Characteristics of Pool Boiling on Graphite-Copper Composite Surfaces
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chao, David F.; Yang, Wen-Jei
2002-01-01
Nucleate pool boiling performance of different liquids on graphite-copper composite (Gr-Cu) surfaces has been experimentally studied and modeled. Both highly wetting fluids, such as freon-113 and pentane, and a moderately wetting fluid (water) were tested on the Gr-Cu surfaces with different graphite-fiber volume fractions to reveal the enhancement effects of the composite surfaces on the nucleate pool boiling. Results of the experiments show that the graphite-fiber volume fraction has an optimum value. The Gr-Cu composite surface with 25 percent graphite-fiber volume (f=0.25) has a maximum enhancement effect on the nucleate boiling heat transfer comparing to the pure copper surface. For the highly wetting fluid, the nucleate boiling heat transfer is generally enhanced on the Gr- Cu composite surfaces by 3 to 6 times shown. In the low heat flux region, the enhancement is over 6 times, but in the high heat flux region, the enhancement is reduced to about 40%. For the moderately wetting fluid (water), stronger enhancement of nucleate boiling heat transfer is achieved on the composite surface. It shown the experimental results in which one observes the nucleate boiling heat transfer enhancement of 5 to 10 times in the low heat flux region and an enhancement of 3 to 5 times in the high heat flux region. Photographs of bubble departure during the initial stage of nucleate boiling indicate that the bubbles detached from the composite surface are much smaller in diameter than those detached from the pure copper surface. Typical photographs are presented.It shows that the bubbles departed from the composite surface have diameters of only O(0.1) mm, while those departed from the pure copper surface have diameters of O(1) mm. It is also found that the bubbles depart from the composite surface at a much higher frequency, thus forming vapor columns. These two phenomena combined with high thermal conductivity of the graphite fiber are considered the mechanisms for such a significant augmentation in nucleate boiling heat transfer on the composite surfaces. A physical model is developed to describe the phenomenon of bubble departure from the composite surface: The preferred site of bubble nucleation is the fiber tip because of higher tip temperature than the surrounding copper base and poor wettability of the graphite tip compared with that of the base material (copper). The high evaporation rate near the contact line produces the vapor cutback due to the vapor recoil pushing the three-phase line outwards from the fiber tip, and so a neck of the bubble is formed near the bubble bottom. Evaporation and surface tension accelerate the necking process and finally result in the bubble departure while a new small bubble is formed at the tip when the surface tension pushes the three-phase line back to the tip. The process is schematically shown. The proposed model is based on and confirmed by experimental results.
Heat Transfer Performances of Pool Boiling on Metal-Graphite Composite Surfaces
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chao, David F.; Yang, Wen-Jei
2000-01-01
Nucleate boiling, especially near the critical heat flux (CHF), can provide excellent economy along with high efficiency of heat transfer. However, the performance of nucleate boiling may deteriorate in a reduced gravity environment and the nucleate boiling usually has a potentially dangerous characteristic in CHF regime. That is, any slight overload can result in burnout of the boiling surface because the heat transfer will suddenly move into the film-boiling regime. Therefore, enhancement of nucleate boiling heat transfer becomes more important in reduced gravity environments. Enhancing nucleate boiling and critical heat flux can be reached using micro-configured metal-graphite composites as the boiling surface. Thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix, which is independent of gravity, will play an important role in bubble detachment. Thus boiling heat transfer performance does not deteriorate in a reduced-gravity environment. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. Experimental studies were performed on nucleate pool boiling of pentane on cooper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composite surfaces with various fiber volume concentrations for heat fluxes up to 35 W per square centimeter. It is revealed that a significant enhancement in boiling heat transfer performance on the composite surfaces is achieved, due to the presence of micro-graphite fibers embedded in the matrix. The onset of nucleate boiling (the isolated bubble regime) occurs at wall superheat of about 10 C for the Cu-Gr surface and 15 C for the Al-Gr surface, much lower than their respective pure metal surfaces. Transition from an isolated bubble regime to a coalesced bubble regime in boiling occurs at a superheat of about 14 C on Cu-Gr surface and 19 C on Al-Gr surface.
Critical Heat Flux in Pool Boiling on Metal-Graphite Composite Surfaces
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Yang, Wen-Jei; Chao, David F.; Chao, David F. (Technical Monitor)
2000-01-01
A study is conducted on high heat-flux pool boiling of pentane on micro-configured composite surfaces. The boiling surfaces are copper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composites with a fiber volume concentration of 50%. The micro-graphite fibers embedded in the matrix contribute to a substantial enhancement in boiling heat-transfer performance. Correlation equations are obtained for both the isolated and coalesced bubble regimes, utilizing a mathematical model based on a metal-graphite, two-tier configuration with the aid of experimental data. A new model to predict the critical heat flux (CHF) on the composites is proposed to explain the fundamental aspects of the boiling phenomena. Three different factors affecting the CHF are considered in the model. Two of them are expected to become the main agents driving vapor volume detachment under microgravity conditions, using the metal-graphite composite surfaces as the heating surface and using liquids with an unusual Marangoni effect as the working fluid.
Formation and Growth of Micro and Macro Bubbles on Copper-Graphite Composite Surfaces
NASA Technical Reports Server (NTRS)
Chao, David F.; Sankovic, John M.; Motil, Brian J.; Zhang, Nengli
2007-01-01
Micro scale boiling behavior in the vicinity of graphite micro-fiber tips on the coppergraphite composite boiling surfaces is investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the copper matrix in pool boiling. In virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each of which sitting on several tips. The growth processes of the micro and macro bubbles are analyzed and formulated followed by an analysis of bubble departure on the composite surfaces. Based on these analyses, the enhancement mechanism of the pool boiling heat transfer on the composite surfaces is clearly revealed. Experimental results of pool boiling heat transfer both for water and Freon-113 on the composite surfaces convincingly demonstrate the enhancement effects of the unique structure of Cu-Gr composite surfaces on boiling heat transfer.
NASA Technical Reports Server (NTRS)
Chao, David F.; Sankovic, John M.; Motil, Brian J.; Yang, W-J.; Zhang, Nengli
2010-01-01
The formation and growth processes of a bubble in the vicinity of graphite micro-fiber tips on metal-graphite composite boiling surfaces and their effects on boiling behavior are investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the metal matrix in pool boiling. By virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the end of the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each spanning several tips. The necking process of a detaching macro bubble is analyzed. It is revealed that a liquid jet is produced by sudden break-off of the bubble throat. The composite surfaces not only have higher temperatures in micro- and macrolayers but also make higher frequency of the bubble departure, which increase the average heat fluxes in both the bubble growth stage and in the bubble departure period. Based on these analyses, the enhancement mechanism of pool boiling heat transfer on composite surfaces is clearly revealed.
Daniels, F.
1957-11-01
This patent relates to neutronic reactor power plants and discloses a design of a reactor utilizing a mixture of discrete units of a fissionable material, such as uranium carbide, a neutron moderator material, such as graphite, to carry out the chain reaction. A liquid metal, such as bismuth, is used as the coolant and is placed in the reactor chamber with the fissionable and moderator material so that it is boiled by the heat of the reaction, the boiling liquid and vapors passing up through the interstices between the discrete units. The vapor and flue gases coming off the top of the chamber are passed through heat exchangers, to produce steam, for example, and thence through condensers, the condensed coolant being returned to the chamber by gravity and the non- condensible gases being carried off through a stack at the top of the structure.
Enhancements of Nucleate Boiling Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chao, David F.; Yang, W. J.
2000-01-01
This paper presents two means for enhancing nucleate boiling and critical heat flux under microgravity conditions: using micro-configured metal-graphite composites as the boiling surface and dilute aqueous solutions of long-chain alcohols as the working fluid. In the former, thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix plays an important role in bubble detachment. Thus boiling-heat transfer performance does not deteriorate in a reduced-gravity environment. In the latter cases, the surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. This feature is most favorable in microgravity. As a result, the bubble size of departure is substantially reduced at higher frequencies. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. In addition, performance equations for nucleate boiling and critical heat flux in dilute aqueous solutions of long-chain alcohols are obtained.
Boiling on Microconfigured Composite Surfaces Enhanced
NASA Technical Reports Server (NTRS)
Chao, David F.
2000-01-01
Boiling heat transfer is one of the key technologies for the two-phase active thermal-control system used on space platforms, as well as for the dynamic power systems aboard the International Space Station. Because it is an effective heat transfer mode, boiling is integral to many space applications, such as heat exchangers and other cooling devices. Nucleate boiling near the critical heat flux (CHF) can transport very large thermal loads with a much smaller device and much lower pumping power than for single-phase heat exchangers. However, boiling performance sharply deteriorates in a reduced-gravity environment, and operation in the CHF regime is somewhat perilous because of the risk of burnout to the device surface. New materials called microconfigured metal-graphite composites can enhance boiling. The photomicrograph shows the microconfiguration (x3000) of the copper-graphite (Cu-Gr) surface as viewed by scanning electronic microscope. The graphite fiber tips appear as plateaus with rugged surfaces embedded in the copper matrix. It has been experimentally demonstrated that this type of material manifests excellent boiling heat transfer performance characteristics and an increased CHF. Nonisothermal surfaces were less sensitive to variations of wall superheat in the CHF regime. Because of the great difference in conductivity between the copper base and the graphite fiber, the composite surfaces have a nonisothermal surface characteristic and, therefore, will have a much larger "safe" operating region in the CHF regime. In addition, the thermocapillary forces induced by the temperature differences between the fiber tips and the metal matrix play an important role in bubble detachment, and may not be adversely affected in a reduced-gravity environment. All these factors indicate that microconfigured composites may improve the reliability and economy (dominant factors in all space applications) of various thermal components found on spacecraft during future missions.
Enhanced Boiling on Micro-Configured Composite Surfaces Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chai, An-Ti
1999-01-01
In order to accommodate the growing thermal management needs of future space platforms, several two-phase active thermal control systems (ATCSs) have evolved and were included in the designs of space stations. Compared to the pumped single-phase liquid loops used in the conventional Space Transportation System and Spacelab, ATCSs offer significant benefits that may be realized by adopting a two-phase fluid-loop system. Alternately, dynamic power systems (DPSs), based on the Rankine cycle, seem inevitably to be required to supply the electrical power requirements of expanding space activities. Boiling heat transfer is one of the key technologies for both ATCSs and DPSs. Nucleate boiling near critical heat flux (CHF) can transport very large thermal loads with much smaller device size and much lower pumping power. However, boiling performance deteriorates in a reduced gravity environment and operation in the CHF regime is precarious because any slight overload will cause the heat transfer to suddenly move to the film boiling regime, which in turn, will result in burnout of the heat transfer surfaces. New materials, such as micro-configured metal-graphite composites, can provide a solution for boiling enhancement. It has been shown experimentally that this type of material manifests outstanding boiling heat transfer performance and their CHF is also extended to higher values. Due to the high thermal conductivity of graphite fiber (up to 1,200 W/m-K in the fiber direction), the composite surfaces are non-isothermal during the boiling process. The composite surfaces are believed to have a much wider safe operating region (a more uniform boiling curve in the CHF regime) because non-isothermal surfaces have been found to be less sensitive to variations of wall superheat in the CHF regime. The thermocapillary forces formed by the temperature difference between the fiber tips and the metal matrix play a more important role than the buoyancy in the bubble detachment, for the bubble detachment manifests itself by a necking process which should not be weakened by reduced gravity. In addition, the composite surfaces introduce no extra pressure drop, no fouling and do not impose significant primary or maintenance costs. All of these suggest that this type of composite is an ideal material for the challenge of accounting for both reliability and economy of the relevant components applied in the ATCSs, the DPSs and other devices in future space missions. The aim of the proposed work is to experimentally investigate high nucleate pool boiling performance on a micro-configured metal-graphite composite surface and to determine the mechanisms of the nucleate boiling heat transfer both experimentally and theoretically. Freon-113 and water will be used as the test liquids to investigate wettability effects on boiling characteristics. The Cu-Gr and Al-Gr composites with various volume fractions of graphite fibers will be tested to obtain the heat transfer characteristic data in the nucleate boiling region and in the CHF regime. In the experiments, the bubble emission and coalescence processes will be recorded by a video camera with a magnifying borescope probe immersed in the working fluid. The temperature profile in the thermal boundary layer on the composite surfaces will be measured by a group of micro thermocouples consisting of four ultra fine micro thermocouples. This instrument was developed and successfully used to measure the temperature profile of evaporating liquid thin layers by the proposers in a study performed at the NASA/Lewis Research Center. A two tier model to explain the nucleate boiling process and the performance enhancement on the composite surfaces has been suggested by the authors. According to the model, the thicknesses of the microlayer and the macrolayer underneath the bubbles and mushrooms, can be estimated by the geometry of the composite surface. The experimental results will be compared to the predictions from the model, and in turn, to revise and improve it.
NASA Astrophysics Data System (ADS)
Asinovskii, Erik I.; Kirillin, Alexander V.; Kostanovskii, Alexander V.
2002-08-01
A consistent procedure for plotting the carbon melting and boiling coexistence curves based on published data and the authors' experimental results is proposed. The parameters of a triple point are predicted to differ markedly from the currently accepted values: pt approx1 bar and Tt approx 4000 K. Two types of experimental facilities were used, with laser heating of samples in one and direct ohmic heating in the other. The existence of a carbyne region (a stable linear polymer consisting of carbon atoms) in the carbon phase diagram is discussed. Results on the direct solid-phase graphite - carbyne transition are presented, and this is shown to occur under certain conditions in the form of a thermal explosion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sproles, A.
1993-03-01
During summer 1992, the World Association of Nuclear Operators (WANO) sponsored an exchange visit between Georgia Power Company's Edwin I. Hatch nuclear plant, a two-unit boiling water reactor site, and the Smolensk atomic energy station, a three-unit RBMK (graphite-moderated and light-water-cooled) plant located 350 km west of Moscow, in Desnogorsk, Russia. The Plant Hatch team included Glenn Goode, manager of engineering support; Curtis Coggin, manager of training and emergency preparedness; Wayne Kirkley, manager of health physics and chemistry; John Lewis, manager of operations; Ray Baker, coordinator of nuclear fuels and contracts; and Bruce McLeod, manager of nuclear maintenance support. Alsomore » traveling with the team was Jerald Towgood, of WANO's Atlanta Centre. The Hatch team visited the Smolensk plant during the week of July 27, 1992.« less
Zhang, Wendy Li; Chen, Jian-Ping; Lam, Kelly Yin-Ching; Zhan, Janis Ya-Xian; Yao, Ping; Dong, Tina Ting-Xia; Tsim, Karl Wah-Keung
2014-01-01
Chemical change during boiling of herbal mixture is a puzzle. By using Danggui Buxue Tang (DBT), a herbal decoction that contains Astragali Radix (AR) and Angelicae Sinensis Radix (ASR), we developed a model in analyzing the hydrolysis of flavonoid glycosides during the boiling of herbal mixture in water. A proper preparation of DBT is of great benefit to the complete extraction of bioactive ingredients. Boiling of DBT in water increased the solubility of AR-derived astragaloside IV, calycosin, formononetin, calycosin-7-O-β-D-glucoside, and ononin in a time- and temperature-dependent manner: the amounts of these chemicals reached a peak at 2 h. The glycosidic resides of AR, calycosin-7-O-β-D-glucoside, and ononin could be hydrolyzed during the moderate boiling process to form calycosin and formononetin, respectively. The hydrolysis efficiency was strongly affected by pH, temperature, and amount of herbs. Interestingly, the preheated herbs were not able to show this hydrolytic activity. The current results supported the rationality of ancient preparation of DBT in boiling water by moderate heat. PMID:24744813
Internal graphite moderator forces study, C and K Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooley, D.E.
1963-10-28
The purpose of this study was to determine the maximum forces that can be imposed by the graphite moderator on prospective VSR channel sleeves. In order to do this, both the origins and modes of transmission of the forces were determined. Forces in the moderator stack that are capable of acting on a block or group of blocks may originate from any of the following primary effects: Contraction of graphite due to irradiation; thermal expansion of graphite; frictional resistance to motion; resistance from keys; gravity; and other.
METHOD OF FABRICATING A GRAPHITE MODERATED REACTOR
Kratz, H.R.
1963-05-01
S>A nuclear reactor formed of spaced bodies of uranium and graphite blocks is improved by diffusing helium through the graphite blocks in order to replace the air in the pores of the graphite with helium. The helium-impregnated graphite conducts heat better, and absorbs neutrons less, than the original air- impregnated graphite. (AEC)
Neutronic reactor thermal shield
Wende, Charles W. J.
1976-06-15
1. The method of operating a water-cooled neutronic reactor having a graphite moderator which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40-60 volume percent of the mixture, in contact with the graphite moderator.
REACTOR HAVING NaK-UO$sub 2$ SLURRY HELICALLY POSITIONED IN A GRAPHITE MODERATOR
Rodin, M.B.; Carter, J.C.
1962-05-15
A reactor utilizing 20% enriched uranium consists of a central graphite island in cylindrical form, with a spiral coil of tubing fitting against the central island. An external graphite moderator is placed around the central island and coil. A slurry of uranium dioxide dispersed in alkali metal passes through the coil to transfer heat externally to the reactor. There are also conventional controls for regulating the nuclear reaction. (AEC)
Role of nuclear grade graphite in controlling oxidation in modular HTGRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windes, Willaim; Strydom, G.; Kane, J.
2014-11-01
The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of coremore » environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.« less
NUCLEAR SUPERHEATER FOR BOILING WATER REACTOR
Holl, R.J.; Klecker, R.W.; Graham, C.B.
1962-05-15
A description is given of a boiling water reactor having a superheating region integral with the core. The core consists essentially of an annular boiling region surrounding an inner superheating region. Both regions contain fuel elements and are separated by a cylindrical wall, perforations being provided in the lower portion of the cylindrical wall to permit circulation of a common water moderator between the two regions. The superheater region comprises a plurality of tubular fuel assemblies through which the steam emanating from the boiling region passes to the steam outlet. Each superheater fuel assembly has an outer double-walled cylinder, the double walls being concentrically spaced and connected together at their upper ends but open at the bottom to provide for differential thermal expansion of the inner and outer walls. Gas is entrapped in the annulus between the walls which acts as an insulating space between the fissionable material inside and the moderator outside. (AEC)
JACKETED FUEL ELEMENTS FOR GRAPHITE MODERATED REACTORS
Szilard, L.; Wigner, E.P.; Creutz, E.C.
1959-05-12
Fuel elements for a heterogeneous, fluid cooled, graphite moderated reactor are described. The fuel elements are comprised of a body of natural uranium hermetically sealed in a jacket of corrosion resistant material. The jacket, which may be aluminum or some other material which is non-fissionable and of a type having a low neutron capture cross-section, acts as a barrier between the fissioning isotope and the coolant or moderator or both. The jacket minimizes the tendency of the moderator and coolant to become radioactive and/or contaminated by fission fragments from the fissioning isotope.
Design Manual for Impact Damage Tolerant Aircraft Structure. Addendum
1988-03-01
Effective Flaw Size 20 22 Effective Flaws for Cubical Fragments Impacting Graphite/Epoxy Laminates 21 23 Effective Flaws for Aligned and Tumbled Armour ... armour -piercing projectiles impact, penetrate, and traverse a fuel tank and generate intensive pressure waves that act on the fuel tank. Since...eg. aerodynamic smoothnessflutter, etc.) and the repai concept (eag boiled repar external bonded pateh. flush scar bonded patch, etc., and (3) dhe
Carleton, John T.
1977-01-25
A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.
NASA Astrophysics Data System (ADS)
Fedi, Filippo; Miglietta, Maria Lucia; Polichetti, Tiziana; Ricciardella, Filiberto; Massera, Ettore; Ninno, Domenico; Di Francia, Girolamo
2015-03-01
Straightforward methods to produce pristine graphene flakes in large quantities are based on the liquid-phase exfoliation processes. These one-step physical transformations of graphite into graphene offer many unique advantages. To date, a large number of liquids have been employed as exfoliation media exploiting their thermodynamic and chemical features as compared to those of graphene. Here, we pursued the goal of realizing water based mixtures to exfoliate graphite and disperse graphene without the aid of surfactants. To this aim, aqueous mixtures with suitable values of surface tension and Hansen solubility parameters (HSPs), were specifically designed and used. The very high water surface tension was decreased by the addition of solvents with lower surface tensions such as alcohols, obtaining, in this way, more favourable HSP distances. The specific role of each of these thermodynamic features was finally investigated. The results showed that the designed hydroalcoholic solutions were effective in both the graphite exfoliation and dispersion without the addition of any surfactants or other stabilizing agents. Stable graphene suspensions were obtained at concentration comparable to those produced with low-boiling solvents and water/surfactants.
Zhang, Lu; Miao, Zhongshuo; Hao, Zhen; Liu, Jun
2016-05-06
With normal organic surfactants, graphene can only be dispersed in water and cannot be dispersed in low-boiling-point organic solvents, which hampers its application in solution-processed organic optoelectronic devices. Herein, we report the exfoliation of graphite into graphene in low-boiling-point organic solvents, for example, methanol and acetone, by using edge-carboxylated graphene quantum dots (ECGQD) as the surfactant. The great capability of ECGQD for graphene dispersion is due to its ultralarge π-conjugated unit that allows tight adhesion on the graphene surface through strong π-π interactions, its edge-carboxylated structure that diminishes the steric effects of the oxygen-containing functional groups on the basal plane of ECGQD, and its abundance of carboxylic acid groups for solubility. The graphene dispersion in methanol enables the application of graphene:ECGQD as a cathode interlayer in polymer solar cells (PSCs). Moreover, the PSC device performance of graphene:ECGQD is better than that of Ca, the state-of-the-art cathode interlayer material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hindered Glymes for Graphite-Compatible Electrolytes.
Shanmukaraj, Devaraj; Grugeon, Sylvie; Laruelle, Stephane; Armand, Michel
2015-08-24
Organic carbonate mixtures are used almost exclusively as lithium battery electrolyte solvents. The linear compounds (dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate) act mainly as thinner for the more viscous and high-melting ethylene carbonate but are the least stable component and have low flash points; these are serious handicaps for lifetime and safety. Polyethers (glymes) are useful co-solvents, but all formerly known representatives solvate Li(+) strongly enough to co-intercalate in the graphite negative electrode and exfoliate it. We have put forward a new electrolyte composition comprising a polyether to which a bulky tert-butyl group is attached ("hindered glyme"), thus completely preventing co-intercalation while maintaining good conductivity. This alkyl-carbonate-free electrolyte shows remarkable cycle efficiency of the graphite electrode, not only at room temperature, but also at 50 and 70 °C in the presence of lithium bis(fluorosulfonimide). The two-ethylene-bridge hindered glyme has a high boiling point and a flash point of 80 °C, a considerable advantage for safety. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Frantz, C.E.; Cawley, W.E.
1961-05-01
A tool is described for cutting a coolant tube adapted to contain fuel elements to enable the tube to be removed from a graphite moderator mass. The tool splits the tube longitudinally into halves and curls the longitudinal edges of the halves inwardly so that they occupy less space and can be moved radially inwardly away from the walls of the hole in the graphite for easy removal from the graphite.
ICP-MS measurement of diffusion coefficients of Cs in NBG-18 graphite
NASA Astrophysics Data System (ADS)
Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.
2015-11-01
Graphite is used in the HGTR/VHTR as moderator and it also functions as a barrier to fission product release. Therefore, an elucidation of transport of fission products in reactor-grade graphite is required. We have measured diffusion coefficients of Cs in graphite NBG-18 using the release method, wherein we infused spheres of NBG-18 with Cs and measured the release rates in the temperature range of 1090-1395 K. We have obtained: These seem to be the first reported values of Cs diffusion coefficients in NBG-18. The values are lower than those reported for other graphites in the literature.
Modelling deformation and fracture of Gilsocarbon graphite subject to service environments
NASA Astrophysics Data System (ADS)
Šavija, Branko; Smith, Gillian E.; Heard, Peter J.; Sarakinou, Eleni; Darnbrough, James E.; Hallam, Keith R.; Schlangen, Erik; Flewitt, Peter E. J.
2018-02-01
Commercial graphites are used for a wide range of applications. For example, Gilsocarbon graphite is used within the reactor core of advanced gas-cooled reactors (AGRs, UK) as a moderator. In service, the mechanical properties of the graphite are changed as a result of neutron irradiation induced defects and porosity arising from radiolytic oxidation. In this paper, we discuss measurements undertaken of mechanical properties at the micro-length-scale for virgin and irradiated graphite. These data provide the necessary inputs to an experimentally-informed model that predicts the deformation and fracture properties of Gilsocarbon graphite at the centimetre length-scale, which is commensurate with laboratory test specimen data. The model predictions provide an improved understanding of how the mechanical properties and fracture characteristics of this type of graphite change as a result of exposure to the reactor service environment.
A test program was performed at the Environmental Protection Agency Incineration Research Facility to study the effectiveness of incineration at low-to-moderate temperatures in decontaminating soils containing organic compounds with different volatilities (boiling points). The da...
Treshow, M.
1961-09-01
A boiling-water nuclear reactor is described wherein control is effected by varying the moderator-to-fuel ratio in the reactor core. This is accomplished by providing control tubes containing a liquid control moderator in the reactor core and providing means for varying the amount of control moderatcr within the control tubes.
Validation of MCNP: SPERT-D and BORAX-V fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, C.; Palmer, B.
1992-11-01
This report discusses critical experiments involving SPERT-D{sup 1,2} fuel elements and BORAX-V{sup 3-8} fuel which have been modeled and calculations performed with MCNP. MCNP is a Monte Carlo based transport code. For this study continuous-energy nuclear data from the ENDF/B-V cross section library was used. The SPERT-D experiments consisted of various arrays of fuel elements moderated and reflected with either water or a uranyl nitrate solution. Some SPERT-D experiments used cadmium as a fixed neutron poison, while others were poisoned with various concentrations of boron in the moderating/reflecting solution. ne BORAX-V experiments were arrays of either boiling fuel rod assembliesmore » or superheater assemblies, both types of arrays were moderated and reflected with water. In one boiling fuel experiment, two fuel rods were replaced with borated stainless steel poison rods.« less
Validation of MCNP: SPERT-D and BORAX-V fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, C.; Palmer, B.
1992-11-01
This report discusses critical experiments involving SPERT-D[sup 1,2] fuel elements and BORAX-V[sup 3-8] fuel which have been modeled and calculations performed with MCNP. MCNP is a Monte Carlo based transport code. For this study continuous-energy nuclear data from the ENDF/B-V cross section library was used. The SPERT-D experiments consisted of various arrays of fuel elements moderated and reflected with either water or a uranyl nitrate solution. Some SPERT-D experiments used cadmium as a fixed neutron poison, while others were poisoned with various concentrations of boron in the moderating/reflecting solution. ne BORAX-V experiments were arrays of either boiling fuel rod assembliesmore » or superheater assemblies, both types of arrays were moderated and reflected with water. In one boiling fuel experiment, two fuel rods were replaced with borated stainless steel poison rods.« less
New insights into canted spiro carbon interstitial in graphite
NASA Astrophysics Data System (ADS)
EL-Barbary, A. A.
2017-12-01
The self-interstitial carbon is the key to radiation damage in graphite moderator nuclear reactor, so an understanding of its behavior is essential for plant safety and maximized reactor lifetime. The density functional theory is applied on four different graphite unit cells, starting from of 64 carbon atoms up to 256 carbon atoms, using AIMPRO code to obtain the energetic, athermal and mechanical properties of carbon interstitial in graphite. This study presents first principles calculations of the energy of formation that prove its high barrier to athermal diffusion (1.1 eV) and the consequent large critical shear stress (39 eV-50 eV) necessary to shear graphite planes in its presence. Also, for the first time, the gamma surface of graphite in two dimensions is calculated and found to yield the critical shear stress for perfect graphite. Finally, in contrast to the extensive literature describing the interstitial of carbon in graphite as spiro interstitial, in this work the ground state of interstitial carbon is found to be canted spiro interstitial.
AGC 2 Irradiated Material Properties Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohrbaugh, David Thomas
2017-05-01
The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. , Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core componentsmore » within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less
AGC 2 Irradiation Creep Strain Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windes, William E.; Rohrbaugh, David T.; Swank, W. David
2016-08-01
The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. Nuclear graphite H-451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core components within amore » commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less
HORIZONTAL BOILING REACTOR SYSTEM
Treshow, M.
1958-11-18
Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.
Room Temperature Curing Resin Systems for Graphite/Epoxy Composite Repair.
1979-12-01
ROOM TEMPERATURE CURING RESIN SYSTEMS FOR GRAPHITE/EPOXY COMPOS--ETC(UI DEC 79 0 J CRABTREE N62269-79-C-G224 UNCLASSIFIE O80-46 NADC -781 1-6 NL END...Room Temperature Curing Resin Sys-U3 linal for Graphite/Epoxy Composite Repair •.Dec *79 NOR- -46h: V111IT NUM8ER(s) 4362269-79- ,722 S. PERFORMING...repair, composite repair room temperature cure resin , moderate temperature cure resins , epoxies, adhesives, vinyl eater polymers, anaerobic curing polymers
EFFECT OF MASSIVE NEUTRON EXPOSURE ON THE DISTORTION OF REACTOR GRAPHITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helm, J.W.; Davidson, J.M.
1963-05-28
Distortion of reactor-grade graphites was studied at varying neutron exposures ranging up to 14 x 10/sup 21/ neutrons per cm/sup 2/ (nvt)/sup */ at temperatures of irradiation ranging from 425 to 800 deg C. This exposure level corresponds to approximately 100,000 megawatt days per adjacent ton of fuel (Mwd/ At) in a graphite-moderated reactor. A conventionalcoke graphite, CSF, and two needle-coke graphites, NC-7 and NC-8, were studied. At all temperatures of irradiation the contraction rate of the samples cut parallel to the extrusion axis increased with increasing neutron exposure. For parallel samples the needle- coke graphites and the CSF graphitemore » contracted approximately the same amount. In the transverse direction the rate of cortraction at the higher irradiation temperntures appeared to be decreasing. Volume contractions derived from the linear contractions are discussed. (auth)« less
Boiling enriches the linear polysulfides and the hydrogen sulfide-releasing activity of garlic.
Tocmo, Restituto; Wu, Yuchen; Liang, Dong; Fogliano, Vincenzo; Huang, Dejian
2017-04-15
Garlic is rich in polysulfides, and some of them can be H 2 S donors. This study was conducted to explore the effect of cooking on garlic's organopolysulfides and H 2 S-releasing activity. Garlic bulbs were crushed and boiled for a period ranging from 3 to 30min and the solvent extracts were analyzed by GC-MS/FID and HPLC. A cell-based assay was used to measure the H 2 S-releasing activity of the extracts. Results showed that the amounts of allyl polysulfides increased in crushed garlic boiled for 6-10min; however, prolonging the thermal treatment to 20 or 30min decreased their concentrations. Data of the H 2 S-releasing activity, expressed as diallyl trisulfide equivalents (DATS-E), parallel this trend, being significantly higher at 6 and 10min boiling. Our results showed enhancement of H 2 S-releasing activity upon moderate boiling, suggesting that shorter cooking time may maximize its health benefits as a dietary source of natural H 2 S donors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Experimental investigation of the latent heat of vaporization in aqueous nanofluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Soochan; Phelan, Patrick E., E-mail: phelan@asu.edu; Dai, Lenore
2014-04-14
This paper reports an experimental investigation of the latent heat of vaporization (h{sub fg}) in nanofluids. Two different types of nanoparticles, graphite and silver, suspended in deionized water were exposed to a continuous laser beam (130 mW, 532 nm) to generate boiling. The latent heat of vaporization in the nanofluids was determined by the measured vapor mass generation and the heat input. To ensure that the measured h{sub fg} values are independent of heating method, the experiments were repeated with an electrically heated hot wire as a primary heat input. These experiments show considerable variation in the h{sub fg} of nanofluids.more » That is, graphite nanofluid exhibits an increased h{sub fg} and silver nanofluid shows a decrease in h{sub fg} compared to the value for pure water. As such, these results indicate that relatively low mass fractions of nanoparticles can apparently create large changes in h{sub fg}.« less
Electrical Characterization of Graphite/InP Schottky Diodes by I-V-T and C-V Methods
NASA Astrophysics Data System (ADS)
Tiagulskyi, Stanislav; Yatskiv, Roman; Grym, Jan
2018-02-01
A rectifying junction was prepared by casting a drop of colloidal graphite on the surface of an InP substrate. The electrophysical properties of graphite/InP junctions were investigated in a wide temperature range. Temperature-dependent I-V characteristics of the graphite/InP junctions are explained by the thermionic emission mechanism. The Schottky barrier height (SBH) and the ideality factor were found to be 0.9 eV and 1.47, respectively. The large value of the SBH and its weak temperature dependence are explained by lateral homogeneity of the junction, which is related to the structure of the graphite layer. The moderate disagreement between the current-voltage and capacitance-voltage measurements is attributed to the formation of interfacial native oxide film on the InP surface.
On the critical temperature, normal boiling point, and vapor pressure of ionic liquids.
Rebelo, Luis P N; Canongia Lopes, José N; Esperança, José M S S; Filipe, Eduardo
2005-04-07
One-stage, reduced-pressure distillations at moderate temperature of 1-decyl- and 1-dodecyl-3-methylimidazolium bistriflilamide ([Ntf(2)](-)) ionic liquids (ILs) have been performed. These liquid-vapor equilibria can be understood in light of predictions for normal boiling points of ILs. The predictions are based on experimental surface tension and density data, which are used to estimate the critical points of several ILs and their corresponding normal boiling temperatures. In contrast to the situation found for relatively unstable ILs at high-temperature such as those containing [BF(4)](-) or [PF(6)](-) anions, [Ntf(2)](-)-based ILs constitute a promising class in which reliable, accurate vapor pressure measurements can in principle be performed. This property is paramount for assisting in the development and testing of accurate molecular models.
Long, E.; Ashley, J.W.
1958-12-16
A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.
CALANDRIA TYPE SODIUM GRAPHITE REACTOR
Peterson, R.M.; Mahlmeister, J.E.; Vaughn, N.E.; Sanders, W.J.; Williams, A.C.
1964-02-11
A sodium graphite power reactor in which the unclad graphite moderator and fuel elements are contained within a core tank is described. The core tank is submersed in sodium within the reactor vessel. Extending longitudinally through the core thnk are process tubes with fuel elements positioned therein. A bellows sealing means allows axial expansion and construction of the tubes. Within the core tank, a leakage plenum is located below the graphite, and above the graphite is a gas space. A vent line regulates the gas pressure in the space, and another line removes sodium from the plenum. The sodium coolant flows from the lower reactor vessel through the annular space between the fuel elements and process tubes and out into the reactor vessel space above the core tank. From there, the heated coolant is drawn off through an outlet line and sent to the heat exchange. (AEC)
Lewis, Warren R.
1978-05-30
A graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels.
Fermi, E.; Szilard, L.
1958-05-27
A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohrbaugh, David Thomas; Windes, William; Swank, W. David
The Next Generation Nuclear Plant (NGNP) will be a helium-cooled, very high temperature reactor (VHTR) with a large graphite core. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor (HTGR) designs.[ , ] Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphites have been developed and are considered suitable candidates for the new NGNP reactor design. To support the design and licensing of NGNP core components within a commercial reactor, a completemore » properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade with a specific emphasis on data related to the life limiting effects of irradiation creep on key physical properties of the NGNP candidate graphites. Based on experience with previous graphite core components, the phenomenon of irradiation induced creep within the graphite has been shown to be critical to the total useful lifetime of graphite components. Irradiation induced creep occurs under the simultaneous application of high temperatures, neutron irradiation, and applied stresses within the graphite components. Significant internal stresses within the graphite components can result from a second phenomenon—irradiation induced dimensional change. In this case, the graphite physically changes i.e., first shrinking and then expanding with increasing neutron dose. This disparity in material volume change can induce significant internal stresses within graphite components. Irradiation induced creep relaxes these large internal stresses, thus reducing the risk of crack formation and component failure. Obviously, higher irradiation creep levels tend to relieve more internal stress, thus allowing the components longer useful lifetimes within the core. Determining the irradiation creep rates of nuclear grade graphites is critical for determining the useful lifetime of graphite components and is a major component of the Advanced Graphite Creep (AGC) experiment.« less
Carbon-14 bioassay for decommissioning of Hanford reactors.
Carbaugh, Eugene H; Watson, David J
2012-05-01
The production reactors at the U.S. Department of Energy Hanford Site used large graphite piles as the moderator. As part of long-term decommissioning plans, the potential need for ¹⁴C radiobioassay of workers was identified. Technical issues associated with ¹⁴C bioassay and worker monitoring were investigated, including anticipated graphite characterization, potential intake scenarios, and the bioassay capabilities that may be required to support the decommissioning of the graphite piles. A combination of urine and feces sampling would likely be required for the absorption type S ¹⁴C anticipated to be encountered. However, the concentrations in the graphite piles appear to be sufficiently low that dosimetrically significant intakes of ¹⁴C are not credible, thus rendering moot the need for such bioassay.
Carbon-14 Bioassay for Decommissioning of Hanford Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbaugh, Eugene H.; Watson, David J.
2012-05-01
The old production reactors at the US Department of Energy Hanford Site used large graphite piles as the moderator. As part of long-term decommissioning plans, the potential need for 14C radiobioassay of workers was identified. Technical issues associated with 14C bioassay and worker monitoring were investigated, including anticipated graphite characterization, potential intake scenarios, and the bioassay capabilities that may be required to support the decommissioning of the graphite piles. A combination of urine and feces sampling would likely be required for the absorption type S 14C anticipated to be encountered. However the concentrations in the graphite piles appear to bemore » sufficiently low that dosimetrically significant intakes of 14C are not credible, thus rendering moot the need for such bioassay.« less
Lukic, Marko; Jareid, Mie; Weiderpass, Elisabete; Braaten, Tonje
2016-07-29
Coffee contains biologically-active substances that suppress carcinogenesis in vivo, and coffee consumption has been associated with a lower risk of malignant melanoma. We studied the impact of total coffee consumption and of different brewing methods on the incidence of malignant melanoma in a prospective cohort of Norwegian women. We had baseline information on total coffee consumption and consumption of filtered, instant, and boiled coffee from self-administered questionnaires for 104,080 women in the Norwegian Women and Cancer (NOWAC) Study. We also had follow-up information collected 6-8 years after baseline. Multiple imputation was used to deal with missing data, and multivariable Cox regression models were used to calculate hazard ratios (HR) for malignant melanoma by consumption category of total, filtered, instant, and boiled coffee. During 1.7 million person-years of follow-up, 762 cases of malignant melanoma were diagnosed. Compared to light consumers of filtered coffee (≤1 cup/day), we found a statistically significant inverse association with low-moderate consumption (>1-3 cups/day, HR = 0.80; 95 % confidence interval [CI] 0.66-0.98) and high-moderate consumption of filtered coffee (>3-5 cups/day, HR = 0.77; 95 % CI 0.61-0.97) and melanoma risk (p trend = 0.02). We did not find a statistically significant association between total, instant, or boiled coffee consumption and the risk of malignant melanoma in any of the consumption categories. The data from the NOWAC Study indicate that a moderate intake of filtered coffee could reduce the risk of malignant melanoma.
NASA Astrophysics Data System (ADS)
Zhang, Yonghai; Liu, Bin; Zhao, Jianfu; Deng, Yueping; Wei, Jinjia
2018-06-01
The flow boiling heat transfer characteristics of subcooled air-dissolved FC-72 on a smooth surface (chip S) were studied in microgravity by utilizing the drop tower facility in Beijing. The heater, with dimensions of 40 × 10 × 0.5 mm3 (length × width × thickness), was combined with two silicon chips with the dimensions of 20 × 10 × 0.5 mm3. High-speed visualization was used to supplement observation in the heat transfer and vapor-liquid two-phase flow characteristics. In the low and moderate heat fluxes region, the flow boiling of chip S at inlet velocity V = 0.5 m/s shows almost the same regulations as that in pool boiling. All the wall temperatures at different positions along the heater in microgravity are slightly lower than that in normal gravity, which indicates slight heat transfer enhancement. However, in the high heat flux region, the pool boiling of chip S shows much evident deterioration of heat transfer compared with that of flow boiling in microgravity. Moreover, the bubbles of flow boiling in microgravity become larger than that in normal gravity due to the lack of buoyancy Although the difference of the void fraction in x-y plain becomes larger with increasing heat flux under different gravity levels, it shows nearly no effect on heat transfer performance except for critical heat flux (CHF). Once the void fraction in y-z plain at the end of the heater equals 1, the vapor blanket will be formed quickly and transmit from downstream to upstream along the heater, and CHF occurs. Thus, the height of channel is an important parameter to determine CHF in microgravity at a fixed velocity. The flow boiling of chip S at inlet velocity V = 0.5 m/s shows higher CHF than that of pool boiling because of the inertia force, and the CHF under microgravity is about 78-92% of that in normal gravity.
Experience of on-site disposal of production uranium-graphite nuclear reactor.
Pavliuk, Alexander O; Kotlyarevskiy, Sergey G; Bespala, Evgeny V; Zakharova, Elena V; Ermolaev, Vyacheslav M; Volkova, Anna G
2018-04-01
The paper reported the experience gained in the course of decommissioning EI-2 Production Uranium-Graphite Nuclear Reactor. EI-2 was a production Uranium-Graphite Nuclear Reactor located on the Production and Demonstration Center for Uranium-Graphite Reactors JSC (PDC UGR JSC) site of Seversk City, Tomsk Region, Russia. EI-2 commenced its operation in 1958, and was shut down on December 28, 1990, having operated for the period of 33 years all together. The extra pure grade graphite for the moderator, water for the coolant, and uranium metal for the fuel were used in the reactor. During the operation nitrogen gas was passed through the graphite stack of the reactor. In the process of decommissioning the PDC UGR JSC site the cavities in the reactor space were filled with clay-based materials. A specific composite barrier material based on clays and minerals of Siberian Region was developed for the purpose. Numerical modeling demonstrated the developed clay composite would make efficient geological barriers preventing release of radionuclides into the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tadesse, Abel; Fredriksson, Hasse
2018-06-01
The graphite nodule count and size distributions for boiling water reactor (BWR) and pressurized water reactor (PWR) inserts were investigated by taking samples at heights of 2160 and 1150 mm, respectively. In each cross section, two locations were taken into consideration for both the microstructural and solidification modeling. The numerical solidification modeling was performed in a two-dimensional model by considering the nucleation and growth in eutectic ductile cast iron. The microstructural results reveal that the nodule size and count distribution along the cross sections are different in each location for both inserts. Finer graphite nodules appear in the thinner sections and close to the mold walls. The coarser nodules are distributed mostly in the last solidified location. The simulation result indicates that the finer nodules are related to a higher cooling rate and a lower degree of microsegregation, whereas the coarser nodules are related to a lower cooling rate and a higher degree of microsegregation. The solidification time interval and the last solidifying locations in the BWR and PWR are also different.
Ink-jet printing of graphene for flexible electronics: An environmentally-friendly approach
NASA Astrophysics Data System (ADS)
Capasso, A.; Del Rio Castillo, A. E.; Sun, H.; Ansaldo, A.; Pellegrini, V.; Bonaccorso, F.
2015-12-01
Mechanical flexibility is considered an asset in consumer electronics and next-generation electronic systems. Printed and flexible electronic devices could be embedded into clothing or other surfaces at home or office or in many products such as low-cost sensors integrated in transparent and flexible surfaces. In this context inks based on graphene and related two-dimensional materials (2DMs) are gaining increasing attention owing to their exceptional (opto)electronic, electrochemical and mechanical properties. The current limitation relies on the use of solvents, providing stable dispersions of graphene and 2DMs and fitting the proper fluidic requirements for printing, which are in general not environmentally benign, and with high boiling point. Non-toxic and low boiling point solvents do not possess the required rheological properties (i.e., surface tension, viscosity and density) for the solution processing of graphene and 2DMs. Such solvents (e.g., water, alcohols) require the addition of stabilizing agents such as polymers or surfactants for the dispersion of graphene and 2DMs, which however unavoidably corrupt their properties, thus preventing their use for the target application. Here, we demonstrate a viable strategy to tune the fluidic properties of water/ethanol mixtures (low-boiling point solvents) to first effectively exfoliate graphite and then disperse graphene flakes to formulate graphene-based inks. We demonstrate that such inks can be used to print conductive stripes (sheet resistance of ~13 kΩ/□) on flexible substrates (polyethylene terephthalate), moving a step forward towards the realization of graphene-based printed electronic devices.
Neutronic reactor construction
Huston, Norman E.
1976-07-06
1. A neutronic reactor comprising a moderator including horizontal layers formed of horizontal rows of graphite blocks, alternate layers of blocks having the rows extending in one direction, the remaining alternate layers having the rows extending transversely to the said one direction, alternate rows of blocks in one set of alternate layers having longitudinal ducts, the moderator further including slotted graphite tubes positioned in the ducts, the reactor further comprising an aluminum coolant tube positioned within the slotted tube in spaced relation thereto, bodies of thermal-neutron-fissionable material, and jackets enclosing the bodies and being formed of a corrosion-resistant material having a low neutron-capture cross section, the bodies and jackets being positioned within the coolant tube so that the jackets are spaced from the coolant tube.
Long, E.; Ashby, J.W.
1958-09-16
ABS>A graphite moderator structure is presented for a nuclear reactor compriscd of an assembly of similarly orientated prismatic graphite blocks arranged on spaced longitudinal axes lying in common planes wherein the planes of the walls of the blocks are positioned so as to be twisted reintive to the planes of said axes so thatthe unlmpeded dtrect paths in direction wholly across the walls of the blocks are limited to the width of the blocks plus spacing between the blocks.
High temperature resin matrix composites for aerospace structures
NASA Technical Reports Server (NTRS)
Davis, J. G., Jr.
1980-01-01
Accomplishments and the outlook for graphite-polyimide composite structures are briefly outlined. Laminates, skin-stiffened and honeycomb sandwich panels, chopped fiber moldings, and structural components were fabricated with Celion/LARC-160 and Celion/PMR-15 composite materials. Interlaminar shear and flexure strength data obtained on as-fabricated specimens and specimens that were exposed for 125 hours at 589 K indicate that epoxy sized and polyimide sized Celion graphite fibers exhibit essentially the same behavior in a PMR-15 matrix composite. Analyses and tests of graphite-polyimide compression and shear panels indicate that utilization in moderately loaded applications offers the potential for achieving a 30 to 50 percent reduction in structural mass compared to conventional aluminum panels. Data on effects of moisture, temperature, thermal cycling, and shuttle fluids on mechanical properties indicate that both LARC-160 and PMR-15 are suitable matrix materials for a graphite-polyimide aft body flap. No technical road blocks to building a graphite-polyimide composite aft body flap are identified.
Nuclear reactor shield including magnesium oxide
Rouse, Carl A.; Simnad, Massoud T.
1981-01-01
An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.
Drawing Sensors with Ball-Milled Blends of Metal-Organic Frameworks and Graphite
Ko, Michael; Aykanat, Aylin; Smith, Merry K.
2017-01-01
The synthetically tunable properties and intrinsic porosity of conductive metal-organic frameworks (MOFs) make them promising materials for transducing selective interactions with gaseous analytes in an electrically addressable platform. Consequently, conductive MOFs are valuable functional materials with high potential utility in chemical detection. The implementation of these materials, however, is limited by the available methods for device incorporation due to their poor solubility and moderate electrical conductivity. This manuscript describes a straightforward method for the integration of moderately conductive MOFs into chemiresistive sensors by mechanical abrasion. To improve electrical contacts, blends of MOFs with graphite were generated using a solvent-free ball-milling procedure. While most bulk powders of pure conductive MOFs were difficult to integrate into devices directly via mechanical abrasion, the compressed solid-state MOF/graphite blends were easily abraded onto the surface of paper substrates equipped with gold electrodes to generate functional sensors. This method was used to prepare an array of chemiresistors, from four conductive MOFs, capable of detecting and differentiating NH3, H2S and NO at parts-per-million concentrations. PMID:28946624
Rapid analysis method for the determination of 14C specific activity in irradiated graphite
Remeikis, Vidmantas; Lagzdina, Elena; Garbaras, Andrius; Gudelis, Arūnas; Garankin, Jevgenij; Juodis, Laurynas; Duškesas, Grigorijus; Lingis, Danielius; Abdulajev, Vladimir; Plukis, Artūras
2018-01-01
14C is one of the limiting radionuclides used in the categorization of radioactive graphite waste; this categorization is crucial in selecting the appropriate graphite treatment/disposal method. We propose a rapid analysis method for 14C specific activity determination in small graphite samples in the 1–100 μg range. The method applies an oxidation procedure to the sample, which extracts 14C from the different carbonaceous matrices in a controlled manner. Because this method enables fast online measurement and 14C specific activity evaluation, it can be especially useful for characterizing 14C in irradiated graphite when dismantling graphite moderator and reflector parts, or when sorting radioactive graphite waste from decommissioned nuclear power plants. The proposed rapid method is based on graphite combustion and the subsequent measurement of both CO2 and 14C, using a commercial elemental analyser and the semiconductor detector, respectively. The method was verified using the liquid scintillation counting (LSC) technique. The uncertainty of this rapid method is within the acceptable range for radioactive waste characterization purposes. The 14C specific activity determination procedure proposed in this study takes approximately ten minutes, comparing favorably to the more complicated and time consuming LSC method. This method can be potentially used to radiologically characterize radioactive waste or used in biomedical applications when dealing with the specific activity determination of 14C in the sample. PMID:29370233
Rapid analysis method for the determination of 14C specific activity in irradiated graphite.
Remeikis, Vidmantas; Lagzdina, Elena; Garbaras, Andrius; Gudelis, Arūnas; Garankin, Jevgenij; Plukienė, Rita; Juodis, Laurynas; Duškesas, Grigorijus; Lingis, Danielius; Abdulajev, Vladimir; Plukis, Artūras
2018-01-01
14C is one of the limiting radionuclides used in the categorization of radioactive graphite waste; this categorization is crucial in selecting the appropriate graphite treatment/disposal method. We propose a rapid analysis method for 14C specific activity determination in small graphite samples in the 1-100 μg range. The method applies an oxidation procedure to the sample, which extracts 14C from the different carbonaceous matrices in a controlled manner. Because this method enables fast online measurement and 14C specific activity evaluation, it can be especially useful for characterizing 14C in irradiated graphite when dismantling graphite moderator and reflector parts, or when sorting radioactive graphite waste from decommissioned nuclear power plants. The proposed rapid method is based on graphite combustion and the subsequent measurement of both CO2 and 14C, using a commercial elemental analyser and the semiconductor detector, respectively. The method was verified using the liquid scintillation counting (LSC) technique. The uncertainty of this rapid method is within the acceptable range for radioactive waste characterization purposes. The 14C specific activity determination procedure proposed in this study takes approximately ten minutes, comparing favorably to the more complicated and time consuming LSC method. This method can be potentially used to radiologically characterize radioactive waste or used in biomedical applications when dealing with the specific activity determination of 14C in the sample.
NASA Astrophysics Data System (ADS)
Pavliuk, A. O.; Zagumennov, V. S.; Kotlyarevskiy, S. G.; Bespala, E. V.
2018-01-01
The problems of accumulation of nuclear fuel spills in the graphite stack in the course of operation of uranium-graphite nuclear reactors are considered. The results of thermodynamic analysis of the processes in the graphite stack at dehydration of a technological channel, fuel element shell unsealing and migration of fission products, and activation of stable nuclides in structural elements of the reactor and actinides inside the graphite moderator are given. The main chemical reactions and compounds that are produced in these modes in the reactor channel during its operation and that may be hazardous after its shutdown and decommissioning are presented. Thermodynamic simulation of the equilibrium composition is performed using the specialized code TERRA. The results of thermodynamic simulation of the equilibrium composition in different cases of technological channel dehydration in the course of the reactor operation show that, if the temperature inside the active core of the nuclear reactor increases to the melting temperature of the fuel element, oxides and carbides of nuclear fuel are produced. The mathematical model of the nonstationary heat transfer in a graphite stack of a uranium-graphite reactor in the case of the technological channel dehydration is presented. The results of calculated temperature evolution at the center of the fuel element, the replaceable graphite element, the air gap, and in the surface layer of the block graphite are given. The numerical results show that, in the case of dehydration of the technological channel in the uranium-graphite reactor with metallic uranium, the main reaction product is uranium dioxide UO2 in the condensed phase. Low probability of production of pyrophoric uranium compounds (UH3) in the graphite stack is proven, which allows one to disassemble the graphite stack without the risk of spontaneous graphite ignition in the course of decommissioning of the uranium-graphite nuclear reactor.
NASA Technical Reports Server (NTRS)
Fischbach, D. B.; Uptegrove, D. R.; Srinivasagopalan, S.
1974-01-01
The microstructure and some microstructural effects of oxidation have been investigated for laminar carbon fiber cloth/cloth binder matrix composite materials. It was found that cloth wave is important in determining the macrostructure of the composites X-ray diffraction analysis showed that the composites were more graphitic than the constituent fiber phases, indicating a graphitic binder matrix phase. Various tests which were conducted to investigate specific properties of the material are described. It was learned that under the moderate temperature and oxidant flow conditions studied, C-700, 730 materials exhibit superior oxidation resistance primarily because of the inhibiting influence of the graphitized binder matrix.
Johnson, Alfred A.; Carleton, John T.
1978-05-02
A graphite-moderated, water-cooled nuclear reactor including graphite blocks disposed in transverse alternate layers, one set of alternate layers consisting of alternate full size blocks and smaller blocks through which cooling tubes containing fuel extend, said smaller blocks consisting alternately of tube bearing blocks and support block, the support blocks being smaller than the tube bearing blocks, the aperture of each support block being tapered so as to provide the tube extending therethrough with a narrow region of support while being elsewhere spaced therefrom.
NASA Astrophysics Data System (ADS)
Liu, Zheng; Zeng, Ying; Tang, Qunli; Hu, Aiping; Xiao, Kuikui; Zhang, Shiying; Deng, Weina; Fan, Binbin; Zhu, Yanfei; Chen, Xiaohua
2017-09-01
Ultrahigh graphitized carbon microspheres with rich hierarchical pores (AGHPCM-1) have been successfully synthesized through the one-step activation-carbonization strategy (OACS) with porous sulfonated poly-divinylbenzene as the carbon precursor, iron as the hard template and catalyst, and potassium hydroxide (KOH) as activation agent. Through the XRD, TEM, Raman and BET analysis, AGHPCM-1 shows very high graphitization degree and rich micro-, meso- and macro-pores. More importantly, the mechanism for KOH to improve the graphitization degree of carbon materials in OACS has been illustrated by the thermodynamical theory. The tremendous heat releasing from the reaction between the catalyst precursor of Fe2O3 and potassium vapor plays a key role in the formation of graphitized carbon. It may provide a general direction to prepare highly graphitized porous carbon at a moderate temperature. Integrating the advantages of high graphitization degree and rich hierarchical porous structure, the AGHPCM-1 exhibits an excellent rate performance with a response to up to the high current density of 150 A g-1 and high scan rate of 2000 mV s-1. No obvious capacitance decay can be observed after 10000 charge/discharge cycles even at the high current density of 20 A g-1.
NASA Astrophysics Data System (ADS)
Lo, I.-Hsuan; Tzelepi, Athanasia; Patterson, Eann A.; Yeh, Tsung-Kuang
2018-04-01
Graphite is used in the cores of gas-cooled reactors as both the neutron moderator and a structural material, and traditional and novel graphite materials are being studied worldwide for applications in Generation IV reactors. In this study, the oxidation characteristics of petroleum-based IG-110 and pitch-based IG-430 graphite pellets in helium and air environments at temperatures ranging from 700 to 1600 °C were investigated. The oxidation rates and activation energies were determined based on mass loss measurements in a series of oxidation tests. The surface morphology was characterized by scanning electron microscopy. Although the thermal oxidation mechanism was previously considered to be the same for all temperatures higher than 1000 °C, the significant increases in oxidation rate observed at very high temperatures suggest that the oxidation behavior of the selected graphite materials at temperatures higher than 1200 °C is different. This work demonstrates that changes in surface morphology and in oxidation rate of the filler particles in the graphite materials are more prominent at temperatures above 1200 °C. Furthermore, possible intrinsic factors contributing to the oxidation of the two graphite materials at different temperature ranges are discussed taking account of the dominant role played by temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrose, T.W.
1965-06-04
Process and development activities reported include: depleted uranium irradiations, thoria irradiation, and hot die sizing. Reactor engineering activities include: brittle fracture of 190-C tanks, increased graphite temperature limits for the F reactor, VSR channel caulking, K reactor downcomer flow, zircaloy hydriding, and ribbed zircaloy process tubes. Reactor physics activities include: thoria irradiations, E-D irradiations, boiling protection with the high speed scanner, and in-core flux monitoring. Radiological engineering activities include: radiation control, classification, radiation occurrences, effluent activity data, and well car shielding. Process standards are listed, along with audits, and fuel failure experience. Operational physics and process physics studies are presented.more » Lastly, testing activities are detailed.« less
Graphite coated PVA fibers as the reinforcement for cementitious composites
NASA Astrophysics Data System (ADS)
Zhang, Yunhua; Zhang, Zhipeng; Liu, Zhichao
2018-02-01
A new preconditioning method was developed to PVA fibers as the reinforcement in cement-based materials. Virgin PVA fibers exhibits limited adhesion to graphite powders due to the presence of oil spots on the surface. Mixing PVA fibers with a moderately concentrated KMnO4-H2SO4 solution can efficiently remove the oil spots by oxidation without creating extra precipitate (MnO2) associated with the reduction reaction. This enhances the coating of graphite powders onto fiber surface and improves the mechanical properties of PVA fiber reinforced concrete (PVA-FRC). Graphite powders yields better fiber distribution in the matrix and reduces the fiber-matrix bonding, which is beneficial in uniformly distributing the stress among embedded fibers and creating steady generation and propagation of tight microcracks. This is evidenced by the significantly enhanced strain hardening behavior and improved flexural strength and toughness.
Wickham, Anthony; Steinmetz, Hans-Jürgen; O'Sullivan, Patrick; Ojovan, Michael I
2017-05-01
Demonstrating competence in planning and executing the disposal of radioactive wastes is a key factor in the public perception of the nuclear power industry and must be demonstrated when making the case for new nuclear build. This work addresses the particular waste stream of irradiated graphite, mostly derived from reactor moderators and amounting to more than 250,000 tonnes world-wide. Use may be made of its unique chemical and physical properties to consider possible processing and disposal options outside the normal simple classifications and repository options for mixed low or intermediate-level wastes. The IAEA has an obvious involvement in radioactive waste disposal and has established a new project 'GRAPA' - Irradiated Graphite Processing Approaches - to encourage an international debate and collaborative work aimed at optimising and facilitating the treatment of irradiated graphite. Copyright © 2017 Elsevier Ltd. All rights reserved.
