodic oxygen reduction reaction. A large number of single niobium atoms and ultra small clusters trapped in graphitic layers are directly identified using state-of-the-art aberration-corrected scanning transmission electron microscopy. This structure not only enhances the overall conductivity for accelerating the exchange of ions and electrons, but it suppresses the chemical/thermal coarsening of the active particles. Experimental results coupled with theory calculations reveal that the single niobium atoms incorporated within the graphitic layers produce a redistribution of d-band electrons and become surprisingly active for O2 adsorption and dissociation, and also exhibit high stability.

  19. Chemically assisted release of transition metals in graphite vaporizers for atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri; Darangwa, Nicholas; Grotti, Marco

    2006-05-01

    The processes associated with the vaporization of microgram samples and modifiers in a graphite tube ET AAS were investigated by the example of transition metals. The vapor absorption spectra and vaporization behavior of μg-amounts Cd, Zn, Cu, Ag, Au, Ni, Co, Fe, Mn and Cr were studied using the UV spectrometer with CCD detector, coupled with a continuum radiation source. The pyrocoated, Ta or W lined tubes, with Ar or He as internal gases, and filter furnace were employed in the comparative experiments. It was found that the kinetics of atomic vapor release changed depending on the specific metal-substrate-gas combination; fast vaporization at the beginning was followed by slower 'tailing.' The absorption continuum, overlapped by black body radiation at longer wavelengths, accompanied the fast vaporization mode for all metals, except Cd and Zn. The highest intensity of the continuum was observed in the pyrocoated tube with Ar. For Cu and Ag the molecular bands overlapped the absorption continuum; the continuum and bands were suppressed in the filter furnace. It is concluded that the exothermal interaction of sample vapor with the material of the tube causes the energy evolution in the gas phase. The emitted heat is dispersed near the tube wall in the protective gas and partially transferred back to the surface of the sample, thus facilitating the vaporization. The increased vapor flow causes over-saturation and gas-phase condensation in the absorption volume at some distance from the wall, where the gas temperature is not affected by the reaction. The condensation is accompanied by the release of phase transition energy via black body radiation and atomic emission. The particles of condensate and molecular clusters cause the scattering of light and molecular absorption; slow decomposition of the products of the sample vapor-substrate reaction produces the 'tailing' of atomic absorption signal. The interaction of graphite with metal vapor or oxygen, formed in the

  20. The spectral opacity of triatomic carbon measured in a graphite tube furnace over the 280 to 600 nm wavelength range

    NASA Technical Reports Server (NTRS)

    Snow, W. L.; Wells, W. L.

    1980-01-01

    The opacity of linear triatomic carbon (C3) was measured in a graphite tube furnace from 280 to 600 nm to supplement the earlier measurements of Brewer and Engelke. The spectral cross section was estimated from the opacities using temperature profiles determined pyrometrically and a revised heat of formation delta H = 198 kcal/mole). The cross section was found to be nonnegligible over the range 300 to 500 nm and the electronic oscillator strength based on the total cross section estimate was 0.02.

  1. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag.

    PubMed

    Chartier, D; Muzeau, B; Stefan, L; Sanchez-Canet, J; Monguillon, C

    2017-03-15

    Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  2. Solid sampling determination of total fluorine in baby food samples by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-11-15

    This study describes the applicability of solid sampling technique for the determination of fluorine in various baby foods via molecular absorption of calcium monofluoride generated in a graphite furnace of high-resolution continuum source atomic absorption spectrometry. Fluorine was determined at CaF wavelength, 606.440nm in a graphite tube applying a pyrolysis temperature of 1000°C and a molecule forming temperature of 2200°C. The limit of detection and characteristic mass of the method were 0.20ng and 0.17ng of fluorine, respectively. The fluorine concentrations determined in standard reference sample (bush branches and leaves) were in good agreement with the certified values. By applying the optimized parameters, the concentration of fluorine in various baby foods were determined. The fluorine concentrations were ranged from

  3. Investigation of aging processes of graphite tubes modified with iridium and rhodium used for atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Bulska, Ewa; Piaścik, Marek; Katskov, Dmitri; Darangwa, Nicholas; Grotti, Marco

    2007-11-01

    UV spectrometry (187-380 nm) with charge coupled device (CCD) detection was used to study the evolution of absorption spectra during the vaporization of various species in the pyrocoated graphite furnace, with electrodeposited Ir and Rh as modifiers. In order to mimic a typical matrix composition, various salts of aluminum, manganese, copper, magnesium, sodium, and lead were used in microgram amounts. Changes in spectra and vapor release rate, along with aging of the tubes in the repetitive temperature cycles, were observed. Compared to the unmodified pyrocoated tubes, the presence of Ir or Rh causes a significant reduction in the vaporization efficiency, especially for microgram amounts of copper and aluminum introduced as nitrates, and manganese introduced as a sulfate. The vaporization efficiency, for magnesium and sodium as chlorides, and for lead as a sulfate, remained unchanged. Interestingly, the aging of the tubes was accompanied by partial restoration of the spectral characteristics for unmodified tubes. For example, with unmodified pyrocoated tubes, the vaporization spectrum, appearing as a consequence of the decomposition of aluminum nitrate, consisted of Al2O bands overlapped by Al atomic lines. In the freshly modified tubes, intensities of those lines and bands were substantially reduced, and in this case, the dominance of AlO molecules was observed. The efficiency of vaporization of aluminum species increased in the aged modified tubes. The scanning electron microscopy (SEM) images of the modified surfaces for the new and aged tubes indicated that aging of the tubes is accompanied by the destruction of the pyrocoating, formation of pyrographite shells around the areas where the modifier was electrodeposited, and finally, complete substitution of the metal on the graphite surface by pyrographite debris.

  4. Microdroplet Sample Application in Electrothermal Atomization for Atomic Absorption Spectrometry.

    DTIC Science & Technology

    1982-03-29

    ad ideftify by Week amber) atomic absorption spectroscopy microsampl ing graphite- furnace AAS automation C> 20. AOSTRACT (Coninuhe an reveresi de It...furnace and spectrometer system as well as for partial support of this project. REFERENCES 1. J. D. Winefordner, Atomic Absorption Spectroscopy , G. F

  5. Tellurium speciation analysis using hydride generation in situ trapping electrothermal atomic absorption spectrometry and ruthenium or palladium modified graphite tubes.

    PubMed

    Yildirim, Emrah; Akay, Pınar; Arslan, Yasin; Bakirdere, Sezgin; Ataman, O Yavuz

    2012-12-15

    Speciation of tellurium can be achieved by making use of different kinetic behaviors of Te(IV) and Te(VI) upon their reaction with sodium borohydride using hydride generation. While Te(IV) can form H(2)Te, Te(VI) will not form any volatile species during the course of hydride formation and measurement by atomic absorption spectrometry. Quantitative reduction of Te(VI) was achieved through application of a microwave assisted prereduction of Te(VI) in 6.0 mol/L HCl solution. Enhanced sensitivity was achieved by in situ trapping of the generated H(2)Te species in a previously heated graphite furnace whose surface was modified using Pd or Ru. Overall efficiency for in situ trapping in pyrolytically coated graphite tube surface was found to be 15% when volatile analyte species are trapped for 60s at 300°C. LOD and LOQ values were calculated as 0.086 ng/mL and 0.29 ng/mL, respectively. Efficiency was increased to 46% and 36% when Pd and Ru surface modifiers were used, respectively. With Ru modified graphite tube 173-fold enhancement was obtained over 180 s trapping period with respect to ETAAS; the tubes could be used for 250 cycles. LOD values were 0.0064 and 0.0022 ng/mL for Pd and Ru treated ETAAS systems, respectively, for 180 s collection of 9.6 mL sample solution.

  6. Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Nascentes, Clésia C.; Kamogawa, Marcos Y.; Fernandes, Kelly G.; Arruda, Marco A. Z.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2005-06-01

    In this work, thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was employed for Cu, Mn, Pb, and Zn determination in beer without any sample digestion. The system was optimized and calibration was based on the analyte addition technique. A sample volume of 300 μl was introduced into the hot Ni tube at a flow-rate of 0.4 ml min -1 using 0.14 mol l -1 nitric acid solution or air as carrier. Different Brazilian beers were directly analyzed after ultrasonic degasification. Results were compared with those obtained by graphite furnace atomic absorption spectrometry (GFAAS). The detection limits obtained for Cu, Mn, Pb, and Zn in aqueous solution were 2.2, 18, 1.6, and 0.9 μg l -1, respectively. The relative standard deviations varied from 2.7% to 7.3% ( n=8) for solutions containing the analytes in the 25-50 μg l -1 range. The concentration ranges obtained for analytes in beer samples were: Cu: 38.0-155 μg l -1; Mn: 110-348 μg l -1, Pb: 13.0-32.9 μg l -1, and Zn: 52.7-226 μg l -1. Results obtained by TS-FF-AAS and GFAAS were in agreement at a 95% confidence level. The proposed method is fast and simple, since sample digestion is not required and sensitivity can be improved without using expensive devices. The TS-FF-AAS presented suitable sensitivity for determination of Cu, Mn, Pb, and Zn in the quality control of a brewery.

  7. Atomic vacancy-induced friction on the graphite surface: observation by lateral force microscopy.

    PubMed

    Paredes, J I; Martínez-Alonso, A; Tascón, J M D

    2003-05-01

    Lateral force microscopy has been employed to investigate the frictional behaviour of atomic vacancies on the graphite surface. Such a study was only made possible by the controlled expansion of originally single-atom vacancies into multiatom vacancies, employing oxygen plasma etching for this purpose. Enhanced friction was observed on the vacancy regions compared with pristine areas of graphite, the origin of which is examined and discussed.

  8. Energy corrugation in atomic-scale friction on graphite revisited by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Yu; Qi, Yi-Zhou; Ouyang, Wengen; Feng, Xi-Qiao; Li, Qunyang

    2016-08-01

    Although atomic stick-slip friction has been extensively studied since its first demonstration on graphite, the physical understanding of this dissipation-dominated phenomenon is still very limited. In this work, we perform molecular dynamics (MD) simulations to study the frictional behavior of a diamond tip sliding over a graphite surface. In contrast to the common wisdom, our MD results suggest that the energy barrier associated lateral sliding (known as energy corrugation) comes not only from interaction between the tip and the top layer of graphite but also from interactions among the deformed atomic layers of graphite. Due to the competition of these two subentries, friction on graphite can be tuned by controlling the relative adhesion of different interfaces. For relatively low tip-graphite adhesion, friction behaves normally and increases with increasing normal load. However, for relatively high tip-graphite adhesion, friction increases unusually with decreasing normal load leading to an effectively negative coefficient of friction, which is consistent with the recent experimental observations on chemically modified graphite. Our results provide a new insight into the physical origins of energy corrugation in atomic scale friction.

  9. Method for processing aluminum spent potliner in a graphite electrode ARC furnace

    SciTech Connect

    O'Connor, William K.; Turner, Paul C.; Addison, Gerald W.

    2002-12-24

    A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spent aluminum pot liner is crushed iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine and CO.

  10. Method for processing aluminum spent potliner in a graphite electrode arc furnace

    DOEpatents

    O'Connor, William K.; Turner, Paul C.; Addison, G.W.

    2002-12-24

    A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spend aluminum pot liner is crushed, iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine, and CO.

  11. Determination of sulfur in human hair using high resolution continuum source graphite furnace molecular absorption spectrometry and its correlation with total protein and albumin

    NASA Astrophysics Data System (ADS)

    Ozbek, Nil; Baysal, Asli

    2017-04-01

    Human hair is a valuable contributor for biological monitoring. It is an information storage point to assess the effects of environmental, nutritional or occupational sources on the body. Human proteins, amino acids or other compounds are among the key components to find the sources of different effects or disorders in the human body. Sulfur is a significant one of these compounds, and it has great affinity to some metals and compounds. This property of the sulfur affects the human health positively or negatively. In this manuscript, sulfur was determined in hair samples of autistic and age-match control group children via molecular absorption of CS using a high-resolution continuum source graphite furnace atomic absorption spectrometer. For this purpose, hair samples were appropriately washed and dried at 75 °C. Then samples were dissolved in microwave digestion using HNO3 for sulfur determination. Extraction was performed with HCl hydrolysation by incubation for 24 h at 110 °C for total protein and albumin determination. The validity of the method for the sulfur determination was tested using hair standard reference materials. The results were in the uncertainty limits of the certified values at 95% confidence level. Finally correlation of sulfur levels of autistic children's hair with their total protein and albumin levels were done.

  12. Time-dependent density functional theory Ehrenfest dynamics: collisions between atomic oxygen and graphite clusters.

    PubMed

    Isborn, Christine M; Li, Xiaosong; Tully, John C

    2007-04-07

    An ab initio direct Ehrenfest dynamics method with time-dependent density functional theory is introduced and applied to collisions of 5 eV oxygen atoms and ions with graphite clusters. Collisions at three different sites are simulated. Kinetic energy transfer from the atomic oxygen to graphite local vibrations is observed and electron-nuclear coupling resulting in electronic excitation within the graphite surface as well as alteration of the atomic charge is first reported in this paper. The three oxygen species studied, O(3P), O-(2P), and O+(4S), deposit different amounts of energy to the surface, with the highest degree of damage to the pi conjugation of the cluster produced by the atomic oxygen cation. Memory of the initial charge state is not lost as the atom approaches, in contrast to the usual assumption.

  13. Reduction of matrix interferences in furnace atomic absorption with the L'vov Platform

    USGS Publications Warehouse

    Kaiser, M.L.; Koirtyohann, S.R.; Hinderberger, E.J.; Taylor, H.E.

    1981-01-01

    Use of a modified L'vov Platform and ammonium phosphate as a matrix modifier greatly reduced matrix interferences in a commercial Massmann-type atomic absorption furnace. Platforms were readily fabricated from furnace tubes and, once positioned in the furnace, caused no inconvenience in operation. Two volatile elements (Pb, Cd), two of intermediate volatility (Co, Cr) and two which form stable oxides (Al, Sn) were tested in natural water and selected synthetic matrices. In every case for which there was a significant matrix effect during atomization from the tube wall, the platform and platform plus modifier gave improved performance. With lead, for example, an average ratio of 0.48 ?? 0.11 was found when the slope of the standard additions plot for six different natural water samples was compared to the slope of the standard working curve in dilute acid. The average slope ratio between the natural water matrices and the dilute acid matrix was 0.94 ?? 0.03 with the L'vov Platform and 0.96 ?? 0.03 with the platform and matrix modifier. In none of the cases studied did the use of the platform or platform plus modifier cause an interference problem where none existed while atomizing from the tube wall. An additional benefit of the platform was a factor of about two improvement in peak height precision. ?? 1981.

  14. The Determination of Trace Metals in Saline Waters and Biological Tissues Using the Heated Graphite Atomizer

    NASA Technical Reports Server (NTRS)

    Segar, D. A.

    1971-01-01

    A selective, volatalization technique utilizing the heated graphite atomizer atomic absorption technique has been developed for the analysis of iron in sea water. A similar technique may be used to determine vanadium, copper, nickel and cobalt in saline waters when their concentrations are higher than those normally encountered'in unpolluted sea waters. A preliminary solvent extraction using ammonium pyrolidine dithiocarbamate and methyl iso-butyl ketone permits the determination of a number of elements including iron, copper, zinc, nickel, cobalt and lead in sea water. The heated graphite atomized technique has also been applied to the determination of a range of trace transition elements in marine plant and animal tissues.

  15. Effects of Stone-Wales and vacancy defects in atomic-scale friction on defective graphite

    SciTech Connect

    Sun, Xiao-Yu; Wu, RunNi; Xia, Re; Chu, Xi-Hua; Xu, Yuan-Jie

    2014-05-05

    Graphite is an excellent solid lubricant for surface coating, but its performance is significantly weakened by the vacancy or Stone-Wales (SW) defect. This study uses molecular dynamics simulations to explore the frictional behavior of a diamond tip sliding over a graphite which contains a single defect or stacked defects. Our results suggest that the friction on defective graphite shows a strong dependence on defect location and type. The 5-7-7-5 structure of SW defect results in an effectively negative slope of friction. For defective graphite containing a defect in the surface, adding a single vacancy in the interior layer will decrease the friction coefficients, while setting a SW defect in the interior layer may increase the friction coefficients. Our obtained results may provide useful information for understanding the atomic-scale friction properties of defective graphite.

  16. Application of thermospray flame furnace atomic absorption spectrometry for investigation of silver nanoparticles.

    PubMed

    Sirirat, Natnicha; Tetbuntad, Kornrawee; Siripinyanond, Atitaya

    2017-03-01

    Thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was applied to investigate the time-dependent absorption peak profile of various forms of silver. The thermospray flame furnace was set up with a 10-cm-long nickel tube with six holes, each 2.0 mm in diameter, to allow the flame to enter, and this nickel tube acted as a furnace. A sample of 300 μL was introduced into this furnace by use of water as a carrier at a flow rate of 0.5 mL min(-1) through the ceramic capillary (0.5-mm inner diameter and 2.0-mm outer diameter), which was inserted into the front hole of the nickel tube. The system was applied to examine atomization behaviors of silver nanoparticles (AgNPs) with particle sizes ranging from 10 to 100 nm. The atomization rate of AgNPs was faster than that of the dissolved silver ion. With increased amount of silver, the decay time observed from the time-dependent absorption peak profile was shortened in the case of dissolved silver ion, but it was increased in the case of AgNPs. With the particle size ranging from 10 to 100 nm, the detection sensitivity was indirectly proportional to the particle size, suggesting that TS-FF-AAS may offer insights into the particle size of AgNPs provided that the concentration of the silver is known. To obtain quantitative information on AgNPs, acid dissolution of the particles was performed before TS-FF-AAS analysis, and recoveries of 80-110% were obtained.

  17. Fluorine determination in coal using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis

    NASA Astrophysics Data System (ADS)

    Machado, Patrícia M.; Morés, Silvane; Pereira, Éderson R.; Welz, Bernhard; Carasek, Eduardo; de Andrade, Jailson B.

    2015-03-01

    The absorption of the calcium mono-fluoride (CaF) molecule has been employed in this study for the determination of fluorine in coal using direct solid sample analysis and high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS). The rotational line at 606.440 nm was used for measuring the molecular absorption in the gas phase. The pyrolysis and vaporization temperatures were 700 °C and 2100 °C, respectively. Different chemical modifiers have been studied, such as Pd and Ir as permanent modifiers, and Pd and the mixed Pd/Mg modifier in solution. The limit of detection and the characteristic mass were 0.3 and 0.1 ng F, respectively. One certified reference material (CRM) of coal (NIST 1635) and four CRMs with a non-certified value for F (SARM 18, SARM 20, BCR 40, BCR 180) were used to evaluate the accuracy and precision of the method, obtaining good agreement (104%) with the certified value and with the informed values (ranging from 90 to 103%).

  18. Determination of trace concentrations of chlorine in aqueous solutions by high-resolution continuum source graphite furnace molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Machyňák, Ľubomír; Čacho, František; Němeček, Martin; Beinrohr, Ernest

    2016-11-01

    Trace concentrations of total chlorine were determined by means of molecular absorption of indium mono-chloride (InCl) at 267.217 nm using high-resolution continuum source graphite furnace molecular absorption spectrometry. The effects of chemical modifiers and the amount of In on the sensitivity and accuracy were investigated. The optimum pyrolysis and vaporization temperatures were 600 °C and 1400 °C, respectively. The limit of detection and characteristic mass were found to be 0.10 ng and 0.21 ng, respectively. Potential non-spectral and spectral interferences were tested for various metals and non-metals at concentrations up to 50 mg L- 1 and for phosphoric, sulphuric and nitric acids. No spectral interferences were observed. Significant non-spectral interferences were observed with F, Br, and I at concentrations higher than 1 mg L- 1, 5 mg L- 1 and 25 mg L- 1, respectively, which is probably caused by formation of competitive indium halogen molecules. Higher concentrations of mineral acids depressed the signal owing to the formation of volatile HCl. The calibration curve was linear in the range between 0.3 and 10 ng with a correlation coefficient of R = 0.993. The elaborated method was used for the chlorine determination in various waters and a drug sample.

  19. Metal furnace heated by flame as a hydride atomizer for atomic absorption spectrometry: Sb determination in environmental and pharmaceutical samples.

    PubMed

    Figueiredo, Eduardo Costa; Dĕdina, Jirí; Arruda, Marco Aurélio Zezzi

    2007-10-15

    The present work describes a metallic hydride atomizer for atomic absorption spectrometry, by evaluating the performance of the Inconel 600((R)) tube. For this purpose, stibine was used as the model volatile compound and antimony determination in river and lake sediments and in pharmaceutical samples was carried out to assess the metal furnace performance. Some parameters are evaluated such as those referring to the generation and transport of the hydride (such as KBH(4) and acid concentrations, carrier gas flow rate, injected volume, etc.), as well as those referring to the metal furnace (such as tube hole area, flame composition, long-term stability, etc.). The method presents linear Sb concentration from 2 to 80mugL(-1) range (r>0.998; n=3) and the analytical frequency of ca. 140h(-1). The limit of detection (LOD) is 0.23mugL(-1) and the precision, expressed as R.S.D., is less than 5% (40mugL(-1); n=10). The accuracy is evaluated through the reference materials, and the results are similar at 95% confidence level according to the t-test.

  20. Determination of indium in geological materials by electrothermal-atomization atomic absorption spectrometry with a tungsten-impregnated graphite furance

    USGS Publications Warehouse

    Zhou, L.; Chao, T.T.; Meier, A.L.

    1984-01-01

    The sample is fused with lithium metaborate and the melt is dissolved in 15% (v/v) hydrobromic acid. Iron(III) is reduced with ascorbic acid to avoid its coextraction with indium as the bromide into methyl isobutyl ketone. Impregnation of the graphite furnace with sodium tungstate, and the presence of lithium metaborate and ascorbic acid in the reaction medium improve the sensitivity and precision. The limits of determination are 0.025-16 mg kg-1 indium in the sample. For 22 geological reference samples containing more than 0.1 mg kg-1 indium, relative standard deviations ranged from 3.0 to 8.5% (average 5.7%). Recoveries of indium added to various samples ranged from 96.7 to 105.6% (average 100.2%). ?? 1984.

  1. BOOK REVIEW: The Magic Furnace: the search for the origins of atoms

    NASA Astrophysics Data System (ADS)

    Anderson, Molly

    2000-01-01

    Science is beautiful with hindsight. Cut out the dead ends, the dull interludes and the mad theories that stayed mad and you are left with the highlights. Each amazing discovery builds on the last in a straight, undiverted road towards understanding. Even the twists of fate fit neatly into the evolving story. It is never quite as simple as that but it is immensely appealing nonetheless. This book uses the clarity of hindsight to tell one of the most amazing scientific stories of all time: the birth of atoms in the furnaces of the big bang and the stars. It draws together two seemingly separate lines of enquiry, both of which began in Ancient Greece. The Ancient Greeks looked at the skies, as we do today, and wondered what makes the sun shine. In answer, the philosopher Anaxogorus proposed that the sun was a red-hot ball of iron. Similarly, the idea of atoms was first introduced by Democritus in answer to the question: Can matter be subdivided forever? Democritus' atoms and Anaxogorus' iron sun were both theories that no-one thought could ever be proved or contested. After all, atoms are too small to see and the sun is too hot to visit. But proof comes in many guises and the existence of atoms was established by other means long before they could be `seen' with electron microscopes. The same ingenuity had to be applied to understanding the sun from the cool comfort of the Earth. Marcus Chown tells the story of these tremendous feats in a simple and entertaining way. He introduces all the principal characters of the story, blending personal anecdotes with descriptions of their work. Somehow knowing that we owe the discovery of radioactivity to a cloudy day and that of spectral lines to a roof falling on Fraunhofer's head adds to the evolving drama. Each chapter begins with a carefully chosen quote showing how great minds, from physicists to poets, have pondered these ancient questions. However, the text itself is uncluttered and scientific definitions and

  2. [Characteristics of rubidium forward degenerate four-wave mixing (FDFWM) influenced by the matrix effect of chloride brine in graphite furnace].

    PubMed

    Wang, Jian; Ren, Zhao-Yu; Cheng, Xue-Mei; Miao, Yi-Zhu; Chen, Hao-Wei; Yin, Xun-Li; Wang, Li-Qin; Bai, Jin-Tao

    2012-06-01

    Rb is mainly extracted from brine. The authors studied the matrix effect of chloride brine (NaCl, CaCl2, KCl and MgCl2) on FDFWM (Forward phase-matching degenerate four-wave mixing) of Rb in the graphite furnace. The Rb and other chloride brine concentrations dependences of FDFWM were investigated respectively. The results indicate that with the increase in Rb concentration, FDFWM increases and reaches the highest at 80 ng x mL(-1). With the concentration of Rb sample further increasing, the FDFWM intensity drops. It was also found that when the Rb concentration is low, FDFWM signal is suppressed by the chloride brine, and the suppressing effect gets stronger with the increase in the chloride brine concentration. However, when the Rb concentration is high, FDFWM signal is first enhanced and then suppressed with the increase in the chloride brine concentration. The Cl- interference and Rb ionization in the graphite furnace were employed to explain the experimental results. This work is of important meaning in extracting and analyzing Rb in brine.

  3. Atomic oxygen erosion of a graphite coating on a TQCM onboard the Return Flux Experiment (REFLEX)

    NASA Astrophysics Data System (ADS)

    Benner, Steve M.; Lorentson, Charles C.; Chen, Philip T. C.; Thomson, Shaun R.

    1998-10-01

    A TQCM coated with graphite was flown aboard a Spartan carrier in January 1996. During a flight of about 46 hours at an altitude of 305 km, the graphite reacted with the atomic oxygen (AO) in the environment and was eroded away. The 15-MHz TQCM's frequency dropped from 6800 to 4000 Hz in about 15 hours of exposure and was shown to be a strong function of the TQCM's orientation to the ram direction. The erosion rates for four different ram angels was measured and found to be both consistent and repeatable. The average graphite volume loss for the 61 degree and -62 degree ram angles was calculated to be about 2 X E-08 cm3/hr and for the 18 degrees and 19 degrees angles to be about 8.5 X E-08 cm3/hr, which is slightly less than previous flight data. The erosion data was then correlated with AO density numbers for the particular times and positions of the spacecraft in orbit. From this analysis, an equation was derived that shoed the carbon volume loss as a function of both atomic oxygen density and ram angle. For example, 1.59 E-07 cm3/hr would be the calculated carbon volume loss for a ram angle of 0- degrees and an AO fluence of 3.52 E+17 atoms/hr. The results of this data and analysis may lead to the development of a sensor capable of monitoring the AO fluence on a spacecraft.

  4. Adsorption and recombination of hydrogen atoms on a model graphite surface. [in interstellar space

    NASA Technical Reports Server (NTRS)

    Aronowitz, S.; Chang, S.

    1985-01-01

    The adsorption and recombination of atomic hydrogen on a model graphite grain have been examined in a series of calculations in which a modified, iterative, extended Hueckel program was used. The hydrogen atom is found to be chemisorbed at a site with a zero-point binding energy of 0.7 eV and at an equilibrium distance of 2.25 A above the site. Despite a barrier of about 0.4 eV between adjacent sites, calculations suggest that at temperatures as low as 10 K, an H atom will tunnel through to adjacent sites in less than one nanosecond. However, a potential barrier to the recombination of two hydrogen atoms has been found which displays high sensitivity to the mutual arrangement of the two hydrogen atoms with respect to the graphite surface. Results show that at very low temperatures, recombinations can occur only by tunneling. Consistent with experiment, the region in which H2 begins to form exhibits a repulsive potential with respect to possible chemisorption of the incipient H2 entity.

  5. Atomic-Resolution Kinked Structure of an Alkylporphyrin on Highly Ordered Pyrolytic Graphite.

    PubMed

    Chin, Yiing; Panduwinata, Dwi; Sintic, Maxine; Sum, Tze Jing; Hush, Noel S; Crossley, Maxwell J; Reimers, Jeffrey R

    2011-01-20

    The atomic structure of the chains of an alkyl porphyrin (5,10,15,20-tetranonadecylporphyrin) self-assembled monolayer (SAM) at the solid/liquid interface of highly ordered pyrolytic graphite (HOPG) and 1-phenyloctane is resolved using calibrated scanning tunneling microscopy (STM), density functional theory (DFT) image simulations, and ONIOM-based geometry optimizations. While atomic structures are often readily determined for porphyrin SAMs, the determination of the structure of alkyl-chain connections has not previously been possible. A graphical calibration procedure is introduced, allowing accurate observation of SAM lattice parameters, and, of the many possible atomic structures modeled, only the lowest-energy structure obtained was found to predict the observed lattice parameters and image topography. Hydrogen atoms are shown to provide the conduit for the tunneling current through the alkyl chains.

  6. Anomalous restoration of graphitic layers from graphene oxide in ethanol environment at ultrahigh temperature using solar furnace

    NASA Astrophysics Data System (ADS)

    Ishida, Takashi; Miyata, Yuichiro; Shinoda, Yoshihiko; Kobayashi, Yoshihiro

    2016-02-01

    The restoration of graphitic structures from defective graphene oxide was examined in a reactive ethanol environment at ultrahigh temperatures. Structural analysis by Raman spectroscopy indicates that turbostratic structures as well as high crystallinity in multilayer graphene were accomplished by an ultrahigh-temperature process in an ethanol environment. This phenomenon is quite anomalous since it is in striking contrast to the results observed in inert environments, where graphitization proceeds significantly to form a Bernal stacking multilayer graphene. The suppression of graphitization in ethanol environments is probably caused by the simultaneous supply of carbon and etching species during the restoration process.

  7. Matrix modifiers for feedstuff selenium analysis by graphite furnace atomic absorption spectroscopy

    SciTech Connect

    Brown, T.F.; Zeringue, L.K.

    1988-01-01

    Gallium, Co, Mn, Ni, Cd, Cu, and Zn, dissolved in methanol, were evaluated for efficacy as an alternate volume matrix modifier in Se analysis of forages and concentrates. Gallium, Co, Mn, and Zn were unsuitable as modifiers. Nickel, Cd, Cu, and modifier M (Ni + Cd + Cu) were used to test recovery of Se addition (.025, .050, .100, .200, and .500 ..mu..g) in meat and bone meal, pelleted grain dust, dry milk replacer, whole soybeans, and alfalfa hay. Recovery of Se with Cu, Cd, and M had large and variable SD of means within Se concentrations across feedstuffs and within feedstuff across Se concentrations. Mean percent recoveries of Se with the Ni modifier for the five concentrations over all feedstuffs were 106.4, 102.4, 100.2, 97.5, and 97.4, respectively. Repeated analyses of these same five feedstuffs, plus National Bureau of Standards citrus leaves and corn stalk (recommended Se = .016 ..mu..g/g), gave Se concentration (means ..mu..g/g) of .423, .104, .168, .196, .624, .027, and .015, respectively. Results obtained with Cd, Cu, and M had larger SD than did results obtained with Ni. Nickel nitrate in methanol as an alternate volume matrix modifier for Se provided reliable and sensititive Se analyses for a variety of feedstuffs.

  8. Atomic friction at exposed and buried graphite step edges: Experiments and simulations

    SciTech Connect

    Ye, Zhijiang; Martini, Ashlie

    2015-06-08

    The surfaces of layered materials such as graphite exhibit step edges that affect friction. Step edges can be exposed, where the step occurs at the outmost layer, or buried, where the step is underneath another layer of material. Here, we study friction at exposed and buried step edges on graphite using an atomic force microscope (AFM) and complementary molecular dynamics simulations of the AFM tip apex. Exposed and buried steps exhibit distinct friction behavior, and the friction on either step is affected by the direction of sliding, i.e., moving up or down the step, and the bluntness of the tip. These trends are analyzing in terms of the trajectory of the AFM tip as it moves over the step, which is a convolution of the topography of the surface and the tip shape.

  9. Strontium mono-chloride - A new molecule for the determination of chlorine using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis

    NASA Astrophysics Data System (ADS)

    Pereira, Éderson R.; Welz, Bernhard; Lopez, Alfredo H. D.; de Gois, Jefferson S.; Caramori, Giovanni F.; Borges, Daniel L. G.; Carasek, Eduardo; de Andrade, Jailson B.

    2014-12-01

    A new method has been developed for the determination of chlorine in biological reference materials using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) of the strontium mono-chloride (SrCl) molecule and direct solid sample analysis. The use of the SrCl molecule for high-temperature MAS was not described up to now in the literature. Preliminary time-dependent density functional theory calculations of the SrCl structure were carried out in order to obtain reasonable estimates of the absorption spectrum of the target molecule. The calculations, which were carried out at BHandHLyp/def2-QZVP level of theory, proved a very accurate and inexpensive way to get information about the spectrum of the SrCl molecule, which enabled us to perform the Cl determination with good sensitivity and specificity. The molecular absorption of the SrCl molecule has been measured using the wavelength at 635.862 nm, and zirconium and palladium have been evaluated as the chemical modifiers in order to increase the sensitivity of the gaseous SrCl molecule generated in the graphite furnace. The pyrolysis and vaporization temperatures were 600 °C and 2300 °C, respectively. Accuracy and precision of the method have been evaluated using biological certified reference materials of both animal and plant origins, showing good agreement with the informed and certified values. Limit of detection and characteristic mass were 1.0 and 2.2 ng, respectively. The results found using HR-CS GF MAS were in agreement (95% confidence level) compared to those obtained by electrothermal vaporization-inductively coupled plasma mass spectrometry.

