AGC 2 Irradiated Material Properties Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohrbaugh, David Thomas
2017-05-01
The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. , Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core componentsmore » within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less
AGC 2 Irradiation Creep Strain Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windes, William E.; Rohrbaugh, David T.; Swank, W. David
2016-08-01
The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. Nuclear graphite H-451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core components within amore » commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohrbaugh, David Thomas; Windes, William; Swank, W. David
The Next Generation Nuclear Plant (NGNP) will be a helium-cooled, very high temperature reactor (VHTR) with a large graphite core. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor (HTGR) designs.[ , ] Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphites have been developed and are considered suitable candidates for the new NGNP reactor design. To support the design and licensing of NGNP core components within a commercial reactor, a completemore » properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade with a specific emphasis on data related to the life limiting effects of irradiation creep on key physical properties of the NGNP candidate graphites. Based on experience with previous graphite core components, the phenomenon of irradiation induced creep within the graphite has been shown to be critical to the total useful lifetime of graphite components. Irradiation induced creep occurs under the simultaneous application of high temperatures, neutron irradiation, and applied stresses within the graphite components. Significant internal stresses within the graphite components can result from a second phenomenon—irradiation induced dimensional change. In this case, the graphite physically changes i.e., first shrinking and then expanding with increasing neutron dose. This disparity in material volume change can induce significant internal stresses within graphite components. Irradiation induced creep relaxes these large internal stresses, thus reducing the risk of crack formation and component failure. Obviously, higher irradiation creep levels tend to relieve more internal stress, thus allowing the components longer useful lifetimes within the core. Determining the irradiation creep rates of nuclear grade graphites is critical for determining the useful lifetime of graphite components and is a major component of the Advanced Graphite Creep (AGC) experiment.« less
Carleton, John T.
1977-01-25
A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.
Long, E.; Ashley, J.W.
1958-12-16
A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.
The effect of carbon crystal structure on treat reactor physics calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, R.W.; Harrison, L.J.
1988-01-01
The Transient Reactor Test Facility (TREAT) at Argonne National Laboratory-West (ANL-W) is fueled with urania in a graphite and carbon mixture. This fuel was fabricated from a mixture of graphite flour, thermax (a thermatomic carbon produced by ''cracking'' natural gas), coal-tar resin and U/sub 3/O/sub 8/. During the fabrication process, the fuel was baked to dissociate the resin, but the high temperature necessary to graphitize the carbon in the thermax and in the resin was avoided. Therefore, the carbon crystal structure is a complex mixture of graphite particles in a nongraphitized elemental carbon matrix. Results of calculations using macroscopic carbonmore » cross sections obtained by mixing bound-kernel graphite cross sections for the graphitized carbon and free-gas carbon cross sections for the remainder of the carbon and calculations using only bound-kernel graphite cross sections are compared to experimental data. It is shown that the use of the hybridized cross sections which reflect the allotropic mixture of the carbon in the TREAT fuel results in a significant improvement in the accuracy of calculated neutronics parameters for the TREAT reactor. 6 refs., 2 figs., 3 tabs.« less
Monte Carlo Analysis of the Battery-Type High Temperature Gas Cooled Reactor
NASA Astrophysics Data System (ADS)
Grodzki, Marcin; Darnowski, Piotr; Niewiński, Grzegorz
2017-12-01
The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an `early design' variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit). A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.
Analysis of granular flow in a pebble-bed nuclear reactor.
Rycroft, Chris H; Grest, Gary S; Landry, James W; Bazant, Martin Z
2006-08-01
Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6-cm-diam spheres draining in a cylindrical vessel of diameter 3.5m and height 10 m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrose, T.W.
1965-06-04
Process and development activities reported include: depleted uranium irradiations, thoria irradiation, and hot die sizing. Reactor engineering activities include: brittle fracture of 190-C tanks, increased graphite temperature limits for the F reactor, VSR channel caulking, K reactor downcomer flow, zircaloy hydriding, and ribbed zircaloy process tubes. Reactor physics activities include: thoria irradiations, E-D irradiations, boiling protection with the high speed scanner, and in-core flux monitoring. Radiological engineering activities include: radiation control, classification, radiation occurrences, effluent activity data, and well car shielding. Process standards are listed, along with audits, and fuel failure experience. Operational physics and process physics studies are presented.more » Lastly, testing activities are detailed.« less
NASA Astrophysics Data System (ADS)
Pavliuk, A. O.; Zagumennov, V. S.; Kotlyarevskiy, S. G.; Bespala, E. V.
2018-01-01
The problems of accumulation of nuclear fuel spills in the graphite stack in the course of operation of uranium-graphite nuclear reactors are considered. The results of thermodynamic analysis of the processes in the graphite stack at dehydration of a technological channel, fuel element shell unsealing and migration of fission products, and activation of stable nuclides in structural elements of the reactor and actinides inside the graphite moderator are given. The main chemical reactions and compounds that are produced in these modes in the reactor channel during its operation and that may be hazardous after its shutdown and decommissioning are presented. Thermodynamic simulation of the equilibrium composition is performed using the specialized code TERRA. The results of thermodynamic simulation of the equilibrium composition in different cases of technological channel dehydration in the course of the reactor operation show that, if the temperature inside the active core of the nuclear reactor increases to the melting temperature of the fuel element, oxides and carbides of nuclear fuel are produced. The mathematical model of the nonstationary heat transfer in a graphite stack of a uranium-graphite reactor in the case of the technological channel dehydration is presented. The results of calculated temperature evolution at the center of the fuel element, the replaceable graphite element, the air gap, and in the surface layer of the block graphite are given. The numerical results show that, in the case of dehydration of the technological channel in the uranium-graphite reactor with metallic uranium, the main reaction product is uranium dioxide UO2 in the condensed phase. Low probability of production of pyrophoric uranium compounds (UH3) in the graphite stack is proven, which allows one to disassemble the graphite stack without the risk of spontaneous graphite ignition in the course of decommissioning of the uranium-graphite nuclear reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, Robert; Mata, Angelica; Dunzik-Gougar, Mary Lou
2016-06-01
As part of an overall effort to convert US research reactors to low-enriched uranium (LEU) fuel use, a LEU conversion fuel is being designed for the Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory. TREAT fuel compacts are comprised of UO2 fuel particles in a graphitic matrix material. In order to refine heat transfer modeling, as well as determine other physical and nuclear characteristics of the fuel, the amount and type of graphite and non-graphite phases within the fuel matrix must be known. In this study, we performed a series of complementary analyses, designed to allow detailed characterizationmore » of the graphite and phenolic resin based fuel matrix. Methods included Scanning Electron and Transmission Electron Microscopies, Raman spectroscopy, X-ray Diffraction, and Dual-Beam Focused Ion Beam Tomography. Our results indicate that no single characterization technique will yield all of the desired information; however, through the use of statistical and empirical data analysis, such as curve fitting, partial least squares regression, volume extrapolation and spectra peak ratios, a degree of certainty for the quantity of each phase can be obtained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.
1983-06-01
During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.
METHOD OF FABRICATING A GRAPHITE MODERATED REACTOR
Kratz, H.R.
1963-05-01
S>A nuclear reactor formed of spaced bodies of uranium and graphite blocks is improved by diffusing helium through the graphite blocks in order to replace the air in the pores of the graphite with helium. The helium-impregnated graphite conducts heat better, and absorbs neutrons less, than the original air- impregnated graphite. (AEC)
Calculated criticality for sup 235 U/graphite systems using the VIM Monte Carlo code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, P.J.; Grasseschi, G.L.; Olsen, D.N.
1992-01-01
Calculations for highly enriched uranium and graphite systems gained renewed interest recently for the new production modular high-temperature gas-cooled reactor (MHTGR). Experiments to validate the physics calculations for these systems are being prepared for the Transient Reactor Test Facility (TREAT) reactor at Argonne National Laboratory (ANL-West) and in the Compact Nuclear Power Source facility at Los Alamos National Laboratory. The continuous-energy Monte Carlo code VIM, or equivalently the MCNP code, can utilize fully detailed models of the MHTGR and serve as benchmarks for the approximate multigroup methods necessary in full reactor calculations. Validation of these codes and their associated nuclearmore » data did not exist for highly enriched {sup 235}U/graphite systems. Experimental data, used in development of more approximate methods, dates back to the 1960s. The authors have selected two independent sets of experiments for calculation with the VIM code. The carbon-to-uranium (C/U) ratios encompass the range of 2,000, representative of the new production MHTGR, to the ratio of 10,000 in the fuel of TREAT. Calculations used the ENDF/B-V data.« less
DE-NE0008277_PROTEUS final technical report 2018
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enqvist, Andreas
This project details re-evaluations of experiments of gas-cooled fast reactor (GCFR) core designs performed in the 1970s at the PROTEUS reactor and create a series of International Reactor Physics Experiment Evaluation Project (IRPhEP) benchmarks. Currently there are no gas-cooled fast reactor (GCFR) experiments available in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). These experiments are excellent candidates for reanalysis and development of multiple benchmarks because these experiments provide high-quality integral nuclear data relevant to the validation and refinement of thorium, neptunium, uranium, plutonium, iron, and graphite cross sections. It would be cost prohibitive to reproduce suchmore » a comprehensive suite of experimental data to support any future GCFR endeavors.« less
Marshall, J. Jr.
1961-10-24
A reactor is described in which natural-uranium bodies are located in parallel channels which extend through the graphite mass in a regular lattice. The graphite mass has additional channels that are out of the lattice and contain no uranium. These additional channels decrease in number per unit volume of graphite from the center of the reactor to the exterior and have the effect of reducing the density of the graphite more at the center than at the exterior, thereby spreading neutron activity throughout the reactor. (AEC)
Experience of on-site disposal of production uranium-graphite nuclear reactor.
Pavliuk, Alexander O; Kotlyarevskiy, Sergey G; Bespala, Evgeny V; Zakharova, Elena V; Ermolaev, Vyacheslav M; Volkova, Anna G
2018-04-01
The paper reported the experience gained in the course of decommissioning EI-2 Production Uranium-Graphite Nuclear Reactor. EI-2 was a production Uranium-Graphite Nuclear Reactor located on the Production and Demonstration Center for Uranium-Graphite Reactors JSC (PDC UGR JSC) site of Seversk City, Tomsk Region, Russia. EI-2 commenced its operation in 1958, and was shut down on December 28, 1990, having operated for the period of 33 years all together. The extra pure grade graphite for the moderator, water for the coolant, and uranium metal for the fuel were used in the reactor. During the operation nitrogen gas was passed through the graphite stack of the reactor. In the process of decommissioning the PDC UGR JSC site the cavities in the reactor space were filled with clay-based materials. A specific composite barrier material based on clays and minerals of Siberian Region was developed for the purpose. Numerical modeling demonstrated the developed clay composite would make efficient geological barriers preventing release of radionuclides into the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Graphite for the nuclear industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burchell, T.D.; Fuller, E.L.; Romanoski, G.R.
Graphite finds applications in both fission and fusion reactors. Fission reactors harness the energy liberated when heavy elements, such as uranium or plutonium, fragment or fission''. Reactors of this type have existed for nearly 50 years. The first nuclear fission reactor, Chicago Pile No. 1, was constructed of graphite under a football stand at Stagg Field, University of Chicago. Fusion energy devices will produce power by utilizing the energy produced when isotopes of the element hydrogen are fused together to form helium, the same reaction that powers our sun. The role of graphite is very different in these two reactormore » systems. Here we summarize the function of the graphite in fission and fusion reactors, detailing the reasons for their selection and discussing some of the challenges associated with their application in nuclear fission and fusion reactors. 10 refs., 15 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Cisneros, Anselmo Tomas, Jr.
The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP and PEBBED for a high temperature gas cooled pebble bed reactor. Three parametric studies were performed for exploring the design space of the PB-FHR---to select a fuel design for the PB-FHR] to select a core configuration; and to optimize the PB-FHR design. These parametric studies investigated trends in the dependence of important reactor performance parameters such as burnup, temperature reactivity feedback, radiation damage, etc on the reactor design variables and attempted to understand the underlying reactor physics responsible for these trends. A pebble fuel parametric study determined that pebble fuel should be designed with a carbon to heavy metal ratio (C/HM) less than 400 to maintain negative coolant temperature reactivity coefficients. Seed and thorium blanket-, seed and inert pebble reflector- and seed only core configurations were investigated for annular FHR PBRs---the C/HM of the blanket pebbles and discharge burnup of the thorium blanket pebbles were additional design variable for core configurations with thorium blankets. Either a thorium blanket or graphite pebble reflector is required to shield the outer graphite reflector enough to extend its service lifetime to 60 EFPY. The fuel fabrication costs and long cycle lengths of the thorium blanket fuel limit the potential economic advantages of using a thorium blanket. Therefore, the seed and pebble reflector core configuration was adopted as the baseline core configuration. Multi-objective optimization with respect to economics was performed for the PB-FHR accounting for safety and other physical design constraints derived from the high-level safety regulatory criteria. These physical constraints were applied along in a design tool, Nuclear Application Value Estimator, that evaluated a simplified cash flow economics model based on estimates of reactor performance parameters calculated using correlations based on the results of parametric design studies for a specific PB-FHR design and a set of economic assumptions about the electricity market to evaluate the economic implications of design decisions. The optimal PB-FHR design---Mark 1 PB-FHR---is described along with a detailed summary of its performance characteristics including: the burnup, the burnup evolution, temperature reactivity coefficients, the power distribution, radiation damage distributions, control element worths, decay heat curves and tritium production rates. The Mk1 PB-FHR satisfies the PB-FHR safety criteria. The fuel, moderator (pebble core, pebble shell, graphite matrix, TRISO layers) and coolant have global negative temperature reactivity coefficients and the fuel temperatures are well within their limits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strizak, Joe P; Burchell, Timothy D; Windes, Will
2011-12-01
Current candidate graphite grades for the core structures of NGNP include grades NBG-17, NBG-18, PCEA and IG-430. Both NBG-17 and NBG-18 are manufactured using pitch coke, and are vibrationally molded. These medium grain products are produced by SGL Carbon SAS (France). Tayo Tanso (Japan) produces IG-430 which is a petroleum coke, isostatically molded, nuclear grade graphite. And PCEA is a medium grain, extruded graphite produced by UCAR Carbon Co. (USA) from petroleum coke. An experimental program has been initiated to develop physical and mechanical properties data for these current candidate graphites. The results will be judged against the requirements formore » nuclear grade graphites set forth in ASTM standard D 7219-05 "Standard Specification for Isotropic and Near-isotropic Nuclear Graphites". Physical properties data including thermal conductivity and coefficient of thermal expansion, and mechanical properties data including tensile, compressive and flexural strengths will be obtained using the established test methods covered in D-7219 and ASTM C 781-02 "Standard Practice for Testing Graphite and Boronated Graphite Components for High-Temperature Gas-Cooled Nuclear Reactors". Various factors known to effect the properties of graphites will be investigated. These include specimen size, spatial location within a graphite billet, specimen orientation (ag and wg) within a billet, and billet-to-billet variations. The current status of the materials characterization program is reported herein. To date billets of the four graphite grades have been procured, and detailed cut up plans for obtaining the various specimens have been prepared. Particular attention has been given to the traceability of each specimen to its spatial location and orientation within a billet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, Mark C.
High-purity graphite is the core structural material of choice in the Very High Temperature Reactor (VHTR) design, a graphite-moderated, helium-cooled configuration capable of producing thermal energy for power generation as well as process heat for industrial applications that require temperatures higher than the outlet temperatures of present nuclear reactors. The Baseline Graphite Characterization Program is establishing accurate as-manufactured mechanical and physical property distributions in nuclear-grade graphites by providing comprehensive data that captures the level of variation in measured values. In addition to providing a thorough comparison between these values in different graphite grades, the program is also carefully tracking individualmore » specimen source, position, and orientation information in order to provide comparisons both in specific properties and in the associated variability between different lots, different billets, and different positions from within a single billet. This report is a preliminary comparison between each of the grades of graphite that are considered “candidate” grades from four major international graphite producers. These particular grades (NBG-18, NBG-17, PCEA, IG-110, and 2114) are the major focus of the evaluations presently underway on irradiated graphite properties through the series of Advanced Graphite Creep (AGC) experiments. NBG-18, a medium-grain pitch coke graphite from SGL from which billets are formed via vibration molding, was the favored structural material in the pebble-bed configuration. NBG-17 graphite from SGL is essentially NBG-18 with the grain size reduced by a factor of two. PCEA, petroleum coke graphite from GrafTech with a similar grain size to NBG-17, is formed via an extrusion process and was initially considered the favored grade for the prismatic layout. IG-110 and 2114, from Toyo Tanso and Mersen (formerly Carbone Lorraine), respectively, are fine-grain grades produced via an isomolding process. An analysis of the comparison between each of these grades will include not only the differences in fundamental and statistically-significant individual strength levels, but also the differences in the overall variability in properties within each of the grades that will ultimately provide the basis for predicting in-service performance. The comparative performance of the different types of nuclear-grade graphites will naturally continue to evolve as thousands more specimens are fully characterized with regard to strength, physical properties, and thermal performance from the numerous grades of graphite being evaluated.« less
WORKER STACKS GRAPHITE BLOCKS AGAINST INNER SOUTH WALL OF REACTOR. ...
WORKER STACKS GRAPHITE BLOCKS AGAINST INNER SOUTH WALL OF REACTOR. INL NEGATIVE NO. 3925. Unknown Photographer, 12/14/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Salinas-Juárez, María Guadalupe; Roquero, Pedro; Durán-Domínguez-de-Bazúa, María Del Carmen
2016-12-01
Plant support media may impact power output in a biological fuel cell with living plants, due to the physical and biochemical processes that take place in it. A material for support medium should provide the suitable conditions for the robust microbial growth and its metabolic activity, degrading organic matter and other substances; and, transferring electrons to the anode. To consider the implementation of this type of bio-electrochemical systems in constructed wetlands, this study analyzes the electrochemical behavior of biological fuel cells with the vegetal species Phragmites australis, by using two different support media: graphite granules and a volcanic slag, commonly known as tezontle (stone as light as hair, from the Aztec or Nahuatl language). Derived from the results, both, graphite and tezontle have the potential to be used as support medium for plants and microorganisms supporting a maximum power of 26.78mW/m(2) in graphite reactors. These reactors worked under mixed control: with ohmic and kinetic resistances of the same order of magnitude. Tezontle reactors operated under kinetic control with a high activation resistance supplying 9.73mW/m(2). These performances could be improved with stronger bacterial populations in the reactor, to ensure the rapid depletion of substrate. Copyright © 2016 Elsevier B.V. All rights reserved.
Fermi, E.
1960-04-01
A nuclear reactor is described consisting of blocks of graphite arranged in layers, natural uranium bodies disposed in holes in alternate layers of graphite blocks, and coolant tubes disposed in the layers of graphite blocks which do not contain uranium.
NASA Astrophysics Data System (ADS)
Luo, Xiao-Feng; Fang, Chao; Li, Xin; Lai, Wen-Sheng; Sun, Li-Feng; Liang, Tong-Xiang
2013-06-01
The adsorption behaviors of radioactive strontium and silver nuclides on the graphite surface in a high-temperature gas-cooled reactor are studied by first-principles theory using generalized gradient approximation (GGA) and local density approximation (LDA) pseudo-potentials. It turns out that Sr prefers to be absorbed at the hollow of the carbon hexagonal cell by 0.54 eV (GGA), while Ag likes to sit right above the carbon atom with an adsorption energy of almost zero (GGA) and 0.45 eV (LDA). Electronic structure analysis reveals that Sr donates its partial electrons of the 4p and 5s states to the graphite substrate, while Ag on graphite is a physical adsorption without any electron transfer.
CALANDRIA TYPE SODIUM GRAPHITE REACTOR
Peterson, R.M.; Mahlmeister, J.E.; Vaughn, N.E.; Sanders, W.J.; Williams, A.C.
1964-02-11
A sodium graphite power reactor in which the unclad graphite moderator and fuel elements are contained within a core tank is described. The core tank is submersed in sodium within the reactor vessel. Extending longitudinally through the core thnk are process tubes with fuel elements positioned therein. A bellows sealing means allows axial expansion and construction of the tubes. Within the core tank, a leakage plenum is located below the graphite, and above the graphite is a gas space. A vent line regulates the gas pressure in the space, and another line removes sodium from the plenum. The sodium coolant flows from the lower reactor vessel through the annular space between the fuel elements and process tubes and out into the reactor vessel space above the core tank. From there, the heated coolant is drawn off through an outlet line and sent to the heat exchange. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kascheev, Vladimir; Poluektov, Pavel; Ustinov, Oleg
The problems of spent reactor graphite are being shown, the options of its disposal is considered. Burning method is selected as the most efficient and waste-free. It is made a comparison of amounts of {sup 14}C that entering the environment in a natural way during the operation of nuclear power plants (NPPs) and as a result of the proposed burning of spent reactor graphite. It is shown the possibility of burning graphite with the arrival of {sup 14}C into the atmosphere within the maximum allowable emissions. This paper analyzes the different ways of spent reactor graphite treatment. It is shownmore » the possibility of its reprocessing by burning method in the air flow. It is estimated the effect of this technology to the overall radiation environment and compared its contribution to the general background radiation due to cosmic radiation and NPPs emission. It is estimated the maximum permissible speeds of burning reactor graphite (for example, RBMK graphite) for areas with different conditions of agricultural activities. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Sterbentz, James W.; Snoj, Luka
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
Modelling deformation and fracture of Gilsocarbon graphite subject to service environments
NASA Astrophysics Data System (ADS)
Šavija, Branko; Smith, Gillian E.; Heard, Peter J.; Sarakinou, Eleni; Darnbrough, James E.; Hallam, Keith R.; Schlangen, Erik; Flewitt, Peter E. J.
2018-02-01
Commercial graphites are used for a wide range of applications. For example, Gilsocarbon graphite is used within the reactor core of advanced gas-cooled reactors (AGRs, UK) as a moderator. In service, the mechanical properties of the graphite are changed as a result of neutron irradiation induced defects and porosity arising from radiolytic oxidation. In this paper, we discuss measurements undertaken of mechanical properties at the micro-length-scale for virgin and irradiated graphite. These data provide the necessary inputs to an experimentally-informed model that predicts the deformation and fracture properties of Gilsocarbon graphite at the centimetre length-scale, which is commensurate with laboratory test specimen data. The model predictions provide an improved understanding of how the mechanical properties and fracture characteristics of this type of graphite change as a result of exposure to the reactor service environment.
Multi-Physics Simulation of TREAT Kinetics using MAMMOTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHart, Mark; Gleicher, Frederick; Ortensi, Javier
With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific fuels transient tests range from simple temperature transients to full fuel melt accidents. The current TREAT core is driven by highly enriched uranium (HEU) dispersed in amore » graphite matrix (1:10000 U-235/C atom ratio). At the center of the core, fuel is removed allowing for the insertion of an experimental test vehicle. TREAT’s design provides experimental flexibility and inherent safety during neutron pulsing. This safety stems from the graphite in the driver fuel having a strong negative temperature coefficient of reactivity resulting from a thermal Maxwellian shift with increased leakage, as well as graphite acting as a temperature sink. Air cooling is available, but is generally used post-transient for heat removal. DOE and INL have expressed a desire to develop a simulation capability that will accurately model the experiments before they are irradiated at the facility, with an emphasis on effective and safe operation while minimizing experimental time and cost. At INL, the Multi-physics Object Oriented Simulation Environment (MOOSE) has been selected as the model development framework for this work. This paper describes the results of preliminary simulations of a TREAT fuel element under transient conditions using the MOOSE-based MAMMOTH reactor physics tool.« less
Coupled field-structural analysis of HGTR fuel brick using ABAQUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, S.; Jain, R.; Majumdar, S.
2012-07-01
High-temperature, gas-cooled reactors (HTGRs) are usually helium-gas cooled, with a graphite core that can operate at reactor outlet temperatures much higher than can conventional light water reactors. In HTGRs, graphite components moderate and reflect neutrons. During reactor operation, high temperature and high irradiation cause damage to the graphite crystal and grains and create other defects. This cumulative structural damage during the reactor lifetime leads to changes in graphite properties, which can alter the ability to support the designed loads. The aim of the present research is to develop a finite-element code using commercially available ABAQUS software for the structural integritymore » analysis of graphite core components under extreme temperature and irradiation conditions. In addition, the Reactor Geometry Generator tool-kit, developed at Argonne National Laboratory, is used to generate finite-element mesh for complex geometries such as fuel bricks with multiple pin holes and coolant flow channels. This paper presents the proposed concept and discusses results of stress analysis simulations of a fuel block with H-451 grade material properties. (authors)« less
GRAPHITE BLOCKS ARE ARRAYED IN "THERMAL COLUMN" ON NORTH SIDE ...
GRAPHITE BLOCKS ARE ARRAYED IN "THERMAL COLUMN" ON NORTH SIDE OF REACTOR. INL NEGATIVE NO. 4000. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquez, Eva; Pina, Gabriel; Rodriguez, Marina
Spain has to manage about 3700 tons of irradiated graphite from the reactor Vandellos I as radioactive waste. 2700 tons are the stack of the reactor and are still in the reactor core waiting for retrieval. The rest of the quantities, 1000 tons, are the graphite sleeves which have been already retrieved from the reactor. During operation the graphite sleeves were stored in a silo and during the dismantling stage a retrieval process was carried out separating the wires from the graphite, which were crushed and introduced into 220 cubic containers of 6 m{sup 3} each and placed in interimmore » storage. The graphite is an intermediate level radioactive waste but it contains long lived radionuclides like {sup 14}C which disqualifies disposal at the low level waste repository of El Cabril. Therefore, a new project has been started in order to investigate two new options for the management of this waste type. The first one is based on a selective decontamination of {sup 14}C by thermal methods. This method is based on results obtained at the Research Centre Juelich (FZJ) in the Frame of the EC programs 'Raphael' and 'Carbowaste'. The process developed at FZJ is based on a preferential oxidation of {sup 14}C in comparison to the bulk {sup 12}C. Explanations for this effect are the inhomogeneous distribution and a weaker bounding of {sup 14}C which is not incorporated in the graphite lattice. However these investigations have only been performed with graphite from the high temperature reactor Arbeitsgemeinschaft Versuchsreaktor Juelich AVR which has been operated in a non-oxidising condition or research reactor graphite operated at room temperature. The reactor Vandellos I has been operated with CO{sub 2} as coolant and significant amounts of graphite have been already oxidised. The aim of the project is to validate whether a {sup 14}C decontamination can also been achieved with graphite from Vandellos I. A second possibility under investigation is the encapsulation of the graphite in a long term stable glass matrix. The principal applicability has been already proved by FNAG. Crushed graphite mixed with a suitable glass powder has been pressed at elevated temperature under vacuum. The vacuum is required to avoid gas enclosures in the obtained product. The obtained products, named IGM for 'Impermeable Graphite Matrix', have densities above 99% of theoretical density. The amount of glass has been chosen with respect to the pore volume of the former graphite parts. The method allows the production of encapsulated graphite without increasing the disposal volume. This paper will give a short overview of characterisation results of different irradiated graphite materials obtained at CIEMAT and in the Carbowaste project as well as the proposed methods and the actual status of the program including first results about leaching of non-radioactive IGM samples and hopefully first tendencies concerning the C-14 separation from graphite of Vandellos I by thermal treatment. Both processes, the thermal treatment as well as the IGM, have the potential to solve problems related to the management of irradiated graphite in Spain. However the methods have only been tested with different types of i-graphite and virgin graphite, respectively. Only investigations with real i-graphite from Spain will reveal whether the described methods are applicable to graphite from Vandellos I. However all partners are convinced that one of these new methods or a combination of them will lead to a feasible option to manage i-graphite in Spain on an industrial scale. (authors)« less
REACTOR HAVING NaK-UO$sub 2$ SLURRY HELICALLY POSITIONED IN A GRAPHITE MODERATOR
Rodin, M.B.; Carter, J.C.
1962-05-15
A reactor utilizing 20% enriched uranium consists of a central graphite island in cylindrical form, with a spiral coil of tubing fitting against the central island. An external graphite moderator is placed around the central island and coil. A slurry of uranium dioxide dispersed in alkali metal passes through the coil to transfer heat externally to the reactor. There are also conventional controls for regulating the nuclear reaction. (AEC)
MODELING THE ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE IN A GRANULAR GRAPHITE-PACKED REACTOR
A comprehensive reactor model was developed for the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite cathode. The reactor model describes the dynamic processes of TCE dechlorination and adsorption, and the formation and dechlorination of all the major...
NASA Astrophysics Data System (ADS)
Krishna, R.; Jones, A. N.; McDermott, L.; Marsden, B. J.
2015-12-01
Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated 'D'peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of 'G' and 'D' in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.
2014-03-01
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess
2013-03-01
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess
2013-03-01
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
EFFECT OF MASSIVE NEUTRON EXPOSURE ON THE DISTORTION OF REACTOR GRAPHITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helm, J.W.; Davidson, J.M.
1963-05-28
Distortion of reactor-grade graphites was studied at varying neutron exposures ranging up to 14 x 10/sup 21/ neutrons per cm/sup 2/ (nvt)/sup */ at temperatures of irradiation ranging from 425 to 800 deg C. This exposure level corresponds to approximately 100,000 megawatt days per adjacent ton of fuel (Mwd/ At) in a graphite-moderated reactor. A conventionalcoke graphite, CSF, and two needle-coke graphites, NC-7 and NC-8, were studied. At all temperatures of irradiation the contraction rate of the samples cut parallel to the extrusion axis increased with increasing neutron exposure. For parallel samples the needle- coke graphites and the CSF graphitemore » contracted approximately the same amount. In the transverse direction the rate of cortraction at the higher irradiation temperntures appeared to be decreasing. Volume contractions derived from the linear contractions are discussed. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcwilliams, A. J.
2015-09-08
This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniquesmore » through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.« less
Payne, Liam; Heard, Peter J; Scott, Thomas B
2016-01-01
Pile Grade A graphite was used as a moderator and reflector material in the first generation of UK Magnox nuclear power reactors. As all of these reactors are now shut down there is a need to examine the concentration and distribution of long lived radioisotopes, such as 14C, to aid in understanding their behaviour in a geological disposal facility. A selection of irradiated graphite samples from Oldbury reactor one were examined where it was observed that Raman spectroscopy can distinguish between underlying graphite and a surface deposit found on exposed channel wall surfaces. The concentration of 14C in this deposit was examined by sequentially oxidising the graphite samples in air at low temperatures (450°C and 600°C) to remove the deposit and then the underlying graphite. The gases produced were captured in a series of bubbler solutions that were analysed using liquid scintillation counting. It was observed that the surface deposit was relatively enriched with 14C, with samples originating lower in the reactor exhibiting a higher concentration of 14C. Oxidation at 600°C showed that the remaining graphite material consisted of two fractions of 14C, a surface associated fraction and a graphite lattice associated fraction. The results presented correlate well with previous studies on irradiated graphite that suggest there are up to three fractions of 14C; a readily releasable fraction (corresponding to that removed by oxidation at 450°C in this study), a slowly releasable fraction (removed early at 600°C in this study), and an unreleasable fraction (removed later at 600°C in this study).
Payne, Liam; Heard, Peter J.; Scott, Thomas B.
2016-01-01
Pile Grade A graphite was used as a moderator and reflector material in the first generation of UK Magnox nuclear power reactors. As all of these reactors are now shut down there is a need to examine the concentration and distribution of long lived radioisotopes, such as 14C, to aid in understanding their behaviour in a geological disposal facility. A selection of irradiated graphite samples from Oldbury reactor one were examined where it was observed that Raman spectroscopy can distinguish between underlying graphite and a surface deposit found on exposed channel wall surfaces. The concentration of 14C in this deposit was examined by sequentially oxidising the graphite samples in air at low temperatures (450°C and 600°C) to remove the deposit and then the underlying graphite. The gases produced were captured in a series of bubbler solutions that were analysed using liquid scintillation counting. It was observed that the surface deposit was relatively enriched with 14C, with samples originating lower in the reactor exhibiting a higher concentration of 14C. Oxidation at 600°C showed that the remaining graphite material consisted of two fractions of 14C, a surface associated fraction and a graphite lattice associated fraction. The results presented correlate well with previous studies on irradiated graphite that suggest there are up to three fractions of 14C; a readily releasable fraction (corresponding to that removed by oxidation at 450°C in this study), a slowly releasable fraction (removed early at 600°C in this study), and an unreleasable fraction (removed later at 600°C in this study). PMID:27706228
Role of nuclear grade graphite in controlling oxidation in modular HTGRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windes, Willaim; Strydom, G.; Kane, J.
2014-11-01
The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of coremore » environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.
1984-06-01
ORNL continues to make significant contributions to the national program. In the HTR fuels area, we are providing detailed statistical information on the fission product retention performance of irradiated fuel. Our studies are also providing basic data on the mechanical, physical, and chemical behavior of HTR materials, including metals, ceramics, graphite, and concrete. The ORNL has an important role in the development of improved HTR graphites and in the specification of criteria that need to be met by commercial products. We are also developing improved reactor physics design methods. Our work in component development and testing centers in the Componentmore » Flow Test Loop (CFTL), which is being used to evaluate the performance of the HTR core support structure. Other work includes experimental evaluation of the shielding effectiveness of the lower portions of an HTR core. This evaluation is being performed at the ORNL Tower Shielding Facility. Researchers at ORNL are developing welding techniques for attaching steam generator tubing to the tubesheets and are testing ceramic pads on which the core posts rest. They are also performing extensive testing of aggregate materials obtained from potential HTR site areas for possible use in prestressed concrete reactor vessels. During the past year we continued to serve as a peer reviewer of small modular reactor designs being developed by GA and GE with balance-of-plant layouts being developed by Bechtel Group, Inc. We have also evaluated the national need for developing HTRs with emphasis on the longer term applications of the HTRs to fossil conversion processes.« less
Organic matter and containment of uranium and fissiogenic isotopes at the Oklo natural reactors
Nagy, B.; Gauthier-Lafaye, F.; Holliger, P.; Davis, D.W.; Mossman, D.J.; Leventhal, J.S.; Rigali, M.J.; Parnell, J.