Payne, Liam; Heard, Peter J; Scott, Thomas B
2015-01-01
Pile grade A (PGA) graphite was used as a material for moderating and reflecting neutrons in the UK's first generation Magnox nuclear power reactors. As all but one of these reactors are now shut down there is a need to understand the residual state of the material prior to decommissioning of the cores, in particular the location and concentration of key radio-contaminants such as 14C. The oxidation behaviour of unirradiated PGA graphite was studied, in the temperature range 600-1050°C, in air and nitrogen using thermogravimetric analysis, scanning electron microscopy and X-ray tomography to investigate the possibility of using thermal degradation techniques to examine 14C distribution within irradiated material. The thermal decomposition of PGA graphite was observed to follow the three oxidation regimes historically identified by previous workers with limited, uniform oxidation at temperatures below 600°C and substantial, external oxidation at higher temperatures. This work demonstrates that the different oxidation regimes of PGA graphite could be developed into a methodology to characterise the distribution and concentration of 14C in irradiated graphite by thermal treatment.
Payne, Liam; Heard, Peter J.; Scott, Thomas B.
2015-01-01
Pile grade A (PGA) graphite was used as a material for moderating and reflecting neutrons in the UK’s first generation Magnox nuclear power reactors. As all but one of these reactors are now shut down there is a need to understand the residual state of the material prior to decommissioning of the cores, in particular the location and concentration of key radio-contaminants such as 14C. The oxidation behaviour of unirradiated PGA graphite was studied, in the temperature range 600–1050°C, in air and nitrogen using thermogravimetric analysis, scanning electron microscopy and X-ray tomography to investigate the possibility of using thermal degradation techniques to examine 14C distribution within irradiated material. The thermal decomposition of PGA graphite was observed to follow the three oxidation regimes historically identified by previous workers with limited, uniform oxidation at temperatures below 600°C and substantial, external oxidation at higher temperatures. This work demonstrates that the different oxidation regimes of PGA graphite could be developed into a methodology to characterise the distribution and concentration of 14C in irradiated graphite by thermal treatment. PMID:26575374
Design Study of a Modular Gas-Cooled, Closed-Brayton Cycle Reactor for Marine Use
1989-06-01
materials in the core and surroundings. To investigate this design point in the marine variant I developed the program HEAT.BAS to perform a one-dimensional...helium as the working fluid. The core is a graphite moderated, epithermal spectrum reactor, using TRISO fuel particles in extruded graphite fuel elements...The fuel is highly enriched U2315 . The containment is shaped in an inverted ’T’ with two sections. The upper section contains the reactor core
Coupled field-structural analysis of HGTR fuel brick using ABAQUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, S.; Jain, R.; Majumdar, S.
2012-07-01
High-temperature, gas-cooled reactors (HTGRs) are usually helium-gas cooled, with a graphite core that can operate at reactor outlet temperatures much higher than can conventional light water reactors. In HTGRs, graphite components moderate and reflect neutrons. During reactor operation, high temperature and high irradiation cause damage to the graphite crystal and grains and create other defects. This cumulative structural damage during the reactor lifetime leads to changes in graphite properties, which can alter the ability to support the designed loads. The aim of the present research is to develop a finite-element code using commercially available ABAQUS software for the structural integritymore » analysis of graphite core components under extreme temperature and irradiation conditions. In addition, the Reactor Geometry Generator tool-kit, developed at Argonne National Laboratory, is used to generate finite-element mesh for complex geometries such as fuel bricks with multiple pin holes and coolant flow channels. This paper presents the proposed concept and discusses results of stress analysis simulations of a fuel block with H-451 grade material properties. (authors)« less
NASA Astrophysics Data System (ADS)
McKenna, Alice
One of the functions of graphite is as a moderator in several nuclear reactor designs, including the Advanced Gas-cooled Reactor (AGR). In the reactor graphite is used to thermalise the neutrons produced in the fission reaction thus allowing a self-sustained reaction to occur. The graphite blocks, acting as the moderator, are constantly irradiated and consequently suffer damage. This thesis examines the types of damage caused using molecular dynamic (MD) simulations and ab intio calculations. Neutron damage starts with a primary knock-on atom (PKA), which is travelling so fast that it creates damage through electronic and thermal excitation (this is addressed with thermal spike simulations). When the PKA has lost energy the subsequent cascade is based on ballistic atomic displacement. These two types of simulations were performed on single crystal graphite and other carbon structures such as diamond and amorphous carbon as a comparison. The thermal spike in single crystal graphite produced results which varied from no defects to a small number of permanent defects in the structure. It is only at the high energy range that more damage is seen but these energies are less likely to occur in the nuclear reactor. The thermal spike does not create damage but it is possible that it can heal damaged sections of the graphite, which can be demonstrated with the motion of the defects when a thermal spike is applied. The cascade simulations create more damage than the thermal spike even though less energy is applied to the system. A new damage function is found with a threshold region that varies with the square root of energy in excess of the energy threshold. This is further broken down in to contributions from primary and subsequent knock-on atoms. The threshold displacement energy (TDE) is found to be Ed=25eV at 300K. In both these types of simulation graphite acts very differently to the other carbon structures. There are two types of polycrystalline graphite structures which simulations have been performed on. The difference between the two is at the grain boundaries with one having dangling bonds and the other one being bonded. The cascade showed the grain boundaries acting as a trap for the knock-on atoms which produces more damage compared with the single crystal. Finally the effects of turbostratic disorder on damage is considered. Density functional theory (DFT) was used to look at interstitials in (002) twist boundaries and how they act compared to AB stacked graphite. The results of these calculations show that the spiro interstitial is more stable in these grain boundaries, so at temperatures where the interstitial can migrate along the c direction they will segregate to (002) twist boundaries.
Han, Quan; Huo, Yanyan; Wu, Jiangyan; He, Yaping; Yang, Xiaohui; Yang, Longhu
2017-03-24
A highly sensitive method based on cloud point extraction (CPE) separation/preconcentration and graphite furnace atomic absorption spectrometry (GFAAS) detection has been developed for the determination of ultra-trace amounts of rhodium in water samples. A new reagent, 2-(5-iodo-2-pyridylazo)-5-dimethylaminoaniline (5-I-PADMA), was used as the chelating agent and the nonionic surfactant TritonX-114 was chosen as extractant. In a HAc-NaAc buffer solution at pH 5.5, Rh(III) reacts with 5-I-PADMA to form a stable chelate by heating in a boiling water bath for 10 min. Subsequently, the chelate is extracted into the surfactant phase and separated from bulk water. The factors affecting CPE were investigated. Under the optimized conditions, the calibration graph was linear in the range of 0.1-6.0 ng/mL, the detection limit was 0.023 ng/mL for rhodium and relative standard deviation was 3.67% ( c = 1.0 ng/mL, n = 11).The method has been applied to the determination of trace rhodium in water samples with satisfactory results.
Facilitation of NADH Electrooxidation at Treated Carbon Nanotubes
Wooten, Marilyn; Gorski, Waldemar
2010-01-01
The relationship between the state of the surface of carbon nanotubes (CNT) and their electrochemical activity was investigated using the enzyme cofactor dihydronicotinamide adenine dinucleotide (NADH) as a redox probe. The boiling of CNT in water, while nondestructive, activated them toward the oxidation of NADH as indicated by a shift in the anodic peak potential of NADH (ENADH) from 0.4 to 0.0 V. The shift in ENADH was due to the redox mediation of NADH oxidation by traces of quinone species that were formed on the surface of treated CNT. The harsher treatment that comprised of microwaving of CNT in concentrated nitric acid had a similar effect on the ENADH and, additionally, it increased the anodic peak current of NADH. The latter correlated with the formation of defects on the surface of acid-microwaved CNT as indicated by their Raman spectra. The increase in current was discussed considering a role of surface mediators on the buckled graphene sheets of acid-microwaved CNT. The other carbon allotropes including the edge plane pyrolytic graphite, graphite powder, and glassy carbon did not display a comparable activation toward the oxidation of NADH. PMID:20088562
BOILING WATER REACTOR WITH FEED WATER INJECTION NOZZLES
Treshow, M.
1963-04-30
This patent covers the use of injection nozzles for pumping water into the lower ends of reactor fuel tubes in which water is converted directly to steam. Pumping water through fuel tubes of this type of boiling water reactor increases its power. The injection nozzles decrease the size of pump needed, because the pump handles only the water going through the nozzles, additional water being sucked into the tubes by the nozzles independently of the pump from the exterior body of water in which the fuel tubes are immersed. The resulting movement of exterior water along the tubes holds down steam formation, and thus maintains the moderator effectiveness, of the exterior body of water. (AEC)
Payne, Liam; Heard, Peter J; Scott, Thomas B
2016-01-01
Pile Grade A graphite was used as a moderator and reflector material in the first generation of UK Magnox nuclear power reactors. As all of these reactors are now shut down there is a need to examine the concentration and distribution of long lived radioisotopes, such as 14C, to aid in understanding their behaviour in a geological disposal facility. A selection of irradiated graphite samples from Oldbury reactor one were examined where it was observed that Raman spectroscopy can distinguish between underlying graphite and a surface deposit found on exposed channel wall surfaces. The concentration of 14C in this deposit was examined by sequentially oxidising the graphite samples in air at low temperatures (450°C and 600°C) to remove the deposit and then the underlying graphite. The gases produced were captured in a series of bubbler solutions that were analysed using liquid scintillation counting. It was observed that the surface deposit was relatively enriched with 14C, with samples originating lower in the reactor exhibiting a higher concentration of 14C. Oxidation at 600°C showed that the remaining graphite material consisted of two fractions of 14C, a surface associated fraction and a graphite lattice associated fraction. The results presented correlate well with previous studies on irradiated graphite that suggest there are up to three fractions of 14C; a readily releasable fraction (corresponding to that removed by oxidation at 450°C in this study), a slowly releasable fraction (removed early at 600°C in this study), and an unreleasable fraction (removed later at 600°C in this study).
Payne, Liam; Heard, Peter J.; Scott, Thomas B.
2016-01-01
Pile Grade A graphite was used as a moderator and reflector material in the first generation of UK Magnox nuclear power reactors. As all of these reactors are now shut down there is a need to examine the concentration and distribution of long lived radioisotopes, such as 14C, to aid in understanding their behaviour in a geological disposal facility. A selection of irradiated graphite samples from Oldbury reactor one were examined where it was observed that Raman spectroscopy can distinguish between underlying graphite and a surface deposit found on exposed channel wall surfaces. The concentration of 14C in this deposit was examined by sequentially oxidising the graphite samples in air at low temperatures (450°C and 600°C) to remove the deposit and then the underlying graphite. The gases produced were captured in a series of bubbler solutions that were analysed using liquid scintillation counting. It was observed that the surface deposit was relatively enriched with 14C, with samples originating lower in the reactor exhibiting a higher concentration of 14C. Oxidation at 600°C showed that the remaining graphite material consisted of two fractions of 14C, a surface associated fraction and a graphite lattice associated fraction. The results presented correlate well with previous studies on irradiated graphite that suggest there are up to three fractions of 14C; a readily releasable fraction (corresponding to that removed by oxidation at 450°C in this study), a slowly releasable fraction (removed early at 600°C in this study), and an unreleasable fraction (removed later at 600°C in this study). PMID:27706228
EXPERIMENTAL LIQUID METAL FUEL REACTOR
Happell, J.J.; Thomas, G.R.; Denise, R.P.; Bunts, J.L. Jr.
1962-01-23
A liquid metal fuel nuclear fission reactor is designed in which the fissionable material is dissolved or suspended in a liquid metal moderator and coolant. The liquid suspension flows into a chamber in which a critical amount of fissionable material is obtained. The fluid leaves the chamber and the heat of fission is extracted for power or other utilization. The improvement is in the support arrangement for a segrnented graphite core to permit dif ferential thermal expansion, effective sealing between main and blanket liquid metal flows, and avoidance of excessive stress development in the graphite segments. (AEC)
DOE R&D Accomplishments Database
Woods, A. D. B.; Brockhouse, Bertram N.; Sakamoto, M.; Sinclair, R. N.
1960-09-12
Energy distributions of neutrons scattered from various moderators and from several hydrogenous substances were measured at energy transfers of 0.02 to 0.24 ev. Results from experiments on graphite, light and heavy water, ice, ZrH, LiH, NaH, and NH4Cl are included. It is noted that the results are of a preliminary character; however, they are probably the most accurate measurements of high-energy transfers yet made. (J.R.D.)
NASA Astrophysics Data System (ADS)
Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.
2017-10-01
Due to its excellent moderator and reflector qualities, graphite was used in CO2-cooled nuclear reactors such as UNGG (Uranium Naturel-Graphite-Gaz). Neutron irradiation of graphite resulted in the production of 14C which is a key issue radionuclide for the management of the irradiated graphite waste. In order to elucidate the impact of neutron irradiation on 14C behavior, we carried out a systematic investigation of irradiation and its synergistic effects with temperature in Highly Oriented Pyrolitic Graphite (HOPG) model graphite used to simulate the coke grains of nuclear graphite. We used 13C implantation in order to simulate 14C displaced from its original structural site through recoil. The collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic damage. However, a part of the recoil carbon atom energy is also transferred to the graphite lattice through electronic excitation. The effects of the different irradiation regimes in synergy with temperature were simulated using ion irradiation by varying Sn(nuclear)/Se(electronic) stopping power. Thus, the samples were irradiated with different ions of different energies. The structure modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry. The results show that temperature generally counteracts the disordering effects of irradiation but the achieved reordering level strongly depends on the initial structural state of the graphite matrix. Thus, extrapolating to reactor conditions, for an initially highly disordered structure, irradiation at reactor temperatures (200 - 500 °C) should induce almost no change of the initial structure. On the contrary, when the structure is initially less disordered, there should be a "zoning" of the reordering: In "cold" high flux irradiated zones where the ballistic damage is important, the structure should be poorly reordered; In "hot" low flux irradiated zones where the ballistic impact is lower and can therefore be counteracted by temperature, a better reordering of the structure should be achieved. Concerning 14C, except when located close to open pores where it can be removed through radiolytic corrosion, it tends to stabilize in the graphite matrix into sp2 or sp3 structures with variable proportions depending on the irradiation conditions.
Poskas, Povilas; Grigaliuniene, Dalia; Narkuniene, Asta; Kilda, Raimondas; Justinavicius, Darius
2016-11-01
There are two RBMK-1500 type graphite moderated reactors at the Ignalina nuclear power plant in Lithuania, and they are under decommissioning now. The graphite cannot be disposed of in a near surface repository, because of large amounts of (14)C. Therefore, disposal of the graphite in a geological repository is a reasonable solution. This study presents evaluation of the (14)C transfer by the groundwater pathway into the geosphere from the irradiated graphite in a generic geological repository in crystalline rocks and demonstration of the role of the different components of the engineered barrier system by performing local sensitivity analysis. The speciation of the released (14)C into organic and inorganic compounds as well as the most recent information on (14)C source term was taken into account. Two alternatives were considered in the analysis: disposal of graphite in containers with encapsulant and without it. It was evaluated that the maximal fractional flux of inorganic (14)C into the geosphere can vary from 10(-11)y(-1) (for non-encapsulated graphite) to 10(-12)y(-1) (for encapsulated graphite) while of organic (14)C it was about 10(-3)y(-1) of its inventory. Such difference demonstrates that investigations on the (14)C inventory and chemical form in which it is released are especially important. The parameter with the highest influence on the maximal flux into the geosphere for inorganic (14)C transfer was the sorption coefficient in the backfill and for organic (14)C transfer - the backfill hydraulic conductivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Tribological Behavior of Nano-Onions in Krytox 143AB Evaluated
NASA Technical Reports Server (NTRS)
Street, Kenneth W.; VanderWal, Randy L.; Marchetti, Mario; Tomasek, Aaron J.
2005-01-01
Nanoparticles have been developed over the past 10 years and have found several applications. This work presents the use of carbon nano-onions as a potential oil additive for aerospace applications. Researchers at the NASA Glenn Research Center tested lubricant lifetimes in ambient air and ultrahigh vacuum and characterized the breakdown products of the friction and wear. These carbon nanoparticles can provide adequate lubrication very similar to that of graphitic material when run in air. Soot represents one of the very first nanostructured materials, although it has rarely been considered as such. Changes in the carbon nanostructure, resulting in increased graphitic layer plane length, correlate with reactivity loss. Upon heating spherically shaped nanometer-sized carbon black in the absence of oxidant, graphene sheets form, and the initial soot particle templates the growth of a graphitic particle into what is best described as a sphere with many flat sides having a hollow interior. Because there are no edge sites, these polygonal graphitic particles, or nano-onions, are relatively resistant to oxidation. Graphite is used as a solid lubricant because of its stability at moderately high temperatures. However, the temperature at which graphite oxidizes rapidly is strongly influenced by surface area. With the size of particles typically employed in lubrication, a great amount of thermal stability is lost because of size reduction either during preparation or during lubrication of contacting parts. Therefore, we have undertaken a study of the lubricating ability of graphitic nano-onions (ref. 1).
Ye, Keping; Feng, Yulin; Wang, Kai; Bai, Yun; Xu, Xinglian; Zhou, Guanghong
2015-06-01
The objective of this work was to study the effect of high hydrostatic pressure combined with moderate heat to inactivate pressure-resistant bacteria in water-boiled salted duck meat (WBSDM), and to establish suitable procedures to improve the quality of WBSDM. The conditions (300 MPa/60 °C, 400 MPa/60 °C, and 500 MPa/50 °C) effectively inactivated the pressure-resistant bacteria (Bacillus cereus and Staphylococcus warneri) in WBSDM. Although more pressure-resistant than S. warneri, the above treatment conditions inactivated B. cereus more than 10(7) CFU/mL in buffer, and more than 10(6) CFU/g in WBSDM, and did not cause any changes in color, texture, or moisture content of products. The interaction between pressure and temperature is a more significant factor than only pressure in inactivating both B. cereus and S. warneri, the treatment of WBSDM at 400 MPa/ 60 °C/ 10 min is the most practical condition for postprocess of WBSDM after cooking. © 2015 Institute of Food Technologists®
Carbon-based nanostructured surfaces for enhanced phase-change cooling
NASA Astrophysics Data System (ADS)
Selvaraj Kousalya, Arun
To maintain acceptable device temperatures in the new generation of electronic devices under development for high-power applications, conventional liquid cooling schemes will likely be superseded by multi-phase cooling solutions to provide substantial enhancement to the cooling capability. The central theme of the current work is to investigate the two-phase thermal performance of carbon-based nanostructured coatings in passive and pumped liquid-vapor phase-change cooling schemes. Quantification of the critical parameters that influence thermal performance of the carbon nanostructured boiling surfaces presented herein will lead to improved understanding of the underlying evaporative and boiling mechanisms in such surfaces. A flow boiling experimental facility is developed to generate consistent and accurate heat transfer performance curves with degassed and deionized water as the working fluid. New means of boiling heat transfer enhancement by altering surface characteristics such as surface energy and wettability through light-surface interactions is explored in this work. In this regard, carbon nanotube (CNT) coatings are exposed to low-intensity irradiation emitted from a light emitting diode and the subcooled flow boiling performance is compared against a non-irradiated CNT-coated copper surface. A considerable reduction in surface superheat and enhancement in average heat transfer coefficient is observed. In another work involving CNTs, the thermal performance of CNT-integrated sintered wick structures is evaluated in a passively cooled vapor chamber. A physical vapor deposition process is used to coat the CNTs with varying thicknesses of copper to promote surface wetting with the working fluid, water. Thermal performance of the bare sintered copper powder sample and the copper-functionalized CNT-coated sintered copper powder wick samples is compared using an experimental facility that simulates the capillary fluid feeding conditions of a vapor chamber. Nanostructured samples having a thicker copper coating provided a considerable increase in dryout heat flux while maintaining lower surface superheat temperatures compared to a bare sintered powder sample; this enhancement is attributed primarily to the improved surface wettability. Dynamic contact angle measurements are conducted to quantitatively compare the surface wetting trends for varying copper coating thicknesses and confirm the increase in hydrophilicity with increasing coating thickness. The second and relatively new carbon nanostructured coating, carbon nanotubes decorated with graphitic nanopetals, are used as a template to manufacture boiling surfaces with heterogeneous wettability. Heat transfer surfaces with parallel alternating superhydrophobic and superhydrophilic stripes are fabricated by a combination of oxygen plasma treatment, Teflon coating and shadow masking. Such composite wetting surfaces exhibit enhanced flow-boiling performance compared to homogeneous wetting surfaces. Flow visualization studies elucidate the physical differences in nucleate boiling mechanisms between the different heterogeneous wetting surfaces. The third and the final carbon nanomaterial, graphene, is examined as an oxidation barrier coating for liquid and liquid-vapor phase-change cooling systems. Forced convection heat transfer experiments on bare and graphene-coated copper surfaces reveal nearly identical liquid-phase and two-phase thermal performance for the two surfaces. Surface analysis after thermal testing indicates significant oxide formation on the entire surface of the bare copper substrate; however, oxidation is observed only along the grain boundaries of the graphene-coated substrate. Results suggest that few-layer graphene can act as a protective layer even under vigorous flow boiling conditions, indicating a broad application space of few-layer graphene as an ultra-thin oxidation barrier coating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, Mark C.
High-purity graphite is the core structural material of choice in the Very High Temperature Reactor (VHTR) design, a graphite-moderated, helium-cooled configuration capable of producing thermal energy for power generation as well as process heat for industrial applications that require temperatures higher than the outlet temperatures of present nuclear reactors. The Baseline Graphite Characterization Program is establishing accurate as-manufactured mechanical and physical property distributions in nuclear-grade graphites by providing comprehensive data that captures the level of variation in measured values. In addition to providing a thorough comparison between these values in different graphite grades, the program is also carefully tracking individualmore » specimen source, position, and orientation information in order to provide comparisons both in specific properties and in the associated variability between different lots, different billets, and different positions from within a single billet. This report is a preliminary comparison between each of the grades of graphite that are considered “candidate” grades from four major international graphite producers. These particular grades (NBG-18, NBG-17, PCEA, IG-110, and 2114) are the major focus of the evaluations presently underway on irradiated graphite properties through the series of Advanced Graphite Creep (AGC) experiments. NBG-18, a medium-grain pitch coke graphite from SGL from which billets are formed via vibration molding, was the favored structural material in the pebble-bed configuration. NBG-17 graphite from SGL is essentially NBG-18 with the grain size reduced by a factor of two. PCEA, petroleum coke graphite from GrafTech with a similar grain size to NBG-17, is formed via an extrusion process and was initially considered the favored grade for the prismatic layout. IG-110 and 2114, from Toyo Tanso and Mersen (formerly Carbone Lorraine), respectively, are fine-grain grades produced via an isomolding process. An analysis of the comparison between each of these grades will include not only the differences in fundamental and statistically-significant individual strength levels, but also the differences in the overall variability in properties within each of the grades that will ultimately provide the basis for predicting in-service performance. The comparative performance of the different types of nuclear-grade graphites will naturally continue to evolve as thousands more specimens are fully characterized with regard to strength, physical properties, and thermal performance from the numerous grades of graphite being evaluated.« less
Systems and methods for dismantling a nuclear reactor
Heim, Robert R; Adams, Scott Ryan; Cole, Matthew Denver; Kirby, William E; Linnebur, Paul Damon
2014-10-28
Systems and methods for dismantling a nuclear reactor are described. In one aspect the system includes a remotely controlled heavy manipulator ("manipulator") operatively coupled to a support structure, and a control station in a non-contaminated portion of a workspace. The support structure provides the manipulator with top down access into a bioshield of a nuclear reactor. At least one computing device in the control station provides remote control to perform operations including: (a) dismantling, using the manipulator, a graphite moderator, concrete walls, and a ceiling of the bioshield, the manipulator being provided with automated access to all internal portions of the bioshield; (b) loading, using the manipulator, contaminated graphite blocks from the graphite core and other components from the bioshield into one or more waste containers; and (c) dispersing, using the manipulator, dust suppression and contamination fixing spray to contaminated matter.
NASA Astrophysics Data System (ADS)
Krishna, R.; Jones, A. N.; McDermott, L.; Marsden, B. J.
2015-12-01
Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated 'D'peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of 'G' and 'D' in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure.
Shannon, R.H.; Williamson, H.E.
1962-10-30
A boiling water type nuclear reactor power system having improved means of control is described. These means include provisions for either heating the coolant-moderator prior to entry into the reactor or shunting the coolantmoderator around the heating means in response to the demand from the heat engine. These provisions are in addition to means for withdrawing the control rods from the reactor. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Leland M. Montierth
2013-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering effects during pebble loading. Core 4 was determined to be acceptable benchmark experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Montierth, Leland M.; Sterbentz, James W.
2014-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering effects during pebble loading. Core 4 was determined to be acceptable benchmark experiment.« less
A New Method to Measure Crack Extension in Nuclear Graphite Based on Digital Image Correlation
Lai, Shigang; Shi, Li; Fok, Alex; ...
2017-01-01
Graphite components, used as moderators, reflectors, and core-support structures in a High-Temperature Gas-Cooled Reactor, play an important role in the safety of the reactor. Specifically, they provide channels for the fuel elements, control rods, and coolant flow. Fracture is the main failure mode for graphite, and breaching of the above channels by crack extension will seriously threaten the safety of a reactor. In this paper, a new method based on digital image correlation (DIC) is introduced for measuring crack extension in brittle materials. Cross-correlation of the displacements measured by DIC with a step function was employed to identify the advancingmore » crack tip in a graphite beam specimen under three-point bending. The load-crack extension curve, which is required for analyzing the R-curve and tension softening behaviors, was obtained for this material. Furthermore, a sensitivity analysis of the threshold value employed for the cross-correlation parameter in the crack identification process was conducted. Finally, the results were verified using the finite element method.« less
A New Method to Measure Crack Extension in Nuclear Graphite Based on Digital Image Correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Shigang; Shi, Li; Fok, Alex
Graphite components, used as moderators, reflectors, and core-support structures in a High-Temperature Gas-Cooled Reactor, play an important role in the safety of the reactor. Specifically, they provide channels for the fuel elements, control rods, and coolant flow. Fracture is the main failure mode for graphite, and breaching of the above channels by crack extension will seriously threaten the safety of a reactor. In this paper, a new method based on digital image correlation (DIC) is introduced for measuring crack extension in brittle materials. Cross-correlation of the displacements measured by DIC with a step function was employed to identify the advancingmore » crack tip in a graphite beam specimen under three-point bending. The load-crack extension curve, which is required for analyzing the R-curve and tension softening behaviors, was obtained for this material. Furthermore, a sensitivity analysis of the threshold value employed for the cross-correlation parameter in the crack identification process was conducted. Finally, the results were verified using the finite element method.« less
NASA Astrophysics Data System (ADS)
Jodar, B.; Seisson, G.; Hébert, D.; Bertron, I.; Boustie, M.; Berthe, L.
2016-08-01
Because of their shock wave attenuation properties, porous materials and foams are increasingly used for various applications such as graphite in the aerospace industry and polyurethane (PU) foams in biomedical engineering. For these two materials, the absence of residual compaction after compression and release cycles limits the efficiency of the usual numerical dynamic porous models such as P-α and POREQST. In this paper, we suggest a simple enhancement of the latter in order to take into account the compression-release hysteresis behavior experimentally observed for the considered materials. The new model, named H-POREQST, was implemented into a Lagrangian hydrocode and tested for simulating plate impact experiments at moderate pressure onto a commercial grade of porous graphite (EDM3). It proved to be in far better agreement with experimental data than the original model which encourages us to pursue numerical tests and developments.
Modeling acid-gas generation from boiling chloride brines
2009-01-01
Background This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150°C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent expected conditions in an emplacement drift, but nevertheless illustrate the potential for acid-gas generation at moderate temperatures (<150°C). PMID:19917082
Fluid inclusions in minerals from the geothermal fields of Tuscany, Italy
Belkin, H.; de Vivo, B.; Gianelli, G.; Lattanzi, P.
1985-01-01
A reconnaissance study on fluid inclusions from the geothermal fields of Tuscany indicates that the hydrothermal minerals were formed by fluids which were, at least in part, boiling. Four types of aqueous inclusions were recognized: (A) two-phase (liquid + vapor) liquid rich, (B) two-phase (vapor + liquid) vapor rich, (C) polyphase hypersaline liquid rich and (D) three phase-H2O liquid + CO2 liquid + CO2-rich vapor. Freezing and heating microthermometric determinations are reported for 230 inclusions from samples from six wells. It is suggested that boiling of an originally homogeneous, moderately saline, CO2-bearing liquid phase produced a residual hypersaline brine and a CO2-rich vapor phase. There are indications of a temperature decrease in the geothermal field of Larderello, especially in its peripheral zones. ?? 1985.
Chemical Characterization and Removal of Carbon-14 from Irradiated Graphite II - 13023
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunzik-Gougar, Mary Lou; Cleaver, James; LaBrier, Daniel
2013-07-01
Approximately 250,000 tonnes of irradiated graphite waste exists worldwide and that quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation IV gas-cooled, graphite moderated reactors. This situation indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 (C-14), with a half-life of 5730 years. Study of irradiated graphite from some nuclear reactors indicates C-14 is concentrated on the outer 5 mm of the graphite structure. The aim of the research presented last year and updated here is to identify the chemical form of C-14more » in irradiated graphite and develop a practical method by which C-14 can be removed. A nuclear-grade graphite, NBG-18, and a high-surface-area graphite foam, POCOFoam{sup R}, were exposed to liquid nitrogen (to increase the quantity of C-14 precursor) and neutron-irradiated (10{sup 13} neutrons/cm{sup 2}/s). Finer grained NBG-25 was not exposed to liquid nitrogen prior to irradiation at a neutron flux on the order of 10{sup 14} /cm{sup 2}/s. Characterization of pre- and post-irradiation graphite was conducted to determine the chemical environment and quantity of C-14 and its precursors via the use of surface sensitive characterization techniques. Scanning Electron Microscopy (SEM) was used to evaluate the morphological features of graphite samples. The concentration, chemical composition, and bonding characteristics of C-14 and its precursors were determined through X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (SIMS), and Energy Dispersive X-ray Analysis Spectroscopy (EDX). Results of post-irradiation characterization of these materials indicate a variety of surface functional groups containing carbon, oxygen, nitrogen and hydrogen. During thermal treatment, irradiated graphite samples are heated in the presence of an inert carrier gas (with or without oxidant gas), which carries off gaseous products released during treatment. Graphite gasification occurs via interaction with adsorbed oxygen complexes. Experiments in argon were performed at 900 deg. C and 1400 deg. C to evaluate the selective removal of C-14. Thermal treatment also was performed with the addition of 3 and 5 volume % oxygen at temperatures 700 deg. C and 1400 deg. C. Thermal treatment experiments were evaluated for the effective selective removal of C-14. Lower temperatures and oxygen levels correlated to more efficient C-14 removal. (authors)« less
NASA Astrophysics Data System (ADS)
Nyathi, Mhlwazi S.
2011-12-01
Graphite is utilized as a neutron moderator and structural component in some nuclear reactor designs. During the reactor operaction the structure of graphite is damaged by collision with fast neutrons. Graphite's resistance to this damage determines its lifetime in the reactor. On neutron irradiation, isotropic or near-isotropic graphite experiences less structural damage than anisotropic graphite. The degree of anisotropy in a graphite artifact is dependent on the structure of its precursor coke. Currently, there exist concerns over a short supply of traditional precursor coke, primarily due to a steadily increasing price of petroleum. The main goal of this study was to study the anisotropic and isotropic properties of graphitized co-cokes and anthracites as a way of investigating the possibility of synthesizing isotropic or near-isotropic graphite from co-cokes and anthracites. Demonstrating the ability to form isotropic or near-isotropic graphite would mean that co-cokes and anthracites have a potential use as filler material in the synthesis of nuclear graphite. The approach used to control the co-coke structure was to vary the reaction conditions. Co-cokes were produced by coking 4:1 blends of vacuum resid/coal and decant oil/coal at temperatures of 465 and 500 °C for reaction times of 12 and 18 hours under autogenous pressure. Co-cokes obtained were calcined at 1420 °C and graphitized at 3000 °C for 24 hours. Optical microscopy, X-ray diffraction, temperature-programmed oxidation and Raman spectroscopy were used to characterize the products. It was found that higher reaction temperature (500 °C) or shorter reaction time (12 hours) leads to an increase in co-coke structural disorder and an increase in the amount of mosaic carbon at the expense of textural components that are necessary for the formation of anisotropic structure, namely, domains and flow domains. Characterization of graphitized co-cokes showed that the quality, as expressed by the degree of graphitization and crystallite dimensions, of the final product is dependent on the nature of the precursor co-coke. The methodology for studying anthracites was to select two anthracites on basis of rank, PSOC1515 being semi-anthracite and DECS21 anthracite. The selected anthracites were graphitized, in both native and demineralized states, under the same conditions as co-cokes. Products obtained from DECS21 showed higher degrees of graphitization and larger crystallite dimensions than products obtained from PSOC1515. Demineralization of anthracites served to increase the degree of graphitization, indicating that the minerals contained in these anthracites have no graphitization-enhancing ability. A larger crystallite length for products obtained from native versions, compared to demineralized versions, was attributed to a formation and decomposition of a silicon carbide during graphitization of native versions. In order to examine the anisotropic and isotropic properties, nuclear-grade graphite samples obtained from Oak Ridge National Laboratory (ORNL) and commercial graphite purchased from Fluka were characterized under similar conditions as graphitized co-cokes and anthracites. These samples served as representatives of "two extremes", with ORNL samples being the isotropic end and commercial graphite being the anisotropic end. Through evaluating relationships between structural parameters, it was observed that graphitized co-cokes are situated, structurally, somewhere between the "two extremes", whereas graphitized anthracites are closer to the anisotropic end. Basically, co-cokes have a better potential than anthracites to transform to isotropic or near-isotropic graphite upon graphitization. By co-coking vacuum resid/coal instead of decant oil/coal or using 500 °C instead of 465 °C, a shift away from commercial graphite towards ORNL samples was attained. Graphitizing a semi-anthracite or demineralizing anthracites before graphitization also caused a shift towards ORNL samples.
Thermal neutron calibration channel at LNMRI/IRD.
Astuto, A; Salgado, A P; Leite, S P; Patrão, K C S; Fonseca, E S; Pereira, W W; Lopes, R T
2014-10-01
The Brazilian Metrology Laboratory of Ionizing Radiations (LNMRI) standard thermal neutron flux facility was designed to provide uniform neutron fluence for calibration of small neutron detectors and individual dosemeters. This fluence is obtained by neutron moderation from four (241)Am-Be sources, each with 596 GBq, in a facility built with blocks of graphite/paraffin compound and high-purity carbon graphite. This study was carried out in two steps. In the first step, simulations using the MCNPX code on different geometric arrangements of moderator materials and neutron sources were performed. The quality of the resulting neutron fluence in terms of spectrum, cadmium ratio and gamma-neutron ratio was evaluated. In the second step, the system was assembled based on the results obtained on the simulations, and new measurements are being made. These measurements will validate the system, and other intercomparisons will ensure traceability to the International System of Units. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
IMPROVEMENTS IN THE THERMAL NEUTRON CALIBRATION UNIT, TNF2, AT LNMRI/IRD.
Astuto, A; Fernandes, S S; Patrão, K C S; Fonseca, E S; Pereira, W W; Lopes, R T
2018-02-21
The standard thermal neutron flux unit, TNF2, in the Brazilian National Ionizing Radiation Metrology Laboratory was rebuilt. Fluence is still achieved by moderating of four 241Am-Be sources with 0.6 TBq each. The facility was again simulated and redesigned with graphite core and paraffin added graphite blocks surrounding it. Simulations using the MCNPX code on different geometric arrangements of moderator materials and neutron sources were performed. The resulting neutron fluence quality in terms of intensity, spectrum and cadmium ratio was evaluated. After this step, the system was assembled based on the results obtained from the simulations and measurements were performed with equipment existing in LNMRI/IRD and by simulated equipment. This work focuses on the characterization of a central chamber point and external points around the TNF2 in terms of neutron spectrum, fluence and ambient dose equivalent, H*(10). This system was validated with spectra measurements, fluence and H*(10) to ensure traceability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trianti, Nuri, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id; Su'ud, Zaki, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id; Arif, Idam, E-mail: nuri.trianti@gmail.com, E-mail: szaki@fi.itba.c.id
2014-09-30
Neutronic performance of small long-life boiling water reactors (BWR) with thorium nitride based fuel has been performed. A recent study conducted on BWR in tight lattice environments (with a lower moderator percentage) produces small power reactor which has some specifications, i.e. 10 years operation time, power density of 19.1 watt/cc and maximum excess reactivity of about 4%. This excess reactivity value is smaller than standard reactivity of conventional BWR. The use of hexagonal geometry on the fuel cell of BWR provides a substantial effect on the criticality of the reactor to obtain a longer operating time. Supported by a tightmore » concept lattice where the volume fraction of the fuel is greater than the moderator and fuel, Thorium Nitride give good results for fuel cell design on small long life BWR. The excess reactivity of the reactor can be reduced with the addition of gadolinium as burnable poisons. Therefore the hexagonal tight lattice fuel cell design of small long life BWR that has a criticality more than 20 years of operating time has been obtained.« less
HEAVY WATER MODERATED NEUTRONIC REACTOR
Szilard, L.
1958-04-29
A nuclear reactor of the type which utilizes uranium fuel elements and a liquid coolant is described. The fuel elements are in the form of elongated tubes and are disposed within outer tubes extending through a tank containing heavy water, which acts as a moderator. The ends of the fuel tubes are connected by inlet and discharge headers, and liquid bismuth is circulated between the headers and through the fuel tubes for cooling. Helium is circulated through the annular space between the outer tubes in the tank and the fuel tubes to cool the water moderator to prevent boiling. The fuel tubes are covered with a steel lining, and suitable control means, heat exchange means, and pumping means for the coolants are provided to complete the reactor assembly.
Hypervelocity impacts into graphite
NASA Astrophysics Data System (ADS)
Latunde-Dada, S.; Cheesman, C.; Day, D.; Harrison, W.; Price, S.
2011-03-01
Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms-1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.
Investigation of Isotopically Tailored Boron in Advanced Fission and Fusion Reactor Systems.
NASA Astrophysics Data System (ADS)
Domaszek, Gerald Raymond
This research examines the use of B^ {11}, in the form of metallic boron and boron carbide, as a moderating and reflecting material. An examination of the neutronic characteristics of the B ^{11} isotope of boron has revealed that B^{11} has neutron scattering and absorption cross sections favorably comparable to those of Be^9 and C^ {12}. Preliminary analysis of the neutronics of B ^{11} were performed by conducting one dimensional transport calculations on an infinite slab of varying thickness. Beryllium is the best of the three materials in reflecting neutrons due primarily to the contribution from (n,2n) reactions. Tailored neutron energy beam transmission experiments were carried out to experimentally verify the predicted neutronic characteristics of B^{11 }. To further examine the neutron moderating and reflecting characteristics of B^{11 }, the energy dependent neutron flux was measured as a function of position in an exponential pile constructed of B_4C isotopically enriched to 98.5 percent B^{11}. After the experimental verification of the neutronic behavior of B^{11}, further design studies were conducted using metallic boron and boron carbide enriched in the B^{11 } isotope. The use of materials isotopically enriched in B^{11} as a liner in the first wall/blanket of a magnetic confinement fusion reactor demonstrated acceptable tritium regeneration in the lithium blanket. Analysis of the effect of contaminant levels of B^{10} showed that B^{10} contents of less than 1 percent in metallic boron produced negligible adverse effects on the tritium breeding. A comparison of the effectiveness of graphite and B^{11}_4C when used as moderators in a reactor fueled with natural uranium has shown that the maximum k_infty for a given fuel rod design is approximately the same for both materials. Approximately half the volume of the moderator is required when B^{11 }_4C is substituted for graphite to obtain essentially the same K_infty . An analysis of the effectiveness of various materials as reflector control elements for a compact space reactor has shown that B^{11} is neutronically superior to graphite in these applications. Metallic boron and boron carbide isotopically enriched in B^{11} have been demonstrated to be neutronically acceptable for varied applications in advanced reactor systems. B^ {11} has been shown to be superior in performance to graphite. While only somewhat inferior to beryllium as neutron multipliers, B^ {11} and B^{11} _4C have safety, supply and cost advantage over beryllium. (Abstract shortened with permission of author.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady Raap, Michaele C.; Lyons, Jennifer A.; Collins, Brian A.
This report documents the FY13 efforts to enhance a dataset of spent nuclear fuel isotopic composition data for use in developing intrinsic signatures for nuclear forensics. A review and collection of data from the open literature was performed in FY10. In FY11, the Spent Fuel COMPOsition (SFCOMPO) excel-based dataset for nuclear forensics (NF), SFCOMPO/NF was established and measured data for graphite production reactors, Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs) were added to the dataset and expanded to include a consistent set of data simulated by calculations. A test was performed to determine whether the SFCOMPO/NF dataset willmore » be useful for the analysis and identification of reactor types from isotopic ratios observed in interdicted samples.« less
Zhang, Juan; Xu, Liao; Zhou, Bo; Zhu, Yinyan; Jiang, Xiaoqing
2018-03-01
The pristine graphene can be easily prepared in isopropanol-water mixture with salts as assistant via liquid-phase exfoliation method. The concentration of graphene dispersion reaches as high as 0.565 mg/mL. The graphene film prepared by drop-casting method shows an excellent electrical conductivity (7.095 × 10 4 S/m). Furthermore, an electrochemical biosensor based on the pristine graphene shows high selectivity and sensitivity for the determination of dopamine. The linear detection range for dopamine is 2.5-1500 μM with detection limit of 1.5 μM. This method provides a potential process for preparing high-quality graphene ready-to-use in low-boiling point solvent. Copyright © 2017 Elsevier Inc. All rights reserved.
Rout, S P; Payne, L; Walker, S; Scott, T; Heard, P; Eccles, H; Bond, G; Shah, P; Bills, P; Jackson, B R; Boxall, S A; Laws, A P; Charles, C; Williams, S J; Humphreys, P N
2018-03-13
14 C is an important consideration within safety assessments for proposed geological disposal facilities for radioactive wastes, since it is capable of re-entering the biosphere through the generation of 14 C bearing gases. The irradiation of graphite moderators in the UK gas-cooled nuclear power stations has led to the generation of a significant volume of 14 C-containing intermediate level wastes. Some of this 14 C is present as a carbonaceous deposit on channel wall surfaces. Within this study, the potential of biofilm growth upon irradiated and 13 C doped graphite at alkaline pH was investigated. Complex biofilms were established on both active and simulant samples. High throughput sequencing showed the biofilms to be dominated by Alcaligenes sp at pH 9.5 and Dietzia sp at pH 11.0. Surface characterisation revealed that the biofilms were limited to growth upon the graphite surface with no penetration of the deeper porosity. Biofilm formation resulted in the generation of a low porosity surface layer without the removal or modification of the surface deposits or the release of the associated 14 C/ 13 C. Our results indicated that biofilm formation upon irradiated graphite is likely to occur at the pH values studied, without any additional release of the associated 14 C.
Development of Advanced ISS-WPA Catalysts for Organic Oxidation at Reduced Pressure/Temperature
NASA Technical Reports Server (NTRS)
Yu, Ping; Nalette, Tim; Kayatin, Matthew
2016-01-01
The Water Processor Assembly (WPA) at International Space Station (ISS) processes a waste stream via multi-filtration beds, where inorganic and non-volatile organic contaminants are removed, and a catalytic reactor, where low molecular weight organics not removed by the adsorption process are oxidized at elevated pressure in the presence of oxygen and elevated temperature above the normal water boiling point. Operation at an elevated pressure requires a more complex system design compared to a reactor that could operate at ambient pressure. However, catalysts currently available have insufficient activity to achieve complete oxidation of the organic load at a temperature less than the water boiling point and ambient pressure. Therefore, it is highly desirable to develop a more active and efficient catalyst at ambient pressure and a moderate temperature that is less than water boiling temperature. This paper describes our efforts in developing high efficiency water processing catalysts. Different catalyst support structures and coating metals were investigated in subscale reactors and results were compared against the flight WPA catalyst. Detailed improvements achieved on alternate metal catalysts at ambient pressure and 200 F will also be presented in the paper.
Forced Convection Heat Transfer of Subcooled Liquid Nitrogen in Horizontal Tube
NASA Astrophysics Data System (ADS)
Tatsumoto, H.; Shirai, Y.; Hata, K.; Kato, T.; Shiotsu, M.
2008-03-01
The knowledge of forced convection heat transfer of liquid hydrogen is important for the cooling design of a HTS superconducting magnet and a cold neutron moderator material. An experimental apparatus that could obtain forced flow without a pump was developed. As a first step of the study, the forced flow heat transfer of subcooled liquid nitrogen in a horizontal tube, instead of liquid hydrogen, was measured for the pressures ranging from 0.3 to 2.5 MPa. The inlet temperature was varied from 78 K to around its saturation temperature. The flow velocities were varied from 0.1 to 7 m/s. The heat transfer coefficients in the non-boiling region and the departure from nucleate boiling (DNB) heat fluxes were higher for higher flow velocity and higher subcooling. The measured values of Nu/Pr0.4 in the non-boiling region were proportional to Reynolds number (Re) to the power of 0.8. With a decrease in Re, Nu/Pr0.4 approached a constant value corresponding to that in a pool of liquid nitrogen. The correlation of DNB heat flux was derived that can describe the experimental data within ±15% difference.
Manufacturing Chemical Equipment from Titanium - USSR
1960-05-25
hydrochloric, sulfuric and orthophosphoric, oxalic, trichlor- and tri-flour- acetic acids , and of boiling solutions of formic and citric acids . Nor...sulfofrezon and oleinic acid . Titanium dust is explosive , therefore only wet grinding is being used. The cooling is done either by a ten percent solution of...pumping ore of various organic acids , solutions of chlorides, and of moderately concentrated hydrochloric acid.are made of titanium. Such apparatus
Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites
Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH
2011-02-22
Disclosed is a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm, and often between 0.34 nm and 1.02 nm. The method comprises: (a) subjecting the layered material in a powder form to a halogen vapor at a first temperature above the melting point or sublimation point of the halogen at a sufficient vapor pressure and for a duration of time sufficient to cause the halogen molecules to penetrate an interlayer space of the layered material, forming a stable halogen-intercalated compound; and (b) heating the halogen-intercalated compound at a second temperature above the boiling point of the halogen, allowing halogen atoms or molecules residing in the interlayer space to exfoliate the layered material to produce the platelets. Alternatively, rather than heating, step (a) is followed by a step of dispersing the halogen-intercalated compound in a liquid medium which is subjected to ultrasonication for exfoliating the halogen-intercalated compound to produce the platelets, which are dispersed in the liquid medium. The halogen can be readily captured and re-used, thereby significantly reducing the impact of halogen to the environment. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.
Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites
Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH
2012-02-14
Disclosed is a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm, and often between 0.34 nm and 1.02 nm. The method comprises: (a) subjecting the layered material in a powder form to a halogen vapor at a first temperature above the melting point or sublimation point of the halogen at a sufficient vapor pressure and for a duration of time sufficient to cause the halogen molecules to penetrate an interlayer space of the layered material, forming a stable halogen-intercalated compound; and (b) heating the halogen-intercalated compound at a second temperature above the boiling point of the halogen, allowing halogen atoms or molecules residing in the interlayer space to exfoliate the layered material to produce the platelets. Alternatively, rather than heating, step (a) is followed by a step of dispersing the halogen-intercalated compound in a liquid medium which is subjected to ultrasonication for exfoliating the halogen-intercalated compound to produce the platelets, which are dispersed in the liquid medium. The halogen can be readily captured and re-used, thereby significantly reducing the impact of halogen to the environment. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.
Cameron, Eugene N.; Weis, Paul L.
1960-01-01
Strategic graphite consists of certain grades of lump and flake graphite for which the United States is largely or entirely dependent on sources abroad. Lump graphite of high purity, necessary in the manufacture of carbon brushes, is imported from Ceylon, where it occurs in vein deposits. Flake graphite, obtained from deposits consisting of graphite disseminated in schists and other metamorphic rocks, is an essential ingredient of crucibles used in the nonferrous metal industries and in the manufacture of lubricants and packings. High-quality flake graphite for these uses has been obtained mostly from Madagascar since World War I. Some flake graphite of strategic grade has been produced, however, from deposits in Texas, Alabama, and Pennsylvania. The development of the carbon-bonded crucible, which does not require coarse flake, should lessen the competitive advantage of the Madagascar producers of crucible flake. Graphite of various grades has been produced intermittently in the United States since 1644. The principal domestic deposits of flake graphite are in Texas, Alabama, Pennsylvania, and New York. Reserves of flake graphite in these four States are very large, but production has been sporadic and on the whole unprofitable since World War I, owing principally to competition from producers in Madagascar. Deposits in Madagascar are large and relatively high in content of flake graphite. Production costs are low and the flake produced is of high quality. Coarseness of flake and uniformity of the graphite products marketed are cited as major advantages of Madagascar flake. In addition, the usability of Madagascar flake for various purposes has been thoroughly demonstrated, whereas the usability of domestic flake for strategic purposes is still in question. Domestic graphite deposits are of five kinds: deposits consisting of graphite disseminated in metamorphosed siliceous sediments, deposits consisting of graphite disseminated in marble, deposits formed by thermal or dynamothermal metamorphism of coal beds or other highly carbonaceous sediments, vein deposits, and contact metasomatic deposits in marble. Only the first kind comprises deposits sufficiently large and rich in flake graphite to be significant potential sources of strategic grades of graphite. Vein deposits in several localities are known, but none is known to contain substantial reserves of graphite of strategic quality.Large resources of flake graphite exist in central Texas, in northeastern Alabama, in eastern Pennsylvania, and in the eastern Adirondack Mountains of New York. Tonnages available, compared with the tonnages of flake graphite consumed annually in the United States, are very large. There have been indications that flake graphite from Texas, Alabama, and Pennsylvania can be used in clay-graphite crucibles as a substitute for Madagascar flake, and one producer has made progress in establishing markets for his flake products as ingredients of lubricants. The tonnages of various commercial grades of graphite recoverable from various domestic deposits, however, have not been established; hence, the adequacy of domestic resources of graphite in a time of emergency is not known.The only vein deposits from which significant quantities of lump graphite have been produced are those of the Crystal Graphite mine, Beaverhead County, Mont. The deposits are fracture fillings in Precambrian gneiss and pegmatite. Known reserves in the deposits are small. In Texas, numerous flake-graphite deposits occur in the Precambrian Packsaddle schist in Llano and Burnet Counties. Graphite disseminated in certain parts of this formation ranges from extremely fine to medium grained. The principal producer has been the mine of the Southwestern Graphite Co., west of the town of Burnet. Substantial reserves of medium-grained graphite are present in the deposit mined by the company. In northeastern Alabama, flake-graphite deposits occur in the Ashland mica schist in two belts that trend northeastward across Clay, Goosa, and Chilton Counties. The northeastern belt has been the most productive. About 40 mines have been operated at one time or another, but only a few have been active during or since World War I. The deposits consist of flake graphite disseminated in certain zones or "leads" consisting of quartz-mica-feldspar schists and mica quartzite. Most of past production has come from the weathered upper parts of the deposits, but unweathered rock has been mined at several localities. Reserves of weathered rock containing 3 to 5 percent graphite are very large, and reserves of unweathered rock are even greater. Flake graphite deposits in Chester County, Pa., have been worked intermittently since about 1890. The deposits consist of medium- to coarse-grained graphite disseminated in certain belts of the Pickering gneiss. The most promising deposit is one worked in the Benjamin Franklin and the Eynon Just mines. Reserves of weathered rock containing 1.5 percent graphite are of moderate size; reserves of unweathered rock are large. In the eastern Adirondack Mountains in New York there are two principal kinds of flake-graphite deposits: contact-metasomatic deposits and those consisting of flake graphite disseminated in quartz schist. The contact-metasomatic deposits are small, irregular, and very erratic in graphite content. The deposits in quartz schist are very large, persistent, and uniform in grade. There are large reserves of schist containing 3 to 5 percent graphite, but the graphite is relatively fine grained.
NASA Astrophysics Data System (ADS)
Börner, Jana H.; Girault, Frédéric; Bhattarai, Mukunda; Adhikari, Lok Bijaya; Deldicque, Damien; Perrier, Frédéric; Spitzer, Klaus
2018-05-01
We analyzed in the laboratory the frequency-dependent, complex-valued, electrical conductivity of a graphitic black schist and an augen gneiss, both collected in the Main Central Thrust shear zone in the Himalayas of central Nepal, which was heavily affected by the deadly Mw7.8 Gorkha earthquake in 2015. We focused on anisotropy and salinity dependence of both cores and crushed material as well as the impact of CO2 on conductivity. This black schist possesses an extraordinarily high polarizability and a highly frequency-dependent conductivity. Its anisotropy is very pronounced. The investigations can relate the main polarization feature to disseminated, aligned plates of graphite. By contrast, the augen gneiss shows low polarizability and a moderately anisotropic conductivity dominated by the pore-filling brine. We further demonstrate that neglecting the complex and frequency-dependent nature of conductivity can lead to serious misinterpretation of magnetotelluric data during inversion if highly polarizable rocks are present.
Effects of solvent on solution prepregging of the resin system LaRC{trademark}-IAX-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cano, R.J.; Massey, C.P.; St. Clair, T.L.
1996-12-31
This work assesses the feasibility of using an alternative solvent for the production of composites from polyimide resin systems via solution prepregging. Previous work on solution prepregging of polyimide systems at NASA Langley Research Center has concentrated on the use of the solvent N-methylpyrrolidinone. An alternative solvent with a similar boiling point, -{gamma}-Butyrolactone, was used to prepare the poly(amide acid) version of LaRC{trademark}-IAX-2. These solutions were subsequently used to prepare prepreg and graphite-reinforced composites. Mechanical properties are presented for the resin system LaRC{trademark}-IAX-2 (4% and 5% offset in stoichiometry and endcapped with phthalic anhydride) impregnated onto Hercules IM7 carbon fiber.more » Results from this work were compared to data obtained on the same resin system which had been solution prepregged with the solvent N-methylpyrrolidinone.« less
A method for the solvent extraction of low-boiling-point plant volatiles.
Xu, Ning; Gruber, Margaret; Westcott, Neil; Soroka, Julie; Parkin, Isobel; Hegedus, Dwayne
2005-01-01
A new method has been developed for the extraction of volatiles from plant materials and tested on seedling tissue and mature leaves of Arabidopsis thaliana, pine needles and commercial mixtures of plant volatiles. Volatiles were extracted with n-pentane and then subjected to quick distillation at a moderate temperature. Under these conditions, compounds such as pigments, waxes and non-volatile compounds remained undistilled, while short-chain volatile compounds were distilled into a receiving flask using a high-efficiency condenser. Removal of the n-pentane and concentration of the volatiles in the receiving flask was carried out using a Vigreux column condenser prior to GC-MS. The method is ideal for the rapid extraction of low-boiling-point volatiles from small amounts of plant material, such as is required when conducting metabolic profiling or defining biological properties of volatile components from large numbers of mutant lines.
Nuclear Rocket Technology Conference
NASA Technical Reports Server (NTRS)
1966-01-01
The Lewis Research Center has a strong interest in nuclear rocket propulsion and provides active support of the graphite reactor program in such nonnuclear areas as cryogenics, two-phase flow, propellant heating, fluid systems, heat transfer, nozzle cooling, nozzle design, pumps, turbines, and startup and control problems. A parallel effort has also been expended to evaluate the engineering feasibility of a nuclear rocket reactor using tungsten-matrix fuel elements and water as the moderator. Both of these efforts have resulted in significant contributions to nuclear rocket technology. Many successful static firings of nuclear rockets have been made with graphite-core reactors. Sufficient information has also been accumulated to permit a reasonable Judgment as to the feasibility of the tungsten water-moderated reactor concept. We therefore consider that this technoIogy conference on the nuclear rocket work that has been sponsored by the Lewis Research Center is timely. The conference has been prepared by NASA personnel, but the information presented includes substantial contributions from both NASA and AEC contractors. The conference excludes from consideration the many possible mission requirements for nuclear rockets. Also excluded is the direct comparison of nuclear rocket types with each other or with other modes of propulsion. The graphite reactor support work presented on the first day of the conference was partly inspired through a close cooperative effort between the Cleveland extension of the Space Nuclear Propulsion Office (headed by Robert W. Schroeder) and the Lewis Research Center. Much of this effort was supervised by Mr. John C. Sanders, chairman for the first day of the conference, and by Mr. Hugh M. Henneberry. The tungsten water-moderated reactor concept was initiated at Lewis by Mr. Frank E. Rom and his coworkers. The supervision of the recent engineering studies has been shared by Mr. Samuel J. Kaufman, chairman for the second day of the conference, and Mr. Roy V. Humble. Dr. John C. Eward served as general chairman for the conference.
Spall behavior of cast iron with varying microstructures
NASA Astrophysics Data System (ADS)
Plume, Gifford; Rousseau, Carl-Ernst
2014-07-01
The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94-1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.