  10. The use of electron scattering for studying atomic momentum distributions: the case of graphite and diamond.

    PubMed

    Vos, M; Moreh, R; Tokési, K

    2011-07-14

    The momentum distributions of C atoms in polycrystalline diamond (produced by chemical vapor deposition) and in highly oriented pyrolitic graphite (HOPG) are studied by scattering of 40 keV electrons at 135°. By measuring the Doppler broadening of the energy of the elastically scattered electrons, we resolve a Compton profile of the motion of the C atoms. The aim of the present work is to resolve long-standing disagreements between the calculated kinetic energies of carbon atoms in HOPG and in diamond films and the measured ones, obtained both by neutron Compton scattering (NCS) and by nuclear resonance photon scattering (NRPS). The anisotropy of the momentum distribution in HOPG was measured by rotating the HOPG sample relative to the electron beam. The obtained kinetic energies for the motion component along, and perpendicular to, the graphite planes were somewhat higher than those obtained from the most recent NCS data of HOPG. Monte Carlo simulations indicate that multiple scattering adds about 2% to the obtained kinetic energies. The presence of different isotopes in carbon affects the measurement at a 1% level. After correcting for these contributions, the kinetic energies are 3%-6% larger than the most recent NCS results for HOPG, but 15%-25% smaller than the NRPS results. For diamond, the corrected direction-averaged kinetic energy is ≈ 6% larger than the calculated value. This compares favorably to the ≈25% discrepancy between theory and both the NCS and NRPS results for diamond.

  11. Photoelectron Holographic Atomic Arrangement Imaging of Cleaved Bimetal-intercalated Graphite Superconductor Surface

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Eguchi, Ritsuko; Nishiyama, Saki; Izumi, Masanari; Uesugi, Eri; Goto, Hidenori; Matsushita, Tomohiro; Sugita, Kenji; Daimon, Hiroshi; Hamamoto, Yuji; Hamada, Ikutaro; Morikawa, Yoshitada; Kubozono, Yoshihiro

    2016-11-01

    From the C 1s and K 2p photoelectron holograms, we directly reconstructed atomic images of the cleaved surface of a bimetal-intercalated graphite superconductor, (Ca, K)C8, which differed substantially from the expected bulk crystal structure based on x-ray diffraction (XRD) measurements. Graphene atomic images were collected in the in-plane cross sections of the layers 3.3 Å and 5.7 Å above the photoelectron emitter C atom and the stacking structures were determined as AB- and AA-type, respectively. The intercalant metal atom layer was found between two AA-stacked graphenes. The K atomic image revealing 2 × 2 periodicity, occupying every second centre site of C hexagonal columns, was reconstructed, and the Ca 2p peak intensity in the photoelectron spectra of (Ca, K)C8 from the cleaved surface was less than a few hundredths of the K 2p peak intensity. These observations indicated that cleavage preferentially occurs at the KC8 layers containing no Ca atoms.

  12. Photoelectron Holographic Atomic Arrangement Imaging of Cleaved Bimetal-intercalated Graphite Superconductor Surface

    PubMed Central

    Matsui, Fumihiko; Eguchi, Ritsuko; Nishiyama, Saki; Izumi, Masanari; Uesugi, Eri; Goto, Hidenori; Matsushita, Tomohiro; Sugita, Kenji; Daimon, Hiroshi; Hamamoto, Yuji; Hamada, Ikutaro; Morikawa, Yoshitada; Kubozono, Yoshihiro

    2016-01-01

    From the C 1s and K 2p photoelectron holograms, we directly reconstructed atomic images of the cleaved surface of a bimetal-intercalated graphite superconductor, (Ca, K)C8, which differed substantially from the expected bulk crystal structure based on x-ray diffraction (XRD) measurements. Graphene atomic images were collected in the in-plane cross sections of the layers 3.3 Å and 5.7 Å above the photoelectron emitter C atom and the stacking structures were determined as AB- and AA-type, respectively. The intercalant metal atom layer was found between two AA-stacked graphenes. The K atomic image revealing 2 × 2 periodicity, occupying every second centre site of C hexagonal columns, was reconstructed, and the Ca 2p peak intensity in the photoelectron spectra of (Ca, K)C8 from the cleaved surface was less than a few hundredths of the K 2p peak intensity. These observations indicated that cleavage preferentially occurs at the KC8 layers containing no Ca atoms. PMID:27811975

  13. Adsorption of beryllium atoms and clusters both on graphene and in a bilayer of graphite investigated by DFT.

    PubMed

    Ferro, Yves; Fernandez, Nicolas; Allouche, Alain; Linsmeier, Christian

    2013-01-09

    We herein investigate the interaction of beryllium with a graphene sheet and in a bilayer of graphite by means of periodic DFT calculations. In all cases, we find the beryllium atoms to be more weakly bonded on graphene than in the bilayer. Be(2) forms both magnetic and non-magnetic structures on graphene depending on the geometrical configuration of adsorption. We find that the stability of the Be/bilayer system increases with the size of the beryllium clusters inserted into the bilayer of graphite. We also find a charge transfer from beryllium to the graphite layers. All these results are analysed in terms of electronic structure.

  14. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis

    NASA Astrophysics Data System (ADS)

    Fan, Lili; Liu, Peng Fei; Yan, Xuecheng; Gu, Lin; Yang, Zhen Zhong; Yang, Hua Gui; Qiu, Shilun; Yao, Xiangdong

    2016-02-01

    Hydrogen production through electrochemical process is at the heart of key renewable energy technologies including water splitting and hydrogen fuel cells. Despite tremendous efforts, exploring cheap, efficient and durable electrocatalysts for hydrogen evolution still remains as a great challenge. Here we synthesize a nickel-carbon-based catalyst, from carbonization of metal-organic frameworks, to replace currently best-known platinum-based materials for electrocatalytic hydrogen evolution. This nickel-carbon-based catalyst can be activated to obtain isolated nickel atoms on the graphitic carbon support when applying electrochemical potential, exhibiting highly efficient hydrogen evolution performance with high exchange current density of 1.2 mA cm-2 and impressive durability. This work may enable new opportunities for designing and tuning properties of electrocatalysts at atomic scale for large-scale water electrolysis.

  15. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis

    PubMed Central

    Fan, Lili; Liu, Peng Fei; Yan, Xuecheng; Gu, Lin; Yang, Zhen Zhong; Yang, Hua Gui; Qiu, Shilun; Yao, Xiangdong

    2016-01-01

    Hydrogen production through electrochemical process is at the heart of key renewable energy technologies including water splitting and hydrogen fuel cells. Despite tremendous efforts, exploring cheap, efficient and durable electrocatalysts for hydrogen evolution still remains as a great challenge. Here we synthesize a nickel–carbon-based catalyst, from carbonization of metal-organic frameworks, to replace currently best-known platinum-based materials for electrocatalytic hydrogen evolution. This nickel-carbon-based catalyst can be activated to obtain isolated nickel atoms on the graphitic carbon support when applying electrochemical potential, exhibiting highly efficient hydrogen evolution performance with high exchange current density of 1.2 mA cm−2 and impressive durability. This work may enable new opportunities for designing and tuning properties of electrocatalysts at atomic scale for large-scale water electrolysis. PMID:26861684

  16. Quantum dynamic of sticking of a H atom on a graphite surface.

    PubMed

    Morisset, S; Allouche, A

    2008-07-14

    A quantum study of the sticking of a hydrogen atom chemisorbed onto graphite (0001) surface was carried out also including the phonon modes of the system in the collinear scattering approximation. A new model was developed to extract the substrate vibrational modes from density functional theory (DFT) calculation and include them in the total system dynamics. The resulting coupled-channel equations are numerically developed along time using the wave packet methods. The sticking coefficients are calculated for hydrogen atoms incident energies ranging from 0.17 and 1.3 eV for a surface temperature of 10 K and between 0.17 and 0.2 eV for a surface temperature of 150 K. The results are found to be in good agreement with the experimental work.

  17. Determination of cadmium in tobacco smoke by electrothermal atomic absorption spectroscopy with electrostatic precipitation of samples on the graphite tube atomizer

    NASA Astrophysics Data System (ADS)

    Altman, E. L.; Panichev, N. A.

    2003-05-01

    The determination of Cd in ambient air, associated with tobacco smoke, has been carried out by electrostatic precipitation of Cd directly in a graphite tube, which was subsequently used as an atomizer in electrothermal atomization atomic absorption spectroscopy (ET-AAS). It is shown that graphite tube permanently modified with Ir allows carrying out pyrolysis of collected samples at 1000^circC, leading to minimization of the blank. The combination of electrostatic precipitation of Cd from ambient air into the graphite tube with high efficiency of Cd determination by ET-AAS allows to trace Cd in ambient air for 25 min after the smoking a cigarette. The limit of detection (LOD) of Cd determination was found to be 0.2 ng m^{-3} The results of investigations confirm the danger of passive smoking due to the presence of Cd in smoking areas.

  18. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide.

    PubMed

    Paredes, J I; Villar-Rodil, S; Solís-Fernández, P; Martínez-Alonso, A; Tascón, J M D

    2009-05-19

    Graphene nanosheets produced in the form of stable aqueous dispersions by chemical reduction of graphene oxide and deposited onto graphite substrates have been investigated by atomic force and scanning tunneling microscopy (AFM/STM). The chemically reduced graphene oxide nanosheets were hardly distinguishable from their unreduced counterparts in the topographic AFM images. However, they could be readily discriminated through phase imaging in the attractive regime of tapping-mode AFM, probably because of differences in hydrophilicity arising from their distinct oxygen contents. The chemically reduced nanosheets displayed a smoothly undulated, globular morphology on the nanometer scale, with typical vertical variations in the subnanometer range and lateral feature sizes of approximately 5-10 nm. Such morphology was attributed to be the result of significant structural disorder in the carbon skeleton, which originates during the strong oxidation that leads to graphene oxide and remains after chemical reduction. Direct evidence of structural disorder was provided by atomic-scale STM imaging, which revealed an absence of long-range periodicity in the graphene nanosheets. Only structured domains a few nanometers large were observed instead. Likewise, the nanosheet edges appeared atomically rough and ill-defined, though smooth on the nanometer scale. The unreduced graphene oxide nanosheets could only be imaged by STM at very low tunneling currents (approximately 1 pA), being visualized in some cases with inverted contrast relative to the graphite substrate, a result that was attributed to their extremely low conductivity. Complementary characterization of the unreduced and chemically reduced nanosheets was carried out by thermogravimetric analysis as well as UV-visible absorption and X-ray photoelectron and Raman spectroscopies. In particular, the somewhat puzzling Raman results were interpreted to be the result of an amorphous character of the graphene oxide material.

  19. Atomic layer deposition of 1D and 2D nickel nanostructures on graphite.

    PubMed

    Ryu, Seung Wook; Yoon, Jaehong; Moon, Hyoung-Seok; Shong, Bonggeun; Kim, Hyungjun; Lee, Han-Bo-Ram

    2017-03-17

    One-dimensional (1D) nanowires (NWs) and two-dimensional (2D) thin films of Ni were deposited on highly ordered pyrolytic graphite (HOPG) by atomic layer deposition (ALD), using NH3 as a counter reactant. Thermal ALD using NH3 gas forms 1D NWs along step edges, while NH3 plasma enables the deposition of a continuous 2D film over the whole surface. The lateral and vertical growth rates of the Ni NWs are numerically modeled as a function of the number of ALD cycles. Pretreatment with NH3 gas promotes selectivity in deposition by the reduction of oxygenated functionalities on the HOPG surface. On the other hand, NH3 plasma pretreatment generates surface nitrogen species, and results in a morphological change in the basal plane of graphite, leading to active nucleation across the surface during ALD. The effects of surface nitrogen species on the nucleation of ALD Ni were theoretically studied by density functional theory calculations. Our results suggest that the properties of Ni NWs, such as their density and width, and the formation of Ni thin films on carbon surfaces can be controlled by appropriate use of NH3.

  20. Atomic layer deposition of 1D and 2D nickel nanostructures on graphite

    NASA Astrophysics Data System (ADS)

    Ryu, Seung Wook; Yoon, Jaehong; Moon, Hyoung-Seok; Shong, Bonggeun; Kim, Hyungjun; Lee, Han-Bo-Ram

    2017-03-01

    One-dimensional (1D) nanowires (NWs) and two-dimensional (2D) thin films of Ni were deposited on highly ordered pyrolytic graphite (HOPG) by atomic layer deposition (ALD), using NH3 as a counter reactant. Thermal ALD using NH3 gas forms 1D NWs along step edges, while NH3 plasma enables the deposition of a continuous 2D film over the whole surface. The lateral and vertical growth rates of the Ni NWs are numerically modeled as a function of the number of ALD cycles. Pretreatment with NH3 gas promotes selectivity in deposition by the reduction of oxygenated functionalities on the HOPG surface. On the other hand, NH3 plasma pretreatment generates surface nitrogen species, and results in a morphological change in the basal plane of graphite, leading to active nucleation across the surface during ALD. The effects of surface nitrogen species on the nucleation of ALD Ni were theoretically studied by density functional theory calculations. Our results suggest that the properties of Ni NWs, such as their density and width, and the formation of Ni thin films on carbon surfaces can be controlled by appropriate use of NH3.

  1. Study of mass attenuation coefficients and effective atomic numbers of bismuth-ground granulated blast furnace slag concretes

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Singh, Sukhpal

    2016-05-01

    Five samples of Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concretes were prepared using composition (0.6 cement + x Bi2O3 + (0.4-x) GGBFS, x = 0.05, 0.10, 0.15, 0.20 and 0.25) by keeping constant water (W) cement (C) ratio. Mass attenuation coefficients (μm) of these prepared samples were calculated using a computer program winXCOM at different gamma ray energies, whereas effective atomic numbers (Zeff) is calculated using mathematical formulas. The radiation shielding properties of Bi-GGBFS concrete has been compared with standard radiation shielding concretes.

  2. Method development for the determination of bromine in coal using high-resolution continuum source graphite furnace molecular absorption spectrometry and direct solid sample analysis

    NASA Astrophysics Data System (ADS)

    Pereira, Éderson R.; Castilho, Ivan N. B.; Welz, Bernhard; Gois, Jefferson S.; Borges, Daniel L. G.; Carasek, Eduardo; de Andrade, Jailson B.

    2014-06-01

    This work reports a simple approach for Br determination in coal using direct solid sample analysis in a graphite tube furnace and high-resolution continuum source molecular absorption spectrometry. The molecular absorbance of the calcium mono-bromide (CaBr) molecule has been measured using the rotational line at 625.315 nm. Different chemical modifiers (zirconium, ruthenium, palladium and a mixture of palladium and magnesium nitrates) have been evaluated in order to increase the sensitivity of the CaBr absorption, and Zr showed the best overall performance. The pyrolysis and vaporization temperatures were 800 °C and 2200 °C, respectively. Accuracy and precision of the method have been evaluated using certified coal reference materials (BCR 181, BCR 182, NIST 1630a, and NIST 1632b) with good agreement (between 98 and 103%) with the informed values for Br. The detection limit was around 4 ng Br, which corresponds to about 1.5 μg g- 1 Br in coal, based on a sample mass of 3 mg. In addition, the results were in agreement with those obtained using electrothermal vaporization inductively coupled plasma mass spectrometry, based on a Student t-test at a 95% confidence level. A mechanism for the formation of the CaBr molecule is proposed, which might be considered for other diatomic molecules as well.

  3. Determination of sulfur in crude oil using high-resolution continuum source molecular absorption spectrometry of the SnS molecule in a graphite furnace.

    PubMed

    Cadorim, Heloisa R; Pereira, Éderson R; Carasek, Eduardo; Welz, Bernhard; de Andrade, Jailson B

    2016-01-01

    An analytical method for the determination of sulfur, as the tin mono-sulfide (SnS) molecule, in crude oil using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) has been developed. The molecular absorbance of the SnS has been measured using the wavelength at 271.624 nm and the crude oil samples were prepared as micro-emulsions due to their high viscosity. Several chemical modifiers (Ir, Pd, Ru, Zr) were tested and palladium was chosen, because it exhibited the best performance. The heating program was optimized by comparing the pyrolysis and vaporization curves obtained for an aqueous sulfur standard and a micro-emulsion of a crude oil certified reference material (CRM). The optimum pyrolysis and vaporization temperatures were found to be 600 and 2000°C, respectively. The limit of detection and the characteristic mass using micro-emulsion analysis of crude oil samples were 5.8 and 13.3 ng S. Accuracy and precision of the method has been evaluated using two crude oil CRM (NIST 2721 and NIST 2722), showing good agreement with the informed or certified values.

  4. Determination of phospholipids in soybean lecithin samples via the phosphorus monoxide molecule by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    PubMed

    Pires, Laís N; Brandão, Geovani C; Teixeira, Leonardo S G

    2017-06-15

    This paper presents a method for determining phospholipids in soybean lecithin samples by phosphorus determination using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) via molecular absorption of phosphorus monoxide. Samples were diluted in methyl isobutyl ketone. The best conditions were found to be 213.561nm with a pyrolysis temperature of 1300°C, a volatilization temperature of 2300°C and Mg as a chemical modifier. To increase the analytical sensitivity, measurement of the absorbance signal was obtained by summing molecular transition lines for PO surrounding 213nm: 213.561, 213.526, 213.617 and 213.637nm. The limit of detection was 2.35mgg(-1) and the precision, evaluated as relative standard deviation (RSD), was 2.47% (n=10) for a sample containing 2.2% (w/v) phosphorus. The developed method was applied for the analysis of commercial samples of soybean lecithin. The determined concentrations of phospholipids in the samples varied between 38.1 and 45% (w/v).

  5. Investigation of chemical modifiers for sulfur determination in diesel fuel samples by high-resolution continuum source graphite furnace molecular absorption spectrometry using direct analysis

    NASA Astrophysics Data System (ADS)

    Huber, Charles S.; Vale, Maria Goreti R.; Welz, Bernhard; Andrade, Jailson B.; Dessuy, Morgana B.

    2015-06-01

    High-resolution continuum source graphite furnace molecular absorption spectrometry has been applied for sulfur determination in diesel fuel. The sharp rotational lines of the carbon monosulfide molecule (formed during the vaporization step) were used to measure the absorbance. The analytical line at 258.056 nm was monitored using the sum of three pixels. Different chemical modifiers were investigated and the mixture of palladium and magnesium was used as chemical modifier in combination with iridium as permanent modifier. L-Cysteine was chosen as sulfur standard and the calibration was done against aqueous standard solutions. The proposed method was applied for the analyses of four diesel samples: two S10 samples and two S500 samples. The trueness of the method was checked with a certified reference material (CRM) of sulfur in diesel fuel (NIST 2724b). Accurate results, for samples and CRM, were achieved after a dilution with propan-1-ol. The following figures of merit were obtained: characteristic mass of 17 ± 3 ng, limit of detection and limit of quantification of 1.4 mg kg- 1 and 4.7 mg kg- 1, respectively.

  6. Determination of antimony, arsenic, bismuth, selenium, tellurium and tin by low pressure atomic absorption spectrometry with a quartz tube furnace atomizer and hydride generation with air addition.

    PubMed

    Zhang, B; Wang, Y; Wang, X; Chen, X; Feng, J

    1995-08-01

    A new method has been developed for the determination of antimony, arsenic, bismuth, selenium, tellurium and tin by hydride generation-atomic absorption spectrometry in an electrically heated quartz tube furnace under sub-atmospheric pressure. The hydride generator, operating at a pressure lower than atmospheric, is used to generate and collect the hydrides of these elements. A certain volume (at atmospheric pressure) of air is then added to the generator after the formation of the volatile hydride. The gaseous mixture of the hydride and air is drawn into an evacuated, heated quartz tube by a vacuum pump. The proposed method gives improved sensitivities and detection limits.

  7. Graphite on graphite

    NASA Astrophysics Data System (ADS)

    Volovik, G. E.; Pudalov, V. M.

    2016-12-01

    We propose potential geometry for fabrication of the graphite sheets with atomically smooth edges. For such sheets with Bernal stacking, the electron-electron interaction and topology should cause sufficiently high density of states resulting in the high temperature of either spin ordering or superconducting pairing.

  8. Determination of iodine via the spectrum of barium mono-iodide using high-resolution continuum source molecular absorption spectrometry in a graphite furnace

    NASA Astrophysics Data System (ADS)

    Huang, Mao Dong; Becker-Ross, Helmut; Florek, Stefan; Okruss, Michael; Welz, Bernhard; Morés, Silvane

    2009-07-01

    Molecular absorption spectra of the diatomic molecules AlI, GaI, InI, TlI, MgI, CaI, SrI and BaI, generated in a graphite furnace, were studied using a high-resolution echelle spectrometer with the aim of finding a simple, reliable and sensitive analytical method for the determination of iodine. Among them, the barium mono-iodide (BaI) was found to have the strongest absorption bands around 538 nm and 560 nm, each of them consisting of a series of well-resolved rotational lines with half-widths of about 40-50 pm. The strongest BaI line, the band head at 538.308 nm has been evaluated systematically for its analytical use for the determination of iodine. High concentrations of hydrochloric acid (or chloride), hydrofluoric acid (or fluoride), iron, potassium and sodium resulted in significant reduction of the BaI molecular absorption. Apart from this, no other serious spectral or non-spectral interference has been observed. Different chemical forms of iodine, such as iodide, iodate and organically bound iodine produced identical BaI absorption sensitivity. The detection limit for iodine was 600 pg, and the calibration curve was linear up to 250 ng iodine. Two real samples with different chemical forms of iodine were analyzed using the proposed method. One sample was an iodide pill with a specified iodide content of 200 mg, the other one was a thyroid hormone pill with a specified content of 63.5 mg. The results were in good or satisfactory agreement with those of independent methods, the potentiometric titration and the inductively coupled plasma time-of-flight mass spectrometry (ICP-ToF-MS); the deviations were 2% and 8% for the iodide and the thyroid hormone sample, respectively. The relative standard deviation of the analytical results ( n = 3) was below 2%.

  9. Determination of chlorine via the CaCl molecule by high-resolution continuum source graphite furnace molecular absorption spectrometry and direct solid sample analysis.

    PubMed

    Guarda, Ananda; Aramendía, Maite; Andrés, Irene; García-Ruiz, Esperanza; do Nascimento, Paulo Cícero; Resano, Martín

    2017-01-01

    This work investigates the possibilities of high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of Cl in solid samples via the CaCl molecule and measurement of its molecular absorption. The method proposed is based on addition of 400µg Ca as molecule-forming reagent and of 20µgPd as chemical modifier, which helps to stabilize the analyte and enhances sensitivity. The molecular spectrum for CaCl offers different lines with different limits of detection and linear ranges, which permitted to analyze solid samples with different Cl contents. The lowest limit of detection (0.75ng Cl, corresponding to 0.75µgg(-1) for a typical sample mass of 1mg) could be achieved by combination of three of the most sensitive lines in the vicinity of 620.862nm, while the amplest linear range (up to 860ng Cl) was achieved by selection of the less sensitive line at 377.501nm. The method developed enabled the direct determination of Cl in solid samples using simple external calibration with aqueous standards. Good precision (5-9% RSD) and accuracy was attained in a series of certified samples of very different nature (i.e. coal, iron oxide, polyethylene, human hair, pine needles, rice flour and milk) and with very different Cl contents, ranging from about 50µgg(-1) to 1% (w/w) Cl. The method appears as particularly useful for Cl determination in samples with elevated Ca contents, for which biased results with other diatomic molecules, such as AlCl or SrCl, may be obtained.

  10. Vacuum-Deposited Porphyrin Protective Films on Graphite: Electrochemical Atomic Force Microscopy Investigation during Anion Intercalation.

    PubMed

    Yivlialin, Rossella; Bussetti, Gianlorenzo; Penconi, Marta; Bossi, Alberto; Ciccacci, Franco; Finazzi, Marco; Duò, Lamberto

    2017-02-01

    The development of graphene products promotes a renewed interest toward the use of graphite in addition to the historical one for its proven viability as battery electrode. However, when exposed to harsh conditions, the graphite surface ages in ways that still need to be fully characterized. In applications to batteries, to optimize the electrode performances in acid solutions, different surface functionalizations have been studied. Among them, aromatic molecules have been recently proposed. In this communication, we report on the protective effect exerted by a physical-vapor-deposited porphyrin layer. Metal-free tetra-phenyl-porphyrins were deposited on a highly oriented pyrolytic graphite crystal to study the modifications that occur during anion intercalation in graphite. The graphite electrode was plunged in an electrolyte solution of 1 M sulfuric acid and subjected to cyclic voltammetry. The results indicate that blister formation, the characteristic swelling of graphite surface induced by anion intercalation, is significantly perturbed by the porphyrin overlayer; the process is inhibited in those areas where the protective porphyrin film is present. We ascribe the inhibition of the anion intercalation to the protective porphyrin wetting layer.

  11. Direct determination of Cu and Zn in fruit juices and bovine milk by thermospray flame furnace atomic absorption spectrometry.

    PubMed

    Nascentes, Clésia C; Arruda, Marco A Z; Nogueira, Ana Rita A; Nóbrega, Joaquim A

    2004-11-15

    In the present work, thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was employed for Cu and Zn determination in bovine milk and fruit juice samples without any pretreatment. TS-FF-AAS system was optimized and a sample volume of 300mul was injected into the carrier stream (0.014moll(-1) HNO(3) at a flow rate of 0.4mlmin(-1)), and it was introduced into a hot Ni tube. The detection limits obtained for Cu and Zn in aqueous solution were 2.2 and 0.91mugl(-1), respectively, and 3.2mugl(-1) for Cu in a medium containing water-soluble tertiary amines. The relative standard deviations varied from 2.7 to 4.2% (n=12). Sample preparation was carried out by simple dilution in water or in water-soluble tertiary amines medium. Accuracy was checked by performing addition-recovery experiments as well as by using reference materials (whole milk powder, non-fat milk powder, and infant formula). Recoveries varied from 97.7 to 105.3% for Cu and Zn. All results obtained for reference materials were in agreement with certified values at a 95% confidence level.

  12. Flameless Atomic Absorption Spectroscopy: Effects of Nitrates and Sulfates.

    DTIC Science & Technology

    1980-05-01

    oxide by graphite followed by sublimation of the metal. Frech and Cedergren investigated high temperature equilibria in graphite furnace atomizers. 1 4...Acta, 72, 49 (1974). 13. R.E. Sturgeon, C.L. Chakrabarti, and C.H. Langford, Anal. Chem., 48, 1792 (1976). 14. W. Frech and A. Cedergren , Anal. Chim...Acta, 82, 83 (1976). 15. W. Frech, Anal. Chim. Acta, 77, 43 (1975). 16. W. Frech and A. Cedergren , Anal. Chim. Acta, 88, 57 (1977). CHAPTER III

  13. Evaluation of a generalized regression artificial neural network for extending cadmium's working calibration range in graphite furnace atomic absorption spectrometry.

    PubMed

    Hernández-Caraballo, Edwin A; Rivas, Francklin; de Hernández, Rita M Avila

    2005-02-01

    A generalized regression artificial neural network (GRANN) was developed and evaluated for modeling cadmium's nonlinear calibration curve in order to extend its upper concentration limit from 4.0 microg L-1 up to 22.0 microg L-1. This type of neural network presents important advantages over the more popular backpropagation counterpart which are worth exploiting in analytical applications, namely, (1) a smaller number of variables have to be optimized, with the subsequent reduction in "development hassle"; and, (2) shorter development times, thanks to the fact that the adjustment of the weights (the artificial synapses) is a non-iterative, one-pass process. A backpropagation artificial neural network (BPANN), a second-order polynomial, and some less frequently employed polynomial and exponential functions (e.g., Gaussian, Lorentzian, and Boltzmann), were also evaluated for comparison purposes. The quality of the fit of the various models, assessed by calculating the root mean square of the percentage deviations, was as follows: GRANN>Boltzmann>second-order polynomial>BPANN>Gauss>Lorentz. The accuracy and precision of the models were further estimated through the determination of cadmium in the certified reference material "Trace Metals in Drinking Water" (High Purity Standards, Lot No. 490915), which has a cadmium certified concentration (12.00+/-0.06 microg L-1) that lies in the nonlinear regime of the calibration curve. Only the models generated by the GRANN and BPANN accurately predicted the concentrations of a series of solutions, prepared by serial dilution of the CRM, with cadmium concentrations below and above the maximum linear calibration limit (4.0 microg L-1). Extension of the working range by using the proposed methodology represents an attractive alternative from the analytical point of view, since it results in less specimen manipulation and consequently reduced contamination risks without compromising either the accuracy or the precision of the analyses. The implementation of artificial neural networks also helps to reduce the trial-and-error task of looking for the right mathematical model from among the many possibilities currently available in the various scientific and statistic software packages.

  14. Divalent Fe Atom Coordination in Two-Dimensional Microporous Graphitic Carbon Nitride.

    PubMed

    Oh, Youngtak; Hwang, Jin Ok; Lee, Eui-Sup; Yoon, Minji; Le, Viet-Duc; Kim, Yong-Hyun; Kim, Dong Ha; Kim, Sang Ouk

    2016-09-28

    Graphitic carbon nitride (g-C3N4) is a rising two-dimensional material possessing intrinsic semiconducting property with unique geometric configuration featuring superimposed heterocyclic sp(2) carbon and nitrogen network, nonplanar layer chain structure, and alternating buckling. The inherent porous structure of heptazine-based g-C3N4 features electron-rich sp(2) nitrogen, which can be exploited as a stable transition metal coordination site. Multiple metal-functionalized g-C3N4 systems have been reported for versatile applications, but local coordination as well as its electronic structure variation upon incoming metal species is not well understood. Here we present detailed bond coordination of divalent iron (Fe(2+)) through micropore sites of graphitic carbon nitride and provide both experimental and computational evidence supporting the aforementioned proposition. In addition, the utilization of electronic structure variation is demonstrated through comparative photocatalytic activities of pristine and Fe-g-C3N4.

  15. Steady-State and Transient Hydrocarbon Production in Graphite by Low Energy Impact of Atomic and Molecular Deuterium Projectiles

    SciTech Connect

    Meyer, Fred W; Zhang, Hengda

    2009-01-01

    We report measurements of steady-state yields of methyl, methane and heavier hydrocarbons for deuterium atomic and molecular ions incident on ATJ graphite, HOPG, and a-C:D thin films in the energy range 10-200 eV/D. The yields were determined using a QMS technique in conjunction with calibrated hydrocarbon leaks. We have also studied transient hydrocarbon production and hydrogen (deuterium) re-emission for 80 and 150 eV/D D+, D{sub 2}{sup +}, and D{sub 3}{sup +} projectiles incident on ATJ graphite surfaces pre-loaded to steady state by 20 eV/D beams of the corresponding species. Immediately after starting the higher-energy beams, transient hydrocarbon and D2 re-emission yields significantly larger than steady-state values were observed, which exponentially decayed as a function of beam fluence. The initial yield values were related to the starting hydrocarbon and deuterium densities in the prepared sample, while the exponential decay constants provided information on the hydrocarbon kinetic release and hydrogen (deuterium) detrapping cross-sections.

  16. The dynamics on migrations of Li + ion and Li atom at 700 K around the circumference of graphite cluster model: A direct molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Shimizu, Akira; Tachikawa, Hiroto

    2001-05-01

    For the diffusion species of Li + ion and Li atom stabilized at the same site of the circumference of the graphite, migration processes are simulated using the direct molecular orbital (MO) dynamics calculation on the hydrogen terminated cluster model, C54H18, at AM1 level. Although Li + forms ionic bond with two carbon atoms in the circumference, Li bonds covalently with one atom through sp3 hybrid orbital at 0 K. At 700 K, Li+ dissociated goes across the bulk and escapes from the cluster model after 0.6 ps. On the other hand, Li circulates only around the carbon atom, keeping the covalent bond.

  17. Brazing graphite to graphite

    DOEpatents

    Peterson, George R.

    1976-01-01

    Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of virtually graphite.

  18. A two-step atomizer system using a transversely heated furnace with Zeeman background correction: Design and first solid sampling applications

    NASA Astrophysics Data System (ADS)

    Friese, K.-Ch.; Huang, M. D.; Schlemmer, G.; Krivan, V.

    2006-09-01

    A two-step-atomizer consisting of a transversely heated graphite atomization tube and a movable vaporizer graphite cup is described. The atomizer is placed between the poles of an electromagnetic field providing longitudinal Zeeman-effect background correction capability. The tube and the cup are heated by independent power supplies enabling the performance of atomic absorption measurements at temporally and spatially isothermal conditions. The design of the vaporizer provides several advantageous features including direct introduction of solid and liquid samples with extremely low contamination risk and a sampling volume of up to 105 μl. The performance of this system was assessed by analysis of the bovine liver NIST SRM 1577b and of a well characterized titanium dioxide material. Calibration curves for quantification were recorded by using aqueous standards. In comparison of the results obtained by this method with the certified values and with the results of independent methods, excellent to reasonable agreement was achieved. For the elements Fe, K, Mg, Mn, Na and Zn in titanium dioxide, the achievable limits of detection were between 60 pg g - 1 (Mg) and 0.7 ng g - 1 (Fe).

  19. Quantum study of Eley-Rideal reaction and collision induced desorption of hydrogen atoms on a graphite surface. II. H-physisorbed case.

    PubMed

    Martinazzo, Rocco; Tantardini, Gian Franco

    2006-03-28

    Following previous investigation of collision induced (CI) processes involving hydrogen atoms chemisorbed on graphite [R. Martinazzo and G. F. Tantardini, J. Chem. Phys. 124, 124702 (2006)], the case in which the target hydrogen atom is initially physisorbed on the surface is considered here. Several adsorbate-substrate initial states of the target H atom in the physisorption well are considered, and CI processes are studied for projectile energies up to 1 eV. Results show that (i) Eley-Rideal cross sections at low collision energies may be larger than those found in the H-chemisorbed case but they rapidly decrease as the collision energy increases; (ii) product hydrogen molecules are vibrationally very excited; (iii) collision induced desorption cross sections rapidly increase, reaching saturation values greater than 10 A2; (iv) trapping of the incident atoms is found to be as efficient as the Eley-Rideal reaction at low energies and remains sizable (3-4 A2) at high energies. The latter adsorbate-induced trapping results mainly in formation of metastable hot hydrogen atoms, i.e., atoms with an excess energy channeled in the motion parallel to the surface. These atoms might contribute in explaining hydrogen formation on graphite.