1991-01-01
SOME of the Precambrian natural fission reactors at Oklo in Gabon contain abundant organic matter1,2, part of which was liquefied at the time of criticality and subsequently converted to a graphitic solid3,4. The liquid organic matter helps to reduce U(VI) to U(IV) from aqueous solutions, resulting in the precipitation of uraninite5. It is known that in the prevailing reactor environments, precipitated uraninite grains incorporated fission products. We report here observations which show that these uraninite crystals were held immobile within the resolidified, graphitic bitumen. Unlike water-soluble (humic) organic matter, the graphitic bituminous organics at Oklo thus enhanced radionu-clide containment. Uraninite encased in solid graphitic matter in the organic-rich reactor zones lost virtually no fissiogenic lan-thanide isotopes. The first major episode of uranium and lead migration was caused by the intrusion of a swarm of adjacent dolerite dykes about 1,100 Myr after the reactors went critical. Our results from Oklo imply that the use of organic, hydrophobic solids such as graphitic bitumen as a means of immobilizing radionuclides in pretreated nuclear waste warrants further investigation. ?? 1991 Nature Publishing Group.
Wickham, Anthony; Steinmetz, Hans-Jürgen; O'Sullivan, Patrick; Ojovan, Michael I
2017-05-01
Demonstrating competence in planning and executing the disposal of radioactive wastes is a key factor in the public perception of the nuclear power industry and must be demonstrated when making the case for new nuclear build. This work addresses the particular waste stream of irradiated graphite, mostly derived from reactor moderators and amounting to more than 250,000 tonnes world-wide. Use may be made of its unique chemical and physical properties to consider possible processing and disposal options outside the normal simple classifications and repository options for mixed low or intermediate-level wastes. The IAEA has an obvious involvement in radioactive waste disposal and has established a new project 'GRAPA' - Irradiated Graphite Processing Approaches - to encourage an international debate and collaborative work aimed at optimising and facilitating the treatment of irradiated graphite. Copyright © 2017 Elsevier Ltd. All rights reserved.
REFLECTOR FOR NEUTRONIC REACTORS
Fraas, A.P.
1963-08-01
A reflector for nuclear reactors that comprises an assembly of closely packed graphite rods disposed with their major axes substantially perpendicular to the interface between the reactor core and the reflector is described. Each graphite rod is round in transverse cross section at (at least) its interface end and is provided, at that end, with a coaxial, inwardly tapering hole. (AEC)
a Dosimetry Assessment for the Core Restraint of AN Advanced Gas Cooled Reactor
NASA Astrophysics Data System (ADS)
Thornton, D. A.; Allen, D. A.; Tyrrell, R. J.; Meese, T. C.; Huggon, A. P.; Whiley, G. S.; Mossop, J. R.
2009-08-01
This paper describes calculations of neutron damage rates within the core restraint structures of Advanced Gas Cooled Reactors (AGRs). Using advanced features of the Monte Carlo radiation transport code MCBEND, and neutron source data from core follow calculations performed with the reactor physics code PANTHER, a detailed model of the reactor cores of two of British Energy's AGR power plants has been developed for this purpose. Because there are no relevant neutron fluence measurements directly supporting this assessment, results of benchmark comparisons and successful validation of MCBEND for Magnox reactors have been used to estimate systematic and random uncertainties on the predictions. In particular, it has been necessary to address the known under-prediction of lower energy fast neutron responses associated with the penetration of large thicknesses of graphite.
Neutronic reactor thermal shield
Wende, Charles W. J.
1976-06-15
1. The method of operating a water-cooled neutronic reactor having a graphite moderator which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40-60 volume percent of the mixture, in contact with the graphite moderator.
NASA Astrophysics Data System (ADS)
Song, Jinliang; Zhao, Yanling; He, Xiujie; Zhang, Baoliang; Xu, Li; He, Zhoutong; Zhang, DongSheng; Gao, Lina; Xia, Huihao; Zhou, Xingtai; Huai, Ping; Bai, Shuo
2015-01-01
A fixed-bed deposition method was used to prepare rough laminar pyrolytic carbon coating (RLPyC) on graphite for inhibiting liquid fluoride salt and Xe135 penetration during use in molten salt breeder reactor. The RLPyC coating possessed a graphitization degree of 44% and had good contact with graphite substrate. A high-pressure reactor was constructed to evaluate the molten salt infiltration in the isostatic graphite (IG-110, TOYO TANSO CO., LTD.) and RLPyC coated graphite under 1.01, 1.52, 3.04, 5.07 and 10.13 × 105 Pa for 12 h. Mercury injection and molten-salt infiltration experiments indicated the porosity and the salt-infiltration amount of 18.4% and 13.5 wt% under 1.52 × 105 Pa of IG-110, which was much less than 1.2% and 0.06 wt% under 10.13 × 105 Pa of the RLPyC, respectively. A vacuum device was constructed to evaluate the Xe135 penetration in the graphite. The helium diffusion coefficient of RLPyC coated graphite was 2.16 × 10-12 m2/s, much less than 1.21 × 10-6 m2/s of the graphite. Thermal cycle experiment indicated the coatings possessed excellent thermal stability. The coated graphite could effectively inhibit the liquid fluoride salt and Xe135 penetration.
A school investigation into Chernobyl fallout
NASA Astrophysics Data System (ADS)
Plant, R. D.
1988-01-01
The nuclear power station operating at Chernobyl, just north of Kiev in the Ukraine, USSR, contains four RBMK reactors operating at 1000 MW each. The RBMK reactor is a graphite moderated light water cooled reactor using low enriched uranium fuel. Early on Saturday 26 April 1986 a serious accident occurred to one of the four reactors resulting in the release of radioactive material, some of which was carried by the wind northwards across Poland and Scandinavia. The Ursuline Convent School at Westgate-on-Sea is situated in a small seaside town on the North Kent coast. On 30 April the background count was measured in the physics laboratory of the school using a Mullard ZP1481 Geiger-Muller tube in conjunction with a Panax scaler.
GUM Analysis for TIMS and SIMS Isotopic Ratios in Graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heasler, Patrick G.; Gerlach, David C.; Cliff, John B.
2007-04-01
This report describes GUM calculations for TIMS and SIMS isotopic ratio measurements of reactor graphite samples. These isotopic ratios are used to estimate reactor burn-up, and currently consist of various ratios of U, Pu, and Boron impurities in the graphite samples. The GUM calculation is a propagation of error methodology that assigns uncertainties (in the form of standard error and confidence bound) to the final estimates.
AGC-2 Graphite Pre-irradiation Data Package
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Swank; Joseph Lord; David Rohrbaugh
2010-08-01
The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterizedmore » prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.« less
Effect of reactor radiation on the thermal conductivity of TREAT fuel
NASA Astrophysics Data System (ADS)
Mo, Kun; Miao, Yinbin; Kontogeorgakos, Dimitrios C.; Connaway, Heather M.; Wright, Arthur E.; Yacout, Abdellatif M.
2017-04-01
The Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory is resuming operations after more than 20 years in latency in order to produce high-neutron-flux transients for investigating transient-induced behavior of reactor fuels and their interactions with other materials and structures. A parallel program is ongoing to develop a replacement core in which the fuel, historically containing highly-enriched uranium (HEU), is replaced by low-enriched uranium (LEU). Both the HEU and prospective LEU fuels are in the form of UO2 particles dispersed in a graphite matrix, but the LEU fuel will contain a much higher volume of UO2 particles, which may create a larger area of interphase boundaries between the particles and the graphite. This may lead to a higher volume fraction of graphite exposed to the fission fragments escaping from the UO2 particles, and thus may induce a higher volume of fission-fragment damage on the fuel graphite. In this work, we analyzed the reactor-radiation induced thermal conductivity degradation of graphite-based dispersion fuel. A semi-empirical method to model the relative thermal conductivity with reactor radiation was proposed and validated based on the available experimental data. Prediction of thermal conductivity degradation of LEU TREAT fuel during a long-term operation was performed, with a focus on the effect of UO2 particle size on fission-fragment damage. The proposed method can be further adjusted to evaluate the degradation of other properties of graphite-based dispersion fuel.
Bess, John D.; Fujimoto, Nozomu
2014-10-09
Benchmark models were developed to evaluate six cold-critical and two warm-critical, zero-power measurements of the HTTR. Additional measurements of a fully-loaded subcritical configuration, core excess reactivity, shutdown margins, six isothermal temperature coefficients, and axial reaction-rate distributions were also evaluated as acceptable benchmark experiments. Insufficient information is publicly available to develop finely-detailed models of the HTTR as much of the design information is still proprietary. However, the uncertainties in the benchmark models are judged to be of sufficient magnitude to encompass any biases and bias uncertainties incurred through the simplification process used to develop the benchmark models. Dominant uncertainties in themore » experimental keff for all core configurations come from uncertainties in the impurity content of the various graphite blocks that comprise the HTTR. Monte Carlo calculations of keff are between approximately 0.9 % and 2.7 % greater than the benchmark values. Reevaluation of the HTTR models as additional information becomes available could improve the quality of this benchmark and possibly reduce the computational biases. High-quality characterization of graphite impurities would significantly improve the quality of the HTTR benchmark assessment. Simulation of the other reactor physics measurements are in good agreement with the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less
GUM Analysis for SIMS Isotopic Ratios in BEP0 Graphite Qualification Samples, Round 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlach, David C.; Heasler, Patrick G.; Reid, Bruce D.
2009-01-01
This report describes GUM calculations for TIMS and SIMS isotopic ratio measurements of reactor graphite samples. These isotopic ratios are used to estimate reactor burn-up, and currently consist of various ratios of U, Pu, and Boron impurities in the graphite samples. The GUM calculation is a propagation of error methodology that assigns uncertainties (in the form of standard error and confidence bound) to the final estimates.
Graphite distortion ``C`` Reactor. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, N.H.
1962-02-08
This report covers the efforts of the Laboratory in an investigation of the graphite distortion in the ``C`` reactor at Hanford. The particular aspects of the problem to be covered by the Laboratory were possible ``fixes`` to the control rod sticking problem caused by VSR channel distortion.
Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...
Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belles, Randy; Jain, Prashant K.; Powers, Jeffrey J.
The Oak Ridge National Laboratory (ORNL) has a rich history of support for light water reactor (LWR) and non-LWR technologies. The ORNL history involves operation of 13 reactors at ORNL including the graphite reactor dating back to World War II, two aqueous homogeneous reactors, two molten salt reactors (MSRs), a fast-burst health physics reactor, and seven LWRs. Operation of the High Flux Isotope Reactor (HFIR) has been ongoing since 1965. Expertise exists amongst the ORNL staff to provide non-LWR training; support evaluation of non-LWR licensing and safety issues; perform modeling and simulation using advanced computational tools; run laboratory experiments usingmore » equipment such as the liquid salt component test facility; and perform in-depth fuel performance and thermal-hydraulic technology reviews using a vast suite of computer codes and tools. Summaries of this expertise are included in this paper.« less
THE FUEL ELEMENT GRAPHITE. Project DRAGON.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, L.W.; Price, M.S.T.
1963-01-15
The main requirements of a fuel element graphite for reactors based on the Dragon concept are low transmission coefficient for fission products, dimensional stability under service conditions, high strength, high thermal conductivity, high purity, and high resistance to oxidation. Since conclusions reached in early 1960, a considerable amount of information has accumulated concerning the likely behaviour of graphites in high temperature reactor systems, particularly data on dimensional stability under irradiation. The influence of this new knowledge on the development of fuel element graphite with the Dragon Project is discussed in detail in the final section of this paper.
Effect of reactor radiation on the thermal conductivity of TREAT fuel
Mo, Kun; Miao, Yinbin; Kontogeorgakos, Dimitrios C.; ...
2017-02-04
The Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory is resuming operations after more than 20 years in latency in order to produce high-neutron-flux transients for investigating transient-induced behavior of reactor fuels and their interactions with other materials and structures. A parallel program is ongoing to develop a replacement core in which the fuel, historically containing highly-enriched uranium (HEU), is replaced by low-enriched uranium (LEU). Both the HEU and prospective LEU fuels are in the form of UO 2 particles dispersed in a graphite matrix, but the LEU fuel will contain a much higher volume of UO 2more » particles, which may create a larger area of interphase boundaries between the particles and the graphite. This may lead to a higher volume fraction of graphite exposed to the fission fragments escaping from the UO 2 particles, and thus may induce a higher volume of fission-fragment damage on the fuel graphite. In this work, we analyzed the reactor-radiation induced thermal conductivity degradation of graphite-based dispersion fuel. A semi-empirical method to model the relative thermal conductivity with reactor radiation was proposed and validated based on the available experimental data. Prediction of thermal conductivity degradation of LEU TREAT fuel during a long-term operation was performed, with a focus on the effect of UO 2 particle size on fission-fragment damage. Lastly, the proposed method can be further adjusted to evaluate the degradation of other properties of graphite-based dispersion fuel.« less
Effect of reactor radiation on the thermal conductivity of TREAT fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, Kun; Miao, Yinbin; Kontogeorgakos, Dimitrios C.
The Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory is resuming operations after more than 20 years in latency in order to produce high-neutron-flux transients for investigating transient-induced behavior of reactor fuels and their interactions with other materials and structures. A parallel program is ongoing to develop a replacement core in which the fuel, historically containing highly-enriched uranium (HEU), is replaced by low-enriched uranium (LEU). Both the HEU and prospective LEU fuels are in the form of UO 2 particles dispersed in a graphite matrix, but the LEU fuel will contain a much higher volume of UO 2more » particles, which may create a larger area of interphase boundaries between the particles and the graphite. This may lead to a higher volume fraction of graphite exposed to the fission fragments escaping from the UO 2 particles, and thus may induce a higher volume of fission-fragment damage on the fuel graphite. In this work, we analyzed the reactor-radiation induced thermal conductivity degradation of graphite-based dispersion fuel. A semi-empirical method to model the relative thermal conductivity with reactor radiation was proposed and validated based on the available experimental data. Prediction of thermal conductivity degradation of LEU TREAT fuel during a long-term operation was performed, with a focus on the effect of UO 2 particle size on fission-fragment damage. Lastly, the proposed method can be further adjusted to evaluate the degradation of other properties of graphite-based dispersion fuel.« less
TCE was successfully dechlorinated in aqueous solution using granular graphite as the cathode in a mixed electrochemical reactor. In experiments with an initial TCE concentration of less than 100 mg/l, TCE was reduced approximately by 75% in the reactor under an applied cell volt...
New insights into canted spiro carbon interstitial in graphite
NASA Astrophysics Data System (ADS)
EL-Barbary, A. A.
2017-12-01
The self-interstitial carbon is the key to radiation damage in graphite moderator nuclear reactor, so an understanding of its behavior is essential for plant safety and maximized reactor lifetime. The density functional theory is applied on four different graphite unit cells, starting from of 64 carbon atoms up to 256 carbon atoms, using AIMPRO code to obtain the energetic, athermal and mechanical properties of carbon interstitial in graphite. This study presents first principles calculations of the energy of formation that prove its high barrier to athermal diffusion (1.1 eV) and the consequent large critical shear stress (39 eV-50 eV) necessary to shear graphite planes in its presence. Also, for the first time, the gamma surface of graphite in two dimensions is calculated and found to yield the critical shear stress for perfect graphite. Finally, in contrast to the extensive literature describing the interstitial of carbon in graphite as spiro interstitial, in this work the ground state of interstitial carbon is found to be canted spiro interstitial.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Subhasish; Majumdar, Saurindranath
Irradiation creep plays a major role in the structural integrity of the graphite components in high temperature gas cooled reactors. Finite element procedures combined with a suitable irradiation creep model can be used to simulate the time-integrated structural integrity of complex shapes, such as the reactor core graphite reflector and fuel bricks. In the present work a comparative study was undertaken to understand the effect of linear and nonlinear irradiation creep on results of finite element based stress analysis. Numerical results were generated through finite element simulations of a typical graphite reflector.
Nondestructive evaluation of nuclear-grade graphite
NASA Astrophysics Data System (ADS)
Kunerth, D. C.; McJunkin, T. R.
2012-05-01
The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempf, F.J.; Rawlins, J.K.
1961-10-30
On July 11, 1961 the Ball 3X System at DR Reactor was inadventently tripped. All vertical safety rods dropped and all channels were filled with balls. This report has the twofold purpose of documenting borescope observations of ten vertical rod channels at DR Reactor and recording the estimated extent of graphite damage resulting from the above incident. Channel damage data are presented on appended drawings. With suitable notations, the tracings of these drawings may be revised to reflect any future graphite damage. All vertical rod channels at DR Reactor were visually examined with a closed circuit television system during ballmore » removal efforts. Typical photographs of trapped balls and ledges, as viewed on the television monitor, are shown. Photographs of typical graphite damage, obtained through the borescope are also included in this report. 3 refs., 8 figs., 1 tab.« less
ICP-MS analysis of fission product diffusion in graphite for High-Temperature Gas-Cooled Reactors
NASA Astrophysics Data System (ADS)
Carter, Lukas M.
Release of radioactive fission products from nuclear fuel during normal reactor operation or in accident scenarios is a fundamental safety concern. Of paramount importance are the understanding and elucidation of mechanisms of chemical interaction, nuclear interaction, and transport phenomena involving fission products. Worldwide efforts to reduce fossil fuel dependence coupled with an increasing overall energy demand have generated renewed enthusiasm toward nuclear power technologies, and as such, these mechanisms continue to be the subjects of vigorous research. High-Temperature Gas-Cooled Reactors (HTGRs or VHTRs) remain one of the most promising candidates for the next generation of nuclear power reactors. An extant knowledge gap specific to HTGR technology derives from an incomplete understanding of fission product transport in major core materials under HTGR operational conditions. Our specific interest in the current work is diffusion in reactor graphite. Development of methods for analysis of diffusion of multiple fission products is key to providing accurate models for fission product release from HTGR core components and the reactor as a whole. In the present work, a specialized diffusion cell has been developed and constructed to facilitate real-time diffusion measurements via ICP-MS. The cell utilizes a helium gas-jet system which transports diffusing fission products to the mass spectrometer using carbon nanoparticles. The setup was designed to replicate conditions present in a functioning HTGR, and can be configured for real-time release or permeation measurements of single or multiple fission products from graphite or other core materials. In the present work, we have analyzed release rates of cesium in graphite grades IG-110, NBG-18, and a commercial grade of graphite, as well as release of iodine in IG-110. Additionally we have investigated infusion of graphite samples with Cs, I, Sr, Ag, and other surrogate fission products for use in release or profile measurements of diffusion coefficients.
Process for making silicon from halosilanes and halosilicons
NASA Technical Reports Server (NTRS)
Levin, Harry (Inventor)
1988-01-01
A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.
NASA Technical Reports Server (NTRS)
Levin, Harry (Inventor)
1987-01-01
A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.
Analyzing the impact of reactive transport on the repository performance of TRISO fuel
NASA Astrophysics Data System (ADS)
Schmidt, Gregory
One of the largest determiners of the amount of electricity generated by current nuclear reactors is the efficiency of the thermodynamic cycle used for power generation. Current light water reactors (LWR) have an efficiency of 35% or less for the conversion of heat energy generated by the reactor to electrical energy. If this efficiency could be improved, more power could be generated from equivalent volumes of nuclear fuel. One method of improving this efficiency is to use a coolant flow that operates at a much higher temperature for electricity production. A reactor design that is currently proposed to take advantage of this efficiency is a graphite-moderated, helium-cooled reactor known as a High Temperature Gas Reactor (HTGR). There are significant differences between current LWR's and the proposed HTGR's but most especially in the composition of the nuclear fuel. For LWR's, the fuel elements consist of pellets of uranium dioxide or plutonium dioxide that are placed in long tubes made of zirconium metal alloys. For HTGR's, the fuel, known as TRISO (TRIstructural-ISOtropic) fuel, consists of an inner sphere of fissile material, a layer of dense pyrolytic carbon (PyC), a ceramic layer of silicon carbide (SiC) and a final dense outer layer of PyC. These TRISO particles are then compacted with graphite into fuel rods that are then placed in channels in graphite blocks. The blocks are then arranged in an annular fashion to form a reactor core. However, this new fuel form has unanswered questions on the environmental post-burn-up behavior. The key question for current once-through fuel operations is how these large irradiated graphite blocks with spent fuel inside will behave in a repository environment. Data in the literature to answer this question is lacking, but nevertheless this is an important question that must be answered before wide-spread adoption of HTGR's could be considered. This research has focused on answering the question of how the large quantity of graphite surrounding the spent HTGR fuel will impact the release of aqueous uranium from the TRISO fuel. In order to answer this question, the sorption and partitioning behavior of uranium to graphite under a variety of conditions was investigated. Key systematic variables that were analyzed include solution pH, dissolved carbonate concentration, uranium metal concentration and ionic strength. The kinetics and desorption characteristics of uranium/graphite partitioning were studied as well. The graphite used in these experiments was also characterized by a variety of techniques and conclusions are drawn about the relevant surface chemistry of graphite. This data was then used to generate a model for the reactive transport of uranium in a graphite matrix. This model was implemented with the software code CXTFIT and validated through the use of column studies mirroring the predicted system.
Fabrication of TREAT Fuel with Increased Graphite Loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luther, Erik Paul; Leckie, Rafael M.; Dombrowski, David E.
2014-02-05
As part of the feasibility study exploring the replacement of the HEU fuel core of the TREAT reactor at Idaho National Laboratory with LEU fuel, this study demonstrates that it is possible to increase the graphite content of extruded fuel by reformulation. The extrusion process was use to fabricate the “upgrade” core1 for the TREAT reactor. The graphite content achieved is determined by calculation and has not been measured by any analytical method. In conjunction, a technique, Raman Spectroscopy, has been investigated for measuring the graphite content. This method shows some promise in differentiating between carbon and graphite; however, standardsmore » that would allow the technique to be calibrated to quantify the graphite concentration have yet to be fabricated. Continued research into Raman Spectroscopy is on going. As part of this study, cracking of graphite extrusions due to volatile evolution during heat treatment has been largely eliminated. Continued research to optimize this extrusion method is required.« less
ICP-MS measurement of iodine diffusion in IG-110 graphite for HTGR/VHTR
NASA Astrophysics Data System (ADS)
Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.
2016-05-01
Graphite functions as a structural material and as a barrier to fission product release in HTGR/VHTR designs, and elucidation of transport parameters for fission products in reactor-grade graphite is thus required for reactor source terms calculations. We measured iodine diffusion in spheres of IG-110 graphite using a release method based on Fickain diffusion kinetics. Two sources of iodine were loaded into the graphite spheres; molecular iodine (I2) and cesium iodide (CsI). Measurements of the diffusion coefficient were made over a temperature range of 873-1293 K. We have obtained the following Arrhenius expressions for iodine diffusion:DI , CsI infused =(6 ×10-12 2/s) exp(30,000 J/mol RT) And,DI , I2 infused =(4 ×10-10 m2/s) exp(-11,000 J/mol RT ) The results indicate that iodine diffusion in IG-110 graphite is not well-described by Fickan diffusion kinetics. To our knowledge, these are the first measurements of iodine diffusion in IG-110 graphite.
Spinrad, B.I.; Sandmeier, H.A.; Martens, F.H.
1962-12-25
A reactor having maximum sensitivity to perturbations is described comprising a core consisting of a horizontally disposed, rectangular, annular fuel zone containing enriched uranium dioxide dispersed in graphite, the concentration of uranium dioxide increasing from the outside to the inside of the fuel zone, an internal reflector of graphite containing an axial test opening disposed within the fuel zone, an external graphite reflector, means for changing the neutron spectrum in the test opening, and means for measuring perturbations in the neutron flux caused by the introduction of different fuel elements into the test opening. (AEC)
Design Study of a Modular Gas-Cooled, Closed-Brayton Cycle Reactor for Marine Use
1989-06-01
materials in the core and surroundings. To investigate this design point in the marine variant I developed the program HEAT.BAS to perform a one-dimensional...helium as the working fluid. The core is a graphite moderated, epithermal spectrum reactor, using TRISO fuel particles in extruded graphite fuel elements...The fuel is highly enriched U2315 . The containment is shaped in an inverted ’T’ with two sections. The upper section contains the reactor core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.
A thorough understanding of oxidation is important when considering the health and integrity of graphite components in graphite reactors. For the next generation of graphite reactors, HTGRs specifically, an unlikely air ingress has been deemed significant enough to have made its way into the licensing applications of many international licensing bodies. While a substantial body of literature exists on nuclear graphite oxidation in the presence of molecular oxygen and significant efforts have been made to characterize oxidation kinetics of various grades, the value of existing information is somewhat limited. Often, multiple competing processes, including reaction kinetics, mass transfer, and microstructuralmore » evolution, are lumped together into a single rate expression that limits the ability to translate this information to different conditions. This article reviews the reaction of graphite with molecular oxygen in terms of the reaction kinetics, gas transport, and microstructural evolution of graphite. It also presents the foundations of a model for the graphite-molecular oxygen reaction system that is kinetically independent of graphite grade, and is capable of describing both the bulk and local oxidation rates under a wide range of conditions applicable to air-ingress.« less
Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.; ...
2017-06-08
A thorough understanding of oxidation is important when considering the health and integrity of graphite components in graphite reactors. For the next generation of graphite reactors, HTGRs specifically, an unlikely air ingress has been deemed significant enough to have made its way into the licensing applications of many international licensing bodies. While a substantial body of literature exists on nuclear graphite oxidation in the presence of molecular oxygen and significant efforts have been made to characterize oxidation kinetics of various grades, the value of existing information is somewhat limited. Often, multiple competing processes, including reaction kinetics, mass transfer, and microstructuralmore » evolution, are lumped together into a single rate expression that limits the ability to translate this information to different conditions. This article reviews the reaction of graphite with molecular oxygen in terms of the reaction kinetics, gas transport, and microstructural evolution of graphite. It also presents the foundations of a model for the graphite-molecular oxygen reaction system that is kinetically independent of graphite grade, and is capable of describing both the bulk and local oxidation rates under a wide range of conditions applicable to air-ingress.« less
Palladium-assisted electrocatalytic dechlorination of 2-chlorobiphenyl (2-Cl BP) in aqueous solutions was conducted in a membrane-separated electrochemical reactor with granular-graphite packed electrodes. The dechlorination took place at a granular-graphite cathode while Pd was ...
Contescu, Cristian I.; Mee, Robert W.; Lee, Yoonjo; ...
2017-11-03
Four grades of nuclear graphite with various microstructures were subjected to accelerated oxidation tests in helium with traces of moisture and hydrogen in order to evaluate the effects of chronic oxidation on graphite components in high temperature gas cooled reactors. Kinetic analysis showed that the Langmuir-Hinshelwood (LH) model cannot consistently reproduce all results. In particular, at high temperatures and water partial pressures oxidation was always faster than the LH model predicts, with stronger deviations for superfine grain graphite than for medium grain grades. It was also found empirically that the apparent reaction order for water has a sigmoid-type variation withmore » temperature which follows the integral Boltzmann distribution function. This suggests that the apparent activation with temperature of graphite reactive sites that causes deviations from the LH model is rooted in specific structural and electronic properties of surface sites on graphite. A semi-global kinetic model was proposed, whereby the classical LH model was modified with a temperature-dependent reaction order for water. The new Boltzmann-enhanced model (BLH) was shown to consistently predict experimental oxidation rates over large ranges of temperature (800-1100 oC) and partial pressures of water (3-1200 Pa) and hydrogen (0-300 Pa), not only for the four grades of graphite but also for the historic grade H-451. The BLH model offers as more reliable input for modeling the chemical environment effects during the life-time operation of new grades of graphite in advanced nuclear reactors operating at high and very high temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contescu, Cristian I.; Mee, Robert W.; Lee, Yoonjo
Four grades of nuclear graphite with various microstructures were subjected to accelerated oxidation tests in helium with traces of moisture and hydrogen in order to evaluate the effects of chronic oxidation on graphite components in high temperature gas cooled reactors. Kinetic analysis showed that the Langmuir-Hinshelwood (LH) model cannot consistently reproduce all results. In particular, at high temperatures and water partial pressures oxidation was always faster than the LH model predicts, with stronger deviations for superfine grain graphite than for medium grain grades. It was also found empirically that the apparent reaction order for water has a sigmoid-type variation withmore » temperature which follows the integral Boltzmann distribution function. This suggests that the apparent activation with temperature of graphite reactive sites that causes deviations from the LH model is rooted in specific structural and electronic properties of surface sites on graphite. A semi-global kinetic model was proposed, whereby the classical LH model was modified with a temperature-dependent reaction order for water. The new Boltzmann-enhanced model (BLH) was shown to consistently predict experimental oxidation rates over large ranges of temperature (800-1100 oC) and partial pressures of water (3-1200 Pa) and hydrogen (0-300 Pa), not only for the four grades of graphite but also for the historic grade H-451. The BLH model offers as more reliable input for modeling the chemical environment effects during the life-time operation of new grades of graphite in advanced nuclear reactors operating at high and very high temperatures.« less
Various methods to improve heat transfer in exchangers
NASA Astrophysics Data System (ADS)
Pavel, Zitek; Vaclav, Valenta
2015-05-01
The University of West Bohemia in Pilsen (Department of Power System Engineering) is working on the selection of effective heat exchangers. Conventional shell and tube heat exchangers use simple segmental baffles. It can be replaced by helical baffles, which increase the heat transfer efficiency and reduce pressure losses. Their usage is demonstrated in the primary circuit of IV. generation MSR (Molten Salt Reactors). For high-temperature reactors we consider the use of compact desk heat exchangers, which are small, which allows the integral configuration of reactor. We design them from graphite composites, which allow up to 1000°C and are usable as exchangers: salt-salt or salt-acid (e.g. for the hydrogen production). In the paper there are shown thermo-physical properties of salts, material properties and principles of calculations.
NASA Astrophysics Data System (ADS)
Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.
2017-10-01
Due to its excellent moderator and reflector qualities, graphite was used in CO2-cooled nuclear reactors such as UNGG (Uranium Naturel-Graphite-Gaz). Neutron irradiation of graphite resulted in the production of 14C which is a key issue radionuclide for the management of the irradiated graphite waste. In order to elucidate the impact of neutron irradiation on 14C behavior, we carried out a systematic investigation of irradiation and its synergistic effects with temperature in Highly Oriented Pyrolitic Graphite (HOPG) model graphite used to simulate the coke grains of nuclear graphite. We used 13C implantation in order to simulate 14C displaced from its original structural site through recoil. The collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic damage. However, a part of the recoil carbon atom energy is also transferred to the graphite lattice through electronic excitation. The effects of the different irradiation regimes in synergy with temperature were simulated using ion irradiation by varying Sn(nuclear)/Se(electronic) stopping power. Thus, the samples were irradiated with different ions of different energies. The structure modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry. The results show that temperature generally counteracts the disordering effects of irradiation but the achieved reordering level strongly depends on the initial structural state of the graphite matrix. Thus, extrapolating to reactor conditions, for an initially highly disordered structure, irradiation at reactor temperatures (200 - 500 °C) should induce almost no change of the initial structure. On the contrary, when the structure is initially less disordered, there should be a "zoning" of the reordering: In "cold" high flux irradiated zones where the ballistic damage is important, the structure should be poorly reordered; In "hot" low flux irradiated zones where the ballistic impact is lower and can therefore be counteracted by temperature, a better reordering of the structure should be achieved. Concerning 14C, except when located close to open pores where it can be removed through radiolytic corrosion, it tends to stabilize in the graphite matrix into sp2 or sp3 structures with variable proportions depending on the irradiation conditions.
Wigner, E.P.; Creutz, E.C.
1960-03-15
A nuclear reactor comprising a pair of graphite blocks separated by an air gap is described. Each of the blocks contains a plurality of channels extending from the gap through the block with a plurality of fuel elements being located in the channels. Means are provided for introducing air into the gap between the graphite blocks and for exhausting the air from the ends of the channels opposite the gap.
Lewis, Warren R.
1978-05-30
A graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davenport, Michael; Petti, D. A.
The United States Department of Energy’s Advanced Reactor Technologies (ART) Program will irradiate up to six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments are being irradiated over an approximate eight year period to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Very High Temperature Gasmore » Reactor (VHTR), as well as other future gas reactors. The experiments each consist of a single capsule that contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens are not be subjected to a compressive load during irradiation. The six stacks have differing compressive loads applied to the top half of diametrically opposite pairs of specimen stacks. A seventh specimen stack in the center of the capsule does not have a compressive load. The specimens are being irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There are also samples taken of the sweep gas effluent to measure any oxidation or off-gassing of the specimens that may occur during initial start-up of the experiment. The first experiment, AGC-1, started its irradiation in September 2009, and the irradiation was completed in January 2011. The second experiment, AGC-2, started its irradiation in April 2011 and completed its irradiation in May 2012. The third experiment, AGC-3, started its irradiation in late November 2012 and completed in the April of 2014. AGC-4 is currently being irradiated in the ATR. This paper will briefly discuss the preliminary irradiation results of the AGC-4 experiment, as well as the design of AGC-5.« less
Design of a tokamak fusion reactor first wall armor against neutral beam impingement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, R.A.