Marangoni Effects on Near-Bubble Microscale Transport During Boiling of Binary Fluid Mixtures
NASA Technical Reports Server (NTRS)
V. Carey; Sun, C.; Carey, V. P.
2000-01-01
In earlier investigations, Marangoni effects were observed to be the dominant mechanism of boiling transport in 2-propanol/water mixtures under reduced gravity conditions. In this investigation we have examined the mechanisms of binary mixture boiling by exploring the transport near a single bubble generated in a binary mixture between a heated surface and cold surface. The temperature field created in the liquid around the bubble produces vaporization over the portion of its interface near the heated surface and condensation over portions of its interface near the cold surface. Experiments were conducted using different mixtures of water and 2-propanol under 1g conditions and under reduced gravity conditions aboard the KC135 aircraft. Since 2-propanol is more volatile than water, there is a lower concentration of 2-propanol near the hot surface and a higher concentration of 2-propanol near the cold plate relative to the bulk quantity. This difference in interface concentration gives rise to strong Marangoni effects that move liquid toward the hot plate in the near bubble region for 2-propanol and water mixtures. In the experiments in this study, the pressure of the test system was maintained at about 5 kPa to achieve the full spectrum of boiling behavior (nucleate boiling, critical heat flux and film boiling) at low temperature and heat flux levels. Heat transfer data and visual documentation of the bubble shape were extracted from the experimental results. In the 1-g experiments at moderate to high heat flux levels, the bubble was observed to grow into a mushroom shape with a larger top portion near the cold plate due to the buoyancy effect. The shape of the bubble was somewhat affected by the cold plate subcooling and the superheat of the heated surface. At low superheat levels for the heated surface, several active nucleation sites were observed, and the vapor stems from them merged to form a larger bubble. The generation rate of vapor is moderate in this regime and the bubble shape is cylindrical in appearance. In some instances, the bubble interface appeared to oscillate. At higher applied heat flux levels, the top of the bubble became larger, apparently to provide more condensing interface area adjacent to the cold plate. Increasing the applied heat flux ultimately led to dry-out of the heated surface, with conditions just prior to dryout corresponding to the maximum heat flux (CHF). A more stable bubble was observed when the system attained the minimum heat flux (for film boiling). In this regime, most of the surface under the bottom of the bubble was dry with nucleate boiling sometimes occuring around the contact perimeter of the bubble at heated surface. Different variations (e.g. gap between two plates, molar concentration of the liquid mixture) of the experiments were examined to determine parametric effects on the boiling process and to determine the best conditions for the KC135 reduced gravity tests. Variation of the gap was found to have a minor impact on the CHF. However, reducing the gap between the hot and cold surface was observed to significantly reduce the minimum heat flux for fixed molar concentration of 2-propanol. In the reduced gravity experiments aboard the KC135 aircraft, the bubble formed in the 6.4 mm gap was generally cylindrical or barrel shaped and it increased its extent laterally as the surface superheat increased. In reduced gravity experiments, dryout of the heated surface under the bubble was observed to occur at a lower superheated temperature than for 1g conditions. Observed features of the boiling process and heat transfer data under reduced gravity will be discussed in detail. The results of the reduced gravity experiments will also be compared to those obtained in comparable 1g experiments. In tandem with the experiments we are also developing a computational model of the transport in the liquid surrounding the bubble during the boiling process. The computational model uses a level set method to model motion of the interface. It will incorporate a macroscale treatment of the transport in the liquid gap between the surfaces and a microscale treatment of transport in the regions between the bubble interface and the solid surfaces. The features of the model will be described in detail. Future research directions suggested by the results to date will also be discussed.
Tan, Yueming; Xu, Chaofa; Chen, Guangxu; Liu, Zhaohui; Ma, Ming; Xie, Qingji; Zheng, Nanfeng; Yao, Shouzhuo
2013-03-01
Synthesis of nitrogen-doped carbons with large surface area, high conductivity, and suitable pore size distribution is highly desirable for high-performance supercapacitor applications. Here, we report a novel protocol for template synthesis of ultrathin nitrogen-doped graphitic carbon nanocages (CNCs) derived from polyaniline (PANI) and their excellent capacitive properties. The synthesis of CNCs involves one-pot hydrothermal synthesis of Mn3O4@PANI core-shell nanoparticles, carbonization to produce carbon coated MnO nanoparticles, and then removal of the MnO cores by acidic treatment. The CNCs prepared at an optimum carbonization temperature of 800 °C (CNCs-800) have regular frameworks, moderate graphitization, high specific surface area, good mesoporosity, and appropriate N doping. The CNCs-800 show high specific capacitance (248 F g(-1) at 1.0 A g(-1)), excellent rate capability (88% and 76% capacitance retention at 10 and 100 A g(-1), respectively), and outstanding cycling stability (~95% capacitance retention after 5000 cycles) in 6 M KOH aqueous solution. The CNCs-800 can also exhibit great pseudocapacitance in 0.5 M H2SO4 aqueous solution besides the large electrochemical double-layer capacitance. The excellent capacitance performance coupled with the facile synthesis of ultrathin nitrogen-doped graphitic CNCs indicates their great application potential in supercapacitors.
Nitrogen doping and CO2 adsorption on graphene: A thermodynamical study
NASA Astrophysics Data System (ADS)
Re Fiorentin, Michele; Gaspari, Roberto; Quaglio, Marzia; Massaglia, Gulia; Saracco, Guido
2018-04-01
Nitrogen-doped graphene has raised considerable interest for its possible applications as carbon dioxide adsorber and catalyst. In this paper, we provide a theoretical study of graphitic, pyridiniclike and pyrroliclike nitrogen defects in a free-standing graphene layer, focusing on their formation and adsorption behavior. Using density functional theory and thermodynamics, we analyze the various defects, highlighting the great stability of graphitic nitrogen in a wide temperature and pressure range. CO2 adsorption proves to be moderately thermodynamically disfavored around standard conditions for the most stable nitrogen defects and slightly favored for the more energetic ones. The combination of the results on defect stability and CO2 adsorption may open interesting possibilities in the design of carbon-based materials with promising adsorption performances.
Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.
1992-01-01
An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.
NASA Technical Reports Server (NTRS)
Clements, L. L.; Lee, P. R.
1980-01-01
Tension tests on graphite/epoxy composites were performed to determine the influence of various quality control variables on failure strength as a function of moisture and moderate temperatures. The extremely high and low moisture contents investigated were found to have less effect upon properties than did temperature or the quality control variables of specimen flaws and prepreg batch to batch variations. In particular, specimen flaws were found to drastically reduce the predicted strength of the composite, whereas specimens from different batches of prepreg displayed differences in strength as a function of temperature and extreme moisture exposure. The findings illustrate the need for careful specimen preparation, studies of flaw sensitivity, and careful quality control in any study of composite materials.
Program For Optimization Of Nuclear Rocket Engines
NASA Technical Reports Server (NTRS)
Plebuch, R. K.; Mcdougall, J. K.; Ridolphi, F.; Walton, James T.
1994-01-01
NOP is versatile digital-computer program devoloped for parametric analysis of beryllium-reflected, graphite-moderated nuclear rocket engines. Facilitates analysis of performance of engine with respect to such considerations as specific impulse, engine power, type of engine cycle, and engine-design constraints arising from complications of fuel loading and internal gradients of temperature. Predicts minimum weight for specified performance.
NEUTRONIC REACTOR SHIELD AND SPACER CONSTRUCTION
Wigner, E.P.; Ohlinger, L.A.
1958-11-18
Reactors of the heterogeneous, graphite moderated, fluid cooled type and shielding and spacing plugs for the coolant channels thereof are reported. In this design, the coolant passages extend horizontally through the moderator structure, accommodating the fuel elements in abutting end-to-end relationship, and have access openings through the outer shield at one face of the reactor to facilitate loading of the fuel elements. In the outer ends of the channels which extend through the shields are provided spacers and shielding plugs designed to offer minimal reslstance to coolant fluid flow while preventing emanation of harmful radiation through the access openings when closed between loadings.
Akramipour, Reza; Hemati, Mitra; Fattahi, Nazir; Pirsaheb, Meghdad; Ahmadi-Jouibari, Toraj
2017-06-05
The continuous sample drop flow microextraction (CSDFME) joined with the iridium-modified tube graphite furnace atomic absorption spectrometry (GFAAS) has been developed as a highly sensitive technique for the speciation of selenium in blood samples. In this method 32.0μl carbon tetrachloride is transferred to the bottom of a conical sample cup. Then the 5.0ml of aqueous solution transforms to fine droplets while passing through the organic solvent. At this stage, Se(IV)-APDC hydrophobic complex is extracted into the organic solvent. After extraction, the conical sample cup is transferred to the GFAAS and 20μl of extraction solvent was injected into the graphite tube by the aim of autosampler. Under the optimum conditions, the calibration graph was linear in the range of 0.06-3.0μgl -1 with detection limit of 0.02μgl -1 . The enrichment factor and enhancement factor were 106 and 91, respectively. Repeatability (intra-day) and reproducibility (inter-day) of method based on seven replicate measurements of 2.5μgl -1 of selenium were 3.7% and 4.2%, respectively. Total inorganic Se(IV, VΙ) was measured after reduction of Se(VΙ) with gentle boiling in 5M HCl medium for 50min and adjusting pH to 3, and the concentration of Se(VΙ) was calculated by subtracting the Se(IV) concentration from the total selenium concentration. Copyright © 2017 Elsevier B.V. All rights reserved.
Monte Carlo Analysis of the Battery-Type High Temperature Gas Cooled Reactor
NASA Astrophysics Data System (ADS)
Grodzki, Marcin; Darnowski, Piotr; Niewiński, Grzegorz
2017-12-01
The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an `early design' variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit). A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.
Nuclear fuel elements and method of making same
Schweitzer, Donald G.
1992-01-01
A nuclear fuel element for a high temperature gas nuclear reactor that has an average operating temperature in excess of 2000.degree. C., and a method of making such a fuel element. The fuel element is characterized by having fissionable fuel material localized and stabilized within pores of a carbon or graphite member by melting the fissionable material to cause it to chemically react with the carbon walls of the pores. The fissionable fuel material is further stabilized and localized within the pores of the graphite member by providing one or more coatings of pyrolytic carbon or diamond surrounding the porous graphite member so that each layer defines a successive barrier against migration of the fissionable fuel from the pores, and so that the outermost layer of pyrolytic carbon or diamond forms a barrier between the fissionable material and the moderating gases used in an associated high temperature gas reactor. The method of the invention provides for making such new elements either as generally spherically elements, or as flexible filaments, or as other relatively small-sized fuel elements that are particularly suited for use in high temperature gas reactors.
Evolution of the secondary electron emission during the graphitization of thin C films
NASA Astrophysics Data System (ADS)
Larciprete, Rosanna; Grosso, Davide Remo; Di Trolio, Antonio; Cimino, Roberto
2015-02-01
The relation between the atomic hybridization and the secondary electron emission yield (SEY) in carbon materials has been investigated during the thermal graphitization of thin amorphous carbon layers deposited by magnetron sputtering on Cu substrates. C1s core level, valence band and Raman spectroscopy were used to follow the sp3→sp2 structural reorganization while the SEY curves as a function of the kinetic energy of the incident electron beam were measured in parallel. We found that an amorphous C layer with a thickness of a few tens of nanometers is capable to modify the secondary emission properties of the clean copper surface, reducing the maximum yield from 1.4 to 1.2. A further SEY decrease observed with the progressive conversion of sp3 hybrids into six-fold aromatic domains was related to the electronic structure close to the Fermi level of the C-films. We found that a moderate structural quality of the C layer is sufficient to notably decrease the SEY as aromatic clusters of limited size approach the secondary emission properties of graphite.
A Case of Retained Graphite Anterior Chamber Foreign Body Masquerading as Stromal Keratitis
Han, Eun Ryung; Wee, Won Ryang; Lee, Jin Hak
2011-01-01
We report a case of a retained graphite anterior chamber foreign body that was masquerading as stromal keratitis. A 28-year-old male visited with complaints of visual disturbance and hyperemia in his right eye for four weeks. On initial examination, he presented with a stromal edema involving the inferior half of the cornea, epithelial microcysts, and moderate chamber inflammation. Suspecting herpetic stromal keratitis, he was treated with anti-viral and anti-inflammatory agents. One month after the initial visit, anterior chamber inflammation was improved and his visual acuity recovered to 20/20, but subtle corneal edema still remained. On tapering the medication, after three months, a foreign body was incidentally identified in the inferior chamber angle and was surgically removed resulting in complete resolution of corneal edema. The removed foreign body was a fragment of graphite and he subsequently disclosed a trauma with mechanical pencil 12 years earlier. This case showed that the presence of an anterior chamber foreign body should always be considered in the differential diagnosis of idiopathic localized corneal edema. PMID:21461226
Solubility of some alkali and alkaline earth chlorides in water at moderate temperatures
Clynne, M.A.; Potter, R.W.
1979-01-01
Solubilities for the binary systems, salt-H2O, of the chlorides of lithium, rubidium, cesium, magnesium, calcium, strontium, and barium from near 0??C to the saturated boiling point are reported. The experimental data and coefficients of an equation for a smoothed curve describing each system are listed in the tables. The data are improvements on those previously reported in the literature, having a precision on the average of ??0.09%.
Small Modular Reactors: The Army’s Secure Source of Energy?
2012-03-21
significant advantages of SMRs is the minimal amount of carbon dioxide (greenhouse gases) that is released in conjunction with the lifecycle operations...moderator in these reactors as well as the cooling agent and the means by which heat is removed to produce steam for turning the turbines of the...separate water system to generate steam to turn a turbine which then produces electricity. In the second type of light water reactors, the boiling water
IR femtochemistry on the surface of wide-gap ionic crystals
NASA Astrophysics Data System (ADS)
Laptev, V. B.; Chekalin, S. V.; Dorofeyev, I. A.; Kompanets, V. O.; Pigulsky, S. V.; Ryabov, E. A.
2018-02-01
We have found and studied a phenomenon of the growth of films resulting from decomposition of some organic and silicon-containing molecules adsorbed on the surface of ionic crystals under the action of IR (1.4-5.4 µm) femtosecond radiation of a moderate intensity, ~1011 W cm-2. In the gas phase, these molecules do not decompose. Microstructured films consisting of amorphous carbon, graphite oxide, and silicon dioxide have been obtained. The formation of carbon films was accompanied by the appearance of different hydrocarbons in the gas phase. The extensive films of graphite oxide have been obtained. The decomposition of molecules on the surface is apparently caused by non-resonant ionization and subsequent deep fragmentation. The mechanisms of ionization at relatively low intensities of the femtosecond IR radiation have been discussed.
NASA Astrophysics Data System (ADS)
Mett, Richard R.; Anderson, James R.; Sidabras, Jason W.; Hyde, James S.
2005-09-01
Magnetic field modulation is often introduced into a cylindrical TE011 electron paramagnetic resonance (EPR) cavity through silver plating over a nonconductive substrate. The plating thickness must be many times the skin depth of the rf and smaller than the skin depth of the modulation. We derive a parameter that quantifies the modulation field penetration and find that it also depends on resonator dimensions. Design criteria based on this parameter are presented graphically. This parameter is then used to predict the behavior of eddy currents in substrates of moderate conductivity, such as graphite. The conductivity of the graphite permits improved plating uniformity and permits use of electric discharge machining (EDM) techniques to make the resonator. EDM offers precision tolerances of 0.005 mm and is suitable for small, complicated shapes that are difficult to machine by other methods. Analytic predictions of the modulation penetration are compared with the results of finite-element simulations. Simulated magnetic field modulation uniformity and penetration are shown for several elemental coils and structures including the plated graphite TE011 cavity. Fabrication and experimental testing of the structure are discussed. Spatial inhomogeneity of the modulation phase is also investigated by computer simulation. We find that the modulation phase is uniform to within 1% over the TE011 cavity. Structures of lower symmetry have increased phase nonuniformity.
Conversion of olefins to liquid motor fuels
Rabo, Jule A.; Coughlin, Peter K.
1988-01-01
Linear and/or branched claim C.sub.2 to C.sub.12 olefins are converted to hydrocarbon mixtures suitable for use as liquid motor fuels by contact with a catalyst capable of ensuring the production of desirable products with only a relatively minor amount of heavy products boiling beyond the diesel oil range. The catalyst having desirable stability during continuous production operations, comprises a steam stabilized zeolite Y catalyst of hydrophobic character, desirably in aluminum-extracted form. The olefins such as propylene, may be diluted with inerts, such as paraffins or with water, the latter serving to moderate the acidity of the catalyst, or to further moderate the activity of the aluminum-extracted catalyst, so as to increase the effective life of the catalyst.
Liquefaction sites, Imperial Valley, California.
Youd, T.L.; Bennett, M.J.
1983-01-01
Sands that did and did not liquefy at two sites during the 1979 Imperial Valley, Calif., earthquake (ML = 6.6) are identified and their properties evaluated. SPT tests were used to evaluate liquefaction susceptibility. Loose fine sands in an abandoned channel liquefied and produced sand boils, ground fissures, and a lateral spread at the Heber Road sites. Evidence of liquefaction was not observed over moderately dense over-bank sand east of the channel nor over dense point-bar sand to the west. -from ASCE Publications Information
13C 12C exchange between calcite and graphite: A possible thermometer in Grenville marbles
Valley, J.W.; O'Neil, J.R.
1981-01-01
The fractionation of 13C between calcite and graphite, ??(Cc-Gr). is consistently small (2.6-4.8 permil) in 34 assemblages from upper amphibolite- and granulite-facies marbles of the Grenville Province. In 25 samples from the Adirondack Mountains, New York, it decreases regularly with increasing metamorphic temperature. The fractionations are independent of absolute ??13C values of calcite (-2.9 to +5.0). For T = 600-800??C, the Adirondack data are described by ??(Cc-Gr) = -0.00748T (??C) + 8.68. This good correlation between ?? and T suggests that carbon isotope equilibrium was attained in these high-grade marbles and that the theoretical calculations of this fractionation by Bottinga are approximately 2 permil too large in this temperature range. Because of the relatively high temperature sensitivity suggested by these results and by Bottinga's calculations, and the pressure independence of isotope fractionation, ??(Cc-Gr) may provide a very good thermometer for high-grade marbles. Comparison of this field calibration for ??(Cc-Gr) vs temperature with results from other terranes supports the utility of ??(Cc-Gr) for geothermometry and suggests that graphite is much more sluggish to exchange than calcite, that exchange between calcite and graphite occurs at temperatures as low as 300??C, and that equilibrium may normally be attained only when peak metamorphic temperatures are greater than 500-600??C. Because 13C exchange is an unavoidable metamorphic process at temperatures above 300??C, high values of ??13C(Gr) in moderate- to high-grade carbonate-bearing rocks do not provide a sufficient criterion to infer an abiogenic origin for the graphite. ?? 1981.
Wigner, E.P.
1957-09-17
A reactor of the type having coolant liquid circulated through clad fuel elements geometrically arranged in a solid moderator, such as graphite, is described. The core is enclosed in a pressure vessel and suitable shielding, wherein means is provided for circulating vapor through the core to superheat the same. This is accomplished by drawing off the liquid which has been heated in the core due to the fission of the fuel, passing it to a nozzle within a chamber where it flashes into a vapor, and then passing the vapor through separate tubes extending through the moderator to pick up more heat developed in the core due to the fission of the fuel, thereby producing superheated vapor.
Costa, Renata G; Bah, Homegnon A F; Bandeira, Matheus J; Oliveira, Sérgio S P; Menezes-Filho, José A
2017-09-01
Lead (Pb) and cadmium (Cd) were determined in mangrove root crab (Goniopsis cruentata) tissues (in natura) and in two culinary preparations by graphite furnace atomic absorption spectrometry. Mangrove root crab samples from three sampling sites along the Jaguaripe River, Bahia, Brazil, where lead-glazed ceramics are produced, and from two commercial preparations were collected or purchased in March and April 2016. Cd levels in raw and processed samples were below the methods' limits of detection (0.016 mg kg -1 ), while Pb levels in the raw tissues were determined only in the gills (0.67 mg kg -1 ) and in the hepatopancreas (0.14 mg kg -1 ). However, Pb levels increased from 0.05 to 2.84 mg kg -1 in boiled/sorted muscle and in the traditional stew (with a 57-fold increase), respectively. Pb levels augmented significantly in the processed food due to migration of Pb used in the glazing of cooking ceramic utensils, surpassing the Brazilian and international safety limits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwang-Won, Lee; Sang-Yong, Lee
1995-09-01
A mechanistic model for forced convective transition boiling has been developed to investigate transition boiling mechanisms and to predict transition boiling heat flux realistically. This model is based on a postulated multi-stage boiling process occurring during the passage time of the elongated vapor blanket specified at a critical heat flux (CHF) condition. Between the departure from nucleate boiling (DNB) and the departure from film boiling (DFB) points, the boiling heat transfer is established through three boiling stages, namely, the macrolayer evaporation and dryout governed by nucleate boiling in a thin liquid film and the unstable film boiling characterized by themore » frequent touches of the interface and the heated wall. The total heat transfer rates after the DNB is weighted by the time fractions of each stage, which are defined as the ratio of each stage duration to the vapor blanket passage time. The model predictions are compared with some available experimental transition boiling data. The parametric effects of pressure, mass flux, inlet subcooling on the transition boiling heat transfer are also investigated. From these comparisons, it can be seen that this model can identify the crucial mechanisms of forced convective transition boiling, and that the transition boiling heat fluxes including the maximum heat flux and the minimum film boiling heat flux are well predicted at low qualities/high pressures near 10 bar. In future, this model will be improved in the unstable film boiling stage and generalized for high quality and low pressure situations.« less
Statistical Models of Fracture Relevant to Nuclear-Grade Graphite: Review and Recommendations
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Bratton, Robert L.
2011-01-01
The nuclear-grade (low-impurity) graphite needed for the fuel element and moderator material for next-generation (Gen IV) reactors displays large scatter in strength and a nonlinear stress-strain response from damage accumulation. This response can be characterized as quasi-brittle. In this expanded review, relevant statistical failure models for various brittle and quasi-brittle material systems are discussed with regard to strength distribution, size effect, multiaxial strength, and damage accumulation. This includes descriptions of the Weibull, Batdorf, and Burchell models as well as models that describe the strength response of composite materials, which involves distributed damage. Results from lattice simulations are included for a physics-based description of material breakdown. Consideration is given to the predicted transition between brittle and quasi-brittle damage behavior versus the density of damage (level of disorder) within the material system. The literature indicates that weakest-link-based failure modeling approaches appear to be reasonably robust in that they can be applied to materials that display distributed damage, provided that the level of disorder in the material is not too large. The Weibull distribution is argued to be the most appropriate statistical distribution to model the stochastic-strength response of graphite.
CHF considerations for highly moderated 100% MOX fuels PWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saphier, D.; Raymond, P.
1995-09-01
A feasibility study on using 100% MOX fuel in a PWR with increased moderating ratio, RMA, was initiated. In the proposed design all the parameters were chosen identical to the French 1450MW PWR, except the fuel pin diameter which was reduced to achieve higher moderating ratios, V{sub M}/V{sub F}, where V{sub M} and V{sub F} are the moderator and fuel volume respectively. Moderating ratios from 2 to 4 were considered. In the present study the thermal-hydraulic feasibility of using fuel assemblies with smaller diameter fuel pins was investigated. The major design constrain in this study was the critical heat fluxmore » (CHF). In order to maintain the fuel pin integrity under nominal operating and transient conditions, the minimum DNBR, (Departure from Nucleate Boiling Ratio given by CHF/q{close_quotes}{sub local}, where q{close_quotes}{sub local} is the local heat flux), has to be above a given value. The limitations of the existing CHF correlations for the present study are outlined. Two designs based on the conventional 17x17 fuel assembly and on the advanced 19x19 assembly meeting the MDNBR criteria and satisfying the control margin requirements, are proposed.« less
Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Licht, J. R.; Bergeron, A.; Dionne, B.
BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water. The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cmmore » 2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident. A feasibility study for the conversion of the BR2 reactor from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel was previously performed to verify it can operate safely at the same maximum nominal steady-state heat flux. An assessment was also performed to quantify the heat fluxes at which the onset of flow instability and critical heat flux occur for each fuel type. This document updates and expands these results for the current representative core configuration (assuming a fresh beryllium matrix) by evaluating the onset of nucleate boiling (ONB), onset of fully developed nucleate boiling (FDNB), onset of flow instability (OFI) and critical heat flux (CHF).« less
Pavlou, Andrew T.; Ji, Wei; Brown, Forrest B.
2016-01-23
Here, a proper treatment of thermal neutron scattering requires accounting for chemical binding through a scattering law S(α,β,T). Monte Carlo codes sample the secondary neutron energy and angle after a thermal scattering event from probability tables generated from S(α,β,T) tables at discrete temperatures, requiring a large amount of data for multiscale and multiphysics problems with detailed temperature gradients. We have previously developed a method to handle this temperature dependence on-the-fly during the Monte Carlo random walk using polynomial expansions in 1/T to directly sample the secondary energy and angle. In this paper, the on-the-fly method is implemented into MCNP6 andmore » tested in both graphite-moderated and light water-moderated systems. The on-the-fly method is compared with the thermal ACE libraries that come standard with MCNP6, yielding good agreement with integral reactor quantities like k-eigenvalue and differential quantities like single-scatter secondary energy and angle distributions. The simulation runtimes are comparable between the two methods (on the order of 5–15% difference for the problems tested) and the on-the-fly fit coefficients only require 5–15 MB of total data storage.« less
Li, Q.; Kang, Q. J.; Francois, M. M.; ...
2015-03-03
A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic featuresmore » and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.« less
Khorshidi, Abdollah
2017-01-01
The reactor has increased its area of application into medicine especially boron neutron capture therapy (BNCT); however, accelerator-driven neutron sources can be used for therapy purposes. The present study aimed to discuss an alternative method in BNCT functions by a small cyclotron with low current protons based on Karaj cyclotron in Iran. An epithermal neutron spectrum generator was simulated with 30 MeV proton energy for BNCT purposes. A low current of 300 μA of the proton beam in spallation target concept via 9Be target was accomplished to model neutron spectrum using 208Pb moderator around the target. The graphite reflector and dual layer collimator were planned to prevent and collimate the neutrons produced from proton interactions. Neutron yield per proton, energy distribution, flux, and dose components in the simulated head phantom were estimated by MCNPX code. The neutron beam quality was investigated by diverse filters thicknesses. The maximum epithermal flux transpired using Fluental, Fe, Li, and Bi filters with thicknesses of 7.4, 3, 0.5, and 4 cm, respectively; as well as the epithermal to thermal neutron flux ratio was 161. Results demonstrated that the induced neutrons from a low energy and low current proton may be effective in tumor therapy using 208Pb moderator with average lethargy and also graphite reflector with low absorption cross section to keep the generated neutrons. Combination of spallation-based BNCT and proton therapy can be especially effective, if a high beam intensity cyclotron becomes available.
NEUTRONIC REACTOR AND FUEL ELEMENT THEREFOR
Szilard, L.; Young, G.J.
1958-03-01
This patent relates to a reactor design of the type which employs solid fuel elements disposed in channels within the moderator through which channels and around the fuel elements is conveyed a coolant fiuid. The coolant channels are comprised of aluminum tubes extending through a solid moderator such as graphite and the fuel elements are comprised of an elongated solid body of natural uranium jacketed in an aluminum jacket with the ends thereof closed by aluminum caps of substantially greater thickness than the jacket was and in good thermal contact with the fuel material to facilitate the conduction of heat from the central portion of said ends to the coolant surrounding the fuel element to prevent overheating of said central portion.
Analyzing the impact of reactive transport on the repository performance of TRISO fuel
NASA Astrophysics Data System (ADS)
Schmidt, Gregory
One of the largest determiners of the amount of electricity generated by current nuclear reactors is the efficiency of the thermodynamic cycle used for power generation. Current light water reactors (LWR) have an efficiency of 35% or less for the conversion of heat energy generated by the reactor to electrical energy. If this efficiency could be improved, more power could be generated from equivalent volumes of nuclear fuel. One method of improving this efficiency is to use a coolant flow that operates at a much higher temperature for electricity production. A reactor design that is currently proposed to take advantage of this efficiency is a graphite-moderated, helium-cooled reactor known as a High Temperature Gas Reactor (HTGR). There are significant differences between current LWR's and the proposed HTGR's but most especially in the composition of the nuclear fuel. For LWR's, the fuel elements consist of pellets of uranium dioxide or plutonium dioxide that are placed in long tubes made of zirconium metal alloys. For HTGR's, the fuel, known as TRISO (TRIstructural-ISOtropic) fuel, consists of an inner sphere of fissile material, a layer of dense pyrolytic carbon (PyC), a ceramic layer of silicon carbide (SiC) and a final dense outer layer of PyC. These TRISO particles are then compacted with graphite into fuel rods that are then placed in channels in graphite blocks. The blocks are then arranged in an annular fashion to form a reactor core. However, this new fuel form has unanswered questions on the environmental post-burn-up behavior. The key question for current once-through fuel operations is how these large irradiated graphite blocks with spent fuel inside will behave in a repository environment. Data in the literature to answer this question is lacking, but nevertheless this is an important question that must be answered before wide-spread adoption of HTGR's could be considered. This research has focused on answering the question of how the large quantity of graphite surrounding the spent HTGR fuel will impact the release of aqueous uranium from the TRISO fuel. In order to answer this question, the sorption and partitioning behavior of uranium to graphite under a variety of conditions was investigated. Key systematic variables that were analyzed include solution pH, dissolved carbonate concentration, uranium metal concentration and ionic strength. The kinetics and desorption characteristics of uranium/graphite partitioning were studied as well. The graphite used in these experiments was also characterized by a variety of techniques and conclusions are drawn about the relevant surface chemistry of graphite. This data was then used to generate a model for the reactive transport of uranium in a graphite matrix. This model was implemented with the software code CXTFIT and validated through the use of column studies mirroring the predicted system.
Polymer matrix and graphite fiber interface study
NASA Technical Reports Server (NTRS)
Adams, D. F.; Zimmerman, R. S.; Odom, E. M.
1985-01-01
Hercules AS4 graphite fiber, unsized, or with EPON 828, PVA, or polysulfone sizing, was combined with three different polymer matrices. These included Hercules 3501-6 epoxy, Hercules 4001 bismaleimide, and Hexcel F155 rubber toughened epoxy. Unidirectional composites in all twelve combinations were fabricated and tested in transverse tension and axial compression. Quasi-isotropic laminates were tested in axial tension and compression, flexure, interlaminar shear, and tensile impact. All tests were conducted at both room temperature, dry and elevated temperature, and wet conditions. Single fiber pullout testing was also performed. Extensive scanning electron microphotographs of fracture surfaces are included, along with photographs of single fiber pullout failures. Analytical/experimental correlations are presented, based on the results of a finite element micromechanics analysis. Correlations between matrix type, fiber sizing, hygrothermal environment, and loading mode are presented. Results indicate that the various composite properties were only moderately influenced by the fiber sizings utilized.
Shape change of Galileo probe models in free-flight tests
NASA Technical Reports Server (NTRS)
Park, C.; Derose, C. F.
1980-01-01
Scale models of the Galileo Probe made of polycarbonate, AXF5Q graphite, carbon-carbon composite, and carbon-phenolic were flown in a free flight range in an ambient gas of air, krypton, or xenon. Mach numbers varied between 14 and 24, Reynolds numbers between 300,000 and 1,000,000, stagnation pressures between 31 and 200 atm, and stagnation point heat transfer rates between 10 and 1,000 kW/sq cm. Shadowgraphs indicate gouging ablation of the aft portion of the frustum; the gouging was moderate in air and severe in the noble gases. The graphite models break in the same region. An explanation of the phenomena is offered in terms of the strong compression and shear caused by the reattachment of a turbulent separated flow. Conditions are calculated for similar tests appropriate for Von Karman Facility of the Arnold Engineering Development Center in which a larger model can be flown in argon.
APPARATUS FOR DETECTING AND LOCATING PRESENCE OF FLUIDS
Williamson, R.R.
1958-09-16
A system is described fur detecting water leaks in water-cooled neutronic reactors by utilizing an electrical hygrometer having a resistance element variable with the moisture content. The graphite blocks, forming the moderator in many types of reactors, coniain ducts in which helium gas is circulated. When a leak occurs in a coolant tube, the water will seep through the graphite until it oozes into one of the helium ducts, where it will be swept along with the helium into a system of pipes that connect each of the helium ducts. By inserting an electric hygrometer in each of these pipes and connecting it to an alarm system, the moisture content of the helium will cause a change in the electrical resistance of the hygrometer which will initiate a signal alarm indicating the presence and position of the leaky water tube in the reactor.
Mineral resource potential map of the Sugarloaf Roadless Area, San Bernardino County, California
Powell, Robert E.; Matti, Jonathan C.; Cox, Brett F.; Oliver, Howard W.; Wagini, Alexander; Campbell, Harry W.
1983-01-01
Geologic, geochemical, and geophysical investigations and a survey of mines and prospects indicate that the Sugaloaf Roadless Area contains subeconomic graphite and magnesian marble resources. Parts of the area have a low potential for the occurrence of additional low-grade graphite resources, but there is no potential for additional magnesian marble resources within the roadless area. Sand, gravel, and construction stone other than carbonate rocks are found in the roadless area, but similar or better quality materials are abundant and more accessible outside the area. The roadless area has no identified energy mineral resources, but parts of the area have a low to moderate potential for low-grade uranium resources. There are no identified metallic mineral resources within the area, and there is no evidence of a potential for the occurrence of such resources. No previously unknown mineral occurrence was located during this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.; Knerr, R.; Shoop, U.
1993-01-01
RETRAN-03 studies were performed for the boiling water reactor (BWR) turbine trip without bypass (TTWOB) event to investigate how the non-neutron-absorbing material on control rod tips affect scram delay timing and reactivity feedback. Scram delay, Doppler temperature, and moderator void (density) feedback were varied to assess their relative impact on kinetics behavior. Although a generic point-kinetics RETRAN-03 TTWOB model 2 was employed, actual plant information was used to develop the basic and parametric cases.
BOILING WATER REACTOR TECHNOLOGY STATUS OF THE ART REPORT. VOLUME II. WATER CHEMISTRY AND CORROSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breden, C.R.
1963-02-01
Information concerning the corrosive effects of water in power reactor moderator-coolant systems is presented. The information is based on investigations reported in the unclassified literature believed to be fairly complete to 1959, but less complete since then. The material is presented in sections on water decomposition, water chemistry, materials corrosion, corrosion product deposits, and radioactivity. It is noted that the report is presented as a part of a continuing program in development of less expensive materials for use in reactors. (J.R.D.)
Differential Equations, Related Problems of Pade Approximations and Computer Applications
1988-01-01
x e X : d(x,A) Unfortunately. for moderate primes (p < 10,000) 1). Expanders have the property that every A c none of these Ramanujan graphs have a...and for every A c X, Card(A) :< n/2, the graphs of relataively small diameter can be boundary aA has at least c • Card(A) elements. Ramanujan graphs...State, and ZIP,ode) 7b. ADDRESS (City, State, and ZIP Code) - _ - - " Building 410 - C x ,, -Boiling, AFB DC 20332-6448 11a. NAME OF FUNDING
Pimenova, Anastasiya V; Goldobin, Denis S
2014-11-01
We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becoming heated above its bulk boiling point. On the contrary, we address the case where both liquids remain below their bulk boiling points. In this paper we construct the theoretical description of the boiling process and discuss the actualisation of the case we consider for real systems.
Combining liquid inertia with pressure recovery from bubble expansion for enhanced flow boiling
NASA Astrophysics Data System (ADS)
Kalani, A.; Kandlikar, S. G.
2015-11-01
In this paper, we demonstrate using liquid inertia force in a taper gap microchannel geometry to provide a high level of heat dissipation capacity accompanied by a high heat transfer coefficient and low pressure drop during flow boiling. The high mass flux increases liquid inertia force and promotes vapor removal from the manifold, thereby increasing critical heat flux (CHF) and heat transfer coefficient. The tapered gap above the microchannels provides an increasing cross-sectional area in the flow direction. This gap allows bubbles to emerge from microchannels and expand within the gap along the flow direction. The bubble evaporation and expansion in tapered gap causes pressure recovery and reduces the total pressure drop. The pressure recovery increases with the increased evaporation rate at higher heat fluxes. Using a 6% taper and a moderately high inlet liquid flow Reynolds number of 1095, we have reached a CHF of 1.07 kW/cm2 with a heat transfer coefficient of 295 kW/m2 °C and a pressure drop of 30 kPa.
Universality of oscillating boiling in Leidenfrost transition
NASA Astrophysics Data System (ADS)
Tran, Tuan; Khavari, Mohammad
2017-11-01
The Leidenfrost transition leads a boiling system to the boiling crisis, a state in which the liquid loses contact with the heated surface due to excessive vapor generation. Here, using experiments of liquid droplets boiling on a heated surface, we report a new phenomenon, termed oscillating boiling, at the Leidenfrost transition. We show that oscillating boiling results from the competition between two effects: separation of liquid from the heated surface due to localized boiling, and rewetting. We argue theoretically that the Leidenfrost transition can be predicted based on its link with the oscillating boiling phenomenon, and verify the prediction experimentally for various liquids. This work was funded by Nanyang Technological University and A*STAR, Singapore.
Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, William BJ J
2016-01-01
A technical basis for peak reactivity boiling water reactor (BWR) burnup credit (BUC) methods was recently generated, and the technical basis for extended BWR BUC is now being developed. In this paper, a number of effects related to extended BWR BUC are analyzed, including three major operational effects in BWRs: the coolant density axial distribution, the use of control blades during operation, and the axial burnup profile. Specifically, uniform axial moderator density profiles are analyzed and compared to previous results and an additional temporal fidelity study combing moderator density profiles for three different fuel assemblies is presented. Realistic control blademore » histories and cask criticality results are compared to previously generated constructed control blade histories. Finally, a preliminary study of the axial burnup profile is provided.« less
Boiling Experiment Facility for Heat Transfer Studies in Microgravity
NASA Technical Reports Server (NTRS)
Delombard, Richard; McQuillen, John; Chao, David
2008-01-01
Pool boiling in microgravity is an area of both scientific and practical interest. By conducting tests in microgravity, it is possible to assess the effect of buoyancy on the overall boiling process and assess the relative magnitude of effects with regards to other "forces" and phenomena such as Marangoni forces, liquid momentum forces, and microlayer evaporation. The Boiling eXperiment Facility is now being built for the Microgravity Science Glovebox that will use normal perfluorohexane as a test fluid to extend the range of test conditions to include longer test durations and less liquid subcooling. Two experiments, the Microheater Array Boiling Experiment and the Nucleate Pool Boiling eXperiment will use the Boiling eXperiment Facility. The objectives of these studies are to determine the differences in local boiling heat transfer mechanisms in microgravity and normal gravity from nucleate boiling, through critical heat flux and into the transition boiling regime and to examine the bubble nucleation, growth, departure and coalescence processes. Custom-designed heaters will be utilized to achieve these objectives.
SIMPLIFIED SODIUM GRAPHITE REACTOR SYSTEM
Dickinson, R.W.
1963-03-01
This patent relates to a nuclear power reactor comprising a reactor vessel, shielding means positioned at the top of said vessel, means sealing said reactor vessel to said shielding means, said vessel containing a quantity of sodium, a core tank, unclad graphite moderator disposed in said tank, means including a plurality of process tubes traversing said tank for isolating said graphite from said sodium, fuel elements positioned in said process tubes, said core tank being supported in spaced relation to the walls and bottom of said reactor vessel and below the level of said sodium, neutron shielding means positioned adjacent said core tank between said core tank and the walls of said vessel, said neutron shielding means defining an annuiar volume adjacent the inside wall of said reactor vessel, inlet plenum means below said core tank for providing a passage between said annular volume and said process tubes, heat exchanger means removably supported from the first-named shielding means and positioned in said annular volume, and means for circulating said sodium over said neutron shielding means down through said heat exchanger, across said inlet plenum and upward through said process tubes, said last-named means including electromagnetic pumps located outside said vessel and supported on said vessel wall between said heat exchanger means and said inlet plenum means. (AEC)
21 CFR 872.6710 - Boiling water sterilizer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...
21 CFR 872.6710 - Boiling water sterilizer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...
21 CFR 872.6710 - Boiling water sterilizer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...
21 CFR 872.6710 - Boiling water sterilizer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...
NASA Astrophysics Data System (ADS)
Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.
2018-04-01
Graphite has been widely used as neutron moderator, reflector or fuel matrix in different types of reactors such as gas cooled nuclear reactors (UNGG, Magnox, AGR), RBMK reactors or high temperature gas cooled reactors. Their operation produces a great quantity of irradiated graphite or other carbonaceous waste (around 250,000 tons worldwide) that requires a special management strategy. In the case of disposal, which is a current management strategy, two main radionuclides, 14C and 36Cl might be dose determining at the outlet. Particular attention is paid to 14C due to its long half-life (T∼5730 years) [1] and as major contributor to the radioactive dose. 14C has two main production routes, i) transmutation of nitrogen (14N(n,p)14C) where nitrogen is mainly adsorbed at the surfaces of the irradiated graphite; ii) activation of carbon from the matrix (13C(n,γ)14C). According to leaching tests, it was shown that even if the quantity of 14C released in the solution is low (less than 1% of the initial inventory), around 30% is in the organic form that would be mobile in repository conditions [2,3]. 36Cl is mainly produced through the activation of 35Cl (35Cl(n,γ)36Cl) which is an impurity in nuclear graphite. Its activity is low but it might be highly mobile in clay host rocks. Thus, in order to make informed decisions about the best management process and to anticipate potential radionuclide dissemination during dismantling and in the repository, it is necessary to collect information on 14C and 36Cl location and speciation in graphite, after reactor closure. The goal of the present paper is therefore to use ion irradiation to simulate neutron irradiation and to evaluate the irradiation effects on the behavior of 36Cl and 14C as well as on the induced graphite structure modifications. For that, to understand and model the underlying mechanisms, we used an indirect approach based on 13C or 37Cl implantation to simulate the respective presence of 14C or 36Cl. These isotopes were implanted into Highly Oriented Pyrolytic Graphite (HOPG) samples used as a model material system representative of the nuclear graphite coke grains which form around 80% of nuclear graphite. Nuclear graphite is manufactured from petroleum coke grains (filler) blended with coal tar pitch acting as a binder. Shaped blocks are formed by extrusion of the blend. They are heat-treated up to about 2800 °C (graphitisation treatment) and polycrystalline graphite is obtained. Blocks, intended for the moderator or reflector, may be further impregnated with pitch, re-baked and regraphitised in order to increase the density. Virgin nuclear graphites have initial densities in the range 1.6-1.8 g cm-3. The difference with graphite crystal (density = 2.265 g cm-3) is due to internal porosity. As a result of mixing of several carbon compounds, this material is structurally heterogeneous at a local scale. Nuclear graphite presents a complex multiscale organisation. It can be locally more or less anisotropic and not completely graphitised. Nuclear graphite has a polycrystalline structure and contains micrometer sized grains. The grains are formed by several more or less oriented crystallites with a size of a few hundreds nanometers. Each crystallite is formed by a triperiodical stacking of graphene planes. Nuclear graphite contains also small amounts of impurities like oxygen, hydrogen, metals and halogens, among them chlorine [4]. Ion beam irradiation was used as a surrogate for neutrons because it may produce cascades (due to ballistic interactions) that could be similar to those created by neutrons in the nuclear reactor. Ion beam (or electron beam) irradiation has been used for many years to simulate neutron irradiation. It has advantages such as for example the possibility to vary the irradiation conditions and sometimes to carry out in situ observations. Moreover, depending on the ion nature and energy, it allows covering a broad range of the neutron recoil spectrum and the rate at which atoms are displaced can be increased in comparison to reactor conditions. Dose rates can thus be much higher than under neutron irradiation allowing for higher amounts of displacements per atoms (dpa) to be reached within some days instead of months or years. Moreover, because there is no sample activation, the samples are not radioactive [5-11]. During neutron irradiation, the neutrons interact with the matter both by collision with the atom nuclei (i.e. ballistic damage) and by nuclear reactions. The first atoms hit by neutrons are caused to move, thus starting a cascade of atomic collisions leading to electronic excitation as they go through the matter and on the path of the atoms they displace (recoil atoms). The ballistic damage can be evaluated using the nuclear stopping power and can be denoted by the number of displacements per atom (dpa). The effect of electronic excitation can be quantified using the electronic stopping power. The experimental simulation of neutron irradiation in a reactor can be done by irradiation of the graphite samples with different ions of different energies. The choice of these parameters enables the study of the damage effects with or without electron excitation or ballistic damage. Thus, knowing that the impinging neutrons induce mainly ballistic damage into the graphite matrix but that part of the recoil carbon energy is also transferred through electronic excitation, it is interesting to use ion irradiation because both ballistic damage and electronic excitation effects can be studied coupled or decoupled according to the nature of the ion, its energy and the fluence. It is possible to cover a wide range of electronic and nuclear stopping powers by working with different particle accelerators. Thus, we simulated the effects of these different irradiation regimes using ion irradiation by varying the Sn(nuclear)/Se(electronic) stopping power ratio as well as the irradiation temperature (from room temperature up to 1000 °C). Indeed, during reactor operation, neutron irradiation leads to changes in the graphite lattice parameters depending on irradiation conditions such as flux and fluence but also temperature [12]. Finally, Secondary Ion Mass Spectrometry (SIMS) analysis was used to determine 13C and 37Cl distribution profiles and allowed us to follow the implanted isotopes behavior. The structural modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry.
Secondary pool boiling effects
NASA Astrophysics Data System (ADS)
Kruse, C.; Tsubaki, A.; Zuhlke, C.; Anderson, T.; Alexander, D.; Gogos, G.; Ndao, S.
2016-02-01
A pool boiling phenomenon referred to as secondary boiling effects is discussed. Based on the experimental trends, a mechanism is proposed that identifies the parameters that lead to this phenomenon. Secondary boiling effects refer to a distinct decrease in the wall superheat temperature near the critical heat flux due to a significant increase in the heat transfer coefficient. Recent pool boiling heat transfer experiments using femtosecond laser processed Inconel, stainless steel, and copper multiscale surfaces consistently displayed secondary boiling effects, which were found to be a result of both temperature drop along the microstructures and nucleation characteristic length scales. The temperature drop is a function of microstructure height and thermal conductivity. An increased microstructure height and a decreased thermal conductivity result in a significant temperature drop along the microstructures. This temperature drop becomes more pronounced at higher heat fluxes and along with the right nucleation characteristic length scales results in a change of the boiling dynamics. Nucleation spreads from the bottom of the microstructure valleys to the top of the microstructures, resulting in a decreased surface superheat with an increasing heat flux. This decrease in the wall superheat at higher heat fluxes is reflected by a "hook back" of the traditional boiling curve and is thus referred to as secondary boiling effects. In addition, a boiling hysteresis during increasing and decreasing heat flux develops due to the secondary boiling effects. This hysteresis further validates the existence of secondary boiling effects.
Catalytic trimerization of aromatic nitriles for synthesis of polyimide matrix resins
NASA Technical Reports Server (NTRS)
Hsu, L. C.
1974-01-01
Aromatic nitriles may be trimerized at moderate temperature and pressure with p-toluenesulfonic acid as catalyst. Studies were conducted to establish the effect of the reaction temperature, pressure, time, and catalyst concentration on yield of the trimerized product. Trimerization studies were also conducted to establish the effect of substituting electron donating or withdrawing groups on benzonitrile. Preliminary results of using the catalytic trimerization approach to prepare s-triazine cross-linked polyimide/graphite fiber composites are presented.
Choi, Yun-Sang; Kim, Hyun-Wook; Kim, Young-Boong; Kim, Cheon-Jei
2015-01-01
The combined effects of smoking and boiling on the proximate composition, technological quality traits, shear force, and sensory characteristics of the Korean traditional boiled loin were studied. Cooking loss, processing loss, and shear force were lower in the smoked/boiled samples than those in the control (without smoking treatment) (p<0.05). The results showed that the boiled loin samples between the control and treatment did not differ significantly in protein, fat, or ash contents, or pH values (p>0.05). The treated samples had higher score for overall acceptability than the control (p<0.05). Thus, these results show that the Korean traditional boiled loin treated with smoking for 60 min before boiling had improved physicochemical properties and sensory characteristics. PMID:26761822
Coal liquefaction process with increased naphtha yields
Ryan, Daniel F.
1986-01-01
An improved process for liquefying solid carbonaceous materials wherein the solid carbonaceous material is slurried with a suitable solvent and then subjected to liquefaction at elevated temperature and pressure to produce a normally gaseous product, a normally liquid product and a normally solid product. The normally liquid product is further separated into a naphtha boiling range product, a solvent boiling range product and a vacuum gas-oil boiling range product. At least a portion of the solvent boiling-range product and the vacuum gas-oil boiling range product are then combined and passed to a hydrotreater where the mixture is hydrotreated at relatively severe hydrotreating conditions and the liquid product from the hydrotreater then passed to a catalytic cracker. In the catalytic cracker, the hydrotreater effluent is converted partially to a naphtha boiling range product and to a solvent boiling range product. The naphtha boiling range product is added to the naphtha boiling range product from coal liquefaction to thereby significantly increase the production of naphtha boiling range materials. At least a portion of the solvent boiling range product, on the other hand, is separately hydrogenated and used as solvent for the liquefaction. Use of this material as at least a portion of the solvent significantly reduces the amount of saturated materials in said solvent.
40 CFR 180.1056 - Boiled linseed oil; exemption from requirement of tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... “boiled linseed oil.” This exemption is limited to use on rice before edible parts form. [46 FR 33270... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Boiled linseed oil; exemption from... From Tolerances § 180.1056 Boiled linseed oil; exemption from requirement of tolerance. Boiled linseed...
Pool Boiling Experiment Has Five Successful Flights
NASA Technical Reports Server (NTRS)
Chiaramonte, Fran
1997-01-01
The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many earthbound applications in steamgeneration power plants, petroleum plants, and other chemical plants. In addition, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.
ERIC Educational Resources Information Center
LeMaire, Peter; Waiveris, Charles
1995-01-01
Describes experiments designed to investigate the cooling rate of microwave-boiled water as compared to that of stove-boiled water. Concludes that within experimental limits, microwave-boiled water and stove-boiled water cool at the same rate. (JRH)
[Smoked sausages and food additives: evaluation of total mutagenic activity].
Dugan, A M; Tkacheva, D L
2011-01-01
The paper deals with the evaluation of the total mutagenic activity of samples of the inorganic and organic fractions of three technology smoked sausages (boiled-smoked, semi-smoked, and raw-smoked) and some food additives used to manufacture the above sausages. Their mild and moderate mutagenic effects were recorded in a Salmonella typhimurium bacterial test system with a metabolic activation system. Physicochemical analysis of the fractions of the smoked sausages has shown that their study samples are substantially contaminated with heavy metals and representatives of polycyclic aromatic hydrocarbons, partially causing the mutagenic effects observed.
Boiling incipience and convective boiling of neon and nitrogen
NASA Technical Reports Server (NTRS)
Papell, S. S.; Hendricks, R. C.
1977-01-01
Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. This design precludes nucleate boiling in the flow channels as they are too small to handle vapor flow. Consequently, it was necessary to determine boiling incipience under the operating conditions of the magnet system. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of plus or minus 15 percent
Subcooled forced convection boiling of trichlorotrifluoroethane
NASA Technical Reports Server (NTRS)
Dougall, R. S.; Panian, D. J.
1972-01-01
Experimental heat-transfer data were obtained for the forced-convection boiling of trichlorotrifluoroethane (R-113 or Freon-113) in a vertical annular test annular test section. The 97 data points obtained covered heat transfer by forced convection, local boiling, and fully-developed boiling. Correlating methods were obtained which accurately predicted the heat flux as a function of wall superheat (boiling curve) over the range of parameters studied.
A review on boiling heat transfer enhancement with nanofluids
2011-01-01
There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement. PMID:21711794
Physical quality of Simental Ongole crossbred silverside meat at various boiling times
NASA Astrophysics Data System (ADS)
Riyanto, J.; Cahyadi, M.; Guntari, W. S.
2018-03-01
This study aims to determine the physical quality of silverside beef meat at various boiling times. Samples that have been used are the back thigh or silverside meat. Treatment of boiling meat included TR (meat without boiled), R15 (boiled 15 minutes), and R30 (boiled for 30 minutes). The experimental design using Completely Randomized Design with 3 replications. Each replication was done in triple physical quality test. Determination of physical quality was performed at the Livestock Industry and Processing Laboratory at Sebelas Maret University Surakarta and the Meat Technology Laboratory at the Faculty of Animal Husbandry of Gadjah Mada University. The result of variance analysis showed that boiling affect cooking loss (P≥0.05) and but did not affect (P≤0,05) pH, water holding capacity and meat tenderness. The conclusions of the study showed that boiling for 15 minutes and 30 minutes decreased the cooking loss of Simental Ongole Crossbred silverside meat. Meat physical quality of pH, water holding capacity and the value of tenderness is not affected by boiling for 15 and 30 minutes.
Explosive Boiling at Very Low Heat Fluxes: A Microgravity Phenomenon
NASA Technical Reports Server (NTRS)
Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.
1993-01-01
The paper presents experimental observations of explosive boiling from a large (relative to bubble sizes) flat heating surface at very low heat fluxes in microgravity. The explosive boiling is characterized as either a rapid growth of vapor mass over the entire heating surface due to the flashing of superheated liquid or a violent boiling spread following the appearance of single bubbles on the heating surface. Pool boiling data with saturated Freon 113 was obtained in the microgravity environment of the space shuttle. The unique features of the experimental results are the sustainability of high liquid superheat for long periods and the occurrence of explosive boiling at low heat fluxes (0.2 to 1.2 kW/sq m). For a heat flux of 1.0 kW/sq m a wall superheat of 17.9 degrees C was attained in ten minutes of heating. This was followed by an explosive boiling accompanied with a pressure spike and a violent bulk liquid motion. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Stable nucleate boiling continued following the explosive boiling.
The WSTIAC Quarterly. Volume 9, Number 3
2010-01-25
program .[8] THE THORIUM FUEL CYCLE AND LFTR POWER PLANT The thorium fuel cycle is based on a series of neutron absorp- tion and beta decay processes...the fig- ure is a graphite matrix moderated MSR reactor with fuel salt mixture (ThF4-U233F4) being circulated by a pump through the core and to a...the core as purified salt. As one of the unique safety features, a melt-plug at the reactor bottom would permit the reactor fluid fuel to be drained
ERIC Educational Resources Information Center
Struyf, Jef
2011-01-01
The boiling point of a monofunctional organic compound is expressed as the sum of two parts: a contribution to the boiling point due to the R group and a contribution due to the functional group. The boiling point in absolute temperature of the corresponding RH hydrocarbon is chosen for the contribution to the boiling point of the R group and is a…
Correlational approach to turbulent saturated film boiling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.Y.
A correlation method for saturated film boiling is proposed. The correlation is based on the analogy between film boiling and natural convection. As in the case of natural convection, the turbulent film boiling correlation takes the form of a Nusselt number versus the Raleigh number power law, Nu[sub B] [proportional to] Ra[sub B][sup 1.3]. The proposed correlation shows very good agreement with current data for film boiling of water from vertical surfaces. The general applicability of the correlation is established by comparisons with film boiling data from R-113 and cryogenic fluids. 25 refs., 8 figs.
The myth of the boiling point.
Chang, Hasok
2008-01-01
Around 1800, many reputable scientists reported significant variations in the temperature of pure water boiling under normal atmospheric pressure. The reported variations included a difference of over 1 degree C between boiling in metallic and glass vessels (Gay-Lussac), and "superheating" up to 112 degrees C on extracting dissolved air out of water (De Luc). I have confirmed most of these observations in my own experiments, many of which are described in this paper. Water boils at the "boiling point" only under very particular circumstances. Our common-sense intuition about the fixedness of the boiling point is only sustained by our limited experience.
Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian
2015-03-01
The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nam, Gyutae; Park, Joohyuk; Choi, Min; Oh, Pilgun; Park, Suhyeon; Kim, Min Gyu; Park, Noejung; Cho, Jaephil; Lee, Jang-Soo
2015-06-23
Understanding the interaction between a catalyst and oxygen has been a key step in designing better electrocatalysts for the oxygen reduction reaction (ORR) as well as applying them in metal-air batteries and fuel cells. Alloying has been studied to finely tune the catalysts' electronic structures to afford proper binding affinities for oxygen. Herein, we synthesized a noble-metal-free and nanosized transition metal CuFe alloy encapsulated with a graphitic carbon shell as a highly efficient and durable electrocatalyst for the ORR in alkaline solution. Theoretical models and experimental results demonstrated that the CuFe alloy has a more moderate binding strength for oxygen molecules as well as the final product, OH(-), thus facilitating the oxygen reduction process. Furthermore, the nitrogen-doped graphitic carbon-coated layer, formed catalytically under the influence of iron, affords enhanced charge transfer during the oxygen reduction process and superior durability. These benefits were successfully confirmed by realizing the catalyst application in a mechanically rechargeable Zn-air battery.
Wang, Yang; Liu, Xueqin; Liu, Jia; Han, Bo; Hu, Xiaoqin; Yang, Fan; Xu, Zuwei; Li, Yinchang; Jia, Songru; Li, Zhen; Zhao, Yanli
2018-05-14
Graphite carbon nitride (g-C 3 N 4 ) is a promising candidate for photocatalytic hydrogen production, but only shows moderate activity owing to sluggish photocarrier transfer and insufficient light absorption. Herein, carbon quantum dots (CQDs) implanted in the surface plane of g-C 3 N 4 nanotubes were synthesized by thermal polymerization of freeze-dried urea and CQDs precursor. The CQD-implanted g-C 3 N 4 nanotubes (CCTs) could simultaneously facilitate photoelectron transport and suppress charge recombination through their specially coupled heterogeneous interface. The electronic structure and morphology were optimized in the CCTs, contributing to greater visible light absorption and a weakened barrier of the photocarrier transfer. As a result, the CCTs exhibited efficient photocatalytic performance under light irradiation with a high H 2 production rate of 3538.3 μmol g -1 h -1 and a notable quantum yield of 10.94 % at 420 nm. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Baojun; Chang, Sam K C
2008-09-01
The effects of soaking, boiling and steaming processes on the total phenolic components and antioxidant activity in commonly consumed cool season food legumes (CSFL's), including green pea, yellow pea, chickpea and lentil were investigated. As compared to original unprocessed legumes, all processing steps caused significant (p<0.05) decreases in total phenolic content (TPC), DPPH free radical scavenging activity (DPPH) in all tested CSFL's. All soaking and atmospheric boiling treatments caused significant (p<0.05) decreases in oxygen radical absorbing capacity (ORAC). However, pressure boiling and pressure steaming caused significant (p<0.05) increases in ORAC values. Steaming treatments resulted in a greater retention of TPC, DPPH, and ORAC values in all tested CSFL's as compared to boiling treatments. To obtain cooked legumes with similar palatability and firmness, pressure boiling shortened processing time as compared to atmospheric boiling, resulted in insignificant differences in TPC, DPPH for green and yellow pea. However, TPC and DPPH in cooked lentils differed significantly between atmospheric and pressure boiling. As compared to atmospheric processes, pressure processes significantly increased ORAC values in both boiled and steamed CSFL's. Greater TPC, DPPH and ORAC values were detected in boiling water than that in soaking and steaming water. Boiling also caused more solid loss than steaming. Steam processing exhibited several advantages in retaining the integrity of the legume appearance and texture of the cooked product, shortening process time, and greater retention of antioxidant components and activities. Copyright © 2008 Elsevier Ltd. All rights reserved.
A two-step method for developing a control rod program for boiling water reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taner, M.S.; Levine, S.H.; Hsiao, M.Y.