  20. First-principles study of ternary graphite compounds cointercalated with alkali atoms (Li, Na, and K) and alkylamines towards alkali ion battery applications

    NASA Astrophysics Data System (ADS)

    Ri, Gum-Chol; Yu, Chol-Jun; Kim, Jin-Song; Hong, Song-Nam; Jong, Un-Gi; Ri, Mun-Hyok

    2016-08-01

    First-principles calculations were carried out to investigate the structural, energetic, and electronic properties of ternary graphite compounds cointercalated with alkali atoms (AM = Li, Na, and K) and normal alkylamine molecules (nCx; x = 1, 2, 3, 4), denoted as AM-nCx-GICs. From the optimization of the orthorhombic unit cells for the crystalline compounds, it was found that, with the increase in the atomic number of alkali atoms, the layer separations decrease in contrast to AM-GICs, while the bond lengths between alkali atoms and graphene layer, and nitrogen atom of alkylamine increase. The calculated formation energies and interlayer binding energies of AM-nC3-GICs indicate that the compounds is increasingly stabilized from Li to K, and the energy barriers for migration of alkali atoms suggest that alkali cation with larger ionic radius diffuses more smoothly in graphite, being similar to AM-GICs. Through the analysis of electronic properties, it was established that more extent of electronic charge is transferred from more electropositive alkali atom to the carbon ring of graphene layer, and the hybridization of valence electron orbitals between alkylamine molecules and graphene layer is occurred.

  1. Determination of nanogram amounts of bismuth in rocks by atomic absorption spectrometry with electrothermal atomization

    USGS Publications Warehouse

    Kane, J.S.

    1979-01-01

    Bismuth concentrations as low as 10 ng g-1 in 100-mg samples of geological materials can be determined by atomic absorption spectrometry with electrothermal atomization. After HF-HClO4 decomposition of the sample, bismuth is extracted as the iodide into methyl isobutyl ketone and is then stripped with ethylenediaminetetraacetic acid into the aqueous phase. Aliquots of this solution are pipetted into the graphite furnace and dried, charred, and atomized in an automated sequence. Atomic absorbance at the Bi 223.1-nm line provides a measure of the amount of bismuth present. Results are presented for 14 U.S. Geological Survey standard rocks. ?? 1979.

  2. Leveling coatings for reducing the atomic oxygen defect density in protected graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Degroh, K. K.; Podojil, G.; Mccollum, T.; Anzic, J.

    1992-01-01

    Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept for enhancing the lifetime of materials in low Earth orbits is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.

  3. Leveling coatings for reducing the atomic oxygen defect density in protected graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; Mccollum, T.; Anzic, J.

    1992-01-01

    Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.

  4. 3-Dimensional atomic scale structure of the ionic liquid-graphite interface elucidated by AM-AFM and quantum chemical simulations.

    PubMed

    Page, Alister J; Elbourne, Aaron; Stefanovic, Ryan; Addicoat, Matthew A; Warr, Gregory G; Voïtchovsky, Kislon; Atkin, Rob

    2014-07-21

    In situ amplitude modulated atomic force microscopy (AM-AFM) and quantum chemical simulations are used to resolve the structure of the highly ordered pyrolytic graphite (HOPG)-bulk propylammonium nitrate (PAN) interface with resolution comparable with that achieved for frozen ionic liquid (IL) monolayers using STM. This is the first time that (a) molecular resolution images of bulk IL-solid interfaces have been achieved, (b) the lateral structure of the IL graphite interface has been imaged for any IL, (c) AM-AFM has elucidated molecular level structure immersed in a viscous liquid and (d) it has been demonstrated that the IL structure at solid surfaces is a consequence of both thermodynamic and kinetic effects. The lateral structure of the PAN-graphite interface is highly ordered and consists of remarkably well-defined domains of a rhomboidal superstructure composed of propylammonium cations preferentially aligned along two of the three directions in the underlying graphite lattice. The nanostructure is primarily determined by the cation. Van der Waals interactions between the propylammonium chains and the surface mean that the cation is enriched in the surface layer, and is much less mobile than the anion. The presence of a heterogeneous lateral structure at an ionic liquid-solid interface has wide ranging ramifications for ionic liquid applications, including lubrication, capacitive charge storage and electrodeposition.

  5. Flameless atomic-absorption determination of gold in geological materials

    USGS Publications Warehouse

    Meier, A.L.

    1980-01-01

    Gold in geologic material is dissolved using a solution of hydrobromic acid and bromine, extracted with methyl isobutyl ketone, and determined using an atomic-absorption spectrophotometer equipped with a graphite furnace atomizer. A comparison of results obtained by this flameless atomic-absorption method on U.S. Geological Survey reference rocks and geochemical samples with reported values and with results obtained by flame atomic-absorption shows that reasonable accuracy is achieved with improved precision. The sensitivity, accuracy, and precision of the method allows acquisition of data on the distribution of gold at or below its crustal abundance. ?? 1980.

  6. Determination of cadmium and lead at low levels by using preconcentration at fullerene coupled to thermospray flame furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Pereira, M. G.; Pereira-Filho, E. R.; Berndt, H.; Arruda, M. A. Z.

    2004-04-01

    A new and sensitive method for Cd and Pb determinations, based on the coupling of thermospray flame furnace atomic absorption spectrometry and a preconcentrator system, was developed. The procedure comprised the chelating of Cd and Pb with ammonium pyrrolidinedithiocarbamate with posterior adsorption of the chelates on a mixture (40 mg) of C 60 and C 70 at a flow rate of 2.0 ml min -1. These chelates were eluted from the adsorbent by passing a continuous flow of ethanol (80% v/v) at 0.9 ml min -1 to a nickel tube placed in an air/acetylene flame. After sample introduction into the tube by using a ceramic capillary (0.5 mm i.d.), the analytical signals were registered as peak height. Under these conditions, improvement factors in detectability of 675 and 200 were obtained for Cd and Pb, respectively, when compared to conventional flame atomic absorption spectrometry. Spiked samples (mineral and tap waters) and drinking water containing natural concentrations of Cd were employed for evaluating accuracy by comparing the results obtained from the proposed methodology with those using electrothermal atomic absorption spectrometry. In addition, certified reference materials (rye grass, CRM 281 and pig kidney, CRM 186) were also adopted for the accuracy tests. Due to the good linearity ranges for Cd (0.5-5.0 μg l -1) and Pb (10-250 μg l -1), samples with different concentrations could be analyzed. Detection limits of 0.1 and 2.4 μg l -1 were obtained for Cd and Pb, respectively, and RSD values <4.5% were observed ( n=10). Finally, a sample throughput of 24 determinations per hour was possible.

  7. Recent developments in atomizers for electrothermal atomic absorption spectrometry.

    PubMed

    Frech, W

    1996-06-01

    This review first describes general requirements to be met for suitable base materials used to produce electrothermal atomizers (ETAs). In this connection the physical and chemical properties of adequate types of graphite and metals are discussed. Further, various atomizer designs, their temperature dynamics during atomization and general performance characteristics are critically reviewed. For end-heated Massmann-type atomizers, discussions are focused on recent developments of, e.g., contoured tubes to achieve improved temperature homogeneity over the tube length, second surface atomizers to realize temporally isothermal atomization and tubes with graphite filters to reduce interference effects. The state-of-the-art of platform equipped, side-heated atomizers with integrated contacting bridges are characterized mainly with respect to heating dynamics, as well as susceptibility to interference- and memory effects. In contrast to end-heated ETAs, the tube ends of side-heated ETAs are freely located in the furnace compartment and, as a consequence of this configuration, convective gas flows can easily appear. The magnitude and effect of these flows on analytical performance are discussed and measures are suggested, permitting operation under diffusion controlled conditions. A critical comparison of classical constant temperature atomizers with state-of-the-art platform equipped ETAs is made and from this it is concluded that future ETA developments are likely to involve only minor modifications aiming at, e.g., the reduction of cycling times or the improvement of tube surface properties.

  8. A fast and accurate method for the determination of total and soluble fluorine in toothpaste using high-resolution graphite furnace molecular absorption spectrometry and its comparison with established techniques.

    PubMed

    Gleisner, Heike; Einax, Jürgen W; Morés, Silvane; Welz, Bernhard; Carasek, Eduardo

    2011-04-05

    A fast and reliable method has been developed for the determination of total and soluble fluorine in toothpaste, important quality control parameters in dentifrices. The method is based on the molecular absorption of gallium mono-fluoride, GaF, using a commercially available high-resolution continuum source atomic absorption spectrometer. Transversely heated platform tubes with zirconium as permanent chemical modifier were used throughout. Before each sample injection, a palladium and zirconium modifier solution and a gallium reagent were deposited onto the graphite platform and thermally pretreated to transform them into their active forms. The samples were only diluted and introduced directly into the graphite tube together with additional gallium reagent. Under these conditions the fluoride was stable up to a pyrolysis temperature of 550 °C, and the optimum vaporization (molecule formation) temperature was 1550 °C. The GaF molecular absorption was measured at 211.248 nm, and the limits of detection and quantification were 5.2 pg and 17 pg, respectively, corresponding to a limit of quantification of about 30 μg g(-1) (ppm) F in the original toothpaste. The proposed method was used for the determination of total and soluble fluorine content in toothpaste samples from different manufactures. The samples contained different ionic fluoride species and sodium monofluorophosphate (MFP) with covalently bonded fluorine. The results for total fluorine were compared with those obtained with a modified conventional headspace gas chromatographic procedure. Accuracy and precision of the two procedures were comparable, but the proposed procedure was much less labor-intensive, and about five times faster than the latter one.

  9. Study of the analytical methods for iron determination in complex organic liquids by atomic absorption spectrometry

    SciTech Connect

    Torre, M.; Gonzalez, M.C.; Jimenez, O.; Rodriquez, A.R. )

    1990-01-01

    In the determination of iron in complex organic liquids by atomic absorption spectrometry (A.A.S.), methods of sample preparation, such as dilution with an organic solvent and sample pretreatment to destroy organic material, are investigated. Moreover, methods of analysis using calibration curve and standard additions are presented. The possible cause of error associated with iron determination in organic samples by flame (F-A.A.S.) and graphite furnace (GF-A.A.S.) atomic absorption spectrometry are discussed. From all of these studies, the use of graphite furnace atomic absorption spectrometry after sample dilution with methyl isobutyl ketone, and the use of the method of standard additions are advised for iron determination.

  10. Tube furnace

    DOEpatents

    Foster, Kenneth G.; Frohwein, Eugene J.; Taylor, Robert W.; Bowen, David W.

    1991-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  11. Tube furnace

    SciTech Connect

    Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

    1990-12-31

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  12. Tube furnace

    SciTech Connect

    Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

    1990-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  13. Magnetic frustration of graphite oxide

    NASA Astrophysics Data System (ADS)

    Lee, Dongwook; Seo, Jiwon

    2017-03-01

    Delocalized π electrons in aromatic ring structures generally induce diamagnetism. In graphite oxide, however, π electrons develop ferromagnetism due to the unique structure of the material. The π electrons are only mobile in the graphitic regions of graphite oxide, which are dispersed and surrounded by sp3-hybridized carbon atoms. The spin-glass behavior of graphite oxide is corroborated by the frequency dependence of its AC susceptibility. The magnetic susceptibility data exhibit a negative Curie temperature, field irreversibility, and slow relaxation. The overall results indicate that magnetic moments in graphite oxide slowly interact and develop magnetic frustration.

  14. Magnetic frustration of graphite oxide

    PubMed Central

    Lee, Dongwook; Seo, Jiwon

    2017-01-01

    Delocalized π electrons in aromatic ring structures generally induce diamagnetism. In graphite oxide, however, π electrons develop ferromagnetism due to the unique structure of the material. The π electrons are only mobile in the graphitic regions of graphite oxide, which are dispersed and surrounded by sp3-hybridized carbon atoms. The spin-glass behavior of graphite oxide is corroborated by the frequency dependence of its AC susceptibility. The magnetic susceptibility data exhibit a negative Curie temperature, field irreversibility, and slow relaxation. The overall results indicate that magnetic moments in graphite oxide slowly interact and develop magnetic frustration. PMID:28327606

  15. Optimization of a hydride generation metallic furnace atomic absorption spectrometry (HG-MF-AAS) method for tin determination: analytical and morphological parameters of a metallic atomizer.

    PubMed

    Moretto Galazzi, Rodrigo; Arruda, Marco Aurélio Zezzi

    2013-12-15

    The present work describes a metallic tube as hydride atomizer for atomic absorption spectrometry. Its performance is evaluated through tin determination, and the accuracy of the method assessed through the analysis of sediment and water samples. Some chemical parameters (referring to the generation of the hydride) such as acid, NaOH and THB concentrations, as well as physical parameters (referring to the transport of the hydride) such as carrier, acetylene, air flow-rates, flame composition, coil length, tube hole area, among others, are evaluated for optimization of the method. Scanning electron microscopy is used for evaluating morphological parameters in both new and used (after 150 h) tube atomizers. The method presents linear Sn concentration from 50 to 1000 µg L(-1) (r>0.9995; n=3) and the analytical frequency of ca. 40 h(-1). The limit of detection (LOD) is 7.1 µg L(-1) and the precision, expressed as RSD is less than 4% (200 µg L(-1); n=10). The accuracy is evaluated through reference materials, and the results are similar at 95% confidence level according to the t-test.

  16. Furnace assembly

    DOEpatents

    Panayotou, Nicholas F.; Green, Donald R.; Price, Larry S.

    1985-01-01

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  17. Furnace assembly

    DOEpatents

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  18. Superlubricity of graphite.

    PubMed

    Dienwiebel, Martin; Verhoeven, Gertjan S; Pradeep, Namboodiri; Frenken, Joost W M; Heimberg, Jennifer A; Zandbergen, Henny W

    2004-03-26

    Using a home-built frictional force microscope that is able to detect forces in three dimensions with a lateral force resolution down to 15 pN, we have studied the energy dissipation between a tungsten tip sliding over a graphite surface in dry contact. By measuring atomic-scale friction as a function of the rotational angle between two contacting bodies, we show that the origin of the ultralow friction of graphite lies in the incommensurability between rotated graphite layers, an effect proposed under the name of "superlubricity" [Phys. Rev. B 41, 11 837 (1990)

  19. Single Atom (Pd/Pt) Supported on Graphitic Carbon Nitride as an Efficient Photocatalyst for Visible-Light Reduction of Carbon Dioxide.

    PubMed

    Gao, Guoping; Jiao, Yan; Waclawik, Eric R; Du, Aijun

    2016-05-18

    Reducing carbon dioxide to hydrocarbon fuel with solar energy is significant for high-density solar energy storage and carbon balance. In this work, single atoms of palladium and platinum supported on graphitic carbon nitride (g-C3N4), i.e., Pd/g-C3N4 and Pt/g-C3N4, respectively, acting as photocatalysts for CO2 reduction were investigated by density functional theory calculations for the first time. During CO2 reduction, the individual metal atoms function as the active sites, while g-C3N4 provides the source of hydrogen (H*) from the hydrogen evolution reaction. The complete, as-designed photocatalysts exhibit excellent activity in CO2 reduction. HCOOH is the preferred product of CO2 reduction on the Pd/g-C3N4 catalyst with a rate-determining barrier of 0.66 eV, while the Pt/g-C3N4 catalyst prefers to reduce CO2 to CH4 with a rate-determining barrier of 1.16 eV. In addition, deposition of atom catalysts on g-C3N4 significantly enhances the visible-light absorption, rendering them ideal for visible-light reduction of CO2. Our findings open a new avenue of CO2 reduction for renewable energy supply.

  20. Multielement determination of cadmium and lead in urine by simultaneous electrothermal atomic absorption spectrometry with an end-capped graphite tube.

    PubMed

    Correia, Paulo R M; Nomura, Cassiana S; Oliveira, Pedro V

    2003-11-01

    A method for the multielement determination of cadmium and lead in urine is proposed by simultaneous electrothermal atomic absorption spectrometry (SIMAAS) with an end-capped transversely heated graphite atomizer (EC-THGA). The best conditions for cadmium and lead determination were obtained in the presence of NH4H2PO4 as a chemical modifier, using 500 degrees C and 1800 degrees C as the pyrolysis and atomization temperatures, respectively. Urine samples were diluted 1 + 4 directly in autosampler cups with a mixture of 0.125% (w/v) Triton X-100 + 2.5% (v/v) HNO3 + 0.31% (w/v) NH4H2PO4. The optimized heating program was carried out in 57 s, and the instrument calibration was done with aqueous reference solutions. The use of EC-THGA increased the sensitivity of cadmium and lead by 14% and 25%, respectively. The detection limits (n = 20, 3delta) were 0.03 microg L(-1) (0.36 pg) for cadmium and 0.57 microg L(-1) (6.8 pg) for lead. The performance of EC-THGA was acceptable up to 500 heating cycles. The reliability of the entire procedure was checked with the analysis of a lyophilized urine certified reference material. The found concentrations were in agreement with the recommended values (95% confidence level).

  1. Determination of tellurium in geochemical materials by flameless atomic-absorption spectroscopy.

    PubMed

    Sighinolfi, G P; Santos, A M; Martinelli, G

    1979-02-01

    A method is described for the determination of tellurium at nanogram levels in rocks and in other complex materials by the use of flameless atomic-absorption spectroscopy. A very selective organic extraction procedure is applied to avoid matrix interference effects during extraction of Te and the atomization stage in the graphite furnace. Prior separation of iron and other interfering elements is achieved by a combined cupferron-ethyl acetate extraction. Tellerium is extracted from 6M hydrochloric acid with MIBK and stripped into aqueous medium. Pipetting of the aqueous extract into the graphite furnace gives fairly good instrumental reproducibility (2-3% error). Detection limits of about 10 ppM Te for a 0.5-g sample have been achieved with the medium-performance apparatus used. Results for Te in some geochemical reference materials are reported. Indications are given for the determination of Sb and Mo in the same solutions.

  2. Intercalated graphite electrical conductors

    NASA Technical Reports Server (NTRS)

    Banks, B. A.

    1983-01-01

    For years NASA has wanted to reduce the weight of spacecraft and aircraft. Experiments are conducted to find a lightweight synthetic metal to replace copper. The subject of this paper, intercalated graphite, is such a material. Intercalated graphite is made by heating petroleum or coal to remove the hydrogen and to form more covalent bonds, thus increasing the molecular weight. The coal or petroleum eventually turns to pitch, which can then be drawn into a fiber. With continued heating the pitch-based fiber releases hydrogen and forms a carbon fiber. The carbon fiber, if heated sufficiently, becomes more organized in parallel layers of hexagonally arranged carbon atoms in the form of graphite. A conductor of intercalated graphite is potentially useful for spacecraft or aircraft applications because of its low weight.

  3. Round-robin study of methods for trace metal analysis: Graphite furnace atomic absorption spectroscopy -- Aluminum, beryllium, and thallium. Final report

    SciTech Connect

    Scott, J.W.; Whiddon, N.T.; Maddalone, R.F.

    1995-12-01

    The objective of the Analytical Methods Qualification (AMQ) phase is to develop validated standard deviation and bias statements of analytical methods for selected elements in utility matrices. During this phase of the AMQ project, AMQ-IV, Round 1, three elements (aluminum, beryllium and thallium) were validated in five matrices (reagent grade water, river water, ash pond overflow, seawater intake, seawater discharge and treated chemical metal cleaning waste). Eighteen laboratories completed the study. Statements of standard deviation and bias for each element and matrix were produced using STATCALC, a statistical analysis program developed by EPRI. The standard deviation data were used to calculate the Interlaboratory Critical Level (L{sub Cl}) and Alternative Minimum Level (AML) for each element by matrix. The L{sub Cl} is the lowest concentration that is distinct from zero to a specific level of confidence. The L{sub Cl} is comparable to the Compliance Monitoring Detection Level (CMDL) developed earlier by EPRI. The AML, which is an estimate of quantitation, is a factor of 10 times the interlaboratory standard deviation at the L{sub Cl} corrected to true concentration units with the appropriate prediction interval. In comparing the AMLs calculated from this study with the lowest EPA water quality criteria (WQC) listed, the AMLs were higher in all but 4 of the 17 cases where there were data for the AML. This work will help utilities define reasonable pollutant discharge limits and effluent monitoring requirements.

  4. Characterization of arsenic (V) and arsenic (III) in water samples using ammonium molybdate and estimation by graphite furnace atomic absorption spectroscopy.

    PubMed

    Sounderajan, Suvarna; Udas, A C; Venkataramani, B

    2007-10-01

    Arsenic (V) is known to form heteropolyacid with ammonium molybdate in acidic aqueous solutions, which can be quantitatively extracted into certain organic solvents. In the present work, 12-molybdoarsenic acid extracted in butan-1-ol is used for quantification of As (V). Total arsenic is estimated by converting arsenic (III) to arsenic (V) by digesting samples with concentrated nitric acid before extraction. Concentration of As (III) in the sample solutions could be calculated by the difference in total arsenic and arsenic (V). The characterization of arsenic was carried out by GFAAS using Pd as modifier. Optimization of the experimental conditions and instrumental parameters was investigated in detail. Recoveries of (90-110%) were obtained in the spiked samples. The detection limit was 0.2 microg l(-1). The proposed method was successfully applied for the determination of trace amount of arsenic (III) and arsenic (V) in process water samples.

  5. Determination of cadmium and lead at sub-ppt level in soft drinks: An efficient combination between dispersive liquid-liquid microextraction and graphite furnace atomic absorption spectrometry.

    PubMed

    Mandlate, Jaime S; Soares, Bruno M; Seeger, Tassia S; Vecchia, Paula Dalla; Mello, Paola A; Flores, Erico M M; Duarte, Fabio A

    2017-04-15

    A DLLME method for extraction and preconcentration of Cd and Pb from soft drinks and further determination by GF AAS was developed. Important parameters of DLLME such as the type and volume of dispersive and extraction solvents, concentration of DDTC (complexing agent) and pH were evaluated. Better results were obtained using 500μL of acetone for Cd and 700μL of acetonitrile for Pb as dispersive solvents, 60μL of CCl4 as extraction solvent for both analytes and 500μL of 1.5% DDTC solution. Accuracy was evaluated by recovery assays and ranged from 91 to 113% for Cd and from 95 to 108% for Pb, with RSD below 10 and 7%, respectively. The LODs were 0.006 and 0.072ngL(-1) for Cd and Pb, respectively. The optimized method was applied for the determination of Cd and Pb in soft drinks with different brands and flavours.

  6. Application of Dispersive Liquid-Liquid Microextraction with Graphite Furnace Atomic Absorption Spectrometry for Determination of Trace Amounts of Zinc in Water Samples

    PubMed Central

    Mazloomifar, Ali

    2013-01-01

    A selective and simple method for separation and preconcentration of zinc ions was developed by using dispersive liquid-liquid microextraction. Parameters that have an effect on the microextraction efficiency such as volume of extraction and disperser solvent, extraction time, and adding salt were investigated. Under optimum conditions, a preconcentration factor of 250 was obtained. The limit of detection (LOD) obtained under the optimal conditions was 0.09 ng mL−1. The linearity of method was obtained in range of 0.2–50 ng mL−1 with a correlation coefficient (r) of 0.9974. The relative standard deviation for 10 replicate determinations at 1.0 ng mL−1 of zinc was 2.53%. The proposed method was successfully applied to the analysis of zinc in water sample. PMID:23737791

  7. Maintaining vacuum furnaces

    SciTech Connect

    Kowalewski, J.

    2000-04-01

    A preventive maintenance program is essential for safe and consistent vacuum furnace operation. The program should be developed in cooperation with safety, maintenance, and furnace operators, implemented as soon as the furnace is commissioned, and adhered to throughout the life of the furnace. This article serves as an introduction to the topic of vacuum furnace preventive maintenance. Basic information about installing a new vacuum furnace also is provided.

  8. Ion Imprinted Polymer for Preconcentration and Determination of Ultra-Trace Cadmium, Employing Flow Injection Analysis with Thermo Spray Flame Furnace Atomic Absorption Spectrometry.

    PubMed

    do Lago, Ayla Campos; Marchioni, Camila; Mendes, Tássia Venga; Wisniewski, Célio; Fadini, Pedro Sergio; Luccas, Pedro Orival

    2016-11-01

    This work proposes a preconcentration method using an ion imprinted polymer (IIP) for determination of cadmium, in several samples, employing a mini-column filled with the polymer coupled into a flow injection analysis system with detection by thermospray flame furnace atomic absorption spectrometry (FIA-TS-FF-AAS). The polymer was synthesized via bulk using methacrylic acid and vinylimidazole as a functional monomer. For the FIA system initial assessment, the variables: pH, eluent concentration and buffer concentration were studied, employing a 23 full factorial design. To obtain the optimum values for each significant variable, a Doehlert matrix was employed. After the optimization conditions as: pH 5.8, eluent (HNO3) concentration of 0.48 mol L(-1) and buffer concentration of 0.01 mol L(-1), were adopted. The proposed method showed a linear response in the range of 0.081-10.0 μg L(-1), limits detection and quantification of 0.024 and 0.081 μg L(-1), respectively; preconcentration factor of 165, consumptive index of 0.06 mL, concentration efficiency 132 min(-1), and frequency of readings equal to 26 readings h(-1) The accuracy was checked by analysis of certified reference materials for trace metals and recovery tests. The obtained results were in agreement with 95% confidence level (t-test). The method was adequate to apply in samples of: jewelry (earrings) (2.38 ± 0.28 μg kg(-1)), black tea (1.09 ± 0.15 μg kg(-1)), green tea (3.85 ± 0.13 μg kg(-1)), cigarette tobacco (38.27 ± 0.22 μg kg(-1)), and hair (0.35 ± 0.02 μg kg(-1)).

  9. Determination of Chromium(III), Chromium(VI), and Chromium(III) acetylacetonate in water by ion-exchange disk extraction/metal furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Kamakura, Nao; Inui, Tetsuo; Kitano, Masaru; Nakamura, Toshihiro

    A new method for the separate determination of Chromium(III) (Cr(III)), Chromium(VI) (Cr(VI)), and Cr(III) acetylacetonate (Cr(acac)3) in water was developed using a cation-exchange extraction disk (CED) and an anion-exchange extraction disk (AED) combined with metal furnace atomic absorption spectrometry (MFAAS). A 100-mL water sample was adjusted to pH 5.6 and passed through the CED placed on the AED. Cr(acac)3 and Cr(III) were adsorbed on the CED, and Cr(VI) was adsorbed on the AED. The adsorbed Cr(acac)3 was eluted with 50 mL of carbon tetrachloride, followed by the elution of Cr(III) with 50 mL of 3 mol L- 1 nitric acid. Cr(VI) was eluted with 50 mL of 3 mol L- 1 nitric acid. The chemical species of Cr eluted from the CED with carbon tetrachloride was identified as Cr(acac)3 using infrared spectroscopy. The eluate of Cr(acac)3 was diluted to 100 mL with carbon tetrachloride, and those of Cr(III) and Cr(VI) were diluted to 100 mL with deionized water. All of the solutions were subsequently analyzed by MFAAS. The calibration curve for the Cr(acac)3 aqueous solutions exhibited good linearity in the range of 0.1 to 1 ng. The detection limit of Cr, which corresponded to three times the standard deviation (n = 10) of the blank values, was 20 pg. The recovery test for Cr(III), Cr(VI), and Cr(acac)3 exhibited desirable results (96.0%-107%) when 5 μg of each species (50 μg L- 1) was added to 100 mL water samples (i.e., tap water, rainwater, and bottled drinking water). In a humic acid solution, Cr(acac)3 was quantitatively recovered (103%), but Cr(III) and Cr(VI) exhibited poor recoveries (i.e., 84.8% and 78.4%, respectively).

  10. Diagnostics for a waste processing plasma arc furnace (invited) (abstract)a)

    NASA Astrophysics Data System (ADS)

    Woskov, P. P.

    1995-01-01

    Maintaining the quality of our environment has become an important goal of society. As part of this goal new technologies are being sought to clean up hazardous waste sites and to treat ongoing waste streams. A 1 MW pilot scale dc graphite electrode plasma arc furnace (Mark II) has been constructed at MIT under a joint program among Pacific Northwest Laboratory (PNL), MIT, and Electro-Pyrolysis, Inc. (EPI)c) for the remediation of buried wastes in the DOE complex. A key part of this program is the development of new and improved diagnostics to study, monitor, and control the entire waste remediation process for the optimization of this technology and to safeguard the environment. Continuous, real time diagnostics are needed for a variety of the waste process parameters. These parameters include internal furnace temperatures, slag fill levels, trace metals content in the off-gas stream, off-gas molecular content, feed and slag characterization, and off-gas particulate size, density, and velocity distributions. Diagnostics are currently being tested at MIT for the first three parameters. An active millimeter-wave radiometer with a novel, rotatable graphite waveguide/mirror antenna system has been implemented on Mark II for the measurement of surface emission and emissivity which can be used to determine internal furnace temperatures and fill levels. A microwave torch plasma is being evaluated for use as a excitation source in the furnace off-gas stream for continuous atomic emission spectroscopy of trace metals. These diagnostics should find applicability not only to waste remediation, but also to other high temperature processes such as incinerators, power plants, and steel plants.

  11. Raman characterization of bulk ferromagnetic nanostructured graphite

    NASA Astrophysics Data System (ADS)

    Pardo, Helena; Divine Khan, Ngwashi; Faccio, Ricardo; Araújo-Moreira, F. M.; Fernández-Werner, Luciana; Makarova, Tatiana; Mombrú, Álvaro W.

    2012-08-01

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm-1 showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  12. Activation energies of metal atomization and nitrate and sulfate decomposition in concentrated matrices (10 -1 M).

    NASA Astrophysics Data System (ADS)

    Le Bihan, A.; Le Garrec, H.; Cabon, J. Y.; Guern, Y.

    1998-08-01

    This paper reports on activation energies measured during copper and manganese atomization in a graphite furnace in the presence of large amounts of nitrate and sulfate matrices. It also deals with activation energies corresponding to the decomposition of these matrices and to the atomization of their metal, i.e. Na, Ca or Mg. These results were obtained from Arrhenius-type calculations carried out on specific and non-specific absorbance values. Atomization was achieved under a very high gas flow which allowed us to get to the source function. Some of the calculated energies were compared to reaction energies deduced from tables of thermodynamic data.

  13. Industrial furnace

    SciTech Connect

    Shostak, V.M.; Tolochko, A.I.; Volkov, V.P.; Maradudin, G.I.; Schekin, N.G.; Popov, M.I.; Shepelev, D.N.; Matveev, A.I.; Butnyakov, A.I.; Rzhavichev, A.P.

    1986-09-02

    An industrial furnace is described which consists of: a bath made of a refractory material for filling with a melt; a direct current source; main current-carrying elements having free ends extending to an operating area of the refractory material of the bath below and above the melt, and the main current-carrying elements extending to the operating area below the melt being connected with opposite terminals of the current source from the main current-carrying elements extending to the operating area above the melt; and additional current-carrying elements having free ends sunk in the refractory material of the bath below and above the melt and the additional current-carrying elements being connected with the terminals of the power source of opposite polarity with respect to the connection of the main current-carrying elements of a corresponding part of the operating area.

  14. Graphite-Fiber-Reinforced Glass-Matrix Composite

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Dicus, D. L.

    1982-01-01

    G/GI structural composite material made of graphite fibers embedded in borosilicate glass exhibit excellent strength, fracture toughness, and dimensional stability at elevated temperatures. It is made by passing graphite-fiber yarn through slurry containing suspension of fine glass particles in carrier liquid and winding on drum to produce prepegged uniaxial tape. After drying, tapes are cut into appropriate lengths and laid up in graphite die in desired stacking scheme. Stack is consolidated by hot pressing in furnace.

  15. GRAPHITE EXTRUSIONS

    DOEpatents

    Benziger, T.M.

    1959-01-20

    A new lubricant for graphite extrusion is described. In the past, graphite extrusion mixtures have bcen composed of coke or carbon black, together with a carbonaceous binder such as coal tar pitch, and a lubricant such as petrolatum or a colloidal suspension of graphite in glycerin or oil. Sinee sueh a lubricant is not soluble in, or compatible with the biiider liquid, such mixtures were difficult to extrude, and thc formed pieees lacked strength. This patent teaches tbe use of fatty acids as graphite extrusion lubricants and definite improvemcnts are realized thereby since the fatty acids are soluble in the binder liquid.

  16. Designing modern furnace cooling systems

    NASA Astrophysics Data System (ADS)

    Merry, J.; Sarvinis, J.; Voermann, N.

    2000-02-01

    An integrated multidisciplinary approach to furnace design that considers the interdependence between furnace cooling elements and other furnace systems, such as binding, cooling water, and instrumentation, is necessary to achieve maximum furnace production and a long refractory life. The retrofit of the BHP Hartley electric furnace and the Kidd Creek copper converting furnace are successful examples of an integrated approach to furnace cooling design.

  17. STM Observations at the Atomic Scale of a Tilt Grain Sub-Boundary on Highly Oriented Pyrolytic Graphite

    NASA Astrophysics Data System (ADS)

    Daulan, C.; Derré, A.; Flandrois, S.; Roux, J. C.; Saadaoui, H.

    1995-09-01

    We report here the first observations at the atomic scale of a symmetrical tilt grain sub-boundary with a STM. The edge dislocations observed at the atomic scale along the boundary line can be understood in the frame of geometrical models. These STM images also reveal a local modification of the charge density near the Fermi level in the junction area. Des observations à l'échelle atomique d'un sous-joint de grains de flexion ont été réalisées pour la première fois par microscopie à effet tunnel (STM). Des modèles géométriques ont permis d'interpréter le réseau de dislocations mis en évidence sur la ligne de jonction. Ces images STM révèlent également la modification locale de la densité volumique de charge près du niveau de Fermi dans la zone de jonction.