1977-12-01
The maximum temperatures and thermal stresses are calculated for various first wall design proposals, using both analytical solutions and the TRUMP and SAP IV Computer Codes. Beam parameters, such as pulse time, cycle time, and beam power, are varied. It is found that uncooled plates should be adequate for near-term devices, while cooled protection will be necessary for fusion power reactors. Graphite and tungsten are selected for analysis because of their desirable characteristics. Graphite allows for higher heat fluxes compared to tungsten for similar pulse times. Anticipated erosion (due to surface effects) and plasma impurity fraction are estimated. Neutron irradiationmore » damage is also discussed. Neutron irradiation damage (rather than erosion, fatigue, or creep) is estimated to be the lifetime-limiting factor on the lifetime of the component in fusion power reactors. It is found that the use of tungsten in fusion power reactors, when directly exposed to the plasma, will cause serious plasma impurity problems; graphite should not present such an impurity problem.« less
Systems and methods for dismantling a nuclear reactor
Heim, Robert R; Adams, Scott Ryan; Cole, Matthew Denver; Kirby, William E; Linnebur, Paul Damon
2014-10-28
Systems and methods for dismantling a nuclear reactor are described. In one aspect the system includes a remotely controlled heavy manipulator ("manipulator") operatively coupled to a support structure, and a control station in a non-contaminated portion of a workspace. The support structure provides the manipulator with top down access into a bioshield of a nuclear reactor. At least one computing device in the control station provides remote control to perform operations including: (a) dismantling, using the manipulator, a graphite moderator, concrete walls, and a ceiling of the bioshield, the manipulator being provided with automated access to all internal portions of the bioshield; (b) loading, using the manipulator, contaminated graphite blocks from the graphite core and other components from the bioshield into one or more waste containers; and (c) dispersing, using the manipulator, dust suppression and contamination fixing spray to contaminated matter.
Carbon-14 bioassay for decommissioning of Hanford reactors.
Carbaugh, Eugene H; Watson, David J
2012-05-01
The production reactors at the U.S. Department of Energy Hanford Site used large graphite piles as the moderator. As part of long-term decommissioning plans, the potential need for ¹⁴C radiobioassay of workers was identified. Technical issues associated with ¹⁴C bioassay and worker monitoring were investigated, including anticipated graphite characterization, potential intake scenarios, and the bioassay capabilities that may be required to support the decommissioning of the graphite piles. A combination of urine and feces sampling would likely be required for the absorption type S ¹⁴C anticipated to be encountered. However, the concentrations in the graphite piles appear to be sufficiently low that dosimetrically significant intakes of ¹⁴C are not credible, thus rendering moot the need for such bioassay.
Carbon-14 Bioassay for Decommissioning of Hanford Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbaugh, Eugene H.; Watson, David J.
2012-05-01
The old production reactors at the US Department of Energy Hanford Site used large graphite piles as the moderator. As part of long-term decommissioning plans, the potential need for 14C radiobioassay of workers was identified. Technical issues associated with 14C bioassay and worker monitoring were investigated, including anticipated graphite characterization, potential intake scenarios, and the bioassay capabilities that may be required to support the decommissioning of the graphite piles. A combination of urine and feces sampling would likely be required for the absorption type S 14C anticipated to be encountered. However the concentrations in the graphite piles appear to bemore » sufficiently low that dosimetrically significant intakes of 14C are not credible, thus rendering moot the need for such bioassay.« less
Kinetics of Chronic Oxidation of NBG-17 Nuclear Graphite by Water Vapor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contescu, Cristian I; Burchell, Timothy D; Mee, Robert
2015-05-01
This report presents the results of kinetic measurements during accelerated oxidation tests of NBG-17 nuclear graphite by low concentration of water vapor and hydrogen in ultra-high purity helium. The objective is to determine the parameters in the Langmuir-Hinshelwood (L-H) equation describing the oxidation kinetics of nuclear graphite in the helium coolant of high temperature gas-cooled reactors (HTGR). Although the helium coolant chemistry is strictly controlled during normal operating conditions, trace amounts of moisture (predictably < 0.2 ppm) cannot be avoided. Prolonged exposure of graphite components to water vapor at high temperature will cause very slow (chronic) oxidation over the lifetimemore » of graphite components. This behavior must be understood and predicted for the design and safe operation of gas-cooled nuclear reactors. The results reported here show that, in general, oxidation by water of graphite NBG-17 obeys the L-H mechanism, previously documented for other graphite grades. However, the characteristic kinetic parameters that best describe oxidation rates measured for graphite NBG-17 are different than those reported previously for grades H-451 (General Atomics, 1978) and PCEA (ORNL, 2013). In some specific conditions, certain deviations from the generally accepted L-H model were observed for graphite NBG-17. This graphite is manufactured in Germany by SGL Carbon Group and is a possible candidate for the fuel elements and reflector blocks of HTGR.« less
A New Method to Measure Crack Extension in Nuclear Graphite Based on Digital Image Correlation
Lai, Shigang; Shi, Li; Fok, Alex; ...
2017-01-01
Graphite components, used as moderators, reflectors, and core-support structures in a High-Temperature Gas-Cooled Reactor, play an important role in the safety of the reactor. Specifically, they provide channels for the fuel elements, control rods, and coolant flow. Fracture is the main failure mode for graphite, and breaching of the above channels by crack extension will seriously threaten the safety of a reactor. In this paper, a new method based on digital image correlation (DIC) is introduced for measuring crack extension in brittle materials. Cross-correlation of the displacements measured by DIC with a step function was employed to identify the advancingmore » crack tip in a graphite beam specimen under three-point bending. The load-crack extension curve, which is required for analyzing the R-curve and tension softening behaviors, was obtained for this material. Furthermore, a sensitivity analysis of the threshold value employed for the cross-correlation parameter in the crack identification process was conducted. Finally, the results were verified using the finite element method.« less
A New Method to Measure Crack Extension in Nuclear Graphite Based on Digital Image Correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Shigang; Shi, Li; Fok, Alex
Graphite components, used as moderators, reflectors, and core-support structures in a High-Temperature Gas-Cooled Reactor, play an important role in the safety of the reactor. Specifically, they provide channels for the fuel elements, control rods, and coolant flow. Fracture is the main failure mode for graphite, and breaching of the above channels by crack extension will seriously threaten the safety of a reactor. In this paper, a new method based on digital image correlation (DIC) is introduced for measuring crack extension in brittle materials. Cross-correlation of the displacements measured by DIC with a step function was employed to identify the advancingmore » crack tip in a graphite beam specimen under three-point bending. The load-crack extension curve, which is required for analyzing the R-curve and tension softening behaviors, was obtained for this material. Furthermore, a sensitivity analysis of the threshold value employed for the cross-correlation parameter in the crack identification process was conducted. Finally, the results were verified using the finite element method.« less
SIMPLIFIED SODIUM GRAPHITE REACTOR SYSTEM
Dickinson, R.W.
1963-03-01
This patent relates to a nuclear power reactor comprising a reactor vessel, shielding means positioned at the top of said vessel, means sealing said reactor vessel to said shielding means, said vessel containing a quantity of sodium, a core tank, unclad graphite moderator disposed in said tank, means including a plurality of process tubes traversing said tank for isolating said graphite from said sodium, fuel elements positioned in said process tubes, said core tank being supported in spaced relation to the walls and bottom of said reactor vessel and below the level of said sodium, neutron shielding means positioned adjacent said core tank between said core tank and the walls of said vessel, said neutron shielding means defining an annuiar volume adjacent the inside wall of said reactor vessel, inlet plenum means below said core tank for providing a passage between said annular volume and said process tubes, heat exchanger means removably supported from the first-named shielding means and positioned in said annular volume, and means for circulating said sodium over said neutron shielding means down through said heat exchanger, across said inlet plenum and upward through said process tubes, said last-named means including electromagnetic pumps located outside said vessel and supported on said vessel wall between said heat exchanger means and said inlet plenum means. (AEC)
Nuclear Data Needs for Generation IV Nuclear Energy Systems
NASA Astrophysics Data System (ADS)
Rullhusen, Peter
2006-04-01
Nuclear data needs for generation IV systems. Future of nuclear energy and the role of nuclear data / P. Finck. Nuclear data needs for generation IV nuclear energy systems-summary of U.S. workshop / T. A. Taiwo, H. S. Khalil. Nuclear data needs for the assessment of gen. IV systems / G. Rimpault. Nuclear data needs for generation IV-lessons from benchmarks / S. C. van der Marck, A. Hogenbirk, M. C. Duijvestijn. Core design issues of the supercritical water fast reactor / M. Mori ... [et al.]. GFR core neutronics studies at CEA / J. C. Bosq ... [et al]. Comparative study on different phonon frequency spectra of graphite in GCR / Young-Sik Cho ... [et al.]. Innovative fuel types for minor actinides transmutation / D. Haas, A. Fernandez, J. Somers. The importance of nuclear data in modeling and designing generation IV fast reactors / K. D. Weaver. The GIF and Mexico-"everything is possible" / C. Arrenondo Sánchez -- Benmarks, sensitivity calculations, uncertainties. Sensitivity of advanced reactor and fuel cycle performance parameters to nuclear data uncertainties / G. Aliberti ... [et al.]. Sensitivity and uncertainty study for thermal molten salt reactors / A. Biduad ... [et al.]. Integral reactor physics benchmarks- The International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPHEP) / J. B. Briggs, D. W. Nigg, E. Sartori. Computer model of an error propagation through micro-campaign of fast neutron gas cooled nuclear reactor / E. Ivanov. Combining differential and integral experiments on [symbol] for reducing uncertainties in nuclear data applications / T. Kawano ... [et al.]. Sensitivity of activation cross sections of the Hafnium, Tanatalum and Tungsten stable isotopes to nuclear reaction mechanisms / V. Avrigeanu ... [et al.]. Generating covariance data with nuclear models / A. J. Koning. Sensitivity of Candu-SCWR reactors physics calculations to nuclear data files / K. S. Kozier, G. R. Dyck. The lead cooled fast reactor benchmark BREST-300: analysis with sensitivity method / V. Smirnov ... [et al.]. Sensitivity analysis of neutron cross-sections considered for design and safety studies of LFR and SFR generation IV systems / K. Tucek, J. Carlsson, H. Wider -- Experiments. INL capabilities for nuclear data measurements using the Argonne intense pulsed neutron source facility / J. D. Cole ... [et al.]. Cross-section measurements in the fast neutron energy range / A. Plompen. Recent measurements of neutron capture cross sections for minor actinides by a JNC and Kyoto University Group / H. Harada ... [et al.]. Determination of minor actinides fission cross sections by means of transfer reactions / M. Aiche ... [et al.] -- Evaluated data libraries. Nuclear data services from the NEA / H. Henriksson, Y. Rugama. Nuclear databases for energy applications: an IAEA perspective / R. Capote Noy, A. L. Nichols, A. Trkov. Nuclear data evaluation for generation IV / G. Noguère ... [et al.]. Improved evaluations of neutron-induced reactions on americium isotopes / P. Talou ... [et al.]. Using improved ENDF-based nuclear data for candu reactor calculations / J. Prodea. A comparative study on the graphite-moderated reactors using different evaluated nuclear data / Do Heon Kim ... [et al.].
Comparison of irradiation behaviour of HTR graphite grades
NASA Astrophysics Data System (ADS)
Heijna, M. C. R.; de Groot, S.; Vreeling, J. A.
2017-08-01
The INNOGRAPH irradiations were executed in the High Flux Reactor (HFR) in Petten by NRG supported by the European Framework programs HTR-M, RAPHAEL, and ARCHER to generate data on the irradiation behaviour of graphite grades for High Temperature Reactor (HTR) application available at that time. Samples of the graphite grades NBG-10, NBG-17, NBG-18, NBG-20, NBG-25, PCEA, PPEA, PCIB, and IG-110 have been irradiated at 750 °C and 950 °C. The inherent scatter induced by the probabilistic material behaviour of graphite requires uncertainty and scatter induced by test conditions and post-irradiation examination to be minimized. The INNOGRAPH irradiations supplied an adequate number of irradiated samples to enable accurate determination of material properties and their evolution under irradiation. This allows comparison of different graphite grades and a qualitative assessment of their appropriateness for HTR applications, as a basis of selection, design and core component lifetime. The results indicate that coarse grained graphite grades exhibit more favourable behaviour for application in HTRs due to their low dimensional anisotropy and fracture propagation resilience.
Sealing nuclear graphite with pyrolytic carbon
NASA Astrophysics Data System (ADS)
Feng, Shanglei; Xu, Li; Li, Li; Bai, Shuo; Yang, Xinmei; Zhou, Xingtai
2013-10-01
Pyrolytic carbon (PyC) coatings were deposited on IG-110 nuclear graphite by thermal decomposition of methane at ∼1830 °C. The PyC coatings are anisotropic and airtight enough to protect IG-110 nuclear graphite against the permeation of molten fluoride salts and the diffusion of gases. The investigations indicate that the sealing nuclear graphite with PyC coating is a promising method for its application in Molten Salt Reactor (MSR).
Borst, L.B.
1961-07-11
A special hydrogenous concrete shielding for reactors is described. In addition to Portland cement and water, the concrete essentially comprises 30 to 60% by weight barytes aggregate for enhanced attenuation of fast neutrons. The biological shields of AEC's Oak Ridge Graphite Reactor and Materials Testing Reactor are particular embodiments.
Long, E.; Ashby, J.W.
1958-09-16
ABS>A graphite moderator structure is presented for a nuclear reactor compriscd of an assembly of similarly orientated prismatic graphite blocks arranged on spaced longitudinal axes lying in common planes wherein the planes of the walls of the blocks are positioned so as to be twisted reintive to the planes of said axes so thatthe unlmpeded dtrect paths in direction wholly across the walls of the blocks are limited to the width of the blocks plus spacing between the blocks.
Fluorine interaction with defects on graphite surface by a first-principles study
NASA Astrophysics Data System (ADS)
Wang, Song; Xuezhi, Ke; Zhang, Wei; Gong, Wenbin; Huai, Ping; Zhang, Wenqing; Zhu, Zhiyuan
2014-02-01
The interaction between fluorine atom and graphite surface has been investigated in the framework of density functional theory. Due to the consideration of molten salt reactor system, only carbon adatoms and vacancies are chemical reactive for fluorine atoms. Fluorine adsorption on carbon adatom will enhance the mobility of carbon adatom. Carbon adatom can also be removed easily from graphite surface in form of CF2 molecule, explaining the formation mechanism of CF2 molecule in previous experiment. For the interaction between fluorine and vacancy, we find that fluorine atoms which adsorb at vacancy can hardly escape. Both pristine surface and vacancy are impossible for fluorine to penetrate due to the high penetration barrier. We believe our result is helpful to understand the compatibility between graphite and fluorine molten salt in molten salt reactor system.
Modeling Fission Product Sorption in Graphite Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szlufarska, Izabela; Morgan, Dane; Allen, Todd
2013-04-08
The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributionsmore » of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products on each type of graphite site. The model will include multiple simultaneous adsorbing species, which will allow for competitive adsorption effects between different fission product species and O and OH (for modeling accident conditions).« less
NASA Astrophysics Data System (ADS)
Lo, I.-Hsuan; Tzelepi, Athanasia; Patterson, Eann A.; Yeh, Tsung-Kuang
2018-04-01
Graphite is used in the cores of gas-cooled reactors as both the neutron moderator and a structural material, and traditional and novel graphite materials are being studied worldwide for applications in Generation IV reactors. In this study, the oxidation characteristics of petroleum-based IG-110 and pitch-based IG-430 graphite pellets in helium and air environments at temperatures ranging from 700 to 1600 °C were investigated. The oxidation rates and activation energies were determined based on mass loss measurements in a series of oxidation tests. The surface morphology was characterized by scanning electron microscopy. Although the thermal oxidation mechanism was previously considered to be the same for all temperatures higher than 1000 °C, the significant increases in oxidation rate observed at very high temperatures suggest that the oxidation behavior of the selected graphite materials at temperatures higher than 1200 °C is different. This work demonstrates that changes in surface morphology and in oxidation rate of the filler particles in the graphite materials are more prominent at temperatures above 1200 °C. Furthermore, possible intrinsic factors contributing to the oxidation of the two graphite materials at different temperature ranges are discussed taking account of the dominant role played by temperature.
Chemical Characterization and Removal of Carbon-14 from Irradiated Graphite II - 13023
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunzik-Gougar, Mary Lou; Cleaver, James; LaBrier, Daniel
2013-07-01
Approximately 250,000 tonnes of irradiated graphite waste exists worldwide and that quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation IV gas-cooled, graphite moderated reactors. This situation indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 (C-14), with a half-life of 5730 years. Study of irradiated graphite from some nuclear reactors indicates C-14 is concentrated on the outer 5 mm of the graphite structure. The aim of the research presented last year and updated here is to identify the chemical form of C-14more » in irradiated graphite and develop a practical method by which C-14 can be removed. A nuclear-grade graphite, NBG-18, and a high-surface-area graphite foam, POCOFoam{sup R}, were exposed to liquid nitrogen (to increase the quantity of C-14 precursor) and neutron-irradiated (10{sup 13} neutrons/cm{sup 2}/s). Finer grained NBG-25 was not exposed to liquid nitrogen prior to irradiation at a neutron flux on the order of 10{sup 14} /cm{sup 2}/s. Characterization of pre- and post-irradiation graphite was conducted to determine the chemical environment and quantity of C-14 and its precursors via the use of surface sensitive characterization techniques. Scanning Electron Microscopy (SEM) was used to evaluate the morphological features of graphite samples. The concentration, chemical composition, and bonding characteristics of C-14 and its precursors were determined through X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (SIMS), and Energy Dispersive X-ray Analysis Spectroscopy (EDX). Results of post-irradiation characterization of these materials indicate a variety of surface functional groups containing carbon, oxygen, nitrogen and hydrogen. During thermal treatment, irradiated graphite samples are heated in the presence of an inert carrier gas (with or without oxidant gas), which carries off gaseous products released during treatment. Graphite gasification occurs via interaction with adsorbed oxygen complexes. Experiments in argon were performed at 900 deg. C and 1400 deg. C to evaluate the selective removal of C-14. Thermal treatment also was performed with the addition of 3 and 5 volume % oxygen at temperatures 700 deg. C and 1400 deg. C. Thermal treatment experiments were evaluated for the effective selective removal of C-14. Lower temperatures and oxygen levels correlated to more efficient C-14 removal. (authors)« less
Wigner, E.P.
1960-11-22
A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.
Simulations of carbon sputtering in fusion reactor divertor plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marian, J; Zepeda-Ruiz, L A; Gilmer, G H
2005-10-03
The interaction of edge plasma with material surfaces raises key issues for the viability of the International Thermonuclear Reactor (ITER) and future fusion reactors, including heat-flux limits, net material erosion, and impurity production. After exposure of the graphite divertor plate to the plasma in a fusion device, an amorphous C/H layer forms. This layer contains 20-30 atomic percent D/T bonded to C. Subsequent D/T impingement on this layer produces a variety of hydrocarbons that are sputtered back into the sheath region. We present molecular dynamics (MD) simulations of D/T impacts on amorphous carbon layer as a function of ion energymore » and orientation, using the AIREBO potential. In particular, energies are varied between 10 and 150 eV to transition from chemical to physical sputtering. These results are used to quantify yield, hydrocarbon composition and eventual plasma contamination.« less
Payne, Liam; Heard, Peter J; Scott, Thomas B
2015-01-01
Pile grade A (PGA) graphite was used as a material for moderating and reflecting neutrons in the UK's first generation Magnox nuclear power reactors. As all but one of these reactors are now shut down there is a need to understand the residual state of the material prior to decommissioning of the cores, in particular the location and concentration of key radio-contaminants such as 14C. The oxidation behaviour of unirradiated PGA graphite was studied, in the temperature range 600-1050°C, in air and nitrogen using thermogravimetric analysis, scanning electron microscopy and X-ray tomography to investigate the possibility of using thermal degradation techniques to examine 14C distribution within irradiated material. The thermal decomposition of PGA graphite was observed to follow the three oxidation regimes historically identified by previous workers with limited, uniform oxidation at temperatures below 600°C and substantial, external oxidation at higher temperatures. This work demonstrates that the different oxidation regimes of PGA graphite could be developed into a methodology to characterise the distribution and concentration of 14C in irradiated graphite by thermal treatment.
Payne, Liam; Heard, Peter J.; Scott, Thomas B.
2015-01-01
Pile grade A (PGA) graphite was used as a material for moderating and reflecting neutrons in the UK’s first generation Magnox nuclear power reactors. As all but one of these reactors are now shut down there is a need to understand the residual state of the material prior to decommissioning of the cores, in particular the location and concentration of key radio-contaminants such as 14C. The oxidation behaviour of unirradiated PGA graphite was studied, in the temperature range 600–1050°C, in air and nitrogen using thermogravimetric analysis, scanning electron microscopy and X-ray tomography to investigate the possibility of using thermal degradation techniques to examine 14C distribution within irradiated material. The thermal decomposition of PGA graphite was observed to follow the three oxidation regimes historically identified by previous workers with limited, uniform oxidation at temperatures below 600°C and substantial, external oxidation at higher temperatures. This work demonstrates that the different oxidation regimes of PGA graphite could be developed into a methodology to characterise the distribution and concentration of 14C in irradiated graphite by thermal treatment. PMID:26575374
FUEL ELEMENT FOR A NUCLEAR REACTOR
Davidson, J.K.
1963-11-19
A fuel element structure particularly useful in high temperature nuclear reactors is presented. Basically, the structure comprises two coaxial graphite sleeves integrally joined together by radial fins. Due to the high structural strength of graphite at high temperatures and the rigidity of this structure, nuclear fuel encased within the inner sleeve in contiguous relation therewith is supported and prevented from expanding radially at high temperatures. Thus, the necessity of relying on the usual cladding materials with relatively low temperature limitations for structural strength is removed. (AEC)
Alloying of steel and graphite by hydrogen in nuclear reactor
NASA Astrophysics Data System (ADS)
Krasikov, E.
2017-02-01
In traditional power engineering hydrogen may be one of the first primary source of equipment damage. This problem has high actuality for both nuclear and thermonuclear power engineering. Study of radiation-hydrogen embrittlement of the steel raises the question concerning the unknown source of hydrogen in reactors. Later unexpectedly high hydrogen concentrations were detected in irradiated graphite. It is necessary to look for this source of hydrogen especially because hydrogen flakes were detected in reactor vessels of Belgian NPPs. As a possible initial hypothesis about the enigmatical source of hydrogen one can propose protons generation during beta-decay of free neutrons поскольку inasmuch as protons detected by researches at nuclear reactors as witness of beta-decay of free neutrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontogeorgakos, Dimitrios C.; Connaway, Heather M.; Papadias, Dionissios D.
2015-01-01
The Transient Reactor Test Facility (TREAT) is a graphite-reflected, graphitemoderated, and air-cooled reactor fueled with 93.1% enriched UO2 particles dispersed in graphite, with a carbon-to-235U ratio of ~10000:1. TREAT was used to simulate accident conditions by subjecting fuel test samples placed at the center of the core to high energy transient pulses. The transient pulse production is based on the core’s selflimiting nature due to the negative reactivity feedback provided by the fuel graphite as the core temperature rises. The analysis of the conversion of TREAT to low enriched uranium (LEU) is currently underway. This paper presents the analytical methodsmore » used to calculate the transient performance of TREAT in terms of power pulse production and resulting peak core temperatures. The validation of the HEU neutronics TREAT model, the calculation of the temperature distribution and the temperature reactivity feedback as well as the number of fissions generated inside fuel test samples are discussed.« less
Sanz, M.C.; Scully, C.N.
1961-06-27
The patented fuel element is a hexagonal graphite body having an axial channel therethrough. The graphite is impregnated with uranium which is concentrated near the axial channel. Layers of tantalum nitride and tantalum carbide are disposed on the surface of the body confronting the channel.
Benchmark Evaluation of the HTR-PROTEUS Absorber Rod Worths (Core 4)
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Leland M. Montierth
2014-06-01
PROTEUS was a zero-power research reactor at the Paul Scherrer Institute (PSI) in Switzerland. The critical assembly was constructed from a large graphite annulus surrounding a central cylindrical cavity. Various experimental programs were investigated in PROTEUS; during the years 1992 through 1996, it was configured as a pebble-bed reactor and designated HTR-PROTEUS. Various critical configurations were assembled with each accompanied by an assortment of reactor physics experiments including differential and integral absorber rod measurements, kinetics, reaction rate distributions, water ingress effects, and small sample reactivity effects [1]. Four benchmark reports were previously prepared and included in the March 2013 editionmore » of the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook) [2] evaluating eleven critical configurations. A summary of that effort was previously provided [3] and an analysis of absorber rod worth measurements for Cores 9 and 10 have been performed prior to this analysis and included in PROTEUS-GCR-EXP-004 [4]. In the current benchmark effort, absorber rod worths measured for Core Configuration 4, which was the only core with a randomly-packed pebble loading, have been evaluated for inclusion as a revision to the HTR-PROTEUS benchmark report PROTEUS-GCR-EXP-002.« less
Fermi, E.; Szilard, L.
1958-05-27
A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.
Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition.
NASA Astrophysics Data System (ADS)
Sharma, Uttam; Chauhan, Sachin S.; Sharma, Jayshree; Sanyasi, A. K.; Ghosh, J.; Choudhary, K. K.; Ghosh, S. K.
2016-10-01
The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS.
Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Najafpour Darzi, Ghasem
2017-09-01
The microbial desalination cell (MDC) is known as a newly developed technology for water and wastewater treatment. In this study, desalination rate, organic matter removal and energy production in the reactors with and without desalination function were compared. Herein, a new design of plain graphite called roughened surface graphite (RSG) was used as the anode electrode in both microbial fuel cell (MFC) and MDC reactors for the first time. Among the three type of anode electrodes investigated in this study, RSG electrode produced the highest power density and salt removal rate of 10.81 W/m 3 and 77.6%, respectively. Such a power density was 2.33 times higher than the MFC reactor due to the junction potential effect. In addition, adding the desalination function to the MFC reactor enhanced columbic efficiency from 21.8 to 31.4%. These results provided a proof-of-concept that the use of MDC instead of MFC would improve wastewater treatment efficiency and power generation, with an added benefit of water desalination. Furthermore, RSG can successfully be employed in an MDC or MFC, enhancing the bio-electricity generation and salt removal.
NASA Astrophysics Data System (ADS)
McKenna, Alice
One of the functions of graphite is as a moderator in several nuclear reactor designs, including the Advanced Gas-cooled Reactor (AGR). In the reactor graphite is used to thermalise the neutrons produced in the fission reaction thus allowing a self-sustained reaction to occur. The graphite blocks, acting as the moderator, are constantly irradiated and consequently suffer damage. This thesis examines the types of damage caused using molecular dynamic (MD) simulations and ab intio calculations. Neutron damage starts with a primary knock-on atom (PKA), which is travelling so fast that it creates damage through electronic and thermal excitation (this is addressed with thermal spike simulations). When the PKA has lost energy the subsequent cascade is based on ballistic atomic displacement. These two types of simulations were performed on single crystal graphite and other carbon structures such as diamond and amorphous carbon as a comparison. The thermal spike in single crystal graphite produced results which varied from no defects to a small number of permanent defects in the structure. It is only at the high energy range that more damage is seen but these energies are less likely to occur in the nuclear reactor. The thermal spike does not create damage but it is possible that it can heal damaged sections of the graphite, which can be demonstrated with the motion of the defects when a thermal spike is applied. The cascade simulations create more damage than the thermal spike even though less energy is applied to the system. A new damage function is found with a threshold region that varies with the square root of energy in excess of the energy threshold. This is further broken down in to contributions from primary and subsequent knock-on atoms. The threshold displacement energy (TDE) is found to be Ed=25eV at 300K. In both these types of simulation graphite acts very differently to the other carbon structures. There are two types of polycrystalline graphite structures which simulations have been performed on. The difference between the two is at the grain boundaries with one having dangling bonds and the other one being bonded. The cascade showed the grain boundaries acting as a trap for the knock-on atoms which produces more damage compared with the single crystal. Finally the effects of turbostratic disorder on damage is considered. Density functional theory (DFT) was used to look at interstitials in (002) twist boundaries and how they act compared to AB stacked graphite. The results of these calculations show that the spiro interstitial is more stable in these grain boundaries, so at temperatures where the interstitial can migrate along the c direction they will segregate to (002) twist boundaries.
Top shield temperatures, C and K Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agar, J.D.
1964-12-28
A modification program is now in progress at the C and K Reactors consisting of an extensive renovation of the graphite channels in the vertical safety rod ststems. The present VSR channels are being enlarged by a graphite coring operation and channel sleeves will be installed in the larger channels. One problem associated with the coring operation is the danger of damaging top thermal shield cooling tubes located close to the VSR channels to such an extent that these tubes will have to be removed from service. If such a condition should exist at one or a number of locationsmore » in the top shield of the reactors after reactor startup, the question remains -- what would the resulting temperatures be of the various components of the top shields? This study was initiated to determine temperature distributions in the top shield complex at the C and K Reactors for various top thermal shield coolant system conditions. Since the top thermal shield cooling system at C Reactor is different than those at the K Reactors, the study was conducted separately for the two different systems.« less
The purpose of this research is to investigate the formation of chloromethane during TCE dechlorination in a mixed electrochemical reactor using graphite electrodes. Chloromethane was the major chlorinated organic compound detected in previous dechlorination experiments. In order...
The purpose of this research is to investigate the formation of chloromethane during TCE dechlorination in a mixed electrochemical reactor using graphite electrodes. Chloromethane was the major chlorinated organic compound detected in previous dechlorination experiments. In order...
EXPERIMENTAL LIQUID METAL FUEL REACTOR
Happell, J.J.; Thomas, G.R.; Denise, R.P.; Bunts, J.L. Jr.
1962-01-23
A liquid metal fuel nuclear fission reactor is designed in which the fissionable material is dissolved or suspended in a liquid metal moderator and coolant. The liquid suspension flows into a chamber in which a critical amount of fissionable material is obtained. The fluid leaves the chamber and the heat of fission is extracted for power or other utilization. The improvement is in the support arrangement for a segrnented graphite core to permit dif ferential thermal expansion, effective sealing between main and blanket liquid metal flows, and avoidance of excessive stress development in the graphite segments. (AEC)
JACKETED FUEL ELEMENTS FOR GRAPHITE MODERATED REACTORS
Szilard, L.; Wigner, E.P.; Creutz, E.C.
1959-05-12
Fuel elements for a heterogeneous, fluid cooled, graphite moderated reactor are described. The fuel elements are comprised of a body of natural uranium hermetically sealed in a jacket of corrosion resistant material. The jacket, which may be aluminum or some other material which is non-fissionable and of a type having a low neutron capture cross-section, acts as a barrier between the fissioning isotope and the coolant or moderator or both. The jacket minimizes the tendency of the moderator and coolant to become radioactive and/or contaminated by fission fragments from the fissioning isotope.
Safety evaluation for packaging (onsite) plutonium recycle test reactor graphite cask
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romano, T.
This safety evaluation for packaging (SEP) provides the evaluation necessary to demonstrate that the Plutonium Recycle Test Reactor (PRTR) Graphite Cask meets the requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for transfer of Type B, fissile, non-highway route controlled quantities of radioactive material within the 300 Area of the Hanford Site. The scope of this SEP includes risk, shieldling, criticality, and.tiedown analyses to demonstrate that onsite transportation safety requirements are satisfied. This SEP also establishes operational and maintenance guidelines to ensure that transport of the PRTR Graphite Cask is performed safely in accordance with WHC-CM-2-14. This SEP is validmore » until October 1, 1999. After this date, an update or upgrade to this document is required.« less
7. Another picture of workers laying up the graphite core ...
7. Another picture of workers laying up the graphite core of the 105-B pile. This view is towards the rear of the pile. The gun barrels can be seen protruding into the pile. D-3047 - B Reactor, Richland, Benton County, WA
NASA Astrophysics Data System (ADS)
Nyathi, Mhlwazi S.
2011-12-01
Graphite is utilized as a neutron moderator and structural component in some nuclear reactor designs. During the reactor operaction the structure of graphite is damaged by collision with fast neutrons. Graphite's resistance to this damage determines its lifetime in the reactor. On neutron irradiation, isotropic or near-isotropic graphite experiences less structural damage than anisotropic graphite. The degree of anisotropy in a graphite artifact is dependent on the structure of its precursor coke. Currently, there exist concerns over a short supply of traditional precursor coke, primarily due to a steadily increasing price of petroleum. The main goal of this study was to study the anisotropic and isotropic properties of graphitized co-cokes and anthracites as a way of investigating the possibility of synthesizing isotropic or near-isotropic graphite from co-cokes and anthracites. Demonstrating the ability to form isotropic or near-isotropic graphite would mean that co-cokes and anthracites have a potential use as filler material in the synthesis of nuclear graphite. The approach used to control the co-coke structure was to vary the reaction conditions. Co-cokes were produced by coking 4:1 blends of vacuum resid/coal and decant oil/coal at temperatures of 465 and 500 °C for reaction times of 12 and 18 hours under autogenous pressure. Co-cokes obtained were calcined at 1420 °C and graphitized at 3000 °C for 24 hours. Optical microscopy, X-ray diffraction, temperature-programmed oxidation and Raman spectroscopy were used to characterize the products. It was found that higher reaction temperature (500 °C) or shorter reaction time (12 hours) leads to an increase in co-coke structural disorder and an increase in the amount of mosaic carbon at the expense of textural components that are necessary for the formation of anisotropic structure, namely, domains and flow domains. Characterization of graphitized co-cokes showed that the quality, as expressed by the degree of graphitization and crystallite dimensions, of the final product is dependent on the nature of the precursor co-coke. The methodology for studying anthracites was to select two anthracites on basis of rank, PSOC1515 being semi-anthracite and DECS21 anthracite. The selected anthracites were graphitized, in both native and demineralized states, under the same conditions as co-cokes. Products obtained from DECS21 showed higher degrees of graphitization and larger crystallite dimensions than products obtained from PSOC1515. Demineralization of anthracites served to increase the degree of graphitization, indicating that the minerals contained in these anthracites have no graphitization-enhancing ability. A larger crystallite length for products obtained from native versions, compared to demineralized versions, was attributed to a formation and decomposition of a silicon carbide during graphitization of native versions. In order to examine the anisotropic and isotropic properties, nuclear-grade graphite samples obtained from Oak Ridge National Laboratory (ORNL) and commercial graphite purchased from Fluka were characterized under similar conditions as graphitized co-cokes and anthracites. These samples served as representatives of "two extremes", with ORNL samples being the isotropic end and commercial graphite being the anisotropic end. Through evaluating relationships between structural parameters, it was observed that graphitized co-cokes are situated, structurally, somewhere between the "two extremes", whereas graphitized anthracites are closer to the anisotropic end. Basically, co-cokes have a better potential than anthracites to transform to isotropic or near-isotropic graphite upon graphitization. By co-coking vacuum resid/coal instead of decant oil/coal or using 500 °C instead of 465 °C, a shift away from commercial graphite towards ORNL samples was attained. Graphitizing a semi-anthracite or demineralizing anthracites before graphitization also caused a shift towards ORNL samples.