1992-01-01
This paper reports on a two-step method that is established for the generation of a long-term control rod program for boiling water reactors (BWRs). The new method assumes a time-variant target power distribution in core depletion. In the new method, the BWR control rod programming is divided into two steps. In step 1, a sequence of optimal, exposure-dependent Haling power distribution profiles is generated, utilizing the spectral shift concept. In step 2, a set of exposure-dependent control rod patterns is developed by using the Haling profiles generated at step 1 as a target. The new method is implemented in amore » computer program named OCTOPUS. The optimization procedure of OCTOPUS is based on the method of approximation programming, in which the SIMULATE-E code is used to determine the nucleonics characteristics of the reactor core state. In a test in cycle length over a time-invariant, target Haling power distribution case because of a moderate application of spectral shift. No thermal limits of the core were violated. The gain in cycle length could be increased further by broadening the extent of the spetral shift.« less
Sasada, M.; Roedder, E.; Belkin, H.E.
1986-01-01
Fluid inclusion studies have been used to derive a model for fluid evolution in the Hohi geothermal area, Japan. Six types of fluid inclusions are found in quartz obtained from the drill core of DW-5 hole. They are: (I) primary liquid-rich with evidence of boiling; (II) primary liquid-rich without evidence of boiling; (III) primary vapor-rich (assumed to have been formed by boiling); (IV) secondary liquid-rich with evidence of boiling; (V) secondary liquid-rich without evidence of boiling; (VI) secondary vapor-rich (assumed to have been formed by boiling). Homogenization temperatures (Th) range between 196 and 347??C and the final melting point of ice (Tm) between -0.2 and -4.3??C. The CO2 content was estimated semiquantitatively to be between 0 and 0.39 wt. % based on the bubble behavior on crushing. NaCl equivalent solid solute salinity of fluid inclusions was determined as being between 0 and 6.8 wt. % after minor correction for CO2 content. Fluid inclusions in quartz provide a record of geothermal activity of early boiling and later cooling. The CO2 contents and homogenization temperatures of fluid inclusions with evidence of boiling generally increase with depth; these changes, and NaCl equivalent solid solute salinity of the fluid can be explained by an adiabatic boiling model for a CO2-bearing low-salinity fluid. Some high-salinity inclusions without CO2 are presumed to have formed by a local boiling process due to a temperature increase or a pressure decrease. The liquid-rich primary and secondary inclusions without evidence of boiling formed during the cooling process. The salinity and CO2 content of these inclusions are lower than those in the boiling fluid at the early stage, probably as a result of admixture with groundwater. ?? 1986.
Transition boiling heat transfer and the film transition regime
NASA Technical Reports Server (NTRS)
Ramilison, J. M.; Lienhard, J. H.
1987-01-01
The Berenson (1960) flat-plate transition-boiling experiment has been recreated with a reduced thermal resistance in the heater, and an improved access to those portions of the transition boiling regime that have a steep negative slope. Tests have been made in Freon-113, acetone, benzene, and n-pentane boiling on horizontal flat copper heaters that have been mirror-polished, 'roughened', or teflon-coated. The resulting data reproduce and clarify certain features observed by Berenson: the modest surface finish dependence of boiling burnout, and the influence of surface chemistry on both the minimum heat flux and the mode of transition boiling, for example. A rational scheme of correlation yields a prediction of the heat flux in what Witte and Lienhard (1982) previously identified as the 'film-transition boiling' region. It is also shown how to calculate the heat flux at the boundary between the pure-film, and the film-transition, boiling regimes, as a function of the advancing contact angle.
Feasibility study of a brine boiling machine by solar energy
NASA Astrophysics Data System (ADS)
Phayom, W.
2018-06-01
This study presented the technical and operational feasibility of brine boiling machine by using solar energy instead of firewood or husk for salt production. The solar salt brine boiling machine consisted of a boiling chamber with an enhanced thermal efficiency through use of a solar brine heater. The stainless steel solar salt brine boiling chamber had dimensions of 60 cm x 70 cm x 20 cm. The steel brine heater had dimensions of 70 cm x 80 cm x 20 cm. The tilt angle of both the boiling chamber and brine heater was 20 degrees from horizontal. The brine temperature in the reservoir tank was 42°C with a flow rate of 6.64 L/h discharging into the solar boiling machine. It was found that the thermal efficiency and overall efficiency of the solar salt brine boiling machine were 0.63 and 0.38, respectively at a solar irradiance of 787.6 W/m2. The results shows that the potential of using solar energy for salt production system is feasible.
A probabilisitic based failure model for components fabricated from anisotropic graphite
NASA Astrophysics Data System (ADS)
Xiao, Chengfeng
The nuclear moderator for high temperature nuclear reactors are fabricated from graphite. During reactor operations graphite components are subjected to complex stress states arising from structural loads, thermal gradients, neutron irradiation damage, and seismic events. Graphite is a quasi-brittle material. Two aspects of nuclear grade graphite, i.e., material anisotropy and different behavior in tension and compression, are explicitly accounted for in this effort. Fracture mechanic methods are useful for metal alloys, but they are problematic for anisotropic materials with a microstructure that makes it difficult to identify a "critical" flaw. In fact cracking in a graphite core component does not necessarily result in the loss of integrity of a nuclear graphite core assembly. A phenomenological failure criterion that does not rely on flaw detection has been derived that accounts for the material behaviors mentioned. The probability of failure of components fabricated from graphite is governed by the scatter in strength. The design protocols being proposed by international code agencies recognize that design and analysis of reactor core components must be based upon probabilistic principles. The reliability models proposed herein for isotropic graphite and graphite that can be characterized as being transversely isotropic are another set of design tools for the next generation very high temperature reactors (VHTR) as well as molten salt reactors. The work begins with a review of phenomenologically based deterministic failure criteria. A number of this genre of failure models are compared with recent multiaxial nuclear grade failure data. Aspects in each are shown to be lacking. The basic behavior of different failure strengths in tension and compression is exhibited by failure models derived for concrete, but attempts to extend these concrete models to anisotropy were unsuccessful. The phenomenological models are directly dependent on stress invariants. A set of invariants, known as an integrity basis, was developed for a non-linear elastic constitutive model. This integrity basis allowed the non-linear constitutive model to exhibit different behavior in tension and compression and moreover, the integrity basis was amenable to being augmented and extended to anisotropic behavior. This integrity basis served as the starting point in developing both an isotropic reliability model and a reliability model for transversely isotropic materials. At the heart of the reliability models is a failure function very similar in nature to the yield functions found in classic plasticity theory. The failure function is derived and presented in the context of a multiaxial stress space. States of stress inside the failure envelope denote safe operating states. States of stress on or outside the failure envelope denote failure. The phenomenological strength parameters associated with the failure function are treated as random variables. There is a wealth of failure data in the literature that supports this notion. The mathematical integration of a joint probability density function that is dependent on the random strength variables over the safe operating domain defined by the failure function provides a way to compute the reliability of a state of stress in a graphite core component fabricated from graphite. The evaluation of the integral providing the reliability associated with an operational stress state can only be carried out using a numerical method. Monte Carlo simulation with importance sampling was selected to make these calculations. The derivation of the isotropic reliability model and the extension of the reliability model to anisotropy are provided in full detail. Model parameters are cast in terms of strength parameters that can (and have been) characterized by multiaxial failure tests. Comparisons of model predictions with failure data is made and a brief comparison is made to reliability predictions called for in the ASME Boiler and Pressure Vessel Code. Future work is identified that would provide further verification and augmentation of the numerical methods used to evaluate model predictions.
NASA Astrophysics Data System (ADS)
Zell, M.; Straub, J.; Weinzierl, A.
1984-12-01
Experiments on subcooled nucleate pool boiling in microgravity were carried out to separate gravity driven effects on heat transfer within the boiling process. A ballistic trajectory by sounding rocket flight (TEXUS 5 and 10) achieved a gravity level of a/g = 0.0001 for 360 sec. For determination of geometrical effects on heat transport two different experimental configurations (platinum wire and flat plate) were employed. Boiling curves and bubble dynamics recorded by cinematography lead to gravity independent modelling of the boiling phenomena. The results ensure the applicability and high efficiency of nucleate pool boiling for heat exchangers in space laboratories.
Ram, Pavani K.; Blanton, Elizabeth; Klinghoffer, Debra; Platek, Mary; Piper, Janet; Straif-Bourgeois, Susanne; Bonner, Matthew R.; Mintz, Eric D.
2007-01-01
Objectives. Thousands of Louisiana residents were asked to boil water because of widespread disruptions in electricity and natural gas services after Hurricane Rita. We sought to assess awareness of boil water orders and familiarity with household water disinfection techniques other than boiling. Methods. We conducted a cross-sectional survey in randomly selected mobile home communities in Louisiana. Results. We interviewed 196 respondents from 8 communities, which had boil water orders instituted. Of 97 who were home while communities were still under orders to boil water, 30 (31%) were aware of the orders and, of those, 24 (80%) said the orders were active while they were living at home; of the 24, 10 (42%) reported boiling water. Overall, 163 (83%) respondents were aware of a method of water disinfection at the household level: boiling (78%), chlorination (27%), and filtration (25%); 87% had a container of chlorine bleach at home. Conclusions. Few hurricane-affected respondents were aware of boil water orders and of alternate water disinfection techniques. Most had access to chlorine and could have practiced household chlorination if disruption in natural gas and electricity made boiling impossible. PMID:17413065
Acoustic emission feedback control for control of boiling in a microwave oven
White, Terry L.
1991-01-01
An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.
Water boiling inside carbon nanotubes: toward efficient drug release.
Chaban, Vitaly V; Prezhdo, Oleg V
2011-07-26
We show using molecular dynamics simulation that spatial confinement of water inside carbon nanotubes (CNTs) substantially increases its boiling temperature and that a small temperature growth above the boiling point dramatically raises the inside pressure. Capillary theory successfully predicts the boiling point elevation down to 2 nm, below which large deviations between the theory and atomistic simulation take place. Water behaves qualitatively different inside narrow CNTs, exhibiting transition into an unusual phase, where pressure is gas-like and grows linearly with temperature, while the diffusion constant is temperature-independent. Precise control over boiling by CNT diameter, together with the rapid growth of inside pressure above the boiling point, suggests a novel drug delivery protocol. Polar drug molecules are packaged inside CNTs; the latter are delivered into living tissues and heated by laser. Solvent boiling facilitates drug release.
The airborne lava-seawater interaction plume at Kilauea Volcano, Hawai'i
Edmonds, M.; Gerlach, T.M.
2006-01-01
Lava flows into the sea at Kīlauea Volcano, Hawaiʻi, and generates an airborne gas and aerosol plume. Water (H2O), hydrogen chloride (HCl), carbon dioxide (CO2), nitrogen dioxide (NO2) and sulphur dioxide (SO2) gases were quantified in the plume in 2004–2005, using Open Path Fourier Transform infra-red Spectroscopy. The molar abundances of these species and thermodynamic modelling are used to discuss their generation. The range in molar HCl / H2O confirms that HCl is generated when seawater is boiled dry and magnesium salts are hydrolysed (as proposed by [T.M. Gerlach, J.L. Krumhansl, R.O. Fournier, J. Kjargaard, Acid rain from the heating and evaporation of seawater by molten lava: a new volcanic hazard, EOS (Trans. Am. Geophys. Un.) 70 (1989) 1421–1422]), in contrast to models of Na-metasomatism. Airborne droplets of boiled seawater brine form nucleii for subsequent H2O and HCl condensation, which acidifies the droplets and liberates CO2 gas from bicarbonate and carbonate. NO2 is derived from the thermal decomposition of nitrates in coastal seawater, which takes place as the lava heats droplets of boiled seawater brine to 350–400 °C. SO2 is derived from the degassing of subaerial lava flows on the coastal plain. The calculated mass flux of HCl from a moderate-sized ocean entry significantly increases the total HCl emission at Kīlauea (including magmatic sources) and is comparable to industrial HCl emitters in the United States. For larger lava ocean entries, the flux of HCl will cause intense local environmental hazards, such as high localised HCl concentrations and acid rain.
Ramdath, D Dan; Wolever, Thomas M S; Siow, Yaw Chris; Ryland, Donna; Hawke, Aileen; Taylor, Carla; Zahradka, Peter; Aliani, Michel
2018-05-11
The consumption of pulses is associated with many health benefits. This study assessed post-prandial blood glucose response (PPBG) and the acceptability of food items containing green lentils. In human trials we: (i) defined processing methods (boiling, pureeing, freezing, roasting, spray-drying) that preserve the PPBG-lowering feature of lentils; (ii) used an appropriate processing method to prepare lentil food items, and compared the PPBG and relative glycemic responses (RGR) of lentil and control foods; and (iii) conducted consumer acceptability of the lentil foods. Eight food items were formulated from either whole lentil puree (test) or instant potato (control). In separate PPBG studies, participants consumed fixed amounts of available carbohydrates from test foods, control foods, or a white bread standard. Finger prick blood samples were obtained at 0, 15, 30, 45, 60, 90, and 120 min after the first bite, analyzed for glucose, and used to calculate incremental area under the blood glucose response curve and RGR; glycemic index (GI) was measured only for processed lentils. Mean GI (± standard error of the mean) of processed lentils ranged from 25 ± 3 (boiled) to 66 ± 6 (spray-dried); the GI of spray-dried lentils was significantly ( p < 0.05) higher than boiled, pureed, or roasted lentil. Overall, lentil-based food items all elicited significantly lower RGR compared to potato-based items (40 ± 3 vs. 73 ± 3%; p < 0.001). Apricot chicken, chicken pot pie, and lemony parsley soup had the highest overall acceptability corresponding to "like slightly" to "like moderately". Processing influenced the PPBG of lentils, but food items formulated from lentil puree significantly attenuated PPBG. Formulation was associated with significant differences in sensory attributes.
When water does not boil at the boiling point.
Chang, Hasok
2007-03-01
Every schoolchild learns that, under standard pressure, pure water always boils at 100 degrees C. Except that it does not. By the late 18th century, pioneering scientists had already discovered great variations in the boiling temperature of water under fixed pressure. So, why have most of us been taught that the boiling point of water is constant? And, if it is not constant, how can it be used as a 'fixed point' for the calibration of thermometers? History of science has the answers.
Nucleate Pool Boiling Performance of Smooth and Finned Tube Bundles in R-113 and R-114/Oil Mixtures
1989-06-01
tfilm Film thermodynamic temperature (K) Tfilm Film Celcius temperature (C) Tldl Liquid temperature (C) Tld2 Liquid temperature (C) Tn Tube wall local...surface immersed in a pool of saturated liquid is the most thoroughly studied boiling heat-transfer mechanism, when compared to partial film boiling and... film boiling. Figure 2.1 shows the characteristic boiling curve of a heated surface immersed in a froon. As the surface is heated up, heat is
Boiling incipience and convective boiling of neon and nitrogen
NASA Technical Reports Server (NTRS)
Papell, S. S.; Hendricks, R. C.
1977-01-01
Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of + or - 15 percent.
A numerical investigation of the effect of surface wettability on the boiling curve.
Hsu, Hua-Yi; Lin, Ming-Chieh; Popovic, Bridget; Lin, Chii-Ruey; Patankar, Neelesh A
2017-01-01
Surface wettability is recognized as playing an important role in pool boiling and the corresponding heat transfer curve. In this work, a systematic study of pool boiling heat transfer on smooth surfaces of varying wettability (contact angle range of 5° - 180°) has been conducted and reported. Based on numerical simulations, boiling curves are calculated and boiling dynamics in each regime are studied using a volume-of-fluid method with contact angle model. The calculated trends in critical heat flux and Leidenfrost point as functions of surface wettability are obtained and compared with prior experimental and theoretical predictions, giving good agreement. For the first time, the effect of contact angle on the complete boiling curve is shown. It is demonstrated that the simulation methodology can be used for studying pool boiling and related dynamics and providing more physical insights.
A numerical investigation of the effect of surface wettability on the boiling curve
Lin, Ming-Chieh; Popovic, Bridget; Lin, Chii-Ruey; Patankar, Neelesh A.
2017-01-01
Surface wettability is recognized as playing an important role in pool boiling and the corresponding heat transfer curve. In this work, a systematic study of pool boiling heat transfer on smooth surfaces of varying wettability (contact angle range of 5° − 180°) has been conducted and reported. Based on numerical simulations, boiling curves are calculated and boiling dynamics in each regime are studied using a volume-of-fluid method with contact angle model. The calculated trends in critical heat flux and Leidenfrost point as functions of surface wettability are obtained and compared with prior experimental and theoretical predictions, giving good agreement. For the first time, the effect of contact angle on the complete boiling curve is shown. It is demonstrated that the simulation methodology can be used for studying pool boiling and related dynamics and providing more physical insights. PMID:29125847
A Novel Role of Three Dimensional Graphene Foam to Prevent Heater Failure during Boiling
Ahn, Ho Seon; Kim, Ji Min; Park, Chibeom; Jang, Ji-Wook; Lee, Jae Sung; Kim, Hyungdae; Kaviany, Massoud; Kim, Moo Hwan
2013-01-01
We report a novel boiling heat transfer (NBHT) in reduced graphene oxide (RGO) suspended in water (RGO colloid) near critical heat flux (CHF), which is traditionally the dangerous limitation of nucleate boiling heat transfer because of heater failure. When the heat flux reaches the maximum value (CHF) in RGO colloid pool boiling, the wall temperature increases gradually and slowly with an almost constant heat flux, contrary to the rapid wall temperature increase found during water pool boiling. The gained time by NBHT would provide the safer margin of the heat transfer and the amazing impact on the thermal system as the first report of graphene application. In addition, the CHF and boiling heat transfer performance also increase. This novel boiling phenomenon can effectively prevent heater failure because of the role played by the self-assembled three-dimensional foam-like graphene network (SFG). PMID:23743619
Lubkowitz, Joaquin A; Meneghini, Roberto I
2002-01-01
This work presents the carrying out of boiling-point distributions by simulated distillation with direct-column heating rather than oven-column heating. Column-heating rates of 300 degrees C/min are obtained yielding retention times of 73 s for n-tetratetracontane. The calibration curves of the retention time versus the boiling point, in the range of n-pentane to n-tetratetracontane, are identical to those obtained by slower oven-heating rates. The boiling-point distribution of the reference gas oil is compared with that obtained with column oven heating at rates of 15 to 40 degrees C/min. The results show boiling-point distribution values nearly the same (1-2 degrees F) as those obtained with oven column heating from the initial boiling point to 80% distilled off. Slightly higher differences are obtained (3-4 degrees F) for the 80% distillation to final boiling-point interval. Nonetheless, allowed consensus differences are never exceeded. Precision of the boiling-point distributions (expressed as standard deviations) are 0.1-0.3% for the data obtained in the direct column-heating mode.
NASA Astrophysics Data System (ADS)
Mitrakusuma, Windy H.; Deendarlianto, Kamal, Samsul; Indarto, Nuriyadi, M.
2016-06-01
Onset of nucleate boiling of a droplet when impacted onto hot surface was investigated. Three kinds of surfaces, normal stainless steel (NSS), stainless steel with TiO2 coating (UVN), and stainless steel with TiO2 coating and radiated by ultraviolet ray were employed to examine the effect of wettability. The droplet size was 2.4 mm diameter, and dropped under different We number. The image is generated by high speed camera with the frame speed of 1000 fps. The boiling conditions are identified as natural convection, nucleate boiling, critical heat flux, transition, and film boiling. In the present report, the discussion will be focused on the beginning of nucleate boiling on the droplet. Nucleate boiling occurs when bubbles are generated. These bubbles are probably caused by nucleation on the impurities within the liquid rather than at nucleation sites on the heated surface because the bubbles appear to be in the bulk of the liquid instead of at the liquid-solid interface. In addition, the smaller the contact angle, the fastest the boiling.
Alkali metal pool boiler life tests for a 25 kWe advanced Stirling conversion system
NASA Technical Reports Server (NTRS)
Anderson, W. G.; Rosenfeld, J. H.; Noble, J.
1991-01-01
The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding an alkali metal pool boiler heat transport system to supply heat more uniformly to the heater head tubes. One issue with liquid metal pool boilers is unstable boiling. Stable boiling is obtained with an enhanced boiling surface containing nucleation sites that promote continuous boiling. Over longer time periods, it is possible that the boiling behavior of the system will change. An 800-h life test was conducted to verify that pool boiling with the chosen fluid/surface combination remains stable as the system ages. The apparatus uses NaK boiling on a - 100 + 140 stainless steel sintered porous layer, with the addition of a small amount of xenon. Pool boiling remained stable to the end of life test. The pool boiler life test included a total of 82 cold starts, to simulate startup each morning, and 60 warm restarts, to simulate cloud cover transients. The behavior of the cold and warm starts showed no significant changes during the life test. In the experiments, the fluid/surface combination provided stable, high-performance boiling at the operating temperature of 700 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.
Evaluation of fresh pasta-making properties of extra-strong common wheat (Triticum aestivum L.).
Ito, Miwako; Maruyama-Funatsuki, Wakako; Ikeda, Tatsuya M; Nishio, Zenta; Nagasawa, Koichi; Tabiki, Tadashi; Yamauchi, Hiroaki
2012-12-01
The relationship between characterictics of flour of common wheat varieties and fresh pasta-making qualitites was examined, and the fresh pasta-making properties of extra-strong varieties that have extra-strong dough were evaluated. There was a positive correlation between mixing time (PT) and hardness of boiled pasta, indicating that the hardness of boiled pasta was affected by dough properties. Boiled pasta made from extra-strong varieties, Yumechikara, Hokkai 262 and Hokkai 259, was harder than that from other varieties and commercial flour. There was a negative correlation between flour protein content and brightness of boiled pasta. The colors of boiled pasta made from Yumechikara and Hokkai 262 grown under the condition of standard manuring culture were superior to those of boiled pasta made from other varieties. Discoloration of boiled pasta made from Yumechikara grown under the condition of heavy manuring culture was caused by increase of flour protein content. On the other hand, discoloration of boiled pasta made from Hokkai 262 grown under the condition of heavy manuring culture was less than that of boiled pasta made from Yumechikara. These results indicate that pasta made from extra-strong wheat varieties has good hardness and that Hokkai 262 has extraordinary fresh pasta-making properties.
Evaluation of fresh pasta-making properties of extra-strong common wheat (Triticum aestivum L.)
Ito, Miwako; Maruyama-Funatsuki, Wakako; Ikeda, Tatsuya M.; Nishio, Zenta; Nagasawa, Koichi; Tabiki, Tadashi; Yamauchi, Hiroaki
2012-01-01
The relationship between characterictics of flour of common wheat varieties and fresh pasta-making qualitites was examined, and the fresh pasta-making properties of extra-strong varieties that have extra-strong dough were evaluated. There was a positive correlation between mixing time (PT) and hardness of boiled pasta, indicating that the hardness of boiled pasta was affected by dough properties. Boiled pasta made from extra-strong varieties, Yumechikara, Hokkai 262 and Hokkai 259, was harder than that from other varieties and commercial flour. There was a negative correlation between flour protein content and brightness of boiled pasta. The colors of boiled pasta made from Yumechikara and Hokkai 262 grown under the condition of standard manuring culture were superior to those of boiled pasta made from other varieties. Discoloration of boiled pasta made from Yumechikara grown under the condition of heavy manuring culture was caused by increase of flour protein content. On the other hand, discoloration of boiled pasta made from Hokkai 262 grown under the condition of heavy manuring culture was less than that of boiled pasta made from Yumechikara. These results indicate that pasta made from extra-strong wheat varieties has good hardness and that Hokkai 262 has extraordinary fresh pasta-making properties. PMID:23341748
Enabling Highly Effective Boiling from Superhydrophobic Surfaces
NASA Astrophysics Data System (ADS)
Allred, Taylor P.; Weibel, Justin A.; Garimella, Suresh V.
2018-04-01
A variety of industrial applications such as power generation, water distillation, and high-density cooling rely on heat transfer processes involving boiling. Enhancements to the boiling process can improve the energy efficiency and performance across multiple industries. Highly wetting textured surfaces have shown promise in boiling applications since capillary wicking increases the maximum heat flux that can be dissipated. Conversely, highly nonwetting textured (superhydrophobic) surfaces have been largely dismissed for these applications as they have been shown to promote formation of an insulating vapor film that greatly diminishes heat transfer efficiency. The current Letter shows that boiling from a superhydrophobic surface in an initial Wenzel state, in which the surface texture is infiltrated with liquid, results in remarkably low surface superheat with nucleate boiling sustained up to a critical heat flux typical of hydrophilic wetting surfaces, and thus upends this conventional wisdom. Two distinct boiling behaviors are demonstrated on both micro- and nanostructured superhydrophobic surfaces based on the initial wetting state. For an initial surface condition in which vapor occupies the interstices of the surface texture (Cassie-Baxter state), premature film boiling occurs, as has been commonly observed in the literature. However, if the surface texture is infiltrated with liquid (Wenzel state) prior to boiling, drastically improved thermal performance is observed; in this wetting state, the three-phase contact line is pinned during vapor bubble growth, which prevents the development of a vapor film over the surface and maintains efficient nucleate boiling behavior.
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam;
2013-01-01
Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and Critical Heat Flux (CHF) phenomena.
Pool and flow boiling in variable and microgravity
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.
1994-01-01
As is well known, boiling is an effective mode of heat transfer in that high heat flux levels are possible with relatively small temperature differences. Its optimal application requires that the process be adequately understood. A measure of the understanding of any physical event lies in the ability to predict its behavior in terms of the relevant parameters. Despite many years of research the predictability of boiling is currently possible only for quite specialized circumstances, e.g., the critical heat flux and film boiling for the pool boiling case, and then only with special geometries. Variable gravity down to microgravity provides the opportunity to test this understanding, but possibly more important, by changing the dimensional and time scales involved permits more detailed observations of elements involved in the boiling process, and perhaps discloses phenomena heretofore unknown. The focus here is on nucleate boiling although, as will be demonstrated below, under but certain circumstances in microgravity it can take place concurrently with the dryout process. In the presence of earth gravity or forced convection effects, the latter process is usually referred to as film boiling. However, no vapor film as such forms with pool boiling in microgravity, only dryout. Initial results are presented here for pool boiling in microgravity, and were made possible at such an early date by the availability of the Get-Away-Specials (GAS). Also presented here are some results of ground testing of a flow loop for the study of low velocity boiling, eventually to take place also in microgravity. In the interim, variable buoyancy normal to the heater surface is achieved by rotation of the entire loop relative to earth gravity. Of course, this is at the expense of varying the buoyancy parallel to the heater surface. Two questions which must be resolved early in the study of flow boiling in microgravity are (1) the lower limits of liquid flow velocity where buoyancy effects become significant to the boiling process (2) the effect of lower liquid flow velocities on the Critical Heat Flux when buoyancy is removed. Results of initial efforts in these directions are presented, albeit restricted currently to the ever present earth gravity.
Steady State Film Boiling Heat Transfer Simulated With Trace V4.160
DOE Office of Scientific and Technical Information (OSTI.GOV)
Audrius Jasiulevicius; Rafael Macian-Juan
2006-07-01
This paper presents the results of the assessment and analysis of TRACE v4.160 heat transfer predictions in the post-CHF (critical heat flux) region and discusses the possibilities to improve the TRACE v4.160 code predictions in the film boiling heat transfer when applying different film boiling correlations. For this purpose, the TRACE v4.160-calculated film boiling heat flux and the resulting maximum inner wall temperatures during film boiling in single tubes were compared with experimental data obtained at the Royal Institute of Technology (KTH) in Stockholm, Sweden. The experimental database included measurements for pressures ranging from 30 to 200 bar and coolantmore » mass fluxes from 500 to 3000 kg/m{sup 2}s. It was found that TRACE v4.160 does not produce correct predictions of the film boiling heat flux, and consequently of the maximum inner wall temperature in the test section, under the wide range of conditions documented in the KTH experiments. In particular, it was found that the standard TRACE v4.160 under-predicts the film boiling heat transfer coefficient at low pressure-low mass flux and high pressure-high mass flux conditions. For most of the rest of the investigated range of parameters, TRACE v4.160 over-predicts the film boiling heat transfer coefficient, which can lead to non-conservative predictions in applications to nuclear power plant analyses. Since no satisfactory agreement with the experimental database was obtained with the standard TRACE v4.160 film boiling heat transfer correlations, we have added seven film boiling correlations to TRACE v4.160 in order to investigate the possibility to improve the code predictions for the conditions similar to the KTH tests. The film boiling correlations were selected among the most commonly used film boiling correlations found in the open literature, namely Groeneveld 5.7, Bishop (2 correlations), Tong, Konkov, Miropolskii and Groeneveld-Delorme correlations. The only correlation among the investigated, which resulted in a significant improvement of TRACE predictions, was the Groeneveld 5.7. It was found, that replacing the current film boiling correlation (Dougall-Rohsenow) for the wall-togas heat transfer with Groeneveld 5.7 improves the code predictions for the film boiling heat transfer at high qualities in single tubes in the entire range of pressure and coolant mass flux considered. (authors)« less
Experimental evidence of the vapor recoil mechanism in the boiling crisis.
Nikolayev, V S; Chatain, D; Garrabos, Y; Beysens, D
2006-11-03
Boiling crisis experiments are carried out in the vicinity of the liquid-gas critical point of H2. A magnetic gravity compensation setup is used to enable nucleate boiling at near critical pressure. The measurements of the critical heat flux that defines the threshold for the boiling crisis are carried out as a function of the distance from the critical point. The obtained power law behavior and the boiling crisis dynamics agree with the predictions of the vapor recoil mechanism and disagree with the classical vapor column mechanism.
Conversion of direct process high-boiling residue to monosilanes
Brinson, Jonathan Ashley; Crum, Bruce Robert; Jarvis, Jr., Robert Frank
2000-01-01
A process for the production of monosilanes from the high-boiling residue resulting from the reaction of hydrogen chloride with silicon metalloid in a process typically referred to as the "direct process." The process comprises contacting a high-boiling residue resulting from the reaction of hydrogen chloride and silicon metalloid, with hydrogen gas in the presence of a catalytic amount of aluminum trichloride effective in promoting conversion of the high-boiling residue to monosilanes. The present process results in conversion of the high-boiling residue to monosilanes. At least a portion of the aluminum trichloride catalyst required for conduct of the process may be formed in situ during conduct of the direct process and isolation of the high-boiling residue.
Characterizing preferential groundwater discharge through boils using temperature
NASA Astrophysics Data System (ADS)
Vandenbohede, A.; de Louw, P. G. B.; Doornenbal, P. J.
2014-03-01
In The Netherlands, preferential groundwater discharge trough boils is a key process in the salinization of deep polders. Previous work showed that boils also influence the temperature in the subsurface and of surface water. This paper elaborates on this process combining field observations with numerical modeling. As is the case for salinity, a distinct anomaly in the subsurface and surface water temperature can be attributed to boils. Lines of equal temperature are distorted towards the boil, which can be considered as an upconing of the temperature profile by analogy of the upconing of a fresh-saltwater interface. The zone of this distortion is limited to the immediate vicinity of the boil, being about 5 m in the aquitard which holds the boil's conduit, or maximum a few dozens of meters in the underlying aquifer. In the aquitard, heat transport is conduction dominated whereas this is convection dominated in the aquifer. The temperature anomaly differs from the salinity anomaly by the smaller radius of influence and faster time to reach a new steady-state of the former. Boils discharge water with a temperature equal to the mean groundwater temperature. This influences the yearly and diurnal variation of ditch water temperature in the immediate vicinity of the boil importantly but also the temperature in the downstream direction. Temporary nature of the boil (e.g. stability of the conduit, discharge rate), uncertainty on the 3D construction of the conduit and heterogeneity of the subsoil make it unlikely that temperature measurements can be interpreted further than a qualitative level.
A fundamental study of nucleate pool boiling under microgravity
NASA Technical Reports Server (NTRS)
Ervin, Jamie S.; Merte, Herman, Jr.
1991-01-01
An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, and the bulk liquid temperatures. High speed photography was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.
Nucleate pool boiling in the long duration low gravity environment of the space shuttle
NASA Technical Reports Server (NTRS)
Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.; Meserole, J. S.
1993-01-01
The results are presented of an experimental study of nucleate pool boiling performed in the low gravity environment of the space shuttle. Photographic observations of pool boiling in Freon 113 were obtained during the 'Tank Pressure Control Experiment', flown on the Space Transportation System STS-43 in August 1991. Nucleate boiling data from large (relative to bubble size) flat heating surfaces (0.1046 by 0.0742 m) was obtained at very low heat fluxes (0.22 to 1.19 kw/so m). The system pressure and the bulk liquid subcooling varied in the range of 40 to 60 kPa and 3 to 5 C respectively. Thirty-eight boiling tests, each of 10 min duration for a given heat flux, were conducted. Measurements included the heater power, heater surface temperature, the liquid temperature and the system pressure as functions of heating time. Video data of the first 2 min of heating was recorded for each test. In some tests the video clearly shows the inception of boiling and the growth and departure of bubbles from the surface during the first 2 min of heating. In the absence of video data, the heater temperature variation during heating shows the inception of boiling and stable nucleate boiling. During the stable nucleate boiling, the wall superheat varied between 2.8 to 3.8 C for heat fluxes in the range of 0.95 to 1.19 kw/so m. The wall superheat at the inception of boiling varied between 2 to 13 C.
Nucleate pool boiling in the long duration low gravity environment of the Space Shuttle
NASA Technical Reports Server (NTRS)
Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.; Meserole, J. S.
1993-01-01
The results are presented of an experimental study of nucleate pool boiling performed in the low gravity environment of the space shuttle. Photographic observations of pool boiling in Freon 113 were obtained during the 'Tank Pressure Control Experiment,' flown on the Space Transportation System, STS-43 in August 1991. Nucleate boiling data from large (relative to bubble size) flat heating surfaces (0.1046 by 0.0742 m) was obtained at very low heat fluxes (0.22 to 1.19 kW/sq m). The system pressure and the bulk liquid subcooling varied in the range of 40 to 60 kPa and 3 to 5 C respectively. Thirty-eight boiling tests, each of 10-min duration for a given heat flux, were conducted. Measurements included the heater power, heater surface temperature, the liquid temperature and the system pressure as functions of heating time. Video data of the first 2 min of heating was recorded for each test. In some tests the video clearly shows the inception of boiling and the growth and departure of bubbles from the surface during the first 2 min of heating. In the absence of video data, the heater temperature variation during heating shows the inception of boiling and stable nucleate boiling. During the stable nucleate boiling, the wall superheat varied between 2.8 to 3.8 C for heat fluxes in the range of 0.95 to 1.19 kW/sq m. The wall superheat at the inception of boiling varied between 2 to 13 C.
Briefing Book. Volume 1: The Evolution of the Nuclear Non-Proliferation Regime (Fourth Edition).
1998-01-01
usually termed) nuclear reactors. The first of these is that they contain a core or mass of fissile material (the fuel ) which may weigh tens of tons... HTGR is cooled with helium gas and moderated with graphite. Highly enriched uranium is used as fuel (93 per cent U-235), though this may be mixed with...to convert U-238 in a blanket around the core into Pu-239 at a rate faster than its own consumption of fissile material. They thus produce more fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palabrica, R.J.
1981-01-01
The Philippines has a 1-MW swimming-pool reactor facility operated by the Philippine Atomic Energy Commission (PAEC). The reactor is light-water moderated and cooled, graphite reflected, and fueled with 90% enriched uranium. Since it became critical in 1963 it has been utilized for research, radioisotope production, and training. It was used initially in the training of PAEC personnel and other research institutions and universities. During the last few years, however, it has played a key role in training personnel for the Philippine Nuclear Power Project (PNPP).
2010-12-14
conductive heat losses to dominate the energy balance. The manifold and inlet and outlet tubes were insulated using lI16-in-thick CeraTex ceramic tape...small cut in the graphite). On either side of the TE modules, O.27-mm-thick alumina insulating shims (Hi-Z Technologies) were used to prevent...accounting for the themml resistance of the alumina insulating shim) close to 300"C, which was identified by the manufacturer as a moderately "safe" limit
NASA Astrophysics Data System (ADS)
Nerdy
2018-01-01
Vegetables from the cabbage family vegetables consumed by many people, which is known healthful, by eaten raw, boiled, or cooked (stir fry or soup). Vegetables like broccoli and cauliflower contain vitamins, minerals, and fiber. This study aims to determine the decrease percentage of sodium, potassium, magnesium, and calcium minerals level caused by boiled broccoli and cauliflower by atomic absorption spectrometry. Boiled broccoli and cauliflower prepared by given boiled treatment in boiling water for 3 minutes. Fresh and boiled broccoli and cauliflower carried out dry destruction, followed by quantitative analysis of sodium, potassium, magnesium, and calcium minerals respectively at a wavelength of 589.0 nm; 766.5 nm; 285.2 nm; and 422.7 nm, using atomic absorption spectrometry methods. After the determination of the sodium, potassium, magnesium, and calcium minerals level followed by validation of analytical methods with accuracy, precision, linearity, range, limit of detection (LOD), and limit of quantitation (LOQ) parameters. Research results show a decrease in the sodium, potassium, magnesium, and calcium minerals level in boiled broccoli and cauliflower compared with fresh broccoli and cauliflower. Validation of analytical methods gives results that spectrometry methods used for determining sodium, potassium, magnesium, and calcium minerals level are valid. It concluded that the boiled gives the effect of decreasing the minerals level significantly in broccoli and cauliflower.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitrakusuma, Windy H., E-mail: windyhm@polban.ac.id; Refrigeration and Airconditioning Department, Politeknik Negeri Bandung, Jl. Gegerkalong Hilir, Ds. Ciwaruga Kotak Pos 1234 Bandung; Deendarlianto,
2016-06-03
Onset of nucleate boiling of a droplet when impacted onto hot surface was investigated. Three kinds of surfaces, normal stainless steel (NSS), stainless steel with TiO{sub 2} coating (UVN), and stainless steel with TiO{sub 2} coating and radiated by ultraviolet ray were employed to examine the effect of wettability. The droplet size was 2.4 mm diameter, and dropped under different We number. The image is generated by high speed camera with the frame speed of 1000 fps. The boiling conditions are identified as natural convection, nucleate boiling, critical heat flux, transition, and film boiling. In the present report, the discussionmore » will be focused on the beginning of nucleate boiling on the droplet. Nucleate boiling occurs when bubbles are generated. These bubbles are probably caused by nucleation on the impurities within the liquid rather than at nucleation sites on the heated surface because the bubbles appear to be in the bulk of the liquid instead of at the liquid-solid interface. In addition, the smaller the contact angle, the fastest the boiling.« less
On the pulse boiling frequency in thermosyphons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J.F.; Wang, J.C.Y.
1992-02-01
The unsteady periodic boiling phenomenon, pulse boiling, appearing in the evaporator of thermosyphons has been mentioned and investigated by many researchers. The heat transfer coefficient in evaporators was predicted according to different considerations of flow patterns. For instance, Shiraishi et al. proposed a method based on a combination flow pattern: the nucleate boiling in a liquid pool and the evaporation from a falling condensate film. Liu et al. only considered a pure pulse boiling flow pattern, and Xin et al. focused on the flow pattern of the continuous boiling process without pulse phenomenon. Besides, the forming conditions of pulse boilingmore » were also described differently. Xin et al. also reported that pulse boiling cannot occur in a carbon-steel/water heat pipe; Ma et al., however, observed this phenomenon in a carbon-steel/water thermosyphon. Nearly all researchers mentioned that this phenomenon indeed exists in glass/water thermosyphons. Although the influential factors have been discussed qualitatively, the quantitative analysis has yet to be conducted. This study focuses on the pulse boiling frequency as a criterion for the determination of flow patterns, and attempts are made to predict the frequency both experimentally and theoretically.« less
NASA Astrophysics Data System (ADS)
Ariyani, F.; Hermana, I.; Hidayah, I.
2018-03-01
The main problem in boiled salted fish ikan pindang is mucus and mold on the surface of the fish which is produced relatively fast as well as the high level of histamine content especially when scombroid fish species are used as raw material. This study was performed to evaluate the effectiveness of various preservatives to overcome such problems. Three combinations of preservatives P1 (green tea and sorbate), P3 (green tea, piper betel, sorbate), P4 (green tea and piper betel) and P0 (no preservative/control) resulted from the previous study were used in this study. Before being used, the preservatives were tested against deteriorating microorganisms commonly found in boiled salted products, of which the result showed that all microorganisms were inhibited. The preservatives were then applied at three different stages of the process of boiled salted fish, i.e. before boiling, during boiling and after boiling. Sensory attributes and microbial characteristics of the products were then evaluated. The results showed that the performance of all tested preservatives against deteriorating microorganisms was relatively similar. It was also shown that the application before and during boiling performed better.
Cooling of hot bubbles by surface texture during the boiling crisis
NASA Astrophysics Data System (ADS)
Dhillon, Navdeep; Buongiorno, Jacopo; Varanasi, Kripa
2015-11-01
We report the existence of maxima in critical heat flux (CHF) enhancement for pool boiling on textured hydrophilic surfaces and reveal the interaction mechanism between bubbles and surface texture that governs the boiling crisis phenomenon. Boiling is a process of fundamental importance in many engineering and industrial applications but the maximum heat flux that can be absorbed by the boiling liquid (or CHF) is limited by the boiling crisis. Enhancing the CHF of industrial boilers by surface texturing can lead to substantial energy savings and reduction in greenhouse gas emissions on a global scale. However, the fundamental mechanisms behind this enhancement are not well understood, with some previous studies indicating that CHF should increase monotonically with increasing texture density. However, using pool boiling experiments on a parametrically designed set of plain and nano-textured micropillar surfaces, we show that there is an optimum intermediate texture density that maximizes CHF and further that the length scale of this texture is of fundamental significance. Using imbibition experiments and high-speed optical and infrared imaging, we reveal the fundamental mechanisms governing the CHF enhancement maxima in boiling crisis. We acknowledge funding from the Chevron corporation.
Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity
NASA Technical Reports Server (NTRS)
Oker, E.; Merte, H., Jr.
1973-01-01
Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.
Lacoste, V; Gressier, V
2007-01-01
The Institute for Radiological Protection and Nuclear Safety owns two facilities producing realistic mixed neutron-photon radiation fields, CANEL, an accelerator driven moderator modular device, and SIGMA, a graphite moderated americium-beryllium assembly. These fields are representative of some of those encountered at nuclear workplaces, and the corresponding facilities are designed and used for calibration of various instruments, such as survey meters, personal dosimeters or spectrometric devices. In the framework of the European project EVIDOS, irradiations of personal dosimeters were performed at CANEL and SIGMA. Monte Carlo calculations were performed to estimate the reference values of the personal dose equivalent at both facilities. The Hp(10) values were calculated for three different angular positions, 0 degrees, 45 degrees and 75 degrees, of an ICRU phantom located at the position of irradiation.
Fundamental Boiling and RP-1 Freezing Experiments
NASA Technical Reports Server (NTRS)
Goode, Brian
2002-01-01
The prestart thermal conditioning of the hardware in LOX (liquid oxygen) systems involve heat transfer between LOX and metal where boiling plays a large role. Information is easily found on nucleate boiling, maximum heat flux, minimum heat flux and film boiling for common fluids like water. After looking at these standard correlations it was felt more data was needed for the cool down side transition boiling for the LN2 and LOX. In particular interest is the film boiling values, the temperature at which transition begins and the slope as peak heat flux is approached. The ultimate goal is an array of boiling heat transfer coefficient as a function of surface temperature which can be used in the chilldown model of the feed system, engine and bleed system for X-34. The first experiment consisted of an actual MC-1 LOX Impeller which had been machined backwards, that was instrumented with 17 surface thermocouples and submerged in liquid nitrogen. The thermocouples were installed on metal thicknesses varying from the thin inducer to the thick hub.
Beauchamp, Guy
2008-10-23
This study explores via structural clues the influence of weak intermolecular hydrogen-halogen bonds on the boiling point of halogenated ethanes. The plot of boiling points of 86 halogenated ethanes versus the molar refraction (linked to polarizability) reveals a series of straight lines, each corresponding to one of nine possible arrangements of hydrogen and halogen atoms on the two-carbon skeleton. A multiple linear regression model of the boiling points could be designed based on molar refraction and subgroup structure as independent variables (R(2) = 0.995, standard error of boiling point 4.2 degrees C). The model is discussed in view of the fact that molar refraction can account for approximately 83.0% of the observed variation in boiling point, while 16.5% could be ascribed to weak C-X...H-C intermolecular interactions. The difference in the observed boiling point of molecules having similar molar refraction values but differing in hydrogen-halogen intermolecular bonds can reach as much as 90 degrees C.
Folate content and retention in commonly consumed vegetables in the South Pacific.
Maharaj, Prayna P P; Prasad, Surendra; Devi, Riteshma; Gopalan, Romila
2015-09-01
This paper reports the effect of boiling and frying on the retention of folate in commonly consumed Fijian vegetables (drumstick leaves, taro leaves, bele leaves, amaranth leaves, fern/ota, okra and French bean). The folate content was determined by microbiological assay (Lactobacillus casei rhamnosus) and tri-enzyme (protease, α-amylase and chicken pancreas conjugase) extraction treatment. The folate loss varied among the vegetables from 10-64% on boiling while 1-36% on frying. The higher folate loss was observed during boiling. The folate content in the water derived after boiling different vegetables ranged from 11.9 ± 0.5 to 61.6 ± 2.5 μg/100mL. The folate loss on boiling was accounted for in the cooking water. The predominant way of folate loss on boiling was leaching rather than thermal degradation which makes boiling the better choice of cooking the studied vegetables for folate intake, provided the cooking water is consumed together with the vegetables. Copyright © 2015 Elsevier Ltd. All rights reserved.
Extended hydrodynamic theory of the peak and minimum pool boiling heat fluxes
NASA Technical Reports Server (NTRS)
Linehard, J. H.; Dhir, V. K.
1973-01-01
The hydrodynamic theory of the extreme pool boiling heat fluxes is expanded to embrace a variety of problems that have not previously been analyzed. These problems include the prediction of the peak heat flux on a variety of finite heaters, the influence of viscosity on the Taylor and Helmoltz instability mechanisms with application to film boiling and to the peak heat flux in viscous liquids, the formalization of the analogy between high-current-density electrolysis and boiling, and the description of boiling in the low-gravity limit. The predictions are verified with a large number of new data.
NASA Astrophysics Data System (ADS)
Molnar, I. L.; Krol, M.; Mumford, K. G.
2017-12-01
Developing numerical models for subsurface thermal remediation techniques - such as Electrical Resistive Heating (ERH) - that include multiphase processes such as in-situ water boiling, gas production and recovery has remained a significant challenge. These subsurface gas generation and recovery processes are driven by physical phenomena such as discrete and unstable gas (bubble) flow as well as water-gas phase mass transfer rates during bubble flow. Traditional approaches to multiphase flow modeling soil remain unable to accurately describe these phenomena. However, it has been demonstrated that Macroscopic Invasion Percolation (MIP) can successfully simulate discrete and unstable gas transport1. This has lead to the development of a coupled Electro Thermal-MIP Model2 (ET-MIP) capable of simulating multiple key processes in the thermal remediation and gas recovery process including: electrical heating of soil and groundwater, water flow, geological heterogeneity, heating-induced buoyant flow, water boiling, gas bubble generation and mobilization, contaminant mass transport and removal, and additional mechanisms such as bubble collapse in cooler regions. This study presents the first rigorous validation of a coupled ET-MIP model against two-dimensional water boiling and water/NAPL co-boiling experiments3. Once validated, the model was used to explore the impact of water and co-boiling events and subsequent gas generation and mobilization on ERH's ability to 1) generate, expand and mobilize gas at boiling and NAPL co-boiling temperatures, 2) efficiently strip contaminants from soil during both boiling and co-boiling. In addition, a quantification of the energy losses arising from steam generation during subsurface water boiling was examined with respect to its impact on the efficacy of thermal remediation. While this study specifically targets ERH, the study's focus on examining the fundamental mechanisms driving thermal remediation (e.g., water boiling) renders these results applicable to a wide range of thermal and gas-based remediation techniques. 1. Mumford, K. G., et al. (2010), Adv. Water Resour. 2010, 33 (4), 504-513. 2. Krol, M. M., et al. (2011), Adv. Water Resour. 2011, 34 (4), 537-549. 3. Hegele, P. R. and Mumford, K. G. Journal of Contaminant Hydrology 2014, 165, 24-36.
A Fundamental Study of Nucleate Pool Boiling Under Microgravity
NASA Technical Reports Server (NTRS)
Ervin, Jamie S.; Merte, Herman, Jr.
1996-01-01
An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal-resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- 1 experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, the bulk liquid temperatures. High speed photography (up to 1,000 frames per second) was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface, some observed here for the first time, are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels (on the order of 5 W/cm(exp 2)) is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.
Contribution of aluminum from packaging materials and cooking utensils to the daily aluminum intake.
Müller, J P; Steinegger, A; Schlatter, C
1993-10-01
Migration of aluminum (Al) from packaging materials and cooking utensils into foods and beverages was determined at intervals during cooking or during storage by graphite furnace atomic absorption spectroscopy. High amounts of Al migrated into acidic products such as mashed tomatoes during normal processing in normal, non-coated Al pans. After 60 min cooking an Al content of 10-15 mg/kg was measured in tomato sauce. Surprisingly, the Al concentration was also increased up to 2.6 mg/L after boiling tap water for 15 min in Al pans. Storage of Coca-Cola in internally lacquered Al cans resulted in Al levels below 0.25 mg/L. In contrast, non-coated Al camping bottles containing lime blossom tea acidified with lemon juice released up to 7 mg Al/L within 5 days. The Al concentration in coffee was lower than that of the tap water used in its preparation, even if prepared in Al heaters. In Switzerland, where most pans nowadays are made of stainless steel or teflon-coated Al, the average contribution for the use of Al utensils to the daily Al intake of 2-5 mg from the diet is estimated to be less than 0.1 mg.
Method for producing dustless graphite spheres from waste graphite fines
Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN
2012-05-08
A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.
Tagami, K; Uchida, S
2011-08-01
Iodine-131 concentrations in tap water higher than 100 BqL(-1) were reported by several local governments in Japan following the Fukushima Daiichi Nuclear Power Plant accident. Some individuals in the emergency-response community recommended the boiling of tap water to remove iodine-131. However, the tap water boiling tests in this study showed no iodine-131 loss from the tap water with either short-term boiling (1-10 min) or prolonged boiling (up to 30 min) resulting in up to 3-fold volume reductions. In this situation, boiling was shown to be not effective in removing iodine-131 from tap water; indeed even higher concentrations may result from the liquid-volume reduction accompanying this process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Food-cooking processes modulate allergenic properties of hen's egg white proteins.
Liu, Xiaoyu; Feng, Bai-Sui; Kong, Xiaoli; Xu, Hong; Li, Xiumin; Yang, Ping-Chang; Liu, Zhigang
2013-01-01
Reducing the allergenicity of food allergens can suppress the clinical symptoms of food allergy. The objective of the present study was to investigate the effects of processing on the allergenic properties of hen's egg white proteins. Eggs were processed by traditional Chinese cooking, including steaming, water boiling, frying, spicing and tea boiling. The contents of processed egg protein were assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis; the allergenicity was evaluated by Western blotting, enzyme-linked immunosorbent assay and enzyme allergosorbent test inhibition. Circular dichroism spectrum analysis of four major egg allergens from various egg products was performed as well. A mouse model of food allergy was developed to test the allergenicity of processed egg protein in vivo. Protein degradation was significant following tea boiling and spiced-tea boiling. The total allergenic potential of water-boiled egg and fried egg was relatively higher than that of steamed egg, spiced egg and tea-boiled egg. Challenge with proteins from raw egg, water-boiled egg and fried egg induced skewed T-helper 2 pattern responses (Th2 responses) in the intestine of mice sensitized to egg proteins; however, when the mice sensitized to egg proteins were challenged with proteins from steamed egg, spiced egg and tea-boiled egg, respectively, only weak Th2 responses were induced in their intestine. Processing by steaming, spicing, or tea boiling can weaken the allergenicity of egg proteins. Copyright © 2012 S. Karger AG, Basel.
The Boiling eXperiment Facility (BXF) for the Microgravity Science Glovebox (MSG)
NASA Technical Reports Server (NTRS)
McQuillen, John; Chao, David; Vergilii, Frank
2006-01-01
Boiling is an effective means of cooling by removing heat from surfaces through vaporization of a working fluid. It is also affected by both the magnitude and direction of gravity. By conducting pool boiling tests in microgravity, the effect of buoyancy n the overall boiling process and the relative magnitude of other phenomena can be assessed. The Boiling eXperiment Facility (BXF) is being built for the Microgravity Science Glovebox. This facility will conduct two pool boiling studies. The first study the Microheater Array Boiling Experiment (MABE) uses two 96 element microheater arrays, 2.7 mm and 7.0 mm in size, to measure localized hear fluxes while operating at a constant temperature. The other experiment, the Nucleate Pool Boiling eXperiment (NPBX) uses a 85 mm diameter heater wafer that has been "seeded" with five individually-controlled nucleation sites to study bubble nucleation, growth, coalescence and departure. The BXF uses normal-perfluorohexane as the test fluid and will operate between pressures of 60 to 244 Pa. and temperatures of 35 to 60 C. Both sets of experimental heaters are highly instrumented. Pressure and bulk fluid temperature measurements will be made with standard rate video. A high speed video system will be used to visualize the boiling process through the bottom of the MABE heater arrays. The BXF is currently scheduled to fly on Utilization Flight-13A.1 to the ISS with facility integration into the MSG and operation during Increment 15
2009-07-01
presented a summary of recent research on boiling in microchannels . He addressed the topics of macro scale versus micro scale heat transfer , two phase...flow regime, flow boiling 14 heat transfer results for microchannels , heat transfer mechanisms in microchannels , and flow boiling models for... Heat Transfer Boiling In Minichannel And Microchannel Flow Passages Of Compact Evaporators, Keynote Lecture Presented at the Engineering Foundation
Criticality in the slowed-down boiling crisis at zero gravity.
Charignon, T; Lloveras, P; Chatain, D; Truskinovsky, L; Vives, E; Beysens, D; Nikolayev, V S
2015-05-01
Boiling crisis is a transition between nucleate and film boiling. It occurs at a threshold value of the heat flux from the heater called CHF (critical heat flux). Usually, boiling crisis studies are hindered by the high CHF and short transition duration (below 1 ms). Here we report on experiments in hydrogen near its liquid-vapor critical point, in which the CHF is low and the dynamics slow enough to be resolved. As under such conditions the surface tension is very small, the experiments are carried out in the reduced gravity to preserve the conventional bubble geometry. Weightlessness is created artificially in two-phase hydrogen by compensating gravity with magnetic forces. We were able to reveal the fractal structure of the contour of the percolating cluster of the dry areas at the heater that precedes the boiling crisis. We provide a direct statistical analysis of dry spot areas that confirms the boiling crisis at zero gravity as a scale-free phenomenon. It was observed that, in agreement with theoretical predictions, saturated boiling CHF tends to zero (within the precision of our thermal control system) in zero gravity, which suggests that the boiling crisis may be observed at any heat flux provided the experiment lasts long enough.
Multicomponent gas sorption Joule-Thomson refrigeration
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Bard, Steven (Inventor)
1991-01-01
The present invention relates to a cryogenic Joule-Thomson refrigeration capable of pumping multicomponent gases with a single stage sorption compressor system. Alternative methods of pumping a multicomponent gas with a single stage compressor are disclosed. In a first embodiment, the sorbent geometry is such that a void is defined near the output of the sorption compressor. When the sorbent is cooled, the sorbent primarily adsorbs the higher boiling point gas such that the lower boiling point gas passes through the sorbent to occupy the void. When the sorbent is heated, the higher boiling point gas is desorbed at high temperature and pressure and thereafter propels the lower boiling point gas out of the sorption compressor. A mixing chamber is provided to remix the constituent gases prior to expansion of the gas through a Joule-Thomson valve. Other methods of pumping a multicomponent gas are disclosed. For example, where the sorbent is porous and the low boiling point gas does not adsorb very well, the pores of the sorbent will act as a void space for the lower boiling point gas. Alternatively, a mixed sorbent may be used where a first sorbent component physically adsorbs the high boiling point gas and where the second sorbent component chemically absorbs the low boiling point gas.
NASA Astrophysics Data System (ADS)
Wang, Qi; Ikegame, Keita; Takahashi, Koretaro; Xue, Changhu; Zhang, Weinong; Wang, Hongxun; Hou, Wenfu; Wang, Yuming
2013-09-01
Lipids were extracted from organs of the starfish Asterias amurensis associated with different treatments (raw-control, boiling and heating), and then analyzed for lipid content, lipid oxidation index, lipid classes and fatty acid composition. Results showed that boiling softened the hard starfish shells, thus facilitating the collection of starfish organs. As compared with raw organs, the boiled organs had lower water content and higher lipid content, possibly due to the loss of water-holding capacity caused by protein denaturation. Both boiling and heating increased the peroxide value (PV), thiobarbituric acid (TBA) value and carbon value (CV) of lipids. Despite slight increases in the content of complex lipids, associated lipid composition had no substantial variations upon boiling and heating. For simple lipids, the content of 1, 2-diglyceride decreased in boiled and heated organs, with free fatty acids observed on thin layer chromatography (TLC). However, neither boiling nor heating significantly changed the fatty acid compositions of simple or complex lipids in starfish organs, suggesting that these two treatments had no significant effects on complex lipids in starfish organs. Together, our results indicated that boiling of starfish soon after capture facilitated the handling and extraction of useful complex lipids consisting of abundant glucosylceramide and eicosapentaenoic acid (EPA)-bounded phospholipids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudawar, I.; Galloway, J.E.; Gersey, C.O.
Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater`s upstream region in flow boiling.more » Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels.« less
Analysis of granular flow in a pebble-bed nuclear reactor.
Rycroft, Chris H; Grest, Gary S; Landry, James W; Bazant, Martin Z
2006-08-01
Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6-cm-diam spheres draining in a cylindrical vessel of diameter 3.5m and height 10 m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.
The Mechanical Properties of Energetically Deposited Non-Crystalline Carbon Thin Films
Kracica, M.; Kocer, C.; Lau, D.; ...