  18. Superlubricity of Graphite

    NASA Astrophysics Data System (ADS)

    Dienwiebel, Martin; Verhoeven, Gertjan S.; Pradeep, Namboodiri; Frenken, Joost W.; Heimberg, Jennifer A.; Zandbergen, Henny W.

    2004-03-01

    Using a home-built frictional force microscope that is able to detect forces in three dimensions with a lateral force resolution down to 15 pN, we have studied the energy dissipation between a tungsten tip sliding over a graphite surface in dry contact. By measuring atomic-scale friction as a function of the rotational angle between two contacting bodies, we show that the origin of the ultralow friction of graphite lies in the incommensurability between rotated graphite layers, an effect proposed under the name of “superlubricity” [

    M. Hirano and K. Shinjo, Phys. Rev. BPRBMDO0163-1829 41, 11 837 (1990)10.1103/PhysRevB.41.11837
    ].

  19. The effect of heating power on impurity formation and transport during the holding phase in a Bridgman furnace for directional solidification of multi-crystalline silicon

    NASA Astrophysics Data System (ADS)

    Ellingsen, Kjerstin; Lindholm, Dag; M`Hamdi, Mohammed

    2016-06-01

    Oxygen and carbon are the most common impurities in multi-crystalline silicon. The general mechanism for formation and transport of O and C in the solidification furnace is as follows: oxygen from the silica crucible comes into the melt and combines with a silicon atom and evaporates at the gas/melt interface in the form of silicon oxide (SiO). Argon inert gas, injected into the furnace chamber, carries the SiO to the hot graphite fixtures, where it reacts with carbon to form carbon monoxide (CO) and silicon carbide (SiC). CO is carried by the gas to the melt free surface, where it dissociates into carbon and oxygen. Finally, during solidification oxygen and carbon are incorporated into the crystal. A global furnace model accounting for heat transfer, melt flow, gas flow and impurity transport has been applied to investigate the oxygen and carbon formation and transport in a vertical Bridgman furnace during the holding phase when the furnace is at its hottest. A case study is performed to investigate the effect of the applied heating power on the carbon and oxygen concentrations in the melt prior to solidification.

  20. Spatial discrimination against background with different optical systems for collection of fluorescence in laser-excited atomic fluorescence spectrometry with a graphite tube electrothermal atomizer.

    PubMed

    Yuzefovsky, A I; Lonardo, R F; Michel, R G

    1995-07-01

    A single 90 degrees off-axis ellipsoidal mirror fragment was used in a dispersive detection system for electrothermal atomization laser-excited atomic fluorescence spectrometry. The performance of the new optical arrangement was compared with those of optical arrangements that employed a plane mirror in combination with biconvex or plano-convex lenses. All the optical arrangements collected fluorescence in a scheme called front surface illustration. BEAM-4, an optical ray tracing program, was used for calculations of spatial ray distributions and optical collection efficiency for the various optical configurations. Experimentally, the best collection efficiency was obtained by use of the ellipsoidal mirror, in qualitative agreement with simulations done by use of the BEAM-4 software. The best detection limit for cobalt with the new optical arrangement was 20 fg, which was a factor of 5 better than that obtained with conventional optical arrangements with otherwise the same instrumentation. The signal-to-background ratio and the fluorescence collection efficiency were also studied as a function of position of the optical components for the various optical arrangements. For both cobalt and phosphorus, the signal-to-background ratio with the new optical arrangement remained stable within 10-20% during +/- 8 mm shifts in the position of the detection system from the focal plane of the optics. Overall, the new optical arrangement offered high collection efficiency, excellent sensitivity, and facile optical alignment due to efficient spatial separation between the fluorescence signal and the background radiation. The advantages of the new optical arrangement were particularly important during measurements in the presence of high levels of blackbody radiation.

  1. Graphite Gamma Scan Results

    SciTech Connect

    Mark W. Drigert

    2014-04-01

    This report documents the measurement and data analysis of the radio isotopic content for a series of graphite specimens irradiated in the first Advanced Graphite Creep (AGC) experiment, AGC-1. This is the first of a series of six capsules planned as part of the AGC experiment to fully characterize the neutron irradiation effects and radiation creep behavior of current nuclear graphites. The AGC-1 capsule was irradiated in the Advanced Test Reactor (ATR) at INL at approximately 700 degrees C and to a peak dose of 7 dpa (displacements per atom). Details of the irradiation conditions and other characterization measurements performed on specimens in the AGC-1 capsule can be found in “AGC-1 Specimen Post Irradiation Data Report” ORNL/TM 2013/242. Two specimens from six different graphite types are analyzed here. Each specimen is 12.7 mm in diameter by 25.4 mm long. The isotope with the highest activity was 60Co. Graphite type NBG-18 had the highest content of 60Co with an activity of 142.89 µCi at a measurement distance of 47 cm.

  2. Spent graphite fuel element processing

    SciTech Connect

    Holder, N.D.; Olsen, C.W.

    1981-07-01

    The Department of Energy currently sponsors two programs to demonstrate the processing of spent graphite fuel elements. General Atomic in San Diego operates a cold pilot plant to demonstrate the processing of both US and German high-temperature reactor fuel. Exxon Nuclear Idaho Company is demonstrating the processing of spent graphite fuel elements from Rover reactors operated for the Nuclear Rocket Propulsion Program. This work is done at Idaho National Engineering Laboratory, where a hot facility is being constructed to complete processing of the Rover fuel. This paper focuses on the graphite combustion process common to both programs.

  3. Graphite Formation in Cast Iron

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.

    1985-01-01

    In the first phase of the project it was proven that by changing the ratio between the thermal gradient and the growth rate for commercial cast iron samples solidifying in a Bridgman type furnace, it is possible to produce all types of graphite structures, from flake to spheroidal, and all types of matrices, from ferritic to white at a certain given level of cerium. KC-135 flight experiments have shown that in a low-gravity environment, no flotation occurs even in spheroidal graphite cast irons with carbon equivalent as high as 5%, while extensive graphite flotation occurred in both flake and spheroidal graphite cast irons, in high carbon samples solidified in a high gravity environment. This opens the way for production of iron-carbon composite materials, with high carbon content (e.g., 10%) in a low gravity environment. By using KC-135 flights, the influence of some basic elements on the solidification of cast iron will be studied. The mechanism of flake to spheroidal graphite transition will be studied, by using quenching experiments at both low and one gravity for different G/R ratios.

  4. Graphitization behaviour of chemically derived graphene sheets.

    PubMed

    Long, Donghui; Li, Wei; Qiao, Wenming; Miyawaki, Jin; Yoon, Seong-Ho; Mochida, Isao; Ling, Licheng

    2011-09-01

    Graphene sheets were prepared via chemical reduction of graphite oxides and then graphitized at 2800 °C. The structure changes from pristine graphite to graphitized graphene sheets were monitored using X-ray diffraction and Raman spectroscopy. It was found that the graphitized graphene sheets exhibited relatively low degree of graphitization and high level of structural defects. XPS spectra revealed that oxygen functionalities could be completely eliminated after graphitization. Morphology observations indicated that graphitization could induce the coalescence and connection of the crumpled graphene agglomerations into compressed grains. The connections included the joint of graphitic sheets along the c-axis with van der Waals force between graphitic sheets and the joint of sheets in the in-plane with covalent bond between carbon atoms. New structures such as the formation of loop at the tip of graphene sheets and the formation of 3D concentric graphene nanoparticles occurred in the graphitized graphene sheets, as a result of self-organization to achieve their lowest potential energy. Our findings should provide some experimental implications for understanding of graphitization behaviour and thermal stability of strictly 2D graphene monolayers.

  5. Heat treatment furnace

    SciTech Connect

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  6. First principles study of oxidation behavior of irradiated graphite

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Dong, Limin; Wang, Chen; Liang, Tongxiang; Lai, Wensheng

    2015-06-01

    The relationship between nuclear graphite microstructure and its oxidation resistance underlines the importance of comprehensive oxidation characterization studies of the new grades of nuclear graphite. Periodic DFT calculations are performed to model oxidation behavior of irradiated graphite. O2 molecules adsorbed on perfect and defective graphite surfaces are calculated. The adsorptive energy of O2 on defective graphite adsorption site with one carbon atom missing is approximately 10 times as strong as that on a defect-free perfect graphite surface. Monovacancy and divacancy on graphite surface can easily chemisorb O2 molecule compared to perfect surface. Two oxidation processes including CO and CO2 formation steps are analyzed. For symmetric monovacancy defect, three dangling C atoms are unsaturated and exhibit high adsorption ability, as well as reconstructed monovacancy and divacancy defects. These vacancy defects in irradiated graphite decrease oxidation resistance of nuclear graphite.

  7. High temperature furnace system for vacuum ultraviolet spectroscopic studies.

    PubMed

    Brown, C M; Naber, R H; Tilford, S G; Ginter, M L

    1973-08-01

    An improved furnace system for use in vacuum ultraviolet spectroscopic studies of atomic and molecular species stable at high temperatures (800-2500 degrees C) is described in detail. A new and improved high resolution spectrum of Mg I and several impurity spectra produced in the furnace are presented.

  8. Graphite Revisited

    NASA Astrophysics Data System (ADS)

    Draine, B. T.

    2016-11-01

    Laboratory measurements are used to constrain the dielectric tensor for graphite, from microwave to X-ray frequencies. The dielectric tensor is strongly anisotropic even at X-ray energies. The discrete dipole approximation is employed for accurate calculations of absorption and scattering by single-crystal graphite spheres and spheroids. For randomly oriented single-crystal grains, the so-called 1/3{--}2/3 approximation for calculating absorption and scattering cross sections is exact in the limit a/λ \\to 0 and provides better than ∼10% accuracy in the optical and UV even when a/λ is not small, but becomes increasingly inaccurate at infrared wavelengths, with errors as large as ∼40% at λ =10 μ {{m}}. For turbostratic graphite grains, the Bruggeman and Maxwell Garnett treatments yield similar cross sections in the optical and ultraviolet, but diverge in the infrared, with predicted cross sections differing by over an order of magnitude in the far-infrared. It is argued that the Maxwell Garnett estimate is likely to be more realistic, and is recommended. The out-of-plane lattice resonance of graphite near 11.5 μm may be observable in absorption with the MIRI spectrograph on James Webb Space Telescope. Aligned graphite grains, if present in the interstellar medium, could produce polarized X-ray absorption and polarized X-ray scattering near the carbon K edge.

  9. Determination of selected elements in whole coal and in coal ash from the eight argonne premium coal samples by atomic absorption spectrometry, atomic emission spectrometry, and ion-selective electrode

    USGS Publications Warehouse

    Doughten, M.W.; Gillison, J.R.

    1990-01-01

    Methods for the determination of 24 elements in whole coal and coal ash by inductively coupled argon plasma-atomic emission spectrometry, flame, graphite furnace, and cold vapor atomic absorption spectrometry, and by ion-selective electrode are described. Coal ashes were analyzed in triplicate to determine the precision of the methods. Results of the analyses of NBS Standard Reference Materials 1633, 1633a, 1632a, and 1635 are reported. Accuracy of the methods is determined by comparison of the analysis of standard reference materials to their certified values as well as other values in the literature.

  10. Applications Of Graphite Fluoride Fibers In Outer Space

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheng; Long, Martin; Dever, Therese

    1993-01-01

    Report characterizes graphite fluoride fibers made from commercially available graphitized carbon fibers and discusses some potential applications of graphite fluoride fibers in outer space. Applications include heat-sinking printed-circuit boards, solar concentrators, and absorption of radar waves. Other applications based on exploitation of increased resistance to degradation by atomic oxygen, present in low orbits around Earth.

  11. Electromelt furnace evaluation

    SciTech Connect

    Reimann, G.A.; Welch, J.M.

    1981-09-01

    An electromelt furnace was designed, built, and operated at the Idaho National Engineering Laboratory to demonstrate the suitability of this equipment for large-scale processing of radioactive wastes in iron-enriched basalt. Several typical waste compositions were melted and cast. The furnace was disassembled and the components evaluated. Calcines and fluorides attacked the furnace lining, unoxidized metals accumulated under the slag, and electrode attrition was high.

  12. Electromelt furnace evaluation

    NASA Astrophysics Data System (ADS)

    Reimann, G. A.; Welch, J. M.

    1981-09-01

    An electromelt furnace was designed, built and operated at the Idaho National Engineering Laboratory to demonstrate the suitability of this equipment for large-scale processing of radioactive wastes in iron-enriched basalt. Several typical waste compositions were melted and cast. The furnace was disassembled and the components evaluated. Calcines and fluorides attacked the furnace lining, unoxidized metals accumulated under the slag, and electrode attrition was high.

  13. EXTERIOR VIEW, BLAST FURNACE NO. 3 (JANE FURNACE) CENTER, NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, BLAST FURNACE NO. 3 (JANE FURNACE) CENTER, NO. 3 CAST HOUSE TO THE LEFT, WEST ORE BRIDGE TO THE RIGHT. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 3, Donner Avenue, Monessen, Westmoreland County, PA

  14. Thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  15. INTERIOR VIEW SHOWING FURNACE KEEPER OBSERVING FURNACE THROUGH BLUE GLASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING FURNACE KEEPER OBSERVING FURNACE THROUGH BLUE GLASS EVERY TWENTY MINUTES TO DETERMINE SIZE AND TEXTURE OF BATCH AND OTHER VARIABLES. FAN IN FRONT COOLS WORKERS AS THEY CONDUCT REPAIRS. FURNACE TEMPERATURE AT 1572 DEGREES FAHRENHEIT. - Chambers-McKee Window Glass Company, Furnace No. 2, Clay Avenue Extension, Jeannette, Westmoreland County, PA

  16. General view of blast furnace plant, with blast furnace "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of blast furnace plant, with blast furnace "A" (built in 1907) to the left; in the foreground is the turbo-blower and blast furnace gas-powered electric generating station (built in 1919), looking northwest - Bethlehem Steel Corporation, South Bethlehem Works, Blast Furnace "A", Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  17. Bridged graphite oxide materials

    NASA Technical Reports Server (NTRS)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  18. High Temperature Transparent Furnace Development

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  19. Iron analysis in atmospheric water samples by atomic absorption spectroscopy (AAS) in water-methanol.

    PubMed

    Sofikitis, A M; Colin, J L; Desboeufs, K V; Losno, R

    2004-01-01

    To distinguish between Fe(II) and Fe(III) species in atmospheric water samples, we have adapted an analytical procedure based on the formation of a specific complex between Fe(II) and ferrozine (FZ) on a chromatographic column. After elution of Fe(III), the Fe(II) complex is recovered with water-methanol (4:1). The possibility of trace iron measurements in this complex medium by graphite-furnace atomic-absorption spectrometry has been investigated. A simplex optimization routine was required to complete the development of the analytical method.

  20. Nuclear graphite

    SciTech Connect

    Mercuri, R. A.; Criscione, J. M.

    1985-07-02

    A high strength, high coefficient of thermal expansion fine-grained isotropic graphite article produced from 30% to 70% of attritor milled gilsonite coke or other high CTE carbon filler particles and minor amounts of a binder such a coal tar pitch and petroleum pitch, the article being formed by warm isostatic molding at a temperature of between 50/sup 0/ C. and 70/sup 0/ C. under a pressure between 100 and 1000 psi for a time between 1 and 10 minutes. The particle size of the fillers ranges up to 150 microns.

  1. Ferric chloride graphite intercalation compounds prepared from graphite fluoride

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1994-01-01

    The reaction between graphite fluoride and ferric chloride was observed in the temperature range of 300 to 400 C. The graphite fluorides used for this reaction have an sp3 electronic structure and are electrical insulators. They can be made by fluorinating either carbon fibers or powder having various degrees of graphitization. Reaction is fast and spontaneous and can occur in the presence of air. The ferric chloride does not have to be predried. The products have an sp2 electronic structure and are electrical conductors. They contain first stage FeCl3 intercalated graphite. Some of the products contain FeCl2*2H2O, others contain FeF3 in concentrations that depend on the intercalation condition. The graphite intercalated compounds (GIC) deintercalated slowly in air at room temperature, but deintercalated quickly and completely at 370 C. Deintercalation is accompanied by the disappearing of iron halides and the formation of rust (hematite) distributed unevenly on the fiber surface. When heated to 400 C in pure N2 (99.99 vol %), this new GIC deintercalates without losing its molecular structure. However, when the compounds are heated to 800 C in quartz tube, they lost most of its halogen atoms and formed iron oxides (other than hematite), distributed evenly in or on the fiber. This iron-oxide-covered fiber may be useful in making carbon-fiber/ceramic-matrix composites with strong bonding at the fiber-ceramic interface.

  2. Ferrix Chloride-Graphite Intercalation Compounds Prepared From Graphite Flouride

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1995-01-01

    The reaction between graphite fluoride and ferric chloride was observed in the temperature range of 300 to 400 C. The graphite fluorides used for this reaction have an sp(sup 3) electronic structure and are electrical insulators. They can be made by fluorinating either carbon fibers or powder having various degrees of graphitization. Reaction is fast and spontaneous and can occur in the presence of air. The ferric chloride does not have to be predried. The products have an sp(sup 2) electronic structure and are electrical conductors. They contain first-stage FeCl3 intercalated graphite. Some of the products contain FeCl2 (center dot) 2H2O, others contain FeF3, in concentrations that depend on the intercalation condition. The graphite intercalated compounds (GIC) deintercalated slowly in air at room temperature, but deintercalated quickly and completely at 370 C. Deintercalation is accompanied by the disappearance of iron halides and the formation of rust (hematite) distributed unevenly on the fiber surface. When heated to 400 C in pure N2 (99.99 vol%), this new GIC deintercalates without losing its molecular structure. However, when the compounds are exposed to 800 C N2, in a quartz tube, they lost most of their halogen atoms and formed iron oxides (other than hematite), distributed evenly in or on the fiber.

  3. Paired Straight Hearth Furnace

    SciTech Connect

    2009-04-01

    This factsheet describes a research project whose goals are to design, develop, and evaluate the scalability and commercial feasibility of the PSH Paired Straight Hearth Furnace alternative ironmaking process.

  4. High temperature furnace

    DOEpatents

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  5. Bonding changes in compressed superhard graphite.

    PubMed

    Mao, Wendy L; Mao, Ho-kwang; Eng, Peter J; Trainor, Thomas P; Newville, Matthew; Kao, Chi-chang; Heinz, Dion L; Shu, Jinfu; Meng, Yue; Hemley, Russell J

    2003-10-17

    Compressed under ambient temperature, graphite undergoes a transition at approximately 17 gigapascals. The near K-edge spectroscopy of carbon using synchrotron x-ray inelastic scattering reveals that half of the pi-bonds between graphite layers convert to sigma-bonds, whereas the other half remain as pi-bonds in the high-pressure form. The x-ray diffraction pattern of the high-pressure form is consistent with a distorted graphite structure in which bridging carbon atoms between graphite layers pair and form sigma-bonds, whereas the nonbridging carbon atoms remain unpaired with pi-bonds. The high-pressure form is superhard, capable of indenting cubic-diamond single crystals.

  6. Preparation of graphitic articles

    DOEpatents

    Phillips, Jonathan; Nemer, Martin; Weigle, John C.

    2010-05-11

    Graphitic structures have been prepared by exposing templates (metal, metal-coated ceramic, graphite, for example) to a gaseous mixture that includes hydrocarbons and oxygen. When the template is metal, subsequent acid treatment removes the metal to yield monoliths, hollow graphitic structures, and other products. The shapes of the coated and hollow graphitic structures mimic the shapes of the templates.

  7. Better VPS Fabrication of Crucibles and Furnace Cartridges

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Zimmerman, Frank R.; O'Dell, J. Scott; McKechnie, Timothy N.

    2003-01-01

    An experimental investigation has shown that by (1) vacuum plasma spraying (VPS) of suitable refractory metal alloys on graphite mandrels, and then (2) heat-treating the VPS alloy deposits under suitable conditions, it is possible to fabricate improved crucibles and furnace cartridges that could be used at maximum temperatures between 1,400 and 1,600 C and that could withstand chemical attack by the materials to be heated in the crucibles and cartridges. Taken by itself, the basic concept of fabricating furnace cartridges by VPS of refractory materials onto graphite mandrels is not new; taken by itself, the basic concept of heat treatment of VPS deposits for use as other than furnace cartridges is also not new; however, prior to this investigation, experimental crucibles and furnace cartridges fabricated by VPS had not been heat treated and had been found to be relatively weak and brittle. Accordingly, the investigation was directed toward determining whether certain combinations of (1) refractory alloy compositions, (2) VPS parameters, and (3) heat-treatment parameters could result in VPS-fabricated components with increased ductility.

  8. Graphite nanosheets doped with Fe, Ni, and N, synthesized in one step, and their unique magnetic performance

    NASA Astrophysics Data System (ADS)

    Xu, Zhanwei; Li, Hejun; Luo, Huijuan; Sun, Huihui; Zhang, Qinglin; Cao, Gaoxiang; Li, Kezhi

    2011-04-01

    Graphite nanosheets (GNs) doped with N, Fe, or Ni were synthesized by pyrolysis of metal tetrapyridinoporphyrazine (MPTpz, M=Fe 2+, and Ni 2+) and a mixture of MPTpzs in a chemical vapor deposition furnace. The products obtained were characterized by scanning and transmission electron microscopy, and X-ray photoelectron spectroscopy. The magnetic properties of the GNs obtained were investigated at room temperature using a vibrating sample magnetometer with an applied field of -10 000-10 000 Gs. The results show the GNs obtained are terrace-like and ultra-thin, with very high aspect ratio. Fe, Ni and N atoms have been doped to the GNs successfully. There are two types of N atom that are introduced into pure carbon systems: pyrinidic and graphitic N atoms. The GNs obtained exhibit ferromagnetic behavior at room temperature. Sample S1, obtained by pyrolysis of a mixture of MPTpzs (M=Fe 2+ and Ni 2+), have the highest coercivity force. The saturation magnetization ( Ms), remanent magnetization ( Mr), and coercivity ( Hc) values of sample S1 are 24.51 emu g -1, 3.95 emu g -1, and 207.34 Gs, respectively.

  9. Adsorption of lead over graphite oxide.

    PubMed

    Olanipekun, Opeyemi; Oyefusi, Adebola; Neelgund, Gururaj M; Oki, Aderemi

    2014-01-24

    The adsorption efficiency and kinetics of removal of lead in presence of graphite oxide (GO) was determined using the Atomic Absorption Spectrophotometer (AAS). The GO was prepared by the chemical oxidation of graphite and characterized using FTIR, SEM, TGA and XRD. The adsorption efficiency of GO for the solution containing 50, 100 and 150 ppm of Pb(2+) was found to be 98%, 91% and 71% respectively. The adsorption ability of GO was found to be higher than graphite. Therefore, the oxidation of activated carbon in removal of heavy metals may be a viable option to reduce pollution in portable water.

  10. Looking Northwest at Furnace Control Panels and Gas Control Furnace ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Northwest at Furnace Control Panels and Gas Control Furnace in Red Room Within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  11. Structure and functionality of bromine doped graphite.

    PubMed

    Hamdan, Rashid; Kemper, A F; Cao, Chao; Cheng, H P

    2013-04-28

    First-principles calculations are used to study the enhanced in-plane conductivity observed experimentally in Br-doped graphite, and to study the effect of external stress on the structure and functionality of such systems. The model used in the numerical calculations is that of stage two doped graphite. The band structure near the Fermi surface of the doped systems with different bromine concentrations is compared to that of pure graphite, and the charge transfer between carbon and bromine atoms is analyzed to understand the conductivity change along different high symmetry directions. Our calculations show that, for large interlayer separation between doped graphite layers, bromine is stable in the molecular form (Br2). However, with increased compression (decreased layer-layer separation) Br2 molecules tend to dissociate. While in both forms, bromine is an electron acceptor. The charge exchange between the graphite layers and Br atoms is higher than that with Br2 molecules. Electron transfer to the Br atoms increases the number of hole carriers in the graphite sheets, resulting in an increase of conductivity.

  12. Structure and functionality of bromine doped graphite

    SciTech Connect

    Hamdan, Rashid; Kemper, A. F.; Cao Chao; Cheng, H. P.

    2013-04-28

    First-principles calculations are used to study the enhanced in-plane conductivity observed experimentally in Br-doped graphite, and to study the effect of external stress on the structure and functionality of such systems. The model used in the numerical calculations is that of stage two doped graphite. The band structure near the Fermi surface of the doped systems with different bromine concentrations is compared to that of pure graphite, and the charge transfer between carbon and bromine atoms is analyzed to understand the conductivity change along different high symmetry directions. Our calculations show that, for large interlayer separation between doped graphite layers, bromine is stable in the molecular form (Br{sub 2}). However, with increased compression (decreased layer-layer separation) Br{sub 2} molecules tend to dissociate. While in both forms, bromine is an electron acceptor. The charge exchange between the graphite layers and Br atoms is higher than that with Br{sub 2} molecules. Electron transfer to the Br atoms increases the number of hole carriers in the graphite sheets, resulting in an increase of conductivity.

  13. Precise determination of the absolute isotopic abundance ratio and the atomic weight of chlorine in three international reference materials by the positive thermal ionization mass spectrometer-Cs2Cl+-graphite method.

    PubMed

    Wei, Hai-Zhen; Jiang, Shao-Yong; Xiao, Ying-Kai; Wang, Jun; Lu, Hai; Wu, Bin; Wu, He-Pin; Li, Qing; Luo, Chong-Guang

    2012-12-04

    Because the variation in chlorine isotopic abundances of naturally occurring chlorine bearing substances is significant, the IUPAC Inorganic Chemistry Division, Commission on Isotopic Abundances and Atomic Weights (CIAAW-IUPAC) decided that the uncertainty of atomic weight of chlorine (A(r)(Cl)) should be increased so that the implied range was related to terrestrial variability in 1999 (Coplen, T. B. Atomic weights of the elements 1999 (IUPAC Technical Report), Pure Appl. Chem.2001, 73(4), 667-683; and then, it emphasized that the standard atomic weights of ten elements including chlorine were not constants of nature but depend upon the physical, chemical, and nuclear history of the materials in 2009 (Wieser, M. E.; Coplen, T. B. Pure Appl. Chem.2011, 83(2), 359-396). According to the agreement by CIAAW that an atomic weight could be defined for one specified sample of terrestrial origin (Wieser, M. E.; Coplen, T. B. Pure Appl. Chem.2011, 83(2), 359-396), the absolute isotope ratios and atomic weight of chlorine in standard reference materials (NIST 975, NIST 975a, ISL 354) were accurately determined using the high-precision positive thermal ionization mass spectrometer (PTIMS)-Cs(2)Cl(+)-graphite method. After eliminating the weighing error caused from evaporation by designing a special weighing container and accurately determining the chlorine contents in two highly enriched Na(37)Cl and Na(35)Cl salts by the current constant coulometric titration, one series of gravimetric synthetic mixtures prepared from two highly enriched Na(37)Cl and Na(35)Cl salts was used to calibrate two thermal ionization mass spectrometers in two individual laboratories. The correction factors (i.e., K(37/35) = R(37/35meas)/R(37/35calc)) were obtained from five cycles of iterative calculations on the basis of calculated and determined R((37)Cl/(35)Cl) values in gravimetric synthetic mixtures. The absolute R((37)Cl/(35)Cl) ratios for NIST SRM 975, NIST 975a, and ISL 354 by the precise

  14. An improved gas extraction furnace

    NASA Technical Reports Server (NTRS)

    Wilkin, R. B.

    1972-01-01

    Design of glass furnace for analysis of rocks to determine nature and amount of trapped gas is described. Furnace heats specimen in vacuum conditions by radio frequency induction. Diagram of apparatus to show construction and operation is provided.

  15. CHARGING SIDE OF #130 ELECTRIC FURNACE CO. REHEAT FURNACE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CHARGING SIDE OF #130 ELECTRIC FURNACE CO. REHEAT FURNACE IN REROLL BAY. CAKES FROM THE CASTING SHOP ARE BROUGHT UP TO ROLLING TEMPERATURE IN ONE OF TWO (#130 AND 146) GAS-FIRED FURNACES. A RADIO-CONTROLLED OVERHEAD CRANE TRANSFERS CAKES FROM FLATCARS TO THE ROLLER LINE LEADING INTO THE FURNACE. CAKES ARE HEATED AT 900-1000 DEGREES FAHRENHEIT FOR THREE TO FOUR HOURS. RATED FURNACE CAPACITY IS 100,000 LBS.\\HOUR. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  16. Status of Graphite Oxidation Work

    SciTech Connect

    Rebecca Smith

    2010-05-01

    Data were developed to compare the extent of structural damage associated with high temperature exposure to an air leak. Two materials, NBG-18 graphite and unpurified PCEA graphite have been tested as of this report. The scope was limited to isothermal oxidation at a single temperature, 750°C. Ambient post-oxidation compression strength testing was performed for three levels of burn off (1%, 5%, and 10% mass loss) for two leak scenarios: 100% air and 10% air in helium. Temperature, gas flow, and dynamic mass loss oxidation conditions were monitored and recorded for each sample. The oxidation period was controlled with flow of inert gas during the thermal ramp and upon cool down with a constant 10 liter per minute flow maintained throughout furnace operation. Compressive strengths of parallel un-oxidized samples were tested to assess the relative mass loss effects. In addition to baseline samples matching the un-oxidized dimensions of the oxidized samples, two sets of mechanically reduced samples were prepared. One set was trimmed to achieve the desired mass loss by removing an effectively uniform depth from the geometric surface of the sample. The other set was cored to produce a full penetration axial hole down the center of each sample.

  17. ZPR-3 Assembly 12 : A cylindrical assembly of highly enriched uranium, depleted uranium and graphite with an average {sup 235}U enrichment of 21 atom %.

    SciTech Connect

    Lell, R. M.; McKnight, R. D.; Perel, R. L.; Wagschal, J. J.; Nuclear Engineering Division; Racah Inst. of Physics

    2010-09-30

    Over a period of 30 years, more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited for nuclear data validation and to form the basis for criticality safety benchmarks. A number of the Argonne ZPR/ZPPR critical assemblies have been evaluated as ICSBEP and IRPhEP benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. ZPR-3 Assembly 12 (ZPR-3/12) was designed as a fast reactor physics benchmark experiment with an average core {sup 235}U enrichment of approximately 21 at.%. Approximately 68.9% of the total fissions in this assembly occur above 100 keV, approximately 31.1% occur below 100 keV, and essentially none below 0.625 eV - thus the classification as a 'fast' assembly. This assembly is Fast Reactor Benchmark No. 9 in the Cross Section Evaluation Working Group (CSEWG) Benchmark Specifications

  18. Strengthen flame stability during the furnace`s load decrease

    SciTech Connect

    Zhang Zhiguo; Sun Xuexin; Li Fujin; Qiu Jihua; Chen Gang

    1996-12-31

    This paper presents the result of the study of the coal combustion characteristic and flame stability during the load decrease of PCFF (corner burner arrangement). Considering the relation between flame stability and furnace load during the furnace load change, some method must be used to strengthen the pulverized coal ignition and combustion for the furnace to maintain the flame stability especially for the furnace which fires low rank anthracite. Experimental results show that when the furnace load decreased, the temperature distribution in furnace decreased and the flame stability in furnace had changed because of the load changing. This paper also introduces a new pulverized coal burner: Bluff-body with cavity burner. According to the result of application of this burner, this kind of pulverized coal burner can improve the coal ignition and combustion efficiency. Especially for low load operation of furnace the bluff-body with cavity burner has demonstrated its ability in strengthening coal ignition and improving the flame stability for furnace operation. Experimental results show that using bluff-body with cavity burner, the lowest load for furnace fired bituminous is 40% MCR and 50% MCr for low rank anthracite (V{sup r} < 12%, A{sup f} > 45%). This burner has simple structure and is very easy to set up for furnace.

  19. Chapter 20: Graphite

    SciTech Connect

    Burchell, Timothy D

    2012-01-01

    Graphite is truly a unique material. Its structure, from the nano- to the millimeter scale give it remarkable properties that lead to numerous and diverse applications. Graphite bond anisotropy, with strong in-plane covalent bonds and weak van der Waals type bonding between the planes, gives graphite its unique combination of properties. Easy shear of the crystal, facilitated by weak interplaner bonds allows graphite to be used as a dry lubricant, and is responsible for the substances name! The word graphite is derived from the Greek to write because of graphites ability to mark writing surfaces. Moreover, synthetic graphite contains within its structure, porosity spanning many orders of magnitude in size. The thermal closure of these pores profoundly affects the properties for example, graphite strength increases with temperature to temperatures in excess of 2200 C. Consequently, graphite is utilized in many high temperature applications. The basic physical properties of graphite are reviewed here. Graphite applications include metallurgical; (aluminum and steel production), single crystal silicon production, and metal casting; electrical (motor brushes and commutators); mechanical (seals, bearings and bushings); and nuclear applications, (see Chapter 91, Nuclear Graphite). Here we discuss the structure, manufacture, properties, and applications of Graphite.

  20. Graphite Technology Development Plan

    SciTech Connect

    W. Windes; T. Burchell; M.Carroll

    2010-10-01

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled High Temperature Gas Reactor (HTGR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Graphite has been used effectively as a structural and moderator material in both research and commercial high-temperature gas-cooled reactors. This development has resulted in graphite being established as a viable structural material for HTGRs. While the general characteristics necessary for producing nuclear grade graphite are understood, historical “nuclear” grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermomechanical design of the structural graphite in NGNP is based. This Technology Development Plan outlines the research and development (R&D) activities and associated rationale necessary to qualify nuclear grade graphite for use within the NGNP reactor.