Basic experiments during loss of vacuum event (LOVE) in fusion experimental reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, Masuro; Kunugi, Tomoaki; Seki, Yasushi
If a loss of vacuum event (LOVE) occurs due to damage of the vacuum vessel of a nuclear fusion experimental reactor, some chemical reactions such as a graphic oxidation and a buoyancy-driven exchange flow take place after equalization of the gas pressure between the inside and outside of the vacuum vessel. The graphite oxidation would generate inflammable carbon monoxide and release tritium retained in the graphite. The exchange flow through the breaches may transport the carbon monoxide and tritium out of the vacuum vessel. To add confidence to the safety evaluations and analyses, it is important to grasp the basicmore » phenomena such as the exchange flow and the graphite oxidation. Experiments of the exchange flow and the graphite oxidation were carried out to obtain the exchange flow rate and the rate constant for the carbon monoxide combustion, respectively. These experimental results were compared with existing correlations. The authors plan a scaled-model test and a full-scale model test for the LOVE.« less
Preliminary CFD study of Pebble Size and its Effect on Heat Transfer in a Pebble Bed Reactor
NASA Astrophysics Data System (ADS)
Jones, Andrew; Enriquez, Christian; Spangler, Julian; Yee, Tein; Park, Jungkyu; Farfan, Eduardo
2017-11-01
In pebble bed reactors, the typical pebble diameter used is 6cm, and within each pebble is are thousands of nuclear fuel kernels. However, efficiency of the reactor does not solely depend on the number of kernels of fuel within each graphite sphere, but also depends on the type and motion of the coolant within the voids between the spheres and the reactor itself. In this work a physical analysis of the pebble bed nuclear reactor's fluid dynamics is undertaken using Computational Fluid Dynamics software. The primary goal of this work is to observe the relationship between the different pebble diameters in an idealized alignment and the thermal transport efficiency of the reactor. The model constructed of our idealized argument will consist on stacked 8 pebble columns that fixed at the inlet on the reactor. Two different pebble sizes 4 cm and 6 cm will be studied and helium will be supplied as coolant with a fixed flow rate of 96 kg/s, also a fixed pebble surface temperatures will be used. Comparison will then be made to evaluate the efficiency of coolant to transport heat due to the varying sizes of the pebbles. Assistant Professor for the Department of Civil and Construction Engineering PhD.
Internal graphite moderator forces study, C and K Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooley, D.E.
1963-10-28
The purpose of this study was to determine the maximum forces that can be imposed by the graphite moderator on prospective VSR channel sleeves. In order to do this, both the origins and modes of transmission of the forces were determined. Forces in the moderator stack that are capable of acting on a block or group of blocks may originate from any of the following primary effects: Contraction of graphite due to irradiation; thermal expansion of graphite; frictional resistance to motion; resistance from keys; gravity; and other.
Effect of Reacting Surface Density on the Overall Graphite Oxidation Rate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang H. Oh; Eung Kim; Jong Lim
2009-05-01
Graphite oxidation in an air-ingress accident is presently a very important issue for the reactor safety of the very high temperature gas cooled-reactor (VHTR), the concept of the next generation nuclear plant (NGNP) because of its potential problems such as mechanical degradation of the supporting graphite in the lower plenum of the VHTR might lead to core collapse if the countermeasure is taken carefully. The oxidation process of graphite has known to be affected by various factors, including temperature, pressure, oxygen concentration, types of graphite, graphite shape and size, flow distribution, etc. However, our recent study reveals that the internalmore » pore characteristics play very important roles in the overall graphite oxidation rate. One of the main issues regarding graphite oxidation is the potential core collapse problem that may occur following the degradation of graphite mechanical strength. In analyzing this phenomenon, it is very important to understand the relationship between the degree of oxidization and strength degradation. In addition, the change of oxidation rate by graphite oxidation degree characterization by burn-off (ratio of the oxidized graphite density to the original density) should be quantified because graphite strength degradation is followed by graphite density decrease, which highly affects oxidation rates and patterns. Because the density change is proportional to the internal pore surface area, they should be quantified in advance. In order to understand the above issues, the following experiments were performed: (1)Experiment on the fracture of the oxidized graphite and validation of the previous correlations, (2) Experiment on the change of oxidation rate using graphite density and data collection, (3) Measure the BET surface area of the graphite. The experiments were performed using H451 (Great Lakes Carbon Corporation) and IG-110 (Toyo Tanso Co., Ltd) graphite. The reason for the use of those graphite materials is because their chemical and mechanical characteristics are well identified by the previous investigations, and therefore it was convenient for us to access the published data, and to apply and validate our new methodologies. This paper presents preliminary results of compressive strength vs. burn-off and surface area density vs. burn-off, which can be used for the nuclear graphite selection for the NGNP.« less
ICP-MS measurement of diffusion coefficients of Cs in NBG-18 graphite
NASA Astrophysics Data System (ADS)
Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.
2015-11-01
Graphite is used in the HGTR/VHTR as moderator and it also functions as a barrier to fission product release. Therefore, an elucidation of transport of fission products in reactor-grade graphite is required. We have measured diffusion coefficients of Cs in graphite NBG-18 using the release method, wherein we infused spheres of NBG-18 with Cs and measured the release rates in the temperature range of 1090-1395 K. We have obtained: These seem to be the first reported values of Cs diffusion coefficients in NBG-18. The values are lower than those reported for other graphites in the literature.
Neutronic reactor construction
Huston, Norman E.
1976-07-06
1. A neutronic reactor comprising a moderator including horizontal layers formed of horizontal rows of graphite blocks, alternate layers of blocks having the rows extending in one direction, the remaining alternate layers having the rows extending transversely to the said one direction, alternate rows of blocks in one set of alternate layers having longitudinal ducts, the moderator further including slotted graphite tubes positioned in the ducts, the reactor further comprising an aluminum coolant tube positioned within the slotted tube in spaced relation thereto, bodies of thermal-neutron-fissionable material, and jackets enclosing the bodies and being formed of a corrosion-resistant material having a low neutron-capture cross section, the bodies and jackets being positioned within the coolant tube so that the jackets are spaced from the coolant tube.
NASA Astrophysics Data System (ADS)
Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.
2018-04-01
Graphite has been widely used as neutron moderator, reflector or fuel matrix in different types of reactors such as gas cooled nuclear reactors (UNGG, Magnox, AGR), RBMK reactors or high temperature gas cooled reactors. Their operation produces a great quantity of irradiated graphite or other carbonaceous waste (around 250,000 tons worldwide) that requires a special management strategy. In the case of disposal, which is a current management strategy, two main radionuclides, 14C and 36Cl might be dose determining at the outlet. Particular attention is paid to 14C due to its long half-life (T∼5730 years) [1] and as major contributor to the radioactive dose. 14C has two main production routes, i) transmutation of nitrogen (14N(n,p)14C) where nitrogen is mainly adsorbed at the surfaces of the irradiated graphite; ii) activation of carbon from the matrix (13C(n,γ)14C). According to leaching tests, it was shown that even if the quantity of 14C released in the solution is low (less than 1% of the initial inventory), around 30% is in the organic form that would be mobile in repository conditions [2,3]. 36Cl is mainly produced through the activation of 35Cl (35Cl(n,γ)36Cl) which is an impurity in nuclear graphite. Its activity is low but it might be highly mobile in clay host rocks. Thus, in order to make informed decisions about the best management process and to anticipate potential radionuclide dissemination during dismantling and in the repository, it is necessary to collect information on 14C and 36Cl location and speciation in graphite, after reactor closure. The goal of the present paper is therefore to use ion irradiation to simulate neutron irradiation and to evaluate the irradiation effects on the behavior of 36Cl and 14C as well as on the induced graphite structure modifications. For that, to understand and model the underlying mechanisms, we used an indirect approach based on 13C or 37Cl implantation to simulate the respective presence of 14C or 36Cl. These isotopes were implanted into Highly Oriented Pyrolytic Graphite (HOPG) samples used as a model material system representative of the nuclear graphite coke grains which form around 80% of nuclear graphite. Nuclear graphite is manufactured from petroleum coke grains (filler) blended with coal tar pitch acting as a binder. Shaped blocks are formed by extrusion of the blend. They are heat-treated up to about 2800 °C (graphitisation treatment) and polycrystalline graphite is obtained. Blocks, intended for the moderator or reflector, may be further impregnated with pitch, re-baked and regraphitised in order to increase the density. Virgin nuclear graphites have initial densities in the range 1.6-1.8 g cm-3. The difference with graphite crystal (density = 2.265 g cm-3) is due to internal porosity. As a result of mixing of several carbon compounds, this material is structurally heterogeneous at a local scale. Nuclear graphite presents a complex multiscale organisation. It can be locally more or less anisotropic and not completely graphitised. Nuclear graphite has a polycrystalline structure and contains micrometer sized grains. The grains are formed by several more or less oriented crystallites with a size of a few hundreds nanometers. Each crystallite is formed by a triperiodical stacking of graphene planes. Nuclear graphite contains also small amounts of impurities like oxygen, hydrogen, metals and halogens, among them chlorine [4]. Ion beam irradiation was used as a surrogate for neutrons because it may produce cascades (due to ballistic interactions) that could be similar to those created by neutrons in the nuclear reactor. Ion beam (or electron beam) irradiation has been used for many years to simulate neutron irradiation. It has advantages such as for example the possibility to vary the irradiation conditions and sometimes to carry out in situ observations. Moreover, depending on the ion nature and energy, it allows covering a broad range of the neutron recoil spectrum and the rate at which atoms are displaced can be increased in comparison to reactor conditions. Dose rates can thus be much higher than under neutron irradiation allowing for higher amounts of displacements per atoms (dpa) to be reached within some days instead of months or years. Moreover, because there is no sample activation, the samples are not radioactive [5-11]. During neutron irradiation, the neutrons interact with the matter both by collision with the atom nuclei (i.e. ballistic damage) and by nuclear reactions. The first atoms hit by neutrons are caused to move, thus starting a cascade of atomic collisions leading to electronic excitation as they go through the matter and on the path of the atoms they displace (recoil atoms). The ballistic damage can be evaluated using the nuclear stopping power and can be denoted by the number of displacements per atom (dpa). The effect of electronic excitation can be quantified using the electronic stopping power. The experimental simulation of neutron irradiation in a reactor can be done by irradiation of the graphite samples with different ions of different energies. The choice of these parameters enables the study of the damage effects with or without electron excitation or ballistic damage. Thus, knowing that the impinging neutrons induce mainly ballistic damage into the graphite matrix but that part of the recoil carbon energy is also transferred through electronic excitation, it is interesting to use ion irradiation because both ballistic damage and electronic excitation effects can be studied coupled or decoupled according to the nature of the ion, its energy and the fluence. It is possible to cover a wide range of electronic and nuclear stopping powers by working with different particle accelerators. Thus, we simulated the effects of these different irradiation regimes using ion irradiation by varying the Sn(nuclear)/Se(electronic) stopping power ratio as well as the irradiation temperature (from room temperature up to 1000 °C). Indeed, during reactor operation, neutron irradiation leads to changes in the graphite lattice parameters depending on irradiation conditions such as flux and fluence but also temperature [12]. Finally, Secondary Ion Mass Spectrometry (SIMS) analysis was used to determine 13C and 37Cl distribution profiles and allowed us to follow the implanted isotopes behavior. The structural modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry.
Nuclear fuel elements and method of making same
Schweitzer, Donald G.
1992-01-01
A nuclear fuel element for a high temperature gas nuclear reactor that has an average operating temperature in excess of 2000.degree. C., and a method of making such a fuel element. The fuel element is characterized by having fissionable fuel material localized and stabilized within pores of a carbon or graphite member by melting the fissionable material to cause it to chemically react with the carbon walls of the pores. The fissionable fuel material is further stabilized and localized within the pores of the graphite member by providing one or more coatings of pyrolytic carbon or diamond surrounding the porous graphite member so that each layer defines a successive barrier against migration of the fissionable fuel from the pores, and so that the outermost layer of pyrolytic carbon or diamond forms a barrier between the fissionable material and the moderating gases used in an associated high temperature gas reactor. The method of the invention provides for making such new elements either as generally spherically elements, or as flexible filaments, or as other relatively small-sized fuel elements that are particularly suited for use in high temperature gas reactors.
Fission Product Inventory and Burnup Evaluation of the AGR-2 Irradiation by Gamma Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harp, Jason Michael; Stempien, John Dennis; Demkowicz, Paul Andrew
Gamma spectrometry has been used to evaluate the burnup and fission product inventory of different components from the US Advanced Gas Reactor Fuel Development and Qualification Program's second TRISO-coated particle fuel irradiation test (AGR-2). TRISO fuel in this irradiation included both uranium carbide / uranium oxide (UCO) kernels and uranium oxide (UO 2) kernels. Four of the 6 capsules contained fuel from the US Advanced Gas Reactor program, and only those capsules will be discussed in this work. The inventories of gamma-emitting fission products from the fuel compacts, graphite compact holders, graphite spacers and test capsule shell were evaluated. Thesemore » data were used to measure the fractional release of fission products such as Cs-137, Cs-134, Eu-154, Ce-144, and Ag-110m from the compacts. The fraction of Ag-110m retained in the compacts ranged from 1.8% to full retention. Additionally, the activities of the radioactive cesium isotopes (Cs-134 and Cs-137) have been used to evaluate the burnup of all US TRISO fuel compacts in the irradiation. The experimental burnup evaluations compare favorably with burnups predicted from physics simulations. Predicted burnups for UCO compacts range from 7.26 to 13.15 % fission per initial metal atom (FIMA) and 9.01 to 10.69 % FIMA for UO 2 compacts. Measured burnup ranged from 7.3 to 13.1 % FIMA for UCO compacts and 8.5 to 10.6 % FIMA for UO 2 compacts. Results from gamma emission computed tomography performed on compacts and graphite holders that reveal the distribution of different fission products in a component will also be discussed. Gamma tomography of graphite holders was also used to locate the position of TRISO fuel particles suspected of having silicon carbide layer failures that lead to in-pile cesium release.« less
Fission Product Inventory and Burnup Evaluation of the AGR-2 Irradiation by Gamma Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harp, Jason M.; Demkowicz, Paul A.; Stempien, John D.
Gamma spectrometry has been used to evaluate the burnup and fission product inventory of different components from the US Advanced Gas Reactor Fuel Development and Qualification Program's second TRISO-coated particle fuel irradiation test (AGR-2). TRISO fuel in this irradiation included both uranium carbide / uranium oxide (UCO) kernels and uranium oxide (UO2) kernels. Four of the 6 capsules contained fuel from the US Advanced Gas Reactor program, and only those capsules will be discussed in this work. The inventories of gamma-emitting fission products from the fuel compacts, graphite compact holders, graphite spacers and test capsule shell were evaluated. These datamore » were used to measure the fractional release of fission products such as Cs-137, Cs-134, Eu-154, Ce-144, and Ag-110m from the compacts. The fraction of Ag-110m retained in the compacts ranged from 1.8% to full retention. Additionally, the activities of the radioactive cesium isotopes (Cs-134 and Cs-137) have been used to evaluate the burnup of all US TRISO fuel compacts in the irradiation. The experimental burnup evaluations compare favorably with burnups predicted from physics simulations. Predicted burnups for UCO compacts range from 7.26 to 13.15 % fission per initial metal atom (FIMA) and 9.01 to 10.69 % FIMA for UO2 compacts. Measured burnup ranged from 7.3 to 13.1 % FIMA for UCO compacts and 8.5 to 10.6 % FIMA for UO2 compacts. Results from gamma emission computed tomography performed on compacts and graphite holders that reveal the distribution of different fission products in a component will also be discussed. Gamma tomography of graphite holders was also used to locate the position of TRISO fuel particles suspected of having silicon carbide layer failures that lead to in-pile cesium release.« less
Nuclear thermal propulsion engine system design analysis code development
NASA Astrophysics Data System (ADS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.; Ivanenok, Joseph F.
1992-01-01
A Nuclear Thermal Propulsion (NTP) Engine System Design Analyis Code has recently been developed to characterize key NTP engine system design features. Such a versatile, standalone NTP system performance and engine design code is required to support ongoing and future engine system and vehicle design efforts associated with proposed Space Exploration Initiative (SEI) missions of interest. Key areas of interest in the engine system modeling effort were the reactor, shielding, and inclusion of an engine multi-redundant propellant pump feed system design option. A solid-core nuclear thermal reactor and internal shielding code model was developed to estimate the reactor's thermal-hydraulic and physical parameters based on a prescribed thermal output which was integrated into a state-of-the-art engine system design model. The reactor code module has the capability to model graphite, composite, or carbide fuels. Key output from the model consists of reactor parameters such as thermal power, pressure drop, thermal profile, and heat generation in cooled structures (reflector, shield, and core supports), as well as the engine system parameters such as weight, dimensions, pressures, temperatures, mass flows, and performance. The model's overall analysis methodology and its key assumptions and capabilities are summarized in this paper.
Suspended-Bed Reactor preliminary design, /sup 233/U--/sup 232/Th cycle. Final report (revised)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karam, R.A.; Alapour, A.; Lee, C.C.
1977-11-01
The preliminary design Suspended-Bed Reactor is described. Coated particles about 2 mm in diameter are used as the fuel. The coatings consist of three layers: (1) low density pyrolytic graphite, 70 ..mu.. thick, (2) silicon carbide pressure vessel, 30 ..mu.. thick, and (3) ZrC layer, 50 ..mu.. thick, to protect the pressure vessel from moisture and oxygen. The fuel kernel can be either uranium-thorium dicarbide or metal. The coated particles are suspended by helium gas (coolant) in a cluster of pressurized tubes. The upward flow of helium fluidizes the coated particles. As the flow rate increases, the bed of particlesmore » is lifted upward to the core section. The particles are restrained at the upper end of the core by a suitable screen. The overall particle density in the core is just enough for criticality condition. Should the helium flow cease, the bed in the core section will collapse, and the particles will flow downward into the section where the increased physical spacings among the tubes brings about a safe shutdown. By immersing this section of the tubes in a large graphite block to serve as a heat sink, dissipation of decay heat becomes manageable. This eliminates the need for emergency core cooling systems.« less
A probabilisitic based failure model for components fabricated from anisotropic graphite
NASA Astrophysics Data System (ADS)
Xiao, Chengfeng
The nuclear moderator for high temperature nuclear reactors are fabricated from graphite. During reactor operations graphite components are subjected to complex stress states arising from structural loads, thermal gradients, neutron irradiation damage, and seismic events. Graphite is a quasi-brittle material. Two aspects of nuclear grade graphite, i.e., material anisotropy and different behavior in tension and compression, are explicitly accounted for in this effort. Fracture mechanic methods are useful for metal alloys, but they are problematic for anisotropic materials with a microstructure that makes it difficult to identify a "critical" flaw. In fact cracking in a graphite core component does not necessarily result in the loss of integrity of a nuclear graphite core assembly. A phenomenological failure criterion that does not rely on flaw detection has been derived that accounts for the material behaviors mentioned. The probability of failure of components fabricated from graphite is governed by the scatter in strength. The design protocols being proposed by international code agencies recognize that design and analysis of reactor core components must be based upon probabilistic principles. The reliability models proposed herein for isotropic graphite and graphite that can be characterized as being transversely isotropic are another set of design tools for the next generation very high temperature reactors (VHTR) as well as molten salt reactors. The work begins with a review of phenomenologically based deterministic failure criteria. A number of this genre of failure models are compared with recent multiaxial nuclear grade failure data. Aspects in each are shown to be lacking. The basic behavior of different failure strengths in tension and compression is exhibited by failure models derived for concrete, but attempts to extend these concrete models to anisotropy were unsuccessful. The phenomenological models are directly dependent on stress invariants. A set of invariants, known as an integrity basis, was developed for a non-linear elastic constitutive model. This integrity basis allowed the non-linear constitutive model to exhibit different behavior in tension and compression and moreover, the integrity basis was amenable to being augmented and extended to anisotropic behavior. This integrity basis served as the starting point in developing both an isotropic reliability model and a reliability model for transversely isotropic materials. At the heart of the reliability models is a failure function very similar in nature to the yield functions found in classic plasticity theory. The failure function is derived and presented in the context of a multiaxial stress space. States of stress inside the failure envelope denote safe operating states. States of stress on or outside the failure envelope denote failure. The phenomenological strength parameters associated with the failure function are treated as random variables. There is a wealth of failure data in the literature that supports this notion. The mathematical integration of a joint probability density function that is dependent on the random strength variables over the safe operating domain defined by the failure function provides a way to compute the reliability of a state of stress in a graphite core component fabricated from graphite. The evaluation of the integral providing the reliability associated with an operational stress state can only be carried out using a numerical method. Monte Carlo simulation with importance sampling was selected to make these calculations. The derivation of the isotropic reliability model and the extension of the reliability model to anisotropy are provided in full detail. Model parameters are cast in terms of strength parameters that can (and have been) characterized by multiaxial failure tests. Comparisons of model predictions with failure data is made and a brief comparison is made to reliability predictions called for in the ASME Boiler and Pressure Vessel Code. Future work is identified that would provide further verification and augmentation of the numerical methods used to evaluate model predictions.
NASA Astrophysics Data System (ADS)
Zhong, Yajuan; Zhang, Junpeng; Lin, Jun; Xu, Liujun; Zhang, Feng; Xu, Hongxia; Chen, Yu; Jiang, Haitao; Li, Ziwei; Zhu, Zhiyong; Guo, Quangui
2017-07-01
Mesocarbon microbeads (MCMB) and quasi-isostatic pressing method were used to prepare MCMB based graphite (MG) for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor (MSR). Characteristics of mercury infiltration and molten salt infiltration in MG were investigated and compared with A3-3 (graphite for spherical fuel element in high temperature gas cooled reactor) to identify the infiltration behaviors. The results indicated that MG had a low porosity about 14%, and an average pore diameter of 96 nm. Fluoride salt occupation of A3-3 (average pore diameter was 760 nm) was 10 wt% under 6.5 atm, whereas salt gain did not infiltrate in MG even up to 6.5 atm. It demonstrated that MG could inhibit the infiltration of liquid fluoride salt effectively. Coefficient of thermal expansion (CTE) of MG lies in 6.01 × 10-6 K-1 (α∥) and 6.15 × 10-6 K-1 (α⊥) at the temperature range of 25-700 °C. The anisotropy factor of MG calculated by CTE maintained below 1.02, which could meet the requirement of the spherical fuel element (below 1.30). The constant isotropic property of MG is beneficial for the integrity and safety of the graphite used in the spherical fuel element for a MSR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schunert, Sebastian; Schwen, Daniel; Ghassemi, Pedram
This work presents a multi-physics, multi-scale approach to modeling the Transient Test Reactor (TREAT) currently prepared for restart at the Idaho National Laboratory. TREAT fuel is made up of microscopic fuel grains (r ˜ 20µm) dispersed in a graphite matrix. The novelty of this work is in coupling a binary collision Monte-Carlo (BCMC) model to the Finite Element based code Moose for solving a microsopic heat-conduction problem whose driving source is provided by the BCMC model tracking fission fragment energy deposition. This microscopic model is driven by a transient, engineering scale neutronics model coupled to an adiabatic heating model. Themore » macroscopic model provides local power densities and neutron energy spectra to the microscpic model. Currently, no feedback from the microscopic to the macroscopic model is considered. TREAT transient 15 is used to exemplify the capabilities of the multi-physics, multi-scale model, and it is found that the average fuel grain temperature differs from the average graphite temperature by 80 K despite the low-power transient. The large temperature difference has strong implications on the Doppler feedback a potential LEU TREAT core would see, and it underpins the need for multi-physics, multi-scale modeling of a TREAT LEU core.« less
Statistical Models of Fracture Relevant to Nuclear-Grade Graphite: Review and Recommendations
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Bratton, Robert L.
2011-01-01
The nuclear-grade (low-impurity) graphite needed for the fuel element and moderator material for next-generation (Gen IV) reactors displays large scatter in strength and a nonlinear stress-strain response from damage accumulation. This response can be characterized as quasi-brittle. In this expanded review, relevant statistical failure models for various brittle and quasi-brittle material systems are discussed with regard to strength distribution, size effect, multiaxial strength, and damage accumulation. This includes descriptions of the Weibull, Batdorf, and Burchell models as well as models that describe the strength response of composite materials, which involves distributed damage. Results from lattice simulations are included for a physics-based description of material breakdown. Consideration is given to the predicted transition between brittle and quasi-brittle damage behavior versus the density of damage (level of disorder) within the material system. The literature indicates that weakest-link-based failure modeling approaches appear to be reasonably robust in that they can be applied to materials that display distributed damage, provided that the level of disorder in the material is not too large. The Weibull distribution is argued to be the most appropriate statistical distribution to model the stochastic-strength response of graphite.
NASA Astrophysics Data System (ADS)
Park, Jae-Won; Kim, Eung-Seon; Kim, Jae-Un; Kim, Yootaek; Windes, William E.
2016-08-01
The potential of reducing the oxidation of the supporting graphite components during normal and/or accident conditions in the Very High Temperature Reactor (VHTR) design has been studied. In this work efforts have been made to slow the oxidation process of the graphite with a thin SiC coating (∼ 10 μm). Upon heating at ≥ 1173 K in air, the spallations and cracks were formed in the dense columnar structured SiC coating layer grown on the graphite with a functionally gradient electron beam physical vapor deposition (EB-PVD. In accordance with the formations of these defects, the sample was vigorously oxidized, leaving only the SiC coating layer. Then, efforts were made to heal the surface defects using additional EB-PVD with ion beam bombardment and chemical vapor deposition (CVD). The EB-PVD did not effectively heal the cracks. But, the CVD was more appropriate for crack healing, likely due to its excellent crack line filling capability with a high density and high aspect ratio. It took ∼ 34 min for the 20% weight loss of the CVD crack healed sample in the oxidation test with annealing at 1173 K, while it took ∼ 8 min for the EB-PVD coated sample, which means it took ∼4 times longer at 1173 K for the same weight reduction in this experimental set-up.
Nuclear reactor shield including magnesium oxide
Rouse, Carl A.; Simnad, Massoud T.
1981-01-01
An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.
NASA Technical Reports Server (NTRS)
1975-01-01
Papers are presented dealing with latest advances in the design of scintillation counters, semiconductor radiation detectors, gas and position sensitive radiation detectors, and the application of these detectors in biomedicine, satellite instrumentation, and environmental and reactor instrumentation. Some of the topics covered include entopistic scintillators, neutron spectrometry by diamond detector for nuclear radiation, the spherical drift chamber for X-ray imaging applications, CdTe detectors in radioimmunoassay analysis, CAMAC and NIM systems in the space program, a closed loop threshold calibrator for pulse height discriminators, an oriented graphite X-ray diffraction telescope, design of a continuous digital-output environmental radon monitor, and the optimization of nanosecond fission ion chambers for reactor physics. Individual items are announced in this issue.
Property changes of G347A graphite due to neutron irradiation
Campbell, Anne A.; Katoh, Yutai; Snead, Mary A.; ...
2016-08-18
A new, fine-grain nuclear graphite, grade G347A from Tokai Carbon Co., Ltd., has been irradiated in the High Flux Isotope Reactor at Oak Ridge National Laboratory to study the materials property changes that occur when exposed to neutron irradiation at temperatures of interest for Generation-IV nuclear reactor applications. Specimen temperatures ranged from 290°C to 800 °C with a maximum neutron fluence of 40 × 10 25 n/m 2 [E > 0.1 MeV] (~30dpa). Lastly, observed behaviors include: anisotropic behavior of dimensional change in an isotropic graphite, Young's modulus showing parabolic fluence dependence, electrical resistivity increasing at low fluence and additionalmore » increase at high fluence, thermal conductivity rapidly decreasing at low fluence followed by continued degradation, and a similar plateau value of the mean coefficient of thermal expansion for all irradiation temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fachinger, Johannes; Muller, Walter; Marsat, Eric
2013-07-01
Around 250,000 tons of irradiated graphite (i-graphite) exists worldwide and can be considered as a current waste or future waste stream. The largest national i-graphite inventory is located in UK (∼ 100,000 tons) with significant quantities also in Russia and France [5]. Most of the i-graphite remains in the cores of shutdown nuclear reactors including the MAGNOX type in UK and the UNGG in France. Whilst there are still operational power reactors with graphite cores, such as the Russian RBMKs and the AGRs in UK, all of them will reach their end of life during the next two decades. Themore » most common reference waste management option of i-graphite is a wet or dry retrieval of the graphite blocks from the reactor core and the grouting of these blocks in a container without further conditioning. This produces large waste package volumes because the encapsulation capacity of the grout is limited and large cavities in the graphite blocks could reduce the packing densities. Packing densities from 0.5 to 1 tons per cubic meter have been assumed for grouting solutions. Furthermore the grout is permeable. This could over time allow the penetration of aqueous phases into the waste block and a potential dissolution and release of radionuclides. As a result particularly highly soluble radionuclides may not be retained by the grout. Vitrification could present an alternative, however a similar waste package volume increase may be expected since the encapsulation capacity of glass is potentially similar to or worse than that of grout. FNAG has developed a process for the production of a graphite-glass composite material called Impermeable Graphite Matrix (IGM) [3]. This process is also applicable to irradiated graphite which allows the manufacturing of an impermeable material without volume increase. Crushed i-graphite is mixed with 20 vol.% of glass and then pressed under vacuum at an elevated temperature in an axial hot vacuum press (HVP). The obtained product has zero or negligible porosity and a water impermeable structure. Structural analysis shows that the glass in the composite has replaced the pores in the graphite structure. The typical pore volume of a graphite material is in the range of 20 vol.%. Therefore no volume increase will occur in comparison with the former graphite material. This IGM material will allow the encapsulation of graphite with package densities larger than 1.5 ton per cubic meter. Therefore a huge volume saving can be achieved by such an alternative encapsulation method. Disposal performance is also enhanced since little or no leaching of radionuclides is observed due to the impermeability of the material NNL and FNAG have proved that IGM can be produced by hot isostatic pressing (HIP) which has several advantages for radioactive materials over the HVP process. - The sealed HIP container avoids the release of any radionuclides. - The outside of the waste package is not contaminated. - The HIP process time is shorter than the HVP process time. The isostatic press avoids anisotropic density distributions. - Simple filling of the HIP container has advantages over the filling of an axial die. (authors)« less
NASA Astrophysics Data System (ADS)
He, Zhao; Lian, Pengfei; Song, Yan; Liu, Zhanjun; Song, Jinliang; Zhang, Junpeng; Feng, Jing; Yan, Xi; Guo, Quangui
2018-02-01
A densification process has been conducted on isostatic graphite (IG-110, TOYO TANSO CO., Ltd., Japan) by impregnating phenolic resin to get the densified isostatic graphite (D-IG-110) with pore diameter of nearly 11 nm specifically for molten salt reactor application. The microstructure, mechanical, thermophysical and other properties of graphite were systematically investigated and compared before and after the densification process. The molten fluoride salt and Xe135 penetration in the graphite were evaluated in a high-pressure reactor and a vacuum device, respectively. Results indicated that D-IG-110 exhibited improved properties including infiltration resistance to molten fluoride salt and Xe135 as compared to IG-110 due to its low porosity of 2.8%, the average pore diameter of 11 nm and even smaller open pores on the surface of the graphite. The fluoride salt infiltration amount of IG-110 was 13.5 wt% under 1.5 atm and tended to be saturated under 3 atm with the fluoride salt occupation of 14.8 wt%. As to the D-IG-110, no salts could be detected even up to 10 atm attempted loading. The helium diffusion coefficient of D-IG-110 was 6.92 × 10-8 cm2/s, significantly less than 1.21 × 10-2 cm2/s of IG-110. If these as-produced properties for impregnated D-IG-110 could be retained during MSR operation, the material could prove effective at inhibiting molten fluoride salt and Xe135 inventories in the graphite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobrov, A. A.; Boyarinov, V. F.; Glushkov, A. E.
2012-07-01
Results of critical experiments performed at five ASTRA facility configurations modeling the high-temperature helium-cooled graphite-moderated reactors are presented. Results of experiments on definition of space distribution of {sup 235}U fission reaction rate performed at four from these five configurations are presented more detail. Analysis of available information showed that all experiments on criticality at these five configurations are acceptable for use them as critical benchmark experiments. All experiments on definition of space distribution of {sup 235}U fission reaction rate are acceptable for use them as physical benchmark experiments. (authors)
Lighting Studies for Fuelling Machine Deployed Visual Inspection Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoots, Carl; Griffith, George
2015-04-01
Under subcontract to James Fisher Nuclear, Ltd., INL has been reviewing advanced vision systems for inspection of graphite in high radiation, high temperature, and high pressure environments. INL has performed calculations and proof-of-principle measurements of optics and lighting techniques to be considered for visual inspection of graphite fuel channels in AGR reactors in UK.