2015-11-05
The mechanical behaviour of carbon films prepared with a variety of densities and microstructures was investigated using nanoindentation. Deposition energies between 25 and 600 eV and temperatures in the range 25-600 °C were used. Films prepared at low temperatures and moderate energy were amorphous with a high density. Finite element methods were used to model the stress fields, reproduce the indentation behaviour and evaluate elastic properties. Young s moduli up to 670 GPa and a low Poisson s ratio of ~ 0.17 were found, comparable to polycrystalline cubic boron nitride, one of the hardest materials known. Films with the samemore » density did not always show the same behaviour, emphasising the role of microstructure in determining mechanical response. Extended graphite- like regions within the films grown at high energy and high temperature observed in transmission electron microscopy caused plastic deformation and failure to recover after a complete indentation cycle. At low deposition energies, the graphite-like regions were smaller in size causing plastic deformation but with complete recovery after indentation.« less
NASA Astrophysics Data System (ADS)
Asquith, N. L.; Hashemi-Nezhad, S. R.; Westmeier, W.; Zhuk, I.; Tyutyunnikov, S.; Adam, J.
2015-02-01
The Gamma-3 assembly of the Joint Institute for Nuclear Research (JINR), Dubna, Russia is designed to emulate the neutron spectrum of a thermal Accelerator Driven System (ADS). It consists of a lead spallation target surrounded by reactor grade graphite. The target was irradiated with 1.6 GeV deuterons from the Nuclotron accelerator and the neutron capture and fission rate of 232Th in several locations within the assembly were experimentally measured. 232Th is a proposed fuel for envisaged Accelerator Driven Systems and these two reactions are fundamental to the performance and feasibility of 232Th in an ADS. The irradiation of the Gamma-3 assembly was also simulated using MCNPX 2.7 with the INCL4 intra-nuclear cascade and ABLA fission/evaporation models. Good agreement between the experimentally measured and calculated reaction rates was found. This serves as a good validation for the computational models and cross section data used to simulate neutron production and transport of spallation neutrons within a thermal ADS.
Film Boiling Heat Transfer Properties of Liquid Hydrogen in Natural Convection
NASA Astrophysics Data System (ADS)
Horie, Y.; Shirai, Y.; Shiotsu, M.; Matsuzawa, T.; Yoneda, K.; Shigeta, H.; Tatsumoto, H.; Hata, K.; Naruo, Y.; Kobayashi, H.; Inatani, Y.
Film boiling heat transfer properties of LH2 for various pressures and subcooling conditions were measured by applying electric current to give an exponential heat input to a PtCo wire with a diameter of 1.2 mm submerged in LH2. The heated wire was set to be horizontal to the ground. The heat transfer coefficient in the film boiling region was higher for higher pressure and higher subcooling. The experimental results are compared with the equation of pool film boiling heat transfer. It is confirmed that the pool film boiling heat transfer coefficients in LH2 can be expressed by this equation.
Yang, Xiao-hua; Guo, Qiao-sheng; Zhu, Zai-biao; Chen, Jun; Miao, Yuan-yuan; Yang, Ying; Sun, Yuan
2015-10-01
Effects of different drying methods including sun drying, steamed, boiled, constant temperature drying (at 40, 50, 60 °C) on appearance, hardness, rehydration ratio, dry rate, moisture, total ash, extractive and polysaccharides contents were studied to provide the basis of standard processing method for Tulipa edulis bulbus. The results showed that the treatments of sun drying and 40 °C drying showed higher rehydration ratios, but lower dry rate, higher hardness, worse color, longer time and obvious distortion and shrinkage in comparison with other drying methods. The treatments of 60 °C constant temperature drying resulted in shorter drying time, lower water and higher polysaccharides content. Drying time is shorter and appearance quality is better in the treatment of steaming and boiling compared with other treatments, but the content of extractive and polysaccharides decreased significantly. The treatments of 50 °C constant temperature drying led to similar appearance quality of bulb to commercial bulb, and it resulted in lowest hardness and highest dry rate as well as higher rehydration ratio, extractive and polysaccharides content, moderate moisture and total ash contents among these treatments. Based on the results obtained, 50 °C constant temperature drying is the better way for the processing of T. edulis bulbus.
Ranheim, Trine; Halvorsen, Bente
2005-03-01
Coffee is probably the most frequently ingested beverage worldwide. Especially Scandinavia has a high prevalence of coffee-drinkers, and they traditionally make their coffee by boiling ground coffee beans and water. Because of its consumption in most countries in the world, it is interesting, from both a public and a scientific perspective, to discuss its potential benefits or adverse aspects in relation to especially two main health problems, namely cardiovascular disease and type 2 diabetes mellitus. Epidemiological studies suggest that consumption of boiled coffee is associated with elevated risk for cardiovascular disease. This is mainly due to the two diterpenes identified in the lipid fraction of coffee grounds, cafestol and kahweol. These compounds promote increased plasma concentration of cholesterol in humans. Coffee is also a rich source of many other ingredients that may contribute to its biological activity, like heterocyclic compounds that exhibit strong antioxidant activity. Based on the literature reviewed, it is apparent that moderate daily filtered, coffee intake is not associated with any adverse effects on cardiovascular outcome. On the contrary, the data shows that coffee has a significant antioxidant activity, and may have an inverse association with the risk of type 2 diabetes mellitus.
46 CFR 154.705 - Cargo boil-off as fuel: General.
Code of Federal Regulations, 2010 CFR
2010-10-01
... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...
46 CFR 154.705 - Cargo boil-off as fuel: General.
Code of Federal Regulations, 2014 CFR
2014-10-01
... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...
46 CFR 154.705 - Cargo boil-off as fuel: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...
46 CFR 154.705 - Cargo boil-off as fuel: General.
Code of Federal Regulations, 2013 CFR
2013-10-01
... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...
46 CFR 154.705 - Cargo boil-off as fuel: General.
Code of Federal Regulations, 2012 CFR
2012-10-01
... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel...
NASA Astrophysics Data System (ADS)
Palosaari, Jenny; Eklund, O.; Raunio, S.; Lindfors, T.; Latonen, R.-M.; Peltonen, J.; Smått, J.-H.; Kauppila, J.; Lund, S.; Sjöberg-Eerola, P.; Blomqvist, R.; Marmo, J.
2016-04-01
Natural graphite is a strategic mineral, since the European Commission stated (Report on critical raw materials for the EU (2014)) that graphite is one of the 20 most critical materials for the European Union. The EU consumed 13% of all flake graphite in the world but produced only 3%, which stresses the demand of the material. Flake graphite, which is a flaky version of graphite, forms under high metamorphic conditions. Flake graphite is important in different applications like batteries, carbon brushes, heat sinks etc. Graphene (a single layer of graphite) can be produced from graphite and is commonly used in many nanotechnological applications, e.g. in electronics and sensors. The steps to obtain pure graphene from graphite ore include fragmentation, flotation and exfoliation, which can be cumbersome and resulting in damaging the graphene layers. We have started a project named FennoFlakes, which is a co-operation between geologists and chemists to fill the whole value chain from graphite to graphene: 1. Exploration of graphite ores (geological and geophysical methods). 2. Petrological and geochemical analyses on the ores. 3. Development of fragmentation methods for graphite ores. 4. Chemical exfoliation of the enriched flake graphite to separate flake graphite into single and multilayer graphene. 5. Test the quality of the produced material in several high-end applications with totally environmental friendly and disposable material combinations. Preliminary results show that flake graphite in high metamorphic areas has better qualities compared to synthetic graphite produced in laboratories.
NASA Astrophysics Data System (ADS)
Rajabzadeh Dareh, F.; Haghshenasfard, M.; Nasr Esfahany, M.; Salimi Jazi, H.
2018-06-01
Pool boiling heat transfer of pure water and nanofluids on a copper block has been studied experimentally. Nanofluids with various concentrations of 0.0025, 0.005 and 0.01 vol.% are employed and two simple surfaces (polished and machined copper surface) are used as the heating surfaces. The results indicated that the critical heat flux (CHF) in boiling of fluids on the polished surface is 7% higher than CHF on the machined surface. In the case of machined surface, the heat transfer coefficient (HTC) of 0.01 vol.% nanofluid is about 37% higher than HTC of base fluid, while in the polished surface the average HTC of 0.01% nanofluid is about 19% lower than HTC of the pure water. The results also showed that the boiling time and boiling cycles on the polished surface changes the heat transfer performance. By increasing the boiling time from 5 to 10 min, the roughness enhances about 150%, but by increasing the boiling time to 15 min, the roughness enhancement is only 8%.
Direct production of fractionated and upgraded hydrocarbon fuels from biomass
Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.
2014-08-26
Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.
Microbiological effectiveness of disinfecting water by boiling in rural Guatemala.
Rosa, Ghislaine; Miller, Laura; Clasen, Thomas
2010-03-01
Boiling is the most common means of treating water in the home and the benchmark against which alternative point-of-use water treatment options must be compared. In a 5-week study in rural Guatemala among 45 households who claimed they always or almost always boiled their drinking water, boiling was associated with a 86.2% reduction in geometric mean thermotolerant coliforms (TTC) (N = 206, P < 0.0001). Despite consistent levels of fecal contamination in source water, 71.2% of stored water samples from self-reported boilers met the World Health Organization guidelines for safe drinking water (0 TTC/100 mL), and 10.7% fell within the commonly accepted low-risk category of (1-10 TTC/100 mL). As actually practiced in the study community, boiling significantly improved the microbiological quality of drinking water, though boiled and stored drinking water is not always free of fecal contaminations.
Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.
Zhou, Zhanru; Fang, Xiande; Li, Dingkun
2013-01-01
The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.
Evaluation of Correlations of Flow Boiling Heat Transfer of R22 in Horizontal Channels
Fang, Xiande; Li, Dingkun
2013-01-01
The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels. PMID:23956695
Microbiological Effectiveness of Disinfecting Water by Boiling in Rural Guatemala
Rosa, Ghislaine; Miller, Laura; Clasen, Thomas
2010-01-01
Boiling is the most common means of treating water in the home and the benchmark against which alternative point-of-use water treatment options must be compared. In a 5-week study in rural Guatemala among 45 households who claimed they always or almost always boiled their drinking water, boiling was associated with a 86.2% reduction in geometric mean thermotolerant coliforms (TTC) (N = 206, P < 0.0001). Despite consistent levels of fecal contamination in source water, 71.2% of stored water samples from self-reported boilers met the World Health Organization guidelines for safe drinking water (0 TTC/100 mL), and 10.7% fell within the commonly accepted low-risk category of (1–10 TTC/100 mL). As actually practiced in the study community, boiling significantly improved the microbiological quality of drinking water, though boiled and stored drinking water is not always free of fecal contaminations. PMID:20207876
Bubble dynamics, two-phase flow, and boiling heat transfer in a microgravity environment
NASA Technical Reports Server (NTRS)
Chung, Jacob N.
1994-01-01
The two-phase bubbly flow and boiling heat transfer in microgravity represents a substantial challenge to scientists and engineers and yet there is an urgent need to seek fundamental understanding in this area for future spacecraft design and space missions. At Washington State University, we have successfully designed, built and tested a 2.1 second drop tower with an innovation airbag deceleration system. Microgravity boiling experiments performed in our 0.6 second Drop Tower produced data flow visualizations that agree with published results and also provide some new understanding concerning flow boiling and microgravity bubble behavior. On the analytical and numerical work, the edge effects of finite divergent electrode plates on the forces experienced by bubbles were investigated. Boiling in a concentric cylinder microgravity and an electric field was numerically predicted. We also completed a feasibility study for microgravity boiling in an acoustic field.
Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N
2017-09-11
A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Boiling-induced formation of colloidal gold in black smoker hydrothermal fluids
Gartman, Amy; Hannington, Mark; Jamieson, John W.; Peterkin, Ben; Garbe-Schönberg, Dieter; Findlay, Alyssa J; Fuchs, Sebastian; Kwasnitschka, Tom
2017-01-01
Gold colloids occur in black smoker fluids from the Niua South hydrothermal vent field, Lau Basin (South Pacific Ocean), confirming the long-standing hypothesis that gold may undergo colloidal transport in hydrothermal fluids. Six black smoker vents, varying in temperature from 250 °C to 325 °C, were sampled; the 325 °C vent was boiling at the time of sampling and the 250 °C fluids were diffusely venting. Native gold particles ranging from <50 nm to 2 µm were identified in 4 of the fluid samples and were also observed to precipitate on the sampler during collection from the boiling vent. Total gold concentrations (dissolved and particulate) in the fluid samples range from 1.6 to 5.4 nM in the high-temperature, focused flow vents. Although the gold concentrations in the focused flow fluids are relatively high, they are lower than potential solubilities prior to boiling and indicate that precipitation was boiling induced, with sulfide lost upon boiling to exsolution and metal sulfide formation. Gold concentrations reach 26.7 nM in the 250 °C diffuse flow sample, and abundant native gold particles were also found in the fluids and associated sulfide chimney and are interpreted to be a product of colloid accumulation and growth following initial precipitation upon boiling. These results indicate that colloid-driven precipitation as a result of boiling, the persistence of colloids after boiling, and the accumulation of colloids in diffuse flow fluids are important mechanisms for the enrichment of gold in seafloor hydrothermal systems.
Li, Jin-Lin; Tu, Zong-Cai; Zhang, Lu; Sha, Xiao-Mei; Wang, Hui; Pang, Juan-Juan; Tang, Ping-Ping
2016-08-01
Ginger and garlic have long been used in Asian countries to enhance the flavor and to neutralize any unpleasant odors present in fish soup. The purpose of this study was to evaluate the change in the amount of volatile components present in fish soup compared to boiled water solutions of ginger and garlic. The fish soup was prepared by boiling oil-fried grass carp ( Ctenopharyngodon idella ) with or without ginger and/or garlic. Generally, boiling garlic and ginger in water led to a decrease in the amount of the principal volatile constituents of these spices, together with the formation of some new volatiles such as pentanal, hexanal, and nonanal. The results showed that 16 terpenes present in raw ginger, predominantly camphene, β -phellandrene, β -citral, α -zingiberene, and ( E )-neral, were detected in fish soup with added ginger and thus remained in the solution even after boiling. Similarly, 2-propen-1-ol and three sulfur compounds (allyl sulfide, diallyl disulfide, and diallyl trisulfide) present in raw garlic, were present in trace amounts in the boiled garlic solution, but were present in considerably larger amounts in the boiled fish solution with garlic or garlic plus ginger. In conclusion, the effect of adding spices on the volatile profile of grass carp soup can be attributed to the dissolution of flavor volatiles mainly derived from raw spices into the solution, with few additional volatiles being formed during boiling. In addition, boiling previously fried grass carp with spices led to enhanced volatile levels compared to boiled spice solutions.
NASA Astrophysics Data System (ADS)
Zhao, Jian-hua; Li, Pu; Tang, Qi; Zhang, Yan-qing; He, Jian-sheng; He, Ke
2017-02-01
In this study, the bronze-matrix/x-graphite (x = 0, 1, 3 and 5%) composites were fabricated by powder metallurgy route by using Cu-coated graphite, Ni-coated graphite and pure graphite, respectively. The microstructure, mechanical properties and corrosive behaviors of bronze/Cu-coated-graphite (BCG), bronze/Ni-coated-graphite (BNG) and bronze/pure-graphite (BPG) were characterized and investigated. Results show that the Cu-coated and Ni-coated graphite could definitely increase the bonding quality between the bronze matrix and graphite. In general, with the increase in graphite content in bronze-matrix/graphite composites, the friction coefficients, ultimate density and wear rates of BPG, BCG and BNG composites all went down. However, the Vickers microhardness of the BNG composite would increase as the graphite content increased, which was contrary to the BPG and BCG composites. When the graphite content was 3%, the friction coefficient of BNG composite was more stable than that of BCG and BPG composites, indicating that BNG composite had a better tribological performance than the others. Under all the values of applied loads (10, 20, 40 and 60N), the BCG and BNG composites exhibited a lower wear rate than BPG composite. What is more, the existence of nickel in graphite powders could effectively improve the corrosion resistance of the BNG composite.
Science 101: Why Does It Take Longer to Boil Potatoes at High Altitudes?
ERIC Educational Resources Information Center
Robertson, Bill
2017-01-01
Why Does It Take Longer to Boil Potatoes at High Altitudes? This column provides background science information for elementary teachers. This month's issue looks at why water boils at different temperatures at different altitudes.
An Investigation of Graduate Scientists' Understandings of Evaporation and Boiling.
ERIC Educational Resources Information Center
Goodwin, Alan; Orlik, Yuri
2000-01-01
Uses a video presentation of six situations relating to the evaporation and boiling of liquids and the escape of dissolved gases from solution and investigates graduate scientists' understanding of the concepts of boiling and evaporation. (Author/YDS)
Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions
NASA Astrophysics Data System (ADS)
Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha
2016-09-01
Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale evaporation. A preliminary estimation of the bubble growth rates, measured by high speed videography, was undertaken and compared with classical bubble growth rate correlations. It was observed that the average bubble departure sizes on Sample B were larger as compared to plain wire, due to larger surface forces holding the bubble before departure. Bubble condensation in the thermal boundary layer was also captured.
Geothermometric evaluation of geothermal resources in southeastern Idaho
NASA Astrophysics Data System (ADS)
Neupane, G.; Mattson, E. D.; McLing, T. L.; Palmer, C. D.; Smith, R. W.; Wood, T. R.; Podgorney, R. K.
2016-01-01
Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water from oil and gas test wells that indicate a potential for geothermal development in the area. We have estimated reservoir temperatures from chemical composition of thermal waters in southeastern Idaho using an inverse geochemical modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. The temperature estimates in the region varied from moderately warm (59 °C) to over 175 °C. Specifically, hot springs near Preston, Idaho, resulted in the highest reservoir temperature estimates in the region.
Producing graphite with desired properties
NASA Technical Reports Server (NTRS)
Dickinson, J. M.; Imprescia, R. J.; Reiswig, R. D.; Smith, M. C.
1971-01-01
Isotropic or anisotropic graphite is synthesized with precise control of particle size, distribution, and shape. The isotropic graphites are nearly perfectly isotropic, with thermal expansion coefficients two or three times those of ordinary graphites. The anisotropic graphites approach the anisotropy of pyrolytic graphite.
Peterson, George R.
1976-01-01
Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of virtually graphite.
Electric kettles as a source of human lead exposure.
Wigle, D T; Charlebois, E J
1978-01-01
Five hundred and seventy-four households in Ottawa were surveyed to evaluate water boiled in electric kettles as a source of lead exposure. Samples of boiled water exceeded the World Health Organization mandatory limit for drinking water (50 microgram/l) in 42.5% of the households. Excessive lead concentrations were observed in 62.8% of water samples from kettles more than 5 years old. Multiple regression analysis indicated that age, sex, and cigarette smoking habits, but not lead concentration in boiled water, nor weekly consumption of boiled water were significantly associated with blood-lead concentration. Lead exposure from electric kettles may be a significant problem only in infants receiving formula prepared with boiled water.
Mehmandoust, Babak; Sanjari, Ehsan; Vatani, Mostafa
2013-01-01
The heat of vaporization of a pure substance at its normal boiling temperature is a very important property in many chemical processes. In this work, a new empirical method was developed to predict vaporization enthalpy of pure substances. This equation is a function of normal boiling temperature, critical temperature, and critical pressure. The presented model is simple to use and provides an improvement over the existing equations for 452 pure substances in wide boiling range. The results showed that the proposed correlation is more accurate than the literature methods for pure substances in a wide boiling range (20.3–722 K). PMID:25685493
Mehmandoust, Babak; Sanjari, Ehsan; Vatani, Mostafa
2014-03-01
The heat of vaporization of a pure substance at its normal boiling temperature is a very important property in many chemical processes. In this work, a new empirical method was developed to predict vaporization enthalpy of pure substances. This equation is a function of normal boiling temperature, critical temperature, and critical pressure. The presented model is simple to use and provides an improvement over the existing equations for 452 pure substances in wide boiling range. The results showed that the proposed correlation is more accurate than the literature methods for pure substances in a wide boiling range (20.3-722 K).
Heat Transfer Enhancement due to Bubble Pumping in FC-72 Near the Saturation Temperature
1991-03-01
boiling, (2) reducing wall superheat during nucleate boiling and (3) enhancing critical heat flux ( Mudawar , 1990) . Since the heat transfer potential of...flux from a simulated electronic chip attached to the wall of a vertical rectangular channel was determined by Mudawar and Madox (1988). They concluded...Surface Boiling," Industrial and Engineering Chemistry, vol. 41, No. 9, 1949. Mudawar , I., and D.E. Maddox, Critical Heat Flux in Subcooled Flow Boiling
Method of Joining Graphite Fibers to a Substrate
NASA Technical Reports Server (NTRS)
Beringer, Durwood M. (Inventor); Caron, Mark E. (Inventor); Taddey, Edmund P. (Inventor); Gleason, Brian P. (Inventor)
2014-01-01
A method of assembling a metallic-graphite structure includes forming a wetted graphite subassembly by arranging one or more layers of graphite fiber material including a plurality of graphite fibers and applying a layer of metallization material to ends of the plurality of graphite fibers. At least one metallic substrate is secured to the wetted graphite subassembly via the layer of metallization material.
Boiling regimes of impacting drops on a heated substrate under reduced pressure
NASA Astrophysics Data System (ADS)
van Limbeek, Michiel A. J.; Hoefnagels, Paul B. J.; Shirota, Minori; Sun, Chao; Lohse, Detlef
2018-05-01
We experimentally investigate the boiling behavior of impacting ethanol drops on a heated smooth sapphire substrate at pressures ranging from P =0.13 bar to atmospheric pressure. We employ frustrated total internal reflection imaging to study the wetting dynamics of the contact between the drop and the substrate. The spreading drop can be in full contact (contact boiling), it can partially touch (transition boiling), or the drop can be fully levitated (Leidenfrost boiling). We show that the temperature of the boundary between contact and transition boiling shows at most a weak dependence on the impact velocity, but a significant decrease with decreasing ambient gas pressure. A striking correspondence is found between the temperature of this boundary and the static Leidenfrost temperature for all pressures. We therefore conclude that both phenomena share the same mechanism and are dominated by the dynamics taking place at the contact line. On the other hand, the boundary between transition boiling and Leidenfrost boiling, i.e., the dynamic Leidenfrost temperature, increases for increasing impact velocity for all ambient gas pressures. Moreover, the dynamic Leidenfrost temperature coincides for pressures between P =0.13 and 0.54 bar, whereas for atmospheric pressure the dynamic Leidenfrost temperature is slightly elevated. This indicates that the dynamic Leidenfrost temperature is at most weakly dependent on the enhanced evaporation by the lower saturation temperature of the liquid.
Laser-enhanced thermal effect of moderate intensity focused ultrasound on bio-tissues
NASA Astrophysics Data System (ADS)
Zhao, JinYu; Zhang, ShuYi; Shui, XiuJi; Fan, Li
2017-09-01
For avoiding extra-damage to healthy tissues surrounding the focal point during high intensity focused ultrasound (HIFU) treatment in medical therapy, to reduce the ultrasonic intensity outside the focal point is expected. Thus, the heating processes induced by moderate intensity focused ultrasound (MIFU) and enhanced by combined irradiation of laser pulses for bio-tissues are studied in details. For fresh bio-tissues, the enhanced thermal effects by pulsed laser combined with MIFU irradiation are observed experimentally. To explore the mechanisms of these effects, several tissue-mimicking materials composed of agar mixed with graphite powders are prepared and studied for comparison, but the laser-enhanced thermal effects in these mimicking materials are much less than that in the fresh bio-tissues. Therefore, it is suggested that the laser-enhanced thermal effects may be mainly attributed to bio-activities and related photo-bio-chemical effects of fresh tissues.
Oberli, Marion; Lan, Annaïg; Khodorova, Nadezda; Santé-Lhoutellier, Véronique; Walker, Francine; Piedcoq, Julien; Davila, Anne-Marie; Blachier, François; Tomé, Daniel; Fromentin, Gilles; Gaudichon, Claire
2016-08-01
Cooking may impair meat protein digestibility. When undigested proteins are fermented by the colon microbiota, they can generate compounds that potentially are harmful to the mucosa. This study addressed the effects of typical cooking processes and the amount of bovine meat intake on the quantity of undigested proteins entering the colon, as well as their effects on the intestinal mucosa. Male Wistar rats (n = 88) aged 8 wk were fed 11 different diets containing protein as 20% of energy. In 10 diets, bovine meat proteins represented 5% [low-meat diet (LMD)] or 15% [high-meat diet (HMD)] of energy, with the rest as total milk proteins. Meat was raw or cooked according to 4 processes (boiled, barbecued, grilled, or roasted). A meat-free diet contained only milk proteins. After 3 wk, rats ingested a (15)N-labeled meat meal and were killed 6 h later after receiving a (13)C-valine injection. Meat protein digestibility was determined from (15)N enrichments in intestinal contents. Cecal short- and branched-chain fatty acids and hydrogen sulfide were measured. Intestinal tissues were used for the assessment of protein synthesis rates, inflammation, and histopathology. Meat protein digestibility was lower in rats fed boiled meat (94.5% ± 0.281%) than in the other 4 groups (97.5% ± 0.0581%, P < 0.001). Cecal and colonic bacterial metabolites, inflammation indicators, and protein synthesis rates were not affected by cooking processes. The meat protein amount had a significant effect on cecal protein synthesis rates (LMD > HMD) and on myeloperoxidase activity in the proximal colon (HMD > LMD), but not on other outcomes. The ingestion of bovine meat, whatever the cooking process and the intake amount, resulted in discrete histologic modifications of the colon (epithelium abrasion, excessive mucus secretion, and inflammation). Boiling bovine meat at a high temperature (100°C) for a long time (3 h) moderately lowered protein digestibility compared with raw meat and other cooking processes, but did not affect cecal bacterial metabolites related to protein fermentation. The daily ingestion of raw or cooked bovine meat had no marked effect on intestinal tissues, despite some slight histologic modifications on distal colon. © 2016 American Society for Nutrition.
Transient nucleate pool boiling in microgravity: Some initial results
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.; Lee, H. S.; Ervin, J. S.
1994-01-01
Variable gravity provides an opportunity to test the understanding of phenomena which are considered to depend on buoyancy, such as nucleate pool boiling. The active fundamental research in nucleate boiling has sought to determine the mechanisms or physical processes responsible for its high effectiveness, manifested by the high heat flux levels possible with relatively low temperature differences. Earlier research on nucleate pool boiling at high gravity levels under steady conditions demonstrated quantitatively that the heat transfer is degraded as the buoyancy normal to the heater surfaced increases. Correspondingly, it was later shown, qualitatively for short periods of time only, that nucleate boiling heat transfer is enhanced as the buoyancy normal to the heater surface is reduced. It can be deduced that nucleate pool boiling can be sustained as a quasi-steady process provided that some means is available to remove the vapor generated from the immediate vicinity of the heater surface. One of the objectives of the research, the initial results of which are presented here, is to quantify the heat transfer associated with boiling in microgravity. Some quantitative results of nucleate pool boiling in high quality microgravity (a/g approximately 10(exp -5)) of 5s duration, obtained in an evacuated drop tower, are presented here. These experiments were conducted as precursors of longer term space experiments. A transient heating technique is used, in which the heater surface is a transparent gold film sputtered on a qua rtz substrate, simultaneously providing the mean surface temperature from resistance thermometry and viewing of the boiling process both from beneath and across the surface. The measurement of the transient mean heater surface temperature permits the computation, by numerical means, of the transient mean heat transfer coefficient. The preliminary data obtained demonstrates that a quasi-steady boiling process can occur in microgravity if the bulk liquid subcooling is sufficiently high and if the imposed heat flux is sufficiently low. This is attributed to suface tension effects at the liquid-vapor-solid junction causing rewetting to take place, sustaining the nucleate boiling. Otherwise, dryout at the heater surface will occur, as observed.
PHYSICAL PROPERTIES OF FLUORINATED PROPANE AND BUTANE DERIVATIVES AS ALTERNATIVE REFRIGERANTS
Physical property measurements are presented for 24 fluorinated propane and butane derivatives and one fluorinated ether. These measurements include melting point, boiling point, vapor pressure below the boiling point, heat of vaporization at the boiling point, critical propertie...
NASA Astrophysics Data System (ADS)
Zhukov, Yu. M.; Urtenov, D. S.
2017-12-01
The problems of simulation of heterogeneous nucleate pool boiling on a horizontal surface on the ascending branch of the boiling curve from the formation of a steam lens (SL) to the boiling crisis are considered. The proposed hypothesis provides in a number of cases a logically consistent interpretation of experiments and outlines the organizational principle of transferring the wall-liquid-steam system into the regime of nonwettable "dry spot" formation. The model includes the following types of nucleate boiling: (a) cyclic boiling with the contact line reverse to the bubble bottom center and bubble departure from the surface (at low heat flux q and the contact angle θ < 90°); (b) single steam bubble conversion into a steam lens, i.e., local film boiling with the possibility of spreading of a single "dry spot" at the variation of the contact angle θ ≥ 90°, and substantial growth of the departure diameter D d and SL lifetime τd; (c) formation of a single steam cluster of four SLs at a given pressure, the liquid underheating, and the average wall overheating.
NASA Astrophysics Data System (ADS)
Depczyński, Wojciech; Piasecki, Artur; Piasecka, Magdalena; Strąk, Kinga
2017-10-01
This paper focuses on identification of the impact of porous heated surface on flow boiling heat transfer in a rectangular minichannel. The heated element for Fluorinert FC-72 was a thin plate made of Haynes-230. Infrared thermography was used to determine changes in the temperature on its outer smooth side. The porous surface in contact with the fluid in the minichannel was produced in two processes: sintering or soldering of Fe powder to the plate. The results were presented as relationships between the heat transfer coefficient and the distance from the minichannel inlet and as boiling curves. Results obtained for using a smooth heated plate at the saturated boiling region were also presented to compare. In the subcooled boiling region, at a higher heat flux, the heat transfer coefficient was slightly higher for the surface prepared via soldering. In the saturated boiling region, the local heat transfer coefficients obtained for the smooth plate surface were slightly higher than those achieved from the sintered plate surface. The porous structures formed have low thermal conductivity. This may induce noticeable thermal resistance at the diffusion bridges of the sintered structures, in particular within the saturated boiling region.
Bach, Vibe; Kidmose, Ulla; Thybo, Anette K; Edelenbos, Merete
2013-03-30
The aim of the present study was to investigate the sensory attributes, dry matter and sugar content of five varieties of Jerusalem artichoke tubers and their relation to the appropriateness of the tubers for raw and boiled preparation. Sensory evaluation of raw and boiled Jerusalem artichoke tubers was performed by a trained sensory panel and a semi-trained consumer panel of 49 participants, who also evaluated the appropriateness of the tubers for raw and boiled preparation. The appropriateness of raw Jerusalem artichoke tubers was related to Jerusalem artichoke flavour, green nut flavour, sweetness and colour intensity, whereas the appropriateness of boiled tubers was related to celeriac aroma, sweet aroma, sweetness and colour intensity. In both preparations the variety Dwarf stood out from the others by being the least appropriate tuber. A few sensory attributes can be used as predictors of the appropriateness of Jerusalem artichoke tubers for raw and boiled consumption. Knowledge on the quality of raw and boiled Jerusalem artichoke tubers can be used to inform consumers on the right choice of raw material and thereby increase the consumption of the vegetable. © 2012 Society of Chemical Industry.
Thermally exfoliated graphite oxide
NASA Technical Reports Server (NTRS)
Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)
2011-01-01
A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.
Method of Operating a Neutronic Reactor
NASA Astrophysics Data System (ADS)
Fermi, Enrico; Szilard, Leo
This Patent is a later,1 almost faithful, copy of Patent No. 2,708,656 (which is then not reported in the present volume). This revised version was probably prepared (by the authors) in order to correct several misprints of the previous version. As emphasized in The New York Times of May 19, 1955, Patent No. 2,708,656, an "historic Patent, covering the first nuclear reactor", is the first one on this topic issued by the U.S. Patent Office, and served as a reference for the subsequent Patents on the same subject. In this long Patent, the theory, exper- imental data and principles of construction and operation of "any" type of nuclear reactor known at that time are discussed in an extremely detailed way. Various possible fission fragments produced by the reactor, several forms of the uranium employed (metal, oxide and so on, grouped in different geometrical forms), various materials adopted as moderators, several cooling systems, different geometries of the reactors, etc. are considered accurately. The theoretical description, centered around the achievement of a self-sustaining chain reaction, is exhaustive, and great attention is devoted to any possible cause of neutron loss, to the resonance capture of neutrons and to the effect of the presence of relevant impurities in the reactor. The chain production of neutrons in the pile is described in great detail, along with the theoretical arguments underlying the exponential experiment. The problem of the variation of the multiplication factor due to the production of radioactive elements, such as xenon, is discussed extensively. In particular it is pointed out that, although the initial production of xenon lowers the multiplication factor K due to its relevant neutron absorption, it subsequently increases again due to the decay of xenon into another isotope which absorbs fewer neutrons. The building up of reactors with solid (graphite) or liquid (heavy water) moderators is discussed, as well as other possible moderators such as light water or beryllium. In particular, the ratio is given of the absorption cross section to the scattering cross section for several moderators. Procedures for the purification of uranium are described as well. Several methods (i.e., the exponential pile or the "shotgun" method; see Patent No. 2.969,307) are reported for testing the purity against neutron absorption of different materials. The effect of the boron and vanadium impurities in the graphite and light water in the heavy water are considered. Different cooling systems for the reactors are considered and compared in the Patent, based on the circulation of a gas (typically, air) or a liquid (light or heavy water, diphenyl, etc.). The principles and practice for the construction, functioning and control of several kinds of reactors are reported in detail. One reactor considered in the present Patent is a low power uranium-graphite one without cooling system, where the active part consists in (small) cylinders of metallic uranium or pseudo-spheres of uranium oxide (or cylinders of U3O8). The control rods are made of steel with boron inserts, while limitation and safety rods are made of cadmium. In addition, an uranium-graphite pile cooled by air or even by water or diphenyl is considered. It is pointed out that dyphenil should usually be preferred with respect to water, due to its lower absorption of neutrons and to its higher boiling temperature, but the disadvantage related to its use is mainly due to the closed pumping system required and to the possible occurrence of polymerization which makes the fluid viscous. Another kind of reactor described in detail is made of uranium (vertical) bars immersed in heavy water. When, during the operation, heavy water is dissociated into D2 and O2, these two gaseous elements are carried by an inert gas (helium) into a recombination device. The control and safety rods are made of cadmium. Hybrid reactors composed of different lattices in the same neutronic reactor, in order to increase the multiplication factor K, are considered as well. A description of the possible uses of nuclear reactors, other than as power supplies, including the production of collimated beams of fast neutrons, the production of plutonium (a fissionable material usable in other reactors) or several other radioactive isotopes (for possible utilization in medicine) is as well given. As it results clear, no published reference article behind the present Patent exists. Some partial results may be found in several papers2 of Volume II of [Fermi (1962)] (see, for example, [Fermi (1952)]), but here very many technical data and some information of historic interest (mainly on the experiments performed in order to obtain the data reported) are given. The most "relevant" change of Patent No. 2,798,847 with respect to the original Patent No. 2,708,656 is the replacement of the 8 claims of the previous one by the following only one claim, which well summarizes the work done: "A method of operating a neutronic reactor including an active portion having a neutron reproduction ratio substantially in excess of unity in the absence of high neutron absorbing bodies, said method comprising the steps of inserting in the active portion a shim member consisting essentially of a high neutron absorbing body in an amount to reduce the neutron reproduction ratio to a value slightly higher than unit to prevent a dangerous reactivity level, controlling the reaction by moving a control member consisting essentially of a second high neutron absorbing body inwardly and outwardly in response to variations in neutron density, to maintain the neutron reproduction ratio substantially at unity, and withdrawing successive portions of the shim member to the extent necessary to enable the reactor to be controlled by movement of the control member after the neutron reproduction value has been lowered to the point where the outward movement of the control member is insufficient to maintain the neutron reproduction ratio at the desired point, and thus to maintain the range of control effected by such movement of the control member substantially constant despite diminution of neutron reproduction ratio caused by operation of the reactor, the active portion being substantially free of high neutron absorber other than the control member and the shim member."
Film boiling of mercury droplets
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.
1975-01-01
Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. Diffusion from the upper surface of the drop appears as a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobrov, A. A.; Boyarinov, V. F.; Glushkov, A. E.
2012-07-01
Results of critical experiments performed at five ASTRA facility configurations modeling the high-temperature helium-cooled graphite-moderated reactors are presented. Results of experiments on definition of space distribution of {sup 235}U fission reaction rate performed at four from these five configurations are presented more detail. Analysis of available information showed that all experiments on criticality at these five configurations are acceptable for use them as critical benchmark experiments. All experiments on definition of space distribution of {sup 235}U fission reaction rate are acceptable for use them as physical benchmark experiments. (authors)
The action of macrosounds on graphite ore and derived products
NASA Technical Reports Server (NTRS)
Bradeteanu, C.; Dragan, O.
1974-01-01
A suspension of graphite ore, floated graphite, and the gangue left over from flotation were subjected to the action of macrosounds under determinant conditions. The following was found: (1) The graphite ore undergoes an efficient settling action. (2) The floated graphite is strongly crushed down to the dimensions of colloidal graphite. (3) The gangue left over from flotation can be further processed to recuperate graphite from its nuclei.
Stability and potency of raw and boiled shrimp extracts for skin prick test.
Pariyaprasert, Wipada; Piboonpocanun, Surapon; Jirapongsananuruk, Orathai; Visitsunthorn, Nualanong
2015-06-01
The difference of stability between raw and boiled shrimp extracts used in prick tests has never been investigated despite its potential consequences in tests development. The aim of this study was to compare the raw and boiled shrimp extracts of two species; Macrobrachium rosenbergii (freshwater shrimp) and Penaeus monodon (seawater shrimp) held at 4 ?C for different periods of time for their stability and potency in vivo by using the skin prick test (SPT) method. Raw and boiled M. rosenbergii and P. monodon extracts were prepared and stored at 4 ?C for 1, 7, 14 and 30 days. Thirty patients were pricked with raw and boiled shrimp extracts at all storage times, as well as prick to prick skin test (PTP) to fresh raw and boiled shrimps of both species. The mean wheal diameter (MWD) resulting from prick tests for all shrimp extracts was measured and compared. The shrimp extracts of all storage times yielded positive skin test results in the range of 90% - 100%. Raw P. monodon extracts induced larger wheals than boiled extracts at all storage times. There was no significant difference of MWD between raw and boiled M. rosenbergii extracts on day 1, 7, and 14. Significant correlations between MWD of PTP to fresh shrimps and SPT to all shrimp extracts were observed. All shrimp extracts were sterile at all storage times. Raw and boiled M. rosenbergii and P. monodon extracts were stable and sterile at 4 ?C for at most 30 days. SPT with these extracts induced more than 10 mm in shrimp allergy patients and the results were comparable with PTP to fresh shrimps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dao, Trung Dung; Jeong, Han Mo, E-mail: hmjeong@mail.ulsan.ac.kr
Highlights: • Effect of raw graphite particle size on properties of GO and graphene is reported. • Size of raw graphite affects oxidation degree and chemical structure of GO. • Highly oxidized GO results in small-sized but well-exfoliated graphene. • GO properties affect reduction degree, structure, and conductivity of graphene. - Abstract: We report the effect of raw graphite size on the properties of graphite oxide and graphene prepared by thermal reduction–exfoliation of graphite oxide. Transmission electron microscope analysis shows that the lateral size of graphene becomes smaller when smaller size graphite is used. X-ray diffraction analysis confirms that graphitemore » with smaller size is more effectively oxidized, resulting in a more effective subsequent exfoliation of the obtained graphite oxide toward graphene. X-ray photoelectron spectroscopy demonstrates that reduction of the graphite oxide derived from smaller size graphite into graphene is more efficient. However, Raman analysis suggests that the average size of the in-plane sp{sup 2}-carbon domains on graphene is smaller when smaller size graphite is used. The enhanced reduction degree and the reduced size of sp{sup 2}-carbon domains contribute contradictively to the electrical conductivity of graphene when the particle size of raw graphite reduces.« less
Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Xu, Wu; Choi, Daiwon
2012-04-27
In order to form the stable surface film and to further enhance the long-term cycling stability of the graphite anodes of lithium-ion batteries, the surface of graphite powders has been modified by AlF3 coating through chemical precipitation method. The AlF3-coated graphite shows no evident changes in the bulk structure and a thin AlF3-coating layer of about 2 nm thick is found to uniformly cover the graphite particles with 2 wt% AlF3 content. However, it delivers a higher initial discharge capacity and largely improved rate performances compared to the pristine graphite. Remarkably, AlF3 coated graphite demonstrated a much better cycle life.more » After 300 cycles, AlF3 coated graphite and uncoated graphite show capacity retention of 92% and 81%, respectively. XPS measurement shows that a more conductive solid electrode interface (SEI) layer was formed on AlF3 coated graphite as compared to uncoated graphite. SEM monograph also reveals that the AlF3-coated graphite particles have a much more stable surface morphology after long-term cycling. Therefore, the improved electrochemical performance of AlF3 coated graphite can be attributed to a more stable and conductive SEI formed on coated graphite anode during cycling process.« less
Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.
2017-12-19
Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For some of these uses, no suitable substitutes are available. Steelmaking and refractory applications in metallurgy use the largest amount of produced graphite; however, emerging technology uses in large-scale fuel cell, battery, and lightweight high-strength composite applications could substantially increase world demand for graphite.Graphite ores are classified as “amorphous” (microcrystalline), and “crystalline” (“flake” or “lump or chip”) based on the ore’s crystallinity, grain-size, and morphology. All graphite deposits mined today formed from metamorphism of carbonaceous sedimentary rocks, and the ore type is determined by the geologic setting. Thermally metamorphosed coal is the usual source of amorphous graphite. Disseminated crystalline flake graphite is mined from carbonaceous metamorphic rocks, and lump or chip graphite is mined from veins in high-grade metamorphic regions. Because graphite is chemically inert and nontoxic, the main environmental concerns associated with graphite mining are inhalation of fine-grained dusts, including silicate and sulfide mineral particles, and hydrocarbon vapors produced during the mining and processing of ore. Synthetic graphite is manufactured from hydrocarbon sources using high-temperature heat treatment, and it is more expensive to produce than natural graphite.Production of natural graphite is dominated by China, India, and Brazil, which export graphite worldwide. China provides approximately 67 percent of worldwide output of natural graphite, and, as the dominant exporter, has the ability to set world prices. China has significant graphite reserves, and China’s graphite production is expected to increase, although rising labor costs and some mine production problems are developing. China is expected to continue to be the dominant exporter for the near future. Mexico and Canada export graphite mainly to the United States, which has not had domestic production of natural graphite since the 1950s. Most graphite deposits in the United States are too small, low-grade, or remote to be of commercial value in the near future, and the likelihood of discovering larger, higher-grade, or favorably located domestic deposits is unlikely. The United States is a major producer of synthetic graphite.
NASA Technical Reports Server (NTRS)
Goodman, Irving A; Wise, Paul H
1952-01-01
Three homologous series of related dicyclic hydrocarbons are presented for comparison on the basis of their physical properties, which include net heat of combustion, density, melting point, boiling point, and kinematic viscosity. The three series investigated include the 2-n-alkylbiphenyl, 2-n-alkylbicyclohexyl (high boiling), and 2-n-alkylbiphenyls (low boiling) series through c sub 16, in addition to three branched-chain (isopropyl, sec-butyl, and isobutyl) 2-alkylbiphenyls and their corresponding 2-alkylbicyclohexyls. The physical properties of the low-boiling and high-boiling isomers of 2-sec-butylbicyclohexyl and 2-isobutylbicyclohexyl are reported herein for the first time.
Detection of vapor nanobubbles by small angle neutron scattering (SANS)
NASA Astrophysics Data System (ADS)
Popov, Emilian; He, Lilin; Dominguez-Ontiveros, Elvis; Melnichenko, Yuri
2018-04-01
Experiments using boiling water on untreated (roughness 100-300 nm) metal surfaces using small-angle neutron scattering (SANS) show the appearance of structures that are 50-70 nm in size when boiling is present. The scattering signal disappears when the boiling ceases, and no change in the signal is detected at any surface temperature condition below saturation. This confirms that the signal is caused by vapor nanobubbles. Two boiling regimes are evaluated herein that differ by the degree of subcooling (3-10 °C). A polydisperse spherical model with a log-normal distribution fits the SANS data well. The size distribution indicates that a large number of nanobubbles exist on the surface during boiling, and some of them grow into large bubbles.
Pretest thermal analysis of the Tuff Water Migration/In-Situ Heater Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulmer, B.M.
This report describes the pretest thermal analysis for the Tuff Water Migration/In-Situ Heater Experiment to be conducted in welded tuff in G-tunnel, Nevada Test Site. The parametric thermal modeling considers variable boiling temperature, tuff thermal conductivity, tuff emissivity, and heater operating power. For nominal tuff properties, some near field boiling is predicted for realistic operating power. However, the extent of boiling will be strongly determined by the ambient (100% water saturated) rock thermal conductivity. In addition, the thermal response of the heater and of the tuff within the dry-out zone (i.e., bounded by boiling isotherm) is dependent on the temperaturemore » variation of rock conductivity as well as the extent of induced boiling.« less
17. RW Meyer Sugar Mill: 18761889. Boiling House, 1878. View: ...
17. RW Meyer Sugar Mill: 1876-1889. Boiling House, 1878. View: Southwest corner of boiling house. The amimal-powered cane mill is located in the undergrowth in the right foreground, - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Structural changes of malt proteins during boiling.
Jin, Bei; Li, Lin; Liu, Guo-Qin; Li, Bing; Zhu, Yu-Kui; Liao, Liao-Ning
2009-03-09
Changes in the physicochemical properties and structure of proteins derived from two malt varieties (Baudin and Guangmai) during wort boiling were investigated by differential scanning calorimetry, SDS-PAGE, two-dimensional electrophoresis, gel filtration chromatography and circular dichroism spectroscopy. The results showed that both protein content and amino acid composition changed only slightly during boiling, and that boiling might cause a gradual unfolding of protein structures, as indicated by the decrease in surface hydrophobicity and free sulfhydryl content and enthalpy value, as well as reduced alpha-helix contents and markedly increased random coil contents. It was also found that major component of both worts was a boiling-resistant protein with a molecular mass of 40 kDa, and that according to the two-dimensional electrophoresis and SE-HPLC analyses, a small amount of soluble aggregates might be formed via hydrophobic interactions. It was thus concluded that changes of protein structure caused by boiling that might influence beer quality are largely independent of malt variety.
CMB-13 research on carbon and graphite
NASA Technical Reports Server (NTRS)
Smith, M. C.
1972-01-01
Preliminary results of the research on carbon and graphite accomplished during this report period are presented. Included are: particle characteristics of Santa Maria fillers, compositions and density data for hot-molded Santa Maria graphites, properties of hot-molded Santa Maria graphites, and properties of hot-molded anisotropic graphites. Ablation-resistant graphites are also discussed.
Peng, Xin; Yu, Ke-Qiang; Deng, Guan-Hua; Jiang, Yun-Xia; Wang, Yu; Zhang, Guo-Xia; Zhou, Hong-Wei
2013-12-01
Low cost and high throughput capacity are major advantages of using next generation sequencing (NGS) techniques to determine metagenomic 16S rRNA tag sequences. These methods have significantly changed our view of microorganisms in the fields of human health and environmental science. However, DNA extraction using commercial kits has shortcomings of high cost and time constraint. In the present study, we evaluated the determination of fecal microbiomes using a direct boiling method compared with 5 different commercial extraction methods, e.g., Qiagen and MO BIO kits. Principal coordinate analysis (PCoA) using UniFrac distances and clustering showed that direct boiling of a wide range of feces concentrations gave a similar pattern of bacterial communities as those obtained from most of the commercial kits, with the exception of the MO BIO method. Fecal concentration by boiling method affected the estimation of α-diversity indices, otherwise results were generally comparable between boiling and commercial methods. The operational taxonomic units (OTUs) determined through direct boiling showed highly consistent frequencies with those determined through most of the commercial methods. Even those for the MO BIO kit were also obtained by the direct boiling method with high confidence. The present study suggested that direct boiling could be used to determine the fecal microbiome and using this method would significantly reduce the cost and improve the efficiency of the sample preparation for studying gut microbiome diversity. © 2013 Elsevier B.V. All rights reserved.
Initial fuel temperature effects on burning rate of pool fire.
Chen, Bing; Lu, Shou-Xiang; Li, Chang-Hai; Kang, Quan-Sheng; Lecoustre, Vivien
2011-04-15
The influence of the initial fuel temperature on the burning behavior of n-heptane pool fire was experimentally studied at the State Key Laboratory of Fire Science (SKLFS) large test hall. Circular pool fires with diameters of 100mm, 141 mm, and 200 mm were considered with initial fuel temperatures ranging from 290 K to 363 K. Burning rate and temperature distributions in fuel and vessel wall were recorded during the combustion. The burning rate exhibited five typical stages: initial development, steady burning, transition, bulk boiling burning, and decay. The burning rate during the steady burning stage was observed to be relatively independent of the initial fuel temperature. In contrast, the burning rate of the bulk boiling burning stage increases with increased initial fuel temperature. It was also observed that increased initial fuel temperature decreases the duration of steady burning stage. When the initial temperature approaches the boiling point, the steady burning stage nearly disappears and the burning rate moves directly from the initial development stage to the transition stage. The fuel surface temperature increases to its boiling point at the steady burning stage, shortly after ignition, and the bulk liquid reaches boiling temperature at the bulk boiling burning stage. No distinguished cold zone is formed in the fuel bed. However, boiling zone is observed and the thickness increases to its maximum value when the bulk boiling phenomena occurs. Copyright © 2011 Elsevier B.V. All rights reserved.
Numerical and Experimental Study of Mechanisms Involved in Boiling Histotripsy.
Pahk, Ki Joo; Gélat, Pierre; Sinden, David; Dhar, Dipok Kumar; Saffari, Nader
2017-12-01
The aim of boiling histotripsy is to mechanically fractionate tissue as an alternative to thermal ablation for therapeutic applications. In general, the shape of a lesion produced by boiling histotripsy is tadpole like, consisting of a head and a tail. Although many studies have demonstrated the efficacy of boiling histotripsy for fractionating solid tumors, the exact mechanisms underpinning this phenomenon are not yet well understood, particularly the interaction of a boiling vapor bubble with incoming incident shockwaves. To investigate the mechanisms involved in boiling histotripsy, a high-speed camera with a passive cavitation detection system was used to observe the dynamics of bubbles produced in optically transparent tissue-mimicking gel phantoms exposed to the field of a 2.0-MHz high-intensity focused ultrasound (HIFU) transducer. We observed that boiling bubbles were generated in a localized heated region and cavitation clouds were subsequently induced ahead of the expanding bubble. This process was repeated with HIFU pulses and eventually resulted in a tadpole-shaped lesion. A simplified numerical model describing the scattering of the incident ultrasound wave by a vapor bubble was developed to help interpret the experimental observations. Together with the numerical results, these observations suggest that the overall size of a lesion induced by boiling histotripsy is dependent on the sizes of (i) the heated region at the HIFU focus and (ii) the backscattered acoustic field by the original vapor bubble. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Agiang, M A; Umoh, I B; Essien, A I; Eteng, M U
2010-10-15
Evaluations of the effect of prolong cooking on the nutrient and antinutrient composition ofbeniseed and beniseed soup were carried out in this study. Proximate, mineral, vitamin A and C and antinutrient compositions of raw beniseed (BS-R), beniseed boiled (BSB) for 15, 30, 45 and 60 min and beniseed soup (BSS) cooked for the same intervals of time were assessed. Results of the proximate composition analyses showed that raw and boiled beniseed had lower moisture content (5.39-5.51%) than beniseed soups (10.06-15.20%). Nitrogen-free extract (total carbohydrates), fats and phosphorus contents were improved in both the boiled beniseed and beniseed soup while calcium and potassium were increased in the boiled seeds and soup samples respectively. Moisture (in the raw and boiled beniseed), ash, magnesium, zinc, iron contents in both the seed and soup were unchanged in all the samples. Vitamins A and C levels of both boiled beniseed and beniseed soup samples were reduced with increase in cooking time. Beniseed soup had higher protein contents than both the raw and boiled beniseed which decreased with increase in cooking time. Beniseed samples provided good sources of energy (572.97-666.05 kcal/100 g). Except for phytate, the levels of antinutrients tested were lower in the raw and boiled beniseed than in the soup samples which decreased with increase in cooking time. The results are discussed with reference to the effect of prolonged cooking on the nutrient requirements of consumers.
Ismail, Maznah; Mariod, Abdalbasit; Pin, Sia Soh
2013-01-01
The effect of preparation methods (raw, half-boiled and hard-boiled) on protein and amino acid contents, as well as the protein quality (amino acid score) of regular, kampung and nutrient enriched Malaysian eggs was investigated. The protein content was determined using a semi-micro Kjeldahl method whereas the amino acid composition was determined using HPLC. The protein content of raw regular, kampung and nutrient enriched eggs were 49.9 ±0.2%, 55.8 ±0.2% and 56.5 ±0.5%, respectively. The protein content of hard-boiled eggs of regular, kampung and nutrient enriched eggs was 56.8 ±0.1%, 54.7 ±0.1%, and 53.7 ±0.5%, while that for half-boiled eggs of regular, kampung and nutrient enriched eggs was 54.7 ±0.6%, 53.4 ±0.4%, and 55.1 ±0.7%, respectively. There were significant differences (p < 0.05) in protein and amino acid contents of half-boiled, hard-boiled as compared with raw samples, and valine was found as the limiting amino acid. It was found that there were significant differences (p < 0.05) of total amino score in regular, kampung and nutrient enriched eggs after heat treatments.Furthermore, hard-boiling (100°C) for 10 minutes and half-boiling (100°C) for 5 minutes affects the total amino score, which in turn alter the protein quality of the egg.
NASA Astrophysics Data System (ADS)
Zamfir, Oana-Liliana; Ionicǎ, Mihai; Caragea, Genica; Radu, Simona; Vlǎdescu, Marian
2016-12-01
Cobalt is a chemical element with symbol Co and atomic number 27 and atomic weight 58.93. 59 Co is the only stable cobalt isotope and the only isotope to exist naturally on Earth. Cobalt is the active center of coenzymes called cobalamin or cyanocobalamin the most common example of which is vitamin B12. Vitamin B12 deficiency can potentially cause severe and irreversible damage, especially to the brain and nervous system in the form of fatigue, depression and poor memory or even mania and psychosis. In order to study the degree of deficiency of the population with Co or the correctness of treatment with vitamin B12, a modern optoelectronic method for the determination of metals and metalloids from biological samples has been developed, Graphite Furnace - Atomic Absorption Spectrometer (GF- AAS) method is recommended. The technique is based on the fact that free atoms will absorb light at wavelengths characteristic of the element of interest. Free atoms of the chemical element can be produced from samples by the application of high temperatures. The system GF-AAS Varian used as biological samples, blood or urine that followed the digest of the organic matrix. For the investigations was used a high - performance GF-AAS with D2 - background correction system and a transversely heated graphite atomizer. As result of the use of the method are presented the concentration of Co in the blood or urine of a group of patient in Bucharest. The method is sensitive, reproducible relatively easy to apply, with a moderately costs.
Stable dispersions of polymer-coated graphitic nanoplatelets
NASA Technical Reports Server (NTRS)
Nguyen, Sonbinh T. (Inventor); Stankovich, Sasha (Inventor); Ruoff, Rodney S. (Inventor)
2011-01-01
A method of making a dispersion of reduced graphite oxide nanoplatelets involves providing a dispersion of graphite oxide nanoplatelets and reducing the graphite oxide nanoplatelets in the dispersion in the presence of a reducing agent and a polymer. The reduced graphite oxide nanoplatelets are reduced to an extent to provide a higher C/O ratio than graphite oxide. A stable dispersion having polymer-treated reduced graphite oxide nanoplatelets dispersed in a dispersing medium, such as water or organic liquid is provided. The polymer-treated, reduced graphite oxide nanoplatelets can be distributed in a polymer matrix to provide a composite material.
Anti-obesity effects of boiled tuna extract in mice with obesity induced by a high-fat diet.
Kim, Youngmin; Kwon, Mi-Jin; Choi, Jeong-Wook; Lee, Min-Kyeong; Kim, Chorong; Jung, Jaehun; Aprianita, Heny; Nam, Heesop; Nam, Taek-Jeong
2016-10-01
The aim of this study was to examine the anti-obesity effects of boiled tuna extract in C57BL/6N mice with obesity induced by a high-fat diet (HFD). We determined the anti-obesity effects of boiled tuna extract (100, 200, or 400 mg/kg) on the progression of HFD-induced obesity for 10 weeks. The mice were divided into 5 groups as follows: the normal diet (ND) group (n=10); the HFD group (n=10); the mice fed HFD and 100 mg/kg boiled tuna extract group (n=10); those fed a HFD and 200 mg/kg boiled tuna extract group (n=10); and those fed a HFD and 400 mg/kg boiled tuna extract group (n=10). Changes in body weight, fat content, serum lipid levels and lipogenic enzyme levels were measured. The consumption of boiled tuna extract lowered epididymal tissue weight and exerted anti-obesity effects, as reflected by the serum glucose, triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL‑C), low-density lipoprotein cholesterol (LDL-C), insulin and leptin levels. In addition, we demonstrated changes in liver adipogenic- and lipogenic-related protein expression by western blot analysis. Boiled tuna extract downregulated the levels of the CCAAT/enhancer-binding protein α, β and δ (C/EBPα, β, δ), and peroxisome proliferator-activated receptor-γ (PPAR-γ) adipocyte marker genes. Boiled tuna extract also attenuated adipogenic and lipogenic gene expression, namely the levels of fatty acid synthase (FAS), lipoprotein lipase (LPL), acetyl-CoA carboxylase (ACC), glucose transporter type 4 (Glut4) and phosphorylated adenosine monophosphate-activated protein kinase α and β (AMPKα, β) in a dose-dependent manner. Moreover, the consumption of boiled tuna extract restored the levels of superoxide dismutase (SOD), catalase (CAT), glutamic oxaloacetic transaminase (GOT), glutamic-pyruvate transaminase (GPT), aspartate transaminase (AST) and alanine transaminase (ALT) to those of the control group. These results suggest that boiled tuna extract attenuates the progression of obesity by stimulating fatty acid oxidation through the upregulation of AMPK genes, as well as by inhibiting the synthesis of adipogenic and lipogenic enzymes. These characteristics of boiled tuna extract highlight its potential anti-obesity effects.
Structural disorder of graphite and implications for graphite thermometry
NASA Astrophysics Data System (ADS)
Kirilova, Martina; Toy, Virginia; Rooney, Jeremy S.; Giorgetti, Carolina; Gordon, Keith C.; Collettini, Cristiano; Takeshita, Toru
2018-02-01
Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry
, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25 megapascal (MPa) and aseismic velocities of 1, 10 and 100 µm s-1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer
is ambiguous in active tectonic settings.