  1. Mercury in dumped blast furnace sludge.

    PubMed

    Földi, Corinna; Dohrmann, Reiner; Mansfeldt, Tim

    2014-03-01

    Blast furnace sludge (BFS) is a waste generated in the production of pig iron and was dumped in sedimentation ponds. Sixty-five samples from seven BFS locations in Europe were investigated regarding the toxic element mercury (Hg) for the first time. The charge material of the blast furnace operations revealed Hg contents from 0.015 to 0.097mgkg(-1). In comparison, the Hg content of BFS varied between 0.006 and 20.8mgkg(-1) with a median of 1.63mgkg(-1), which indicates enrichment with Hg. For one site with a larger sample set (n=31), Hg showed a stronger correlation with the total non-calcareous carbon (C) including coke and graphite (r=0.695; n=31; p<0.001). It can be assumed that these C-rich compounds are hosting phases for Hg. The solubility of Hg was rather low and did not exceed 0.43% of total Hg. The correlation between the total Hg concentration and total amount of NH4NO3-soluble Hg was relatively poor (r=0.496; n=27; p=0.008) indicating varying hazard potentials of the different BFS. Finally, BFS is a mercury-containing waste and dumped BFS should be regarded as potentially mercury-contaminated sites.

  2. 3He on preplated graphite

    NASA Astrophysics Data System (ADS)

    Gordillo, M. C.; Boronat, J.

    2016-10-01

    By using the diffusion Monte Carlo method, we obtained the full phase diagram of 3He on top of graphite preplated with a solid layer of 4He. All the 4He atoms of the substrate were explicitly considered and allowed to move during the simulation. We found that the ground state is a liquid of density 0.007 ±0.001 Å-2, in good agreement with available experimental data. This is significantly different from the case of 3He on clean graphite, in which both theory and experiment agree on the existence of a gas-liquid transition at low densities. Upon an increase in 3He density, we predict a first-order phase transition between a dense liquid and a registered 7/12 phase, the 4/7 phase being found metastable in our calculations. At larger second-layer densities, a final transition is produced to an incommensurate triangular phase.

  3. 3D-graphite structure

    SciTech Connect

    Belenkov, E. A. Ali-Pasha, V. A.

    2011-01-15

    The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.

  4. Determination of trace amounts of molybdenum in plant tissue by solvent extraction-atomic-absorption and direct-current plasma emission spectrometry.

    PubMed

    Lajunen, L H; Kubin, A

    1986-03-01

    Methods are presented for determination of molybdenum in plant tissue by flame and graphite-furnace atomic-absorption spectrometry and direct-current argon-plasma emission spectrometry. The samples are digested in HNO(3)-H(2)SO(4)-HC1O(4) mixture, and Mo is separated and concentrated by chelation and extraction. Three organic solvents (methyl isobutyl ketone, di-isobutyl ketone and isoamyl alcohol) and two ligands (8-hydroxyquinoline and toluene-3,4-dithiol) were studied. The procedure were tested on pine needle and birch leaf samples.

  5. Differentiation of two Canary DO red wines according to their metal content from inductively coupled plasma optical emission spectrometry and graphite furnace atomic absorption spectrometry by using Probabilistic Neural Networks.

    PubMed

    Moreno, Isabel M; González-Weller, Dailos; Gutierrez, Valerio; Marino, Marino; Cameán, Ana M; González, A Gustavo; Hardisson, Arturo

    2007-04-15

    The metal content of 54 commercialized wines (30 samples from Tacoronte-Acentejo DO (class T) and 24 Valle de la Orotava DO (class O) wines) was performed by ICP-OES (Al, Ba, Cu, Fe, Mn, Sr, Zn, Ca, K, Na and Mg) and GF-AAS (Ni and Pb). Wine samples were processed by dry ashing followed by solution with 5% nitric acid. Metals were considered as suitable descriptors to differentiate between T and O classes. Supervised learning pattern recognition procedures were applied. Linear discriminant analysis (LDA) led to good results up to about 90% of correct classification. In order to improve the results, another kind of algorithms able to model non-linear separation between classes was considered: Probabilistic Neural Networks. Accordingly, excellent results were obtained, leading to sensitivities and specificities higher than 95% for the two classes.

  6. Blast Furnace Granulated Coal Injection

    SciTech Connect

    1998-09-30

    Production levels on each furnace exceeded 7000 NTHM/day during July. The combined production of 14,326 was a result of lower coke rates and below average delay rates on both furnaces, The combined production was at its highest level since September 1997. In August, the combined productivity declined to less than 13,500 NTHM/day. Although D furnace maintained a production rate in excess of 7000 NTHM/day, C furnace was lower because of a castfloor breakout and subsequent five day repair from August 26-30. Despite the lower productivity in August, injected coal and furnace coke rates were very good during the month. During September, the operation was difficult as a result of higher delays on both furnaces. The combined average monthly delay rate was considerably above the twenty-month average of 113 minutes per day and the combined average monthly production was less than 14,000 NTHM/day. Higher furnace coke rates at lower coal injection levels also contributed to the decrease. Additionally, the coke rate on both furnaces was increased substantially and the injected coal rate was decreased in preparation for the high volatile Colorado coal trial that started on September 28. The furnace process results for this quarter are shown in Tables 1A and 1B. In addition, the last twelve months of injected coal and coke rates for each furnace are shown in Figures 1 and 2.

  7. Hot forging of graphite-carbide composites. Final report

    SciTech Connect

    Jenkins, G.M.; Holland, L.R.

    1998-07-15

    This project was aimed at hot shaping of titanium carbide/graphite and vanadium carbide/graphite composite materials by heating them to above 2000 degrees celsius and pressing into an electrographite die. The sample was to be a preformed cylinder of powdered graphite mixed with powdered titanium or vanadium, lightly sintered. The preform would be heated in a hot press and the titanium or vanadium would react with some of the graphite to form titanium or vanadium carbide. The remaining (excess) graphite would form a composite with the carbide, and this could then be deformed plastically at temperatures well below the onset of plasticity in pure graphite. There were to be two major thrusts in the research: In the first, an electron beam furnace at Sandia Laboratory was to be used for rapid heating of the sample, which would then be transferred into the press. The second thrust was to be entirely at Alabama A and M University, and here they intended to use a heated, controlled atmosphere press to forge the graphite/carbide preforms at a steady temperature and measure their viscosity as a function of temperature. This report discusses the progress made on this project.

  8. High efficiency furnace

    SciTech Connect

    Hwang, K. S.; Koestler, D. J.

    1985-12-31

    Disclosed is a dwelling furnace having at least one clam-shell type primary heat exchanger in parallel orientation with a secondary heat exchanger, both the primary and secondary heat exchangers being vertically oriented relative to a furnace housing and parallel to the flow of air to be heated. The primary heat exchanger has a combustion chamber in the lower end thereof, and the lower end of the secondary heat exchanger exhausts into a tertiary heat exchanger oriented approximately perpendicular to the primary and secondary heat exchangers and horizontally relative to the housing, below the combustion chambers of the primary heat exchangers and below the exhaust outlet of the secondary heat exchanger. The tertiary heat exchanger includes a plurality of condensation tubes for retrieving the latent heat of condensation of the combustion gases. The furnace further comprises an induced draft blower for drawing combustion gases through the heat exchangers and inducting sufficient air to the combustion chamber of the primary heat exchanger for efficient combustion.

  9. Preparation of Ceramic-Bonded Carbon Block for Blast Furnace

    NASA Astrophysics Data System (ADS)

    Li, Yiwei; Li, Yawei; Sang, Shaobai; Chen, Xilai; Zhao, Lei; Li, Yuanbing; Li, Shujing

    2014-01-01

    Traditional carbon blocks for blast furnaces are mainly produced with electrically calcined anthracite owing to its good hot metal corrosion resistance. However, this kind of material shows low thermal conductivity and does not meet the demands for cooling of the hearth and the bottom of blast furnaces. In this article, a new kind of a high-performance carbon block has been prepared via ceramic-bonded carbon (CBC) technology in a coke bed at 1673 K (1400 °C) using artificial graphite aggregate, alumina, metallic aluminum, and silicon powders as starting materials. The results showed that artificial graphite aggregates were strongly bonded by the three-dimensional network of ceramic phases in carbon blocks. In this case, the good resistance of the CBC blocks against erosion/corrosion by the hot metal is provided by the ceramic matrix and the high thermal conductivity by the graphite aggregates. The microstructure of this carbon block resembles that of CBC composites with a mean pore size of less than 0.1 μm, and up to 90 pct of the porosity shows a pore size <1 μm. Its thermal conductivity is higher than 30 W · m-1 · K-1 [293 K (20 °C)]. Meanwhile, its hot metal corrosion resistance is better than that of traditional carbon blocks.

  10. Carbon-free induction furnace

    DOEpatents

    Holcombe, Cressie E.; Masters, David R.; Pfeiler, William A.

    1985-01-01

    An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  11. Non-carbon induction furnace

    DOEpatents

    Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

    1984-01-06

    The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  12. Friction and wear of metals in contact with pyrolytic graphite

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Brainard, W. A.

    1975-01-01

    Sliding friction experiments were conducted with gold, iron, and tantalum single crystals sliding on prismatic and basal orientations of pyrolytic graphite in various environments, including vacuum, oxygen, water vapor, nitrogen, and hydrogen bromide. Surfaces were examined in the clean state and with various adsorbates present on the graphite surfaces. Auger and LEED spectroscopy, SEM, and EDXA were used to characterize the graphite surfaces. Results indicate that the prismatic and basal orientations do not contain nor do they chemisorb oxygen, water vapor, acetylene, or hydrogen bromide. All three metals exhibited higher friction on the prismatic than on the basal orientation and these metals transferred to the atomically clean prismatic orientation of pyrolytic graphite. No metal transfer to the graphite was observed in the presence of adsorbates at 760 torr. Ion bombardment of the graphite surface with nitrogen ions resulted in the adherence of nitrogen to the surface.

  13. Experimental Observations and Numerical Prediction of Induction Heating in a Graphite Test Article

    SciTech Connect

    Jankowski, Todd A; Johnson, Debra P; Jurney, James D; Freer, Jerry E; Dougherty, Lisa M; Stout, Stephen A

    2009-01-01

    The induction heating coils used in the plutonium casting furnaces at the Los Alamos National Laboratory are studied here. A cylindrical graphite test article has been built, instrumented with thermocouples, and heated in the induction coil that is normally used to preheat the molds during casting operations. Preliminary results of experiments aimed at understanding the induction heating process in the mold portion of the furnaces are reported. The experiments have been modeled in COMSOL Multiphysics and the numerical and experimental results are compared to one another. These comparisons provide insight into the heating process and provide a benchmark for COMSOL calculations of induction heating in the mold portion of the plutonium casting furnaces.

  14. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOEpatents

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  15. Separate vaporisation of boric acid and inorganic boron from tungsten sample cuvette-tungsten boat furnace followed by the detection of boron species by inductively coupled plasma mass spectrometry and atomic emission spectrometry (ICP-MS and ICP-AES).

    PubMed

    Kataoka, Hiroko; Okamoto, Yasuaki; Tsukahara, Satoshi; Fujiwara, Terufumi; Ito, Kazuaki

    2008-03-10

    Utilising extremely different vaporisation properties of boron compounds, the determination procedures of volatile boric acid and total boron using tungsten boat furnace (TBF) ICP-MS and TBF-ICP-AES have been investigated. For the determination of volatile boric acid by TBF-ICP-MS, tetramethylammonium hydroxide (TMAH, Me(4)NOH) was used as a chemical modifier to retain it during drying and ashing stages. As for the total boron, not only non-volatile inorganic boron such as boron nitride (BN), boron carbide (B(4)C), etc. but also boric acid (B(OH)(3)) was decomposed by a furnace-fusion digestion with NaOH to produce sodium salt of boron, a suitable species for the electrothermal vaporisation (ETV) procedure. The proposed method was applied to the analysis of various standard reference materials. The analytical results for various biological and steel samples are described.

  16. Synthesis of soluble graphite and graphene.

    PubMed

    Kelly, K F; Billups, W E

    2013-01-15

    Because of graphene's anticipated applications in electronics and its thermal, mechanical, and optical properties, many scientists and engineers are interested in this material. Graphene is an isolated layer of the π-stacked hexagonal allotrope of carbon known as graphite. The interlayer cohesive energy of graphite, or exfoliation energy, that results from van der Waals attractions over the interlayer spacing distance of 3.34 Å (61 meV/C atom) is many times weaker than the intralayer covalent bonding. Since graphene itself does not occur naturally, scientists and engineers are still learning how to isolate and manipulate individual layers of graphene. Some researchers have relied on the physical separation of the sheets, a process that can sometimes be as simple as peeling of sheets from crystalline graphite using Scotch tape. Other researchers have taken an ensemble approach, where they exploit the chemical conversion of graphite to the individual layers. The typical intermediary state is graphite oxide, which is often produced using strong oxidants under acidic conditions. Structurally, researchers hypothesize that acidic functional groups functionalize the oxidized material at the edges and a network of epoxy groups cover the sp(2)-bonded carbon network. The exfoliated material formed under these conditions can be used to form dispersions that are usually unstable. However, more importantly, irreversible defects form in the basal plane during oxidation and remain even after reduction of graphite oxide back to graphene-like material. As part of our interest in the dissolution of carbon nanomaterials, we have explored the derivatization of graphite following the same procedures that preserve the sp(2) bonding and the associated unique physical and electronic properties in the chemical processing of single-walled carbon nanotubes. In this Account, we describe efficient routes to exfoliate graphite either into graphitic nanoparticles or into graphene without

  17. [Determination of Al, Be, Cd, Co, Cr, Mn, Ni, Pb, Se and Tl in whole blood by atomic absorption spectrometry without preliminary sample digestion].

    PubMed

    Ivanenko, N B; Ivanenko, A A; Solov'ev, N D; Navolotskiĭ, D V; Pavlova, O V; Ganeev, A A

    2014-01-01

    Methods of whole blood trace element determination by Graphite furnace atomic absorption spectrometry (in the variant of Zeeman's modulation polarization spectrometry) have been proposed. They do not require preliminary sample digestion. Furnace programs, modifiers and blood dilution factors were optimized. Seronorm™ human whole blood reference materials were used for validation. Dynamic ranges (for undiluted blood samples) were: Al 8 ¸ 210 мg/L; Be 0.3 ¸ 50 мg/L; Cd 0.2 ¸ 75 мg/L; Сo 5 ¸ 350 мg/L; Cr 10 ¸ 100 мg/L; Mn 6 ¸ 250 мg/L; Ni 10 ¸ 350 мg/L; Pb 3 ¸ 240 мg/L; Se 10 ¸ 500 мg/L; Tl 2 ¸ 600 мg/L. Precision (RSD) for the middle of dynamic range ranged from 5% for Mn to 11 for Se.

  18. Producing graphite with desired properties

    NASA Technical Reports Server (NTRS)

    Dickinson, J. M.; Imprescia, R. J.; Reiswig, R. D.; Smith, M. C.

    1971-01-01

    Isotropic or anisotropic graphite is synthesized with precise control of particle size, distribution, and shape. The isotropic graphites are nearly perfectly isotropic, with thermal expansion coefficients two or three times those of ordinary graphites. The anisotropic graphites approach the anisotropy of pyrolytic graphite.

  19. Water gas furnace

    SciTech Connect

    Gallaro, C.

    1985-12-03

    A water gas furnace comprising an outer container to provide a housing in which coke is placed into its lower part. A water container is placed within the housing. The coke is ignited and heats the water in the container converting it into steam. The steam is ejected into the coke, which together with air, produces water gas. Preferably, pumice stones are placed above the coke. The water gas is accepted into the pores of the pumice stones, where the heated pumice stones ignite the water gas, producing heat. The heat is extracted by a heat exchanger provided about the housing.

  20. Magnetically Damped Furnace (MDF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Magnetically Damped Furnace (MDF) breadboard is being developed in response to NASA's mission and goals to advance the scientific knowledge of microgravity research, materials science, and related technologies. The objective of the MDF is to dampen the fluid flows due to density gradients and surface tension gradients in conductive melts by introducing a magnetic field during the sample processing. The MDF breadboard will serve as a proof of concept that the MDF performance requirements can be attained within the International Space Station resource constraints.

  1. Cupola Furnace Computer Process Model

    SciTech Connect

    Seymour Katz

    2004-12-31

    The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

  2. Graphite for nuclear reactors

    SciTech Connect

    Virgiliev, Yu.S.; Kalyagina, I.P.

    1993-12-31

    Relative dimensional changes and physical properties of structural graphites - {Gamma}p-280 (nuclear graphite) and {Gamma}p{Pi}-2 (modificated variety of nuclear graphite for the rings of elastic contact) irradiated at temperatures ranging from 320 to 1900K with a fluence of about 2.5.10{sup 22}nvt (E {ge} 0.18 MeV) are represented. In order to ensure a long-time serviceability of the VGM - reactor blocks the high-strength graphite of {Gamma}p-1 grade are developed. The properties and its irradiation changes of {Gamma}p-1 graphite are represented. A secondary swelling of the graphite develops similar to the swelling of metals, alloys and high-melting compounds.

  3. Radiation Effects in Graphite

    SciTech Connect

    Burchell, Timothy D

    2012-01-01

    The requirements for a solid moderator are reviewed and the reasons that graphite has become the solid moderator of choice discussed. The manufacture and properties of some currently available near-isotropic and isotropic grades are described. The major features of a graphite moderated reactors are briefly outlined. Displacement damage and the induced structural and dimensional changes in graphite are described. Recent characterization work on nano-carbons and oriented pyrolytic graphites that have shed new light on graphite defect structures are reviewed, and the effect of irradiation temperature on the defect structures is highlighted. Changes in the physical properties of nuclear graphite caused by neutron irradiation are reported. Finally, the importance of irradiation induced creep is presented, along with current models and their deficiencies.

  4. Torrefied biomasses in a drop tube furnace to evaluate their utility in blast furnaces.

    PubMed

    Chen, Wei-Hsin; Du, Shan-Wen; Tsai, Chien-Hsiung; Wang, Zhen-Yu

    2012-05-01

    Torrefaction and burning characteristics of bamboo, oil palm, rice husk, bagasse, and Madagascar almond were studied and compared with a high-volatile bituminous coal using a drop tube furnace to evaluate the potential of biomass consumed in blast furnaces. Torrefaction at 250 and 300°C for 1h duration was carried out. Analysis using the ash tracer method indicated that the extent of atomic carbon reduction in the biomasses was less than that of atomic hydrogen and oxygen. Torrefaction also lowered the sulfur content in bamboo and oil palm over 33%. An examination of the R-factor and burnout of the samples suggests that more volatiles were released and a higher burnout was achieved with raw and torrefied biomasses at 250°C than at 300°C; however, torrefaction at 300°C is a feasible operating condition to transform biomass into a solid fuel resembling a high-volatile bituminous coal used for blast furnaces.

  5. Oxidation Resistant Graphite Studies

    SciTech Connect

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  6. Blast furnace injection symposium: Proceedings

    SciTech Connect

    1996-12-31

    These proceedings contain 14 papers related to blast furnace injection issues. Topics include coal quality, coal grinding, natural gas injection, stable operation of the blast furnace, oxygen enrichment, coal conveying, and performance at several steel companies. All papers have been processed separately for inclusion on the data base.

  7. Fuel stoker and furnace

    SciTech Connect

    Schafer, T.L.; Schafer, G.L.; Swett, H.D.

    1984-02-14

    A furnace having a primary heat exchange unit also providing a combustion chamber, a secondary heat exchange unit connected by an upper crossover conduit to the primary heat exchange unit, and a tertiary heat exchange unit connected by a lower V-shaped crossover conduit to the secondary heat exchange unit. A third crossover conduit connects the V-shaped crossover conduit with the primary heat exchange unit. Vibrating means are provided between the secondary and tertiary heat exchange units to vibrate the walls thereof and dislodge clinging fly ash so that it falls into the V-shaped crossover conduit for removal by the screw conveyor. A burner assembly of a furnace includes a combustion air housing carrying a circular, stationary grate with an annular valley for carrying fuel during combustion. A central opening is connected to a fuel conveyor for introduction of fuel to the grate through the lower portion of the housing. Combustion air introduction conduits on the housing are remote from the fuel introduction passages and introduce air under pressure at the lower portion of the grate. An agitator and discharge ring is provided on the grate and is rotated on the grate by a suitable drive sprocket mechanism to agitate the fuel for more complete burning thereof and to remove burned ash. A horizontal burner plate is supported by a plurality of legs connected to the agitator and discharge ring over the grate to promote more complete combustion of the fuel.

  8. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  9. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  10. Atomic-scale ultralow friction simulation of superlubricity of C60 molecular bearing

    NASA Astrophysics Data System (ADS)

    Sasaki, Naruo; Itamura, Noriaki; Miura, Kouji

    2007-11-01

    Simulation of superlubricity of C60 molecular bearing is performed based on molecular mechanics. Atomic-scale frictional feature along [10 overline 1 0] direction of the graphite/C60/graphite interface is numerically investigated compared with that of the graphite/graphite/graphite interface. Simulated interlayer distances of about 1.3nm are in good agreement with previous experimental results[1-3]. Atomic-scale friction coefficient of graphite/C60/graphite interface decreases to about 30% of that of the graphite/graphite/graphite interface. It is clarified that three-dimensional degree of freedom of intercalated C60 motion is one of origins of ultralow friction of graphite/C60/graphite interface along [10 overline 1 0] direction.

  11. Determination of selenium in biological tissue samples rich in phosphorus using electrothermal atomization with Zeeman-effect background correction and (NH 4) 3RhCl 6+citric acid as a mixed chemical modifier

    NASA Astrophysics Data System (ADS)

    Mei, Li; Zhe-ming, Ni; Zhu, Rao

    1998-09-01

    Spectral interferences from phosphorus on the determination of selenium in biological tissue materials were not observed when a Zeeman-effect background correction was used with rhodium as a chemical modifier. A suppression effect on the selenium signal resulted when the concentration of phosphorus present was greater than 1.0 mg ml -1. Rhodium was found to be more effective than palladium in overcoming the phosphate interference. Analytical procedures for the direct determination of trace selenium in standard reference materials by graphite furnace atomic absorption spectrometry following sample dissolution in nitric acid and hydrogen peroxide using a microwave oven has been described. The results obtained agreed favourably with the certified values.

  12. Method for producing dustless graphite spheres from waste graphite fines

    DOEpatents

    Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  13. Handling complex effects in slurry-sampling-electrothermal atomic absorption spectrometry by multivariate calibration.

    PubMed

    Felipe-Sotelo, M; Cal-Prieto, M J; Gómez-Carracedo, M P; Andrade, J M; Carlosena, A; Prada, D

    2006-07-07

    Analysis of solid samples by slurry-sampling-electrothermal atomic absorption spectrometry (SS-ETAAS) can imply spectral and chemical interferences caused by the large amount of concomitants introduced into the graphite furnace. Sometimes they cannot be solved using stabilized temperature platform furnace (STPF) conditions or typical approaches (previous sample ashing, use of chemical modifiers, etc.), which are time consuming and quite expensive. A new approach to handle interferences using multivariate calibrations (partial least squares, PLS, and artificial neural networks, ANN) is presented and exemplified with a real problem consisting on determining Sb in several solid matrices (soils, sediments and coal fly ash) as slurries by ETAAS. Experimental designs were implemented at different levels of Sb to develop the calibration matrix and assess which concomitants (seven ions were considered) modified the atomic signal mostly. They were Na+ and Ca2+ and they induced simultaneous displacement, depletion (enhancement) and broadening of the atomic peak. Here it is shown that these complex effects can be handled in a reliable, fast and cost-effective way to predict the concentration of Sb in slurry samples of several solid matrices. The method was validated predicting the concentrations of five certified reference materials (CRMs) and studying its robustness to current ETAAS problems. It is also shown that linear PLS can handle eventual non-linearities and that its results are comparable to more complex (non-linear) models, as those from ANNs.

  14. Coating method for graphite

    DOEpatents

    Banker, John G.; Holcombe, Jr., Cressie E.

    1977-01-01

    A method of limiting carbon contamination from graphite ware used in induction melting of uranium alloys is provided comprising coating the graphite surface with a suspension of Y.sub.2 O.sub.3 particles in water containing about 1.5 to 4% by weight sodium carboxymethylcellulose.

  15. Coating method for graphite

    DOEpatents

    Banker, J.G.; Holcombe, C.E. Jr.

    1975-11-06

    A method of limiting carbon contamination from graphite ware used in induction melting of uranium alloys is provided. The graphite surface is coated with a suspension of Y/sub 2/O/sub 3/ particles in water containing about 1.5 to 4 percent by weight sodium carboxymethylcellulose.

  16. High pressure furnace

    DOEpatents

    Morris, D.E.

    1993-09-14

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  17. High pressure furnace

    DOEpatents

    Morris, Donald E.

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  18. High pressure oxygen furnace

    DOEpatents

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  19. High pressure oxygen furnace

    DOEpatents

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  20. Mercury in dumped blast furnace sludge

    NASA Astrophysics Data System (ADS)

    Földi, Corinna

    2014-05-01

    Blast furnace sludge (BFS) is a waste generated in the production of pig iron and was dumped in sedimentation ponds. As these wastes often contain high contents of zinc, lead, cadmium, and arsenic, significant hazards to environmental surroundings may arise from former BFS sedimentation ponds. Sixty-five samples from seven BFS locations in Europe were investigated regarding the toxic element mercury (Hg) for the first time. The charge material of the blast furnace operations (coke, iron ores, and additives such as olivine, bauxite, ilmenite and gravels) revealed Hg contents from 0.015 to 0.093 mg kg-1. In comparison, the Hg content of BFS varied between 0.006 and 20.8 mg kg-1 with a median of 1.63 mg kg-1, which indicates enrichment with Hg. For one site with a larger sample set (n = 31), Hg showed a stronger correlation with the total non-calcareous carbon (C) including coke and graphite (r = 0.695; n = 31; p < 0.001). It can be assumed that these C-rich compounds are hosting phases for Hg. The solubility of Hg was rather low and did not exceed 0.43% of total Hg. The correlation between the total Hg concentration and total amount of NH4NO3-soluble Hg was relatively poor (r = 0.496; n = 27; p = 0.008) indicating varying hazard potentials of the different BFS. Consequently, BFS is a mercury-containing waste and dumped BFS should be regarded as potentially mercury-contaminated sites.

  1. Fast heating induced impulse halogenation of refractory sample components in electrothermal atomic absorption spectrometry by direct injection of a liquid halogenating agent.

    PubMed

    György, Krisztina; Ajtony, Zsolt; Van Meel, Katleen; Van Grieken, René; Czitrovszky, Aladár; Bencs, László

    2011-09-15

    A novel electrothermal atomic absorption spectrometry (ETAAS) method was developed for the halogenation of refractory sample components (Er, Nd and Nb) of lithium niobate (LiNbO(3)) and bismuth tellurite (Bi(2)TeO(5)) optical single crystals to overcome memory effects and carry-over. For this purpose, the cleaning step of a regular graphite furnace heating program was replaced with a halogenation cycle. In this cycle, after the graphite tube cooled to room temperature, a 20 μL aliquot of liquid carbon tetrachloride (CCl(4)) was dispensed with a conventional autosampler into the graphite tube. The CCl(4) was partially dried at 80°C under the mini-flow (40 cm(3) min(-1)) condition of the Ar internal furnace gas (IFG), then the residue was decomposed (pyrolyzed) by fast furnace heating at 1900-2100°C under interrupted flow of the IFG. This step was followed by a clean-out stage at 2100°C under the maximum flow of the IFG. The advantage of the present method is that it does not require any alteration to the graphite furnace gas supply system in contrast to most of the formerly introduced halogenation techniques. The effectiveness of the halogenation method was verified with the determination of Er and Nd dopants in the optical crystals. In these analyses, a sensitivity decrease was observed, which was likely due to the enhanced deterioration of the graphite tube surface. Therefore, the application of mathematical correction (resloping) of the calibration was also required. The calibration curves were linear up to 1.5 and 10 μmol L(-1) for Er and Nd, respectively. Characteristic masses of 18 and 241 pg and the limit of detection (LOD) values of 0.017 and 0.27 μmol L(-1) were found for Er and Nd, respectively. These LOD data correspond to 0.68 μmol mol(-1) Er and 11 μmol mol(-1) Nd in solid bismuth tellurite samples. The analytical results were compared with those obtained by a conventional ETAAS method and validated with X-ray fluorescence spectrometry analysis.

  2. Graphite fluoride fibers and their applications in the space industry

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Chen; Long, Martin; Dever, Therese

    1990-01-01

    Characterization and potential space applications of graphite fluoride fibers from commercially available graphitized carbon fibers are presented. Graphite fluoride fibers with fluorine to carbon ratios of 0.65 and 0.68 were found to have electrical resistivity values of 10(exp 4) and 10(exp 11) Ohms-cm, respectively, and thermal conductivity values of 24 and 5 W/m-K, respectively. At this fluorine content range, the fibers have tensile strength of 0.25 + or - 0.10 GPa (36 + or - 14 ksi), Young's modulus of 170 + or - 30 GPa (25 + or - 5 Msi). The coefficient of thermal expansion value of a sample with fluorine to carbon ratio of 0.61 was found to be 7 ppm/C. These properties change and approach the graphite value as the fluorine content approach 0. Electrically insulative graphite fluoride fiber is at least five times more thermally conductive than fiberglass. Therefore, it can be used as a heat sinking printed circuit board material for low temperature, long life power electronics in spacecraft. Also, partially fluorinated fiber with tailor-made physical properties to meet the requirements of certain engineering design can be produced. For example, a partially fluorinated fiber could have a predetermined CTE value in -1.5 to 7 ppm/C range and would be suitable for use in solar concentrators in solar dynamic power systems. It could also have a predetermined electrical resistivity value suitable for use as a low observable material. Experimental data indicate that slightly fluorinated graphite fibers are more durable in the atomic oxygen environment than pristine graphite. Therefore, fluorination of graphite used in the construction of spacecraft that would be exposed to the low Earth orbit atomic oxygen may protect defect sites in atomic oxygen protective coatings and therefore decrease the rate of degradation of graphite.

  3. Graphite fluoride fibers and their applications in the space industry

    SciTech Connect

    Hung, Chingchen; Long, M.; Dever, T.

    1990-08-01

    Characterization and potential space applications of graphite fluoride fibers from commercially available graphitized carbon fibers are presented. Graphite fluoride fibers with fluorine to carbon ratios of 0.65 and 0.68 were found to have electrical resistivity values of 10(exp 4) and 10(exp 11) Ohms-cm, respectively, and thermal conductivity values of 24 and 5 W/m-K, respectively. At this fluorine content range, the fibers have tensile strength of 0.25 + or - 0.10 GPa (36 + or - 14 ksi), Young's modulus of 170 + or - 30 GPa (25 + or - 5 Msi). The coefficient of thermal expansion value of a sample with fluorine to carbon ratio of 0.61 was found to be 7 ppm/C. These properties change and approach the graphite value as the fluorine content approach 0. Electrically insulative graphite fluoride fiber is at least five times more thermally conductive than fiberglass. Therefore, it can be used as a heat sinking printed circuit board material for low temperature, long life power electronics in spacecraft. Also, partially fluorinated fiber with tailor-made physical properties to meet the requirements of certain engineering design can be produced. For example, a partially fluorinated fiber could have a predetermined CTE value in -1.5 to 7 ppm/C range and would be suitable for use in solar concentrators in solar dynamic power systems. It could also have a predetermined electrical resistivity value suitable for use as a low observable material. Experimental data indicate that slightly fluorinated graphite fibers are more durable in the atomic oxygen environment than pristine graphite. Therefore, fluorination of graphite used in the construction of spacecraft that would be exposed to the low Earth orbit atomic oxygen may protect defect sites in atomic oxygen protective coatings and therefore decrease the rate of degradation of graphite.

  4. DEVELOPMENT OF ELECTRONIC VERNEUIL FURNACE

    DTIC Science & Technology

    HIGH TEMPERATURE, *PLASMA JETS, *REFRACTORY MATERIALS, ALTERNATING CURRENT, CELLULOSE ACETATES, CRYSTAL STRUCTURE, CRYSTALS , GAS DISCHARGES, GROWTH ...PHYSIOLOGY), LABORATORY FURNACES, PLASMAS(PHYSICS), RADIOFREQUENCY GENERATORS, RADIOFREQUENCY POWER, SINGLE CRYSTALS , THEORY.

  5. Furnace brazing under partial vacuum

    NASA Technical Reports Server (NTRS)

    Mckown, R. D.

    1979-01-01

    Brazing furnace utilizing partial-vacuum technique reduces tooling requirements and produces better bond. Benefit in that partial vacuum helps to dissociate metal oxides that inhibit metal flow and eliminates heavy tooling required to hold parts together during brazing.

  6. Rebuilding of Rautaruukki blast furnaces

    SciTech Connect

    Kallo, S.; Pisilae, E.; Ojala, K.

    1997-12-31

    Rautaruukki Oy Raahe Steel rebuilt its blast furnaces in 1995 (BF1) and 1996 (BF2) after 10 year campaigns and production of 9,747 THM/m{sup 3} (303 NTHM/ft{sup 3}) and 9,535 THM/m{sup 3} (297 NTHM/ft{sup 3}), respectively. At the end of the campaigns, damaged cooling system and shell cracks were increasingly disturbing the availability of furnaces. The goal for rebuilding was to improve the cooling systems and refractory quality in order to attain a 15 year campaign. The furnaces were slightly enlarged to meet the future production demand. The blast furnace control rooms and operations were centralized and the automation and instrumentation level was considerably improved in order to improve the operation efficiency and to reduce manpower requirements. Investments in direct slag granulation and improved casthouse dedusting improved environmental protection. The paper describes the rebuilding.

  7. NEW METHOD OF GRAPHITE PREPARATION

    DOEpatents

    Stoddard, S.D.; Harper, W.T.