Development of a trickle bed reactor of electro-Fenton process for wastewater treatment.
Lei, Yangming; Liu, Hong; Shen, Zhemin; Wang, Wenhua
2013-10-15
To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H2O2 was generated with a current of 0.3A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte-cathode interface. In terms of H2O2 generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L(-1) of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3h. Copyright © 2013 Elsevier B.V. All rights reserved.
The radioactivity estimation of 14C and 3H in graphite waste samples of the KRR-2.
Reyoung Kim, Hee
2013-09-01
The radioactivity of (14)C and (3)H in graphite samples from the dismantled Korea Research Reactor-2 (the KRR-2) site was analyzed by high-temperature oxidation and liquid scintillation counting, and the graphite waste was suggested to be disposed of as a low-level radioactive waste. The graphite samples were oxidized at a high temperature of 800 °C, and their counting rates were measured by using a liquid scintillation counter (LSC). The combustion ratio of the graphite was about 99% on the sample with a maximum weight of 1g. The recoveries from the combustion furnace were around 100% and 90% in (14)C and (3)H, respectively. The minimum detectable activity was 0.04-0.05 Bq/g for the (14)C and 0.13-0.15 Bq/g for the (3)H at the same background counting time. The activity of (14)C was higher than that of (3)H over all samples with the activity ratios of the (14)C to (3)H, (14)C/(3)H, being between 2.8 and 25. The dose calculation was carried out from its radioactivity analysis results. The dose estimation gave a higher annual dose than the domestic legal limit for a clearance. It was thought that the sampled graphite waste from the dismantled research reactor was not available for reuse or recycling and should be monitored as low-level radioactive waste. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lell, R. M.; Schaefer, R. W.; McKnight, R. D.
Over a period of 30 years more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited to form the basis for criticality safety benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactormore » physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. The term 'benchmark' in a ZPR program connotes a particularly simple loading aimed at gaining basic reactor physics insight, as opposed to studying a reactor design. In fact, the ZPR-6/7 Benchmark Assembly (Reference 1) had a very simple core unit cell assembled from plates of depleted uranium, sodium, iron oxide, U3O8, and plutonium. The ZPR-6/7 core cell-average composition is typical of the interior region of liquid-metal fast breeder reactors (LMFBRs) of the era. It was one part of the Demonstration Reactor Benchmark Program,a which provided integral experiments characterizing the important features of demonstration-size LMFBRs. As a benchmark, ZPR-6/7 was devoid of many 'real' reactor features, such as simulated control rods and multiple enrichment zones, in its reference form. Those kinds of features were investigated experimentally in variants of the reference ZPR-6/7 or in other critical assemblies in the Demonstration Reactor Benchmark Program.« less
Bostelmann, Friederike; Hammer, Hans R.; Ortensi, Javier; ...
2015-12-30
Within the framework of the IAEA Coordinated Research Project on HTGR Uncertainty Analysis in Modeling, criticality calculations of the Very High Temperature Critical Assembly experiment were performed as the validation reference to the prismatic MHTGR-350 lattice calculations. Criticality measurements performed at several temperature points at this Japanese graphite-moderated facility were recently included in the International Handbook of Evaluated Reactor Physics Benchmark Experiments, and represent one of the few data sets available for the validation of HTGR lattice physics. Here, this work compares VHTRC criticality simulations utilizing the Monte Carlo codes Serpent and SCALE/KENO-VI. Reasonable agreement was found between Serpent andmore » KENO-VI, but only the use of the latest ENDF cross section library release, namely the ENDF/B-VII.1 library, led to an improved match with the measured data. Furthermore, the fourth beta release of SCALE 6.2/KENO-VI showed significant improvements from the current SCALE 6.1.2 version, compared to the experimental values and Serpent.« less
A brief History of Neutron Scattering at the Oak Ridge High Flux Isotope Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagler, Stephen E; Mook Jr, Herbert A
2008-01-01
Neutron scattering at the Oak Ridge National Laboratory dates back to 1945 when Ernest Wollan installed a modified x-ray diffractometer on a beam port of the original graphite reactor. Subsequently, Wollan and Clifford Shull pioneered neutron diffraction and laid the foundation for an active neutron scattering effort that continued through the 1950s, using the Oak Ridge Research reactor after 1958, and, starting in 1966, the High Flux Isotope Reactor, or HFIR.
Evaluation of Neutron Radiography Reactor LEU-Core Start-Up Measurements
Bess, John D.; Maddock, Thomas L.; Smolinski, Andrew T.; ...
2014-11-04
Benchmark models were developed to evaluate the cold-critical start-up measurements performed during the fresh core reload of the Neutron Radiography (NRAD) reactor with Low Enriched Uranium (LEU) fuel. Experiments include criticality, control-rod worth measurements, shutdown margin, and excess reactivity for four core loadings with 56, 60, 62, and 64 fuel elements. The worth of four graphite reflector block assemblies and an empty dry tube used for experiment irradiations were also measured and evaluated for the 60-fuel-element core configuration. Dominant uncertainties in the experimental k eff come from uncertainties in the manganese content and impurities in the stainless steel fuel claddingmore » as well as the 236U and erbium poison content in the fuel matrix. Calculations with MCNP5 and ENDF/B-VII.0 neutron nuclear data are approximately 1.4% (9σ) greater than the benchmark model eigenvalues, which is commonly seen in Monte Carlo simulations of other TRIGA reactors. Simulations of the worth measurements are within the 2σ uncertainty for most of the benchmark experiment worth values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less
Evaluation of Neutron Radiography Reactor LEU-Core Start-Up Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Maddock, Thomas L.; Smolinski, Andrew T.
Benchmark models were developed to evaluate the cold-critical start-up measurements performed during the fresh core reload of the Neutron Radiography (NRAD) reactor with Low Enriched Uranium (LEU) fuel. Experiments include criticality, control-rod worth measurements, shutdown margin, and excess reactivity for four core loadings with 56, 60, 62, and 64 fuel elements. The worth of four graphite reflector block assemblies and an empty dry tube used for experiment irradiations were also measured and evaluated for the 60-fuel-element core configuration. Dominant uncertainties in the experimental k eff come from uncertainties in the manganese content and impurities in the stainless steel fuel claddingmore » as well as the 236U and erbium poison content in the fuel matrix. Calculations with MCNP5 and ENDF/B-VII.0 neutron nuclear data are approximately 1.4% (9σ) greater than the benchmark model eigenvalues, which is commonly seen in Monte Carlo simulations of other TRIGA reactors. Simulations of the worth measurements are within the 2σ uncertainty for most of the benchmark experiment worth values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less
EXPLORATORY DEVELOPMENT OF GRAPHITE MATERIALS.
COMPOSITE MATERIALS), (* GRAPHITE , (*FIBERS, GRAPHITE ), (*LAMINATED PLASTICS, GRAPHITE ), MOLDINGS, EXTRUSION, VACUUM, EPOXY RESINS, FILAMENTS, STRESSES, TENSILE PROPERTIES, OXIDATION, PHYSICAL PROPERTIES.
Study of evaporating the irradiated graphite in equilibrium low-temperature plasma
NASA Astrophysics Data System (ADS)
Bespala, E. V.; Novoselov, I. Yu.; Pavlyuk, A. O.; Kotlyarevskiy, S. G.
2018-01-01
The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes 137Cs, 60Co, 90Sr, 36Cl, and 3H. A method was developed for processing of irradiated graphite ensuring the volu-metric decontamination of samples. The calculation results are presented for equilibrium composition of plasma-chemical reactions in systems "irradiated graphite-argon" and "irradiated graphite-helium" for a wide range of tem-peratures. The paper describes a developed mathematical model for the process of purification of a porous graphite surface treated by equilibrium low-temperature plasma. The simulation results are presented for the rate of sublimation of radioactive contaminants as a function of plasma temperature and plasma flow velocity when different plasma-forming gases are used. The extraction coefficient for the contaminant 137Cs from the outer side of graphite pores was calculated. The calculations demonstrated the advantages of using a lighter plasma forming gas, i.e., helium.
Thermal Properties of G-348 Graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEligot, Donald; Swank, W. David; Cottle, David L.
2016-05-01
Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08. Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.
Thermal Properties of G-348 Graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEligot, Donald M.; Swank, W. David; Cottle, David L.
Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08 (R-2014). Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.
Design of Modern Reactors for Synthesis of Thermally Expanded Graphite.
Strativnov, Eugene V
2015-12-01
One of the most progressive trends in the development of modern science and technology is the creation of energy-efficient technologies for the synthesis of nanomaterials. Nanolayered graphite (thermally exfoliated graphite) is one of the key important nanomaterials of carbon origin. Due to its unique properties (chemical and thermal stability, ability to form without a binder, elasticity, etc.), it can be used as an effective absorber of organic substances and a material for seal manufacturing for such important industries as gas transportation and automobile. Thermally expanded graphite is a promising material for the hydrogen and nuclear energy industries. The development of thermally expanded graphite production is resisted by high specific energy consumption during its manufacturing and by some technological difficulties. Therefore, the creation of energy-efficient technology for its production is very promising.
Baseline Concept Description of a Small Modular High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hans Gougar
2014-05-01
The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNPmore » were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.« less
Baseline Concept Description of a Small Modular High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gougar, Hans D.
2014-10-01
The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNPmore » were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.« less
APPARATUS FOR DETECTING AND LOCATING PRESENCE OF FLUIDS
Williamson, R.R.
1958-09-16
A system is described fur detecting water leaks in water-cooled neutronic reactors by utilizing an electrical hygrometer having a resistance element variable with the moisture content. The graphite blocks, forming the moderator in many types of reactors, coniain ducts in which helium gas is circulated. When a leak occurs in a coolant tube, the water will seep through the graphite until it oozes into one of the helium ducts, where it will be swept along with the helium into a system of pipes that connect each of the helium ducts. By inserting an electric hygrometer in each of these pipes and connecting it to an alarm system, the moisture content of the helium will cause a change in the electrical resistance of the hygrometer which will initiate a signal alarm indicating the presence and position of the leaky water tube in the reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, D.F.
The division was formed in 1946 at the suggestion of Dr. Eugene P. Wigner to attack the problem of the distortion of graphite in the early reactors due to exposure to reactor neutrons, and the consequent radiation damage. It was called the Metallurgy Division and assembled the metallurgical and solid state physics activities of the time which were not directly related to nuclear weapons production. William A. Johnson, a Westinghouse employee, was named Division Director in 1946. In 1949 he was replaced by John H Frye Jr. when the Division consisted of 45 people. He was director during most ofmore » what is called the Reactor Project Years until 1973 and his retirement. During this period the Division evolved into three organizational areas: basic research, applied research in nuclear reactor materials, and reactor programs directly related to a specific reactor(s) being designed or built. The Division (Metals and Ceramics) consisted of 204 staff members in 1973 when James R. Weir, Jr., became Director. This was the period of the oil embargo, the formation of the Energy Research and Development Administration (ERDA) by combining the Atomic Energy Commission (AEC) with the Office of Coal Research, and subsequent formation of the Department of Energy (DOE). The diversification process continued when James O. Stiegler became Director in 1984, partially as a result of the pressure of legislation encouraging the national laboratories to work with U.S. industries on their problems. During that time the Division staff grew from 265 to 330. Douglas F. Craig became Director in 1992.« less
Park, Jungyu; Lee, Beom; Shi, Peng; Kwon, Hyejeong; Jeong, Sang Mun; Jun, Hangbae
2018-07-01
In this study, the metabolism of methanol and changes in an archaeal community were examined in a bioelectrochemical anaerobic digestion sequencing batch reactor with a copper-coated graphite cathode (BEAD-SBR Cu ). Copper-coated graphite cathode produced methanol from food waste. The BEAD-SBR Cu showed higher methanol removal and methane production than those of the anaerobic digestion (AD)-SBR. The methane production and pH of the BEAD-SBR Cu were stable even under a high organic loading rate (OLR). The hydrogenotrophic methanogens increased from 32.2 to 60.0%, and the hydrogen-dependent methylotrophic methanogens increased from 19.5 to 37.7% in the bulk of BEAD-SBR Cu at high OLR. Where methanol was directly injected as a single substrate into the BEAD-SBR Cu , the main metabolism of methane production was hydrogenotrophic methanogenesis using carbon dioxide and hydrogen released by the oxidation of methanol on the anode through bioelectrochemical reactions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Starr, C.
1963-01-01
This patent relates to a combination useful in a nuclear reactor and is comprised of a casing, a mass of graphite irapregnated with U compounds in the casing, and at least one coolant tube extending through the casing. The coolant tube is spaced from the mass, and He is irtroduced irto the space between the mass and the coolant tube. (AEC)
Nuclear Rocket Technology Conference
NASA Technical Reports Server (NTRS)
1966-01-01
The Lewis Research Center has a strong interest in nuclear rocket propulsion and provides active support of the graphite reactor program in such nonnuclear areas as cryogenics, two-phase flow, propellant heating, fluid systems, heat transfer, nozzle cooling, nozzle design, pumps, turbines, and startup and control problems. A parallel effort has also been expended to evaluate the engineering feasibility of a nuclear rocket reactor using tungsten-matrix fuel elements and water as the moderator. Both of these efforts have resulted in significant contributions to nuclear rocket technology. Many successful static firings of nuclear rockets have been made with graphite-core reactors. Sufficient information has also been accumulated to permit a reasonable Judgment as to the feasibility of the tungsten water-moderated reactor concept. We therefore consider that this technoIogy conference on the nuclear rocket work that has been sponsored by the Lewis Research Center is timely. The conference has been prepared by NASA personnel, but the information presented includes substantial contributions from both NASA and AEC contractors. The conference excludes from consideration the many possible mission requirements for nuclear rockets. Also excluded is the direct comparison of nuclear rocket types with each other or with other modes of propulsion. The graphite reactor support work presented on the first day of the conference was partly inspired through a close cooperative effort between the Cleveland extension of the Space Nuclear Propulsion Office (headed by Robert W. Schroeder) and the Lewis Research Center. Much of this effort was supervised by Mr. John C. Sanders, chairman for the first day of the conference, and by Mr. Hugh M. Henneberry. The tungsten water-moderated reactor concept was initiated at Lewis by Mr. Frank E. Rom and his coworkers. The supervision of the recent engineering studies has been shared by Mr. Samuel J. Kaufman, chairman for the second day of the conference, and Mr. Roy V. Humble. Dr. John C. Eward served as general chairman for the conference.
Graphite Waste Tank Cleanup and Decontamination under the Marcoule UP1 D and D Program - 13166
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomasset, Philippe; Chabeuf, Jean-Michel; Thiebaut, Valerie
2013-07-01
The UP1 plant in Marcoule reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. During more than 40 years, the decladding operations produced thousands of tons of processed waste, mainly magnesium and graphite fragments. In the absence of a French repository for the graphite waste, the graphite sludge content of the storage pits had to be retrieved and transferred into a newer and safer pit. After an extensive R and D program, the equipment and process necessary for retrieval operations were designed, built and tested. Themore » innovative process is mainly based on the use of two pumps (one to capture and the other one to transfer the sludge) working one after the other and a robotic arm mounted on a telescopic mast. A dedicated process was also set up for the removal of the biggest fragments. The retrieval of the most irradiating fragments was a challenge. Today, the first pit is totally empty and its stainless steel walls have been decontaminated using gels. In the second pit, the sludge retrieval and transfer operations have been almost completed. Most of the non-pumpable graphite fragments has been removed and transferred to a new storage pit. After more than 6 years of operations in sludge retrieval, a lot of experience was acquired from which important 'lessons learned' could be shared. (authors)« less
PT-IP-759, channel caulking tests: C Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooke, J.P.; Russell, A.
1965-03-19
The graphite movement which has occurred at the various reactors has been characterized by two problems: (1) Crooked channels and (2) cracks and miscellaneous voids where pieces of blocks are missing. Of these problems, the cracks and voids have been the most serious in the case of ball drops. Alleviation of the crooked channels can sometimes be accomplished by graphite removal methods such as broaching, but unless some method is found to prevent the balls from entering cracks, the total effect of a ball drop would still be intolerable. Of the two methods of closing the cracks, a paste caulkingmore » procedure is anticipated to be less expensive than sleeving, both in terms of cost of the operation and the number of process tube channels which might be lost. If the VSR channel does not require drastic straightening or entry of large tooling, satisfactory caulking can be done without removal of the step plug. ``Poison`` chain may be considered as an alternative to caulking or sleeving for those outer VSR channels where the sole use of balls is for ``total control`` rather than ``speed of control.`` The objectives of this test are (1) to authorize the experimental crack filling of one or two of the VSR channels at C Reactor with a wet mixture of graphite and sugar, (2) to demonstrate the durability of this mixture in subsequent normal reactor operation, and (3) to demonstrate by testing (actual or simulated ball drops) and borescoping, that the channels are or are not again acceptable for use with the normal charge of balls.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aghina, L.O.B.; Bellini, I.W.
The main works and modifications performed on the Argonaut reactor of the Instituto de Engenharia Nuclear after 4 years of operation are described. New positioning and holding system for the fuel elements and graphite wedges for the reactor brought appreciable stability to the operation. The removal of the plastic layer, printing and inspection of the corrosion of the elements plater are also described. (INIS)
AGR-2 and AGR-3/4 Release-to-Birth Ratio Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Binh T.; Einerson, Jeffrey J.; Scates, Dawn M.
A series of Advanced Gas Reactor (AGR) irradiation tests is being conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) in support of development and qualification of tristructural isotropic (TRISO) low enriched fuel used in the High Temperature Gas-cooled Reactor (HTGR). Each AGR test consists of multiple independently controlled and monitored capsules containing fuel compacts placed in a graphite cylinder shrouded by a steel shell. These capsules are instrumented with thermocouples embedded in the graphite enabling temperature control. AGR configuration and irradiation conditions are based on prismatic HTGR technology that is distinguished primarily through use of heliummore » coolant, a low-power-density ceramic core capable of withstanding very high temperatures, and TRISO coated particle fuel. Thus, these tests provide valuable irradiation performance data to support fuel process development, qualify fuel for normal operating conditions, and support development and validation of fuel performance and fission product transport models and codes.« less
Ultra-High Temperature ContinuousReactors based on Electro-thermal FluidizedBed Concept
Fedorov, Sergiy S.; Rohatgi, Upendra Singh; Barsukov, Igor V.; ...
2015-12-08
This paper presents the results of research and development in high-temperature (i.e. 2,000- 3,000ºС) continuous furnaces operating on the principle of electro-thermal fluidized bed for the purification of recycled, finely sized carbon materials. The basis of this fluidized bed furnace is specific electrical resistance and a new correlation has been developed to predict specific electrical resistance for the natural graphite-based precursors entering the fluidized bed reactor This correlation has been validated with the data from a fully functional pilot furnace whose throughput capacity is 10 kg per hour built as part of this work. Data collected in the course ofmore » graphite refining experiments demonstrated that difference between the calculated and measured values of specific electrical resistance of fluidized bed does not exceed 25%. It was concluded that due to chaotic nature of electro-thermal fluidized bed reactors this discrepancy is acceptable. The fluid mechanics of the three types of operating regimes, have been described. The numerical relationships obtained as part of this work allowed proposing an algorithm for selection of technological operational modes with large- scale high-temperature furnaces rated for throughputs of several tons of product per hour. Optimizations proposed now allow producing natural graphite-based end product with the purity level of 99.98+ wt%C which is the key passing criteria for applications in the advanced battery markets.« less
Design test request No. 1263 K Reactor graphite key and VSR channel sleeve test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempf, F.J.
1964-12-10
The objectives of this test were: (1) Determine the coefficient of friction between two adjacent layers of K Reactor graphite at room temperature. (2) Determine the average load required to cause failure of an unirradiated K Reactor side reflector bar, when subjected to tensile loading applied through the reflector keys. (3) Determine the average load at failure and the average deflection at failure of a single VSR channel key when loaded in keyways with clearances equal to those used in original stack construction. (4) Determine the average load and deflection required to break the four K Reactor VSR keys whenmore » loaded simultaneously in both `3-layer` and `7-layer` mockups. Also determine the mode of key failure; i.e., shear, flexure or combined compression and bending. Following these key rupture tests, determine the strength and deflection characteristics of the proposed K Reactor VSR channel sleeve when loaded in a manner identical to that used to fracture the keys. (5) Determine the average load and deflection at failure of both the proposed K Reactor VSR channel sleeves and the proposed C Reactor sleeves when subjected to crushing loads. (6) Determine the extent of damage to the proposed K Reactor VSR channel sleeve when subjected to the following vertical rod loading conditions. (a) Full rod drop in a channel mockup which has been misaligned 2 1/2 inches. (b) Full rod drop in a channel which has been misaligned an amount equal to the maximum flexibility of a `universal` VSR.« less
Modelling of the anti-neutrino production and spectra from a Magnox reactor
NASA Astrophysics Data System (ADS)
Mills, Robert W.; Mountford, David J.; Coleman, Jonathon P.; Metelko, Carl; Murdoch, Matthew; Schnellbach, Yan-Jie
2018-01-01
The anti-neutrino source properties of a fission reactor are governed by the production and beta decay of the radionuclides present and the summation of their individual anti-neutrino spectra. The fission product radionuclide production changes during reactor operation and different fissioning species give rise to different product distributions. It is thus possible to determine some details of reactor operation, such as power, from the anti-neutrino emission to confirm safeguards records. Also according to some published calculations, it may be feasible to observe different anti-neutrino spectra depending on the fissile contents of the reactor fuel and thus determine the reactor's fissile material inventory during operation which could considerable improve safeguards. In mid-2014 the University of Liverpool deployed a prototype anti-neutrino detector at the Wylfa R1 station in Anglesey, United Kingdom based upon plastic scintillator technology developed for the T2K project. The deployment was used to develop the detector electronics and software until the reactor was finally shutdown in December 2015. To support the development of this detector technology for reactor monitoring and to understand its capabilities, the National Nuclear Laboratory modelled this graphite moderated and natural uranium fuelled reactor with existing codes used to support Magnox reactor operations and waste management. The 3D multi-physics code PANTHER was used to determine the individual powers of each fuel element (8×6152) during the year and a half period of monitoring based upon reactor records. The WIMS/TRAIL/FISPIN code route was then used to determine the radionuclide inventory of each nuclide on a daily basis in each element. These nuclide inventories were then used with the BTSPEC code to determine the anti-neutrino spectra and source strength using JEFF-3.1.1 data. Finally the anti-neutrino source from the reactor for each day during the year and a half of monitored reactor operation was calculated. The results of the preliminary calculations are shown and limitations in the methods and data discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luther, Erik; Rooyen, Isabella van; Leckie, Rafael
2015-03-01
In an effort to explore fuel systems that are more robust under accident scenarios, the DOE-NE has identified the need to resume transient testing. The Transient Reactor Test (TREAT) facility has been identified as the preferred option for the resumption of transient testing of nuclear fuel in the United States. In parallel, NNSA’s Global Threat Reduction Initiative (GTRI) Convert program is exploring the needs to replace the existing highly enriched uranium (HEU) core with low enriched uranium (LEU) core. In order to construct a new LEU core, materials and fabrication processes similar to those used in the initial core fabricationmore » must be identified, developed and characterized. In this research, graphite matrix fuel blocks were extruded and materials properties of were measured. Initially the extrusion process followed the historic route; however, the project was expanded to explore methods to increase the graphite content of the fuel blocks and explore modern resins. Materials properties relevant to fuel performance including density, heat capacity and thermal diffusivity were measured. The relationship between process defects and materials properties will be discussed.« less
Influence of cyclic thermal loading on brazed composites for fusion applications
NASA Astrophysics Data System (ADS)
Šmid, I.; Kny, E.; Kneringer, G.; Reheis, N.
1990-04-01
Reactor grade graphite and molybdenum (TZM) were brazed with different high temperature brazes. The resulting tiles had a size of 50 × 50 mm2 with a graphite thickness of 10 mm and a TZM thickness of 5 mm. The brazed composites have been tested in electron beam simulation for their thermal fatigue properties. The parameters of these tests were chosen to match NET design specifications for normal operation and "slow" peak energy deposition. The resulting damage and microstructural changes on the graphites and the brazes are discussed. Additional information is supplied on X-ray diffraction data proving the presence of different phases in the brazes.
Diffusion of cesium and iodine in compressed IG-110 graphite compacts
NASA Astrophysics Data System (ADS)
Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.
2016-08-01
Nuclear graphite grade IG-110 is currently used in the High Temperature Engineering Test Reactor (HTTR) in Japan for certain permanent and replaceable core components, and is a material of interest in general. Therefore, transport parameters for fission products in this material are needed. Measurement of diffusion through pressed compacts of IG-110 graphite is experimentally attractive because they are easy to prepare with homogeneous distributions of fission product surrogates. In this work, we measured diffusion coefficients for Cs and I in pressed compacts made from IG-110 powder in the 1079-1290 K temperature range, and compared them to those obtained in as-received IG-110.
The WSTIAC Quarterly. Volume 9, Number 3
2010-01-25
program .[8] THE THORIUM FUEL CYCLE AND LFTR POWER PLANT The thorium fuel cycle is based on a series of neutron absorp- tion and beta decay processes...the fig- ure is a graphite matrix moderated MSR reactor with fuel salt mixture (ThF4-U233F4) being circulated by a pump through the core and to a...the core as purified salt. As one of the unique safety features, a melt-plug at the reactor bottom would permit the reactor fluid fuel to be drained
WATER PROCESS SYSTEM FLOW DIAGRAM FOR MTR, TRA603. SUMMARY OF ...
WATER PROCESS SYSTEM FLOW DIAGRAM FOR MTR, TRA-603. SUMMARY OF COOLANT FLOW FROM WORKING RESERVOIR TO INTERIOR OF REACTOR'S THERMAL SHIELD. NAMES TANK SECTIONS. PIPE AND DRAIN-LINE SIZES. SHOWS DIRECTION OF AIR FLOW THROUGH PEBBLE AND GRAPHITE BLOCK ZONE. NEUTRON CURTAIN AND THERMAL COLUMN DOOR. BLAW-KNOX 3150-92-7, 3/1950. INL INDEX NO. 531-0603-51-098-100036, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Long, E.; Rodwell, W.
1958-06-10
A gas-cooled nuclear reactor consisting of a graphite reacting core and reflector structure supported in a containing vessel is described. A gas sealing means is included for sealing between the walls of the graphite structure and containing vessel to prevent the gas coolant by-passing the reacting core. The reacting core is a multi-sided right prismatic structure having a pair of parallel slots around its periphery. The containing vessel is cylindrical and has a rib on its internal surface which supports two continuous ring shaped flexible web members with their radially innermost ends in sealing engagement within the radially outermost portion of the slots. The core structure is supported on ball bearings. This design permits thermal expansion of the core stracture and vessel while maintainirg a peripheral seal between the tvo elements.
Thermal oxidation of nuclear graphite: A large scale waste treatment option.
Theodosiou, Alex; Jones, Abbie N; Marsden, Barry J
2017-01-01
This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF). Particulate samples of Magnox Reactor Pile Grade-A (PGA) graphite, were oxidised in both air and 60% O2, over the temperature range 400-1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700-800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000-1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput.
Thermal oxidation of nuclear graphite: A large scale waste treatment option
Jones, Abbie N.; Marsden, Barry J.
2017-01-01
This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF). Particulate samples of Magnox Reactor Pile Grade-A (PGA) graphite, were oxidised in both air and 60% O2, over the temperature range 400–1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700–800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000–1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput. PMID:28793326
METHOD FOR COATING GRAPHITE WITH NIOBIUM CARBIDE
Kane, J.S.; Carpenter, J.H.; Krikorian, O.H.
1962-01-16
A method is given for coating graphite with a hard, tenacious layer of niobium carbide up to 30 mils or more thick. The method makes use of the discovery that niobium metal, if degassed and heated rapidly below the carburization temperature in contact with graphite, spreads, wets, and penetrates the graphite without carburization. The method includes the obvious steps of physically contacting niobium powders or other physical forms of niobium with graphite, degassing the assembly below the niobium melting point, e.g., 1400 deg C, heating to about 2200 to 2400 deg C within about 15 minutes while outgassing at a high volume throughput, and thereafter carburizing the niobium. (AEC)
Johnson, Alfred A.; Carleton, John T.
1978-05-02
A graphite-moderated, water-cooled nuclear reactor including graphite blocks disposed in transverse alternate layers, one set of alternate layers consisting of alternate full size blocks and smaller blocks through which cooling tubes containing fuel extend, said smaller blocks consisting alternately of tube bearing blocks and support block, the support blocks being smaller than the tube bearing blocks, the aperture of each support block being tapered so as to provide the tube extending therethrough with a narrow region of support while being elsewhere spaced therefrom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loyalka, Sudarshan
High and Very High Temperatures Gas Reactors (HTGRs/VHTRs) have five barriers to fission product (FP) release: the TRISO fuel coating, the fuel elements, the core graphite, the primary coolant system, and the reactor building. This project focused on measurements and computations of FP diffusion in graphite, FP adsorption on graphite and FP interactions with dust particles of arbitrary shape. Diffusion Coefficients of Cs and Iodine in two nuclear graphite were obtained by the release method and use of Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) and Instrumented Neutron Activation Analysis (INAA). A new mathematical model for fission gas release from nuclear fuelmore » was also developed. Several techniques were explored to measure adsorption isotherms, notably a Knudsen Effusion Mass Spectrometer (KEMS) and Instrumented Neutron Activation Analysis (INAA). Some of these measurements are still in progress. The results will be reported in a supplemental report later. Studies of FP interactions with dust and shape factors for both chain-like particles and agglomerates over a wide size range were obtained through solutions of the diffusion and transport equations. The Green's Function Method for diffusion and Monte Carlo technique for transport were used, and it was found that the shape factors are sensitive to the particle arrangements, and that diffusion and transport of FPs can be hindered. Several journal articles relating to the above work have been published, and more are in submission and preparation.« less
DESIGN CHARACTERISTICS OF THE IDAHO NATIONAL LABORATORY HIGH-[TEMPERATURE GAS-COOLED TEST REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterbentz, James; Bayless, Paul; Strydom, Gerhard
A point design for a graphite-moderated, high-temperature, gas-cooled test reactor (HTG TR) has been developed by Idaho National Laboratory (INL) as part of a United States (U.S.) Department of Energy (DOE) initiative to explore and potentially expand the existing U.S. test reactor capabilities. This paper provides a summary of the design and its main attributes. The 200 MW HTG TR is a thermal-neutron spectrum reactor composed of hexagonal prismatic fuel and graphite reflector blocks. Twelve fuel columns (96 fuel blocks total and 6.34 m active core height) are arranged in two hexagonal rings to form a relatively compact, high-power density,more » annular core sandwiched between inner, outer, top, and bottom graphite reflectors. The HTG-TR is designed to operate at 7 MPa with a coolant inlet/outlet temperature of 325°C/650°C, and utilizes TRISO particle fuel from the DOE AGR Program with 425 ?m uranium oxycarbide (UCO) kernels and an enrichment of 15.5 wt% 235U. The primary mission of the HTG TR is material irradiation and therefore the core has been specifically designed and optimized to provide the highest possible thermal and fast neutron fluxes. The highest thermal neutron flux (3.90E+14 n/cm2s) occurs in the outer reflector, and the maximum fast flux levels (1.17E+14 n/cm2s) are produced in the central reflector column where most of the graphite has been removed. Due to high core temperatures under accident conditions, all the irradiation test facilities have been located in the inner and outer reflectors where fast flux levels decline. The core features a large number of irradiation positions with large test volumes and long test lengths, ideal for thermal neutron irradiation of large test articles. The total available test volume is more than 1100 liters. Up to four test loop facilities can be accommodated with pressure tube boundaries to isolate test articles and test fluids (e.g., liquid metal, liquid salt, light water) from the helium primary coolant system.« less
Heat and mass transfer rates during flow of dissociated hydrogen gas over graphite surface
NASA Technical Reports Server (NTRS)
Nema, V. K.; Sharma, O. P.
1986-01-01
To improve upon the performance of chemical rockets, the nuclear reactor has been applied to a rocket propulsion system using hydrogen gas as working fluid and a graphite-composite forming a part of the structure. Under the boundary layer approximation, theoretical predictions of skin friction coefficient, surface heat transfer rate and surface regression rate have been made for laminar/turbulent dissociated hydrogen gas flowing over a flat graphite surface. The external stream is assumed to be frozen. The analysis is restricted to Mach numbers low enough to deal with the situation of only surface-reaction between hydrogen and graphite. Empirical correlations of displacement thickness, local skin friction coefficient, local Nusselt number and local non-dimensional heat transfer rate have been obtained. The magnitude of the surface regression rate is found low enough to ensure the use of graphite as a linear or a component of the system over an extended period without loss of performance.
Damage tolerance of nuclear graphite at elevated temperatures
Liu, Dong; Gludovatz, Bernd; Barnard, Harold S.; ...
2017-06-30
Nuclear-grade graphite is a critically important high-temperature structural material for current and potentially next generation of fission reactors worldwide. It is imperative to understand its damage-tolerant behaviour and to discern the mechanisms of damage evolution under in-service conditions. Here we perform in situ mechanical testing with synchrotron X-ray computed micro-tomography at temperatures between ambient and 1,000 °C on a nuclear-grade Gilsocarbon graphite. We find that both the strength and fracture toughness of this graphite are improved at elevated temperature. Whereas this behaviour is consistent with observations of the closure of microcracks formed parallel to the covalent-sp 2-bonded graphene layers atmore » higher temperatures, which accommodate the more than tenfold larger thermal expansion perpendicular to these layers, we attribute the elevation in strength and toughness primarily to changes in the residual stress state at 800–1,000 °C, specifically to the reduction in significant levels of residual tensile stresses in the graphite that are ‘frozen-in’ following processing.« less
Damage tolerance of nuclear graphite at elevated temperatures
Liu, Dong; Gludovatz, Bernd; Barnard, Harold S.; Kuball, Martin; Ritchie, Robert O.