International strategic minerals inventory summary report; natural graphite
Krauss, U.H.; Schmidt, H.W.; Taylor, H.A.; Sutphin, D.M.
1989-01-01
Natural graphite is a crystalline mineral of pure carbon which normally occurs in the form of platelet-shaped crystals. It has important properties, such as chemical inertness, low thermal expansion, and lubricity, that make it almost irreplaceable for certain uses such as refractories and steelmaking. Graphite ore types are crystalline (flake and lump} or 'amorphous' (cryptocrystalline}. Refractory applications use the largest total amount of natural graphite, while the most important use of crystalline graphite is in crucibles for handling molten metals. All graphite deposits being mined today are found in the following metamorphic environments: (1) contact metamorphosed coal generally is a source of amorphous graphite; (2)disseminated crystalline flake graphite comes from syngenetic metasediments; and (3) crystalline lump graphite is found in epigenetic veins in high-grade metamorphic regions. Graphite may also occur as a trace mineral in ultrabasic rocks and pegmatites, but these are economically insignificant. The world's identified economically exploitable resources of crystalline graphite in major deposits are estimated to be about 9.7 million metric tons of concentrate. In-place resources of amorphous graphite are about 11.5 million metric tons. Of these, less than 2 percent of the crystalline ore and less than 1 percent of the amorphous ore are in western industrial countries. World mining production of natural graphite rose from 347,000 metric tons in 1973 to 659,000 metric tons in 1986, while the proportion produced by central economy countries increased from about 50 percent for the period from 1973 to 1978 to more than 64 percent in 1979 to 1986. It is estimated that crystalline flake graphite accounts for at least 180,000 metric tons of total annual world mining production of natural graphite, and amorphous graphite makes up the rest.
10 CFR 50.55a - Codes and standards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... specified in § 50.55, except that each combined license for a boiling or pressurized water-cooled nuclear... boiling or pressurized water-cooled nuclear power facility is subject to the conditions in paragraphs (f... performed. (2) Systems and components of boiling and pressurized water-cooled nuclear power reactors must...
Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation
USDA-ARS?s Scientific Manuscript database
Butanol fermentation is product limiting due to butanol toxicity to microbial cells. Butanol (boiling point: 118 deg C) boils at a greater temperature than water (boiling point: 100 deg C) and application of vacuum technology to integrated acetone-butanol-ethanol (ABE) fermentation and recovery may ...
NASA Astrophysics Data System (ADS)
Xu, Bin; Shi, Yumei; Chen, Dongsheng
2014-03-01
This paper presents an experimental investigation on the heat transfer characteristics of liquefied natural gas flow boiling in a vertical micro-fin tube. The effect of heat flux, mass flux and inlet pressure on the flow boiling heat transfer coefficients was analyzed. The Kim, Koyama, and two kinds of Wellsandt correlations with different Ftp coefficients were used to predict the flow boiling heat transfer coefficients. The predicted results showed that the Koyama correlation was the most accurate over the range of experimental conditions.
Occurrence of nitrate, nitrite and volatile nitrosamines in certain feedstuffs and animal products.
Ologhobo, A D; Adegede, H I; Maduagiwu, E N
1996-01-01
Nitrate, nitrite and nitrosamines were analysed in poultry feeds, meat and eggs. The poultry meat was boiled and roasted while the eggs were raw and boiled, and the effects of these processing treatments on the level of these compounds were investigated. Nitrate levels in the meat samples were significantly (P < 0.05) reduced by boiling and roasting, with boiling being more effective. Nitrite levels were also reduced significantly by processing (P < 0.05). The feed samples contained levels of nitrate which were significantly different (P < 0.05) from one producer to another. Nitrite levels were generally low in all feed samples. Nitrosamines were not detected in any of the feed samples and in the meat samples except in two samples of boiled meat which contained 0.001 g/kg each.
20. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...
20. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Remains of south wall. The molasses storage pits are below the floor in the foreground. The remaining piece of floor indicates the form of the entire floor. The sorghum pan and boiling range flue slope from left to right (east to west) and permitted batches of cane juice to flow through the boiling pan by gravity. The beams, joists, truss work are built of northwest pine. The sides and floor boards are built of redwood. The boiling range flue is built of fire-brick, masonry, and portland cement. The corrugated roof appears to be a later addition, not contemporary with mill operation. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Capillary hydrodynamics and transport processes during phase change in microscale systems
NASA Astrophysics Data System (ADS)
Kuznetsov, V. V.
2017-09-01
The characteristics of two-phase gas-liquid flow and heat transfer during flow boiling and condensing in micro-scale heat exchangers are discussed in this paper. The results of numerical simulation of the evaporating liquid film flowing downward in rectangular minichannel of the two-phase compact heat exchanger are presented and the peculiarities of microscale heat transport in annular flow with phase changes are discussed. Presented model accounts the capillarity induced transverse flow of liquid and predicts the microscale heat transport processes when the nucleate boiling becomes suppressed. The simultaneous influence of the forced convection, nucleate boiling and liquid film evaporation during flow boiling in plate-fin heat exchangers is considered. The equation for prediction of the flow boiling heat transfer at low flux conditions is presented and verified using experimental data.
NASA Astrophysics Data System (ADS)
Riyanto, J.; Sudibya; Cahyadi, M.; Aji, A. P.
2018-01-01
This aim of this study was to determine the quality of nutritional contents of beef brisket point end of Simental Ongole Crossbred meat in various boiling temperatures. Simental Ongole Crossbred had been fattened for 9 months. Furthermore, they were slaughtered at slaughterhouse and brisket point end part of meat had been prepared to analyse its nutritional contents using Food Scan. These samples were then boiled at 100°C for 0 (TR), 15 (R15), and 30 (R30) minutes, respectively. The data was analysed using Randomized Complete Design (CRD) and Duncan’s multiple range test (DMRT) had been conducted to differentiate among three treatments. The results showed that boiling temperatures significantly affected moisture, and cholesterol contents of beef (P<0.05) while fat content was not significantly affected by boiling temperatures. The boiling temperature decreased beef water contents from 72.77 to 70.84%, on the other hand, the treatment increased beef protein and cholesterol contents from 20.77 to 25.14% and 47.55 to 50.45 mg/100g samples, respectively. The conclusion of this study was boiling of beef at 100°C for 15 minutes and 30 minutes decreasing water content and increasing protein and cholesterol contents of brisket point end of Simental Ongole Crossbred beef.
Khokhlova, Tatiana D.; Canney, Michael S.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.; Crum, Lawrence A.; Bailey, Michael R.
2011-01-01
In high intensity focused ultrasound (HIFU) applications, tissue may be thermally necrosed by heating, emulsified by cavitation, or, as was recently discovered, emulsified using repetitive millisecond boiling caused by shock wave heating. Here, this last approach was further investigated. Experiments were performed in transparent gels and ex vivo bovine heart tissue using 1, 2, and 3 MHz focused transducers and different pulsing schemes in which the pressure, duty factor, and pulse duration were varied. A previously developed derating procedure to determine in situ shock amplitudes and the time-to-boil was refined. Treatments were monitored using B-mode ultrasound. Both inertial cavitation and boiling were observed during exposures, but emulsification occurred only when shocks and boiling were present. Emulsified lesions without thermal denaturation were produced with shock amplitudes sufficient to induce boiling in less than 20 ms, duty factors of less than 0.02, and pulse lengths shorter than 30 ms. Higher duty factors or longer pulses produced varying degrees of thermal denaturation combined with mechanical emulsification. Larger lesions were obtained using lower ultrasound frequencies. The results show that shock wave heating and millisecond boiling is an effective and reliable way to emulsify tissue while monitoring the treatment with ultrasound. PMID:22088025
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Sankaran, Subramanian; Taylor, Al; Julian, Ed; Robinson, Dale;
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from thc heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in space-based applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curvcs for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental appararus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
NASA Astrophysics Data System (ADS)
Swastawati, F.
2018-03-01
Food processing using high temperatures can cause changes in pigment color and chemical characteristics in food stuffs, including prawn. The aim of this research was to evaluate the changes in pigment and chemical characteristics of tiger prawn caused by boiling, smoking and frying. Ten kg of tiger prawn was boiled, smoked and fried at the temperature of ± 100 °C for ± 10 min. The results showed that boiling, smoking and frying gave a significant effect (P < 0.05) on the astaxanthin pigment, pH, moisture, protein, salt content, Aw and color. The content of astaxanthin pigments in fresh prawn, boiled prawn, smoked prawn and fried prawn was: 132.79 ± 1.5 μg·g-1 82.89 ± 0.92 μg·g-1 78.28 ± 0.1 μg·g-1 and 91.35 ± 2.59 μg·g-1, respectively. The value of °Hue on fresh prawn, boiled prawn, smoked prawn and fried prawn was: 87.85° 52.5° 55.94° and 53.98°. The tiger prawn processed by the smoking method has preferable by panelist rather than processed by boiling and frying.
Infrared thermometry study of nanofluid pool boiling phenomena
2011-01-01
Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement. PMID:21711754
Cohen, Alasdair; Zhang, Qi; Luo, Qing; Tao, Yong; Colford, John M; Ray, Isha
2017-06-20
Approximately two billion people drink unsafe water. Boiling is the most commonly used household water treatment (HWT) method globally and in China. HWT can make water safer, but sustained adoption is rare and bottled water consumption is growing. To successfully promote HWT, an understanding of associated socioeconomic factors is critical. We collected survey data and water samples from 450 rural households in Guangxi Province, China. Covariates were grouped into blocks to hierarchically construct modified Poisson models and estimate risk ratios (RR) associated with boiling methods, bottled water, and untreated water. Female-headed households were most likely to boil (RR = 1.36, p < 0.01), and among boilers those using electric kettles rather than pots had higher income proxies (e.g., per capita TV ownership RR = 1.42, p < 0.01). Higher-income households with younger, literate, and male heads were more likely to purchase (frequently contaminated) bottled water, or use electric kettles if they boiled. Our findings show that boiling is not an undifferentiated practice, but one with different methods of varying effectiveness, environmental impact, and adoption across socioeconomic strata. Our results can inform programs to promote safer and more efficient boiling using electric kettles, and suggest that if rural China's economy continues to grow then bottled water use will increase.
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Taylor, Al; Julian, Ed; Robinson, Dale; VanZandt, Dave
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from the heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in spacebased applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curves for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental apparatus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
NASA Astrophysics Data System (ADS)
Kirilova, Matina; Toy, Virginia; Timms, Nicholas; Halfpenny, Angela; Menzies, Catriona; Craw, Dave; Rooney, Jeremy; Giorgetti, Carolina
2017-04-01
Graphite is a material with one of the lowest frictional strengths, with coefficient of friction of 0.1 and thus in natural fault zones it may act as a natural solid lubricant. Graphitization, or the transformation of organic matter (carbonaceous material, or CM) into crystalline graphite, is induced by compositional and structural changes during diagenesis and metamorphism. The supposed irreversible nature of this process has allowed the degree of graphite crystallinity to be calibrated as an indicator of the peak temperatures reached during progressive metamorphism. We examine processes of graphite emplacement and deformation in the Alpine Fault Zone, New Zealand's active continental tectonic plate boundary. Raman spectrometry indicates that graphite in the distal, amphibolite-facies Alpine Schist, which experienced peak metamorphic temperatures up to 640 ◦C, is highly crystalline and occurs mainly along grain boundaries within quartzo-feldspathic domains. The subsequent mylonitisation in the Alpine Fault Zone resulted in progressive reworking of CM under lower temperature conditions (500◦C-600◦C) in a structurally controlled environment, resulting in spatial clustering in lower-strain protomylonites, and further foliation-alignment in higher-strain mylonites. Subsequent brittle deformation of the mylonitised schists resulted in cataclasites that contain over three-fold increase in the abundance of graphite than mylonites. Furthermore, cataclasites contain graphite with two different habits: highly-crystalline, foliated forms that are inherited mylonitic graphite; and lower-crystallinity, less mature patches of finer-grained graphite. The observed graphite enrichment and the occurrence of poorly-organised graphite in the Alpine Fault cataclasites could result from: i) hydrothermal precipitation from carbon-supersaturated fluids; and/or ii) mechanical degradation by structural disordering of mylonitic graphite combined with strain-induced graphite localisation. The lack of published systematic studies of mechanical modification of the structure of graphite inhibits further conclusion to be drawn. Thus, we performed laboratory deformation experiments during which we sheared highly crystalline graphite powder at room temperature, normal stresses of 5 MPa and 25 MPa and sliding velocities of 1 µm/s, 10 µm/s and 100 µm/s. The degree of graphite crystallinity, both in the starting and resulting materials, was analysed by Raman microspectroscopy. Our results demonstrate consistent decrease of graphite crystallinity with increasing shear strain. We conclude that: i) graphite 'thermometers' are unreliable in brittely deformed rocks; ii) a shear strain calibration of graphite 'thermometers' is needed; iii) fault creep is very likely responsible for the observed structural and textural characteristics of graphite in the Alpine Fault cataclasites. Finally, to investigate the possibility of hydrothermal origin for at least some of the graphite in the Alpine Fault cataclasites we will also present synchrotron FTIR and carbon isotope analysis of the Alpine fault rocks.
EXPLORATORY DEVELOPMENT OF GRAPHITE MATERIALS.
COMPOSITE MATERIALS), (* GRAPHITE , (*FIBERS, GRAPHITE ), (*LAMINATED PLASTICS, GRAPHITE ), MOLDINGS, EXTRUSION, VACUUM, EPOXY RESINS, FILAMENTS, STRESSES, TENSILE PROPERTIES, OXIDATION, PHYSICAL PROPERTIES.
Lee, In-Hee; Chung, Hwa-Jin; Shin, Joon-Shik; Ha, In-Hyuk; Kim, Me-Riong; Koh, Wonil; Lee, Jinho
2017-01-01
GCSB-5, an herbal drug composition with an anti-inflammatory effect, is prepared by boiling, which is the most common herbal extraction method in traditional Korean medicine. Several parameters are involved in the process, i.e., extractant type, herb-to-extractant ratio, extraction temperature and pressure, and total boiling time. The aim of this study was to examine the influence of boiling time on index compound amount and the antioxidative and anti-inflammatory activities of GCSB-5. Different samples of GCSB-5 were obtained by decocting for 30, 60, 90, 120, 150, and 240 min. Each sample was tested for hydrogen ion concentration (pH), total soluble solid content (TSSC), marker compound profiles, and antioxidative and anti-inflammatory activity. pH was found to decrease while TSSC increased with extended decoction. Marker compound contents for GCSB-5 (acanthoside D for Acanthopanax sessiliflorus Seem, 20-hydroxyecdysone for Achyranthes japonica Nakai, and pinoresinol diglucoside for Eucommia ulmoides Oliver) remained relatively constant regardless of the length of boiling. Total D-glucose amount increased with longer boiling. The antioxidative and anti-inflammatory potentials of GCSB-5 were not substantially affected by decoction duration. Biological characteristics and marker compound content of GCSB-5 were not altered significantly in prolonged boiling. Longer boiling duration of GCSB-5 did not increase yield in a time-dependent manner, but yields of 210 and 240 min samples were significantly higherHydrogen ion concentration of GCSB-5 samples decreased while total soluble solid content and D-glucose concentration levels increased with boiling durationAlthough concentrations of some index compounds increased with extended boiling duration of GCSB-5, increase was small and not in a direct proportional relationshipAntioxidative and anti-inflammatory properties of GCSB-5 were not substantially affected by decoction duration. Abbreviations used: CAM: Complementary and alternative medicine; KIOM: Korea Institute of Oriental Medicine; KMD: Korean medicine doctor; TSSC: Total soluble solid content; pH: Hydrogen ion concentration; HPLC: High-performance liquid chromatography; NO: Nitric oxide; NO 2 : Nitric dioxide; LPS: Lipopolysaccharide; DMSO: Dimethyl sulfoxide.
Shallcross, Laura J; Hayward, Andrew C; Johnson, Anne M; Petersen, Irene
2015-01-01
Background Boils and abscesses are common in primary care but the burden of recurrent infection is unknown. Aim To investigate the incidence of and risk factors for recurrence of boil or abscess for individuals consulting primary care. Design and setting Cohort study using electronic health records from primary care in the UK. Method The Health Improvement Network (THIN) database was used to identify patients who had consulted their GP for a boil or abscess. Poisson regression was used to examine the relationship between age, sex, social deprivation, and consultation and to calculate the incidence of, and risk factors for, repeat consultation for a boil or abscess. Results Overall, 164 461 individuals were identified who consulted their GP for a boil or abscess between 1995 and 2010. The incidence of first consultation for a boil or abscess was 512 (95% CI = 509 to 515) per 100 000 person-years in females and 387 (95% CI = 385 to 390) per 100 000 person-years in males. First consultations were most frequent in younger age groups (16–34 years) and those with the greatest levels of social deprivation. The rate of repeat consultation for a new infection during follow up was 107.5 (95% confidence interval [CI] = 105.6 to 109.4) per 1000 person-years. Obesity (relative risk [RR] 1.3, 95% CI = 1.2 to 1.3), diabetes (RR 1.3, 95% CI = 1.2 to 1.3), smoking (RR 1.3, 95% CI = 1.2 to 1.4), age <30 years (RR 1.2, 95% CI = 1.2 to 1.3), and prior antibiotic use (RR 1.4, 95% CI = 1.3–1.4) were all associated with repeat consultation for a boil or abscess. Conclusion Ten percent of patients with a boil or abscess develop a repeat boil or abscess within 12 months. Obesity, diabetes, young age, smoking, and prescription of an antibiotic in the 6 months before initial presentation were independently associated with recurrent infection, and may represent options for prevention. PMID:26412844
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, J.X.; Wei, B.Q.; Li, D.D.
The evolution of microstructure in bainite during graphitization annealing at 680 °C of Jominy-quenched bars of an Al-Si bearing medium carbon (0.4C wt%) steel has been studied and compared with that in martensite by using light, scanning and transmission electron microscopy. The results show that the graphitization process in bainite is different from that in martensite in many aspects such as the initial carbon state, the behavior of cementite, the nucleation-growth feature and kinetics of formation of graphite spheroids during graphitization annealing, and the shape, size and distribution of these graphite spheroids. The fact that the graphitization in bainite canmore » produce more homogeneous graphite spheroids with more spherical shape and finer size in a shorter annealing time without the help of preexisting coring particles implies that bainite should be a better starting structure than martensite for making graphitic steel. - Highlights: • This article presents a microstructural characterization of formation of graphite spheroids in bainite. • Nucleation and growth characteristics of graphite spheroids formed in bainite and martensite are compared. • Bainite should be a better starting structure for making graphitic steel as results show.« less
Psutka, Rebecca; Peletz, Rachel; Michelo, Sandford; Kelly, Paul; Clasen, Thomas
2011-07-15
Boiling is the most common method of disinfecting water in the home and the benchmark against which other point-of-use water treatment is measured. In a six-week study in peri-urban Zambia, we assessed the microbiological effectiveness and potential cost of boiling among 49 households without a water connection who reported "always" or "almost always" boiling their water before drinking it. Source and household drinking water samples were compared weekly for thermotolerant coliforms (TTC), an indicator of fecal contamination. Demographics, costs, and other information were collected through surveys and structured observations. Drinking water samples taken at the household (geometric mean 7.2 TTC/100 mL, 95% CI, 5.4-9.7) were actually worse in microbiological quality than source water (geometric mean 4.0 TTC/100 mL, 95% CI, 3.1-5.1) (p < 0.001), although both are relatively low levels of contamination. Only 60% of drinking water samples were reported to have actually been boiled at the time of collection from the home, suggesting over-reporting and inconsistent compliance. However, these samples were of no higher microbiological quality. Evidence suggests that water quality deteriorated after boiling due to lack of residual protection and unsafe storage and handling. The potential cost of fuel or electricity for boiling was estimated at 5% and 7% of income, respectively. In this setting where microbiological water quality was relatively good at the source, safe-storage practices that minimize recontamination may be more effective in managing the risk of disease from drinking water at a fraction of the cost of boiling.
Boiling behavior of sodium-potassium alloy in a bench-scale solar receiver
NASA Astrophysics Data System (ADS)
Moreno, J. B.; Andraka, C. E.; Moss, T. A.
During 1989-90, a 75-kW(sub t) sodium reflux pool-boiler solar receiver was successfully demonstrated at Sandia National Laboratories. Significant features of this receiver include the following: (1) boiling sodium as the heat transfer medium, and (2) electric-discharge-machined (EDM) cavities as artificial nucleation sites to stabilize boiling. Since this first demonstration, design of a second-generation pool-boiler receiver that will bring the concept closer to commercialization has begun. For long life, the new receiver uses Haynes Alloy 230. For increased safety factors against film boiling and flooding, it has a refined shape and somewhat larger dimensions. To eliminate the need for trace heating, the receiver will boil the sodium-potassium alloy NaK-78 instead of sodium. To reduce manufacturing costs, it will use one of a number of alternatives to EDM cavities for stabilization of boiling. To control incipient-boiling superheats, especially during hot restarts, it will contain a small amount of inert gas. Before the new receiver design could be finalized, bench-scale tests of some of the proposed changes were necessary. A series of bench-scale pool boilers were built from Haynes Alloy 230 and filled with NaK-78. Various boiling-stabilizer candidates were incorporated into them, including laser-drilled cavities and a number of different sintered-powder-metal coatings. These bench-scale pool boilers have been operated at temperatures up to 750 C, heated by quartz lamps with incident radiant fluxes up to 95 W/sq cm. The effects of various orientations and added gases have been studied. Results of these studies are presented.
Baseline Concept Description of a Small Modular High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hans Gougar
2014-05-01
The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNPmore » were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.« less
Baseline Concept Description of a Small Modular High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gougar, Hans D.
2014-10-01
The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNPmore » were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.« less
40 CFR 436.380 - Applicability; description of the graphite subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... graphite subcategory. 436.380 Section 436.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Graphite Subcategory § 436.380 Applicability; description of the graphite subcategory. The provisions of this subpart are applicable to the mining and processing of naturally occurring graphite. ...
Method for producing thin graphite flakes with large aspect ratios
Bunnell, L. Roy
1993-01-01
A method for making graphite flakes of high aspect ratio by the steps of providing a strong concentrated acid and heating the graphite in the presence of the acid for a time and at a temperature effective to intercalate the acid in the graphite; heating the intercalated graphite at a rate and to a temperature effective to exfoliate the graphite in discrete layers; subjecting the graphite layers to ultrasonic energy, mechanical shear forces, or freezing in an amount effective to separate the layes into discrete flakes.
Teaching Structure-Property Relationships: Investigating Molecular Structure and Boiling Point
ERIC Educational Resources Information Center
Murphy, Peter M.
2007-01-01
A concise, well-organized table of the boiling points of 392 organic compounds has facilitated inquiry-based instruction in multiple scientific principles. Many individual or group learning activities can be derived from the tabulated data of molecular structure and boiling point based on the instructor's education objectives and the students'…
16 CFR 1511.5 - Structural integrity tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pounds for an additional 10 seconds. (c) Heat cycle deterioration. After the testing prescribed in... pacifier in boiling water for 5 minutes and then remove the pacifier and allow it to cool for 5 minutes in... in the boiling water for 5 minutes. The process shall be repeated for a total of 6 boiling/cooling...
16 CFR 1511.5 - Structural integrity tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pounds for an additional 10 seconds. (c) Heat cycle deterioration. After the testing prescribed in... pacifier in boiling water for 5 minutes and then remove the pacifier and allow it to cool for 5 minutes in... in the boiling water for 5 minutes. The process shall be repeated for a total of 6 boiling/cooling...
16 CFR § 1511.5 - Structural integrity tests.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pounds for an additional 10 seconds. (c) Heat cycle deterioration. After the testing prescribed in... pacifier in boiling water for 5 minutes and then remove the pacifier and allow it to cool for 5 minutes in... in the boiling water for 5 minutes. The process shall be repeated for a total of 6 boiling/cooling...
16 CFR 1511.5 - Structural integrity tests.
Code of Federal Regulations, 2014 CFR
2014-01-01
... pounds for an additional 10 seconds. (c) Heat cycle deterioration. After the testing prescribed in... pacifier in boiling water for 5 minutes and then remove the pacifier and allow it to cool for 5 minutes in... in the boiling water for 5 minutes. The process shall be repeated for a total of 6 boiling/cooling...
Acoustic Behavior of Vapor Bubbles
NASA Technical Reports Server (NTRS)
Prosperetti, Andrea; Oguz, Hasan N.
1996-01-01
In a microgravity environment vapor bubbles generated at a boiling surface tend to remain near it for a long time. This affects the boiling heat transfer and in particular promotes an early transition to the highly inefficient film boiling regime. This paper describes the physical basis underlying attempts to remove the bubbles by means of pressure radiation forces.
78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling....79.1, ``Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors.'' This... emergency core cooling systems (ECCSs) for boiling- water reactors (BWRs) whose licenses are issued after...
Evaporation, Boiling and Bubbles
ERIC Educational Resources Information Center
Goodwin, Alan
2012-01-01
Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…
Generation of shockwave and vortex structures at the outflow of a boiling water jet
NASA Astrophysics Data System (ADS)
Alekseev, M. V.; Lezhnin, S. I.; Pribaturin, N. A.; Sorokin, A. L.
2014-12-01
Results of numerical simulation for shock waves and generation of vortex structures during unsteady outflow of boiling liquid jet are presented. The features of evolution of shock waves and vortex structures formation during unsteady outflow of boiling water are compared with corresponding structures during unsteady gas outflow.
Early Onset of Nucleate Boiling on Gas-covered Biphilic Surfaces.
Shen, Biao; Yamada, Masayuki; Hidaka, Sumitomo; Liu, Jiewei; Shiomi, Junichiro; Amberg, Gustav; Do-Quang, Minh; Kohno, Masamichi; Takahashi, Koji; Takata, Yasuyuki
2017-05-17
For phase-change cooling schemes for electronics, quick activation of nucleate boiling helps safeguard the electronics components from thermal shocks associated with undesired surface superheating at boiling incipience, which is of great importance to the long-term system stability and reliability. Previous experimental studies show that bubble nucleation can occur surprisingly early on mixed-wettability surfaces. In this paper, we report unambiguous evidence that such unusual bubble generation at extremely low temperatures-even below the boiling point-is induced by a significant presence of incondensable gas retained by the hydrophobic surface, which exhibits exceptional stability even surviving extensive boiling deaeration. By means of high-speed imaging, it is revealed that the consequently gassy boiling leads to unique bubble behaviour that stands in sharp contrast with that of pure vapour bubbles. Such findings agree qualitatively well with numerical simulations based on a diffuse-interface method. Moreover, the simulations further demonstrate strong thermocapillary flows accompanying growing bubbles with considerable gas contents, which is associated with heat transfer enhancement on the biphilic surface in the low-superheat region.
Nucleate pool boiling: High gravity to reduced gravity; liquid metals to cryogens
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.
1988-01-01
Requirements for the proper functioning of equipment and personnel in reduced gravity associated with space platforms and future space station modules introduce unique problems in temperature control; power generation; energy dissipation; the storage, transfer, control and conditioning of fluids; and liquid-vapor separation. The phase change of boiling is significant in all of these. Although both pool and flow boiling would be involved, research results to date include only pool boiling because buoyancy effects are maximized for this case. The effective application of forced convection boiling heat transfer in the microgravity of space will require a well grounded and cogent understanding of the mechanisms involved. Experimental results are presented for pool boiling from a single geometrical configuration, a flat surface, covering a wide range of body forces from a/g = 20 to 1 to a/g = 0 to -1 for a cryogenic liquid, and from a/g = 20 to 1 for water and a liquid metal. Similarities in behavior are noted for these three fluids at the higher gravity levels, and may reasonably be expected to continue at reduced gravity levels.
Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces
NASA Astrophysics Data System (ADS)
Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-Hung
2016-04-01
Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface.
Lima, Adriano; Pereira, José Alberto; Baraldi, Ilton; Malheiro, Ricardo
2017-04-15
Grapevine leaves (Vitis vinifera L. var. Malvasia Fina and Touriga Franca) under culinary treatment (blanching and boiling at 60, 75 and 90min) were studied for their color, pigments and volatile fraction changes. Blanching and boiling caused a decrease in luminosity and a loss of green coloration in both varieties, while a yellow-brownish color arose. Significant correlations were established between the loss of green color (monochromatic variable a ∗ ) and the total chlorophylls content. The main volatiles in fresh leaves [(Z)-3-hexenal, (Z)-3-hexen-1-ol, and (Z)-3-hexenyl acetate] were drastically reduced by blanching and suppressed by boiling. Other compounds like pentanal and 6-methyl-5-hepten-2 one arose from blanching and boiling. A boiling time of 60min is adequate for the culinary process of grapevine leaves, since the product is considered edible and the pigments and volatile changes are not as drastic as observed at 75 and 90min of boiling. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Zan; Wadekar, Vishwas; Wang, Chenglong; Sunden, Bengt
2018-01-01
This study aims to reveal the effects of liquid entrainment, initial entrained fraction and tube diameter on liquid film dryout in vertical upward annular flow for flow boiling. Entrainment and deposition rates of droplets were included in mass conservation equations to estimate the local liquid film mass flux in annular flow, and the critical vapor quality at dryout conditions. Different entrainment rate correlations were evaluated using flow boiling data of water and organic liquids including n-pentane, iso-octane and R134a. Effect of the initial entrained fraction (IEF) at the churn-to-annular flow transition was also investigated. A transitional Boiling number was proposed to separate the IEF-sensitive region at high Boiling numbers and the IEF-insensitive region at low Boiling numbers. Besides, the diameter effect on dryout vapor quality was studied. The dryout vapor quality increases with decreasing tube diameter. It needs to be pointed out that the dryout characteristics of submillimeter channels might be different because of different mechanisms of dryout, i.e., drying of liquid film underneath long vapor slugs and flow boiling instabilities.
Demonstration of optimum fuel-to-moderator ratio in a PWR unit fuel cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.; Pozsgai, C.
1992-01-01
Nuclear engineering students at The Pennsylvania State University develop scaled-down [[approx]350 MW(thermal)] pressurized water reactors (PWRs) using actual plants as references. The design criteria include maintaining the clad temperature below 2200[degree]F, fuel temperature below melting point, sufficient departure from nucleate boiling ratio (DNBR) margin, a beginning-of-life boron concentration that yields a negative moderator temperature coefficient, an adequate cycle power production (330 effective full-power days), and a batch loading scheme that is economical. The design project allows for many degrees of freedom (e.g., assembly number, pitch and height and batch enrichments) so that each student's result is unique. The iterative naturemore » of the design process is stressed in the course. The LEOPARD code is used for the unit cell depletion, critical boron, and equilibrium xenon calculations. Radial two-group diffusion equations are solved with the TWIDDLE-DEE code. The steady-state ZEBRA thermal-hydraulics program is used for calculating DNBR. The unit fuel cell pin radius and pitch (fuel-to-moerator ratio) for the scaled-down design, however, was set equal to the already optimized ratio for the reference PWR. This paper describes an honors project that shows how the optimum fuel-to-moderator ratio is found for a unit fuel cell shown in terms of neutron economics. This exercise illustrates the impact of fuel-to-moderator variations on fuel utilization factor and the effect of assuming space and energy separability.« less
Ultrasonic atomization of liquids in drop-chain acoustic fountains
Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.; Bailey, Michael R.
2015-01-01
When focused ultrasound waves of moderate intensity in liquid encounter an air interface, a chain of drops emerges from the liquid surface to form what is known as a drop-chain fountain. Atomization, or the emission of micro-droplets, occurs when the acoustic intensity exceeds a liquid-dependent threshold. While the cavitation-wave hypothesis, which states that atomization arises from a combination of capillary-wave instabilities and cavitation bubble oscillations, is currently the most accepted theory of atomization, more data on the roles of cavitation, capillary waves, and even heat deposition or boiling would be valuable. In this paper, we experimentally test whether bubbles are a significant mechanism of atomization in drop-chain fountains. High-speed photography was used to observe the formation and atomization of drop-chain fountains composed of water and other liquids. For a range of ultrasonic frequencies and liquid sound speeds, it was found that the drop diameters approximately equalled the ultrasonic wavelengths. When water was exchanged for other liquids, it was observed that the atomization threshold increased with shear viscosity. Upon heating water, it was found that the time to commence atomization decreased with increasing temperature. Finally, water was atomized in an overpressure chamber where it was found that atomization was significantly diminished when the static pressure was increased. These results indicate that bubbles, generated by either acoustic cavitation or boiling, contribute significantly to atomization in the drop-chain fountain. PMID:25977591
Jo, Yong Nam; Park, Min-Sik; Kim, Jae-Hun; Kim, Young-Jun
2013-05-01
Two different types of granulated graphites were synthesized by blending and kneading of natural graphite with pitch followed by sintering methods. The electrochemical performances of granulated graphites were investigated as anode materials for use in Li-ion batteries. The blending type granulated graphite possesses a large amount of cavities and voids, while the kneading type granulated graphite has a relatively compact microstructure, which is responsible for a high tap density. Both granulated graphites show improved the initial coulombic efficiencies as a result of decrease of surface area by the granulations. In particular, the kneading type granulated graphite exhibits an excellent rate-capability without significant capacity loss. In addition, the thermal stabilities of both granulated graphites were also improved, which could be attributed to the decrease of active surface area due to pitch coating.
Effect of Reacting Surface Density on the Overall Graphite Oxidation Rate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang H. Oh; Eung Kim; Jong Lim
2009-05-01
Graphite oxidation in an air-ingress accident is presently a very important issue for the reactor safety of the very high temperature gas cooled-reactor (VHTR), the concept of the next generation nuclear plant (NGNP) because of its potential problems such as mechanical degradation of the supporting graphite in the lower plenum of the VHTR might lead to core collapse if the countermeasure is taken carefully. The oxidation process of graphite has known to be affected by various factors, including temperature, pressure, oxygen concentration, types of graphite, graphite shape and size, flow distribution, etc. However, our recent study reveals that the internalmore » pore characteristics play very important roles in the overall graphite oxidation rate. One of the main issues regarding graphite oxidation is the potential core collapse problem that may occur following the degradation of graphite mechanical strength. In analyzing this phenomenon, it is very important to understand the relationship between the degree of oxidization and strength degradation. In addition, the change of oxidation rate by graphite oxidation degree characterization by burn-off (ratio of the oxidized graphite density to the original density) should be quantified because graphite strength degradation is followed by graphite density decrease, which highly affects oxidation rates and patterns. Because the density change is proportional to the internal pore surface area, they should be quantified in advance. In order to understand the above issues, the following experiments were performed: (1)Experiment on the fracture of the oxidized graphite and validation of the previous correlations, (2) Experiment on the change of oxidation rate using graphite density and data collection, (3) Measure the BET surface area of the graphite. The experiments were performed using H451 (Great Lakes Carbon Corporation) and IG-110 (Toyo Tanso Co., Ltd) graphite. The reason for the use of those graphite materials is because their chemical and mechanical characteristics are well identified by the previous investigations, and therefore it was convenient for us to access the published data, and to apply and validate our new methodologies. This paper presents preliminary results of compressive strength vs. burn-off and surface area density vs. burn-off, which can be used for the nuclear graphite selection for the NGNP.« less
The Phenomenon of Superheat of Liquids: In Memory of Vladimir P. Skripov
NASA Astrophysics Data System (ADS)
Skripov, P. V.; Skripov, A. P.
2010-05-01
This article is devoted to the memory of Vladimir P. Skripov (1927-2006). He has received worldwide recognition for his monograph on metastable liquids published in 1972 (the English edition was published in 1974). We briefly discuss some studies deal with the phenomenon of attainable superheat of liquids and with measurements of thermophysical properties of liquids under conditions of a moderate degree of superheat. Main attention is paid to the studies performed by V.P. Skripov and his research group in the 1960s and 1970s. Experimental methods which provided break-throughs in research on both spontaneous boiling-up kinetics and substance properties (the specific volume, isobaric heat capacity, ultrasound speed, and viscosity) in super-heated states are presented.
Efficient utilization of renewable feedstocks: the role of catalysis and process design
NASA Astrophysics Data System (ADS)
Palkovits, Regina; Delidovich, Irina
2017-11-01
Renewable carbon feedstocks such as biomass and CO2 present an important element of future circular economy. Especially biomass as highly functionalized feedstock provides manifold opportunities for the transformation into attractive platform chemicals. However, this change of the resources requires a paradigm shift in refinery design. Fossil feedstocks are processed in gas phase at elevated temperature. In contrast, biorefineries are based on processes in polar solvents at moderate conditions to selectively deoxygenate the polar, often thermally instable and high-boiling molecules. Here, challenges of catalytic deoxygenation, novel strategies for separation and opportunities provided at the interface to biotechnology are discussed in form of showcases. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.
NASA Astrophysics Data System (ADS)
Zhang, Gaoming; Hung, David L. S.; Xu, Min
2014-08-01
Flash boiling sprays of liquid injection under superheated conditions provide the novel solutions of fast vaporization and better air-fuel mixture formation for internal combustion engines. However, the physical mechanisms of flash boiling spray vaporization are more complicated than the droplet surface vaporization due to the unique bubble generation and boiling process inside a superheated bulk liquid, which are not well understood. In this study, the vaporization of flash boiling sprays was investigated experimentally through the quantitative measurements of vapor concentration and liquid temperature. Specifically, the laser-induced exciplex fluorescence technique was applied to distinguish the liquid and vapor distributions. Quantitative vapor concentration was obtained by correlating the intensity of vapor-phase fluorescence with vapor concentration through systematic corrections and calibrations. The intensities of two wavelengths were captured simultaneously from the liquid-phase fluorescence spectra, and their intensity ratios were correlated with liquid temperature. The results show that both liquid and vapor phase of multi-hole sprays collapse toward the centerline of the spray with different mass distributions under the flash boiling conditions. Large amount of vapor aggregates along the centerline of the spray to form a "gas jet" structure, whereas the liquid distributes more uniformly with large vortexes formed in the vicinity of the spray tip. The vaporization process under the flash boiling condition is greatly enhanced due to the intense bubble generation and burst. The liquid temperature measurements show strong temperature variations inside the flash boiling sprays with hot zones present in the "gas jet" structure and vortex region. In addition, high vapor concentration and closed vortex motion seem to have inhibited the heat and mass transfer in these regions. In summary, the vapor concentration and liquid temperature provide detailed information concerning the heat and mass transfer inside flash boiling sprays, which is important for the understanding of its unique vaporization process.
Nucleate Boiling Heat Transfer Studied Under Reduced-Gravity Conditions
NASA Technical Reports Server (NTRS)
Chao, David F.; Hasan, Mohammad M.
2000-01-01
Boiling is known to be a very efficient mode of heat transfer, and as such, it is employed in component cooling and in various energy-conversion systems. In space, boiling heat transfer may be used in thermal management, fluid handling and control, power systems, and on-orbit storage and supply systems for cryogenic propellants and life-support fluids. Recent interest in the exploration of Mars and other planets and in the concept of in situ resource utilization on the Martian and Lunar surfaces highlights the need to understand how gravity levels varying from the Earth's gravity to microgravity (1g = or > g/g(sub e) = or > 10(exp -6)g) affect boiling heat transfer. Because of the complex nature of the boiling process, no generalized prediction or procedure has been developed to describe the boiling heat transfer coefficient, particularly at reduced gravity levels. Recently, Professor Vijay K. Dhir of the University of California at Los Angeles proposed a novel building-block approach to investigate the boiling phenomena in low-gravity to microgravity environments. This approach experimentally investigates the complete process of bubble inception, growth, and departure for single bubbles formed at a well-defined and controllable nucleation site. Principal investigator Professor Vijay K. Dhir, with support from researchers from the NASA Glenn Research Center at Lewis Field, is performing a series of pool boiling experiments in the low-gravity environments of the KC 135 microgravity aircraft s parabolic flight to investigate the inception, growth, departure, and merger of bubbles from single- and multiple-nucleation sites as a function of the wall superheat and the liquid subcooling. Silicon wafers with single and multiple cavities of known characteristics are being used as test surfaces. Water and PF5060 (an inert liquid) were chosen as test liquids so that the role of surface wettability and the magnitude of the effect of interfacial tension on boiling in reduced gravity can be investigated.
Study to evaluate the impact of heat treatment on water soluble vitamins in milk.
Asadullah; Khair-un-nisa; Tarar, Omer Mukhtar; Ali, Syed Abdul; Jamil, Khalid; Begum, Askari
2010-11-01
To evaluate the effect of domestic boiling practice on the contents of water soluble vitamins of loose milk and quantitative comparison of these vitamins in Ultra High Temperature (UHT) treated packaged milk with that of boiled loose milk. Loose milk samples were collected from various localities of Karachi city (Pakistan). These samples were boiled in simulated household conditions for 5, 10 and 15 minutes. Ultra High Temperature (UHT) treated packaged milk samples of various brands were obtained from the local market. The aliquots were analyzed for water-soluble vitamins using High Performance Liquid Chromatography (HPLC) technique. The mean values and standard deviations for data were computed and compared as well as level of variations were also determined. Conventional boiling caused destruction of water soluble vitamins in milk i.e. vitamin 81 content in fresh milk decreased from 0.037 mg/100 g to 0.027 mg/100 g after 15 min boiling, whereas vitamin B2 from 0.115 to 0.084 mg/100 g, vitamin B3 0.062 to 0.044 mg/100 g, vitamin B6 0.025 to 0.019 mg/100 g and folic acid 3.38 to 2.40 microg/100 g. This accounted for a post-boiling decrease of about 27, 27, 29, 24 and 36% in vitamins B1, B2, B3, B6 and folic acid respectively. The values for vitamins B1, B2, B3, B6 and folic acid determined in boiled milk were significantly lower than UHT treated packaged milk samples by 25.9, 75.0, 54.5, 63.16 and 38.1% respectively. Conventional boiling caused drastic reduction in vitamin levels of loose milk samples. In comparison to this, UHT milk retained high levels of water soluble B-vitamins. Thus it could be envisaged that UHT treated milk provides better water soluble vitamins' nourishment than conventionally boiled milk (JPMA 60:909; 2010).
Ryu, Sunmin; Brus, Louis E.; Steigerwald, Michael L.; Liu, Haitao
2012-09-25
Systems and methods are disclosed herein for forming defects on graphitic materials. The methods for forming defects include applying a radiation reactive material on a graphitic material, irradiating the applied radiation reactive material to produce a reactive species, and permitting the reactive species to react with the graphitic material to form defects. Additionally, disclosed are methods for removing defects on graphitic materials.
Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Films
Loisel, Loïc; Florea, Ileana; Cojocaru, Costel-Sorin; Tay, Beng Kang; Lebental, Bérengère
2016-01-01
Nano and femtosecond laser writing are becoming very popular techniques for patterning carbon-based materials, as they are single-step processes enabling the drawing of complex shapes without photoresist. However, pulsed laser writing requires costly laser sources and is known to cause damages to the surrounding material. By comparison, continuous-wave lasers are cheap, stable and provide energy at a more moderate rate. Here, we show that a continuous-wave laser may be used to pattern vertical nano-crystalline graphite thin films with very few macroscale defects. Moreover, a spatially resolved study of the impact of the annealing to the crystalline structure and to the oxygen ingress in the film is provided: amorphization, matter removal and high oxygen content at the center of the beam; sp2 clustering and low oxygen content at its periphery. These data strongly suggest that amorphization and matter removal are controlled by carbon oxidation. The simultaneous occurrence of oxidation and amorphization results in a unique evolution of the Raman spectra as a function of annealing time, with a decrease of the I(D)/I(G) values but an upshift of the G peak frequency. PMID:27194181
Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Films
NASA Astrophysics Data System (ADS)
Loisel, Loïc; Florea, Ileana; Cojocaru, Costel-Sorin; Tay, Beng Kang; Lebental, Bérengère
2016-05-01
Nano and femtosecond laser writing are becoming very popular techniques for patterning carbon-based materials, as they are single-step processes enabling the drawing of complex shapes without photoresist. However, pulsed laser writing requires costly laser sources and is known to cause damages to the surrounding material. By comparison, continuous-wave lasers are cheap, stable and provide energy at a more moderate rate. Here, we show that a continuous-wave laser may be used to pattern vertical nano-crystalline graphite thin films with very few macroscale defects. Moreover, a spatially resolved study of the impact of the annealing to the crystalline structure and to the oxygen ingress in the film is provided: amorphization, matter removal and high oxygen content at the center of the beam; sp2 clustering and low oxygen content at its periphery. These data strongly suggest that amorphization and matter removal are controlled by carbon oxidation. The simultaneous occurrence of oxidation and amorphization results in a unique evolution of the Raman spectra as a function of annealing time, with a decrease of the I(D)/I(G) values but an upshift of the G peak frequency.
Marshall, Margaret A.
2014-11-04
A series of small, compact critical assembly (SCCA) experiments were completed from 1962 to 1965 at Oak Ridge National Laboratory’s Critical Experiments Facility (ORCEF) in support of the Medium-Power Reactor Experiments (MPRE) program. Initial experiments, performed in November and December of 1962, consisted of a core of un-moderated stainless-steel tubes, each containing 26 UOIdaho National Laboratory (INL), Idaho Falls, ID (United States) fuel pellets, surrounded by a graphite reflector. Measurements were performed to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. The graphite reflectors were then changed to beryllium reflectors. For the beryllium reflected assemblies, the fuel wasmore » in 1.506-cm-triangular and 7-tube clusters leading to two critical configurations. Once the critical configurations had been achieved, various measurements of reactivity, relative axial and radial activation rates of 235U, and cadmium ratios were performed. The cadmium ratio, reactivity, and activation rate measurements, performed on the 1.506-cm-array critical configuration, have been evaluated and are described in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, R.D.
Microconvective, instability, experimental, and correlational aspects of subcooled flow boiling critical heat flux (CHF) are summarized. The present understanding of CHF in subcooled flow boiling is reviewed and research directions that will permit the accommodation of higher heat fluxes are outlined. This survey (Parts I and II), which contains a representative coverage of the literature over the last 30 years, is concerned only with CHF in the subcooled flow boiling regime, and unless otherwise noted, all references to CHF are confined to that regime.
STEAM FORMING NEUTRONIC REACTOR AND METHOD OF OPERATING IT
Untermyer, S.
1960-05-10
The heterogeneous reactor is liquid moderated and cooled by a steam forming coolant and is designed to produce steam from the coolant directly within the active portion of the reactor while avoiding the formation of bubbles in the liquid moderator. This reactor achieves inherent stability as a result of increased neutron leakage and increased neutron resonance absorption in the U/sup 238/ fuel with the formation of bubbles. The invention produces certain conditions under which the formation of vapor bubbles as a result of a neutron flux excursion from the injection of a reactivity increment into the reactor will operate to nullify the reactivity increment within a sufficiently short period of time to prevent unsafe reactor operating conditions from developing. This is obtained by disposing a plurality of fuel elements within a mass of steam forming coolant in the core with the ratio of the volume of steam forming coolant to the volume of fissionable isotopes being within the range yielding a multiplication factor greater than unity and a negative reactivity to core void coefficient at the boiling temperature of the coolant.
Identification of quantitative trait loci associated with boiled seed hardness in soybean
Hirata, Kaori; Masuda, Ryoichi; Tsubokura, Yasutaka; Yasui, Takeshi; Yamada, Tetsuya; Takahashi, Koji; Nagaya, Taiko; Sayama, Takashi; Ishimoto, Masao; Hajika, Makita
2014-01-01
Boiled seed hardness is an important factor in the processing of soybean food products such as nimame and natto. Little information is available on the genetic basis for boiled seed hardness, despite the wide variation in this trait. DNA markers linked to the gene controlling this trait should be useful in soybean breeding programs because of the difficulty of its evaluation. In this report, quantitative trait locus (QTL) analysis was performed to reveal the genetic factors associated with boiled seed hardness using a recombinant inbred line population developed from a cross between two Japanese cultivars, ‘Natto-shoryu’ and ‘Hyoukei-kuro 3’, which differ largely in boiled seed hardness, which in ‘Natto-shoryu’ is about twice that of ‘Hyoukei-kuro 3’. Two significantly stable QTLs, qHbs3-1 and qHbs6-1, were identified on chromosomes 3 and 6, for which the ‘Hyoukei-kuro 3’ alleles contribute to decrease boiled seed hardness for both QTLs. qHbs3-1 also showed significant effects in progeny of a residual heterozygous line and in a different segregating population. Given its substantial effect on boiled seed hardness, SSR markers closely linked to qHbs3-1, such as BARCSOYSSR_03_0165 and BARCSOYSSR_03_0185, could be useful for marker-assisted selection in soybean breeding. PMID:25914591
Effect of graphite target power density on tribological properties of graphite-like carbon films
NASA Astrophysics Data System (ADS)
Dong, Dan; Jiang, Bailing; Li, Hongtao; Du, Yuzhou; Yang, Chao
2018-05-01
In order to improve the tribological performance, a series of graphite-like carbon (GLC) films with different graphite target power densities were prepared by magnetron sputtering. The valence bond and microstructure of films were characterized by AFM, TEM, XPS and Raman spectra. The variation of mechanical and tribological properties with graphite target power density was analyzed. The results showed that with the increase of graphite target power density, the deposition rate and the ratio of sp2 bond increased obviously. The hardness firstly increased and then decreased with the increase of graphite target power density, whilst the friction coefficient and the specific wear rate increased slightly after a decrease with the increasing graphite target power density. The friction coefficient and the specific wear rate were the lowest when the graphite target power density was 23.3 W/cm2.
NASA Astrophysics Data System (ADS)
Peng, Tiefeng; Liu, Bin; Gao, Xuechao; Luo, Liqun; Sun, Hongjuan
2018-06-01
Expandable graphite is widely used as a new functional carbon material, especially as fire-retardant; however, its practical application is limited due to the high expansion temperature. In this work, preparation process of low temperature and highly expandable graphite was studied, using natural flake graphite as raw material and KMnO4/HClO4/NH4NO3 as oxidative intercalations. The structure, morphology, functional groups and thermal properties were characterized during expanding process by Fourier transform infrared spectroscopy (FTIR), Raman spectra, thermo-gravimetry differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM). The analysis showed that by oxidation intercalation, some oxygen-containing groups were grafted on the edge and within the graphite layer. The intercalation reagent entered the graphite layer to increase the interlayer spacing. After expansion, the original flaky expandable graphite was completely transformed into worm-like expanded graphite. The order of graphite intercalation compounds (GICs) was proposed and determined to be 3 for the prepared expandable graphite, based on quantitative XRD peak analysis. Meanwhile, the detailed intercalation mechanisms were also proposed. The comprehensive investigation paved a benchmark for the industrial application of such sulfur-free expanded graphite.
The impact of LDEF results on the space application of metal matrix composites
NASA Technical Reports Server (NTRS)
Steckel, Gary L.; Le, Tuyen D.
1993-01-01
Over 200 graphite/aluminum and graphite/magnesium composites were flown on the leading and trailing edges of LDEF on the Advanced Composites Experiment. The performance of these composites was evaluated by performing scanning electron microscopy and x-ray photoelectron spectroscopy of exposed surfaces, optical microscopy of cross sections, and on-orbit and postflight thermal expansion measurements. Graphite/aluminum and graphite/magnesium were found to be superior to graphite/polymer matrix composites in that they are inherently resistant to atomic oxygen and are less susceptible to thermal cycling induced microcracking. The surface foils on graphite/aluminum and graphite/magnesium protect the graphite fibers from atomic oxygen and from impact damage from small micrometeoroid or space debris particles. However, the surface foils were found to be susceptible to thermal fatigue cracking arising from contamination embrittlement, surface oxidation, or stress risers. Thus, the experiment reinforced requirements for carefully protecting these composites from prelaunch oxidation or corrosion, avoiding spacecraft contamination, and designing composite structures to minimize stress concentrations. On-orbit strain measurements demonstrated the importance of through-thickness thermal conductivity in composites to minimize thermal distortions arising from thermal gradients. Because of the high thermal conductivity of aluminum, thermal distortions were greatly reduced in the LDEF thermal environment for graphite/aluminum as compared to graphite/magnesium and graphite/polymer composites. The thermal expansion behavior of graphite/aluminum and graphite/magnesium was stabilized by on-orbit thermal cycling in the same manner as observed in laboratory tests.
Natural graphite demand and supply - Implications for electric vehicle battery requirements
Olson, Donald W.; Virta, Robert L.; Mahdavi, Mahbood; Sangine, Elizabeth S.; Fortier, Steven M.
2016-01-01
Electric vehicles have been promoted to reduce greenhouse gas emissions and lessen U.S. dependence on petroleum for transportation. Growth in U.S. sales of electric vehicles has been hindered by technical difficulties and the high cost of the lithium-ion batteries used to power many electric vehicles (more than 50% of the vehicle cost). Groundbreaking has begun for a lithium-ion battery factory in Nevada that, at capacity, could manufacture enough batteries to power 500,000 electric vehicles of various types and provide economies of scale to reduce the cost of batteries. Currently, primary synthetic graphite derived from petroleum coke is used in the anode of most lithium-ion batteries. An alternate may be the use of natural flake graphite, which would result in estimated graphite cost reductions of more than US$400 per vehicle at 2013 prices. Most natural flake graphite is sourced from China, the world's leading graphite producer. Sourcing natural flake graphite from deposits in North America could reduce raw material transportation costs and, given China's growing internal demand for flake graphite for its industries and ongoing environmental, labor, and mining issues, may ensure a more reliable and environmentally conscious supply of graphite. North America has flake graphite resources, and Canada is currently a producer, but most new mining projects in the United States require more than 10 yr to reach production, and demand could exceed supplies of flake graphite. Natural flake graphite may serve only to supplement synthetic graphite, at least for the short-term outlook.
10 CFR Appendix A to Part 52 - Design Certification Rule for the U.S. Advanced Boiling Water Reactor
Code of Federal Regulations, 2010 CFR
2010-01-01
... Water Reactor A Appendix A to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES... Rule for the U.S. Advanced Boiling Water Reactor I. Introduction Appendix A constitutes the standard design certification for the U.S. Advanced Boiling Water Reactor (ABWR) design, in accordance with 10 CFR...
10 CFR Appendix A to Part 52 - Design Certification Rule for the U.S. Advanced Boiling Water Reactor
Code of Federal Regulations, 2011 CFR
2011-01-01
... Water Reactor A Appendix A to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES... Rule for the U.S. Advanced Boiling Water Reactor I. Introduction Appendix A constitutes the standard design certification for the U.S. Advanced Boiling Water Reactor (ABWR) design, in accordance with 10 CFR...
4. RW Meyer Sugar Mill: 18761889. Furnace doer for sugar ...
4. RW Meyer Sugar Mill: 1876-1889. Furnace doer for sugar boiling range. Manufactured by Honolulu Iron Works, Honolulu, 1879. Cost: $15.30. View: the furnace for the sugar boiling range was stoked from outside of the east wall of the boiling house. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
76 FR 70331 - List of Approved Spent Fuel Storage Casks: MAGNASTOR ® System, Revision 2
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-14
... various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water Reactor baskets... add various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water Reactor....1.1 to add various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water...
Mad Kids: How To Help Your Child Manage Anger.
ERIC Educational Resources Information Center
Beekman, Susan; Holmes, Jeanne
2002-01-01
Children move through the same anger cycle as adults and need similar coping strategies and problem solving skills. This paper presents pre-anger approaches, discussing what to do before the "boil-over" occurs, when the boiling point is reached, and after the boil-over. A sidebar presents a list of questions and activities parents can use with…
Cooking under Pressure: Applying the Ideal Gas Law in the Kitchen
ERIC Educational Resources Information Center
Chen, Ling; Anderson, Jennifer Y.; Wang, Diane R.
2010-01-01
This case study uses a daily cooking scenario to demonstrate how the boiling point of water is directly related to the external pressures in order to reinforce the concepts of boiling and boiling point, apply ideal gas law, and relate chemical reaction rates with temperatures. It also extends its teaching to autoclaves used to destroy…
NASA Astrophysics Data System (ADS)
Yang, Jun
Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (<800 °C). With the upgrade and development of advanced power reactors, however, enhancing the nucleate boiling rate and its upper limit, Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub-scale Boundary Layer Boiling (SBLB) test facility at Penn State to investigate the nucleate boiling and CHF enhancement effects of the surface coatings by comparing the measurements with those for a plain vessel without coatings. An overall enhancement in nucleate boiling rates and CHF limits up to 100% were observed. Moreover, combination of data from quenching experiments and steady-state experiments produced new sets of boiling curves, which covered both the nucleate and transient boiling regimes with much greater accuracy. Beside the experimental work, a theoretical CHF model has also been developed by considering the vapor dynamics and the boiling-induced two-phase motions in three separate regions adjacent to the heating surface. The CHF model is capable of predicting the performance of micro-porous coatings with given particle diameter, porosity, media permeability and thickness. It is found that the present CHF model agrees favorably with the experimental data. Effects of an enhanced vessel/insulation structure on the local nucleate boiling rate and CHF limit have also been investigated experimentally. It is observed that the local two-phase flow quantities such as the local void fraction, quality, mean vapor velocity, mean liquid velocity, and mean vapor and liquid mass flow rates could have great impact on the local surface heat flux as boiling of water takes place on the vessel surface. An upward co-current two-phase flow model has been developed to predict the local two-phase flow behavior for different flow channel geometries, which are set by the design of insulation structures. It is found from the two-phase flow visualization experiments and the two-phase flow model calculations that the enhanced vessel/insulation structure greatly improved the steam venting process at the minimum gap location compared to the performance of thermal insulation structures without enhancement. Moveover, depending on the angular location, steady-state boiling experiments with the enhanced insulation design showed an enhancement of 1.8 to 3.0 times in the local critical heat flux. Finally, nucleate boiling and CHF correlations were developed based on the data obtained from various quenching and steady-state boiling experiments. Additionally, CHF enhancement factors were determined and examined to show the separate and integral effects of the two ERVC enhancement methods. When both vessel coating and insulation structure were used simultaneously, the integral effect on CHF enhancement was found much less than the product of the two separate effects, indicating possible competing mechanisms (i.e., interference) between the two enhancement methods.
Cryogenic Boil-Off Reduction System
NASA Astrophysics Data System (ADS)
Plachta, David W.; Guzik, Monica C.