    1961-08-29

    BS>A method is described for producing graphite objects comprising mixing coal tar pitch, carbon black, and a material selected from the class comprising raw coke, calcined coke, and graphite flour. The mixture is placed in a graphite mold, pressurized to at least 1200 psi, and baked and graphitized by heating to about 2500 deg C while maintaining such pressure. (AEC)

  8. Graphite for fusion energy applications

    SciTech Connect

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source. (JDH)

  9. Improved Blackbody Temperature Sensors for a Vacuum Furnace

    NASA Technical Reports Server (NTRS)

    Farmer, Jeff; Coppens, Chris; O'Dell, J. Scott; McKechnie, Timothy N.; Schofield, Elizabeth

    2009-01-01

    Some improvements have been made in the design and fabrication of blackbody sensors (BBSs) used to measure the temperature of a heater core in a vacuum furnace. Each BBS consists of a ring of thermally conductive, high-melting-temperature material with two tantalum-sheathed thermocouples attached at diametrically opposite points. The name "blackbody sensor" reflects the basic principle of operation. Heat is transferred between the ring and the furnace heater core primarily by blackbody radiation, heat is conducted through the ring to the thermocouples, and the temperature of the ring (and, hence, the temperature of the heater core) is measured by use of the thermocouples. Two main requirements have guided the development of these BBSs: (1) The rings should have as high an emissivity as possible in order to maximize the heat-transfer rate and thereby maximize temperature-monitoring performance and (2) the thermocouples must be joined to the rings in such a way as to ensure long-term, reliable intimate thermal contact. The problem of fabricating a BBS to satisfy these requirements is complicated by an application-specific prohibition against overheating and thereby damaging nearby instrumentation leads through the use of conventional furnace brazing or any other technique that involves heating the entire BBS and its surroundings. The problem is further complicated by another application-specific prohibition against damaging the thin tantalum thermocouple sheaths through the use of conventional welding to join the thermocouples to the ring. The first BBS rings were made of graphite. The tantalum-sheathed thermocouples were attached to the graphite rings by use of high-temperature graphite cements. The ring/thermocouple bonds thus formed were found to be weak and unreliable, and so graphite rings and graphite cements were abandoned. Now, each BBS ring is made from one of two materials: either tantalum or a molybdenum/titanium/zirconium alloy. The tantalum

  10. Interaction between nuclear graphite and molten fluoride salts: a synchrotron radiation study of the substitution of graphitic hydrogen by fluoride ion.

    PubMed

    Yang, Xinmei; Feng, Shanglei; Zhou, Xingtai; Xu, Hongjie; Sham, T K

    2012-01-26

    The interaction between nuclear graphite and molten fluoride salts (46.5 mol % LiF/11.5 mol % NaF/42 mol % KF) is investigated by synchrotron X-ray diffraction and C K-edge X-ray absorption near-edge structure (XANES). It is found that there are a large number of H atoms in IG-110 nuclear graphite, which is attributed to the residual C-H bond after the graphitization process of petroleum coke and pitch binder. The elastic recoil detection analysis indicates that H atoms are uniformly distributed in IG-110 nuclear graphite, in excellent agreement with the XANES results. The XANES results indicate that the immersion in molten fluoride salts at 500 °C led to H atoms in nuclear graphite partly substituted by the fluorine from fluoride salts to form C-F bond. The implications of these findings are discussed.

  11. Lip-hung retort furnace

    SciTech Connect

    Mackenzie, P.B.

    1986-08-05

    A fluidized bed furnace is described which consists of: a furnace housing including an outer shell; a furnace base and an outer top plate secured to the respective lower and upper ends of the furnace housing; a vertical retort having an opened upper end and an opened lower end, the retort being disposed in an opening formed in the outer top plate and extending downwardly into the center of the furnace housing; heat insulating material disposed between the outer shell and the vertical retort; a retort base assembly being adapted for closing the lower end of the vertical retort; upper support means for supporting the upper end of the vertical retort on top of the outer top plate so as to permit downward growth only during thermal expansion; the upper support means including an annular flange formed integrally with the sidewalls of the retort at the upper end thereof and being adapted to be fixedly mounted to the outer surface of the outer top plate; lower support means interposed between the lower surface of the retort base assembly and the upper surface of the furnace base for supporting substantially all the weight of the retort, the weight of the load of a fluidizable media, and the weight of a load of material to be heat treated.

  12. Variable frequency microwave furnace system

    DOEpatents

    Bible, Don W.; Lauf, Robert J.

    1994-01-01

    A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  13. Variable frequency microwave furnace system

    DOEpatents

    Bible, D.W.; Lauf, R.J.

    1994-06-14

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

  14. A rotary arc furnace for aluminum dross processing

    SciTech Connect

    Drouet, M.G.; Meunier, J.; Laflamme, C.B.; Handfield, M.D.; Biscaro, A.; Lemire, C.

    1995-12-31

    Dross, a major by-product of all processes involving molten aluminum, forms at the surface of the molten metal as the latter reacts with the furnace atmosphere. It generally represents 1 to 5 wt% of the melt, depending on the process, and contains on average about 50% free aluminum dispersed in an oxide layer. Since aluminum production is highly energy-intensive, dross recycling is very attractive from both the energy and the economic standpoints. The conventional recycling process using salt rotary furnaces is thermally inefficient and environmentally non-acceptable because of the production of salt slags. Hydro-Quebec has developed and patented a new salt-free technology using a rotary furnace heated by an electric arc between two graphite electrodes, called DROSCAR{reg_sign}. A 600-kW pilot plant in operation at LTEE is in use to demonstrate the process. This process provides aluminum recovery rates over 90%, using a highly energy efficient, environmentally sound production method. In 1994, 400 tonnes of aluminum dross were treated in this facility and several tests on various types of dross have also been conducted in early 1995. A report on the results will be presented.

  15. Graphitized carbon on GaAs(100) substrates

    SciTech Connect

    Simon, J.; Simmonds, P. J.; Lee, M. L.; Woodall, J. M.

    2011-02-14

    We report on the formation of graphitized carbon on GaAs(100) surfaces by molecular beam epitaxy. We grew highly carbon-doped GaAs on AlAs, which was then thermally etched in situ leaving behind carbon atoms on the surface. After thermal etching, Raman spectra revealed characteristic phonon modes for sp{sup 2}-bonded carbon, consistent with the formation of graphitic crystallites. We estimate that the graphitic crystallites are 1.5-3 nm in size and demonstrate that crystallite domain size can be increased through the use of higher etch temperatures.

  16. Surface characterization of various graphites by x-ray photoelectron, secondary ion mass, and Raman spectroscopies

    SciTech Connect

    Ashida, K.; Kanamori, K.; Watanabe, K.

    1988-07-01

    Graphite is the primary candidate for the first wall of magnetically confined fusion devices. For this purpose, it is important to know the surface properties of graphite to understand the plasma--surface interactions as well as vacuum properties of graphite. From this viewpoint, we examined the binding states of carbon atoms, inherent hydrogen content, and crystallinity of the surfaces of isotropic graphites prepared by several Japanese companies as well as anisotropic ones with x-ray photoelectron (XPS), secondary ion mass (SIMS), and Raman (RS) spectroscopies. Although no measurable difference in the binding state of carbon atoms was detected among the isotropic and anisotropic graphites with XPS, RS revealed that their crystallite sizes differed from each other. Namely, the crystallite sizes of the isotropic graphites were in the range from 100 to 300 A, whereas those of the anisotropic graphites were more than approx.1000 A. In addition, nongraphitized carbon which was not observed for the anisotropic graphites was present in the surface layers of the isotropic ones. SIMS revealed that the inherent hydrogen contents in the isotropic graphites were larger than those in the anisotropic ones. The results indicate that the larger hydrogen contents in the isotropic graphites are due to the presence of nongraphitized carbon which acts as the trapping site of hydrogen atoms.

  17. Fossil fuel furnace reactor

    DOEpatents

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  18. Wood burning furnace

    SciTech Connect

    Lillo, A.D.

    1986-03-25

    An improved furnace for burning wood is described which is resistant to creosote deposits from smoke. It consists of: an upright frame; a fire box carried by the frame and having a door for the insertion of the wood; a heat exchanger carried on the fire box and having an interior chamber with a top and bottom; means connecting the fire box and the heat exchanger and directing smoke from the fire box into the exchanger chamber; a chimney stack fixed to and extending upwardly from the exchanger to discharge smoke, the stack also extending substantially downwardly within the exchanger chamber to receive smoke from adjacent the bottom of the chamber to thereby retain hot smoke adjacent the top of the exchanger for an increased time interval to allow additional heat transfer from the smoke to the exchanger; an insulative housing carried on the frame to define an air plenum within the housing and about the fire box and exchanger to permit air in the plenum to be heated by contact with the fire box and the exchanger; and an air inlet for cold air to enter the plenum and an air outlet by which heated air may leave the plenum.

  19. Silicon on graphite cloth

    SciTech Connect

    Rand, J.A.; Cotter, J.E.; Thomas, C.J.; Ingram, A.E.; Bai, Y.B.; Ruffins, T.R.; Barnett, A.M.

    1994-12-31

    A new polycrystalline silicon solar cell has been developed that utilizes commercially available graphite cloth as a substrate. This solar cell has achieved an energy conversion efficiency of 13.4% (AM1.5G). It is believed that this is a record efficiency for a silicon solar cell formed on a graphite substrate. The silicon-on-fabric structure is comprised of a thin layer of polycrystalline silicon grown directly on the graphite fabric substrate. The structure is fabricated by a low-cost ribbon process that avoids the expense and waste of wafering. The fabric substrate gives structural support to the thin device. Critical to the achievement of device quality silicon layers is control over impurities in the graphite fabric. The silicon-on-fabric technology has the potential to supply lightweight, low-cost solar cells to weight-sensitive markets at a fraction of the cost of conventionally thinned wafers.

  20. EAST (FRONT) AND NORTH SIDE OF DOUBLE FURNACE AND NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST (FRONT) AND NORTH SIDE OF DOUBLE FURNACE AND NORTH SIDE OF SINGLE FURNACE, SOUTHWEST. - Tannehill Furnace, 12632 Confederate Parkway, Tannehill Historical State Park, Bucksville, Tuscaloosa County, AL

  1. Role of hydrogen in blast furnaces to improve productivity and decrease coke consumption

    SciTech Connect

    Agarwal, J.C.; Brown, F.C.; Chin, D.L.; Stevens, G.; Clark, R.; Smith, D.

    1995-12-01

    The hydrogen contained in blast furnace gases exerts a variety of physical, thermochemical, and kinetic effects as the gases pass through the various zones. The hydrogen is derived from two sources: (1) the dissociation of moisture in the blast air (ambient and injected with hot blast), and (2) the release from partial combustion of supplemental fuels (including moisture in atomizing water, steam, or transport air, if any). With each atom of oxygen (or carbon), the molar amounts of hydrogen released are more than six times higher for natural gas than for coal, and two times higher for natural gas than for oil. Injection of natural gas in a blast furnace is not a new process. Small amounts of natural gas--about 50--80 lb or 1,100--1,700 SCF/ton of hot metal--have been injected in many of the North American blast furnaces since the early 1960s, with excellent operating results. What is new, however, is a batter understanding of how natural gas reacts in the blast furnace and how natural gas and appropriate quantities of oxygen can be used to increase the driving rate or combustion rate of carbon (coke) in the blast furnace without causing hanging furnace and operating problems. The paper discusses the factors limiting blast furnace productivity and how H{sub 2} and O{sub 2} can increase productivity.

  2. Graphite Technology Development Plan

    SciTech Connect

    W. Windes; T. Burchell; R. Bratton

    2007-09-01

    This technology development plan is designed to provide a clear understanding of the research and development direction necessary for the qualification of nuclear grade graphite for use within the Next Generation Nuclear Plant (NGNP) reactor. The NGNP will be a helium gas cooled Very High Temperature Reactor (VHTR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Considerable effort will be required to ensure that the graphite performance is not compromised during operation. Based upon the perceived requirements the major data needs are outlined and justified from the perspective of reactor design, reatcor performance, or the reactor safety case. The path forward for technology development can then be easily determined for each data need. How the data will be obtained and the inter-relationships between the experimental and modeling activities will define the technology development for graphite R&D. Finally, the variables affecting this R&D program are discussed from a general perspective. Factors that can significantly affect the R&D program such as funding, schedules, available resources, multiple reactor designs, and graphite acquisition are analyzed.

  3. Carbon-14 Graphitization Chemistry

    NASA Astrophysics Data System (ADS)

    Miller, James; Collon, Philippe; Laverne, Jay

    2014-09-01

    Accelerator Mass Spectrometry (AMS) is a process that allows for the analysis of mass of certain materials. It is a powerful process because it results in the ability to separate rare isotopes with very low abundances from a large background, which was previously impossible. Another advantage of AMS is that it only requires very small amounts of material for measurements. An important application of this process is radiocarbon dating because the rare 14C isotopes can be separated from the stable 14N background that is 10 to 13 orders of magnitude larger, and only small amounts of the old and fragile organic samples are necessary for measurement. Our group focuses on this radiocarbon dating through AMS. When performing AMS, the sample needs to be loaded into a cathode at the back of an ion source in order to produce a beam from the material to be analyzed. For carbon samples, the material must first be converted into graphite in order to be loaded into the cathode. My role in the group is to convert the organic substances into graphite. In order to graphitize the samples, a sample is first combusted to form carbon dioxide gas and then purified and reduced into the graphite form. After a couple weeks of research and with the help of various Physics professors, I developed a plan and began to construct the setup necessary to perform the graphitization. Once the apparatus is fully completed, the carbon samples will be graphitized and loaded into the AMS machine for analysis.

  4. Analysis on Thermal Conductivity of Graphite/Al Composite by Experimental and Modeling Study

    NASA Astrophysics Data System (ADS)

    Xue, C.; Bai, H.; Tao, P. F.; Jiang, N.; Wang, S. L.

    2017-01-01

    Graphite/Al composites were fabricated by vacuum hot pressing technology in this study. The main factors affecting the thermal conductivity (TC) of graphite/Al composites were deeply investigated by experimental and modeling study. The results showed that the TC of graphite/Al composite can be improved via designing the preferred orientation of graphite flakes, selecting graphite flakes with large diameter, increasing the content of graphite flakes in graphite/Al composite and solving the poor wettability between Al and graphite. The modified model can well predict the heat transfer behavior of graphite/Al composite.

  5. Feasibility of filter atomization in high-resolution continuum source atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Heitmann, Uwe; Becker-Ross, Helmut; Katskov, Dmitri

    2006-03-01

    A prototype spectrometer for high-resolution continuum source atomic absorption spectrometry (HR-CS AAS), built at ISAS Berlin, Germany, was combined with a graphite filter atomizer (GFA), earlier developed at TUT, Pretoria, South Africa. The furnace and auto-sampler units from a commercial AA spectrometer, model AAS vario 6 (Analytik Jena AG, Jena, Germany), were employed in the instrument. Instead of conventional platform tube, the GFA was used to provide low measurement susceptibility to interferences and short determination cycle. The GFA was modified according to the design of the furnace unit and optimal physical parameters of its components (filter and collector) found. Afterwards, optimal GFA was replicated and tested to outline analytical performances of the HR-CS GFA AA spectrometer in view of prospects of multi-element analysis. In particular, reproducibility of performances, repeatability of analytical signals, lifetime, temperature limit and duration of the measurement cycle were examined, and elements available for determination justified. The results show that the peak area of the atomic absorption signal is reproduced in various GFA copies within ± 4% deviation range. The GFA can stand temperatures of 2800 °C with 6 s hold time for 55 temperature cycles, and 2700 °C (8 s) for about 200 cycles. Only the external tube is prone to destruction while the filter and collector do not show any sign of erosion caused by temperature or aggressive matrix. Analytical signals are affected insignificantly by tube aging. Repeatability of the peak area remains within 1.1-1.7% RSD over more than hundred determination cycles. Peak areas are proportional to the sample volume of injected organic and inorganic liquids up to at least 50 μL. The drying stage is combined with hot sampling and cut down to 15-20 s. The list of metals available for determination with full vapor release includes Al, Co, Cr, Ni, Pt as well as more volatile metals. Characteristic masses at

  6. Graphene-like nanosheets synthesized by natural flaky graphite in Shandong, China

    NASA Astrophysics Data System (ADS)

    Xiu-Yun, Chuan

    2013-02-01

    Natural flaky graphite in Shandong, China was purified by H2O2, a new patent method to produce graphite without sulfur and used as precursor to prepare exfoliated graphite through microwave irradiated expansion with some chemicals (such as hydrogen peroxide, nitric acid, and acetic acid). With the centrifugation process, graphene was synthesized by using an efficient and simple method under ultrasonic and microwave irradiation at the room temperature. Natural graphite and exfoliated graphite were characterized by X-ray diffraction and scanning electronic microscopy, and the resultant graphene was investigated and confirmed by atomic force microscopy, Raman micro-spectrometer, etc. Natural graphite in Shandong, China, consisted of mainly hexagonal (2H) and a little rhombohedral structure (3R), was beneficial for the synthesis of graphene. Graphene-like nanosheets about 1 to 3 nm, around three to five carbon layers can be synthesized efficiently by microwave and ultrasonic irradiation with natural graphite.

  7. Interaction of boron with graphite: A van der Waals density functional study

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Wang, Chen; Liang, Tongxiang; Lai, Wensheng

    2016-08-01

    Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less ability to offer electrons to oxygen, ultimately resulted in the inhibition of carbon oxidation. For interstitial doping, vdW-DFs show more accurate formation energy than LDA. PBE functional cannot describe the interstitial boron in graphite reasonably because of the ignoring binding of graphite sheets. The investigation of electron structures of boron doped graphite will play an important role in understanding the oxidation mechanism in further study.

  8. Recompressed exfoliated graphite articles

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2013-08-06

    This invention provides an electrically conductive, less anisotropic, recompressed exfoliated graphite article comprising a mixture of (a) expanded or exfoliated graphite flakes; and (b) particles of non-expandable graphite or carbon, wherein the non-expandable graphite or carbon particles are in the amount of between about 3% and about 70% by weight based on the total weight of the particles and the expanded graphite flakes combined; wherein the mixture is compressed to form the article having an apparent bulk density of from about 0.1 g/cm.sup.3 to about 2.0 g/cm.sup.3. The article exhibits a thickness-direction conductivity typically greater than 50 S/cm, more typically greater than 100 S/cm, and most typically greater than 200 S/cm. The article, when used in a thin foil or sheet form, can be a useful component in a sheet molding compound plate used as a fuel cell separator or flow field plate. The article may also be used as a current collector for a battery, supercapacitor, or any other electrochemical cell.

  9. Automated, High Temperature Furnace for Glovebox Operation

    SciTech Connect

    Neikirk, K.

    2001-01-03

    The Plutonium Immobilization Project (PIP), to be located at the Savannah River Site SRS, is a combined development and testing effort by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL), and the Australian National Science and Technology Organization (ANSTO). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulating package and resistance heating elements located within a nuclear glovebox. Other furnaces types considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment.

  10. Comparative study on friction force pattern anisotropy of graphite

    NASA Astrophysics Data System (ADS)

    Liu, Zhihua; Wang, Wenxue; Liu, Lianqing

    2015-03-01

    In this paper, the experimental and theoretical studies on the atomic-scale two-dimensional friction force pattern are presented. Atomic-scale friction experiments were conducted on graphite surfaces with the atomic force microscopy (AFM) under ambient conditions. Owing to the dimensionality reduction effect of optical method detecting the probe cantilever deflection, the friction force patterns were revealed in these experiments. The friction phenomenon was analyzed theoretically in the framework of Prandtl-Tomlinson model in two dimensions. The dimensionality reduction effect was formulated and involved in the model. The comparison shows the good quantitative agreement between experimental and simulation results, suggesting that the friction force pattern can be interpreted reliably using the model. Meanwhile atomic arrangement was obtained in friction force pattern, the origin and variation of which were also analyzed. The condition for appearance of atomic arrangement was determined qualitatively. By means of band-pass filtering, hexagonal rings or crystal lattices images of graphite were obtained.

  11. Cesium diffusion in graphite

    SciTech Connect

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of /sup 137/Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of /sup 137/Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000/sup 0/C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ..delta..E of the equation D/epsilon = (D/epsilon)/sub 0/ exp (-..delta..E/RT) are about 4 x 10/sup -2/ cm/sup 2//s and 30 kcal/mole, respectively.

  12. Irradiation Creep in Graphite

    SciTech Connect

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  13. Coatings for graphite fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Graphite fibers released from composites during burning or an explosion caused shorting of electrical and electronic equipment. Silicon carbide, silica, silicon nitride and boron nitride were coated on graphite fibers to increase their electrical resistances. Resistances as high as three orders of magnitude higher than uncoated fiber were attained without any significant degradation of the substrate fiber. An organo-silicone approach to produce coated fibers with high electrical resistance was also used. Celion 6000 graphite fibers were coated with an organo-silicone compound, followed by hydrolysis and pyrolysis of the coating to a silica-like material. The shear and flexural strengths of composites made from high electrically resistant fibers were considerably lower than the shear and flexural strengths of composites made from the lower electrically resistant fibers. The lower shear strengths of the composites indicated that the coatings on these fibers were weaker than the coating on the fibers which were pyrolyzed at higher temperature.

  14. Electrostatic Levitation Furnace for the ISS

    NASA Technical Reports Server (NTRS)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  15. 10 CFR 429.18 - Residential furnaces.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Residential furnaces. 429.18 Section 429.18 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.18 Residential furnaces. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential furnaces;...

  16. Hopewell Furnace National Historic Site. Teacher's Guide.

    ERIC Educational Resources Information Center

    National Park Service (Dept. of Interior), Washington, DC.

    This teacher's guide contains activities to use in conjunction with a site visit to the Hopewell Furnace National Historic Site (Elverson, Pennsylvania). The guide provides diagrams of the furnace, a cold-blast smelting operation, and the furnace operation. It presents a timeline of iron production from ancient times through contemporary times.…

  17. 10 CFR 429.18 - Residential furnaces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Residential furnaces. 429.18 Section 429.18 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.18 Residential furnaces. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential furnaces;...

  18. 10 CFR 429.18 - Residential furnaces.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Residential furnaces. 429.18 Section 429.18 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.18 Residential furnaces. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential furnaces;...

  19. Dramatic reduction of chemical sputtering of graphite under intercalation of lithium

    NASA Astrophysics Data System (ADS)

    Yagi, H.; Toyoda, H.; Sugai, H.

    2003-03-01

    In previous studies, in situ deposition of a lithium thin layer onto graphite was found to considerably suppress physical sputtering of graphite, owing to rapid diffusion of Li into graphite bulk (so-called intercalation). This paper reports that the Li intercalation dramatically reduces graphite chemical sputtering as well, once the Li-deposited surface is cleaned by hydrogen plasma. This is evidenced in a small-scale plasma experiment on the Li-deposited graphite in hydrogen glow, comparing with an ultra-high-vacuum beam experiment. In the latter experiment, energy-controlled H 2+ beam is irradiated on a Li-deposited graphite sample where methane yield is measured together with in situ surface analysis of graphite by X-ray photoelectron spectroscopy. Both the plasma experiment and the beam experiment showed similar temporal variations of methane yield after the hydrogen exposure of the Li-deposited graphite. Namely, the methane yield gradually decreases down to a negligible level compared with the pure graphite case. The XPS analysis of surface atoms (O, C, Li) suggests that the hydrogen plasma exposure gives rise to removal of Li-containing impurities on the graphite surface. As a consequence, the hydrogen glow conditioning results in an almost complete suppression of chemical erosion of graphite below 500 K.

  20. Graphite-based photovoltaic cells

    DOEpatents

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  1. Training Guidelines: Glass Furnace Operators.

    ERIC Educational Resources Information Center

    Ceramics, Glass, and Mineral Products Industry Training Board, Harrow (England).

    Technological development in the glass industry is constantly directed towards producing high quality glass at low operating costs. Particularly, changes have taken place in melting methods which mean that the modern furnace operator has greater responsibilities than any of his predecessors. The complexity of control systems, melting rates, tank…

  2. Acoustical Measurement Of Furnace Temperatures

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Shakkottai; Venkateshan, Shakkottai P.

    1989-01-01

    Simple probes withstand severe conditions, yet give spatially-resolved temperature readings. Prototype acoustical system developed to measure temperatures from ambient to 1,800 degree F in such structures as large industrial lime kilns and recovery-boiler furnaces. Pulses of sound reflected from obstructions in sensing tube. Speed of sound and temperature in each segment deduced from travel times of pulses.

  3. (Irradiation creep of graphite)

    SciTech Connect

    Kennedy, C.R.

    1990-12-21

    The traveler attended the Conference, International Symposium on Carbon, to present an invited paper, Irradiation Creep of Graphite,'' and chair one of the technical sessions. There were many papers of particular interest to ORNL and HTGR technology presented by the Japanese since they do not have a particular technology embargo and are quite open in describing their work and results. In particular, a paper describing the failure of Minor's law to predict the fatigue life of graphite was presented. Although the conference had an international flavor, it was dominated by the Japanese. This was primarily a result of geography; however, the work presented by the Japanese illustrated an internal program that is very comprehensive. This conference, a result of this program, was better than all other carbon conferences attended by the traveler. This conference emphasizes the need for US participation in international conferences in order to stay abreast of the rapidly expanding HTGR and graphite technology throughout the world. The United States is no longer a leader in some emerging technologies. The traveler was surprised by the Japanese position in their HTGR development. Their reactor is licensed and the major problem in their graphite program is how to eliminate it with the least perturbation now that most of the work has been done.

  4. GRAPHITE BONDING METHOD

    DOEpatents

    King, L.D.P.

    1964-02-25

    A process for bonding or joining graphite members together in which a thin platinum foil is placed between the members, heated in an inert atmosphere to a temperature of 1800 deg C, and then cooled to room temperature is described. (AEC)

  5. Structural graphitic carbon foams

    SciTech Connect

    Kearns, K.M.; Anderson, H.J.

    1998-12-31

    Graphitic carbon foams are a unique material form with very high structural and thermal properties at a light weight. A process has been developed to produce microcellular, open-celled graphitic foams. The process includes heating a mesophase pitch preform above the pitch melting temperature in a pressurized reactor. At the appropriate time, the pressure is released, the gas nucleates bubbles, and these bubbles grow forming the pitch into the foam structure. The resultant foamed pitch is then stabilized in an oxygen environment. At this point a rigid structure exists with some mechanical integrity. The foam is then carbonized to 800 C followed by a graphitization to 2700 C. The shear action from the growing bubbles aligns the graphitic planes along the foam struts to provide the ideal structure for good mechanical properties. Some of these properties have been characterized for some of the foam materials. It is known that variations of the blowing temperature, blowing pressure and saturation time result in foams of variously sized with mostly open pores; however, the mechanism of bubble nucleation is not known. Therefore foams were blown with various gases to begin to determine the nucleation method. These gases are comprised of a variety of molecular weights as well as a range of various solubility levels. By examining the resultant structures of the foam, differences were noted to develop an explanation of the foaming mechanism.

  6. Coatings for Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Several approaches for applying high resistance coatings continuously to graphite yarn were investigated. Two of the most promising approaches involved (1) chemically vapor depositing (CVD) SiC coatings on the surface of the fiber followed by oxidation, and (2) drawing the graphite yarn through an organo-silicone solution followed by heat treatments. In both methods, coated fibers were obtained which exhibited increased electrical resistances over untreated fibers and which were not degraded. This work was conducted in a previous program. In this program, the continuous CVD SiC coating process used on HTS fiber was extended to the coating of HMS, Celion 6000, Celion 12000 and T-300 graphite fiber. Electrical resistances three order of magnitude greater than the uncoated fiber were measured with no significant degradation of the fiber strength. Graphite fibers coated with CVD Si3N4 and BN had resistances greater than 10(exp 6) ohm/cm. Lower pyrolysis temperatures were used in preparing the silica-like coatings also resulting in resistances as high as three orders of magnitude higher than the uncoated fiber. The epoxy matrix composites prepared using these coated fibers had low shear strengths indicating that the coatings were weak.

  7. The characterization of fluorinated graphite

    SciTech Connect

    Hagaman, E.W.; Gakh, A.A.; Annis, B.K.

    1995-12-31

    The characterization of solid fossil fuels by chemical and spectroscopic methods requires extensive modelling in less complex systems for chemical proof of principle and technique development. In previous work coal was fluorinated with dilute, elemental fluorine under conditions that were expected to lead to materials that contain only fluoromethine moieties. The solid state, cross polarization/magic angle spinning (CP/MAS) {sup 13}C NMR spectra of the fluorinated coal are complex, indicating more chemical modification than originally anticipated. Our goal in the coal derivatization was to sequentially increase the severity of the fluorination and observe by {sup 19}F and {sup 13}C NMR the type and concentration of fluorine functional groups created in the coal milieu. This requires the ability to discriminate between C, CF, CF{sub 2}, and CF, moieties in the coal matrix. The task can be accomplished by implementing the spectral editing technique of Wu and Zilm which distinguishes different kinds of carbon resonances, especially CH and CH{sub 2} resonances. These experiments utilize cross polarization (CP) and polarization inversion (PI) to effect the discrimination. Our version of this experiment is a triple resonance experiment that incorporates {sup 19}F-{sup 13}C CP, PI, and simultaneous {sup 1}H and {sup 19}F dipolar decoupling. In order to evaluate the elemental fluorine chemistry in a matrix simpler than coal, fluorinated graphite was prepared. X-ray photoelectron spectroscopy (XPS) was used to characterize the surface species, i.e., count CF, CF{sub 2} and CF{sub 3} species. These well-characterized samples are the models we will use to test the NIVIR editing experiments. The XPS and atomic force microscopy (AFM) data on the first fluorinated graphites we have prepared are reported in this paper.

  8. Blast furnace repairs, relines and modernizations

    SciTech Connect

    Carpenter, J.A.; Swanson, D.E; Chango, R.F. . Burns Harbor Div.)

    1994-09-01

    Bethlehem Steel's Burns Harbor Div. operates two 89,000-cu ft blast furnaces, D and C, built in 1969 and 1972. These furnaces have been in the forefront of blast furnace performance since they were blown-in. To maintain a credible operation throughout the past 25 years their performance has been improved continuously. Production was increased approximately 3%/year while fuel rate decreased 1%/year. This presentation summarizes the early repairs, relines and improvements that have sustained and enhanced the furnace's performance. The fourth reline of both furnaces will be discussed in detail. As part of the 1991 reline of D furnace its lines were improved and modern penstocks installed. The bosh, tuyere jacket, hearth jacket and both cast floors were replaced. The furnace now has a larger hearth making it easier to control and, liquid level is no longer a problem when pulling the wind to shut down. The new cast floor with its increased trough length has much improved separation of slag from iron and lowered refractory consumption. Since the cast floors on D furnace were changed, there has been a reduction in accidents and absenteeism. This may be related to the change in work practices on the new cast floors. The 1994 reline of C furnace incorporates those improvements made on D furnace in 1991. In addition, C furnace will have high-density cooling which is expected to double its campaign from 6 to 12 years, without interim repairs.

  9. Calculation of 3s photoemission spectra of vanadium on graphite

    SciTech Connect

    Krueger, P.; Taguchi, M.; Parlebas, J.C.; Kotani, A.

    1997-06-01

    A few years ago, a satellite structure in the vanadium 3s x-ray photoemission spectroscopy (XPS) spectrum of V clusters upon graphite was observed and attributed to the presence of magnetic moments on the V surface. Here, we present calculations of these spectra using a cluster model that takes into account intra-atomic d-d and d{endash}core electron correlation and hybridization between V d and graphite {pi} states. When the V-graphite distance is increased from 1.5 to 2.0 {Angstrom} the system undergoes a low-to-high spin transition, which is clearly evidenced in the evolution of the XPS line shape. Although direct comparison with experiment is difficult, our study suggests that the observed satellite is due to core hole screening rather than a magnetic moment on the V atom. {copyright} {ital 1997} {ital The American Physical Society}

  10. Direct current, closed furnace silicon technology

    SciTech Connect

    Dosaj, V.D.; May, J.B.; Arvidson, A.N.

    1994-05-01

    The dc closed furnace technology for smelting silicon offers technical operating challenges, as well as, economic opportunities for off-gas recovery, reduced electrode consumption, reduced reductant oxidation losses, reduced energy consumption, and improved silicon recovery. The 10 mva dc closed furnace is located in East Selkirk, Manitoba. Construction of this pilot plant was started in September 1990. Following successful commissioning of the furnace in 1992, a number of smelting tests have been conducted aimed at optimization of the furnace operation and the raw material mix. The operation of a closed furnace is significantly different from an open furnace operation. The major difference being in the mechanical movement of the mix, off-gas recovery, and inability to observe the process. These differences made data collection and analysis critical in making operating decisions. This closed furnace was operated by computer control (state of the art in the smelling industry).

  11. Development of a model of silicon carbide thermodestruction for preparation of graphite layers

    NASA Astrophysics Data System (ADS)

    Davydov, S. Yu.; Lebedev, A. A.; Smirnova, N. Yu.

    2009-03-01

    A three-stage scheme of the silicon carbide thermodestruction resulting in surface graphitization, which was proposed earlier (based on structural studies), is discussed. A theoretical analysis shows, however, that this process occurs in two stages, namely, thermodesorption of silicon atoms from the two outer Si-C bilayers followed by condensation of carbon atoms on the Si(0001) face of silicon carbide, thus giving rise to the formation of a two-dimensional graphite structure (graphene).

  12. In situ observation of electrolyte-concentration-dependent solid electrolyte interphase on graphite in dimethyl sulfoxide.

    PubMed

    Liu, Xing-Rui; Wang, Lin; Wan, Li-Jun; Wang, Dong

    2015-05-13

    High lithium salt concentration strategy has been recently reported to be an effective method to enable various organic solvents as electrolyte of Li-ion batteries. Here, we utilize in situ atomic force microscopy (AFM) to investigate the interfacial morphology on the graphite electrode in dimethyl sulfoxide (DMSO)-based electrolyte of various concentrations. The significant differences in interfacial features of the graphite in electrolytes of different concentrations are revealed. In the concentrated electrolyte, stable films form primarily at the step edges and defects on the graphite surface after initial electrochemical cycling. On the other hand, in the dilute electrolyte, DMSO-solvated lithium ions constantly intercalate into graphite layers, and serious decomposition of solvent accompanied by structural deterioration of the graphite surface is observed. The in situ AFM results provide direct evidence for the concentration-dependent interface reactions between graphite electrode and DMSO-based electrolyte.