2017-01-01
Nuclear-grade graphite is a critically important high-temperature structural material for current and potentially next generation of fission reactors worldwide. It is imperative to understand its damage-tolerant behaviour and to discern the mechanisms of damage evolution under in-service conditions. Here we perform in situ mechanical testing with synchrotron X-ray computed micro-tomography at temperatures between ambient and 1,000 °C on a nuclear-grade Gilsocarbon graphite. We find that both the strength and fracture toughness of this graphite are improved at elevated temperature. Whereas this behaviour is consistent with observations of the closure of microcracks formed parallel to the covalent-sp2-bonded graphene layers at higher temperatures, which accommodate the more than tenfold larger thermal expansion perpendicular to these layers, we attribute the elevation in strength and toughness primarily to changes in the residual stress state at 800–1,000 °C, specifically to the reduction in significant levels of residual tensile stresses in the graphite that are ‘frozen-in’ following processing. PMID:28665405
Direct Preparation of Few Layer Graphene Epoxy Nanocomposites from Untreated Flake Graphite.
Throckmorton, James; Palmese, Giuseppe
2015-07-15
The natural availability of flake graphite and the exceptional properties of graphene and graphene-polymer composites create a demand for simple, cost-effective, and scalable methods for top-down graphite exfoliation. This work presents a novel method of few layer graphite nanocomposite preparation directly from untreated flake graphite using a room temperature ionic liquid and laminar shear processing regimen. The ionic liquid serves both as a solvent and initiator for epoxy polymerization and is incorporated chemically into the matrix. This nanocomposite shows low electrical percolation (0.005 v/v) and low thickness (1-3 layers) graphite/graphene flakes by TEM. Additionally, the effect of processing conditions by rheometry and comparison with solvent-free conditions reveal the interactions between processing and matrix properties and provide insight into the theory of the chemical and physical exfoliation of graphite crystals and the resulting polymer matrix dispersion. An interaction model that correlates the interlayer shear physics of graphite flakes and processing parameters is proposed and tested.
ICP-MS measurement of silver diffusion coefficient in graphite IG-110 between 1048K and 1284K
NASA Astrophysics Data System (ADS)
Carter, L. M.; Seelig, J. D.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.
2018-01-01
Silver-110m has been shown to permeate intact silicon carbide and pyrolytic carbon coating layers of the TRISO fuel particles during normal High Temperature Gas-Cooled Reactor (HTGR) operational conditions. The diffusion coefficients for silver in graphite IG-110 measured using a release method designed to simulate HTGR conditions of high temperature and flowing helium in the temperature range 1048-1253 K are reported. The measurements were made using spheres milled from IG-110 graphite that were infused with silver using a pressure vessel technique. The Ag diffusion was measured using a time release technique with an ICP-MS instrument for detection. The results of this work are:
A new oxidation based technique for artifact free TEM specimen preparation of nuclear graphite
NASA Astrophysics Data System (ADS)
Johns, Steve; Shin, Wontak; Kane, Joshua J.; Windes, William E.; Ubic, Rick; Karthik, Chinnathambi
2018-07-01
Graphite is a key component in designs of current and future nuclear reactors whose in-service lifetimes are dependent upon the mechanical performance of the graphite. Irradiation damage from fast neutrons creates lattice defects which have a dynamic effect on the microstructure and mechanical properties of graphite. Transmission electron microscopy (TEM) can offer real-time monitoring of the dynamic atomic-level response of graphite subjected to irradiation; however, conventional TEM specimen-preparation techniques, such as argon ion milling itself, damage the graphite specimen and introduce lattice defects. It is impossible to distinguish these defects from the ones created by electron or neutron irradiation. To ensure that TEM specimens are artifact-free, a new oxidation-based technique has been developed. Bulk nuclear grades of graphite (IG-110 and NBG-18) and highly oriented pyrolytic graphite (HOPG) were initially mechanically thinned to ∼60 μm. Discs 3 mm in diameter were then oxidized at temperatures between 575 °C and 625 °C in oxidizing gasses using a new jet-polisher-like set-up in order to achieve optimal oxidation conditions to create self-supporting electron-transparent TEM specimens. The quality of these oxidized specimens were established using optical and electron microscopy. Samples oxidized at 575 °C exhibited large areas of electron transparency and the corresponding lattice imaging showed no apparent damage to the graphite lattice.
A new oxidation based technique for artifact free TEM specimen preparation of nuclear graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johns, Steve; Shin, Wontak; Kane, Joshua J.
Graphite is a key component in designs of current and future nuclear reactors whose in-service lifetimes are dependent upon the mechanical performance of the graphite. Irradiation damage from fast neutrons creates lattice defects which have a dynamic effect on the microstructure and mechanical properties of graphite. Transmission electron microscopy (TEM) can offer real-time monitoring of the dynamic atomic-level response of graphite subjected to irradiation; however, conventional TEM specimen-preparation techniques, such as argon ion milling itself, damage the graphite specimen and introduce lattice defects. It is impossible to distinguish these defects from the ones created by electron or neutron irradiation. Thus,tomore » ensure that TEM specimens are artifact-free, a new oxidation-based technique has been developed. Bulk nuclear grades of graphite (IG-110 and NBG-18) and highly oriented pyrolytic graphite (HOPG) were initially mechanically thinned to ~60μm. Discs 3mm in diameter were then oxidized at temperatures between 575°C and 625°C in oxidizing gasses using a new jet-polisher-like set-up in order to achieve optimal oxidation conditions to create self-supporting electron-transparent TEM specimens. The quality of these oxidized specimens were established using optical and electron microscopy. Samples oxidized at 575°C exhibited large areas of electron transparency and the corresponding lattice imaging showed no apparent damage to the graphite lattice.« less
A new oxidation based technique for artifact free TEM specimen preparation of nuclear graphite
Johns, Steve; Shin, Wontak; Kane, Joshua J.; ...
2018-04-03
Graphite is a key component in designs of current and future nuclear reactors whose in-service lifetimes are dependent upon the mechanical performance of the graphite. Irradiation damage from fast neutrons creates lattice defects which have a dynamic effect on the microstructure and mechanical properties of graphite. Transmission electron microscopy (TEM) can offer real-time monitoring of the dynamic atomic-level response of graphite subjected to irradiation; however, conventional TEM specimen-preparation techniques, such as argon ion milling itself, damage the graphite specimen and introduce lattice defects. It is impossible to distinguish these defects from the ones created by electron or neutron irradiation. Thus,tomore » ensure that TEM specimens are artifact-free, a new oxidation-based technique has been developed. Bulk nuclear grades of graphite (IG-110 and NBG-18) and highly oriented pyrolytic graphite (HOPG) were initially mechanically thinned to ~60μm. Discs 3mm in diameter were then oxidized at temperatures between 575°C and 625°C in oxidizing gasses using a new jet-polisher-like set-up in order to achieve optimal oxidation conditions to create self-supporting electron-transparent TEM specimens. The quality of these oxidized specimens were established using optical and electron microscopy. Samples oxidized at 575°C exhibited large areas of electron transparency and the corresponding lattice imaging showed no apparent damage to the graphite lattice.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Anne A.; Katoh, Yutai; Snead, Mary A.
A new, fine-grain nuclear graphite, grade G347A from Tokai Carbon Co., Ltd., has been irradiated in the High Flux Isotope Reactor at Oak Ridge National Laboratory to study the materials property changes that occur when exposed to neutron irradiation at temperatures of interest for Generation-IV nuclear reactor applications. Specimen temperatures ranged from 290°C to 800 °C with a maximum neutron fluence of 40 × 10 25 n/m 2 [E > 0.1 MeV] (~30dpa). Lastly, observed behaviors include: anisotropic behavior of dimensional change in an isotropic graphite, Young's modulus showing parabolic fluence dependence, electrical resistivity increasing at low fluence and additionalmore » increase at high fluence, thermal conductivity rapidly decreasing at low fluence followed by continued degradation, and a similar plateau value of the mean coefficient of thermal expansion for all irradiation temperatures.« less
Experiment Needs and Facilities Study Appendix A Transient Reactor Test Facility (TREAT) Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The TREAT Upgrade effort is designed to provide significant new capabilities to satisfy experiment requirements associated with key LMFBR Safety Issues. The upgrade consists of reactor-core modifications to supply the physics performance needed for the new experiments, an Advanced TREAT loop with size and thermal-hydraulics capabilities needed for the experiments, associated interface equipment for loop operations and handling, and facility modifications necessary to accommodate operations with the Loop. The costs and schedules of the tasks to be accomplished under the TREAT Upgrade project are summarized. Cost, including contingency, is about 10 million dollars (1976 dollars). A schedule for execution ofmore » 36 months has been established to provide the new capabilities in order to provide timely support of the LMFBR national effort. A key requirement for the facility modifications is that the reactor availability will not be interrupted for more than 12 weeks during the upgrade. The Advanced TREAT loop is the prototype for the STF small-bundle package loop. Modified TREAT fuel elements contain segments of graphite-matrix fuel with graded uranium loadings similar to those of STF. In addition, the TREAT upgrade provides for use of STF-like stainless steel-UO{sub 2} TREAT fuel for tests of fully enriched fuel bundles. This report will introduce the Upgrade study by presenting a brief description of the scope, performance capability, safety considerations, cost schedule, and development requirements. This work is followed by a "Design Description". Because greatly upgraded loop performance is central to the upgrade, a description is given of Advanced TREAT loop requirements prior to description of the loop concept. Performance requirements of the upgraded reactor system are given. An extensive discussion of the reactor physics calculations performed for the Upgrade concept study is provided. Adequate physics performance is essential for performance of experiments with the Advanced TREAT loop, and the stress placed on these calculations reflects this. Additional material on performance and safety is provided. Backup calculations on calculations of plutonium-release limits are described. Cost and schedule information for the Upgrade are presented.« less
Thermal neutron streaming effects and WIMS analysis of the Penn State subcritical graphite pile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.; Zediak, C.S.; Jester, W.A.
1997-12-01
This analysis was performed on the Pennsylvania State University (PSU) subcritical reactor to find more accurate values for such nuclear parameters as the thermal fuel utilization factor, thermal diffusion length in the graphite, migration area, k{sub eff}, etc. The analysis involved using the Winfrith Integrated Multigroup Scheme (WIMS) code as well as various hand calculations to find and compare those parameters. The data found in this analysis will be used by future students in the Penn State laboratory courses.
THE HOT CRITICAL ASSEMBLY $sub 4$CESAR$sub 4$ (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanguy, P.
1963-07-01
With Cesar, the Cadarache Center for Nuclear Studies will be equipped with a zero-power critical assembly, which will enable it to obtain the data necessary for the development of natural uranium, graphite, gas reactors. Reactivity balance, evolution of the reactivity, and deformation of the flux curves are to be studied. These studies will complement those already being done on Marius, but carried out at room temperature; in Cesar the graphite temperature can reach 500 deg C. (auth)
SIKA—the multiplexing cold-neutron triple-axis spectrometer at ANSTO
NASA Astrophysics Data System (ADS)
Wu, C.-M.; Deng, G.; Gardner, J. S.; Vorderwisch, P.; Li, W.-H.; Yano, S.; Peng, J.-C.; Imamovic, E.
2016-10-01
SIKA is a new cold-neutron triple-axis spectrometer receiving neutrons from the cold source CG4 of the 20MW Open Pool Australian Light-water reactor. As a state-of-the-art triple-axis spectrometer, SIKA is equipped with a large double-focusing pyrolytic graphite monochromator, a multiblade pyrolytic graphite analyser and a multi-detector system. In this paper, we present the design, functions, and capabilities of SIKA, and discuss commissioning experimental results from powder and single-crystal samples to demonstrate its performance.
Effects of Boron and Graphite Uncertainty in Fuel for TREAT Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughn, Kyle; Mausolff, Zander; Gonzalez, Esteban
Advanced modeling techniques and current computational capacity make full core TREAT simulations possible, with the goal of such simulations to understand the pre-test core and minimize the number of required calibrations. But, in order to simulate TREAT with a high degree of precision the reactor materials and geometry must also be modeled with a high degree of precision. This paper examines how uncertainty in the reported values of boron and graphite have an effect on simulations of TREAT.
Neutronics Analyses of the Minimum Original HEU TREAT Core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontogeorgakos, D.; Connaway, H.; Yesilyurt, G.
2014-04-01
This work was performed to support the feasibility study on the potential conversion of the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory from the use of high-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by the GTRI Reactor Conversion staff at the Argonne National Laboratory (ANL). The objective of this study was to validate the MCNP model of the TREAT reactor with the well-documented measurements which were taken during the start-up and early operation of TREAT. Furthermore, the effect of carbon graphitization was also addressed. The graphitization level was assumedmore » to be 100% (ANL/GTRI/TM-13/4). For this purpose, a set of experiments was chosen to validate the TREAT MCNP model, involving the approach to criticality procedure, in-core neutron flux measurements with foils, and isothermal temperature coefficient and temperature distribution measurements. The results of this study extended the knowledge base for the TREAT MCNP calculations and established the credibility of the MCNP model to be used in the core conversion feasibility analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palabrica, R.J.
1981-01-01
The Philippines has a 1-MW swimming-pool reactor facility operated by the Philippine Atomic Energy Commission (PAEC). The reactor is light-water moderated and cooled, graphite reflected, and fueled with 90% enriched uranium. Since it became critical in 1963 it has been utilized for research, radioisotope production, and training. It was used initially in the training of PAEC personnel and other research institutions and universities. During the last few years, however, it has played a key role in training personnel for the Philippine Nuclear Power Project (PNPP).
Cleanup Verification Package for the 118-F-1 Burial Ground
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. J. Farris and H. M. Sulloway
2008-01-10
This cleanup verification package documents completion of remedial action for the 118-F-1 Burial Ground on the Hanford Site. This burial ground is a combination of two locations formerly called Minor Construction Burial Ground No. 2 and Solid Waste Burial Ground No. 2. This waste site received radioactive equipment and other miscellaneous waste from 105-F Reactor operations, including dummy elements and irradiated process tubing; gun barrel tips, steel sleeves, and metal chips removed from the reactor; filter boxes containing reactor graphite chips; and miscellaneous construction solid waste.
A plasma arc reactor for fullerene research
NASA Astrophysics Data System (ADS)
Anderson, T. T.; Dyer, P. L.; Dykes, J. W.; Klavins, P.; Anderson, P. E.; Liu, J. Z.; Shelton, R. N.
1994-12-01
A modified Krätschmer-Huffman reactor for the mass production of fullerenes is presented. Fullerene mass production is fundamental for the synthesis of higher and endohedral fullerenes. The reactor employs mechanisms for continuous graphite-rod feeding and in situ slag removal. Soot collects into a Soxhlet extraction thimble which serves as a fore-line vacuum pump filter, thereby easing fullerene separation from soot. Thermal gravimetric analysis (TGA) for yield determination is reported. This TGA method is faster and uses smaller samples than Soxhlet extraction methods which rely on aromatic solvents. Production of 10 g of soot per hour is readily achieved utilizing this reactor. Fullerene yields of 20% are attained routinely.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokuhiro, Akira; Potirniche, Gabriel; Cogliati, Joshua
2014-07-08
An experimental and computational study, consisting of modeling and simulation (M&S), of key thermal-mechanical issues affecting the design and safety of pebble-bed (PB) reactors was conducted. The objective was to broaden understanding and experimentally validate thermal-mechanic phenomena of nuclear grade graphite, specifically, spheres in frictional contact as anticipated in the bed under reactor relevant pressures and temperatures. The contact generates graphite dust particulates that can subsequently be transported into the flowing gaseous coolent. Under postulated depressurization transients and with the potential for leaked fission products to be adsorbed onto graphite 'dust', there is the potential for fission products to escapemore » from the primary volume. This is a design safety concern. Furthermore, earlier safety assessment identified the distinct possibility for the dispersed dust to combust in contact with air if sufficient conditions are met. Both of these phenomena were noted as important to design review and containing uncertainty to warrant study. The team designed and conducted two separate effects tests to study and benchmark the potential dust-generation rate, as well as study the conditions under which a dust explosion may occure in a standardized, instrumented explosion chamber.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ubic, Rick; Butt, Darryl; Windes, William
2014-03-13
An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarlymore » characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.« less
Investigation of Isotopically Tailored Boron in Advanced Fission and Fusion Reactor Systems.
NASA Astrophysics Data System (ADS)
Domaszek, Gerald Raymond
This research examines the use of B^ {11}, in the form of metallic boron and boron carbide, as a moderating and reflecting material. An examination of the neutronic characteristics of the B ^{11} isotope of boron has revealed that B^{11} has neutron scattering and absorption cross sections favorably comparable to those of Be^9 and C^ {12}. Preliminary analysis of the neutronics of B ^{11} were performed by conducting one dimensional transport calculations on an infinite slab of varying thickness. Beryllium is the best of the three materials in reflecting neutrons due primarily to the contribution from (n,2n) reactions. Tailored neutron energy beam transmission experiments were carried out to experimentally verify the predicted neutronic characteristics of B^{11 }. To further examine the neutron moderating and reflecting characteristics of B^{11 }, the energy dependent neutron flux was measured as a function of position in an exponential pile constructed of B_4C isotopically enriched to 98.5 percent B^{11}. After the experimental verification of the neutronic behavior of B^{11}, further design studies were conducted using metallic boron and boron carbide enriched in the B^{11 } isotope. The use of materials isotopically enriched in B^{11} as a liner in the first wall/blanket of a magnetic confinement fusion reactor demonstrated acceptable tritium regeneration in the lithium blanket. Analysis of the effect of contaminant levels of B^{10} showed that B^{10} contents of less than 1 percent in metallic boron produced negligible adverse effects on the tritium breeding. A comparison of the effectiveness of graphite and B^{11}_4C when used as moderators in a reactor fueled with natural uranium has shown that the maximum k_infty for a given fuel rod design is approximately the same for both materials. Approximately half the volume of the moderator is required when B^{11 }_4C is substituted for graphite to obtain essentially the same K_infty . An analysis of the effectiveness of various materials as reflector control elements for a compact space reactor has shown that B^{11} is neutronically superior to graphite in these applications. Metallic boron and boron carbide isotopically enriched in B^{11} have been demonstrated to be neutronically acceptable for varied applications in advanced reactor systems. B^ {11} has been shown to be superior in performance to graphite. While only somewhat inferior to beryllium as neutron multipliers, B^ {11} and B^{11} _4C have safety, supply and cost advantage over beryllium. (Abstract shortened with permission of author.).
Trace analysis of high-purity graphite by LA-ICP-MS.
Pickhardt, C; Becker, J S
2001-07-01
Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a very efficient and sensitive technique for the direct analysis of solids. In this work the capability of LA-ICP-MS was investigated for determination of trace elements in high-purity graphite. Synthetic laboratory standards with a graphite matrix were prepared for the purpose of quantifying the analytical results. Doped trace elements, concentration 0.5 microg g(-1), in a laboratory standard were determined with an accuracy of 1% to +/- 7% and a relative standard deviation (RSD) of 2-13%. Solution-based calibration was also used for quantitative analysis of high-purity graphite. It was found that such calibration led to analytical results for trace-element determination in graphite with accuracy similar to that obtained by use of synthetic laboratory standards for quantification of analytical results. Results from quantitative determination of trace impurities in a real reactor-graphite sample, using both quantification approaches, were in good agreement. Detection limits for all elements of interest were determined in the low ng g(-1) concentration range. Improvement of detection limits by a factor of 10 was achieved for analyses of high-purity graphite with LA-ICP-MS under wet plasma conditions, because the lower background signal and increased element sensitivity.
Fission Product Sorptivity in Graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tompson, Jr., Robert V.; Loyalka, Sudarshan; Ghosh, Tushar
Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodatemore » the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one graduate student meant that data acquisition with the packed bed systems ended up competing for the graduate student’s available time with the electrodynamic balance redesign and assembly portions of the project. This competition for available time was eventually mitigated to some extent by the later recruitment of an undergraduate student to help with data collection using the packed bed system. It was only the recruitment of the second student that allowed the single particle balance design and construction efforts to proceed as far as they did during the project period. It should be added that some significant time was also spent by the graduate student cataloging previous work involving graphite. This eventually resulted in a review paper being submitted and accepted (“Adsorption of Iodine on Graphite in High Temperature Gas-Cooled Reactor Systems: A Review,” Kyle L. Walton, Tushar K. Ghosh, Dabir S. Viswanath, Sudarshan K. Loyalka, Robert V. Tompson). Our specific revised objectives in this project were as follows: Experimentally obtain isotherms of Iodine for reactor grade IG-110 samples of graphite particles over a range of temperatures and pressures using an EDB and a temperature controlled EDB; Experimentally obtain isotherms of Iodine for reactor grade IG-110 samples of graphite particles over a range of temperatures and pressures using a packed column bed apparatus; Explore the effect that charge has on the adsorption isotherms of iodine by varying the charges on and the voltages used to suspend the microscopic particles in the EDB; and To interpret these results in terms of the existing models (Langmuir, BET, Freundlich, and others) which we will modify as necessary to include charge related effects.« less
Fabrication methods and anisotropic properties of graphite matrix compacts for use in HTGR
NASA Astrophysics Data System (ADS)
Yeo, Sunghwan; Yun, Jihae; Kim, Sungok; Cho, Moon Sung; Lee, Young-Woo
2018-02-01
This study investigated the anisotropic microstructural, mechanical, and thermal properties of fabricated graphite matrix prismatic compacts for High Temperature Gas Cooled Reactor (HTGR) fuel. When the observed alignment of graphite grains and the coke derived from phenolic resin is in the transverse direction, the result is severely anisotropic thermal properties. Compacts with such orientation in the transverse direction exhibited increases of thermal expansion and conductivity up to 5.8 times and 4.82 times, respectively, more than those in the axial direction. The formation of pores due to the pyrolysis of phenolic resin was observed predominantly on upper region of the fabricated compacts. This anisotropic pore formation created anisotropic Vickers hardness on the planes with different directions.
Finniston, H.M.; Wyatt, L.M.; Plail, O.S.
1961-06-27
An aluminum-cased uranium fuel element is patented for use in nuclear reactors. A layer of a substance such as graphite or a metallic film, preferably of relatively low thermal-neutron capture cross section, between the uranium and aluminum prevents their interdiffusion.
Using graphitic foam as the bonding material in metal fuel pins for sodium fast reactors
NASA Astrophysics Data System (ADS)
Karahan, Aydın; Kazimi, Mujid S.
2013-10-01
The study evaluates the possible use of graphite foam as the bonding material between U-Pu-Zr metallic fuel and steel clad for sodium fast reactor applications using FEAST-METAL fuel performance code. Furthermore, the applicability of FEAST-METAL to the advanced fuel designs is demonstrated. Replacing the sodium bond with a chemically stable foam material would eliminate fuel clad metallurgical interactions, and allow for fuel swelling under low external stress. Hence, a significant improvement is expected for the steady state and transient performance. FEAST-METAL was used to assess the thermo-mechanical behavior of the new fuel form and a reference metallic fuel pin. Nearly unity conversion ratio, 75% smear density U-15Pu-6Zr metallic fuel pin with sodium bond, and T91 cladding was selected as a reference case. It was found that operating the reference case at high clad temperatures (600-660 °C) results in (1) excessive clad wastage formation/clad thinning due to lanthanide migration and formation of brittle phases at clad inner surface, and (2) excessive clad hoop strain at the upper axial section due mainly to the occurrence of thermal creep. The combination of these two factors may lead to cladding breach. The work concludes that replacing the sodium bond with 80% porous graphite foam and reducing the fuel smear density to 70%, it is likely that the fuel clad metallurgical interaction would be eliminated while the fuel swelling is allowed without excessive fuel clad mechanical interaction. The suggested design appears as an alternative for a high performance metallic fuel design for sodium fast reactors.
A Comparison of the Irradiation Creep Behavior of Several Graphites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burchell, Timothy D; Windes, Will
2016-01-01
Graphite creep strain data from the irradiation creep capsule Advanced Graphite Creep-1 (AGC-1) are reported. This capsule was the first (prototype) of a series of five or six capsules planned as part of the AGC experiment, which was designed to fully characterize the effects of neutron irradiation and the radiation creep behavior of current nuclear graphite. The creep strain data and analysis are reported for the six graphite grades incorporated in the capsule. The AGC-1 capsule was irradiated in the Advanced Test Reactor at Idaho National Laboratory (INL) at approximately 700 C and to a peak dose of 7 dpamore » (displacements per atom). The specimen s final dose, temperature, and stress conditions have been reported by INL and were used during this analysis. The derived creep coefficients (K) were calculated for each grade and were found to compare well to literature data for the creep coefficient, even under the wide range of AGC-1 specimen temperatures. Comparisons were made between AGC-1 data and historical grade data for creep coefficients.« less
Alternate electrode materials for the SP100 reactor
NASA Astrophysics Data System (ADS)
Randich, E.
1992-05-01
This work was performed in response to a request by the Astro-Space Division of the General Electric Co. to develop alternate electrodes materials for the electrodes of the PD2 modules to be used in the SP100 thermoelectric power conversion system. Initially, the project consisted of four tasks: (1) development of a ZrB2 (C) CVD coating on SiMo substrates; (2) development of a ZrB2 (C) CVD coating on SiGe substrates; (3) development of CVI W for porous graphite electrodes; and (4) technology transfer of pertinent developed processes. The project evolved initially into developing only ZrB2 coatings on SiGe and graphite substrates, and later into developing ZrB2 coatings only on graphite substrates. Several sizes of graphite and pyrolytic carbon-coated graphite substrates were coated with ZrB2 during the project. For budgetary reasons, the project was terminated after half the allotted time had passed. Apart from the production of coated specimens for evaluation, the major accomplishment of the project was the development of the CVD processing to produce the desired coatings.
Wigner, E.P.; Weinberg, A.W.; Young, G.J.
1958-04-15
A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.
NEUTRONIC REACTOR SHIELD AND SPACER CONSTRUCTION
Wigner, E.P.; Ohlinger, L.A.
1958-11-18
Reactors of the heterogeneous, graphite moderated, fluid cooled type and shielding and spacing plugs for the coolant channels thereof are reported. In this design, the coolant passages extend horizontally through the moderator structure, accommodating the fuel elements in abutting end-to-end relationship, and have access openings through the outer shield at one face of the reactor to facilitate loading of the fuel elements. In the outer ends of the channels which extend through the shields are provided spacers and shielding plugs designed to offer minimal reslstance to coolant fluid flow while preventing emanation of harmful radiation through the access openings when closed between loadings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snepvangers, J.J.M.
Equipment and results are described connected with irradiation studies of UO/sub 2/ fuels, fuel element testing in pressurized water loops, graphite irradiation, and steel irradiations with and without temperature control. The apparatus described is associated with a 20-Mw pool-type research reactor. (T.F.H.)
Wigner, E.P.
1958-04-22
A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.
Strange bedfellows: The curious case of STAR and Moata
NASA Astrophysics Data System (ADS)
Smith, A. M.; Levchenko, V. A.; Malone, G.
2013-01-01
The 2 MV tandem accelerator named ‘STAR’ was installed at ANSTO in 2003 and commissioned in 2004. It is used for ion beam analysis (IBA) and for radiocarbon measurements by accelerator mass spectrometry (AMS). Convenient space for the accelerator was found in the same building occupied by the decommissioned Argonaut-class nuclear reactor ‘Moata’; the name derives from the aboriginal word for ‘fire stick’ or ‘gentle fire’, appropriate for a 100 kW research reactor. This reactor operated between 1961 and 1995. In 2007 ANSTO’s Engineering Division assembled a team to dismantle and remove the reactor structure, along with its 12.1 tonnes of graphite reflector. The removal and remediation was completed in November 2010 and has won the team a number of prestigious awards. The entire operation was conducted inside a negatively-pressurised double-walled vinyl tent. An air curtain was positioned around the reactor core. The exhaust air from the tent passed through 2-stage HEPA filters before venting through an external stack. Neither ANSTO staff nor contractors received any significant radiation dose during the operation. Given the sensitivity of STAR for detection of 14C/12C (∼10-16) and the numerous routes for production of 14C in the reactor such as 13C(n, γ)14C, 14N(n, p)14C and 17O(n, α)14C there was the potential to directly contaminate the STAR environment with 14C. Furthermore, there was concern that reactor-14C could find its way from this building into the building where the radiocarbon sample preparation laboratories are located. This necessitated restrictions on staff movement between the buildings. We report on 14C control measurements made during and after the operation. These involved direct measurements on the reactor graphite and concrete bioshield, blank targets that were exposed in the building, swipe samples taken inside the tent and around the building and aerosol samples that were collected inside the building throughout the operation.
Initial Gamma Spectrometry Examination of the AGR-3/4 Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harp, Jason M.; Demkowicz, Paul A.; Stempien, John D.
2016-11-01
The initial results from gamma spectrometry examination of the different components from the combined third and fourth US Advanced Gas Reactor Fuel Development TRISO-coated particle fuel irradiation tests (AGR-3/4) have been analyzed. This experiment was designed to provide information about in-pile fission product migration. In each of the 12 capsules, a single stack of four compacts with designed-to-fail particles surrounded by two graphitic diffusion rings (inner and outer) and a graphite sink were irradiated in the Idaho National Laboratory’s Advanced Test Reactor. Gamma spectrometry has been used to evaluate the gamma-emitting fission product inventory of compacts from the irradiation andmore » evaluate the burnup of these compacts based on the activity of the radioactive cesium isotopes (Cs-134 and Cs-137) in the compacts. Burnup from gamma spectrometry compares well with predicted burnup from simulations. Additionally, inner and outer rings were also examined by gamma spectrometry both to evaluate the fission product inventory and the distribution of gamma-emitting fission products within the rings using gamma emission computed tomography. The cesium inventory of the scanned rings compares acceptably well with the expected inventory from fission product transport modeling. The inventory of the graphite fission product sinks is also being evaluated by gamma spectrometry.« less
Characterization of nuclear graphite elastic properties using laser ultrasonic methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Fan W; Han, Karen; Olasov, Lauren R
2015-01-01
Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have beenmore » made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements« less
Corrosion of 316 stainless steel in high temperature molten Li2BeF4 (FLiBe) salt
NASA Astrophysics Data System (ADS)
Zheng, Guiqiu; Kelleher, Brian; Cao, Guoping; Anderson, Mark; Allen, Todd; Sridharan, Kumar
2015-06-01
In support of structural material development for the fluoride-salt-cooled high-temperature reactor (FHR), corrosion tests of 316 stainless steel were performed in the potential primary coolant, molten Li2BeF4 (FLiBe) at 700 °C for an exposure duration up to 3000 h. Tests were performed in both 316 stainless steel and graphite capsules. Corrosion in both capsule materials occurred by the dissolution of chromium from the stainless steel into the salt which led to the depletion of chromium predominantly along the grain boundaries of the test samples. The samples tested in graphite capsules showed a factor of two greater depth of corrosion attack as measured in terms of chromium depletion, compared to those tested in 316 stainless steel capsules. The samples tested in graphite capsules showed the formation of Cr7C3 particulate phases throughout the depth of the corrosion layer. Samples tested in both types of capsule materials showed the formation of MoSi2 phase due to increased activity of Mo and Si as a result of Cr depletion, and furthermore corrosion promoted the formation of a α-ferrite phase in the near-surface regions of the 316 stainless steel. Based on the corrosion tests, the corrosion attack depth in FLiBe salt was predicted as 17.1 μm/year and 31.2 μm/year for 316 stainless steel tested in 316 stainless steel and in graphite capsules respectively. It is in an acceptable range compared to the Hastelloy-N corrosion in the Molten Salt Reactor Experiment (MSRE) fuel salt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sproles, A.