2014-03-01
A computational model of the cryogenic boil-off reduction system being developed by NASA as part of the Cryogenic Propellant Storage and Transfer technology maturation project has been applied to a range of propellant storage tanks sizes for high-performing in-space cryogenic propulsion applications. This effort focuses on the scaling of multi-layer insulation (MLI), cryocoolers, broad area cooling shields, radiators, solar arrays, and tanks for liquid hydrogen propellant storage tanks ranging from 2 to 10 m in diameter. Component scaling equations were incorporated into the Cryogenic Analysis Tool, a spreadsheet-based tool used to perform system-level parametric studies. The primary addition to the evolution of this updated tool is the integration of a scaling method for reverse turbo-Brayton cycle cryocoolers, as well as the development and inclusion of Self-Supporting Multi-Layer Insulation. Mass, power, and sizing relationships are traded parametrically to establish the appropriate loiter period beyond which this boil-off reduction system application reduces mass. The projected benefit compares passive thermal control to active thermal control, where active thermal control is evaluated for reduced boil-off with a 90 K shield, zero boil-off with a single heat interception stage at the tank wall, and zero boil-off with a second interception stage at a 90 K shield. Parametric studies show a benefit over passive storage at loiter durations under one month, in addition to showing a benefit for two-stage zero boil-off in terms of reducing power and mass as compared to single stage zero boil-off. Furthermore, active cooling reduces the effect of varied multi-layer insulation performance, which, historically, has been shown to be significant.
Treatment of irradiated graphite from French Bugey reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Howard; Laurent, Gerard
In 2008, following the general French plan for nuclear waste management, Electricite de France attempted to find for irradiated graphite an alternative solution to direct storage at the low-activity long-life storage center in France managed by the national agency for wastes (ANDRA). EDF management requested that its engineering arm, EDF CIDEN, study the graphite treatment alternatives to direct storage. In mid-2008, this study revealed the potential advantage for EDF to use a steam reforming process known as Thermal Organic Reduction, 'THOR' (owned by Studsvik, Inc., USA), to treat or destroy the graphite matrix and limit the quantity of secondary wastemore » to be stored. In late 2009, EDF began a test program with Studsvik to determine if the THOR steam reforming process could be used to destroy the graphite. The program also sought to determine if the graphite could be treated to release the bulk of activity while minimizing the gasification of the bulk mass of the graphite. In October 2009, tests with non-irradiated graphite were completed and demonstrated destruction of a graphite matrix by the THOR process at satisfactory rates. After gasifying the graphite, focus shifted to the effect of roasting graphite at high temperatures in inert gases with low concentrations of oxidizing gases to preferentially remove volatile radionuclides while minimizing the graphite mass loss to 5%. A radioactive graphite sleeve was imported from France to the US for these tests. Completed in April 2010, 'Phase I' of testing showed that the process removed >99% of H-3 and 46% of C-14 with <6% mass loss. Completed in September 2011, 'Phase II' testing achieved increased removals as high as 80% C-14. During Phase II, it was also discovered that roasting in a reducing atmosphere helped to limit the oxidation of the graphite. Future work seeks to explore the effects of reducing gases to limit the bulk oxidation of graphite. If the graphite could be decontaminated of long-lived radionuclides up to 95% for C-14 while minimizing mass loss to <5%, this would minimize the volume of any secondary waste streams and potentially lower the waste class of the larger bulk of graphite. Alternatively, if up to 95% decontamination of C-14 is achieved, the graphite may be completely gasified which could result in lower disposal. (authors)« less
An Experimental Study of Boiling in Reduced and Zero Gravity Fields
NASA Technical Reports Server (NTRS)
Usiskin, C. M.; Siegel, R.
1961-01-01
A pool boiling apparatus was mounted on a counterweighted platform which could be dropped a distance of nine feet. By varying the size of the counterweight, the effective gravity field on the equipment was adjusted between zero and unity. A study of boiling burnout in water indicated that a variation in the critical heat flux according to the one quarter power of gravity was reasonable. A consideration of the transient burnout process was necessary in order to properly interpret the data. A photographic study of nucleate boiling showed how the velocity of freely rising vapor bubbles decreased as gravity was reduced. The bubble diameters at the time of breakoff from the heated surface were found to vary inversely as gravity to the 1/3.5 power. Motion pictures were taken to illustrate both nucleate and film boiling in the low gravity range.
Boiling point measurement of a small amount of brake fluid by thermocouple and its application.
Mogami, Kazunari
2002-09-01
This study describes a new method for measuring the boiling point of a small amount of brake fluid using a thermocouple and a pear shaped flask. The boiling point of brake fluid was directly measured with an accuracy that was within approximately 3 C of that determined by the Japanese Industrial Standards method, even though the sample volume was only a few milliliters. The method was applied to measure the boiling points of brake fluid samples from automobiles. It was clear that the boiling points of brake fluid from some automobiles dropped to approximately 140 C from about 230 C, and that one of the samples from the wheel cylinder was approximately 45 C lower than brake fluid from the reserve tank. It is essential to take samples from the wheel cylinder, as this is most easily subjected to heating.
Köppel, René; Eugster, Albert; Ruf, Jürg; Rentsch, Jürg
2012-01-01
The quantification of meat proportions in raw and boiled sausage according to the recipe was evaluated using three different calibrators. To measure the DNA contents from beef, pork, sheep (mutton), and horse, a tetraplex real-time PCR method was applied. Nineteen laboratories analyzed four meat products each made of different proportions of beef, pork, sheep, and horse meat. Three kinds of calibrators were used: raw and boiled sausages of known proportions ranging from 1 to 55% of meat, and a dilution series of DNA from muscle tissue. In general, results generated using calibration sausages were more accurate than those resulting from the use of DNA from muscle tissue, and exhibited smaller measurement uncertainties. Although differences between uses of raw and boiled calibration sausages were small, the most precise and accurate results were obtained by calibration with fine-textured boiled reference sausages.
Effects of different cooking methods on health-promoting compounds of broccoli*
Yuan, Gao-feng; Sun, Bo; Yuan, Jing; Wang, Qiao-mei
2009-01-01
The effects of five domestic cooking methods, including steaming, microwaving, boiling, stir-frying, and stir-frying followed by boiling (stir-frying/boiling), on the nutrients and health-promoting compounds of broccoli were investigated. The results show that all cooking treatments, except steaming, caused significant losses of chlorophyll and vitamin C and significant decreases of total soluble proteins and soluble sugars. Total aliphatic and indole glucosinolates were significantly modified by all cooking treatments but not by steaming. In general, the steaming led to the lowest loss of total glucosinolates, while stir-frying and stir-frying/boiling presented the highest loss. Stir-frying and stir-frying/boiling, the two most popular methods for most homemade dishes in China, cause great losses of chlorophyll, soluble protein, soluble sugar, vitamin C, and glucosinolates, but the steaming method appears the best in retention of the nutrients in cooking broccoli. PMID:19650196
Boiling local heat transfer enhancement in minichannels using nanofluids
2013-01-01
This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445
Conceptual design for spacelab pool boiling experiment
NASA Technical Reports Server (NTRS)
Lienhard, J. H.; Peck, R. E.
1978-01-01
A pool boiling heat transfer experiment to be incorporated with a larger two-phase flow experiment on Spacelab was designed to confirm (or alter) the results of earth-normal gravity experiments which indicate that the hydrodynamic peak and minimum pool boiling heat fluxes vanish at very low gravity. Twelve small sealed test cells containing water, methanol or Freon 113 and cylindrical heaters of various sizes are to be built. Each cell will be subjected to one or more 45 sec tests in which the surface heat flux on the heaters is increased linearly until the surface temperature reaches a limiting value of 500 C. The entire boiling process will be photographed in slow-motion. Boiling curves will be constructed from thermocouple and electric input data, for comparison with the motion picture records. The conduct of the experiment will require no more than a few hours of operator time.
Turning bubbles on and off during boiling using charged surfactants
Cho, H. Jeremy; Mizerak, Jordan P.; Wang, Evelyn N.
2015-01-01
Boiling—a process that has powered industries since the steam age—is governed by bubble formation. State-of-the-art boiling surfaces often increase bubble nucleation via roughness and/or wettability modification to increase performance. However, without active in situ control of bubbles, temperature or steam generation cannot be adjusted for a given heat input. Here we report the ability to turn bubbles ‘on and off' independent of heat input during boiling both temporally and spatially via molecular manipulation of the boiling surface. As a result, we can rapidly and reversibly alter heat transfer performance up to an order of magnitude. Our experiments show that this active control is achieved by electrostatically adsorbing and desorbing charged surfactants to alter the wettability of the surface, thereby affecting nucleation. This approach can improve performance and flexibility in existing boiling technologies as well as enable emerging or unprecedented energy applications. PMID:26486275
Bridged graphite oxide materials
NASA Technical Reports Server (NTRS)
Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)
2010-01-01
Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.
Preparation of graphitic articles
Phillips, Jonathan; Nemer, Martin; Weigle, John C.
2010-05-11
Graphitic structures have been prepared by exposing templates (metal, metal-coated ceramic, graphite, for example) to a gaseous mixture that includes hydrocarbons and oxygen. When the template is metal, subsequent acid treatment removes the metal to yield monoliths, hollow graphitic structures, and other products. The shapes of the coated and hollow graphitic structures mimic the shapes of the templates.
Method of Obtaining Uniform Coatings on Graphite
Campbell, I. E.
1961-04-01
A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.
METHOD OF OBTAINING UNIFORM COATINGS ON GRAPHITE
Campbell, I.E.
1961-04-01
A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.
Chang, Yo-Wei; Yu, Shiau-Wei; Liu, Cheng-Hao; Tsiang, Raymond Chien-Chao
2010-10-01
P3HT/graphene nanocomposite was prepared via in-situ reduction of exfoliated graphite oxide in the P3HT polymer matrix, where the exfoliated graphite oxide was formed beforehand via the oxidation of graphite via the Hummers method. The oxidation reaction not only imparts functional groups, such as C=O, C-OH, and C-O-C, to graphite but also causes exfoliation of the resulting graphite oxide. The functional groups render graphite oxide an additional, lower thermal degradation temperature (T(d)) and the exfoliation shifts the XRD pattern towards a much smaller angle. The oxidation of graphite into graphite oxide creates a pleated flaking morphology for graphite oxide as opposed to that of graphite. UV/Vis and photoluminescence (PL) spectra of P3HT/graphene nanocomposite indicate that the existence of graphene does not alter the UV/Vis and PL excitation characteristics of P3HT, and the P3HT/graphene composite has higher electron mobility, a smaller band gap and higher conductivity than the pristine P3HT.
NASA Technical Reports Server (NTRS)
Campbell, Sandi; Papadopoulos, Demetrios; Heimann, Paula; Inghram, Linda; McCorkle, Linda
2005-01-01
Expanded graphite was compressed into graphite sheets and used as a coating for carbon fiber reinforced PMR-15 composites. BET analysis of the graphite indicated an increase in graphite pore size on compression, however the material was proven to be an effective barrier to oxygen when prepegged with PMR-15 resin. Oxygen permeability of the PMR-15/graphite was an order of magnitude lower than the compressed graphite sheet. By providing a barrier to oxygen permeation, the rate of oxidative degradation of PMR-15 was decreased. As a result, the composite thermo-oxidative stability increased by up to 25%. The addition of a graphite sheet as a top ply on the composites yielded little change in the material's flexural strength or interlaminar shear strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquez, Eva; Pina, Gabriel; Rodriguez, Marina
Spain has to manage about 3700 tons of irradiated graphite from the reactor Vandellos I as radioactive waste. 2700 tons are the stack of the reactor and are still in the reactor core waiting for retrieval. The rest of the quantities, 1000 tons, are the graphite sleeves which have been already retrieved from the reactor. During operation the graphite sleeves were stored in a silo and during the dismantling stage a retrieval process was carried out separating the wires from the graphite, which were crushed and introduced into 220 cubic containers of 6 m{sup 3} each and placed in interimmore » storage. The graphite is an intermediate level radioactive waste but it contains long lived radionuclides like {sup 14}C which disqualifies disposal at the low level waste repository of El Cabril. Therefore, a new project has been started in order to investigate two new options for the management of this waste type. The first one is based on a selective decontamination of {sup 14}C by thermal methods. This method is based on results obtained at the Research Centre Juelich (FZJ) in the Frame of the EC programs 'Raphael' and 'Carbowaste'. The process developed at FZJ is based on a preferential oxidation of {sup 14}C in comparison to the bulk {sup 12}C. Explanations for this effect are the inhomogeneous distribution and a weaker bounding of {sup 14}C which is not incorporated in the graphite lattice. However these investigations have only been performed with graphite from the high temperature reactor Arbeitsgemeinschaft Versuchsreaktor Juelich AVR which has been operated in a non-oxidising condition or research reactor graphite operated at room temperature. The reactor Vandellos I has been operated with CO{sub 2} as coolant and significant amounts of graphite have been already oxidised. The aim of the project is to validate whether a {sup 14}C decontamination can also been achieved with graphite from Vandellos I. A second possibility under investigation is the encapsulation of the graphite in a long term stable glass matrix. The principal applicability has been already proved by FNAG. Crushed graphite mixed with a suitable glass powder has been pressed at elevated temperature under vacuum. The vacuum is required to avoid gas enclosures in the obtained product. The obtained products, named IGM for 'Impermeable Graphite Matrix', have densities above 99% of theoretical density. The amount of glass has been chosen with respect to the pore volume of the former graphite parts. The method allows the production of encapsulated graphite without increasing the disposal volume. This paper will give a short overview of characterisation results of different irradiated graphite materials obtained at CIEMAT and in the Carbowaste project as well as the proposed methods and the actual status of the program including first results about leaching of non-radioactive IGM samples and hopefully first tendencies concerning the C-14 separation from graphite of Vandellos I by thermal treatment. Both processes, the thermal treatment as well as the IGM, have the potential to solve problems related to the management of irradiated graphite in Spain. However the methods have only been tested with different types of i-graphite and virgin graphite, respectively. Only investigations with real i-graphite from Spain will reveal whether the described methods are applicable to graphite from Vandellos I. However all partners are convinced that one of these new methods or a combination of them will lead to a feasible option to manage i-graphite in Spain on an industrial scale. (authors)« less
Forced convection flow boiling and two-phase flow phenomena in a microchannel
NASA Astrophysics Data System (ADS)
Na, Yun Whan
2008-07-01
The present study was performed to numerically analyze the evaporation phenomena through the liquid-vapor interface and to investigate bubble dynamics and heat transfer behavior during forced convective flow boiling in a microchannel. Flow instabilities of two-phase flow boiling in a microchannel were studied as well. The main objective of this research is to investigate the fundamental mechanisms of two-phase flow boiling in a microchannel and provide predictive tools to design thermal management systems, for example, microchannel heat sinks. The numerical results obtained from this study were qualitatively and quantitatively compared with experimental results in the open literature. Physical and mathematical models, accounting for evaporating phenomena through the liquid-vapor interface in a microchannel at constant heat flux and constant wall temperature, have been developed, respectively. The heat transfer mechanism is affected by the dominant heat conduction through the thin liquid film and vaporization at the liquid-vapor interface. The thickness of the liquid film and the pressure of the liquid and vapor phases were simultaneously solved by the governing differential equations. The developed semi-analytical evaporation model that takes into account of the interfacial phenomena and surface tension effects was used to obtain solutions numerically using the fourth-order Runge-Kutta method. The effects of heat flux 19 and wall temperature on the liquid film were evaluated. The obtained pressure drops in a microchannel were qualitatively consistent with the experimental results of Qu and Mudawar (2004). Forced convective flow boiling in a single microchannel with different channel heights was studied through a numerical simulation to investigate bubble dynamics, flow patterns, and heat transfer. The momentum and energy equations were solved using the finite volume method while the liquid-vapor interface of a bubble is captured using the VOF (Volume of Fluid) technique. The effects of different constant heat fluxes and different channel heights on the boiling mechanisms were investigated. The effects of liquid velocity on the bubble departure diameter were analyzed. The obtained results showed that the wall superheats at the position of nucleate boiling are relatively independent of the mass flow rates at the same channel height. The obtained results, however, showed that the heat flux at the onset of nucleate boiling strongly depends on the channel height. With a decrease of the channel height and an increase of the liquid velocity at the channel inlet, the departure diameter of a bubble was smaller. The periodic flow patterns, such as the bubbly flow, elongated slug flow, and churn flow were observed in the microchannel. Flow instabilities of two-phase flow boiling in a trapezoidal microchannel using a three-dimensional model were investigated. Fluctuation behaviors of flow boiling parameters such as wall temperature and inlet pressure caused by periodic flow patterns were studied at different heat fluxes and mass fluxes. The numerical results showed large amplitude and short period oscillations for wall temperature and inlet pressure fluctuations. Stable and unstable flow boiling regime with short period oscillations were investigated. Those flow boiling regimes were not listed in stable and unstable boiling regime map proposed by Wang et al. (2007).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, P
The objective of this analysis is to develop and establish the technical basis on the criticality safety controls for the storage of mixed beryllium (Be), natural uranium (Nat-U), and carbon (C)/graphite reflectors in 55-gallon waste containers and/or their equivalents in Hazardous Waste Management (HWM) facilities. Based on the criticality safety limits and controls outlined in Section 3.0, the operations involving the use of mixed-reflector drums satisfy the double-contingency principle as required by DOE Order 420.1 and are therefore criticality safe. The mixed-reflector mass limit is 120 grams for each 55-gallon drum or its equivalent. a reflector waiver of 50 gramsmore » is allowed for Be, Nat-U, or C/graphite combined. The waived reflectors may be excluded from the reflector mass calculations when determining if a drum is compliant. The mixed-reflector drums are allowed to mix with the typical 55-gallon one-reflector drums with a Pu mass limit of 120 grams. The fissile mass limit for the mixed-reflector container is 65 grams of Pu equivalent each. The corresponding reflector mass limits are 300 grams of Be, and/or 100 kilograms of Nat-U, and/or 110 kilograms of C/graphite for each container. All other unaffected control parameters for the one-reflector containers remain in effect for the mixed-reflector drums. For instance, Superior moderators, such as TrimSol, Superla white mineral oil No. 9, paraffin, and polyethylene, are allowed in unlimited quantities. Hydrogenous materials with a hydrogen density greater than 0.133 gram/cc are not allowed. Also, an isolation separation of no less than 76.2 cm (30-inch) is required between a mixed array and any other array. Waste containers in the action of being transported are exempted from this 76.2-cm (30-inch) separation requirement. All deviations from the CS controls and mass limits listed in Section 3.0 will require individual criticality safety analyses on a case-by-case basis for each of them to confirm their criticality safety prior to their deployment and implementation.« less
DESIGN CHARACTERISTICS OF THE IDAHO NATIONAL LABORATORY HIGH-[TEMPERATURE GAS-COOLED TEST REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterbentz, James; Bayless, Paul; Strydom, Gerhard
A point design for a graphite-moderated, high-temperature, gas-cooled test reactor (HTG TR) has been developed by Idaho National Laboratory (INL) as part of a United States (U.S.) Department of Energy (DOE) initiative to explore and potentially expand the existing U.S. test reactor capabilities. This paper provides a summary of the design and its main attributes. The 200 MW HTG TR is a thermal-neutron spectrum reactor composed of hexagonal prismatic fuel and graphite reflector blocks. Twelve fuel columns (96 fuel blocks total and 6.34 m active core height) are arranged in two hexagonal rings to form a relatively compact, high-power density,more » annular core sandwiched between inner, outer, top, and bottom graphite reflectors. The HTG-TR is designed to operate at 7 MPa with a coolant inlet/outlet temperature of 325°C/650°C, and utilizes TRISO particle fuel from the DOE AGR Program with 425 ?m uranium oxycarbide (UCO) kernels and an enrichment of 15.5 wt% 235U. The primary mission of the HTG TR is material irradiation and therefore the core has been specifically designed and optimized to provide the highest possible thermal and fast neutron fluxes. The highest thermal neutron flux (3.90E+14 n/cm2s) occurs in the outer reflector, and the maximum fast flux levels (1.17E+14 n/cm2s) are produced in the central reflector column where most of the graphite has been removed. Due to high core temperatures under accident conditions, all the irradiation test facilities have been located in the inner and outer reflectors where fast flux levels decline. The core features a large number of irradiation positions with large test volumes and long test lengths, ideal for thermal neutron irradiation of large test articles. The total available test volume is more than 1100 liters. Up to four test loop facilities can be accommodated with pressure tube boundaries to isolate test articles and test fluids (e.g., liquid metal, liquid salt, light water) from the helium primary coolant system.« less
Research on graphite reinforced glass matrix composites
NASA Technical Reports Server (NTRS)
Bacon, J. F.; Prewo, K. M.
1977-01-01
The results of research for the origination of graphite-fiber reinforced glass matrix composites are presented. The method selected to form the composites consisted of pulling the graphite fiber through a slurry containing powdered glass, winding up the graphite fiber and the glass it picks up on a drum, drying, cutting into segments, loading the tape segment into a graphite die, and hot pressing. During the course of the work, composites were made with a variety of graphite fibers in a glass matrix.
The Gibbs Energy Basis and Construction of Boiling Point Diagrams in Binary Systems
ERIC Educational Resources Information Center
Smith, Norman O.
2004-01-01
An illustration of how excess Gibbs energies of the components in binary systems can be used to construct boiling point diagrams is given. The underlying causes of the various types of behavior of the systems in terms of intermolecular forces and the method of calculating the coexisting liquid and vapor compositions in boiling point diagrams with…
Production of High Density Aviation Fuels via Novel Zeolite Catalyst Routes
1989-10-23
range fraction of a naphthenic crude; saturation of an aromatic FCC cycle stock I the appropriate boiling range: saturation of an appropriate boiling...aromatic hydrocarbons and selected aromatic feedstocks to the corresponding mono- and dicyclic naphthenes in the aviation turbine fuel boiling range; and...Paraffins from Naphthenic Refinery Feed Streams .......... 8 Solvent Extraction ........................................... 8 Shape Selective Catalytic
ERIC Educational Resources Information Center
Paik, Seoung-Hey
2015-01-01
The purpose of this study was to explore how examples used in teaching may influence elementary school students' conceptions of evaporation and boiling. To this end, the examples traditionally used to explain evaporation and boiling in Korean 4th grade science textbooks were analyzed. The functions of these published examples were explanation…
QSPR using MOLGEN-QSPR: the challenge of fluoroalkane boiling points.
Rücker, Christoph; Meringer, Markus; Kerber, Adalbert
2005-01-01
By means of the new software MOLGEN-QSPR, a multilinear regression model for the boiling points of lower fluoroalkanes is established. The model is based exclusively on simple descriptors derived directly from molecular structure and nevertheless describes a broader set of data more precisely than previous attempts that used either more demanding (quantum chemical) descriptors or more demanding (nonlinear) statistical methods such as neural networks. The model's internal consistency was confirmed by leave-one-out cross-validation. The model was used to predict all unknown boiling points of fluorobutanes, and the quality of predictions was estimated by means of comparison with boiling point predictions for fluoropentanes.
Issue a Boil-Water Advisory or Wait for Definitive Information? A Decision Analysis
Wagner, Michael M.; Wallstrom, Garrick L.; Onisko, Agnieszka
2005-01-01
Objective Study the decision to issue a boil-water advisory in response to a spike in sales of diarrhea remedies or wait 72 hours for the results of definitive testing of water and people. Methods Decision analysis. Results In the base-case analysis, the optimal decision is test-and-wait. If the cost of issuing a boil-water advisory is less than 13.92 cents per person per day, the optimal decision is to issue the boil-water advisory immediately. Conclusions Decisions based on surveillance data that are suggestive but not conclusive about the existence of a disease outbreak can be modeled. PMID:16779145
Chan, Poh Yin; Tong, Chi Ming; Durrant, Marcus C
2011-09-01
An empirical method for estimation of the boiling points of organic molecules based on density functional theory (DFT) calculations with polarized continuum model (PCM) solvent corrections has been developed. The boiling points are calculated as the sum of three contributions. The first term is calculated directly from the structural formula of the molecule, and is related to its effective surface area. The second is a measure of the electronic interactions between molecules, based on the DFT-PCM solvation energy, and the third is employed only for planar aromatic molecules. The method is applicable to a very diverse range of organic molecules, with normal boiling points in the range of -50 to 500 °C, and includes ten different elements (C, H, Br, Cl, F, N, O, P, S and Si). Plots of observed versus calculated boiling points gave R²=0.980 for a training set of 317 molecules, and R²=0.979 for a test set of 74 molecules. The role of intramolecular hydrogen bonding in lowering the boiling points of certain molecules is quantitatively discussed. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
Noise analysis of nucleate boiling
NASA Technical Reports Server (NTRS)
Mcknight, R. D.; Ram, K. S.
1971-01-01
The techniques of noise analysis have been utilized to investigate nucleate pool boiling. A simple experimental setup has been developed for obtaining the power spectrum of a nucleate boiling system. These techniques were first used to study single bubbles, and a method of relating the two-dimensional projected size and the local velocity of the bubbles to the auto-correlation functions is presented. This method is much less time consuming than conventional methods of measurement and has no probes to disturb the system. These techniques can be used to determine the contribution of evaporation to total heat flux in nucleate boiling. Also, these techniques can be used to investigate the effect of various parameters upon the frequency response of nucleate boiling. The predominant frequencies of the power spectrum correspond to the frequencies of bubble generation. The effects of heat input, degree of subcooling, and liquid surface tension upon the power spectra of a boiling system are presented. It was found that the degree of subcooling has a more pronounced effect upon bubble size than does heat flux. Also the effect of lowering surface tension can be sufficient to reduce the effect of the degree of subcooling upon the size of the bubbles.
Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces
Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-hung
2016-01-01
Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface. PMID:27034255
Gravity and Heater Size Effects on Pool Boiling Heat Transfer
NASA Technical Reports Server (NTRS)
Kim, Jungho; Raj, Rishi
2014-01-01
The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.
Effect of Different Cooking Methods on Histamine Levels in Selected Foods
Chung, Bo Young; Park, Sook Young; Byun, Yun Sun; Son, Jee Hee; Choi, Yong Won; Cho, Yong Se
2017-01-01
Background Histamine in food is known to cause food poisoning and allergic reactions. We usually ingest histamine in cooked food, but there are few studies about the influence of cooking method on the histamine level. Objective The purpose of this study was to determine the influence of cooking methods on the concentration of histamine in foods. Methods The foods chosen were those kinds consumed frequently and cooked by grilling, boiling, and frying. The histamine level of the food was measured using enzyme-linked immunosorbent assay. Results Grilled seafood had higher histamine levels than raw or boiled seafood. For meat, grilling increased the histamine level, whereas boiling decreased it. For eggs, there was not much difference in histamine level according to cooking method. Fried vegetables had higher histamine levels than raw vegetables. And fermented foods didn't show much difference in histamine level after being boiled. Conclusion The histamine level in food has changed according to the cooking method used to prepare it. Frying and grilling increased histamine level in foods, whereas boiling had little influence or even decreased it. The boiling method might be helpful to control the effect of histamine in histamine-sensitive or susceptible patients, compared with frying and grilling. PMID:29200758
Flow Boiling and Condensation Experiment (FBCE) for the International Space Station
NASA Technical Reports Server (NTRS)
Mudawar, Issam; O'Neill, Lucas; Hasan, Mohammad; Nahra, Henry; Hall, Nancy; Balasubramaniam, R.; Mackey, Jeffrey
2016-01-01
An effective means to reducing the size and weight of future space vehicles is to replace present mostly single-phase thermal management systems with two-phase counterparts. By capitalizing upon both latent and sensible heat of the coolant rather than sensible heat alone, two-phase thermal management systems can yield orders of magnitude enhancement in flow boiling and condensation heat transfer coefficients. Because the understanding of the influence of microgravity on two-phase flow and heat transfer is quite limited, there is an urgent need for a new experimental microgravity facility to enable investigators to perform long-duration flow boiling and condensation experiments in pursuit of reliable databases, correlations and models. This presentation will discuss recent progress in the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS) in collaboration between Purdue University and NASA Glenn Research Center. Emphasis will be placed on the design of the flow boiling module and on new flow boiling data that were measured in parabolic flight, along with extensive flow visualization of interfacial features at heat fluxes up to critical heat flux (CHF). Also discussed a theoretical model that will be shown to predict CHF with high accuracy.
Large-scale boiling experiments of the flooded cavity concept for in-vessel core retention
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.Y.; Slezak, S.E.; Bentz, J.H.
1994-03-01
This paper presents results of ex-vessel boiling experiments performed in the CYBL (CYlindrical BoiLing) facility. CYBL is a reactor-scale facility for confirmatory research of the flooded cavity concept for accident management. CYBL has a tank-within-a-tank design; the inner tank simulates the reactor vessel and the outer tank simulates the reactor cavity. Experiments with uniform and edge-peaked heat flux distributions up to 20 W/cm{sup 2} across the vessel bottom were performed. Boiling outside the reactor vessel was found to be subcooled nucleate boiling. The subcooling is mainly due to the gravity head which results from flooding the sides of the reactormore » vessel. The boiling process exhibits a cyclic pattern with four distinct phases: direct liquid/solid contact, bubble nucleation and growth, coalescence, and vapor mass dispersion (ejection). The results suggest that under prototypic heat load and heat flux distributions, the flooded cavity in a passive pressurized water reactor like the AP-600 should be capable of cooling the reactor pressure vessel in the central region of the lower head that is addressed by these tests.« less
Asiimwe, J; Sembajwe, L F; Senoga, A; Bakiika, E; Muwonge, H; Kalyesubula, R
2013-09-01
There is an increase in number of patients with chronic kidney disease (CKD) in Uganda's health facilities looking for different options of preparing matooke (bananas), their staple food. To establish and evaluate an effective method of removing potassium from bananas (matooke). Bananas were sampled from 5 markets in Kampala, Uganda. Deionized water was used to soak the bananas and the potassium concentration was determined using an atomic absorption spectrophotometer in both the bananas and water after soaking for varying time intervals. We also determined the potassium concentrations in the bananas and the water after boiling the bananas at 200 degrees Celsius at intervals of 10 minutes (for 60 minutes). The potassium concentration did not appear to change on soaking alone without boiling. However, on boiling, the concentration in the bananas decreased from about 1.4 ppm to approx. 1 ppm after 60 min; yet the concentration of potassium released into deionized water increased steadily from 0.0 ppm to about 1.2 ppm after 60 min of boiling. This study demonstrates that boiling the bananas is a more effective way of removing the potassium from bananas than simply soaking them.
NASA Astrophysics Data System (ADS)
Alavi Fazel, S. Ali
2017-09-01
A new optimized model which can predict the heat transfer in the nucleate boiling at isolated bubble regime is proposed for pool boiling on a horizontal rod heater. This model is developed based on the results of direct observations of the physical boiling phenomena. Boiling heat flux, wall temperature, bubble departing diameter, bubble generation frequency and bubble nucleation site density have been experimentally measured. Water and ethanol have been used as two different boiling fluids. Heating surface was made by several metals and various degrees of roughness. The mentioned model considers various mechanisms such as latent heat transfer due to micro-layer evaporation, transient conduction due to thermal boundary layer reformation, natural convection, heat transfer due to the sliding bubbles and bubble super-heating. The fractional contributions of individual mentioned heat transfer mechanisms have been calculated by genetic algorithm. The results show that at wall temperature difference more that about 3 K, bubble sliding transient conduction, non-sliding transient conduction, micro-layer evaporation, natural convection, radial forced convection and bubble super-heating have higher to lower fractional contributions respectively. The performance of the new optimized model has been verified by comparison of the existing experimental data.
NASA Astrophysics Data System (ADS)
Liu, Yancong; Zhan, Xianghua; Yi, Peng; Liu, Tuo; Liu, Benliang; Wu, Qiong
2018-03-01
A double-track lap cladding experiment involving gray cast iron was established to investigate the transformation mechanism of graphite phase and microstructure in a laser cladding heated region. The graphite phase and microstructure in different heated regions were observed under a microscope, and the distribution of elements in various heated regions was analyzed using an electron probe. Results show that no graphite existed in the cladding layer and in the middle and upper parts of the binding region. Only some of the undissolved small graphite were observed at the bottom of the binding region. Except the refined graphite size, the morphological characteristics of substrate graphite and graphite in the heat-affected zone were similar. Some eutectic clusters, which grew along the direction of heat flux, were observed in the heat-affected zone whose microstructure was transformed into a mixture of austenite, needle-like martensite, and flake graphite. Needle-like martensite around graphite was fine, but this martensite became sparse and coarse when it was away from graphite. Some martensite clusters appeared in the local area near the binding region, and the carbon atoms in the substrate did not diffuse into the cladding layer through laser cladding, which only affected the bonding area and the bottom of the cladding layer.
NEW METHOD OF GRAPHITE PREPARATION
Stoddard, S.D.; Harper, W.T.
1961-08-29
BS>A method is described for producing graphite objects comprising mixing coal tar pitch, carbon black, and a material selected from the class comprising raw coke, calcined coke, and graphite flour. The mixture is placed in a graphite mold, pressurized to at least 1200 psi, and baked and graphitized by heating to about 2500 deg C while maintaining such pressure. (AEC)
NASA Astrophysics Data System (ADS)
Ruiz, Maritza
Thermal management of systems under high heat fluxes on the order of hundreds of W/cm2 is important for the safety, performance and lifetime of devices, with innovative cooling technologies leading to improved performance of electronics or concentrating solar photovoltaics. A novel, spiraling radial inflow microchannel heat sink for high flux cooling applications, using a single phase or vaporizing coolant, has demonstrated enhanced heat transfer capabilities. The design of the heat sink provides an inward swirl flow between parallel, coaxial disks that form a microchannel of 1 cm radius and 300 micron channel height with a single inlet and a single outlet. The channel is heated on one side through a conducting copper surface, and is essentially adiabatic on the opposite side to simulate a heat sink scenario for electronics or concentrated photovoltaics cooling. Experimental results on the heat transfer and pressure drop characteristics in the heat sink, using single phase water as a working fluid, revealed heat transfer enhancements due to flow acceleration and induced secondary flows when compared to unidirectional laminar fully developed flow between parallel plates. Additionally, thermal gradients on the surface are small relative to the bulk fluid temperature gain, a beneficial feature for high heat flux cooling applications. Heat flux levels of 113 W/cm2 at a surface temperature of 77 deg C were reached with a ratio of pumping power to heat rate of 0.03%. Analytical models on single phase flow are used to explore the parametric trends of the flow rate and passage geometry on the streamlines and pressure drop through the device. Flow boiling heat transfer and pressure drop characteristics were obtained for this heat sink using water at near atmospheric pressure as the working fluid for inlet subcooling levels ranging from 20 to 80 deg C and mean mass flux levels ranging from 184-716 kg/m. 2s. Flow enhancements similar to singlephase flow were expected, as well as enhancements due to increased buoyant forces on vapor bubbles resulting from centripetal acceleration in the flow which will tend to draw the vapor towards the outlet. This can also aid in the reduction of vapor obstruction of the flow. The flow was identified as transitioning through three regimes as the heat rate was increased: partial subcooled flow boiling, oscillating boiling and fully developed flow boiling. During partial subcooled flow boiling, both forced convective and nucleate boiling effects are important. During oscillating boiling, the system fluctuated between partial subcooled flow boiling and fully developed nucleate boiling. Temperature and pressure oscillations were significant in this regime and are likely due to bubble constriction of flow in the microchannel. This regime of boiling is generally undesirable due to the large oscillations in temperatures and pressure and design constraints should be established to avoid large oscillations from occurring. During fully developed flow boiling, water vapor rapidly leaves the surface and the flow does not sustain large oscillations. Reducing inlet subcooling levels was found to reduce the magnitude of oscillations in the oscillating boiling regime. Additionally, reduced inlet subcooling levels reduced the average surface temperature at the highest heat flux levels tested when heat transfer was dominated by nucleate boiling, yet increased the average surface temperatures at low heat flux levels when heat transfer was dominated by forced convection. Experiments demonstrated heat fluxes up to 301 W/cm. 2at an average surface temperature of 134 deg C under partial subcooled flow boiling conditions. At this peak heat flux, the system required a pumping power to heat rate ratio of 0.01%. This heat flux is 2.4 times the typical values for critical heat flux in pool boiling under similar conditions.
NASA Technical Reports Server (NTRS)
Lambrecht, Walter R. L.
1992-01-01
The goals of the research were to provide a fundamental science basis for why the bonding of Cu to graphite is weak, to critically evaluate the previous analysis of the wetting studies with particular regard to the values used for the surface energies of Cu and graphite, and to make recommendations for future experiments or other studies which could advance the understanding and solution of this technological problem. First principles electronic structure calculations were used to study the problem. These are based on density functional theory in the local density approximation and the use of the linear muffin-tin orbital band structure method. Calculations were performed for graphite monolayers, single crystal graphite with the hexagonal AB stacking, bulk Cu, Cu(111) surface, and Cu/graphite superlattices. The study is limited to the basal plane of graphite because this is the graphite plane exposed to Cu and graphite surface energies and combined with the measured contact angles to evaluate the experimental adhesion energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferralis, N.; Diehl, R.D.; Pussi, K.
2004-12-15
Potassium adsorption on graphite has been a model system for the understanding of the interaction of alkali metals with surfaces. The geometries of the (2x2) structure of potassium on both single-crystal graphite (SCG) and highly oriented pyrolytic graphite (HOPG) were investigated for various preparation conditions for graphite temperatures between 55 and 140 K. In all cases, the geometry was found to consist of K atoms in the hollow sites on top of the surface. The K-graphite average perpendicular spacing is 2.79{+-}0.03 A , corresponding to an average C-K distance of 3.13{+-}0.03 A , and the spacing between graphite planes ismore » consistent with the bulk spacing of 3.35 A. No evidence was observed for a sublayer of potassium. The results of dynamical LEED studies for the clean SCG and HOPG surfaces indicate that the surface structures of both are consistent with the truncated bulk structure of graphite.« less
An Electron Microscopy Study of Graphite Growth in Nodular Cast Irons
NASA Astrophysics Data System (ADS)
Laffont, L.; Jday, R.; Lacaze, J.
2018-04-01
Growth of graphite during solidification and high-temperature solid-state transformation has been investigated in samples cut out from a thin-wall casting which solidified partly in the stable (iron-graphite) and partly in the metastable (iron-cementite) systems. Transmission electron microscopy has been used to characterize graphite nodules in as-cast state and in samples having been fully graphitized at various temperatures in the austenite field. Nodules in the as-cast material show a twofold structure characterized by an inner zone where graphite is disoriented and an outer zone where it is well crystallized. In heat-treated samples, graphite nodules consist of well-crystallized sectors radiating from the nucleus. These observations suggest that the disoriented zone appears because of mechanical deformation when the liquid contracts during its solidification in the metastable system. During heat-treatment, the graphite in this zone recrystallizes. In turn, it can be concluded that nodular graphite growth mechanism is the same during solidification and solid-state transformation.
NASA Astrophysics Data System (ADS)
Lin, Na; Jia, Zhe; Wang, Zhihui; Zhao, Hui; Ai, Guo; Song, Xiangyun; Bai, Ying; Battaglia, Vincent; Sun, Chengdong; Qiao, Juan; Wu, Kai; Liu, Gao
2017-10-01
The structure degradation of commercial Lithium-ion battery (LIB) graphite anodes with different cycling numbers and charge rates was investigated by focused ion beam (FIB) and scanning electron microscopy (SEM). The cross-section image of graphite anode by FIB milling shows that cracks, resulted in the volume expansion of graphite electrode during long-term cycling, were formed in parallel with the current collector. The crack occurs in the bulk of graphite particles near the lithium insertion surface, which might derive from the stress induced during lithiation and de-lithiation cycles. Subsequently, crack takes place along grain boundaries of the polycrystalline graphite, but only in the direction parallel with the current collector. Furthermore, fast charge graphite electrodes are more prone to form cracks since the tensile strength of graphite is more likely to be surpassed at higher charge rates. Therefore, for LIBs long-term or high charge rate applications, the tensile strength of graphite anode should be taken into account.
NASA Astrophysics Data System (ADS)
Calagari, Ali Asghar
2004-05-01
The porphyry copper deposit (PCD) at Sungun is located in East Azarbaidjan, in the NW of Iran.The Sungun porphyries occur as stocks and dikes ranging in composition from quartz monzodiorite through quartz monzonite and granodiorite to granite. The stocks are divided into two groups (1) Porphyry Stocks I and (2) Porphyry Stock II. Porphyry Stock II, hosting the copper ore, experienced intense hydro-fracturing leading to the formation of stockwork-type and anastomozing veinlets and micro-veinlets of quartz, sulfides, carbonates, and sulfates. Three distinct types of hydrothermal alteration and sulfide mineralization are recognized at Sungun (1) hypogene, (2) contact metasomatic (skarn), and (3) supergene. Four types of hypogene alteration are developed at Sungun, potassic, propylitic, potassic-phyllic, and phyllic. Four types of inclusion are common at Sungun based upon their phase content (1) mono-phase vapor, (2) vapor-rich 2-phase, (3) liquid-rich 2-phase, and (4) multi-phase solid. Halite is the principal solid phase. The distribution pattern, shape, and phase contents of fluid inclusions in quartz veinlets at Sungun are analogous to those from Bingham and Globe-Miami in western USA. The fluid inclusion data at Sungun showed that the liquid-vapor homogenization temperature [ TH(L-V)] values for liquid-rich 2-phase, vapor-rich 2-phase, and halite-bearing inclusions vary from 160 to 580 °C, from 200 to 600 °C, and from 160 to 580 °C, respectively. The ascending unboiled fluid at the onset of the phyllic alteration episode had temperatures ˜580 °C and was moderately saline (˜15 wt%). With the gradual decrease in temperature, the salinity of this fluid gradually decreased, so that its salinity at temperatures of ˜370 and <270 °C were ˜7 and <2 wt%, respectively. Multiple boiling events occurred in Porphyry Stock II during phyllic alteration. With each boiling event the salinity of the residual fluid increased substantially. The first boiling event occurred at temperatures 540-560 °C, and increased the salinity of the residual fluid up to ˜50 wt%. At temperatures >350 °C the residual fluid remained undersaturated (with respect to NaCl) however, at temperatures <350 °C they became saturated. The minimum internal pressures calculated for the inclusions having Ts(NaCl)≈ TH(L-V) showed that they were developed under the maximum hydrostatic pressure head of ˜1500 m during the boiling events.
Friction and wear of carbon-graphite materials for high-energy brakes
NASA Technical Reports Server (NTRS)
Bill, R. C.
1978-01-01
Caliper type brake simulation experiments were conducted on seven different carbon graphite materials formulations against a steel disk material and against a carbon graphite disk material. The effects of binder level, boron carbide (B4C) additions, SiC additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level, additions of B4C, and additions of SiC each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. The transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur.
Pasteris, J.D.; Chou, I.-Ming
1998-01-01
We used Raman microsampling spectroscopy (RMS) to determine the degree of crystallinity of minute (2-15 ??m) graphite inclusions in quartz in two sets of samples: experimentally reequilibrated fluid inclusions in a natural quartz grain and biotite-bearing paragneisses from the KTB deep drillhole in SE Germany. Our sequential reequilibration experiments at 725??C on initially pure CO2 inclusions in a quartz wafer and the J. Krautheim (1993) experiments at 900-1100??C on organic compounds heated in gold or platinum capsules suggest that, at a given temperature, (1) fluid-deposited graphite will have a lower crystallinity than metamorphosed organic matter and (2) that the crystallinity of fluid-deposited graphite is affected by the composition of the fluid from which it was deposited. We determined that the precipitation of more-crystalline graphite is favored by lower fH2 (higher fO2), and that the crystallinity of graphite is established by the conditions (including gas fugacities) that pertain as the fluid first reaches graphite saturation. Graphite inclusions within quartz grains in the KTB rocks show a wide range in crystallinity index, reflecting three episodes of carbon entrapment under different metamorphic conditions. Isolated graphite inclusions have the spectral properties of totally ordered, completely crystalline graphite. Such crystallinity suggests that the graphite was incorporated from the surrounding metasedimentary rocks, which underwent metamorphism at upper amphibolite-facies conditions. Much of the fluid-deposited graphite in fluid inclusions, however, shows some spectral disorder. The properties of that graphite resemble those of experimental precipitates at temperatures in excess of 700??C and at elevated pressures, suggesting that the inclusions represent precipitates from C-O-H fluids trapped under conditions near those of peak metamorphism at the KTB site. In contrast, graphite that is intimately associated with chlorite and other (presumably low-temperature) silicates in inclusions is highly disordered and spectrally resembles kerogens. This graphite probably was deposited during later greenschist-facies retrograde metamorphism at about 400-500??C. The degree of crystallinity of fluid-deposited graphite is shown to be a much more complex function of temperature than is the crystallinity of metamorphic graphite. To some extent, experiments can provide temperature-calibration of the crystallinity index. However, the difference in time scales between experimental runs and geologic processes makes it difficult to infer specific temperatures for naturally precipitated graphite. Copyright ?? 1998 Elsevier Science Ltd.
Design of an explosive detection system using Monte Carlo method.
Hernández-Adame, Pablo Luis; Medina-Castro, Diego; Rodriguez-Ibarra, Johanna Lizbeth; Salas-Luevano, Miguel Angel; Vega-Carrillo, Hector Rene
2016-11-01
Regardless the motivation terrorism is the most important risk for the national security in many countries. Attacks with explosives are the most common method used by terrorists. Therefore several procedures to detect explosives are utilized; among these methods are the use of neutrons and photons. In this study the Monte Carlo method an explosive detection system using a 241 AmBe neutron source was designed. In the design light water, paraffin, polyethylene, and graphite were used as moderators. In the work the explosive RDX was used and the induced gamma rays due to neutron capture in the explosive was estimated using NaI(Tl) and HPGe detectors. When light water is used as moderator and HPGe as the detector the system has the best performance allowing distinguishing between the explosive and urea. For the final design the Ambient dose equivalent for neutrons and photons were estimated along the radial and axial axis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Guangyu; Jiang, Xin; Wang, Enge
2003-04-18
We report the synthesis of tubular graphite cones using a chemical vapor deposition method. The cones have nanometer-sized tips, micrometer-sized roots, and hollow interiors with a diameter ranging from about 2 to several tens of nanometers. The cones are composed of cylindrical graphite sheets; a continuous shortening of the graphite layers from the interior to the exterior makes them cone-shaped. All of the tubular graphite cones have a faceted morphology. The constituent graphite sheets have identical chiralities of a zigzag type across the entire diameter, imparting structural control to tubular-based carbon structures. The tubular graphite cones have potential for use as tips for scanning probe microscopy, but with greater rigidity and easier mounting than currently used carbon nanotubes.
Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets
Makowiecki, D.M.; Ramsey, P.B.; Juntz, R.S.
1995-07-04
An improved method is disclosed for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite`s high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding. 11 figs.
Zhamu, Aruna; Jang, Bor Z.
2014-06-17
A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.
Mineral resource of the month: graphite
,
2008-01-01
The article presents facts about graphite ideal for industrial applications. Among the characteristics of graphite are its metallic luster, softness, perfect basal cleavage and electrical conductivity. Batteries, brake linings and powdered metals are some of the products that make use of graphite. It attributes the potential applications for graphite in high-technology fields to innovations in thermal technology and acid-leaching techniques.
Nucleation and Growth of Graphite in Eutectic Spheroidal Cast Iron: Modeling and Testing
NASA Astrophysics Data System (ADS)
Carazo, Fernando D.; Dardati, Patricia M.; Celentano, Diego J.; Godoy, Luis A.
2016-06-01
A new model of graphite growth during the continuous cooling of eutectic spheroidal cast iron is presented in this paper. The model considers the nucleation and growth of graphite from pouring to room temperature. The microstructural model of solidification accounts for the eutectic as divorced and graphite growth rate as a function of carbon gradient at the liquid in contact with the graphite. In the solid state, the microstructural model takes into account three stages for graphite growth, namely (1) from the end of solidification to the upper bound of intercritical stable eutectoid, (2) during the intercritical stable eutectoid, and (3) from the lower bound of intercritical stable eutectoid to room temperature. The micro- and macrostructural models are coupled using a sequential multiscale approach. Numerical results for graphite fraction and size distribution are compared with experimental results obtained from a cylindrical cup, in which the graphite volumetric fraction and size distribution were obtained using the Schwartz-Saltykov approach. The agreements between the experimental and numerical results for the fraction of graphite and the size distribution of spheroids reveal the importance of numerical models in the prediction of the main aspects of graphite in spheroidal cast iron.
Graphitized-carbon fiber/carbon char fuel
Cooper, John F [Oakland, CA
2007-08-28
A method for recovery of intact graphitic fibers from fiber/polymer composites is described. The method comprises first pyrolyzing the graphite fiber/polymer composite mixture and then separating the graphite fibers by molten salt electrochemical oxidation.
ERIC Educational Resources Information Center
Kaminsky, Kenneth; Scheman, Naomi
2010-01-01
At a Shabbat lunch in Madrid not long ago, the conversation turned to the question of boiling eggs. One of the guests mentioned that a Dutch rabbi he knew had heard that in order to make it more likely that boiled eggs be kosher, you should add an egg to the pot if the number you began with was even. According to the laws of Kashruth, Jews may not…
The Influence of a Lower Heated Tube on Nucleate Pool Boiling from a Horizontal Tube
1992-06-01
9 C. CONDENSER SECTION .................................... 12 D. COOLING SECTION...lower tube kc thermal conductivity of copper L active boiling tube length Lu non-boiling tube length x Nu Nusselt number p tube outside wall perimeter Pr...teflon endplates. 2. A condenser , assembled using a similar Pyrex-glass tee with aluminum endplates. 3. A reservoir for R- 114 liquid storage. 4. A
18. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...
18. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Detail of floor with molasses pits below floor level. The remaining floor boards indicate the structure of the floor covering the entire inside of the boiling house. In the left background the base of the centrifugals are in view. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy
NASA Astrophysics Data System (ADS)
Freeburg, Eric Thomas
Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed outside the boundary layer. Vaporization of FC-72 droplets in the boundary layer next to the heated surface was not observed.
Alessandri, C; Zennaro, D; Scala, E; Ferrara, R; Bernardi, M Livia; Santoro, M; Palazzo, P; Mari, A
2012-03-01
Egg allergy is a very common finding in early childhood. Detecting hen's egg (HE) allergy outgrowing and reintroduction of food containing egg is a task for the allergist. We sought to evaluate the suitability of boiled egg food challenge compared with IgE to allergenic molecules from HE white using a microarray system. Sixty-eight children referring to our centre by the family paediatricians for a suspected egg allergy were enrolled. Patients underwent double-blind, placebo-controlled food challenge with boiled and raw eggs. Challenge outcomes were compared with skin tests performed using egg white and yolk commercial extracts, to prick-prick test with boiled and raw egg white and yolk, total IgE, egg white specific IgE detected using ImmunoCAP and IgE to egg allergens available on the immunosolid phase allergen chip (ISAC) 103 microarray. Nineteen subjects (28%) were reactive to both raw and boiled egg, 14 (20.5%) to raw egg only and 35 (51.4%) tolerated both boiled and raw egg. Efficiency analysis was carried out using both raw and boiled egg challenges as gold standard. Forty four of 47 Gal d 1 negative patients tolerated boiled egg (94%). Conversely, 20 of 21 Gal d 1 positive patients reacted to raw egg (95%). None of the other tests was able to discriminate patients' response to HE challenge. Furthermore, Gal d 1 positivity seems to lead to broader environmental allergen IgE sensitization. The Gal d 1 IgE reactivity appears to be a very good predictor of HE clinical allergy. Gal d 1 positive children have a high frequency of HE allergy, whereas Gal d 1 negative children have a high frequency of tolerance to boiled egg. Multiple specific IgE detection by means of ISAC improves the diagnostic approach in HE allergic children, disclosing other food and inhalant allergic sensitizations, anyhow requiring a comprehensive clinical evaluation. © 2011 Blackwell Publishing Ltd.
Electrochemical treatment of evaporated residue of soak liquor generated from leather industry.
Boopathy, R; Sekaran, G
2013-09-15
The organic and suspended solids present in soak liquor, generated from leather industry, demands treatment. The soak liquor is being segregated and evaporated in solar evaporation pans/multiple effect evaporator due to non availability of viable technology for its treatment. The residue left behind in the pans/evaporator does not carry any reuse value and also faces disposal threat due to the presence of high concentration of sodium chloride, organic and bacterial impurities. In the present investigation, the aqueous evaporated residue of soak liquor (ERSL) was treated by electrochemical oxidation. Graphite/graphite and SS304/graphite systems were used in electrochemical oxidation of organics in ERSL. Among these, graphite/graphite system was found to be effective over SS304/graphite system. Hence, the optimised conditions for the electrochemical oxidation of organics in ERSL using graphite/graphite system was evaluated by response surface methodology (RSM). The mass transport coefficient (km) was calculated based on pseudo-first order rate kinetics for both the electrode systems (graphite/graphite and SS304/graphite). The thermodynamic properties illustrated the electrochemical oxidation was exothermic and non-spontaneous in nature. The calculated specific energy consumption at the optimum current density of 50 mA cm(-2) was 0.41 kWh m(-3) for the removal of COD and 2.57 kWh m(-3) for the removal of TKN. Copyright © 2013 Elsevier B.V. All rights reserved.
AGC-2 Graphite Pre-irradiation Data Package
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Swank; Joseph Lord; David Rohrbaugh
2010-08-01
The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterizedmore » prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.« less
Preparation and Characterization of Graphite Waste/CeO2 Composites
NASA Astrophysics Data System (ADS)
Kusrini, E.; Utami, C. S.; Nasruddin; Prasetyanto, E. A.; Bawono, Aji A.
2018-03-01
In this research, the chemical modification of graphite waste with CeO2 was developed and characterized. Graphite waste was pretreated with mechanical to obtain the size 200 mesh (75 μm), and thermal methods at 110°C oven for 6 hours. Here, we demonstrate final properties of graphite before modification (GBM), activated graphite (GA) and graphite/CeO2 composite with variation of 0.5, 1 and 2 g of CeO2 (G0.5; G1; G2). The effect of CeO2 concentration was observed. The presence of cerium in modified graphite samples (G0.5; G1; G2) were analyzed using SEM-EDX. The results show that the best surface area was found in G2 is 26.82 m2/g. The presence of CeO2 onto graphite surface does not significantly increase the surface area of composites.
Monolithic porous graphitic carbons obtained through catalytic graphitization of carbon xerogels
NASA Astrophysics Data System (ADS)
Kiciński, Wojciech; Norek, Małgorzata; Bystrzejewski, Michał
2013-01-01
Pyrolysis of organic xerogels accompanied by catalytic graphitization and followed by selective-combustion purification was used to produce porous graphitic carbons. Organic gels impregnated with iron(III) chloride or nickel(II) acetate were obtained through polymerization of resorcinol and furfural. During the pyrolysis stage graphitization of the gel matrix occurs, which in turn develops mesoporosity of the obtained carbons. The evolution of the carbon into graphitic structures is strongly dependent on the concentrations of the transition metal. Pyrolysis leads to monoliths of carbon xerogel characterized by substantially enhanced mesoporosity resulting in specific surface areas up to 400 m2/g. Removal of the amorphous carbon by selective-combustion purification reduces the xerogels' mesoporosity, occasionally causing loss of their mechanical strength. The graphitized carbon xerogels were investigated by means of SEM, XRD, Raman scattering, TG-DTA and N2 physisorption. Through this procedure well graphitized carbonaceous materials can be obtained as bulk pieces.
Friction and wear of carbon-graphite materials for high energy brakes
NASA Technical Reports Server (NTRS)
Bill, R. C.
1975-01-01
Caliper-type brakes simulation experiments were conducted on seven different carbon-graphite material formulations against a steel disk material and against a carbon-graphite disk material. The effects of binder level, boron carbide (B4C) additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level and additions of B4C each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. This transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur. The exposure of the fiber structure of the cloth constituent is believed to play a role in the shear film disruption.
Boiling process modelling peculiarities analysis of the vacuum boiler
NASA Astrophysics Data System (ADS)
Slobodina, E. N.; Mikhailov, A. G.
2017-06-01
The analysis of the low and medium powered boiler equipment development was carried out, boiler units possible development directions with the purpose of energy efficiency improvement were identified. Engineering studies for the vacuum boilers applying are represented. Vacuum boiler heat-exchange processes where boiling water is the working body are considered. Heat-exchange intensification method under boiling at the maximum heat- transfer coefficient is examined. As a result of the conducted calculation studies, heat-transfer coefficients variation curves depending on the pressure, calculated through the analytical and numerical methodologies were obtained. The conclusion about the possibility of numerical computing method application through RPI ANSYS CFX for the boiling process description in boiler vacuum volume was given.
Dearden, John C
2003-08-01
Boiling point, vapor pressure, and melting point are important physicochemical properties in the modeling of the distribution and fate of chemicals in the environment. However, such data often are not available, and therefore must be estimated. Over the years, many attempts have been made to calculate boiling points, vapor pressures, and melting points by using quantitative structure-property relationships, and this review examines and discusses the work published in this area, and concentrates particularly on recent studies. A number of software programs are commercially available for the calculation of boiling point, vapor pressure, and melting point, and these have been tested for their predictive ability with a test set of 100 organic chemicals.
Estimating surface temperature in forced convection nucleate boiling - A simplified method
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Papell, S. S.
1977-01-01
A simplified expression to estimate surface temperatures in forced convection boiling was developed using a liquid nitrogen data base. Using the principal of corresponding states and the Kutateladze relation for maximum pool boiling heat flux, the expression was normalized for use with other fluids. The expression was applied also to neon and water. For the neon data base, the agreement was acceptable with the exclusion of one set suspected to be in the transition boiling regime. For the water data base at reduced pressure greater than 0.05 the agreement is generally good. At lower reduced pressures, the water data scatter and the calculated temperature becomes a function of flow rate.
3. RW Meyer Sugar Mill: 18761889. Sorghum pan and boiling ...
3. RW Meyer Sugar Mill: 1876-1889. Sorghum pan and boiling range flue. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: South side of sorghum pan and boiling range flue. In the sorghum pan heat was applied to the cane juice to clarify it, evaporate its water content, and concentrate the sugar crystals. Hot gasses moved through the flue underneath the entire copper bottom of the sorghum pan from the furnace (east) end to the smokestack (west) end of the boiling range. The sorghum pan sides are of redwood. The flue is built of fire-brick, masonry, and portland cement. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Critical heat flux for free convection boiling in thin rectangular channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Lap Y.; Tichler, P.R.
A review of the experimental data on free convection boiling critical heat flux (CHF) in vertical rectangular channels reveals three mechanisms of burnout. They are the pool boiling limit, the circulation limit, and the flooding limit associated with a transition in flow regime from churn to annular flow. The dominance of a particular mechanism depends on the dimensions of the channel. Analytical models were developed for each free convection boiling limit. Limited agreement with data is observed. A CHF correlation, which is valid for a wide range of gap sizes, was constructed from the CHFs calculated according to the threemore » mechanisms of burnout. 17 refs., 7 figs.« less
The purity of water at hospital and at home as a problem of intercultural understanding.