  13. Hydrogenation-induced ferromagnetism on graphite surfaces

    NASA Astrophysics Data System (ADS)

    Moaied, Mohammed; Alvarez, J. V.; Palacios, J. J.

    2014-09-01

    We calculate the electronic structure and magnetic properties of hydrogenated graphite surfaces using van der Waals density functional theory (DFT) and model Hamiltonians. We find, as previously reported, that the interaction between hydrogen atoms on graphene favors adsorption on different sublattices along with an antiferromagnetic coupling of the induced magnetic moments. On the contrary, when hydrogenation takes place on the surface of graphene multilayers or graphite (Bernal stacking), the interaction between hydrogen atoms competes with the different adsorption energies of the two sublattices. This competition may result in all hydrogen atoms adsorbed on the same sublattice and, thereby, in a ferromagnetic state for low concentrations. Based on the exchange couplings obtained from the DFT calculations, we have also evaluated the Curie temperature by mapping this system onto an Ising-like model with randomly located spins. Remarkably, the long-range nature of the magnetic coupling in these systems makes the Curie temperature size dependent and larger than room temperature for typical concentrations and sizes.

  14. Automated, High Temperature Furnace for Glovebox Operation

    SciTech Connect

    Neikirk, K.

    2001-01-26

    The U.S. Department of Energy will immobilize excess plutonium in the proposed Plutonium Immobilization Plant (PIP) at the Savannah River Site (SRS) as part of a two track approach for the disposition of weapons usable plutonium. As such, the Department of Energy is funding a development and testing effort for the PIP. This effort is being performed jointly by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), and Argonne National Laboratory (ANL). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulting package and resistance heating elements located within a nuclear glovebox. Other furnaces considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment. Due to the radiation levels and contamination associated with the plutonium material, the sintering process will be fully automated and contained within nuclear material gloveboxes. As such, the furnace currently under development incorporates water and air cooling to minimize heat load to the glovebox. This paper will describe the furnace equipment and systems needed to employ a fully automated puck sintering process within nuclear gloveboxes as part of the Plutonium Immobilization Plant.

  15. High temperature furnace modeling and performance verifications

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.

    1992-01-01

    Analytical, numerical, and experimental studies were performed on two classes of high temperature materials processing sources for their potential use as directional solidification furnaces. The research concentrated on a commercially available high temperature furnace using a zirconia ceramic tube as the heating element and an Arc Furnace based on a tube welder. The first objective was to assemble the zirconia furnace and construct parts needed to successfully perform experiments. The 2nd objective was to evaluate the zirconia furnace performance as a directional solidification furnace element. The 3rd objective was to establish a data base on materials used in the furnace construction, with particular emphasis on emissivities, transmissivities, and absorptivities as functions of wavelength and temperature. A 1-D and 2-D spectral radiation heat transfer model was developed for comparison with standard modeling techniques, and were used to predict wall and crucible temperatures. The 4th objective addressed the development of a SINDA model for the Arc Furnace and was used to design sample holders and to estimate cooling media temperatures for the steady state operation of the furnace. And, the 5th objective addressed the initial performance evaluation of the Arc Furnace and associated equipment for directional solidification. Results of these objectives are presented.

  16. Characterization of nitrogen species incorporated into graphite using low energy nitrogen ion sputtering.

    PubMed

    Kiuchi, Hisao; Kondo, Takahiro; Sakurai, Masataka; Guo, Donghui; Nakamura, Junji; Niwa, Hideharu; Miyawaki, Jun; Kawai, Maki; Oshima, Masaharu; Harada, Yoshihisa

    2016-01-07

    The electronic structures of nitrogen species incorporated into highly oriented pyrolytic graphite (HOPG), prepared by low energy (200 eV) nitrogen ion sputtering and subsequent annealing at 1000 K, were investigated by X-ray photoelectron spectroscopy (XPS), angle-dependent X-ray absorption spectroscopy (XAS), and Raman spectroscopy. An additional peak was observed at higher binding energy of 401.9 eV than 400.9 eV for graphitic1 N (graphitic N in the basal plane) in N 1s XPS, where graphitic2 N (graphitic N in the zigzag edge and/or vacancy sites) has been theoretically expected to appear. N 1s XPS showed that graphitic1 N and graphitic2 N were preferably incorporated under low nitrogen content doping conditions (8 × 10(13) ions cm(-2)), while pyridinic N and graphitic1 N were dominantly observed under high nitrogen content doping conditions. In addition, angle-dependent N 1s XAS showed that the graphitic N and pyridinic N atoms were incorporated into the basal plane of HOPG and thus were highly oriented. Furthermore, Raman spectroscopy revealed that low energy sputtering resulted in almost no fraction of the disturbed graphite surface layers under the lowest nitrogen doping condition. The suitable nitrogen doping condition was discovered for realizing the well-controlled nitrogen doped HOPG. The electrochemical properties for the oxygen reduction reaction of these samples in acidic solution were examined and discussed.

  17. The use of atomic spectroscopy in the pharmaceutical industry for the determination of trace elements in pharmaceuticals.

    PubMed

    Lewen, Nancy

    2011-06-25

    The subject of the analysis of various elements, including metals and metalloids, in the pharmaceutical industry has seen increasing importance in the last 10-15 years, as modern analytical instrumentation has afforded analysts with the opportunity to provide element-specific, accurate and meaningful information related to pharmaceutical products. Armed with toxicological data, compendial and regulatory agencies have revisited traditional approaches to the testing of pharmaceuticals for metals and metalloids, and analysts have begun to employ the techniques of atomic spectroscopy, such as flame- and graphite furnace atomic absorption spectroscopy (FAAS, Flame AA or FAA and GFAAS), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS), to meet their analytical needs. Newer techniques, such as laser-induced breakdown spectroscopy (LIBS) and Laser Ablation ICP-MS (LAICP-MS) are also beginning to see wider applications in the analysis of elements in the pharmaceutical industry.This article will provide a perspective regarding the various applications of atomic spectroscopy in the analysis of metals and metalloids in drug products, active pharmaceutical ingredients (API's), raw materials and intermediates. The application of atomic spectroscopy in the analysis of metals and metalloids in clinical samples, nutraceutical, metabolism and pharmacokinetic samples will not be addressed in this work.

  18. Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System

    NASA Technical Reports Server (NTRS)

    Girifalco, L. A.; Lad, R. A.

    1956-01-01

    The lattice summations of the potential energy of importance in the graphite system have been computed by direct summation assuming a Lennard-Jones 6-12 potential between carbon atoms. From these summations, potential energy curves were constructed for interactions between a carbon atom and a graphite monolayer, between a carbon atom and a graphite surface, between a graphite monolayer and a semi-infinite graphite crystal and between two graphite semi-infinite crystals. Using these curves, the equilibrium distance between two isolated physically interacting carbon atoms was found to be 2.70 a, where a is the carbon-carbon distance in a graphite sheet. The distance between a surface plane and the rest of the crystal was found to be 1.7% greater than the interlayer spacing. Theoretical values of the energy of cohesion and the compressibility were calculated from the potential curve for the interaction between two semi-infinite crystals. They were (delta)E(sub c) = -330 ergs/sq cm and beta =3.18x10(exp -12)sq cm/dyne, respectively. These compared favorably with the experimental values of (delta)E(sub c) = -260 ergs/sq cm and beta = 2.97 X 10(exp -2) sq cm/dyne.

  19. [Determination of trace barium in soil and sediment by Zeeman graphite AAS with coated graphite tube].

    PubMed

    Ji, Hai-Bing; Liu, Jin-Song; Pang, Xiao-Lu

    2007-11-01

    The sample was decomposed by HNO3-HF-HClO4. Using a tungsten-coated graphite tube, trace barium in soil and sediment was determined by Zeeman graphite AAS. To avoid producing carbide, the graphite tube was coated with tungsten. Tungsten and carbon in the surface layer of graphite tube became tungsten carbide. Tungsten carbide prevented barium and carbon from forming barium carbide, which in turn not only led to a long service life for the tube, but also increased greatly the sensitivity and precision of the determination Ba. Tungsten carbide belongs to internal filled type and can give reduction environment. To some extent, the common interfering elements co-existing in the soil and sediment had little chance to form oxides to interfere the determination of Ba in the atomization period. The method was easy and sensitive. The detection limit of Ba was 4.2 x 10(-10) g x g(-1). The relative standard deviation (RSD) was in the range of 2.0%-6.5% (n = 4). The relative deviations from the certificated values of standard soils were under 5%.

  20. Intercalated Graphite Fiber Conductor.

    DTIC Science & Technology

    1980-12-01

    Lightweight electrical conductors were developed from graphitic fibers inter- calated with highly electrophilic intercalants. Conductance increases of...intercalated with highly electrophilic molecules ("intercalants") to en- hance their electrical conductivity. Evaluation of the elec- trical resistance of two...corrosion resistant to fluorine containing chemicals. Since the moisture permeability of the TFE is much less than that of the FEP, attempts were made to

  1. Improved Graphite Fiber Adhesion.

    DTIC Science & Technology

    1981-09-01

    determined from a variety of surface analysis techniques , the oxygen-containing functional groups on commercial AS-i graphite fiber are predominantly...heterogenity within the fiber itself or experimental errors within the technique . In the limited time devoted to this work we did not devise a procedure...samples. Drzal optically measured the diameter of each fiber tested. Figure 6 shows the linear regression analysis plot used to determine the polar and

  2. Determination of Fe(II) and Fe(III) in small samples by microbore ion chromatography and photometric, atomic absorption spectrometry and total-reflection X-ray fluorescence detection

    NASA Astrophysics Data System (ADS)

    Sinner, T.; Hoffmann, P.; Ortner, H. M.

    1993-02-01

    Iron(II) and iron(III) are determined after separation on an ion Chromatographie column by various detection systems. "On-line" detection was achieved by the use of a photometer with a flow cell of 0.8 μl; for "off-line" detection, graphite furnace atomic absorption spectrometry or total-reflection X-ray fluorescence were used. The applicability of the methods is shown for standard solutions and atmospheric samples. As a typical result, 50 μg/l of iron can be determined in a 10 μl sample with a nucrobore ion chromatograph-photometer and atomic absorption system and 40 μg/l of iron in a microbore ion chromatograph-total-reflection X-ray fluorescence combination.

  3. Microcracks in nuclear graphite and highly oriented pyrolytic graphite (HOPG)

    NASA Astrophysics Data System (ADS)

    Wen, Keyun; Marrow, James; Marsden, Barry

    2008-10-01

    Microcracks with varied length and width are observed in nuclear grade graphite and highly oriented pyrolytic graphite (HOPG) by transmission electron microscopy. In situ observations show that these cracks tend to close up on heating the sample. The crystal dimensional change from in situ electron-irradiation also causes the closure of the cracks. Although some of the cracks may be identifiable as accommodation porosity (i.e. Mrozowski cracks), others appear to have already formed prior to carbonization and graphitization.

  4. Atomization of a liquid by a spray nozzle

    NASA Technical Reports Server (NTRS)

    Kutateladze, S. S. (Editor)

    1980-01-01

    The theory of atomization by mechanical and pneumatic (or vapor) spray nozzles is discussed. Basic design recommendations resulting from generalization of the material and confirmed by experiments are given. Sprayers which are widely used in the furnaces of stationary steam boilers, the combustion chambers of gas turbines, and industrial furnaces are examined.

  5. METHOD OF FABRICATING A GRAPHITE MODERATED REACTOR

    DOEpatents

    Kratz, H.R.

    1963-05-01

    S>A nuclear reactor formed of spaced bodies of uranium and graphite blocks is improved by diffusing helium through the graphite blocks in order to replace the air in the pores of the graphite with helium. The helium-impregnated graphite conducts heat better, and absorbs neutrons less, than the original air- impregnated graphite. (AEC)

  6. CMB-13 research on carbon and graphite

    NASA Technical Reports Server (NTRS)

    Smith, M. C.

    1972-01-01

    Preliminary results of the research on carbon and graphite accomplished during this report period are presented. Included are: particle characteristics of Santa Maria fillers, compositions and density data for hot-molded Santa Maria graphites, properties of hot-molded Santa Maria graphites, and properties of hot-molded anisotropic graphites. Ablation-resistant graphites are also discussed.

  7. X-ray scattering studies of graphite fibers

    SciTech Connect

    Tang, M.; Rice, G.G.; Fellers, J.F.; Lin, J.S.

    1986-07-15

    The structural features of three different graphite fibers were studied via small- and wide-angle x-ray techniques. The experimental evidence is consistent with a sheath/core fiber morphology. Graphitization, degree of orientation, crystallite size, and microporosity were analyzed. Samples included low (AS4) and high (HMS) modulus poly(acrylonitrile) (PAN) and melt-spun pitch-based (VSB-16) fibers. By wide-angle x-ray diffraction (WAXD) VSB-16 was found to have the highest degree of graphitization, the highest degree of orientation, and the largest crystallite regions, and AS4 the poorest graphitized structure. The void system in these graphite fibers was investigated by small-angle x-ray scattering (SAXS). SAXS from glycerin-soaked fibers indicates the scattering at very small angles (2theta<10 mrad) is dominated by total reflection of x rays at the fiber surface. The pores in HMS and VSB-16 fibers are inaccessible to glycerin and the pores in AS4 fiber are partially accessible. The pores in PAN-based HMS and AS4 fibers are of needlelike shape and those in VSB-16 are ellipsoidal. The porosity is 12.6%, 8.4%, and 4.5% in HMS, AS4, and VSB-16 fibers, respectively. Deviations from Porod's law were observed at large angles and attributed to scattering from fractal aggregates of carbon atoms in the graphite crystallites and/or fractal boundaries of pores. The fractal dimension of the aggregates is 2.3 +- 0.1, 2.8 +- 0.2, and 3.0 +- 0.2 for AS4, HMS, and VSB-16 fibers, respectively. Speculations about the fractal nature of aggregation may stimulate some new insight to the graphitization process, paracrystallinity, and the strength of graphite fibers.

  8. Atomic Oxygen Fluence Monitor

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2011-01-01

    This innovation enables a means for actively measuring atomic oxygen fluence (accumulated atoms of atomic oxygen per area) that has impinged upon spacecraft surfaces. Telemetered data from the device provides spacecraft designers, researchers, and mission managers with real-time measurement of atomic oxygen fluence, which is useful for prediction of the durability of spacecraft materials and components. The innovation is a compact fluence measuring device that allows in-space measurement and transmittance of measured atomic oxygen fluence as a function of time based on atomic oxygen erosion yields (the erosion yield of a material is the volume of material that is oxidized per incident oxygen atom) of materials that have been measured in low Earth orbit. It has a linear electrical response to atomic oxygen fluence, and is capable of measuring high atomic oxygen fluences (up to >10(exp 22) atoms/sq cm), which are representative of multi-year low-Earth orbital missions (such as the International Space Station). The durability or remaining structural lifetime of solar arrays that consist of polymer blankets on which the solar cells are attached can be predicted if one knows the atomic oxygen fluence that the solar array blanket has been exposed to. In addition, numerous organizations that launch space experiments into low-Earth orbit want to know the accumulated atomic oxygen fluence that their materials or components have been exposed to. The device is based on the erosion yield of pyrolytic graphite. It uses two 12deg inclined wedges of graphite that are over a grit-blasted fused silica window covering a photodiode. As the wedges erode, a greater area of solar illumination reaches the photodiode. A reference photodiode is also used that receives unobstructed solar illumination and is oriented in the same direction as the pyrolytic graphite covered photodiode. The short-circuit current from the photodiodes is measured and either sent to an onboard data logger, or

  9. Ferrosilicon smelting in a direct current furnace

    DOEpatents

    Dosaj, Vishu D.; May, James B.

    1992-12-29

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode.

  10. Crystal growth furnace with trap doors

    DOEpatents

    Sachs, Emanual M.; Mackintosh, Brian H.

    1982-06-15

    An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

  11. Ferrosilicon smelting in a direct current furnace

    DOEpatents

    Dosaj, V.D.; May, J.B.

    1992-12-29

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.

  12. Comparison of the oxidation rate and degree of graphitization of selected IG and NBG nuclear graphite grades

    NASA Astrophysics Data System (ADS)

    Chi, Se-Hwan; Kim, Gen-Chan

    2008-10-01

    The oxidation rate and degree of graphitization (DOG) were determined for some selected nuclear graphite grades (i.e., IG-110, IG-430, NBG-18, NBG-25) and compared in view of their filler coke type (i.e., pitch or petroleum coke) and the physical property of the grades. Oxidation rates were determined at six temperatures between 600 and 960 °C in air by using a three-zone vertical tube furnace at a 10 l/min air flow rate. The specimens were a cylinder with a 25.4 mm diameter and a 25.4 mm length. The DOG was determined based on the lattice parameter c determined from an X-ray diffraction (XRD). Results showed that, even though the four examined nuclear graphite grades showed a highly temperature-sensitive oxidation behavior through out the test temperature range of 600-950 °C, the differences between the grades were not significant. The oxidation rates determined for a 5-10% weight loss at the six temperatures were nearly the same except for 702 and 808 °C, where the pitch coke graphites showed an apparent decrease in their oxidation rate, more so than the petroleum coke graphites. These effects of the coke type reduced or nearly disappeared with an increasing temperature. The average activation energy determined for 608-808 °C was 161.5 ± 7.3 kJ/mol, showing that the dominant oxidation reaction occurred by a chemical control. A relationship between the oxidation rate and DOG was not observed.

  13. Heat exchanger using graphite foam

    DOEpatents

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  14. Measurement of airflow in residential furnaces

    SciTech Connect

    Biermayer, Peter J.; Lutz, James; Lekov, Alex

    2004-01-24

    In order to have a standard for furnaces that includes electricity consumption or for the efficiency of furnace blowers to be determined, it is necessary to determine the airflow of a furnace or furnace blower. This study focused on airflow testing, in order to determine if an existing test method for measuring blower airflow could be used to measure the airflow of a furnace, under conditions seen in actual installations and to collect data and insights into the operating characteristics of various types of furnace blowers, to use in the analysis of the electricity consumption of furnaces. Results of the measured airflow on furnaces with three types of blower and motor combinations are presented in the report. These included: (1) a forward-curved blower wheel with a typical permanent split capacitor (PSC) motor, (2) a forward-curved blower wheel with an electronically-commutated motor (ECM), and (3) a prototype blower, consisting of a backward-inclined blower wheel matched to an ECM motor prototype, which is being developed as an energy-saving alternative to conventional furnace blowers. The testing provided data on power consumption, static and total pressure, and blower speed.

  15. The effect of graphite components and crucible coating on the behaviour of carbon and oxygen in multicrystalline silicon

    NASA Astrophysics Data System (ADS)

    Raabe, Lutz; Pätzold, Olf; Kupka, Iven; Ehrig, Jan; Würzner, Sindy; Stelter, Michael

    2011-03-01

    In the present paper the effect of the furnace interior materials on the carbon and oxygen concentrations in multicrystalline silicon (mc-Si) is studied. Mc-Si ingots were produced in a high-vacuum induction furnace by means of the vertical Bridgman technique. Growth experiments with or without graphite components in the furnace as well as with crucible coatings of different oxygen concentrations were performed. The concentration of carbon monoxide in the growth chamber is found to depend significantly on the setup used. A standard, graphite-containing setup results in pronounced CO formation, which can be completely suppressed by applying graphite-free elements. Oxygen in the crucible coating is shown to influence the concentration of carbon monoxide via the formation of SiO. Growth under a CO enriched atmosphere is associated with the formation of a SiC/SiO2 melt surface layer, which pins the carbon concentration in the melt or crystal near its solubility limit, whereas in graphite- or CO-free growth the dissolved carbon segregates approximately according to Scheil's law. On the other hand, the effect of carbon monoxide on oxygen concentration in the grown crystals appears to be negligible. Instead, the oxygen concentration is directly related to the oxygen content of the crucible coating.

  16. Looking southwest at blast furnaces no. 5 and no. 6 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southwest at blast furnaces no. 5 and no. 6 with blast furnace trestle and Gondola Railroad cars in foreground. - U.S. Steel Edgar Thomson Works, Blast Furnace Plant, Along Monongahela River, Braddock, Allegheny County, PA

  17. 3. VIEW OF DUQUESNE'S RAIL LINES AND BLAST FURNACE PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF DUQUESNE'S RAIL LINES AND BLAST FURNACE PLANT LOOKING NORTH. DOROTHY SIX IS THE CLOSEST FURNACE IN THE PHOTOGRAPH. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  18. 2. EXTERIOR VIEW LOOKING SOUTHEAST AT ELECTRIC FURNACE BUILDING AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EXTERIOR VIEW LOOKING SOUTHEAST AT ELECTRIC FURNACE BUILDING AND ELECTRIC FURNACE OFFICE & CHEMICAL LABORATORY BUILDING. INGOT MOLDS IN RIGHT FOREGROUND. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  19. 56. LOOKING NORTH AT DOROTHY SIX BLAST FURNACE WITH CAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. LOOKING NORTH AT DOROTHY SIX BLAST FURNACE WITH CAST HOUSE IN FOREGROUND AND DUSTCATCHER AT RIGHT OF FURNACE (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  20. Looking southeast at blast furnaces no. 5 and no. 6 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southeast at blast furnaces no. 5 and no. 6 with blast furnace trestle and Gondola Railroad cars in foreground. - U.S. Steel Edgar Thomson Works, Blast Furnace Plant, Along Monongahela River, Braddock, Allegheny County, PA

  1. 41. Casting floor, "B" furnace, pour in progress; mudgun is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Casting floor, "B" furnace, pour in progress; mudgun is to right of furnace; photo taken from furnace operator's booth. Looking south/southwest - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  2. 19. Inside the cast house at Furnace A. Molten iron ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Inside the cast house at Furnace A. Molten iron flowed into eight ladles. The furnace was cast (or tapped) six times each day. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  3. INTERIOR VIEW OF FURNACE NO. 2, DRAWING ROOM, SHOWING A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FURNACE NO. 2, DRAWING ROOM, SHOWING A FLOOR INDICATING FOURCAULT DRAWING MACHINE AND FURNACE. - Chambers-McKee Window Glass Company, Furnace No. 2, Clay Avenue Extension, Jeannette, Westmoreland County, PA

  4. INTERIOR VIEW LOOKING WEST, CAST HOUSE OF BLAST FURNACE NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW LOOKING WEST, CAST HOUSE OF BLAST FURNACE NO. 1 AND BLAST FURNACE NO. 2. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 1 & No. 2, Donner Avenue, Monessen, Westmoreland County, PA

  5. 50. Taken from highline; "B" furnace slag pots, pipe is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. Taken from high-line; "B" furnace slag pots, pipe is main blast furnace gas line from "C" furnace dust catcher; levy, slag hauler, removing slag. Looking east - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  6. List of EPA Certified Forced-Air Furnaces

    EPA Pesticide Factsheets

    The EPA-Certified Forced-Air Furnace list contains EPA-certified forced-air furnaces that meet the 2015 NSPS for New Residential Wood Heaters, New Residential Hydronic Heaters and Forced-Air Furnaces.

  7. Refractories for lining blast furnaces

    SciTech Connect

    Fedoruk, R.M.; Baksheeva, V.S.; Karyakina, E.L.; Khmelenko, T.P.; Pitak, N.V.

    1986-01-01

    The authors develop and introduce a technology for the production of chamotte kaolin refractories with a porosity of not more than 12% and a mass proportion of not less than 42% A1/sub 2/O/sub 3/ on the basis of chamotte from high-grade Polozhe kaolin, and also additions to the batch of finely milled mullite-corundum chamotte. Using the new technology, a batch of goods designated ShPD-42 was produced for lining the shafts, bosh, and upper parts of blast furnaces of large capacity.

  8. VAPOR SHIELD FOR INDUCTION FURNACE

    DOEpatents

    Reese, S.L.; Samoriga, S.A.

    1958-03-11

    This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.

  9. Atomic-Scale Peeling of Graphene

    NASA Astrophysics Data System (ADS)

    Ishikawa, Makoto; Ichikawa, Masaya; Okamoto, Hideki; Itamura, Noriaki; Sasaki, Naruo; Miura, Kouji

    2012-06-01

    We report the atomic-scale peeling of a single-layer graphene on a graphite substrate, in which stick-slip sliding of the single-layer graphene occurs at the atomic scale while maintaining AB-stacking registry with the graphite substrate. The peeling force curve clearly exhibits a transition from surface-contact to line-contact between the graphene and graphite surfaces. The amplitude of the peeling force depends on the lattice orientation of the surface, which is affected by the sliding force at the interface between the graphene and graphite surfaces. This study of peeling at the atomic scale will clarify the relationship among peeling, friction, adhesion, and superlubricity.

  10. Graphitic packing removal tool

    DOEpatents

    Meyers, Kurt Edward; Kolsun, George J.

    1997-01-01

    Graphitic packing removal tools for removal of the seal rings in one piece. he packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  11. Graphitic packing removal tool

    DOEpatents

    Meyers, K.E.; Kolsun, G.J.

    1997-11-11

    Graphitic packing removal tools for removal of the seal rings in one piece are disclosed. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal. 5 figs.

  12. Graphitic packing removal tool

    SciTech Connect

    Meyers, K.E.; Kolsun, G.J.

    1996-12-31

    Graphitic packing removal tools are described for removal of the seal rings in one piece from valves and pumps. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  13. Silicon smelting in a closed furnace

    SciTech Connect

    Dosaj, V.; Brumels, M.D.; Haines, C.M.; May, J.B. )

    1991-01-01

    Dow Corning has been working towards the advancement of silicon smelting in a closed furnace over the past four years. A 200 kVA closed furnace pilot plant unit was built to investigate the operating parameters for smelting silicon. The single electrode furnace is operated under totally sealed conditions. The feed from the feed hoppers is fed through air locks to the furnace. The off-gas from the furnace, consisting of by-product CO as well as volatiles from the feeds, pass through a venturi scrubber, where water is introduced to scrub out the fume from the furnace and cool the gas. The mixed scrubber water and off-gas pass into a centrifugal mist eliminator where the water and fume disengage from the gas. The fume slurry is passed through bag filters where the fume is separated from the water. The clean off-gas from the furnace was evaluated for its calorific value and evaluated for conversion to useful products. A number of silicon smelting tests were conducted during this program. Various levels of charcoal and coal mixtures were evaluated to determine the optimum mix. A low volatile coal was preferred over typical Blue Gem coal. The coal amount in the mix was maximized without compromising the smelting performance. A raw material mix consisting of 30% charcoal and 70% low volatile coal was determined to be an optimum mix for closed furnace operation. Silicon recoveries in the low nineties were demonstrated using this mix. Four quartz sources were also evaluated in the closed furnace. The closed furnace operation for silicon smelting was identified to offer significant advantages over an open furnace from the standpoint of reduced carbon oxidation losses, electrode consumption, electrical energy consumption and silicon yield improvement. Other advantages in addition to process off-gas recovery included improved safety from reduced heat and fume exposure, and improved pollution control to the environment. 1 ref.

  14. Silicon smelting in a closed furnace

    SciTech Connect

    Dosaj, V.; Brumels, M.D.; Haines, C.M.; May, J.B.

    1991-12-31

    Dow Corning has been working towards the advancement of silicon smelting in a closed furnace over the past four years. A 200 kVA closed furnace pilot plant unit was built to investigate the operating parameters for smelting silicon. The single electrode furnace is operated under totally sealed conditions. The feed from the feed hoppers is fed through air locks to the furnace. The off-gas from the furnace, consisting of by-product CO as well as volatiles from the feeds, pass through a venturi scrubber, where water is introduced to scrub out the fume from the furnace and cool the gas. The mixed scrubber water and off-gas pass into a centrifugal mist eliminator where the water and fume disengage from the gas. The fume slurry is passed through bag filters where the fume is separated from the water. The clean off-gas from the furnace was evaluated for its calorific value and evaluated for conversion to useful products. A number of silicon smelting tests were conducted during this program. Various levels of charcoal and coal mixtures were evaluated to determine the optimum mix. A low volatile coal was preferred over typical Blue Gem coal. The coal amount in the mix was maximized without compromising the smelting performance. A raw material mix consisting of 30% charcoal and 70% low volatile coal was determined to be an optimum mix for closed furnace operation. Silicon recoveries in the low nineties were demonstrated using this mix. Four quartz sources were also evaluated in the closed furnace. The closed furnace operation for silicon smelting was identified to offer significant advantages over an open furnace from the standpoint of reduced carbon oxidation losses, electrode consumption, electrical energy consumption and silicon yield improvement. Other advantages in addition to process off-gas recovery included improved safety from reduced heat and fume exposure, and improved pollution control to the environment. 1 ref.

  15. Formation of Silicene Nanosheets on Graphite.

    PubMed

    De Crescenzi, Maurizio; Berbezier, Isabelle; Scarselli, Manuela; Castrucci, Paola; Abbarchi, Marco; Ronda, Antoine; Jardali, Fatme; Park, Jejune; Vach, Holger

    2016-12-27

    The extraordinary properties of graphene have spurred huge interest in the experimental realization of a two-dimensional honeycomb lattice of silicon, namely, silicene. However, its synthesis on supporting substrates remains a challenging issue. Recently, strong doubts against the possibility of synthesizing silicene on metallic substrates have been brought forward because of the non-negligible interaction between silicon and metal atoms. To solve the growth problems, we directly deposited silicon on a chemically inert graphite substrate at room temperature. Based on atomic force microscopy, scanning tunneling microscopy, and ab initio molecular dynamics simulations, we reveal the growth of silicon nanosheets where the substrate-silicon interaction is minimized. Scanning tunneling microscopy measurements clearly display the atomically resolved unit cell and the small buckling of the silicene honeycomb structure. Similar to the carbon atoms in graphene, each of the silicon atoms has three nearest and six second nearest neighbors, thus demonstrating its dominant sp(2) configuration. Our scanning tunneling spectroscopy investigations confirm the metallic character of the deposited silicene, in excellent agreement with our band structure calculations that also exhibit the presence of a Dirac cone.

  16. Kinetics of Chronic Oxidation of NBG-17 Nuclear Graphite by Water Vapor

    SciTech Connect

    Contescu, Cristian I; Burchell, Timothy D; Mee, Robert

    2015-05-01

    This report presents the results of kinetic measurements during accelerated oxidation tests of NBG-17 nuclear graphite by low concentration of water vapor and hydrogen in ultra-high purity helium. The objective is to determine the parameters in the Langmuir-Hinshelwood (L-H) equation describing the oxidation kinetics of nuclear graphite in the helium coolant of high temperature gas-cooled reactors (HTGR). Although the helium coolant chemistry is strictly controlled during normal operating conditions, trace amounts of moisture (predictably < 0.2 ppm) cannot be avoided. Prolonged exposure of graphite components to water vapor at high temperature will cause very slow (chronic) oxidation over the lifetime of graphite components. This behavior must be understood and predicted for the design and safe operation of gas-cooled nuclear reactors. The results reported here show that, in general, oxidation by water of graphite NBG-17 obeys the L-H mechanism, previously documented for other graphite grades. However, the characteristic kinetic parameters that best describe oxidation rates measured for graphite NBG-17 are different than those reported previously for grades H-451 (General Atomics, 1978) and PCEA (ORNL, 2013). In some specific conditions, certain deviations from the generally accepted L-H model were observed for graphite NBG-17. This graphite is manufactured in Germany by SGL Carbon Group and is a possible candidate for the fuel elements and reflector blocks of HTGR.

  17. Role of nuclear grade graphite in controlling oxidation in modular HTGRs

    SciTech Connect

    Windes, Willaim; Strydom, G.; Kane, J.; Smith, R.

    2014-11-01

    The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of core environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.

  18. REFRACTORY COATING FOR GRAPHITE MOLDS

    DOEpatents

    Stoddard, S.D.

    1958-06-24

    Refractory coating for graphite molds used in the casting of uranium is described. The coating is an alumino-silicate refractory composition which may be used as a mold surface in solid form or as a coating applied to the graphite mold. The composition consists of a mixture of ball clay, kaolin, alumina cement, alumina, water, sodium silicate, and sodium carbonate.

  19. Cryotribology of diamond and graphite

    SciTech Connect

    Iwasa, Yukikazu; Ashaboglu, A.F.; Rabinowicz, E.R.

    1996-12-31

    An experimental study was carried out on the tribological behavior of materials of interest in cryogenic applications, focusing on diamond and graphite. Both natural diamond (referred in the text as diamond) and chemical-vapor-deposition (CVD) diamond (CVD-diamond) were used. The experiment was carried out using a pin-on-disk tribometer capable of operating at cryogenic temperatures, from 4.2 to 293 K. Two basic scenarios of testing were used: (1) frictional coefficient ({mu}) vs velocity (v) characteristics at constant temperatures; (2) {mu} vs temperature (T) behavior at fixed sliding speeds. For diamond/CVD-diamond, graphite/CVD-diamond, stainless steel/CVD-diamond pairs, {mu}`s are virtually velocity independent. For each of diamond/graphite, alumina/graphite, and graphite/graphite pairs, the {partial_derivative}{mu}/{partial_derivative}v characteristic is favorable, i.e., positive. For diamond/CVD-diamond and graphite/CVD-diamond pairs, {mu}`s are nearly temperature independent between in the range 77 - 293 K. Each {mu} vs T plot for pin materials sliding on graphite disks has a peak at a temperature in the range 100 - 200 K.