1993-03-01
During summer 1992, the World Association of Nuclear Operators (WANO) sponsored an exchange visit between Georgia Power Company's Edwin I. Hatch nuclear plant, a two-unit boiling water reactor site, and the Smolensk atomic energy station, a three-unit RBMK (graphite-moderated and light-water-cooled) plant located 350 km west of Moscow, in Desnogorsk, Russia. The Plant Hatch team included Glenn Goode, manager of engineering support; Curtis Coggin, manager of training and emergency preparedness; Wayne Kirkley, manager of health physics and chemistry; John Lewis, manager of operations; Ray Baker, coordinator of nuclear fuels and contracts; and Bruce McLeod, manager of nuclear maintenance support. Alsomore » traveling with the team was Jerald Towgood, of WANO's Atlanta Centre. The Hatch team visited the Smolensk plant during the week of July 27, 1992.« less
Effects of Oxidation on Oxidation-Resistant Graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windes, William; Smith, Rebecca; Carroll, Mark
2015-05-01
The Advanced Reactor Technology (ART) Graphite Research and Development Program is investigating doped nuclear graphite grades that exhibit oxidation resistance through the formation of protective oxides on the surface of the graphite material. In the unlikely event of an oxygen ingress accident, graphite components within the VHTR core region are anticipated to oxidize so long as the oxygen continues to enter the hot core region and the core temperatures remain above 400°C. For the most serious air-ingress accident which persists over several hours or days the continued oxidation can result in significant structural damage to the core. Reducing the oxidationmore » rate of the graphite core material during any air-ingress accident would mitigate the structural effects and keep the core intact. Previous air oxidation testing of nuclear-grade graphite doped with varying levels of boron-carbide (B4C) at a nominal 739°C was conducted for a limited number of doped specimens demonstrating a dramatic reduction in oxidation rate for the boronated graphite grade. This report summarizes the conclusions from this small scoping study by determining the effects of oxidation on the mechanical strength resulting from oxidation of boronated and unboronated graphite to a 10% mass loss level. While the B4C additive did reduce mechanical strength loss during oxidation, adding B4C dopants to a level of 3.5% or more reduced the as-fabricated compressive strength nearly 50%. This effectively minimized any benefits realized from the protective film formed on the boronated grades. Future work to infuse different graphite grades with silicon- and boron-doped material as a post-machining conditioning step for nuclear components is discussed as a potential solution for these challenges in this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogale, Amod A
2012-04-27
Nuclear energy is a dependable and economical source of electricity. Because fuel supply sources are available domestically, nuclear energy can be a strong domestic industry that can reduce dependence on foreign energy sources. Commercial nuclear power plants have extensive security measures to protect the facility from intruders [1]. However, additional research efforts are needed to increase the inherent process safety of nuclear energy plants to protect the public in the event of a reactor malfunction. The next generation nuclear plant (NGNP) is envisioned to utilize a very high temperature reactor (VHTR) design with an operating temperature of 650-1000°C [2]. Onemore » of the most important safety design requirements for this reactor is that it must be inherently safe, i.e., the reactor must shut down safely in the event that the coolant flow is interrupted [2]. This next-generation Gen IV reactor must operate in an inherently safe mode where the off-normal temperatures may reach 1500°C due to coolant-flow interruption. Metallic alloys used currently in reactor internals will melt at such temperatures. Structural materials that will not melt at such ultra-high temperatures are carbon/graphtic fibers and carbon-matrix composites. Graphite does not have a measurable melting point; it is known to sublime starting about 3300°C. However, neutron radiation-damage effects on carbon fibers are poorly understood. Therefore, the goal of this project is to obtain a fundamental understanding of the role of nanotexture on the properties of resulting carbon fibers and their neutron-damage characteristics. Although polygranular graphite has been used in nuclear environment for almost fifty years, it is not suitable for structural applications because it do not possess adequate strength, stiffness, or toughness that is required of structural components such as reaction control-rods, upper plenum shroud, and lower core-support plate [2,3]. For structural purposes, composites consisting of strong carbon fibers embedded in a carbon matrix are needed. Such carbon/carbon (C/C) composites have been used in aerospace industry to produce missile nose cones, space shuttle leading edge, and aircraft brake-pads. However, radiation-tolerance of such materials is not adequately known because only limited radiation studies have been performed on C/C composites, which suggest that pitch-based carbon fibers have better dimensional stability than that of polyacrylonitrile (PAN) based fibers [4]. The thermodynamically-stable state of graphitic crystalline packing of carbon atoms derived from mesophase pitch leads to a greater stability during neutron irradiation [5]. The specific objectives of this project were: (i) to generating novel carbonaceous nanostructures, (ii) measure extent of graphitic crystallinity and the extent of anisotropy, and (iii) collaborate with the Carbon Materials group at Oak Ridge National Lab to have neutron irradiation studies and post-irradiation examinations conducted on the carbon fibers produced in this research project.« less
The advantages and disadvantages of using the TREAT reactor for nuclear laser experiments
NASA Astrophysics Data System (ADS)
Dickson, P. W.; Snyder, A. M.; Imel, G. R.; McConnell, R. J.
The Transient Reactor Test Facility (TREAT) is a large air-cooled test facility located at the Idaho National Engineering Laboratory. Two of the major design features of TREAT, its large size and its being an air-cooled reactor, provide clues to both its advantages and disadvantages for supporting nuclear laser experiments. Its large size, which is dictated by the dilute uranium/graphite fuel, permits accommodation of geometrically large experiments. However, TREAT's large size also results in relatively long transients so that the energy deposited in an experiment is large relative to the peak power available from the reactor. TREAT's air-cooling mode of operation allows its configuration to be changed fairly readily. Due to air cooling, the reactor cools down slowly, permitting only one full power transient a day, which can be a disadvantage in some experimental programs. The reactor is capable of both steady-state or transient operation.
Teleoperated systems for nuclear reactors: Inspection and maintenance
NASA Technical Reports Server (NTRS)
Dorokhov, V. P.; Dorokhov, D. V.; Eperin, A. P.
1994-01-01
The present paper describes author's work in the field of teleoperated equipment for inspection and maintenance of the RBML technological channels and graphite laying, emergency operations. New technological and design solutions of teleoperated robotic systems developed for Leningradsky Power Plant are discussed.
THE EFFECT OF VOLTAGE ON ELECTROCHEMICAL DEGRADATION OF TRICHLOROETHYLENE
This study investigates electrochemical degradation of Trichloroethylene (TCE) using granular graphite as electrodes in a flow-through reactor system. The experiments were conducted to obtain information on the effect of voltage and flow rates on the degradation rates of TCE. The...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinhero, Patrick; Windes, William
2015-03-10
The fast particle radiation damage effect of graphite, a main material in current and future nuclear reactors, has significant influence on the utilization of this material in fission and fusion plants. Atoms on graphite crystals can be easily replaced or dislocated by fast protons and result in interstitials and vacancies. The currently accepted model indicates that after most of the interstitials recombine with vacancies, surviving interstitials form clusters and furthermore gather to create loops with each other between layers. Meanwhile, surviving vacancies and interstitials form dislocation loops on the layers. The growth of these inserted layers cause the dimensional increase,more » i.e. swelling, of graphite. Interstitial and vacancy dislocation loops have been reported and they can easily been observed by electron microscope. However, observation of the intermediate atom clusters becomes is paramount in helping prove this model. We utilize fast protons generated from the University of Missouri Research Reactor (MURR) cyclotron to irradiate highly- oriented pyrolytic graphite (HOPG) as target for this research. Post-irradiation examination (PIE) of dosed targets with high-resolution transmission electron microscopy (HRTEM) has permit observation and analysis of clusters and dislocation loops to support the proposed theory. Another part of the research is to validate M.I. Heggie’s Ruck and Tuck model, which introduced graphite layers may fold under fast particle irradiation. Again, we employed microscopy to image irradiated specimens to determine how the extent of Ruck and Tuck by calculating the number of folds as a function of dose. Our most significant accomplishment is the invention of a novel class of high-intensity pure beta-emitters for long-term lightweight batteries. We have filed four invention disclosure records based on the research conducted in this project. These batteries are lightweight because they consist of carbon and tritium and can be fabricated to conform to many geometric shapes. In addition, we have published eight peer-reviewed American Nuclear Society (ANS) transactions, and presented our findings at ANS National Meetings, and several universities.« less
Initial Assessment of X-Ray Computer Tomography image analysis for material defect microstructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, Joshua James; Windes, William Enoch
2016-06-01
The original development work leading to this report was focused on the non destructive three-dimensional (3-D) characterization of nuclear graphite as a means to better understand the nature of the inherent pore structure. The pore structure of graphite and its evolution under various environmental factors such as irradiation, mechanical stress, and oxidation plays an important role in their observed properties and characteristics. If we are to transition from an empirical understanding of graphite behavior to a truly predictive mechanistic understanding the pore structure must be well characterized and understood. As the pore structure within nuclear graphite is highly interconnected andmore » truly 3-D in nature, 3-D characterization techniques are critical. While 3-D characterization has been an excellent tool for graphite pore characterization, it is applicable to a broad number of materials systems over many length scales. Given the wide range of applications and the highly quantitative nature of the tool, it is quite surprising to discover how few materials researchers understand and how valuable of a tool 3-D image processing and analysis can be. Ultimately, this report is intended to encourage broader use of 3 D image processing and analysis in materials science and engineering applications, more specifically nuclear-related materials applications, by providing interested readers with enough familiarity to explore its vast potential in identifying microstructure changes. To encourage this broader use, the report is divided into two main sections. Section 2 provides an overview of some of the key principals and concepts needed to extract a wide variety of quantitative metrics from a 3-D representation of a material microstructure. The discussion includes a brief overview of segmentation methods, connective components, morphological operations, distance transforms, and skeletonization. Section 3 focuses on the application of concepts from Section 2 to relevant materials at Idaho National Laboratory. In this section, image analysis examples featuring nuclear graphite will be discussed in detail. Additionally, example analyses from Transient Reactor Test Facility low-enriched uranium conversion, Advanced Gas Reactor like compacts, and tristructural isotopic particles are shown to give a broader perspective of the applicability to relevant materials of interest.« less
Benchmark Evaluation of HTR-PROTEUS Pebble Bed Experimental Program
Bess, John D.; Montierth, Leland; Köberl, Oliver; ...
2014-10-09
Benchmark models were developed to evaluate 11 critical core configurations of the HTR-PROTEUS pebble bed experimental program. Various additional reactor physics measurements were performed as part of this program; currently only a total of 37 absorber rod worth measurements have been evaluated as acceptable benchmark experiments for Cores 4, 9, and 10. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the ²³⁵U enrichment of the fuel, impurities in the moderator pebbles, and the density and impurity content of the radial reflector. Calculations of k eff with MCNP5 and ENDF/B-VII.0 neutron nuclear data aremore » greater than the benchmark values but within 1% and also within the 3σ uncertainty, except for Core 4, which is the only randomly packed pebble configuration. Repeated calculations of k eff with MCNP6.1 and ENDF/B-VII.1 are lower than the benchmark values and within 1% (~3σ) except for Cores 5 and 9, which calculate lower than the benchmark eigenvalues within 4σ. The primary difference between the two nuclear data libraries is the adjustment of the absorption cross section of graphite. Simulations of the absorber rod worth measurements are within 3σ of the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less
Deterministic Modeling of the High Temperature Test Reactor with DRAGON-HEXPEDITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Ortensi; M.A. Pope; R.M. Ferrer
2010-10-01
The Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine the INL’s current prismatic reactor analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 fuel column thin annular core, and the fully loaded core critical condition with 30 fuel columns. Special emphasis is devoted to physical phenomena and artifacts in HTTR that are similar to phenomena and artifacts in themore » NGNP base design. The DRAGON code is used in this study since it offers significant ease and versatility in modeling prismatic designs. DRAGON can generate transport solutions via Collision Probability (CP), Method of Characteristics (MOC) and Discrete Ordinates (Sn). A fine group cross-section library based on the SHEM 281 energy structure is used in the DRAGON calculations. The results from this study show reasonable agreement in the calculation of the core multiplication factor with the MC methods, but a consistent bias of 2–3% with the experimental values is obtained. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement partially stems from the fact that during the experiments the control rods were adjusted to maintain criticality, whereas in the model, the rod positions were fixed. In addition, this work includes a brief study of a cross section generation approach that seeks to decouple the domain in order to account for neighbor effects. This spectral interpenetration is a dominant effect in annular HTR physics. This analysis methodology should be further explored in order to reduce the error that is systematically propagated in the traditional generation of cross sections.« less
Treatment of irradiated graphite from French Bugey reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Howard; Laurent, Gerard
In 2008, following the general French plan for nuclear waste management, Electricite de France attempted to find for irradiated graphite an alternative solution to direct storage at the low-activity long-life storage center in France managed by the national agency for wastes (ANDRA). EDF management requested that its engineering arm, EDF CIDEN, study the graphite treatment alternatives to direct storage. In mid-2008, this study revealed the potential advantage for EDF to use a steam reforming process known as Thermal Organic Reduction, 'THOR' (owned by Studsvik, Inc., USA), to treat or destroy the graphite matrix and limit the quantity of secondary wastemore » to be stored. In late 2009, EDF began a test program with Studsvik to determine if the THOR steam reforming process could be used to destroy the graphite. The program also sought to determine if the graphite could be treated to release the bulk of activity while minimizing the gasification of the bulk mass of the graphite. In October 2009, tests with non-irradiated graphite were completed and demonstrated destruction of a graphite matrix by the THOR process at satisfactory rates. After gasifying the graphite, focus shifted to the effect of roasting graphite at high temperatures in inert gases with low concentrations of oxidizing gases to preferentially remove volatile radionuclides while minimizing the graphite mass loss to 5%. A radioactive graphite sleeve was imported from France to the US for these tests. Completed in April 2010, 'Phase I' of testing showed that the process removed >99% of H-3 and 46% of C-14 with <6% mass loss. Completed in September 2011, 'Phase II' testing achieved increased removals as high as 80% C-14. During Phase II, it was also discovered that roasting in a reducing atmosphere helped to limit the oxidation of the graphite. Future work seeks to explore the effects of reducing gases to limit the bulk oxidation of graphite. If the graphite could be decontaminated of long-lived radionuclides up to 95% for C-14 while minimizing mass loss to <5%, this would minimize the volume of any secondary waste streams and potentially lower the waste class of the larger bulk of graphite. Alternatively, if up to 95% decontamination of C-14 is achieved, the graphite may be completely gasified which could result in lower disposal. (authors)« less
An Overview of Reactor Concepts, a Survey of Reactor Designs.
1985-02-01
may be very different. HTGRs may use highly enriched uranium, thereby yielding better fuel economy and a reduc- tion of the actual core size for a...specific power level. The HTGR core may have fuel and control rods placed in graphite arrays similar to PWR core con- figuration, or they may have fuel ...rods are pulled out. A Peach Bottom core design is another HTGR design. This design is featured by the fuel pin’s ability to purge itself of fission
Microwave plasma CVD of NANO structured tin/carbon composites
Marcinek, Marek [Warszawa, PL; Kostecki, Robert [Lafayette, CA
2012-07-17
A method for forming a graphitic tin-carbon composite at low temperatures is described. The method involves using microwave radiation to produce a neutral gas plasma in a reactor cell. At least one organo tin precursor material in the reactor cell forms a tin-carbon film on a supporting substrate disposed in the cell under influence of the plasma. The three dimensional carbon matrix material with embedded tin nanoparticles can be used as an electrode in lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Krása, Antonín; Kochetkov, Anatoly; Baeten, Peter; Vittiglio, Guido; Wagemans, Jan; Bécares, Vicente
2017-09-01
VENUS-F is a fast, zero-power reactor with 30% wt. metallic uranium fuel and solid lead as coolant simulator. It serves as a mockup of the MYRRHA reactor core. This paper describes integral experiments performed in two critical VENUS-F core configurations (with and without graphite reflector). Discrepancies between experiments and Monte Carlo calculations (MCNP5) of keff, fission rate spatial distribution and reactivity effects (lead void and fuel Doppler) depending on a nuclear data library used (JENDL-4.0, ENDF-B-VII.1, JEFF-3.1.2, 3.2, 3.3T2) are presented.
Safeguards Challenges for Pebble-Bed Reactors (PBRs):Peoples Republic of China (PRC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, Charles W.; Moses, David Lewis
2009-11-01
The Peoples Republic of China (PRC) is operating the HTR-10 pebble-bed reactor (PBR) and is in the process of building a prototype PBR plant with two modular reactors (250-MW(t) per reactor) feeding steam to a single turbine-generator. It is likely to be the first modular hightemperature reactor to be ready for commercial deployment in the world because it is a highpriority project for the PRC. The plant design features multiple modular reactors feeding steam to a single turbine generator where the number of modules determines the plant output. The design and commercialization strategy are based on PRC strengths: (1) amore » rapidly growing electric market that will support low-cost mass production of modular reactor units and (2) a balance of plant system based on economics of scale that uses the same mass-produced turbine-generator systems used in PRC coal plants. If successful, in addition to supplying the PRC market, this strategy could enable China to be the leading exporter of nuclear reactors to developing countries. The modular characteristics of the reactor match much of the need elsewhere in the world. PBRs have major safety advantages and a radically different fuel. The fuel, not the plant systems, is the primary safety system to prevent and mitigate the release of radionuclides under accident conditions. The fuel consists of small (6-cm) pebbles (spheres) containing coatedparticle fuel in a graphitized carbon matrix. The fuel loading per pebble is small (~9 grams of low-enriched uranium) and hundreds of thousands of pebbles are required to fuel a nuclear plant. The uranium concentration in the fuel is an order of magnitude less than in traditional nuclear fuels. These characteristics make the fuel significantly less attractive for illicit use (weapons production or dirty bomb); but, its unusual physical form may require changes in the tools used for safeguards. This report describes PBRs, what is different, and the safeguards challenges. A series of safeguards recommendations are made based on the assumption that the reactor is successfully commercialized and is widely deployed.« less
Gap Size Uncertainty Quantification in Advanced Gas Reactor TRISO Fuel Irradiation Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Binh T.; Einerson, Jeffrey J.; Hawkes, Grant L.
The Advanced Gas Reactor (AGR)-3/4 experiment is the combination of the third and fourth tests conducted within the tristructural isotropic fuel development and qualification research program. The AGR-3/4 test consists of twelve independent capsules containing a fuel stack in the center surrounded by three graphite cylinders and shrouded by a stainless steel shell. This capsule design enables temperature control of both the fuel and the graphite rings by varying the neon/helium gas mixture flowing through the four resulting gaps. Knowledge of fuel and graphite temperatures is crucial for establishing the functional relationship between fission product release and irradiation thermal conditions.more » These temperatures are predicted for each capsule using the commercial finite-element heat transfer code ABAQUS. Uncertainty quantification reveals that the gap size uncertainties are among the dominant factors contributing to predicted temperature uncertainty due to high input sensitivity and uncertainty. Gap size uncertainty originates from the fact that all gap sizes vary with time due to dimensional changes of the fuel compacts and three graphite rings caused by extended exposure to high temperatures and fast neutron irradiation. Gap sizes are estimated using as-fabricated dimensional measurements at the start of irradiation and post irradiation examination dimensional measurements at the end of irradiation. Uncertainties in these measurements provide a basis for quantifying gap size uncertainty. However, lack of gap size measurements during irradiation and lack of knowledge about the dimension change rates lead to gap size modeling assumptions, which could increase gap size uncertainty. In addition, the dimensional measurements are performed at room temperature, and must be corrected to account for thermal expansion of the materials at high irradiation temperatures. Uncertainty in the thermal expansion coefficients for the graphite materials used in the AGR-3/4 capsules also increases gap size uncertainty. This study focuses on analysis of modeling assumptions and uncertainty sources to evaluate their impacts on the gap size uncertainty.« less
Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets
Makowiecki, D.M.; Ramsey, P.B.; Juntz, R.S.
1995-07-04
An improved method is disclosed for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite`s high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding. 11 figs.
Measurement of cesium diffusion coefficients in graphite IG-110
NASA Astrophysics Data System (ADS)
Carter, L. M.; Brockman, J. D.; Loyalka, S. K.; Robertson, J. D.
2015-05-01
An understanding of the transport of fission products in High Temperature Gas-Cooled Reactors (HTGRs) is needed for operational safety as well as source term estimations. We have measured diffusion coefficients of Cs in IG-110 by using the release method, wherein we infused small graphite spheres with Cs and measured the release rates using ICP-MS. Diffusion behavior was investigated in the temperature range of 1100-1300 K. We have obtained: DCs = (1.0 ×10-7m2 /s) exp(-1.1/×105J /mol RT) and, compared our results with those available in the literature.
NASA Technical Reports Server (NTRS)
Frenklach, Michael
1990-01-01
A variety of seemingly different carbon formation processes -- polycyclic aromatic hydrocarbons and diamond in the interstellar medium, soot in hydrocarbon flames, graphite and diamond in plasma-assisted-chemical vapor deposition reactors -- may all have closely related underlying chemical reaction mechanisms. Two distinct mechanisms for gas-phase carbon growth are discussed. At high temperatures it proceeds via the formation of carbon clusters. At lower temperatures it follows a polymerization-type kinetic sequence of chemical reactions of acetylene addition to a radical, and reactivation of the resultant species through H-abstraction by a hydrogen atom.
Apparatus for controlling molten core debris
Golden, Martin P. [Trafford, PA; Tilbrook, Roger W. [Monroeville, PA; Heylmun, Neal F. [Pittsburgh, PA
1977-07-19
Apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed.
Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas prod...
Jo, Yong Nam; Park, Min-Sik; Kim, Jae-Hun; Kim, Young-Jun
2013-05-01
Two different types of granulated graphites were synthesized by blending and kneading of natural graphite with pitch followed by sintering methods. The electrochemical performances of granulated graphites were investigated as anode materials for use in Li-ion batteries. The blending type granulated graphite possesses a large amount of cavities and voids, while the kneading type granulated graphite has a relatively compact microstructure, which is responsible for a high tap density. Both granulated graphites show improved the initial coulombic efficiencies as a result of decrease of surface area by the granulations. In particular, the kneading type granulated graphite exhibits an excellent rate-capability without significant capacity loss. In addition, the thermal stabilities of both granulated graphites were also improved, which could be attributed to the decrease of active surface area due to pitch coating.
Di Domenico, Enea Gino; Petroni, Gianluca; Mancini, Daniele; Geri, Alberto; Di Palma, Luca; Ascenzioni, Fiorentina
2015-01-01
Microbial Fuel cells (MFCs) have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m(2). The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox) bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate.
Petroni, Gianluca; Mancini, Daniele; Geri, Alberto; Palma, Luca Di
2015-01-01
Microbial Fuel cells (MFCs) have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m2. The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox) bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate. PMID:26273609
Thermal-hydraulic analysis of N Reactor graphite and shield cooling system performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Low, J.O.; Schmitt, B.E.
1988-02-01
A series of bounding (worst-case) calculations were performed using a detailed hydrodynamic RELAP5 model of the N Reactor graphite and shield cooling system (GSCS). These calculations were specifically aimed to answer issues raised by the Westinghouse Independent Safety Review (WISR) committee. These questions address the operability of the GSCS during a worst-case degraded-core accident that requires the GDCS to mitigate the consequences of the accident. An accident scenario previously developed was designed as the hydrogen-mitigation design-basis accident (HMDBA). Previous HMDBA heat transfer analysis,, using the TRUMP-BD code, was used to define the thermal boundary conditions that the GSDS may bemore » exposed to. These TRUMP/HMDBA analysis results were used to define the bounding operating conditions of the GSCS during the course of an HMDBA transient. Nominal and degraded GSCS scenarios were investigated using RELAP5 within or at the bounds of the HMDBA transient. 10 refs., 42 figs., 10 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pattrick Calderoni
2010-09-01
Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactormore » that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the same project [1]. However, this work focuses on two materials: the LiF-BeF2 eutectic (67 and 33 mol%, respectively, also known as flibe) as primary coolant and the LiF-NaF-KF eutectic (46.5, 11.5, and 52 mol%, respectively, also known as flinak) as secondary heat transport fluid. At first common issues are identified, involving the preparation and purification of the materials as well as the development of suitable diagnostics. Than issues specific to each material and its application are considered, with focus on the compatibility with structural materials and the extension of the existing properties database.« less
Poskas, Povilas; Grigaliuniene, Dalia; Narkuniene, Asta; Kilda, Raimondas; Justinavicius, Darius
2016-11-01
There are two RBMK-1500 type graphite moderated reactors at the Ignalina nuclear power plant in Lithuania, and they are under decommissioning now. The graphite cannot be disposed of in a near surface repository, because of large amounts of (14)C. Therefore, disposal of the graphite in a geological repository is a reasonable solution. This study presents evaluation of the (14)C transfer by the groundwater pathway into the geosphere from the irradiated graphite in a generic geological repository in crystalline rocks and demonstration of the role of the different components of the engineered barrier system by performing local sensitivity analysis. The speciation of the released (14)C into organic and inorganic compounds as well as the most recent information on (14)C source term was taken into account. Two alternatives were considered in the analysis: disposal of graphite in containers with encapsulant and without it. It was evaluated that the maximal fractional flux of inorganic (14)C into the geosphere can vary from 10(-11)y(-1) (for non-encapsulated graphite) to 10(-12)y(-1) (for encapsulated graphite) while of organic (14)C it was about 10(-3)y(-1) of its inventory. Such difference demonstrates that investigations on the (14)C inventory and chemical form in which it is released are especially important. The parameter with the highest influence on the maximal flux into the geosphere for inorganic (14)C transfer was the sorption coefficient in the backfill and for organic (14)C transfer - the backfill hydraulic conductivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets
Makowiecki, Daniel M.; Ramsey, Philip B.; Juntz, Robert S.
1995-01-01
An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.
Recent Advances in Preparation, Structure, Properties and Applications of Graphite Oxide.
Srivastava, Suneel Kumar; Pionteck, Jürgen
2015-03-01
Graphite oxide, also referred as graphitic oxide or graphitic acid, is an oxidized bulk product of graphite with a variable composition. However, it did not receive immense attention until it was identified as an important and easily obtainable precursor for the preparation of graphene. This inspired many researchers to explore facts related to graphite oxide in exploiting its fascinating features. The present article culminates up-dated review on different preparative methods, morphology and characterization of physical/chemical properties of graphite oxide by XRD, XPS, FTIR, Raman, NMR, UV-visible, and DRIFT analyses. Finally, recent developments on intercalation and applications of GO in multifaceted areas of catalysis, sensor, supercapacitors, water purification, hydrogen storage and magnetic shielding etc. has also been reviewed.
Chang, Yi-Tang; Yang, Chu-Wen; Chang, Yu-Jie; Chang, Ting-Chieh; Wei, Da-Jiun
2014-01-01
Synthetic sewage containing high concentrations of pharmaceuticals and personal care products (PPCPs, mg/L level) was treated using an anoxic/aerobic (A/O) reactor coupled with a microbial fuel cell (MFC) at hydraulic retention time (HRT) of 8 h. A novel design of solid plain graphite plates (SPGRPs) was used for the high surface area biodegradation of the PPCP-containing sewage and for the generation of electricity. The average CODCr and total nitrogen removal efficiencies achieved were 97.20% and 83.75%, respectively. High removal efficiencies of pharmaceuticals, including acetaminophen, ibuprofen, and sulfamethoxazole, were also obtained and ranged from 98.21% to 99.89%. A maximum power density of 532.61 mW/cm2 and a maximum coulombic efficiency of 25.20% were measured for the SPGRP MFC at the anode. Distinct differences in the bacterial community were presented at various locations including the mixed liquor suspended solids and biofilms. The bacterial groups involved in PPCP biodegradation were identified as Dechloromonas spp., Sphingomonas sp., and Pseudomonas aeruginosa. This design, which couples an A/O reactor with a novel design of SPGRP MFC, allows the simultaneous removal of PPCPs and successful electricity production. PMID:25197659
Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fok, Alex
2013-10-30
The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the modelmore » to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.« less
AGC-4 Experiment Irradiation Monitoring Data Qualification Interim Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hull, Laurence Charles
2016-08-01
The Graphite Technology Development Program is running a series of six experiments to quantify the effects of irradiation on nuclear grade graphite. The fourth experiment, Advanced Graphite Creep 4 (AGC 4), began with Advanced Test Reactor (ATR) cycle 157D on May 30, 2015, and has been irradiated for two cycles. The capsule was removed from the reactor after ATR cycle 158A, which ended on January 2, 2016, due to interference with another experiment. Irradiation will resume when the interfering experiment is removed from the reactor. This report documents qualification of AGC 4 experiment irradiation monitoring data for use by themore » Advanced Reactor Technologies (ART) Technology Development Office (TDO) Program for research and development activities required to design and license the first HTR nuclear plant. Qualified data meet the requirements for use as described in the experiment planning and quality assurance documents. Failed data do not meet the requirements and provide no useable information. Trend data may not meet all requirements, but still provide some useable information. Use of Trend data requires assessment of how any deficiencies affect a particular use of the data. All thermocouples (TCs) have functioned throughout the AGC-4 experiment. All temperature data are Qualified for use by the ART TDO Program. Argon, helium, and total gas flow data were within expected ranges and are Qualified for use by the ART TDO Program. Discharge gas line moisture values were consistently low during cycle 157D. At the start of cycle 158A, gas moisture briefly spiked to over 600 ppmv and then declined throughout the cycle. Moisture values are within the measurement range of the instrument and are Qualified for use by the ART TDO Program. Graphite creep specimens were subjected to one of three loads, 393, 491, or 589 lbf. For a brief period during cycle 157D between 12:19 on June 2, 2015 and 08:23 on June 11, 2015 the load cells were wired incorrectly resulting in missing stack load data. Missing stack loads were estimated from measured ram pressures using regression equations developed from the existing data from cycle 157D. Estimated stack loads during this period are considered to be an accurate representation of actual load applied to the stacks. These loads deviate slightly from the planned loads. This deviation does not prevent the data from being Qualified for use, but must be taken into account when analyzing the effect of load on creep. Stack displacement increased consistently throughout the first two cycles with total displacement ranging from 0.4 to 0.8 in. During ATR outages, a set of pneumatic rams raised the stacks of graphite creep specimens to ensure the specimens were not stuck within the test train. This stack raising was performed twice. All stacks were raised successfully each time. The load and displacement data are Qualified for use by the ART TDO Program.« less
NASA Astrophysics Data System (ADS)
Ma, Zhen; Zhuang, Yuchan; Deng, Yaoming; Song, Xiaona; Zuo, Xiaoxi; Xiao, Xin; Nan, Junmin
2018-02-01
Today, with the massive application of lithium ion batteries (LIBs) in the portable devices and electric vehicles, to supply the active materials with high-performances and then to recycle their wastes are two core issues for the development of LIBs. In this paper, the spent graphite (SG) in LIBs is used as raw materials to fabricate two comparative high-capacity graphite anode materials. Based on a microsurgery-like physical reconstruction, the reconstructed graphite (RG) with a sp2+sp3 carbon surface is prepared through a microwave exfoliation and subsequent spray drying process. In contrast, the neural-network-like amorphous sp2+sp3 carbon-coated graphite (AC@G) is synthesized using a self-reconfigurable chemical reaction strategy. Compared with SG and commercial graphite (CG), both RG and AC@G have enhanced specific capacities, from 311.2 mAh g-1 and 360.7 mAh g-1 to 409.7 mAh g-1 and 420.0 mAh g-1, at 0.1C after 100 cycles. In addition, they exhibit comparable cycling stability, rate capability, and voltage plateau with CG. Because the synthesis of RG and AC@G represents two typical physical and chemical methods for the recycling of SG, these results on the sp2+sp3 carbon layer coating bulk graphite also reveal an approach for the preparation of high-performance graphite anode materials derived from SG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amharrak, H.; Reynard-Carette, C.; Carette, M.
The nuclear heating measurements in Material Testing Reactors (MTRs) are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material. These measurements are then used for other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. Nuclear heating is a great deal of interest at the moment as the measurement of such heating is an important issue for MTRs reactors. This need is especially generated by the new Jules Horowitz Reactor (JHR),more » under construction at CEA/Cadarache 'French Alternative Energies and Atomic Energy Commission'. This new reactor, that will be operational in late 2019, is a new facility for the nuclear research on materials and fuels. Indeed the expected nuclear heating rate is about 20 W/g for nominal capacity of 100 MW. The present Monte Carlo calculation works belong to the IN-CORE (Instrumentation for Nuclear radiation and Calorimetry On line in Reactor): a joint research program between the CEA and Aix- Marseille University in 2009. One scientific aim of this program is to design and develop a multi-sensors device, called CARMEN, dedicated to the measurements of main physical parameters simultaneously encountered inside JHR's experimental channels (core and reflector) such as neutron fluxes, photon fluxes, temperature, and nuclear heating. A first prototype was already developed. This prototype includes two mock-ups dedicated respectively to neutronic measurements (CARMEN-1N) and to photonic measurements (CARMEN-1P) with in particular a specific differential calorimeter. Two irradiation campaigns were performed successfully in the periphery of OSIRIS reactor (a MTR located at Saclay, France) in 2012 for nuclear heating levels up to 2 W/g. First Monte Carlo calculations reduced to the graphite sample of the calorimeter were carried out. A preliminary analysis shows that the numerical results overestimate the measurements by about 20 %. A new approach has been developed in order to estimate the nuclear heating by two methods (energy deposition or KERMA) by considering the whole complete geometry of the sensor. This new approach will contribute to the interpretation of the irradiation campaign and will be useful to improve the out-of-pile calibration procedure of the sensor and its thermal response during irradiations. The aim of this paper is to present simulations made by using MCNP5 Monte-Carlo transport code (using ENDF/B-VI nuclear data library) for the nuclear heating inside the different parts of the calorimeter (head, rod and base). Calculations into two steps will be realized. We will use as an input source in the model new spectra (neutrons, prompt-photons and delayed-photons) calculated with the Monte Carlo code TRIPOLI-4{sup R} inside different experimental channels (water) located into the OSIRIS periphery and used during the CARMEN-1P irradiation campaign. We will consider Neutrons- Photons-Electrons and Photons-Electrons modes. We will begin by a brief description of the differential-calorimeter device geometry. Then the MCNP5 model used for the calculations of nuclear heating inside the calorimeter elements will be introduced. The energy deposition due to the prompt-gamma, delayed-gamma and neutrons, the neutron-activation of the device will be considered. The different components of the nuclear heating inside the different parts of the calorimeter will be detailed. Moreover, a comparison between KERMA and nuclear energy deposition estimations will be given. Finally, a comparison between this total nuclear heating Calculation and Experiment in graphite sample will be determined. (authors)« less
Methods and codes for neutronic calculations of the MARIA research reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrzejewski, K.; Kulikowska, T.; Bretscher, M. M.
2002-02-18
The core of the MARIA high flux multipurpose research reactor is highly heterogeneous. It consists of beryllium blocks arranged in 6 x 8 matrix, tubular fuel assemblies, control rods and irradiation channels. The reflector is also heterogeneous and consists of graphite blocks clad with aluminum. Its structure is perturbed by the experimental beam tubes. This paper presents methods and codes used to calculate the MARIA reactor neutronics characteristics and experience gained thus far at IAE and ANL. At ANL the methods of MARIA calculations were developed in connection with the RERTR program. At IAE the package of programs was developedmore » to help its operator in optimization of fuel utilization.« less
Wheeler, J.A.