Burghart, R
1996-03-01
Women in a provincial town in southern Nepal were instructed by medical doctors and compounders to boil water, and to keep it boiling for 15 minutes before mixing it with infant formula or oral rehydration salts. Most women ignored the advice. Those who seemed to follow it merely brought the water to boil. This report describes how and why women boil water and assesses the health implications of their practices. The failure of women to adopt "proper" procedures procedures provides a point of entry into an analysis of the role of intercultural dialogue in exposing one's presuppositions about health and empowering one to change them.
BOILING HEAT TRANSFER IN ZERO GRAVITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zara, E.A.
1964-01-01
The preliminary results of a research program to determine the effects of zero and near zero gravity on boiling heat transfer are presented. Zero gravity conditions were obtained on the ASD KC-135 zero gravity test aircraft, capable of providing 30-seconds of zero gravity. Results of the program to date indicate that nucleate (bubble) boiling heat transfer rates are not greatly affected by the absence of gravity forces. However, radical pressure increases were observed that will dictate special design considerations to space vehicle systems utilizing pool boiling processes, such as cryogenic or other fluid storage vessels where thermal input to themore » fluid is used for vessel pressurization. (auth)« less
NASA Astrophysics Data System (ADS)
Lee, Su-Yoon; Jeong, Ye-Jin; Chae, So-Ryong; Yeon, Kyeong-Ho; Lee, Yunkyu; Kim, Chan-Soo; Jeong, Nam-Jo; Park, Jin-Soo
2016-04-01
Performance of graphite foil electrodes coated by porous carbon black (i.e., Vulcan) was investigated in comparison with metal electrodes for reverse electrodialysis (RED) application. The electrode slurry that was used for fabrication of the porous carbon-coated graphite foil is composed of 7.2 wt% of carbon black (Vulcan X-72), 0.8 wt% of a polymer binder (polyvinylidene fluoride, PVdF), and 92.0 wt% of a mixing solvent (dimethylacetamide, DMAc). Cyclic voltammograms of both the porous carbon (i.e., Vulcan)-coated graphite foil electrode and the graphite foil electrode without Vulcan showed good reversibility in the hexacyanoferrate(III) (i.e., Fe(CN)63-) and hexacyanoferrate(II) (i.e., Fe(CN)64-) redox couple and 1 M Na2SO4 at room temperature. However, anodic and cathodic current of the Vulcan-coated graphite foil electrode was much higher than those of the graphite foil electrode. Using a bench-scale RED stack, the current-voltage polarization curve of the Vulcan-coated graphite electrode was compared to that of metal electrodes such as iridium (Ir) and platinum (Pt). From the results, it was confirmed that resistance of four different electrodes increased with the following order: the Vulcan-coated graphite foil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, Mark Christopher
2015-07-01
This report details the initial comparison of mechanical strength properties between the cylindrical nuclear-grade graphite specimens irradiated in the second Advanced Graphite Creep (AGC-2) experiment with the established baseline, or unirradiated, mechanical properties compiled in the Baseline Graphite Characterization program. The overall comparative analysis will describe the development of an appropriate test protocol for irradiated specimens, the execution of the mechanical tests on the AGC-2 sample population, and will further discuss the data in terms of developing an accurate irradiated property distribution in the limited amount of irradiated data by leveraging the considerably larger property datasets being captured in themore » Baseline Graphite Characterization program. Integrating information on the inherent variability in nuclear-grade graphite with more complete datasets is one of the goals of the VHTR Graphite Materials program. Between “sister” specimens, or specimens with the same geometry machined from the same sub-block of graphite from which the irradiated AGC specimens were extracted, and the Baseline datasets, a comprehensive body of data will exist that can provide both a direct and indirect indication of the full irradiated property distributions that can be expected of irradiated nuclear-grade graphite while in service in a VHTR system. While the most critical data will remain the actual irradiated property measurements, expansion of this data into accurate distributions based on the inherent variability in graphite properties will be a crucial step in qualifying graphite for nuclear use as a structural material in a VHTR environment.« less
Influence of graphite-alloy interactions on corrosion of Ni-Mo-Cr alloy in molten fluorides
NASA Astrophysics Data System (ADS)
Ai, Hua; Hou, Juan; Ye, Xiang-Xi; Zeng, Chao Liu; Sun, Hua; Li, Xiaoyun; Yu, Guojun; Zhou, Xingtai; Wang, Jian-Qiang
2018-05-01
In this study, the effects of graphite-alloy interaction on corrosion of Ni-Mo-Cr alloy in molten FLiNaK salt were investigated. The corrosion tests of Ni-Mo-Cr alloys were conducted in graphite crucibles, to examine the differences of test specimens in conditions of electric contact and isolated with graphite, respectively. The corrosion attack is severer with more weight loss and deeper Cr depletion layer in samples electric contact with graphite than those isolated with graphite. The occurrence of galvanic corrosion between alloy specimens and graphite container was confirmed by electrochemical measurement. The corrosion is controlled by nonelectric transfer in isolated test while electrochemical reaction accelerated corrosion in electric contact test.
The origin of epigenetic graphite: evidence from isotopes
Weis, P.L.; Friedman, I.; Gleason, J.P.
1981-01-01
Stable carbon isotope ratios measured in syngenetic graphite, epigenetic graphite, and graphitic marble suggests that syngenetic graphite forms only by the metamorphism of carbonaceous detritus. Metamorphism of calcareous rocks with carbonaceous detritus is accompanied by an exchange of carbon between the two, which may result in large changes in isotopic composition of the non-carbonate phase but does not affect the relative proportions of the two reactants in the rock. Epigenetic graphite forms only from carbonaceous material or preexisting graphite. The reactions involved are the water gas reaction (C + H2O ??? CO + H2) at 800-900??C, and the Boudouard reaction (2CO ??? C + CO2), which probably takes place at temperatures about 50-100??C lower. ?? 1982.
Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets
Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.
2010-11-02
The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.
METHOD FOR COATING GRAPHITE WITH METALLIC CARBIDES
Steinberg, M.A.
1960-03-22
A method for producing refractory coatings of metallic carbides on graphite was developed. In particular, the graphite piece to be coated is immersed in a molten solution of 4 to 5% by weight of zirconium, titanium, or niobium dissolved in tin. The solution is heated in an argon atmosphere to above 1400 deg C, whereby the refractory metal reacts with the surface of the graphite to form a layer of metalic carbide. The molten solution is cooled to 300 to 400 deg C, and the graphite piece is removed. Excess tin is wiped from the graphite, which is then heated in vacuum to above 2300 deg C. The tin vaporizes from the graphite surface, leaving the surface coated with a tenacious layer of refractory metallic carbide.
Recent Advances in Preparation, Structure, Properties and Applications of Graphite Oxide.
Srivastava, Suneel Kumar; Pionteck, Jürgen
2015-03-01
Graphite oxide, also referred as graphitic oxide or graphitic acid, is an oxidized bulk product of graphite with a variable composition. However, it did not receive immense attention until it was identified as an important and easily obtainable precursor for the preparation of graphene. This inspired many researchers to explore facts related to graphite oxide in exploiting its fascinating features. The present article culminates up-dated review on different preparative methods, morphology and characterization of physical/chemical properties of graphite oxide by XRD, XPS, FTIR, Raman, NMR, UV-visible, and DRIFT analyses. Finally, recent developments on intercalation and applications of GO in multifaceted areas of catalysis, sensor, supercapacitors, water purification, hydrogen storage and magnetic shielding etc. has also been reviewed.
CMB-13 research on carbon and graphite
NASA Technical Reports Server (NTRS)
Smith, M. C.
1972-01-01
The research on graphite and carbon for this period is reported. Topics discussed include: effects of grinding on the Santa Marie graphites, properties and purities of coal-tar, resin-bonded graphite, carbonization of resin components, and glass-like carbon filler.
Tribological Analysis of Copper-Coated Graphite Particle-Reinforced A359 Al/5 wt.% SiC Composites
NASA Astrophysics Data System (ADS)
Lin, C. B.; Wang, T. C.; Chang, Z. C.; Chu, H. Y.
2013-01-01
Copper-coated graphite particles can be mass-produced by the cementation process using simple equipment. Graphite particulates that were coated with electroless copper and 5 wt.% SiC particulates were introduced into an aluminum alloy by compocasting to make A359 Al/5 wt.% SiC(p) composite that contained 2, 4, 6, and 8 wt.% graphite particulate composite. The effects of SiC particles, quantity of graphite particles, normal loading, sliding speed and wear debris on the coefficient of friction, and the wear rate were investigated. The results thus obtained indicate that the wear properties were improved by adding small amounts of SiC and graphite particles into the A359 Al alloy. The coefficient of friction of the A359 Al/5 wt.% SiC(p) composite that contained 6.0 wt.% graphite particulates was reduced to 0.246 and the amount of graphite film that was released on the worn surface increased with the graphite particulate content. The coefficient of friction and the wear rate were insensitive to the variation in the sliding speed and normal loading.
Bien, T N; Gul, W H; Bac, L H; Kim, J C
2014-11-01
Copper-graphite nanocomposites containing 5 vol.% graphite were prepared by a powder metallurgy route using an electrical wire explosion (EEW) in liquid method and spark plasma sintering (SPS) process. Graphite rods with a 0.3 mm diameter and copper wire with a 0.2 mm diameter were used as raw materials for EEWin liquid. To compare, a pure copper and copper-graphite mixture was also prepared. The fabricated graphite was in the form of a nanosheet, onto which copper particles were coated. Sintering was performed at 900 degrees C at a heating rate of 30 degrees C/min for 10 min and under a pressure of 70 MPa. The density of the sintered composite samples was measured by the Archimedes method. A wear test was performed by a ball-on-disc tribometer under dry conditions at room temperature in air. The presence of graphite effectively reduced the wear of composites. The copper-graphite nanocomposites prepared by EEW had lower wear rates than pure copper material and simple mixed copper-graphite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Na; Jia, Zhe; Wang, Zhihui
Here in this paper, the structure degradation of commercial Lithium-ion battery (LIB) graphite anodes with different cycling numbers and charge rates was investigated by focused ion beam (FIB) and scanning electron microscopy (SEM). The cross-section image of graphite anode by FIB milling shows that cracks, resulted in the volume expansion of graphite electrode during long-term cycling, were formed in parallel with the current collector. The crack occurs in the bulk of graphite particles near the lithium insertion surface, which might derive from the stress induced during lithiation and de-lithiation cycles. Subsequently, crack takes place along grain boundaries of the polycrystallinemore » graphite, but only in the direction parallel with the current collector. Furthermore, fast charge graphite electrodes are more prone to form cracks since the tensile strength of graphite is more likely to be surpassed at higher charge rates. Therefore, for LIBs long-term or high charge rate applications, the tensile strength of graphite anode should be taken into account.« less
Lin, Na; Jia, Zhe; Wang, Zhihui; ...
2017-10-01
Here in this paper, the structure degradation of commercial Lithium-ion battery (LIB) graphite anodes with different cycling numbers and charge rates was investigated by focused ion beam (FIB) and scanning electron microscopy (SEM). The cross-section image of graphite anode by FIB milling shows that cracks, resulted in the volume expansion of graphite electrode during long-term cycling, were formed in parallel with the current collector. The crack occurs in the bulk of graphite particles near the lithium insertion surface, which might derive from the stress induced during lithiation and de-lithiation cycles. Subsequently, crack takes place along grain boundaries of the polycrystallinemore » graphite, but only in the direction parallel with the current collector. Furthermore, fast charge graphite electrodes are more prone to form cracks since the tensile strength of graphite is more likely to be surpassed at higher charge rates. Therefore, for LIBs long-term or high charge rate applications, the tensile strength of graphite anode should be taken into account.« less
Study of evaporating the irradiated graphite in equilibrium low-temperature plasma
NASA Astrophysics Data System (ADS)
Bespala, E. V.; Novoselov, I. Yu.; Pavlyuk, A. O.; Kotlyarevskiy, S. G.
2018-01-01
The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes 137Cs, 60Co, 90Sr, 36Cl, and 3H. A method was developed for processing of irradiated graphite ensuring the volu-metric decontamination of samples. The calculation results are presented for equilibrium composition of plasma-chemical reactions in systems "irradiated graphite-argon" and "irradiated graphite-helium" for a wide range of tem-peratures. The paper describes a developed mathematical model for the process of purification of a porous graphite surface treated by equilibrium low-temperature plasma. The simulation results are presented for the rate of sublimation of radioactive contaminants as a function of plasma temperature and plasma flow velocity when different plasma-forming gases are used. The extraction coefficient for the contaminant 137Cs from the outer side of graphite pores was calculated. The calculations demonstrated the advantages of using a lighter plasma forming gas, i.e., helium.
Hybridized polymer matrix composites
NASA Technical Reports Server (NTRS)
House, E. E.; Hoggatt, J. T.; Symonds, W. A.
1980-01-01
The extent to which graphite fibers are released from resin matrix composites that are exposed to fire and impact conditions was determined. Laboratory simulations of those conditions that could exist in the event of an aircraft crash and burn situation were evaluated. The effectiveness of various hybridizing concepts in preventing this release of graphite fibers were also evaluated. The baseline (i.e., unhybridized) laminates examined were prepared from commercially available graphite/epoxy, graphite/polyimide, and graphite/phenolic materials. Hybridizing concepts investigated included resin fillers, laminate coatings, resin blending, and mechanical interlocking of the graphite reinforcement. The baseline and hybridized laminates' mechanical properties, before and after isothermal and humidity aging, were also compared. It was found that a small amount of graphite fiber was released from the graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that several hybrid concepts eliminated this fiber release. Isothermal and humidity aging did not appear to alter the fiber release tendencies.
A study of forced convection boiling under reduced gravity
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.
1992-01-01
This report presents the results of activities conducted over the period 1/2/85-12/31/90, in which the study of forced convection boiling under reduced gravity was initiated. The study seeks to improve the understanding of the basic processes that constitute forced convection boiling by removing the buoyancy effects which may mask other phenomena. Specific objectives may also be expressed in terms of the following questions: (1) what effects, if any, will the removal of body forces to the lowest possible levels have on the forced convection boiling heat transfer processes in well-defined and meaningful circumstances? (this includes those effects and processes associated with the nucleation or onset of boiling during the transient increase in heater surface temperature, as well as the heat transfer and vapor bubble behaviors with established or steady-state conditions); and (2) if such effects are present, what are the boundaries of the relevant parameters such as heat flux, heater surface superheat, fluid velocity, bulk subcooling, and geometric/orientation relationships within which such effects will be produced?
Perugini, Monia; Visciano, Pierina; Manera, Maurizio; Abete, Maria Cesarina; Gavinelli, Stefania; Amorena, Michele
2013-11-01
The aim of this study was to evaluate mercury and selenium distribution in different portions (exoskeleton, white meat and brown meat) of Norway lobster (Nephrops norvegicus). Some samples were also analysed as whole specimens. The same portions were also examined after boiling, in order to observe if this cooking practice could affect mercury and selenium concentrations. The highest mercury concentrations were detected in white meat, exceeding in all cases the maximum levels established by European legislation. The brown meat reported the highest selenium concentrations. In all boiled samples, mercury levels showed a statistically significant increase compared to raw portions. On the contrary, selenium concentrations detected in boiled samples of white meat, brown meat and whole specimen showed a statistically significant decrease compared to the corresponding raw samples. These results indicate that boiling modifies mercury and selenium concentrations. The high mercury levels detected represent a possible risk for consumers, and the publication and diffusion of specific advisories concerning seafood consumption is recommended.
NASA Astrophysics Data System (ADS)
Seiler, J. M.; Rameau, B.
Bundle sodium boiling in nominal geometry for different accident conditions is reviewed. Voiding of a subassembly is controlled by not only hydrodynamic effects but mainly by thermal effects. There is a strong influence of the thermal inertia of the bundle material compared to the sodium thermal inertia. Flow instability, during a slow transient, can be analyzed with numerical tools and estimated using simplified approximations. Stable boiling operational conditions under bundle mixed convection (natural convection in the reactor) can be predicted. Voiding during a fast transient can be approximated from single channel calculations. The phenomenology of boiling behavior for a subassembly with inlet completely blocked, submitted to decay heat and lateral cooling; two-phase sodium flow pressure drop in a tube of large hydraulic diameter under adiabatic conditions; critical flow phenomena and voiding rate under high power, slow transient conditions; and onset of dry out under local boiling remains problematical.
Low gravity quenching of hot tubes with cryogens
NASA Technical Reports Server (NTRS)
Antar, Basil N.; Collins, Frank G.; Kawaji, M.
1992-01-01
An experimental proceedure for examining flow boiling in low gravity environment is presented. The proceedure involves both ground based and KC-135 flight experiments. Two experimental apparati were employed, one for studying subcooled liquid boiling and another for examining saturated liquid boiling. For the saturated flow experiments, liquid nitrogen was used while freon 113 was used for the subcooled flow experiments. The boiling phenomenon was investigated in both cases using flow visualization techniques as well as tube wall temperature measurements. The flow field in both cases was established by injecting cold liquid in a heated tube whose temperature was set above the saturation values. The tubes were both vertically and horizontally supported with the liquid injected from the lower end of the tube. The results indicate substantial differences in the flow patterns established during boiling between the ground based, (1-g), experiments and the flight experiments, (low-g). These differences in the flow patterns will be discussed and some explanations will be offered.
Skin infection - staphylococcal; Infection - skin - staph; Staph skin infection; Carbunculosis; Boil ... aureus ). A carbuncle is a cluster of several skin boils ( furuncles ). The infected mass is filled with ...
Chemical Characterization and Removal of C-14 from Irradiated Graphite-12010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleaver, James; McCrory, Shilo; Smith, Tara E.
2012-07-01
Quantities of irradiated graphite waste are expected to drastically increase, which indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 (C-14), with a half-life of 5730 years. Study of irradiated graphite from nuclear reactors indicates C-14 is concentrated on the outer 5 mm of the graphite structure. The aim of the research described here is to identify the chemical form of C-14 in irradiated graphite and develop a practical method by which C-14 can be removed. Characterization of pre- and post-irradiation graphite was conducted to determine bond type, functionalmore » groups, location and concentration of C-14 and its precursors via the use of surface sensitive characterization techniques. Because most surface C-14 originates from neutron activation of nitrogen, an understanding of nitrogen bonding to graphite may lead to a greater understanding of the formation pathway of C-14. However, no single technique provides a complete picture. Therefore, a portfolio of techniques has been developed, with each technique providing another piece to the puzzle that is the chemical nature of the C-14. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), and Raman Spectroscopy were used to evaluate the morphological features of graphite samples. The concentration, chemical composition, and bonding characteristics of C-14 and its precursors were determined through X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (SIMS), and Auger and Energy Dispersive X-ray Analysis Spectroscopy (EDX). High-surface-area graphite foam, POCOFoam{sup R}, was exposed to liquid nitrogen and irradiated. Characterization of this material has shown C-14 to C-12 ratios of 0.035. This information was used to optimize the thermal treatment of graphite. Thermal treatment of irradiated graphite as reported by Fachinger et al. (2007) uses naturally adsorbed oxygen complexes to gasify graphite, thus its effectiveness is highly dependent on the availability of adsorbed oxygen compounds. In research presented, the quantity and form of adsorbed oxygen complexes in pre- and post irradiated graphite was studied using SIMS and XPS. SIMS and XPS detected adsorbed oxygen compounds on both irradiated and unirradiated graphite. During thermal treatment graphite samples are heated in the presence of inert argon gas, which carries off gaseous products released during treatment. Experiments were performed at 900 deg. C and 1400 deg. C to evaluate the selective removal of C-14. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.Y.; Bentz, J.H.; Simpson, R.B.
1995-06-01
Reactor-scale ex-vessel boiling experiments were performed in the CYBL facility at Sandia National Laboratories. The boiling flow pattern outside the RPV bottom head shows a center pulsating region and an outer steady two-phase boundary layer region. The local heat transfer data can be correlated in terms of a modified Rohsenow correlation.
Gonzales-Castañeda, Cynthia; Gonzales, Gustavo F
2008-02-01
Lepidium meyenii (maca) is a plant that grows exclusively in the Peruvian Central Andes, where ultraviolet radiation (UVR) is predominant. Determine if two extracts of maca can provide dermal protection against UVR. We have administered two maca extracts (0.13 mg/ml), one obtained after boiling and the other without boiling, on the dorsal surface of male Holtzman rats exposed to UVC radiation once a week during 3 consecutive weeks. A dose-response effect of an aqueous extract of maca after a boiling process under exposure of rats to UVA, UVB, or UVC was also studied. A commercial sunscreen was used as a positive control. UVR caused significant increase in skin epidermal thickness. The epidermal height in animals treated with maca was similar to those who did not receive UVR. The aqueous extract of maca after a boiling process had better effect than maca extract without a boiling process. A dose-response effect was observed with increasing doses of aqueous extract of maca after a boiling process. Maca extract had benzyl glucosinolates and polyphenols. Maca extracts protect the skin of rats against UV irradiations and can be suggested as an alternative means of solar protection.
Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Wang, Yak-Nam; Crum, Lawrence A.; Bailey, Michael R.
2012-01-01
Atomization and fountain formation is a well-known phenomenon that occurs when a focused ultrasound wave in liquid encounters an air interface. High intensity focused ultrasound (HIFU) has been shown to fractionate tissue into submicron-size fragments in a process termed boiling histotripsy, wherein the focused ultrasound wave superheats the tissue at the focus, producing a millimetre-size boiling or vapour bubble in several milliseconds. Yet the question of how this millimetre-size boiling bubble creates submicron-size tissue fragments remains. The hypothesis of this work is that tissue can behave as a liquid such that it forms a fountain and atomization within the vapour bubble produced in boiling histotripsy. We describe an experiment, in which a 2-MHz HIFU transducer (maximum in situ intensity of 24,000 W/cm2) was aligned with an air-tissue interface meant to simulate the boiling bubble. Atomization and fountain formation were observed with high-speed photography and resulted in tissue erosion. Histological examination of the atomized tissue showed whole and fragmented cells and nuclei. Air-liquid interfaces were also filmed. Our conclusion was that HIFU can fountain and atomize tissue. Although this process does not entirely mimic what was observed in liquids, it does explain many aspects of tissue fractionation in boiling histotripsy. PMID:23159812
THE FREEZING POINT DEPRESSION OF MAMMALIAN TISSUES AFTER SUDDEN HEATING IN BOILING DISTILLED WATER
Appelboom, Johannes W. Th.; Brodsky, William A.; Tuttle, William S.; Diamond, Israel
1958-01-01
The calculated freezing point depression of freshly excised boiled mammalian tissue is approximately the same as that of plasma. The boiling procedure was chosen to eliminate the influence of metabolism on the level of the freezing point depression. Problems created by the boiling, such as equilibrium between tissue and diluent, change in activity coefficient by dilution, and loss of CO2 content, are discussed. A frozen crushed tissue homogenate is hypertonic to plasma. Boiling and dilution of such hypertonic homogenate exposed to room temperature for 5 to 15 minutes did not produce significant or unexplicable decreases in its osmotic activity. Moreover, freezing and crushing of a boiled diluted tissue did not produce any increase of the isoosmotic level of freezing point depression. It is possible to explain these data either with the hypothesis of hypertonic cell fluid or with that of isotonic cell fluid. In the case of an assumed isotonic cell fluid, data can be explained with one assumption, experimentally backed. In the case of an assumed hypertonic theory data can be explained only with the help of at least three ad hoc postulates. The data support the validity of the classical concept which holds that cell fluid is isotonic to extracellular fluid. PMID:13563805
Numerical Modeling of Propellant Boil-Off in a Cryogenic Storage Tank
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.; Sass, J. P.; Fesmire, J. E.
2007-01-01
A numerical model to predict boil-off of stored propellant in large spherical cryogenic tanks has been developed. Accurate prediction of tank boil-off rates for different thermal insulation systems was the goal of this collaboration effort. The Generalized Fluid System Simulation Program, integrating flow analysis and conjugate heat transfer for solving complex fluid system problems, was used to create the model. Calculation of tank boil-off rate requires simultaneous simulation of heat transfer processes among liquid propellant, vapor ullage space, and tank structure. The reference tank for the boil-off model was the 850,000 gallon liquid hydrogen tank at Launch Complex 39B (LC- 39B) at Kennedy Space Center, which is under study for future infrastructure improvements to support the Constellation program. The methodology employed in the numerical model was validated using a sub-scale model and tank. Experimental test data from a 1/15th scale version of the LC-39B tank using both liquid hydrogen and liquid nitrogen were used to anchor the analytical predictions of the sub-scale model. Favorable correlations between sub-scale model and experimental test data have provided confidence in full-scale tank boil-off predictions. These methods are now being used in the preliminary design for other cases including future launch vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucci, Matteo; Seong, Jee H.; Buongiorno, Jdacopo
Here we report on MIT’s THM work in Q4 2016 and Q1 2017. The goal of this project is to design, construct and execute tests of flow boiling critical heat flux (CHF) at high-pressure using high-resolution and high-speed video and infrared (IR) thermometry, to generate unique data to inform the development of and validate mechanistic boiling heat transfer and CHF models. In FY2016, a new test section was designed and fabricated. Data was collected at atmospheric conditions at 10, 25 and 50 K subcoolings, and three mass fluxes, i.e. 500, 750 and 1000 kg/m2/s. Starting in Q4 2016 and continuingmore » forward, new post-processing techniques have been developed to analyze the data collected. These new algorithms analyze the time-dependent temperature and heat flux distributions to calculate nucleation site density, nucleation frequency, growth and wait time, dry area fraction, and the complete heat flux partitioning. In Q1 2017 a new flow boiling loop was designed and constructed to support flow boiling tests up 10 bar pressure and 180 °C. Initial shakedown and testing has been completed. The flow loop and test section are now ready to begin high-pressure flow boiling testing.« less
Maleki, Soheila J.; Schmitt, David A.; Galeano, Maria; Hurlburt, Barry K.
2014-01-01
It has been suggested that the boiling or frying of peanuts leads to less allergenic products than roasting. Here, we have compared the digestibility of the major peanut allergens in the context of peanuts subjected to boiling, frying or roasting and in purified form. The soluble peanut extracts and the purified allergens were digested with either trypsin or pepsin and analyzed by gel electrophoresis and western blot. T-cell proliferation was measured for the purified allergens. In most cases, boiled and raw peanut proteins were similarly digestible, but the Ara h 1 protein in the boiled extracts was more resistant to digestion. Most proteins from fried and roasted peanuts were more resistant to digestion than in raw and boiled samples, and more IgE binding fragments survived digestion. High-molecular-weight fragments of Ara h1 were resistant to digestion in fried and roasted samples. Ara h 1 and Ara h 2 purified from roasted peanuts were the most resistant to digestion, but differed in their ability to stimulate T-cells. The differences in digestibility and IgE binding properties of the major allergens in roasted, fried and boiled peanuts may not explain the difference between the prevalence of peanut allergy in different countries that consume peanut following these varied processing methods. PMID:28234320
Microbiological effectiveness and cost of boiling to disinfect drinking water in rural Vietnam.
Clasen, Thomas F; Thao, Do Hoang; Boisson, Sophie; Shipin, Oleg
2008-06-15
Despite certain shortcomings, boiling is still the most common means of treating water in the home and the benchmark against which alternative household-based disinfection and filtration methods must be measured. We assessed the microbiological effectiveness and cost of boiling among a vulnerable population relying on unimproved water sources and commonly practicing boiling as a means of disinfecting water. In a 12 week study among 50 households from a rural community in Vietnam, boiling was associated with a 97% reduction in geometric mean thermotolerant coliforms (TTCs) (p < 0.001). Despite high levels of faecal contamination in source water, 37% of stored water samples from self-reported boilers met the WHO standard for safe drinking water (0 TTC/100 mL), and 38.3% fell within the low risk category (1--10 TTC/100 mL). Nevertheless, 60.5% of stored drinking water samples were positive for TTC, with 22.2% falling into the medium risk category (11--100 TTC/100 mL). The estimated cost of wood used to boil water was US$ 0.272 per month for wood collectors and US$ 1.68 per month for wood purchasers, representing approximately 0.48% to 1.04%, respectively, of the average monthly income of participating households.
Kim, So Jung; Park, So Yun; Hong, Sun-Mee; Kwon, Eun-Hye; Lee, Taek-Kyun
2016-10-01
To determine skin whitening and wrinkle improvement efficacy, glycoprotein fractions were extracted from liquid extracts of boiled sea cucumber and their effects on tyrosine and elastase inhibitory activities were assayed. Fractions above and below 50 kDa (>50 kDa and <50 kDa) were extracted via a series of steps involving: boiling, filtering, desalting and freeze drying. Cytotoxicity, skin whitening and wrinkle-removing effects of boiled liquid were determined. Our MTT data showed that neither glycoprotein fraction of boiled liquid induces cellular cytotoxicity up to a concentration of 10 mg/mL treatment of the mouse melanoma cell line, B16F10, with 10 mg/mL >50 kDa enhanced tyrosinase and elastase inhibitory activities by 50.84% and 28.78%, respectively. Correlations of the >50 kDa concentration with tyrosinase inhibitory (R2 = 0.968) and elastase inhibitory (R2 = 0.983) efficacy were significant. >50 kDa glycoprotein fraction isolated from liquid extracts of boiled sea cucumber, which can serve as a functional cosmetic ingredient for whitening and wrinkle improvement of skin. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, Brian J; Marshall, William BJ J; Martinez-Gonzalez, Jesus S
Oak Ridge National Laboratory (ORNL) and the US Nuclear Regulatory Commission (NRC) have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation systems (often referred to as casks) and spent fuel pools (SFPs). This work is divided into two main phases. The first phase investigated the applicability of peak reactivity methods currently used in SFPs to transportation and storage casks and the validation of reactivity calculations and spent fuel compositions within these methods. The second phase focuses on extending BUC beyond peak reactivity. This paper documents themore » analysis of the effects of control blade insertion history, and moderator density and burnup axial profiles for extended BWR BUC.« less
High speed hydrogen/graphite interaction
NASA Technical Reports Server (NTRS)
Kelly, A. J.; Hamman, R.; Sharma, O. P.; Harrje, D. T.
1974-01-01
Various aspects of a research program on high speed hydrogen/graphite interaction are presented. Major areas discussed are: (1) theoretical predictions of hydrogen/graphite erosion rates; (2) high temperature, nonequilibrium hydrogen flow in a nozzle; and (3) molecular beam studies of hydrogen/graphite erosion.
RECOVERY OF VALUABLE MATERIAL FROM GRAPHITE BODIES
Fromm, L.W. Jr.
1959-09-01
An electrolytic process for recovering uranium from a graphite fuel element is described. The uraniumcontaining graphite body is disposed as the anode of a cell containing a nitric acid electrolyte and a 5 amp/cm/sup 2/ current passed to induce a progressive disintegration of the graphite body. The dissolved uranium is quickly and easily separated from the resulting graphite particles by simple mechanical means, such as centrifugation, filtration, and decontamination.
Interface Character of Aluminum-Graphite Metal Matrix Composites.
1983-01-27
studied included the commer- cial A/graphite composites; layered model systems on single crystal and poly- crystalline graphite substrates as well as...composition and thickness of the composite interface, and graphite crystal orientation. 3 For the model systems in this study , single crystal graphite...been reviewed by Kingcry. Segregation at surfaces in single- crystal MgO of Fe, Cr and Sc, which were Dresent in concentrations within the single- 3phase
Structure and Performance of Epoxy Resin Cladded Graphite Used as Anode
NASA Astrophysics Data System (ADS)
Zhou, Zhentao; Li, Haijun
This paper is concerning to prepare modified natural graphite which is low-cost and advanced materials used as lithium ion battery anode using the way of cladding natural graphite with epoxy resin. The results shows that the specific capacity and circular performance of the modified natural graphite, which is prepared in the range of 600°C and 1000°C, have been apparently improved compare with the not-modified natural graphite. The first reversible capacity of the modified natural graphite is 338mAh/g and maintain more than 330mAh/g after 20 charge/discharge circles.
NASA Astrophysics Data System (ADS)
Chae, Seulki; Lee, Jeong Beom; Lee, Jae Gil; Lee, Tae-jin; Soon, Jiyong; Ryu, Ji Heon; Lee, Jin Seok; Oh, Seung M.
2017-12-01
Vinylene carbonate (VC) is attached in a ring-opened form on a graphite surface by molecular layer deposition (MLD) method, and its role as a solid electrolyte interphase (SEI) former is studied. When VC is added into the electrolyte solution of a graphite/LiNi0.5Mn1.5O4 (LNMO) full-cell, it is reductively decomposed to form an effective SEI on the graphite electrode. However, VC in the electrolyte solution has serious adverse effects due to its poor stability against electrochemical oxidation on the LNMO positive electrode. A excessive acid generation as a result of VC oxidation is observed, causing metal dissolution from the LNMO electrode. The dissolved metal ions are plated on the graphite electrode to destroy the SEI layer, eventually causing serious capacity fading and poor Coulombic efficiency. The VC derivative on the graphite surface also forms an effective SEI layer on the graphite negative electrode via reductive decomposition. The detrimental effects on the LNMO positive electrode, however, can be avoided because the bonded VC derivative on the graphite surface cannot move to the LNMO electrode. Consequently, the graphite/LNMO full-cell fabricated with the VC-attached graphite outperforms the cells without VC or with VC in the electrolyte, in terms of Coulombic efficiency and capacity retention.
Micro-fabrication method of graphite mesa microdevices based on optical lithography technology
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Wen, Donghui; Zhu, Huamin; Zhang, Xiaorui; Yang, Xing; Shi, Yunsheng; Zheng, Tianxiang
2017-12-01
Graphite mesa microdevices have incommensurate contact nanometer interfaces, superlubricity, high-speed self-retraction, and other characteristics, which have potential applications in high-performance oscillators and micro-scale switches, memory devices, and gyroscopes. However, the current method of fabricating graphite mesa microdevices is mainly based on high-cost, low efficiency electron beam lithography technology. In this paper, the processing technologies of graphite mesa microdevices with various shapes and sizes were investigated by a low-cost micro-fabrication method, which was mainly based on optical lithography technology. The characterization results showed that the optical lithography technology could realize a large-area of patterning on the graphite surface, and the graphite mesa microdevices, which have a regular shape, neat arrangement, and high verticality could be fabricated in large batches through optical lithography technology. The experiments and analyses showed that the graphite mesa microdevices fabricated through optical lithography technology basically have the same self-retracting characteristics as those fabricated through electron beam lithography technology, and the maximum size of the graphite mesa microdevices with self-retracting phenomenon can reach 10 µm × 10 µm. Therefore, the proposed method of this paper can realize the high-efficiency and low-cost processing of graphite mesa microdevices, which is significant for batch fabrication and application of graphite mesa microdevices.
Marangoni Effects in the Boiling of Binary Fluid Mixtures
NASA Technical Reports Server (NTRS)
Ahmed, Sayeed; Carey, Van P.; Motil, Brian
1996-01-01
Results of very recent experimental studies indicate that during nucleate boiling in some binary mixture, Marangoni effects augment the gravity driven flow of liquid towards the heated surface. With gravity present, it is impossible to separate the two effects. The reduced gravity environment gives an unique opportunity to explore th role of Marangoni effects on the boiling mechanisms free of gravitational body forces that obscure the role of such effects. However, recent experimental results suggest that under reduced gravity conditions, Marangoni effects is the dominant mechanism of vapor-liquid exchange at the surface for some binary mixture. To further explore such effects, experiments have been conducted with water/2-propanol mixtures at three different concentrations under normal gravity with different orientations of the heater surface and under reduce gravity aboard the DC-9 aircraft at NASA Lewis Research Center. The system pressure was sub atmospheric (approx. 8 kP at 1g(n)) and the bulk liquid temperature varied from low subcooling to near saturation. The molar concentrations of 2-propanol tested were 0.015, 0.025, and 0.1. Boiling curves were obtained both for high gravity (approx. 2g(n)) and reduce gravity (approx. 0.01g(n)). For each concentration of 2-propanol, the critical heat flux has been determined in the flight experiments only for reduced gravity conditions. Comparison of boiling curves and CHF obtained under l-g(n) an reduced gravity indicates that boiling mechanism in this mixtures is nearly independent of gravity. The results also indicate that the Marangoni mechanism is strong enough in these mixtures to sustain the boiling under reduced gravity conditions.
Canney, Michael S.; Khokhlova, Vera A.; Bessonova, Olga V.; Bailey, Michael R.; Crum, Lawrence A.
2009-01-01
Nonlinear propagation causes high intensity ultrasound waves to distort and generate higher harmonics, which are more readily absorbed and converted to heat than the fundamental frequency. Although such nonlinear effects have previously been investigated and found not to significantly alter high intensity focused ultrasound (HIFU) treatments, two results reported here change this paradigm. One is that at clinically relevant intensity levels, HIFU waves not only become distorted but form shock waves in tissue. The other is that the generated shock waves heat the tissue to boiling in much less time than predicted for undistorted or weakly distorted waves. In this study, a 2-MHz HIFU source operating at peak intensities up to 25,000 W/cm2 was used to heat transparent tissue-mimicking phantoms and ex vivo bovine liver samples. Initiation of boiling was detected using high-speed photography, a 20-MHz passive cavitation detector, and fluctuation of the drive voltage at the HIFU source. The time to boil obtained experimentally was used to quantify heating rates and was compared to calculations using weak shock theory and the shock amplitudes obtained from nonlinear modeling and from measurements with a fiber optic hydrophone. As observed experimentally and predicted by calculations, shocked focal waveforms produced boiling in as little as 3 ms and the time to initiate boiling was sensitive to small changes in HIFU output. Nonlinear heating due to shock waves is therefore important to HIFU and clinicians should be aware of the potential for very rapid boiling since it alters treatments. PMID:20018433
Bongoni, Radhika; Verkerk, Ruud; Steenbekkers, Bea; Dekker, Matthijs; Stieger, Markus
2014-09-01
The objective of this study was to gain insights into the effect of the cooking method on the liking as well as the retention of glucosinolates in broccoli. With this knowledge it can be concluded whether the health aspects of broccoli be improved by the cooking method without deteriorating sensory perception. For this, broccoli was cooked by methods commonly applied by consumers: boiling with a cold (water) start; boiling with a hot (water) start; and steaming. Firmness, greenness and amount of total glucosinolates in cooked broccoli were instrumentally determined. Sensory evaluation by untrained consumers (n = 99) for liking and sensory attributes intensity rating were performed on broccoli cooked by steaming and boiling-cold start at three time points, which resulted in 'high', 'medium', 'low' firm broccoli samples. At the end of cooking, steaming showed an increase in the amount of total glucosinolates (+17%). Boiling-hot start (-41%) and boiling-cold start (-50%) showed a decrease in amount of total glucosinolates. Sensory evaluation did not show statistically significant differences between steaming and boiling-cold start in liking at 'high' and 'medium' firmness; and in the attribute intensity ratings (except for juiciness at 'medium' firmness, and flavour at 'medium' and 'low' firmness). This study demonstrates that medium firm broccoli showed optimum liking and that steaming compared to boiled-cold start showed higher amount of glucosinolates. It is concluded that the health aspects of broccoli can be improved without reducing the sensory aspects by optimising the cooking method.
Kim, S A; Jeon, S H; Kim, N H; Kim, H W; Lee, N Y; Cho, T J; Jung, Y M; Lee, S H; Hwang, I G; Rhee, M S
2015-12-01
This study investigated changes in the microbial composition of microbrewed beer during the manufacturing processes and identified potential microbial hazards, effective critical quality control points, and potential contamination routes. Comprehensive quantitative (aerobic plate count, lactic acid bacteria, fungi, acetic acid bacteria, coliforms, and Bacillus cereus) and qualitative (Escherichia coli and eight foodborne pathogens) microbiological analyses were performed using samples of raw materials (malt and manufacturing water), semiprocessed products (saccharified wort, boiled wort, and samples taken during the fermentation and maturation process), and the final product obtained from three plants. The initial aerobic plate count and lactic acid bacteria counts in malt were 5.2 and 4.3 log CFU/g, respectively. These counts were reduced to undetectable levels by boiling but were present at 2.9 and 0.9 log CFU/ml in the final product. Fungi were initially present at 3.6 log CFU/g, although again, the microbes were eliminated by boiling; however, the level in the final product was 4.6 log CFU/ml. No E. coli or foodborne pathogens (except B. cereus) were detected. B. cereus was detected at all stages, although it was not present in the water or boiled wort (total detection rate ¼ 16.4%). Results suggest that boiling of the wort is an effective microbial control measure, but careful management of raw materials and implementation of effective control measures after boiling are needed to prevent contamination of the product after the boiling step. The results of this study may constitute useful and comprehensive information regarding the microbiological quality of microbrewed beer.
Tremonte, Patrizio; Tipaldi, Luca; Succi, Mariantonietta; Pannella, Gianfranco; Falasca, Luisa; Capilongo, Valeria; Coppola, Raffaele; Sorrentino, Elena
2014-01-01
In Italy, the sale of raw milk from vending machines has been allowed since 2004. Boiling treatment before its use is mandatory for the consumer, because the raw milk could be an important source of foodborne pathogens. This study fits into this context with the aim to evaluate the microbiological quality of 30 raw milk samples periodically collected (March 2013 to July 2013) from 3 vending machines located in Molise, a region of southern Italy. Milk samples were stored for 72 h at 4 °C and then subjected to different treatments, such as boiling and microwaving, to simulate domestic handling. The results show that all the raw milk samples examined immediately after their collection were affected by high microbial loads, with values very close to or even greater than those acceptable by Italian law. The microbial populations increased during refrigeration, reaching after 72 h values of about 8.0 log cfu/mL for Pseudomonas spp., 6.5 log cfu/mL for yeasts, and up to 4.0 log cfu/mL for Enterobacteriaceae. Boiling treatment, applied after 72 h to refrigerated milk samples, caused complete decontamination, but negatively affected the nutritional quality of the milk, as demonstrated by a drastic reduction of whey proteins. The microwave treatment at 900 W for 75 s produced microbiological decontamination similar to that of boiling, preserving the content in whey proteins of milk. The microbiological characteristics of raw milk observed in this study fully justify the obligation to boil the raw milk from vending machines before consumption. However, this study also showed that domestic boiling causes a drastic reduction in the nutritional value of milk. Microwave treatment could represent a good alternative to boiling, on the condition that the process variables are standardized for safe domestic application. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Investigation of Critical Heat Flux in Reduced Gravity Using Photomicrographic Techniques
NASA Technical Reports Server (NTRS)
Mudawar, Issam; Zhang, Hui
2003-01-01
Experiments were performed to examine the effects of body force on flow boiling critical heat flux (CHF). FC-72 was boiled along one wall of a transparent rectangular flow channel that permitted photographic study of the vapor-liquid interface just prior to CHF. High-speed video imaging techniques were used to identify dominant CHF mechanisms corresponding to different flow orientations and liquid velocities. Six different CHF regimes were identified: Wavy Vapor Layer, Pool Boiling, Stratification, Vapor Counterflow, Vapor Stagnation, and Separated Concurrent Vapor Flow. CHF showed significant sensitivity to orientation for flow velocities below 0.2 m/s, where extremely low CHF values where measured, especially with downward-facing heated wall and downflow orientations. High flow velocities dampened the effects of orientation considerably. The CHF data were used to assess the suitability of previous CHF models and correlations. It is shown the Interfacial Lift-off Model is very effective at predicting CHF for high velocities at all orientations. The flooding limit, on the other hand, is useful at estimating CHF at low velocities and for downflow orientations. A new method consisting of three dimensionless criteria is developed for determining the minimum flow velocity required to overcome body force effects on near-saturated flow boiling CHF. Vertical upflow boiling experiments were performed in pursuit of identifying the trigger mechanism for subcooled flow boiling CHF. While virtually all prior studies on flow boiling CHF concern the prediction or measurement of conditions that lead to CHF, this study was focused on events that take place during the CHF transient. High-speed video imaging and photomicrographic techniques were used to record the transient behavior of interfacial features from the last steady-state power level before CHF until the moment of power cut-off following CHF. The video records show the development of a wavy vapor layer which propagates along the heated wall, permitting cooling prior to CHF only in wetting fronts corresponding to the wave troughs. Image analysis software was developed to estimate void fraction from the individual video images. The void fraction records for subcooled flow boiling show the CHF transient is accompanied by gradual lift-off of wetting fronts culminating in some maximum vapor layer mean thickness, following which the vapor layer begins to thin down as the transition to film boiling ensues. This study proves the Interfacial Lift-off Model, which has been validated for near-saturated flow boiling CHF, is equally valid for subcooled conditions.
Graphite tail powder and liquid biofertilizer as trace elements source for ground nut
NASA Astrophysics Data System (ADS)
Hindersah, Reginawanti; Setiawati, M. Rochimi; Fitriatin, B. Natalie; Suryatama, Pujawati; Asmiran, Priyanka; Panatarani, Camellia; Joni, I. Made
2018-02-01
Utilization of graphite tail waste from the mineral beneficiation processing is very important since it contain significant amount of essential minerals which are necessary for plant growth. These mineral are required in biochemical processes and mainly play an important role as cofactor in enzymatic reaction. The objective of this research is to investigate the performance of graphite tail on supporting plant growth and yield of ground nut (Arachishypogeae L.). A field experiment has been performed to test the performance of mixed graphite tail and reduced organic matter dose. The graphite tail size were reduced to various sieved size, -80 mesh, -100 mesh and -200 mesh. The experiment was setup in randomized block design with 4 treatments and 6 replications for each treatment, while the control plot is received without graphite tail. The results demonstrated that reduced organic matter along with -200 mesh tail has potentially decreased plant height at the end of vegetative growth stage, in contrast for to -80 mesh tail amendment increased individual fresh plant biomass. Statistically, there was no change of plant nodule, individual shoot fresh and dry weight, root nodule, number of pod following any mesh of graphite tail amendment. Reducing organic matter while adding graphite tail of 5% did not change bean weight in all plot. In contrast, reduced organic matter along with 80-mesh graphite tail amendment improved the nut yield per plot. This experiment suggests that graphite tail, mainly -80 mesh graphite tail can be possibly used in legume production.
40 CFR 436.380 - Applicability; description of the graphite subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... graphite subcategory. 436.380 Section 436.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Graphite Subcategory § 436.380 Applicability; description of the graphite subcategory. The provisions of this subpart...
40 CFR 436.380 - Applicability; description of the graphite subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... graphite subcategory. 436.380 Section 436.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Graphite Subcategory § 436.380 Applicability; description of the graphite subcategory. The provisions of this subpart...
Temperature effect of friction and wear characteristics for solid lubricating graphite
NASA Astrophysics Data System (ADS)
Kim, Yeonwook; Kim, Jaehoon
2015-03-01
Graphite is one of the effective lubricant additives due to its excellent high-temperature endurance and self-lubricating properties. In this study, wear behavior of graphite used as sealing materials to cut off hot gas is evaluated at room and elevated temperature. Wear occurs on graphite seal due to the friction of driving shaft and graphite. Thus, a reciprocating wear test to evaluate the wear generated for the graphite by means of the relative motion between a shaft material and a graphite seal was carried out. The friction coefficient and specific wear rate for the changes of applied load and sliding speed were compared under different temperature conditions considering the actual operating environment. Through SEM observation of the worn surface, the lubricating film was observed and compared with test conditions.
Fabrication and testing of non-graphitic superhybrid composites
NASA Technical Reports Server (NTRS)
Lark, R. F.; Sinclair, J. H.; Chamis, C. C.
1979-01-01
A study was conducted to determine the fabrication feasibility and the mechanical properties of adhesively-bonded boron aluminum/titanium and non-graphitic fiber/epoxy resin superhybrid (NGSH) composite laminates for potential aerospace applications. The major driver for this study was the elimination of a potential graphite fiber release problem in the event of a fire. The results of the study show that non-graphitic fibers, such as S-glass and Kevlar 49, may be substituted for the graphite fibers used in superhybrid (SH) composites for some applications. As is to be expected, however, the non-graphitic superhybrids have lower stiffness properties than the graphitic superhybrids. In-plane and flexural moduli of the laminates studied in this program can be predicted reasonably well using linear laminate theory while nonlinear laminate theory is required for strength predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strizak, Joe P; Burchell, Timothy D; Windes, Will
2011-12-01
Current candidate graphite grades for the core structures of NGNP include grades NBG-17, NBG-18, PCEA and IG-430. Both NBG-17 and NBG-18 are manufactured using pitch coke, and are vibrationally molded. These medium grain products are produced by SGL Carbon SAS (France). Tayo Tanso (Japan) produces IG-430 which is a petroleum coke, isostatically molded, nuclear grade graphite. And PCEA is a medium grain, extruded graphite produced by UCAR Carbon Co. (USA) from petroleum coke. An experimental program has been initiated to develop physical and mechanical properties data for these current candidate graphites. The results will be judged against the requirements formore » nuclear grade graphites set forth in ASTM standard D 7219-05 "Standard Specification for Isotropic and Near-isotropic Nuclear Graphites". Physical properties data including thermal conductivity and coefficient of thermal expansion, and mechanical properties data including tensile, compressive and flexural strengths will be obtained using the established test methods covered in D-7219 and ASTM C 781-02 "Standard Practice for Testing Graphite and Boronated Graphite Components for High-Temperature Gas-Cooled Nuclear Reactors". Various factors known to effect the properties of graphites will be investigated. These include specimen size, spatial location within a graphite billet, specimen orientation (ag and wg) within a billet, and billet-to-billet variations. The current status of the materials characterization program is reported herein. To date billets of the four graphite grades have been procured, and detailed cut up plans for obtaining the various specimens have been prepared. Particular attention has been given to the traceability of each specimen to its spatial location and orientation within a billet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Xiao-Tao; Wang, Chen-Yi; Gao, Kun, E-mail: gaokun0451@163.com
Graphical abstract: The fitting results of R{sub sei} and R{sub ct} of three graphite/Li cells. Besides three graphite/Li cells show the similar R{sub sei}, the NG198/Li cell demonstrates a higher R{sub ct} value in all test temperatures. Especially, the R{sub ct} at 333 K is even up to 355.8 Ω cm{sup 2}. Obviously, the narrow distribution of edge plane for NG198 caused this result, and then greatly restricts its cell capacity. By contrast, CMB with bigger specific surface area and more Li{sup +} insertion points shows lower resistance at room temperature, which should help to improve its capacity. - Highlights:more » • SEI film is closely related to graphite structures and formation temperature. • The graphite with bigger surface area and more Li{sup +} insertion points behaves better. • The graphite with narrow edge plane is uncompetitive for ionic liquid electrolyte. - Abstract: The electrochemical behaviors of natural graphite (NG198), artificial graphite (AG360) and carbon microbeads (CMB) in an ionic liquid based electrolyte are investigated by cyclic voltammetry (CV). The surface and structure of three graphite materials are characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) before and after cycling. It is found that solid electrolyte interface (SEI) is closely related to graphite structure. Benefiting from larger specific surface area and more dispersed Li{sup +} insertion points, CMB shows a better Li{sup +} insertion/de-insertion behavior than NG198 and AG360. Furthermore, electrochemical impedance spectra (EIS) prove that the SEI of different graphite electrodes has different intrinsic resistance and Li{sup +} penetrability. By comparison, CMB behaves better cell performances than AG360, while the narrow edge plane makes NG198 uncompetitive as a potential anode for the ionic liquids (ILs)-type Li-ion battery.« less
Is Water at the Graphite Interface Vapor-like or Ice-like?
Qiu, Yuqing; Lupi, Laura; Molinero, Valeria
2018-04-05
Graphitic surfaces are the main component of soot, a major constituent of atmospheric aerosols. Experiments indicate that soots of different origins display a wide range of abilities to heterogeneously nucleate ice. The ability of pure graphite to nucleate ice in experiments, however, seems to be almost negligible. Nevertheless, molecular simulations with the monatomic water model mW with water-carbon interactions parameterized to reproduce the experimental contact angle of water on graphite predict that pure graphite nucleates ice. According to classical nucleation theory, the ability of a surface to nucleate ice is controlled by the binding free energy between ice immersed in liquid water and the surface. To establish whether the discrepancy in freezing efficiencies of graphite in mW simulations and experiments arises from the coarse resolution of the model or can be fixed by reparameterization, it is important to elucidate the contributions of the water-graphite, water-ice, and ice-water interfaces to the free energy, enthalpy, and entropy of binding for both water and the model. Here we use thermodynamic analysis and free energy calculations to determine these interfacial properties. We demonstrate that liquid water at the graphite interface is not ice-like or vapor-like: it has similar free energy, entropy, and enthalpy as water in the bulk. The thermodynamics of the water-graphite interface is well reproduced by the mW model. We find that the entropy of binding between graphite and ice is positive and dominated, in both experiments and simulations, by the favorable entropy of reducing the ice-water interface. Our analysis indicates that the discrepancy in freezing efficiencies of graphite in experiments and the simulations with mW arises from the inability of the model to simultaneously reproduce the contact angle of liquid water on graphite and the free energy of the ice-graphite interface. This transferability issue is intrinsic to the resolution of the model, and arises from its lack of rotational degrees of freedom.
Effect of friction on oxidative graphite intercalation and high-quality graphene formation.
Seiler, Steffen; Halbig, Christian E; Grote, Fabian; Rietsch, Philipp; Börrnert, Felix; Kaiser, Ute; Meyer, Bernd; Eigler, Siegfried
2018-02-26
Oxidative wet-chemical delamination of graphene from graphite is expected to become a scalable production method. However, the formation process of the intermediate stage-1 graphite sulfate by sulfuric acid intercalation and its subsequent oxidation are poorly understood and lattice defect formation must be avoided. Here, we demonstrate film formation of micrometer-sized graphene flakes with lattice defects down to 0.02% and visualize the carbon lattice by transmission electron microscopy at atomic resolution. Interestingly, we find that only well-ordered, highly crystalline graphite delaminates into oxo-functionalized graphene, whereas other graphite grades do not form a proper stage-1 intercalate and revert back to graphite upon hydrolysis. Ab initio molecular dynamics simulations show that ideal stacking and electronic oxidation of the graphite layers significantly reduce the friction of the moving sulfuric acid molecules, thereby facilitating intercalation. Furthermore, the evaluation of the stability of oxo-species in graphite sulfate supports an oxidation mechanism that obviates intercalation of the oxidant.
Direct Preparation of Few Layer Graphene Epoxy Nanocomposites from Untreated Flake Graphite.
Throckmorton, James; Palmese, Giuseppe
2015-07-15
The natural availability of flake graphite and the exceptional properties of graphene and graphene-polymer composites create a demand for simple, cost-effective, and scalable methods for top-down graphite exfoliation. This work presents a novel method of few layer graphite nanocomposite preparation directly from untreated flake graphite using a room temperature ionic liquid and laminar shear processing regimen. The ionic liquid serves both as a solvent and initiator for epoxy polymerization and is incorporated chemically into the matrix. This nanocomposite shows low electrical percolation (0.005 v/v) and low thickness (1-3 layers) graphite/graphene flakes by TEM. Additionally, the effect of processing conditions by rheometry and comparison with solvent-free conditions reveal the interactions between processing and matrix properties and provide insight into the theory of the chemical and physical exfoliation of graphite crystals and the resulting polymer matrix dispersion. An interaction model that correlates the interlayer shear physics of graphite flakes and processing parameters is proposed and tested.
Adsorption behavior of bisphenol A on CTAB-modified graphite
NASA Astrophysics Data System (ADS)
Wang, Li-Cong; Ni, Xin-jiong; Cao, Yu-Hua; Cao, Guang-qun
2018-01-01
In this work, the adsorption behavior of BPA on CTAB-modified graphite was investigated thoroughly to develop a novel absorbent material. Atomic force microscopy revealed that conical admicelles formed on the surface of graphite. The surface area of graphite decreased significantly from 1.46 to 0.95 m2 g-1, which confirmed the formation of the larger size admicelle instead of the original smaller particle on the surface. CTAB concentration and incubation time affected the progress of admicelle formation on the surface of graphite. Adsolubilization is key in BPA adsorption by CTAB-modified graphite. An extraordinary cation-π electron interaction between CTAB and BPA, revealed by a red-shift in the ultraviolet spectrum, as well as a hydrophobic interaction contribute substantially to BPA adsolubilization. The equilibrium adsorption capacity of the modified graphite for BPA was 125.01 mg g-1. The adsorption kinetic curves of BPA on modified graphite were shown to follow a pseudosecond-order rate. The adsorption process was observed to be both spontaneous and exothermic complied with the Freundlich model.
NASA Astrophysics Data System (ADS)
Nguyen, Minh-Thuyet; Kim, Jin-Hyung; Lee, Jung-Goo; Kim, Jin-Chun
2018-03-01
The present work studied on phases and magnetic properties of graphite nanosheets and Ni-graphite nanocomposite synthesized using the electrical explosion of wire (EEW) in ethanol. X-ray diffraction and field emission scanning electron microscope were used to investigate the phases and the morphology of the nanopowders obtained. It was found that graphite nanosheets were absolutely fabricated by EEW with a thickness of 29 nm and 3 μm diameter. The as-synthesized Ni-graphite composite powders had a Ni-coating on the surfaces of graphite sheets. The hysteresis loop of the as-exploded, the hydrogen-treated composite nanopowders and the sintered samples were examined with a vibrating sample magnetometer at room temperature. The Ni-graphite composite exposed the magnetic behaviors which are attributed to Ni component. The magnetic properties of composite had the improvement from 10.2 emu/g for the as-exploded powders to 15.8 emu/g for heat-treated powders and 49.16 emu/g for sintered samples.
NASA Astrophysics Data System (ADS)
Pietsch, Patrick; Westhoff, Daniel; Feinauer, Julian; Eller, Jens; Marone, Federica; Stampanoni, Marco; Schmidt, Volker; Wood, Vanessa
2016-09-01
Despite numerous studies presenting advances in tomographic imaging and analysis of lithium ion batteries, graphite-based anodes have received little attention. Weak X-ray attenuation of graphite and, as a result, poor contrast between graphite and the other carbon-based components in an electrode pore space renders data analysis challenging. Here we demonstrate operando tomography of weakly attenuating electrodes during electrochemical (de)lithiation. We use propagation-based phase contrast tomography to facilitate the differentiation between weakly attenuating materials and apply digital volume correlation to capture the dynamics of the electrodes during operation. After validating that we can quantify the local electrochemical activity and microstructural changes throughout graphite electrodes, we apply our technique to graphite-silicon composite electrodes. We show that microstructural changes that occur during (de)lithiation of a pure graphite electrode are of the same order of magnitude as spatial inhomogeneities within it, while strain in composite electrodes is locally pronounced and introduces significant microstructural changes.