  20. Structure of a peptide adsorbed on graphene and graphite.

    PubMed

    Katoch, Jyoti; Kim, Sang Nyon; Kuang, Zhifeng; Farmer, Barry L; Naik, Rajesh R; Tatulian, Suren A; Ishigami, Masa

    2012-05-09

    Noncovalent functionalization of graphene using peptides is a promising method for producing novel sensors with high sensitivity and selectivity. Here we perform atomic force microscopy, Raman spectroscopy, infrared spectroscopy, and molecular dynamics simulations to investigate peptide-binding behavior to graphene and graphite. We studied a dodecamer peptide identified with phage display to possess affinity for graphite. Optical spectroscopy reveals that the peptide forms secondary structures both in powder form and in an aqueous medium. The dominant structure in the powder form is α-helix, which undergoes a transition to a distorted helical structure in aqueous solution. The peptide forms a complex reticular structure upon adsorption on graphene and graphite, having a helical conformation different from α-helix due to its interaction with the surface. Our observation is consistent with our molecular dynamics calculations, and our study paves the way for rational functionalization of graphene using biomolecules with defined structures and, therefore, functionalities.

  1. Metastable Frenkel Pair Defect in Graphite: Source of Wigner Energy?

    NASA Astrophysics Data System (ADS)

    Ewels, C. P.; Telling, R. H.; El-Barbary, A. A.; Heggie, M. I.; Briddon, P. R.

    2003-07-01

    The atomic processes associated with energy storage and release in irradiated graphite have long been subject to untested speculation. We examine structures and recombination routes for interstitial-vacancy (I-V) pairs in graphite. Interaction results in the formation of a new metastable defect (an intimate I-V pair) or a Stone-Wales defect. The intimate I-V pair, although 2.9eV more stable than its isolated constituents, still has a formation energy of 10.8eV. The barrier to recombination to perfect graphite is calculated to be 1.3eV, consistent with the experimental first Wigner energy release peak at 1.38eV. We expect similar defects to form in carbon nanostructures such as nanotubes, nested fullerenes, and onions under irradiation.

  2. van der Waals Heteroepitaxy of Germanene Islands on Graphite.

    PubMed

    Persichetti, Luca; Jardali, Fatme; Vach, Holger; Sgarlata, Anna; Berbezier, Isabelle; Crescenzi, Maurizio De; Balzarotti, Adalberto

    2016-08-18

    We fabricated flat, two-dimensional germanium sheets showing a honeycomb lattice that matches that of germanene by depositing submonolayers of Ge on graphite at room temperature and subsequent annealing to 350 °C. Scanning tunneling microscopy shows that the germanene islands have a small buckling with no atomic reconstruction and does not give any hints for alloy formation and hybridization with the substrate. Our density functional theory calculations of the structural properties agree well with our experimental findings and indicate that the germanene sheet interacts only weakly with the substrate underneath. Our band structure calculations confirm that the Dirac cone of free-standing germanene is preserved for layers supported on graphite. The germanene islands show a small but characteristic charge transfer with the graphite substrate which is predicted by our ab initio simulations in excellent agreement with scanning tunneling spectroscopy measurements.

  3. SOUTH END OF FURNACE WITH CAST AND ENGINE SHED IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH END OF FURNACE WITH CAST AND ENGINE SHED IN FOREGROUND, LOOKING NORTH-NORTHEAST. - Tannehill Furnace, 12632 Confederate Parkway, Tannehill Historical State Park, Bucksville, Tuscaloosa County, AL

  4. GENERAL VIEW OF EAST (FRONT) OF DOUBLE FURNACE FROM ACROSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF EAST (FRONT) OF DOUBLE FURNACE FROM ACROSS THE CREEK, LOOKING SOUTHWEST. - Tannehill Furnace, 12632 Confederate Parkway, Tannehill Historical State Park, Bucksville, Tuscaloosa County, AL

  5. WEST (FRONT) OF FURNACE COMPLEX, INCLUDING STACKS, WITH CHARGING BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST (FRONT) OF FURNACE COMPLEX, INCLUDING STACKS, WITH CHARGING BRIDGE AND TRESSLE, LOOKING SOUTHEAST. - Tannehill Furnace, 12632 Confederate Parkway, Tannehill Historical State Park, Bucksville, Tuscaloosa County, AL

  6. Baseline Graphite Characterization: First Billet

    SciTech Connect

    Mark C. Carroll; Joe Lords; David Rohrbaugh

    2010-09-01

    The Next Generation Nuclear Plant Project Graphite Research and Development program is currently establishing the safe operating envelope of graphite core components for a very high temperature reactor design. To meet this goal, the program is generating the extensive amount of quantitative data necessary for predicting the behavior and operating performance of the available nuclear graphite grades. In order determine the in-service behavior of the graphite for the latest proposed designs, two main programs are underway. The first, the Advanced Graphite Creep (AGC) program, is a set of experiments that are designed to evaluate the irradiated properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences, and compressive loads. Despite the aggressive experimental matrix that comprises the set of AGC test runs, a limited amount of data can be generated based upon the availability of space within the Advanced Test Reactor and the geometric constraints placed on the AGC specimens that will be inserted. In order to supplement the AGC data set, the Baseline Graphite Characterization program will endeavor to provide supplemental data that will characterize the inherent property variability in nuclear-grade graphite without the testing constraints of the AGC program. This variability in properties is a natural artifact of graphite due to the geologic raw materials that are utilized in its production. This variability will be quantified not only within a single billet of as-produced graphite, but also from billets within a single lot, billets from different lots of the same grade, and across different billets of the numerous grades of nuclear graphite that are presently available. The thorough understanding of this variability will provide added detail to the irradiated property data, and provide a more thorough understanding of the behavior of graphite that will be used in reactor design and licensing. This report covers the

  7. Energy Saving Devices on Gas Furnaces.

    DTIC Science & Technology

    1980-03-01

    AO-A082 0715 JOHNS - MANVILLE SALES CORP DENVER CO RESEARCH AND DEV--ETC FIG 1311 ENERGY SAVING DEVICES ON GAS FURNACES.(U) MAR B0 T E BRISBANE, P B...DEVICES FOR GAS FURNACES THOMAS E. BRISBANE ,o"’ P. B. SHEPHERD JOHNS - MANVILLE SALES CORPORATION RESEARCH & DEVELOPMENT CENTER KEN-CARYL RANCH, DENVER

  8. Existing and prospective blast-furnace conditions

    SciTech Connect

    I.G. Tovarovskii; V.I. Bol'shakov; V.P. Lyalyuk; A.E. Merkulov; D. V. Pinchuk

    2009-07-15

    Blast-furnace conditions are investigated by means of a multizone model. The expected performance of prospective technologies is assessed, as well as the trends in blast-furnace processes. The model permits the identification of means of overcoming practical difficulties.

  9. Developmental testing of a programmable multizone furnace

    NASA Technical Reports Server (NTRS)

    Ting, E. Y.; Larson, D. J., Jr.

    1986-01-01

    A multizone furnace was evaluated for its potential utilization for process experimentation on board the Space Shuttle. A temperature gradient can be created through the use of a series of connected temperature zones and can be translated by the coordinated sequencing of zone temperatures. The Bridgman-Stockbarger thermal configuration for directional solidification was implemented so that neither the sample nor furnace was translated. The thermal behavior of the furnace was measured and characterized. Limitations due to both thermal and electronic (computer) factors are identified. The results indicate that the multizone design is limited to low temperature gradients because of the indirect furnace-to-sample thermal coupling needed to blend the discrete thermal zones. The multizone furnace design inherently consumes more power than a similar (two temperature) conventional Bridgman type directional solidification furnace because every zone must be capable of the high cooling rates needed to produce the maximum desired temperature drop. Typical achievable static temperature gradients for the furnace tested were between 6 and 75 C/in. The maximum gradient velocity was approximately 10 in./hr. Several aspects of the tested system could be improved, but the dependence of the multizone design on high heat loss will limit Space Shuttle applications in the form tested unless additional power is available. The multizone furnace offers great flexibility but requires a high level of operator understanding for full advantage to be obtained.

  10. Crystal growth furnace safety system validation

    NASA Technical Reports Server (NTRS)

    Mackowski, D. W.; Hartfield, R.; Bhavnani, S. H.; Belcher, V. M.

    1994-01-01

    The findings are reported regarding the safe operation of the NASA crystal growth furnace (CGF) and potential methods for detecting containment failures of the furnace. The main conclusions are summarized by ampoule leak detection, cartridge leak detection, and detection of hazardous species in the experiment apparatus container (EAC).

  11. Blast furnace injection developments in British Steel

    SciTech Connect

    Jukes, M.H.

    1996-12-31

    British Steel has four integrated steel works, i.e., Llanwern, Port Talbot, Scunthorpe, Teesside, with a total of ten blast furnaces, nine of which are currently operating. The furnaces range in size from the 14 meters (45 feet 11 inches) hearth diameter Redcar No. 1 furnace at Teesside (a single furnace works) to the 8.33 meters (27 feet 4 inches) hearth Queen Mary and Queen Bess furnaces at Schunthorpe, with a total of four furnaces at that works. All have injection systems installed, those at Scunthorpe being equipped with granular coal injection and all others currently working with oil injection. The driving force behind the development of blast furnace injection has been as a means for introducing reducing agents (British Steel now refers to coke plus hydrocarbon injectants as total reductants) into the process as a part substitute/supplement for top charged coke and the technology is still being developed and used for that purpose. By utilizing practical experience and observing the work of others, British Steel has been assessing blast furnace injection technology experimentally for purposes other than the introduction of reducing agents.

  12. Pristine graphite oxide.

    PubMed

    Dimiev, Ayrat; Kosynkin, Dmitry V; Alemany, Lawrence B; Chaguine, Pavel; Tour, James M

    2012-02-08

    Graphite oxide (GO) is a lamellar substance with an ambiguous structure due to material complexity. Recently published GO-related studies employ only one out of several existing models to interpret the experimental data. Because the models are different, this leads to confusion in understanding the nature of the observed phenomena. Lessening the structural ambiguity would lead to further developments in functionalization and use of GO. Here, we show that the structure and properties of GO depend significantly on the quenching and purification procedures, rather than, as is commonly thought, on the type of graphite used or oxidation protocol. We introduce a new purification protocol that produces a product that we refer to as pristine GO (pGO) in contrast to the commonly known material that we will refer to as conventional GO (cGO). We explain the differences between pGO and cGO by transformations caused by reaction with water. We produce ultraviolet-visible spectroscopic, Fourier transform infrared spectroscopic, solid-state nuclear magnetic resonance spectroscopic, thermogravimetric, and scanning electron microscopic analytical evidence for the structure of pGO. This work provides a new explanation for the acidity of GO solutions and allows us to add critical details to existing GO models.

  13. FINGERPRINTING INORGANIC ARSENIC AND ORGANOARSENIC COMPOUNDS IN IN SITU OIL SHALE RETORT AND PROCESS VOTERS USING A LIQUID CHROMATOGRAPH COUPLED WITH AN ATOMIC ABSORPTION SPECTROMETER AS A DETECTOR

    SciTech Connect

    Fish, Richard H.; Brinckman, Frederick E.; Jewett, Kenneth L.

    1981-07-01

    Inorganic arsenic and organoarsenic compounds were speciated in seven oil shale retort and process waters, including samples from simulated, true and modified in situ processes, using a high performance liquid chromatograph automatically coupled to a graphite furnace atomic absorption detector. The molecular forms of arsenic at ppm levels (({micro}g/mL) in these waters are identified for the first time, and shown to include arsenate, methylarsonic acid and phenylarsonic acid. An arsenic-specific fingerprint chromatogram of each retort or process water studied has significant impliestions regarding those arsenical species found and those marginally detected, such as dimethylarsinic acid and the suspected carcinogen arsenite. The method demonstrated suggests future means for quantifying environmental impacts of bioactive organometal species involved in oil shale retorting technology.

  14. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  15. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  16. 4 He adsorption on a 3He-plated graphite surface

    NASA Astrophysics Data System (ADS)

    Kwon, Yongkyung; Ahn, Jeonghwan

    Path-integral Monte Carlo (PIMC) calculations have been performed for 4He atoms on top of the 3He first layer on graphite. For this we ignore Fermi statistics of solidified 3He adatoms while Bose statistics of 4He atoms are fully incorporated. We first find that the first 3He layer exhibits a 7/12 commensurate solid structure at the areal density of 0.111 Å-2, which turns out to be identical to the experimental value for its completion density. Additional adsorption of 4He atoms above the complete first 3He layer is found to sustain the underlying 3He commensurate structure and the second 4He layer is observed to display the 4/7 commensurate structure with respect to the first-layer commensurate 3He solid at the areal density of 0.0636 Å-2. Furthermore, it is found that the 4/7 commensurate structure of the second-layer 4He atoms can be formed above a mixture of the first-layer 3He and 4He atoms on graphite. These PIMC results suggest that the 4/7 commensurate structure of the second-layer 4He atoms on graphite, whose existence on top of the first 4He layer has long been in dispute, may be realized on a 3He-plated graphite surface. This could lead to a new approach to observe two-dimensional supersolidity in 4He on graphite.

  17. Optical cavity furnace for semiconductor wafer processing

    DOEpatents

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  18. High temperature furnace modeling and performance verifications

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.

    1988-01-01

    Analytical, numerical and experimental studies were performed on two classes of high temperature materials processing furnaces. The research concentrates on a commercially available high temperature furnace using zirconia as the heating element and an arc furnace based on a ST International tube welder. The zirconia furnace was delivered and work is progressing on schedule. The work on the arc furnace was initially stalled due to the unavailability of the NASA prototype, which is actively being tested aboard the KC-135 experimental aircraft. A proposal was written and funded to purchase an additional arc welder to alleviate this problem. The ST International weld head and power supply were received and testing will begin in early November. The first 6 months of the grant are covered.

  19. A multi-zone muffle furnace design

    NASA Technical Reports Server (NTRS)

    Rowe, Neil D.; Kisel, Martin

    1993-01-01

    A Multi-Zone Muffle-Tube Furnace was designed, built, and tested for the purpose of providing an in-house experience base with tubular furnaces for materials processing in microgravity. As such, it must not only provide the desired temperatures and controlled thermal gradients at several discrete zones along its length but must also be capable of sustaining the rigors of a Space Shuttle launch. The furnace is insulated to minimize radial and axial heat losses. It is contained in a water-cooled enclosure for purposes of dissipating un-wanted residual heat, keeping the outer surfaces of the furnace at a 'touch-safe' temperature, and providing a rugged housing. This report describes the salient features of the furnace, testing procedures and results, and concluding remarks evaluating the overall design.

  20. Multipurpose electroslag remelting furnace for modern energy and heavy engineering industry

    NASA Astrophysics Data System (ADS)

    Dub, A. V.; Dub, V. S.; Kriger, Yu. N.; Levkov, L. Ya.; Shurygin, D. A.; Kissel'man, M. A.; Nekhamin, C. M.; Chernyak, A. I.; Bessonov, A. V.; Kamantsev, S. V.; Sokolov, S. O.

    2012-12-01

    In 2011, a unique complex based on a multipurpose unit-type electroslag remelting (ESR) furnace is created to meet the demand for large high-quality solid and hollow billets for the products of power, atomic, petrochemical, and heavy machine engineering. This complex has modern low-frequency power supplies with a new control level that ensure a high homogeneity and quality of the billets and an increase in the engineering-and-economical performance of the production. A unique pilot ESR furnace is erected to adjust technological conditions and the main control system elements.

  1. BUNDLE - A Novel Furnace for Performing Controlled Directional Solidification Experiments in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Carrasquillo, Edgar J.; Griffin, Mark R.; Hammond, Monica S.; Johnson, Martin L.; Grugel, R. N.

    2001-01-01

    NASA Marshall Space Flight Center has developed a novel directional solidification furnace prototype for processing metals and alloys experiments in a microgravity environment. The BUNDLE (Bridgman Unidirectional Dendrite in Liquid Experiment) furnace is intended to accommodate the science requirements of Flight Definition Principle Investigators studying cellular/dendritic growth in aluminum and lead alloys at processing temperatures up to 1200 C. The furnace implements a number of innovative features to achieve high thermal gradients and quench rates in a low-power, light-weight design. These include a pyrolytic boron nitride/graphite composite heating element surrounded by layers of self-supporting refractory metal shielding, and a graphite fiber enhanced cold zone allowing high levels of heat extraction from the sample crucible. Novel to the BUNDLE design is an in-situ helium gas quench capability that ensures rapid freezing of the solidifying region (mushy zone) of the metal sample within the furnace without sample disturbance prior to quenching; this is a stringent requirement for subsequent analysis and understanding of microstructural development. The experiment hardware concept features multiple furnaces that may be "bundled" together so many samples, currently up to eight, can be processed at one time. The design of BUNDLE is flexible enough to be implemented on the Shuttle and Space Station in a number of locations (SpaceHab, Express Rack, MPESS, ISPR, etc). BUNDLE prototype furnaces have directionally solidified and quenched 1cm diameter lead - 5.8 weight percent antimony and aluminum - 4 weight percent copper alloys. Quenching of the mushy zone, as recorded by in-situ thermocouples, occurred on the order of 0.5 seconds or less, a rate within the PI's requirements. Subsequent metallographic examination revealed the solidified microstructure to be, as expected, unidirectional. Both the dendrite tips and the eutectic reaction were planar in nature

  2. BUNDLE: A Novel Furnace for Performing Controlled Directional Solidification Experiments in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Carrasquillo, Edgar J.; Griffin, Mark R.; Hammond, Monica S.; Johnson, Martin L.; Grugel, R. N.

    2000-01-01

    NASA Marshall Space Flight Center has developed a novel directional solidification furnace prototype for processing metals and alloys experiments in a microgravity environment. The BUNDLE (Bridgman Unidirectional Dendrite in Liquid Experiment) furnace is intended to accommodate the science requirements of Flight Definition Principle Investigators studying cellular/dendritic growth in aluminum and lead alloys at processing temperatures up to 1200 C. The furnace implements a number of innovative features to achieve high thermal gradients and quench rates in a low-power, light-weight design. These include a pyrolytic boron nitride/graphite composite heating element surrounded by layers of self-supporting refractory metal shielding, and a graphite fiber enhanced cold zone allowing high levels of heat extraction from the sample crucible. Novel to the BUNDLE design is an in-situ helium gas quench capability that ensures rapid freezing of the solidifying region (mushy zone) of the metal sample within the furnace without sample disturbance prior to quenching; this is a stringent requirement for subsequent analysis and understanding of microstructural development. The experiment hardware concept features multiple furnaces that may be "bundled" together so many samples, currently up to eight, can be processed at one time. The design of BUNDLE is flexible enough to be implemented on the Shuttle and Space Station in a number of locations (SpaceHab, Express Rack, MPESS, ISPR, etc). BUNDLE prototype furnaces have directionally solidified and quenched 1cm diameter lead - 5.8 weight percent antimony and aluminum - 4 weight percent copper alloys. Quenching of the mushy zone, as recorded by in-situ thermocouples, occurred on the order of 0.5 seconds or less, a rate within the PI's requirements. Subsequent metallographic examination revealed the solidified microstructure to be, as expected, unidirectional. Both the dendrite tips and the eutectic reaction were planar in nature

  3. Method for wetting a boron alloy to graphite

    DOEpatents

    Storms, E.K.

    1987-08-21

    A method is provided for wetting a graphite substrate and spreading a a boron alloy over the substrate. The wetted substrate may be in the form of a needle for an effective ion emission source. The method may also be used to wet a graphite substrate for subsequent joining with another graphite substrate or other metal, or to form a protective coating over a graphite substrate. A noneutectic alloy of boron is formed with a metal selected from the group consisting of nickel (Ni), palladium (Pd), and platinum (Pt) with excess boron, i.e., and atomic percentage of boron effective to precipitate boron at a wetting temperature of less than the liquid-phase boundary temperature of the alloy. The alloy is applied to the substrate and the graphite substrate is then heated to the wetting temperature and maintained at the wetting temperature for a time effective for the alloy to wet and spread over the substrate. The excess boron is evenly dispersed in the alloy and is readily available to promote the wetting and spreading action of the alloy. 1 fig.

  4. Graphitic Phase of NaCl. Bulk Properties and Nanoscale Stability.

    PubMed

    Kvashnin, Alexander G; Sorokin, Pavel B; Tománek, David

    2014-11-20

    We applied the ab initio approach to evaluate the stability and physical properties of the nanometer-thickness NaCl layered films and found that the rock salt films with a (111) surface become unstable with thickness below 1 nm and spontaneously split to graphitic-like films for reducing the electrostatic energy penalty. The observed sodium chloride graphitic phase displays an uncommon atomic arrangement and exists only as nanometer-thin quasi-two-dimensional films. The graphitic bulk counterpart is unstable and transforms to another hexagonal wurtzite NaCl phase that locates in the negative-pressure region of the phase diagram. It was found that the layers in the graphitic NaCl film are weakly bounded with each other with a binding energy order of 0.1 eV per stoichiometry unit. The electronic band gap of the graphitic NaCl displays an unusual nonmonotonic quantum confinement response.

  5. Nuclear techniques for the inspection of blast furnaces

    NASA Astrophysics Data System (ADS)

    Schweitzer, J. S.; Lanza, R. C.

    1999-06-01

    Carbon hearth wall failures in blast furnaces create safety risks and require a large expense to repair. To avoid failures they are replaced early, incurring costs in wasted hearth wall use. Two non-invasive measurements provide realtime analysis of wall integrity. The two major failure modes are erosion of carbon thickness and iron-filled cracks in the bricks. Measurements of backscattered gamma-ray spectra and thermal neutron decay rate can identify both phenomena. Gamma-ray spectra from a compact Linac beam primarily respond to average carbon thickness. Neutron decay time, using a pulsed neutron source, is sensitive to iron in the carbon volume. Each measurement is sensitive to the other failure made, but the combination permits each phenomenon to be resolved. These techniques can detect a high atomic number and thermal neutron absorption cross section material behind one of low atomic number and thermal neutron absorption cross section.

  6. Enhancement of oxidation resistance of graphite foams by polymer derived-silicon carbide coating for concentrated solar power applications

    SciTech Connect

    Kim, T.; Singh, D.; Singh, M.

    2015-05-01

    Graphite foam with extremely high thermal conductivity has been investigated to enhance heat transfer of latent heat thermal energy storage (LHTES) systems. However, the use of graphite foam for elevated temperature applications (>600 °C) is limited due to poor oxidation resistance of graphite. In the present study, oxidation resistance of graphite foam coated with silicon carbide (SiC) was investigated. A pre-ceramic polymer derived coating (PDC) method was used to form a SiC coating on the graphite foams. Post coating deposition, the samples were analyzed by scanning electron microscopy and energy dispersive spectroscopy. The oxidation resistance of PDC-SiC coating was quantified by measuring the weight of the samples at several measuring points. The experiments were conducted under static argon atmosphere in a furnace. After the experiments, oxidation rates (%/hour) were calculated to predict the lifetime of the graphite foams. The experimental results showed that the PDC-SiC coating could prevent the oxidation of graphite foam under static argon atmosphere up to 900 °C.

  7. Enhancement of oxidation resistance of graphite foams by polymer derived-silicon carbide coating for concentrated solar power applications

    DOE PAGES

    Kim, T.; Singh, D.; Singh, M.

    2015-05-01

    Graphite foam with extremely high thermal conductivity has been investigated to enhance heat transfer of latent heat thermal energy storage (LHTES) systems. However, the use of graphite foam for elevated temperature applications (>600 °C) is limited due to poor oxidation resistance of graphite. In the present study, oxidation resistance of graphite foam coated with silicon carbide (SiC) was investigated. A pre-ceramic polymer derived coating (PDC) method was used to form a SiC coating on the graphite foams. Post coating deposition, the samples were analyzed by scanning electron microscopy and energy dispersive spectroscopy. The oxidation resistance of PDC-SiC coating was quantifiedmore » by measuring the weight of the samples at several measuring points. The experiments were conducted under static argon atmosphere in a furnace. After the experiments, oxidation rates (%/hour) were calculated to predict the lifetime of the graphite foams. The experimental results showed that the PDC-SiC coating could prevent the oxidation of graphite foam under static argon atmosphere up to 900 °C.« less

  8. Triply periodic minimal surfaces decorated with curved graphite

    NASA Astrophysics Data System (ADS)

    Terrones, Humbeto; Mackay, Alan L.

    1993-05-01

    Hypothetical negatively curved structures derived from graphite are described, in which all carbon atoms rest on triply periodic minimal surfaces (TPMS). The D minimal surface was calculated using the Weierstrass representation. By applying the Bonnet transformation to the D surface, the gyroid and P surfaces were constructed. Curvatures, densities, lattice parameters and energies have been calculated for all structures. The absolute value of the maximum Gaussian curvature is smaller than that for C 60 fullerene. A new periodic graphite net with the same topology as the I-WP minimal surface, using 5-, 6- and 8-membered rings is found possible. The stability of 11 negatively curved graphitic structures has been determined using Tersoff's three-body potential. All the structures described are more stable than C 60,mainly because the 120° bond angles in ordinary graphite are almost preserved in the 7- and 8-membered carbon rings. The way is now open to explore the decoration of minimal surfaces with further arrangements of atoms of different elements.

  9. Radiocarbon from Pile Graphite; Chemical Methods for Its Concentrations

    DOE R&D Accomplishments Database

    Arnold, J. R.; Libby, W. F.

    1946-10-10

    Samples of pile graphite, irradiated in a test-hole at Hanford for 15 months, have been assayed for radioactive C{sup 14} yielding 0.38 ± 0.04 microcuries per gram. At this level of activity, the pile graphite contains very valuable amounts of C{sup14}. The relation between the above assay and the probable average assay of pile graphite is discussed, and it is concluded that the latter is almost certainly above 0.3 microcuries/gram. Controlled oxidation of this graphite, either with oxygen at ~750ºC, or with chromic acid "cleaning solution" at room temperature, yields early fractions which are highly enriched in C{sup 14}. Concentrations of 5-fold with oxygen, and 50-fold with CrO{sub 3}, have been observed. The relation between the observed enrichment and the Wigner effect is discussed, and a mechanism accounting for the observations put forward. According to this, about 25% of the stable carbon atoms in the lattice have been displaced by Wigner effect, a large fraction of which have healed by migrating to crystal edges. All the C{sup 14} atoms have been displaced, and the same fraction of these migrate to the edges. The enrichment then results from surface oxidation, in the oxygen case. Predictions are made on the basis of this hypothesis. A technique of counting radioactive CO{sub 2} in the gas phase is described.

  10. Separation of analyte and matrix for the direct analysis of high-purity molybdenum-based materials by electrothermal atomic spectrometry methods—I. Radiotracer investigation of thermal extraction of impurities in a graphite cup

    NASA Astrophysics Data System (ADS)

    Dočekal, Bohumil; Krivan, Viliam; Franek, Martin

    1994-06-01

    By means of radiotracers, thermal vaporization of a number of detrimental trace elements (alkali, alkali earth and heavy metals) from metallic molybdenum powder has been studied. For this purpose, molybdenum samples labelled with appropriate radiotracers of the trace elements were prepared from a slurry of molybdenum oxide, ammonium molybdate solution and a radiotracer solution. Vaporization yields were measured after electrothermal treatment of the samples at temperatures between 1900 and 3000°C. Alkali and alkali earth elements, copper and zinc were vaporized with yields higher than 98%. Possible application of the electrothermal vaporization technique to the direct analysis of high-purity molybdenumbased materials by atomic absorption and atomic emission spectrometry is discussed.

  11. Blow-down and blow-in of Inland`s No. 7 blast furnace

    SciTech Connect

    Ricketts, J.; Quisenberry, P.; Carter, W.

    1995-12-01

    After extensive and detailed planning, a mini-reline of the 13.7 meter No. 7 Blast Furnace was executed in November 1993. The furnace lining had 18 million metric tons of production and the bosh, belly and lower stack lining were being maintained through a scheduled grouting practice. The mini-reline was planned for 33 days and the reline work included (a) replacing the bosh, belly and lower stack alumina lining with graphite brick, (b) gunning the middle and upper stack, (c) rebuilding the furnace top, stove burners and tapholes and (d) minor repairs to other auxiliary equipment. During this 33 day reline period the two 8 meter furnaces could only produce 40% of the normal production requirement, therefore the blow-down, quench, salamander tap and blow-in activities were critical to meeting the planned schedule. The planning of these activities was started in the spring of 1993 and included review of Inland`s past blow-down and blow-in performance as well as bench marking the performance of other large blast furnaces in North America, Japan and Europe. The development of the 1993 procedures focused on opportunities to accelerate the blow-down, quench, salamander tap and blow-in as well as having a clean hearth and stack which could also save time during the demolition phase of the reline. Any time that could be saved in these activities directly translated to an early start-up and more plantwide production. This paper will cover the successful planning and implementation of these activities which resulted in a 2 day reduction in the reline schedule, an accelerated production curve and an earlier than planned use of PCI during blow-in.

  12. METHOD OF OBTAINING UNIFORM COATINGS ON GRAPHITE

    DOEpatents

    Campbell, I.E.

    1961-04-01

    A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.

  13. Method of Obtaining Uniform Coatings on Graphite

    DOEpatents

    Campbell, I. E.

    1961-04-01

    A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.

  14. Mineral resource of the month: graphite

    USGS Publications Warehouse

    ,

    2008-01-01

    The article presents facts about graphite ideal for industrial applications. Among the characteristics of graphite are its metallic luster, softness, perfect basal cleavage and electrical conductivity. Batteries, brake linings and powdered metals are some of the products that make use of graphite. It attributes the potential applications for graphite in high-technology fields to innovations in thermal technology and acid-leaching techniques.

  15. Acoustic characteristics of electric arc furnaces

    NASA Astrophysics Data System (ADS)

    Cherednichenko, V. S.; Bikeev, R. A.; Cherednichenko, A. V.; Ognev, A. M.

    2016-06-01

    A mathematical model is constructed to describe the appearance and development of the noise characteristics of superpower electric arc furnaces. The noise formation is shown to be related to the pulsation of the axial plasma flows in arc discharges because of the electrodynamic pressure oscillations caused by the interaction of the self-magnetic field with the current passing in an arc. The pressure in the arc axis changes at a frequency of 100 Hz at the maximum operating pressure of 66 kPa for an arc current of 80 kA. The main ac arc sound frequencies are multiples of 100 Hz, which is supported in the practice of operation of electric arc furnaces. The sound intensity in the furnace laboratory reaches 160 dB and is decreased to 115-120 dB in the working furnace area due to shielding by the furnace jacket, the molten metal, and the molten slag. The appropriateness of increasing the hermetic sealing of electric furnaces and creating furnaces operating at low currents and high transformer voltages is corroborated.

  16. Graphitized needle cokes and natural graphites for lithium intercalation

    SciTech Connect

    Tran, T.D.; Spellman, L.M.; Pekala, R.W.; Goldberger, W.M.; Kinoshita, K.

    1996-05-10

    This paper examined effects of heat treatment and milling (before or after heat treatment) on the (electrochemical) intercalating ability of needle petroleum coke; natural graphite particles are included for comparison. 1 tab, 4 figs, 7 refs.

  17. Local Atomic Density of Microporous Carbons

    SciTech Connect

    Dmowski, Wojtek; Contescu, Cristian I.; Llobet, Anna; Gallego, Nidia C.; Egami, Takeskhi

    2012-07-12

    We investigated the structure of two disordered carbons: activated carbon fibers (ACF) and ultramicroporous carbon (UMC). These carbons have highly porous structure with large surface areas and consequently low macroscopic density that should enhance adsorption of hydrogen. We used the atomic pair distribution function to probe the local atomic arrangements. The results show that the carbons maintain an in-plane local atomic structure similar to regular graphite, but the stacking of graphitic layers is strongly disordered. Although the local atomic density of these carbons is lower than graphite, it is only {approx}20% lower and is much higher than the macroscopic density due to the porosity of the structure. For this reason, the density of graphene sheets that have optimum separation for hydrogen adsorption is lower than anticipated.

  18. Single-Heater, Three-Zone Furnace

    NASA Technical Reports Server (NTRS)

    Gernert, Nelson J.; Shauback, Robert M.

    1993-01-01

    Temperature profile shaped with help of thermal barriers. Proposed furnace for use in experiments on growth of crystals of highly pure material in ampoule provides three temperature zones, yet contains only one heat-pipe liner and one heater and operates with only one controller. Three temperature zones established as thermal resistances of wicks and noncondensible gas reduces flows of heat into channel containing ampoule. Motion of ampoule along channel causes gradients of temperature to move along specimen in ampoule. Variety of three-zone temperature profiles in furnace created by changing thermal resistances of zones and injecting noncondensible gas at appropriate point. Furnace used for variety of experiments.

  19. Evolution of the graphite surface in phosphoric acid: an AFM and Raman study

    PubMed Central

    Brambilla, Luigi; Bussetti, Gianlorenzo; Tommasini, Matteo; Li Bassi, Andrea; Casari, Carlo Spartaco; Passoni, Matteo; Ciccacci, Franco; Duò, Lamberto; Castiglioni, Chiara

    2016-01-01

    Phosphoric acid is an inorganic acid used for producing graphene sheets by delaminating graphite in (electro-)chemical baths. The observed phenomenology during the electrochemical treatment in phosphoric acid solution is partially different from other acidic solutions, such as sulfuric and perchloric acid solutions, where the graphite surface mainly forms blisters. In fact, the graphite surface is covered by a thin layer of modified (oxidized) material that can be observed when an electrochemical potential is swept in the anodic current regime. We characterize this particular surface evolution by means of a combined electrochemical, atomic force microscopy and Raman spectroscopy investigation. PMID:28144537

  20. Toxic-Waste Disposal by Drain-in-Furnace Technique

    NASA Technical Reports Server (NTRS)

    Compton, L. E.; Stephens, J. B.; Moynihan, P. I.; Houseman, J.; Kalvinskas, J. J.

    1986-01-01

    Compact furnace moved from site to site. Toxic industrial waste destroyed using furnace concept developed for disposal of toxic munitions. Toxic waste drained into furnace where incinerated immediately. In furnace toxic agent rapidly drained and destroyed in small combustion chamber between upper and lower layers of hot ceramic balls