1957-11-01
A design of a reactor is presented in which the fuel elements may be immersed in a liquid coolant when desired without the necessity of removing them from the reactor structure. The fuel elements, containing the fissionable material are in plate form and are disposed within spaced slots in a moderator material, such as graphite to form the core. Adjacent the core is a tank containing the liquid coolant. The fuel elements are mounted in spaced relationship on a rotatable shaft which is located between the core and the tank so that by rotation of the shaft the fuel elements may be either inserted in the slots in the core to sustain a chain reaction or immersed in the coolant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagle, Denis; Zhang, Dajie
2015-10-22
The focus of this research was concerned with developing materials technology that supports the evolution of Generation IV Advanced High Temperature Reactor (AHTR) concepts. Specifically, we investigate refractory carbide coatings for 1) nickel alloys, and 2) commercial carbon-carbon composites (CCCs). Numerous compelling reasons have driven us to focus on carbon and carbide materials. First, unlike metals, the strength and modulus of CCCs increase with rising temperature. Secondly, graphite and carbon composites have been proven effective for resisting highly corrosive fluoride melts such as molten cryolite [Na₃AlF₆] at ~1000°C in aluminum reduction cells. Thirdly, graphite and carbide materials exhibit extraordinary radiationmore » damage tolerance and stability up to 2000°C. Finally, carbides are thermodynamically more stable in liquid fluoride salt than the corresponding metals (i.e. Cr and Zr) found in nickel based alloys.« less
Small Reactor Designs Suitable for Direct Nuclear Thermal Propulsion: Interim Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce G. Schnitzler
Advancement of U.S. scientific, security, and economic interests requires high performance propulsion systems to support missions beyond low Earth orbit. A robust space exploration program will include robotic outer planet and crewed missions to a variety of destinations including the moon, near Earth objects, and eventually Mars. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, nuclear thermal propulsion (NTP) was again selectedmore » over chemical propulsion as the preferred in-space transportation system option for the human exploration of Mars because of its high thrust and high specific impulse ({approx}900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. The recently announced national space policy2 supports the development and use of space nuclear power systems where such systems safely enable or significantly enhance space exploration or operational capabilities. An extensive nuclear thermal rocket technology development effort was conducted under the Rover/NERVA, GE-710 and ANL nuclear rocket programs (1955-1973). Both graphite and refractory metal alloy fuel types were pursued. The primary and significantly larger Rover/NERVA program focused on graphite type fuels. Research, development, and testing of high temperature graphite fuels was conducted. Reactors and engines employing these fuels were designed, built, and ground tested. The GE-710 and ANL programs focused on an alternative ceramic-metallic 'cermet' fuel type consisting of UO2 (or UN) fuel embedded in a refractory metal matrix such as tungsten. The General Electric program examined closed loop concepts for space or terrestrial applications as well as open loop systems for direct nuclear thermal propulsion. Although a number of fast spectrum reactor and engine designs suitable for direct nuclear thermal propulsion were proposed and designed, none were built. This report summarizes status results of evaluations of small nuclear reactor designs suitable for direct nuclear thermal propulsion.« less
Apparatus for controlling molten core debris. [LMFBR
Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.
1977-07-19
Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures.
Pinto, David; Coradin, Thibaud; Laberty-Robert, Christel
2018-04-01
In microbial fuel cells, electricity generation is assumed by bacterial degradation of low-grade organics generating electrons that are transferred to an electrode. The nature and efficiency of the electron transfer from the bacteria to the electrodes are determined by several chemical, physical and biological parameters. Specifically, the application of a specific potential at the bioanode has been shown to stimulate the formation of an electro-active biofilm, but the underlying mechanisms remain poorly understood. In this study, we have investigated the effect of an applied potential on the formation and electroactivity of biofilms established by Shewanella oneidensis bacteria on graphite felt electrodes in single- and double-chamber reactor configurations in oxic conditions. Using amperometry, cyclic voltammetry, and OCP/Power/Polarization curves techniques, we showed that a potential ranging between -0.3V and +0.5V (vs. Ag/AgCl/KCl sat.) and its converse application to a couple of electrodes leads to different electrochemical behaviors, anodic currents and biofilm architectures. For example, when the bacteria were confined in the anodic compartment of a double-chamber cell, a negative applied potential (-0.3V) at the bioanode favors a mediated electron transfer correlated with the progressive formation of a biofilm that fills the felt porosity and bridges the graphite fibers. In contrast, a positive applied potential (+0.3V) at the bioanode stimulates a direct electron transfer resulting in the fast-bacterial colonization of the fibers only. These results provide significant insight for the understanding of the complex bacteria-electrode interactions in microbial fuel cells. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, M.R.; Richards, A.C.; Ohuchi, F.S.
1995-10-27
This report is the final summary for AFOSR project number F49620-92-J-0367. The purpose of this research was to evaluate the oxidation protection afforded to graphite or C/C composites by combining IrAl with SiC-C functionally gradient coatings FGCs. This project involved the design and construction of a novel cold wall levitation chemical vapor deposition (LCVD) reactor capable of producing continuous FGCs, and the modification of an existing physical vapor deposition (PVD) system to allow for codeposition of Ir and Al. The SiC-C FGCs were produced using the SiCl4-C3H8-H2 gas system. By continuously varying the Si to C ratio in the gasmore » stream the composition of the coatings could be precisely controlled and tailored to fit a predetermined compositional profile. IrAl was deposited onto the SiC-C FGC by alternately depositing layers of Ir and Al and reacting them at 700 deg C, in vacuum, to form IrAl. Analysis of the as reacted film indicated that IrAl had indeed formed, however, a secondary reaction had occurred between the Ir and SiC producing IrSi3 and graphite. Cracking of the IrAl coating was also observed and was attributed to the CTE mismatch between SiC and the IrAl coating. Upon exposure to a high temperature oxidizing flame (<2100 deg C for 5 min.), the IrAl formed a protective layer of alumina, however, the extensive cracking of the IrAl layer allowed the SiC-C FGC layer to oxidize.« less
Chemical Characterization and Removal of C-14 from Irradiated Graphite-12010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleaver, James; McCrory, Shilo; Smith, Tara E.
2012-07-01
Quantities of irradiated graphite waste are expected to drastically increase, which indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 (C-14), with a half-life of 5730 years. Study of irradiated graphite from nuclear reactors indicates C-14 is concentrated on the outer 5 mm of the graphite structure. The aim of the research described here is to identify the chemical form of C-14 in irradiated graphite and develop a practical method by which C-14 can be removed. Characterization of pre- and post-irradiation graphite was conducted to determine bond type, functionalmore » groups, location and concentration of C-14 and its precursors via the use of surface sensitive characterization techniques. Because most surface C-14 originates from neutron activation of nitrogen, an understanding of nitrogen bonding to graphite may lead to a greater understanding of the formation pathway of C-14. However, no single technique provides a complete picture. Therefore, a portfolio of techniques has been developed, with each technique providing another piece to the puzzle that is the chemical nature of the C-14. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), and Raman Spectroscopy were used to evaluate the morphological features of graphite samples. The concentration, chemical composition, and bonding characteristics of C-14 and its precursors were determined through X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (SIMS), and Auger and Energy Dispersive X-ray Analysis Spectroscopy (EDX). High-surface-area graphite foam, POCOFoam{sup R}, was exposed to liquid nitrogen and irradiated. Characterization of this material has shown C-14 to C-12 ratios of 0.035. This information was used to optimize the thermal treatment of graphite. Thermal treatment of irradiated graphite as reported by Fachinger et al. (2007) uses naturally adsorbed oxygen complexes to gasify graphite, thus its effectiveness is highly dependent on the availability of adsorbed oxygen compounds. In research presented, the quantity and form of adsorbed oxygen complexes in pre- and post irradiated graphite was studied using SIMS and XPS. SIMS and XPS detected adsorbed oxygen compounds on both irradiated and unirradiated graphite. During thermal treatment graphite samples are heated in the presence of inert argon gas, which carries off gaseous products released during treatment. Experiments were performed at 900 deg. C and 1400 deg. C to evaluate the selective removal of C-14. (authors)« less
VIEW OF GRAPHITE BLOCK SHIELDING WALL (NOT IN ORIGINAL LOCATION), ...
VIEW OF GRAPHITE BLOCK SHIELDING WALL (NOT IN ORIGINAL LOCATION), LEVEL -15, LABORATORY/OFFICE WING, LOOKING SOUTHWEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
Dual-Layer Oxidation-Protective Plasma-Sprayed SiC-ZrB2/Al2O3-Carbon Nanotube Coating on Graphite
NASA Astrophysics Data System (ADS)
Ariharan, S.; Sengupta, Pradyut; Nisar, Ambreen; Agnihotri, Ankur; Balaji, N.; Aruna, S. T.; Balani, Kantesh
2017-02-01
Graphite is used in high-temperature gas-cooled reactors because of its outstanding irradiation performance and corrosion resistance. To restrict its high-temperature (>873 K) oxidation, atmospheric-plasma-sprayed SiC-ZrB2-Al2O3-carbon nanotube (CNT) dual-layer coating was deposited on graphite substrate in this work. The effect of each layer was isolated by processing each component of the coating via spark plasma sintering followed by isothermal kinetic studies. Based on isothermal analysis and the presence of high residual thermal stress in the oxide scale, degradation appeared to be more severe in composites reinforced with CNTs. To avoid the complexity of analysis of composites, the high-temperature activation energy for oxidation was calculated for the single-phase materials only, yielding values of 11.8, 20.5, 43.5, and 4.5 kJ/mol for graphite, SiC, ZrB2, and CNT, respectively, with increased thermal stability for ZrB2 and SiC. These results were then used to evaluate the oxidation rate for the composites analytically. This study has broad implications for wider use of dual-layer (SiC-ZrB2/Al2O3) coatings for protecting graphite crucibles even at temperatures above 1073 K.
Neutron transmission measurements of poly and pyrolytic graphite crystals
NASA Astrophysics Data System (ADS)
Adib, M.; Abbas, Y.; Abdel-Kawy, A.; Ashry, A.; Kilany, M.; Kenawy, M. A.
The total neutron cross-section measurements of polycrystalline graphite have been carried out in a neutron wavelength from 0.04 to 0.78 nm. This work also presents the neutron transmission measurements of pyrolytic graphite (PG) crystal in a neutron wavelength band from 0.03 to 0.50 nm, at different orientations of the PG crystal with regard to the beam direction. The measurements were performed using three time-of-flight (TOF) spectrometers installed in front of three of the ET-RR-1 reactor horizontal channels. The average value of the coherent scattering amplitude for polycrystalline graphite was calculated and found to be bcoh = (6.61 ± 0.07) fm. The behaviour of neutron transmission through the PG crystal, while oriented at different angles with regard to the beam direction, shows dips at neutron wavelengths corresponding to the reflections from (hkl) planes of hexagonal graphite structure. The positions of the observed dips are found to be in good agreement with the calculated ones. It was also found that a 40 mm thick PG crystal is quite enough to reduce the second-order contamination of the neutron beam from 2.81 to 0.04, assuming that the incident neutrons have a Maxwell distribution with neutron gas temperature 330 K.
Precision blackbody sources for radiometric standards.
Sapritsky, V I; Khlevnoy, B B; Khromchenko, V B; Lisiansky, B E; Mekhontsev, S N; Melenevsky, U A; Morozova, S P; Prokhorov, A V; Samoilov, L N; Shapoval, V I; Sudarev, K A; Zelener, M F
1997-08-01
The precision blackbody sources developed at the All-Russian Institute for Optical and Physical Measurements (Moscow, Russia) and their characteristics are analyzed. The precision high-temperature graphite blackbody BB22p, large-area high-temperature pyrolytic graphite blackbody BB3200pg, middle-temperature graphite blackbody BB2000, low-temperature blackbody BB300, and gallium fixed-point blackbody BB29gl and their characteristics are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady Raap, Michaele C.; Lyons, Jennifer A.; Collins, Brian A.
This report documents the FY13 efforts to enhance a dataset of spent nuclear fuel isotopic composition data for use in developing intrinsic signatures for nuclear forensics. A review and collection of data from the open literature was performed in FY10. In FY11, the Spent Fuel COMPOsition (SFCOMPO) excel-based dataset for nuclear forensics (NF), SFCOMPO/NF was established and measured data for graphite production reactors, Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs) were added to the dataset and expanded to include a consistent set of data simulated by calculations. A test was performed to determine whether the SFCOMPO/NF dataset willmore » be useful for the analysis and identification of reactor types from isotopic ratios observed in interdicted samples.« less
The WPI reactor-readying for the next generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobek, L.M.
1993-01-01
Built in 1959, the 10-kW open-pool nuclear training reactor at Worcester Polytechnic Institute (WPI) was one of the first such facilities in the nation located on a university campus. Since then, the reactor and its related facilities have been used to train two generations of nuclear engineers and scientists for the nuclear industry. With the use of nuclear technology playing an increasing role in many segments of the economy, WPI with its nuclear reactor facility is committed to continuing its mission of training future nuclear engineers and scientists. The WPI reactor includes a 6-in. beam port, graphite thermal column, andmore » in-core sample facility. The reactor, housed in an open 8000-gal tank of water, is designed so that the core is readily accessible. Both the control console and the peripheral counting equipment used for student projects and laboratory exercises are located in the reactor room. This arrangement provides convenience and flexibility in using the reactor for foil activations in neutron flux measurements, diffusion measurements, radioactive decay measurements, and the neutron activation of samples for analysis. In 1988, the reactor was successfully converted to low-enriched uranium fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Anthony A.
2013-07-01
The Dragon Reactor was constructed at the United Kingdom Atomic Energy Research Establishment at Winfrith in Dorset through the late 1950's and into the early 1960's. It was a High Temperature Gas Cooled Reactor (HTR) with helium gas coolant and graphite moderation. It operated as a fuel testing and demonstration reactor at up to 20 MW (Thermal) from 1964 until 1975, when international funding for this project was terminated. The fuel was removed from the core in 1976 and the reactor was put into Safestore. To meet the UK's Nuclear Decommissioning Authority (NDA) objective to 'drive hazard reduction' [1] itmore » is necessary to decommission and remediate all the Research Sites Restoration Ltd (RSRL) facilities. This includes the Dragon Reactor where the activated core, pressure vessel and control rods and the contaminated primary circuit (including a {sup 90}Sr source) still remain. It is essential to remove these hazards at the appropriate time and return the area occupied by the reactor to a safe condition. (author)« less
Agrawal, A K; Sarkar, P S; Singh, B; Kashyap, Y S; Rao, P T; Sinha, A
2016-02-01
SiC coatings are commonly used as oxidation protective materials in high-temperature applications. The operational performance of the coating depends on its microstructure and uniformity. This study explores the feasibility of applying tabletop X-ray micro-CT for the micro-structural characterization of SiC coating. The coating is deposited over the internal surface of pipe structured graphite fuel tube, which is a prototype of potential components of compact high-temperature reactor (CHTR). The coating is deposited using atmospheric pressure chemical vapor deposition (APCVD) and properties such as morphology, porosity, thickness variation are evaluated. Micro-structural differences in the coating caused by substrate distance from precursor inlet in a CVD reactor are also studied. The study finds micro-CT a potential tool for characterization of SiC coating during its future course of engineering. We show that depletion of reactants at larger distances causes development of larger pores in the coating, which affects its morphology, density and thickness. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parma, Edward J.,; Vehar, David W.; Lippert, Lance L.
2015-06-01
This document presents the facility-recommended characterization of the neutron, prompt gamma-ray, and delayed gamma-ray radiation fields in the Annular Core Research Reactor (ACRR) for the polyethylene-lead-graphite (PLG) bucket in the central cavity on the 32-inch pedestal at the core centerline. The designation for this environment is ACRR-PLG-CC-32-cl. The neutron, prompt gamma-ray, and delayed gamma-ray energy spectra, uncertainties, and covariance matrices are presented as well as radial and axial neutron and gamma-ray fluence profiles within the experiment area of the bucket. Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulsemore » operations are presented with conversion examples. Acknowledgements The authors wish to thank the Annular Core Research Reactor staff and the Radiation Metrology Laboratory staff for their support of this work. Also thanks to David Ames for his assistance in running MCNP on the Sandia parallel machines.« less
NASA Astrophysics Data System (ADS)
Tadesse, Abel; Fredriksson, Hasse
2018-06-01
The graphite nodule count and size distributions for boiling water reactor (BWR) and pressurized water reactor (PWR) inserts were investigated by taking samples at heights of 2160 and 1150 mm, respectively. In each cross section, two locations were taken into consideration for both the microstructural and solidification modeling. The numerical solidification modeling was performed in a two-dimensional model by considering the nucleation and growth in eutectic ductile cast iron. The microstructural results reveal that the nodule size and count distribution along the cross sections are different in each location for both inserts. Finer graphite nodules appear in the thinner sections and close to the mold walls. The coarser nodules are distributed mostly in the last solidified location. The simulation result indicates that the finer nodules are related to a higher cooling rate and a lower degree of microsegregation, whereas the coarser nodules are related to a lower cooling rate and a higher degree of microsegregation. The solidification time interval and the last solidifying locations in the BWR and PWR are also different.
Fermi, E.; Leverett, M.C.
1958-06-01
A nuclear reactor of the gas-cooled, graphitemoderated type is described. In this design, graphite blocks are arranged in a substantially cylindrical lattice having vertically orienied coolant channels in which uranium fuel elements having through passages are disposed. The active lattice is contained within a hollow body. such as a steel shell, which, in turn, is surrounded by water and concrete shields. Helium is used as the primary coolant and is circulated under pressure through the coolant channels and fuel elements. The helium is then conveyed to heat exchangers, where its heat is used to produce steam for driving a prime mover, thence to filtering means where radioactive impurities are removed. From the filtering means the helium passes to a compressor and an after cooler and is ultimately returned to the reactor for recirculation. Control and safety rods are provided to stabilize or stop the reaction. A space is provided between the graphite lattice and the internal walls of the shell to allow for thermal expansion of the lattice during operation. This space is filled with a resilient packing, such as asbestos, to prevent the passage of helium.
Co-gasification of coal and biomass: Synergy, characterization and reactivity of the residual char.
Hu, Junhao; Shao, Jingai; Yang, Haiping; Lin, Guiying; Chen, Yingquan; Wang, Xianhua; Zhang, Wennan; Chen, Hanping
2017-11-01
The synergy effect between coal and biomass in their co-gasification was studied in a vertical fixed bed reactor, and the physic-chemical structural characteristics and gasification reactivity of the residual char obtained from co-gasification were also investigated. The results shows that, conversion of the residual char and tar into gas is enhanced due to the synergy effect between coal and biomass. The physical structure of residual char shows more pore on coal char when more biomass is added in the co-gasification. The migration of inorganic elements between coal and biomass was found, the formation and competitive role of K 2 SiO 3 , KAlSiO 4 , and Ca 3 Al 2 (SiO 4 ) 3 is a mechanism behind the synergy. The graphization degree is enhanced but size of graphite crystallite in the residual char decreases with biomass blending ratio increasing. TGA results strongly suggest the big difference in the reactivity of chars derived from coal and biomass in spite of influence from co-gasification. Copyright © 2017 Elsevier Ltd. All rights reserved.
Synthesis of soluble graphite and graphene.
Kelly, K F; Billups, W E
2013-01-15
Because of graphene's anticipated applications in electronics and its thermal, mechanical, and optical properties, many scientists and engineers are interested in this material. Graphene is an isolated layer of the π-stacked hexagonal allotrope of carbon known as graphite. The interlayer cohesive energy of graphite, or exfoliation energy, that results from van der Waals attractions over the interlayer spacing distance of 3.34 Å (61 meV/C atom) is many times weaker than the intralayer covalent bonding. Since graphene itself does not occur naturally, scientists and engineers are still learning how to isolate and manipulate individual layers of graphene. Some researchers have relied on the physical separation of the sheets, a process that can sometimes be as simple as peeling of sheets from crystalline graphite using Scotch tape. Other researchers have taken an ensemble approach, where they exploit the chemical conversion of graphite to the individual layers. The typical intermediary state is graphite oxide, which is often produced using strong oxidants under acidic conditions. Structurally, researchers hypothesize that acidic functional groups functionalize the oxidized material at the edges and a network of epoxy groups cover the sp(2)-bonded carbon network. The exfoliated material formed under these conditions can be used to form dispersions that are usually unstable. However, more importantly, irreversible defects form in the basal plane during oxidation and remain even after reduction of graphite oxide back to graphene-like material. As part of our interest in the dissolution of carbon nanomaterials, we have explored the derivatization of graphite following the same procedures that preserve the sp(2) bonding and the associated unique physical and electronic properties in the chemical processing of single-walled carbon nanotubes. In this Account, we describe efficient routes to exfoliate graphite either into graphitic nanoparticles or into graphene without resorting to oxidation. Our exfoliation process involves the intercalation of lithium into bulk graphite to yield graphene sheets reduced by the lithium. We can alkylate the resulting graphite salt reductively using solubilizing dodecyl groups. By probe microscopy, we show that these groups are attached covalently only at the graphitic edges.
A solid reactor core thermal model for nuclear thermal rockets
NASA Astrophysics Data System (ADS)
Rider, William J.; Cappiello, Michael W.; Liles, Dennis R.
1991-01-01
A Helium/Hydrogen Cooled Reactor Analysis (HERA) computer code has been developed. HERA has the ability to model arbitrary geometries in three dimensions, which allows the user to easily analyze reactor cores constructed of prismatic graphite elements. The code accounts for heat generation in the fuel, control rods, and other structures; conduction and radiation across gaps; convection to the coolant; and a variety of boundary conditions. The numerical solution scheme has been optimized for vector computers, making long transient analyses economical. Time integration is either explicit or implicit, which allows the use of the model to accurately calculate both short- or long-term transients with an efficient use of computer time. Both the basic spatial and temporal integration schemes have been benchmarked against analytical solutions.
Dynamic friction and wear of a solid film lubricant during radiation exposure in a nuclear reactor
NASA Technical Reports Server (NTRS)
Jacobson, T. P.
1972-01-01
The effect of nuclear reactor radiation on the performance of a solid film lubricant was studied. The film consisted of molybdenum disulfide and graphite in a sodium silicate binder. Radiation levels of fast neutrons (E or = 1 MeV) were fluxed up to 3.5 times 10 to the 12th power n/sq cm-sec (intensity) and fluences up to 2 times 10 to the 18th power n/sq cm (total exposure). Coating wear lives were much shorter and friction coefficients higher in a high flux region of the reactor than in a low flux region. The amount of total exposure did not affect lubrication behavior as severely as the radiation intensity during sliding.
Continuous Heterogeneous Photocatalysis in Serial Micro-Batch Reactors.
Pieber, Bartholomäus; Shalom, Menny; Antonietti, Markus; Seeberger, Peter H; Gilmore, Kerry
2018-01-29
Solid reagents, leaching catalysts, and heterogeneous photocatalysts are commonly employed in batch processes but are ill-suited for continuous-flow chemistry. Heterogeneous catalysts for thermal reactions are typically used in packed-bed reactors, which cannot be penetrated by light and thus are not suitable for photocatalytic reactions involving solids. We demonstrate that serial micro-batch reactors (SMBRs) allow for the continuous utilization of solid materials together with liquids and gases in flow. This technology was utilized to develop selective and efficient fluorination reactions using a modified graphitic carbon nitride heterogeneous catalyst instead of costly homogeneous metal polypyridyl complexes. The merger of this inexpensive, recyclable catalyst and the SMBR approach enables sustainable and scalable photocatalysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rapid solar-thermal decarbonization of methane
NASA Astrophysics Data System (ADS)
Dahl, Jaimee Kristen
Due to the ever-increasing demand for energy and the concern over the environmental impact of continuing to produce energy using current methods, there is interest in developing a hydrogen economy. Hydrogen is a desirable energy source because it is abundant in nature and burns cleanly. One method for producing hydrogen is to utilize a renewable energy source to obtain high enough temperatures to decompose a fossil fuel into its elements. This thesis work is directed at developing a solar-thermal aerosol flow reactor to dissociate methane to carbon black and hydrogen. The technology is intended as a "bridge" between current hydrogen production methods, such as conventional steam-methane reformers, and future "zero emission" technology for producing hydrogen, such as dissociating water using a renewable heating source. A solar furnace is used to heat a reactor to temperatures in excess of 2000 K. The final reactor design studied consists of three concentric vertical tubes---an outer quartz protection tube, a middle solid graphite heating tube, and an inner porous graphite reaction tube. A "fluid-wall" is created on the inside wall of the porous reaction tube in order to prevent deposition of the carbon black co-product on the reactor tube wall. The amorphous carbon black produced aids in heating the gas stream by absorbing radiation from the reactor wall. Conversions of 90% are obtained at a reactor wall temperature of 2100 K and an average residence time of 0.01 s. Computer modeling is also performed to study the gas flow and temperature profiles in the reactor as well as the kinetics of the methane dissociation reaction. The simulations indicate that there is little flow of the fluid-wall gas through the porous wall in the hot zone region, but this can be remedied by increasing the inlet temperature of the fluid-wall gas and/or increasing the tube permeability only in the hot zone region of the wall. The following expression describes the kinetics of methane dissociation in a solar-thermal fluid-wall reactor: dXdt=5.8x108 exp-155,600RT 1-X 7.2s-1. The experimental and theoretical work reported in this thesis is the groundwork that will be utilized in scaling up the reactor to produce hydrogen in distributed or centralized facilities.
VIEW OF GRAPHITE BLOCK SHIELDING WALL (NOT IN ORIGINAL LOCATION), ...
VIEW OF GRAPHITE BLOCK SHIELDING WALL (NOT IN ORIGINAL LOCATION), LEVEL -15, LABORATORY/OFFICE WING, SHOWING COOLING WATER PUMPS, LOOKING WEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
METHODS OF CALCULATION FOR THE TREATMENT OF SHIELD HETEROGENEITIES IN THE PROTOTYPE FAST REACTOR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broughton, J.; Butler, J.; Brimstone, M.
1969-10-31
The radial shield of the sodium-cooled Prototype Fast Reactor is composed of graphite rods enclosed in steel tubes which are arranged in a lattice of seven rows round the periphery of the breeder. The outside diameter of these rods increases by about a factor of 2 between the inner temperature of about 600 deg C. The dimensions of the steel, graphite and sodium regions are large compared with the mean free paths of the predomination neutrons at intermediate energies; and homogenisation of the shield seriously underestimates the penetration, which is also enhanced by the presence of numerous irregularities associated withmore » nucleonic instrument thimbels, refuelling mechanisms and the primary coolant circuit. Methods of calculation have been developed for the solution of these problems, using both diffusion-theory and Monte Carlo techniques. The diffusion calculations have been accomplished with the COMPRASH and ATTOW codes; and a prototype Monet Carlo code named MOB has been developed, which takes a proper account of the radial shield geometry. The theoretical predictions are compared with measurements made in typical shield arrays on LIDO at Harwell and on the zero-energy fast reactor, ZEBRA, at Winfrith. The diffusion-theory and Monte Carlo approaches are also assessed as design tools taking into consideration accuracy, data preparation and computing time requirements. (auth)« less
The Set of Diagnostics for the First Operation Campaign of the Wendelstein 7-X Stellarator
NASA Astrophysics Data System (ADS)
König, Ralf; Baldzuhn, J.; Biel, W.; Biedermann, C.; Bosch, H. S.; Bozhenkov, S.; Bräuer, T.; Brotas de Carvalho, B.; Burhenn, R.; Buttenschön, B.; Cseh, G.; Czarnecka, A.; Endler, M.; Erckmann, V.; Estrada, T.; Geiger, J.; Grulke, O.; Hartmann, D.; Hathiramani, D.; Hirsch, M.; Jabłonski, S.; Jakubowski, M.; Kaczmarczyk, J.; Klinger, T.; Klose, S.; Kocsis, G.; Kornejew, P.; Krämer-Flecken, A.; Kremeyer, T.; Krychowiak, M.; Kubkowska, M.; Langenberg, A.; Laqua, H. P.; Laux, M.; Liang, Y.; Lorenz, A.; Marchuk, A. O.; Moncada, V.; Neubauer, O.; Neuner, U.; Oosterbeek, J. W.; Otte, M.; Pablant, N.; Pasch, E.; Pedersen, T. S.; Rahbarnia, K.; Ryc, L.; Schmitz, O.; Schneider, W.; Schuhmacher, H.; Schweer, B.; Stange, T.; Thomsen, H.; Travere, J.-M.; Szepesi, T.; Wenzel, U.; Werner, A.; Wiegel, B.; Windisch, T.; Wolf, R.; Wurden, G. A.; Zhang, D.; Zimbal, A.; Zoletnik, S.; the W7-X Team
2015-10-01
Wendelstein 7-X (W7-X) is a large optimized stellarator (B=2.5T, V=30m3) aiming at demonstrating the reactor relevance of the optimized stellarators. In 2015 W7-X will begin its first operation phase (OP1.1) with five inertially cooled inboard limiters made of graphite. Assuming the heat loads can be spread out evenly between the limiters, 1 second discharges at 2 MW of ECRH heating power could be run in OP1.1. The expected plasma parameters will be sufficient to demonstrate the readiness of the installed diagnostics and even to run a first physics program. The diagnostics available for this first operation phase, including some special limiter diagnostics, and their capabilities are being presented. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics
NATCRCTR: One-dimensional thermal-hydraulics analysis code for natural-circulation TRIGA reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.; Rubinaccio, G.
1996-12-31
The Pennsylvania State University nuclear engineering department is evaluating the upgrade of the Reed College (Portland, Oregon) TRIGA reactor from 250 kW to 1 MW in two areas: thermal-hydraulics and steady-state neutronics analysis. This analysis was initiated as a cooperative effort between Penn State and Reed College as a training project for two International Atomic Energy Agency (IAEA) fellows from Ghana. The two Ghanaian IAEA fellows were assisted by G. Rubinaccio, an undergraduate, who undertook the task of writing the new computer programs for the thermal-hydraulic and physics evaluation as a three-credit special design project course. The Reed College TRIGA,more » which has a fixed graphite radial reflector, is cooled by natural circulation, without external cross-flow; whereas, the Penn State Breazeale Reactor has significant crossflow into its sides. To model the Reed TRIGA, the NATCRCTR program has been developed from first principles using the following assumptions: 1. The core is surrounded by the fixed reflector structure, which acts as a one-dimensional channel. 2. The core inlet temperature distribution is constant at the core bottom. 3. The axial heat flux distribution is a chopped cosine shape. 4. The heat transfer in the fuel is primarily in the radial directions. 5. A small gap between the fuel and cladding exists. The NATCRCTR code is used to find the peak centerline fuel, gap, and cladding surface temperatures, based on assumed flux and engineering peaking factors.« less
Deterministic Modeling of the High Temperature Test Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortensi, J.; Cogliati, J. J.; Pope, M. A.
2010-06-01
Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine INL’s current prismatic reactor deterministic analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 column thin annular core, and the fully loaded core critical condition with 30 columns. Special emphasis is devoted to the annular core modeling, which shares more characteristics with the NGNP base design. The DRAGON code is usedmore » in this study because it offers significant ease and versatility in modeling prismatic designs. Despite some geometric limitations, the code performs quite well compared to other lattice physics codes. DRAGON can generate transport solutions via collision probability (CP), method of characteristics (MOC), and discrete ordinates (Sn). A fine group cross section library based on the SHEM 281 energy structure is used in the DRAGON calculations. HEXPEDITE is the hexagonal z full core solver used in this study and is based on the Green’s Function solution of the transverse integrated equations. In addition, two Monte Carlo (MC) based codes, MCNP5 and PSG2/SERPENT, provide benchmarking capability for the DRAGON and the nodal diffusion solver codes. The results from this study show a consistent bias of 2–3% for the core multiplication factor. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement stems from the fact that during the experiments the control rods were adjusted to maintain criticality, whereas in the model, the rod positions were fixed. In addition, this work includes a brief study of a cross section generation approach that seeks to decouple the domain in order to account for neighbor effects. This spectral interpenetration is a dominant effect in annular HTR physics. This analysis methodology should be further explored in order to reduce the error that is systematically propagated in the traditional generation of cross sections.« less
Formation mechanism of graphite hexagonal pyramids by argon plasma etching of graphite substrates
NASA Astrophysics Data System (ADS)
Glad, X.; de Poucques, L.; Bougdira, J.
2015-12-01
A new graphite crystal morphology has been recently reported, namely the graphite hexagonal pyramids (GHPs). They are hexagonally-shaped crystals with diameters ranging from 50 to 800 nm and a constant apex angle of 40°. These nanostructures are formed from graphite substrates (flexible graphite and highly ordered pyrolytic graphite) in low pressure helicon coupling radiofrequency argon plasma at 25 eV ion energy and, purportedly, due to a physical etching process. In this paper, the occurrence of peculiar crystals is shown, presenting two hexagonal orientations obtained on both types of samples, which confirms such a formation mechanism. Moreover, by applying a pretreatment step with different time durations of inductive coupling radiofrequency argon plasma, for which the incident ion energy decreases at 12 eV, uniform coverage of the surface can be achieved with an influence on the density and size of the GHPs.
Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes
NASA Astrophysics Data System (ADS)
Pattisson, Samuel; Nowicka, Ewa; Gupta, Upendra N.; Shaw, Greg; Jenkins, Robert L.; Morgan, David J.; Knight, David W.; Hutchings, Graham J.
2016-09-01
Graphitic oxide has potential as a carbocatalyst for a wide range of reactions. Interest in this material has risen enormously due to it being a precursor to graphene via the chemical oxidation of graphite. Despite some studies suggesting that the chosen method of graphite oxidation can influence the physical properties of the graphitic oxide, the preparation method and extent of oxidation remain unresolved for catalytic applications. Here we show that tuning the graphitic oxide surface can be achieved by varying the amount and type of oxidant. The resulting materials differ in level of oxidation, surface oxygen content and functionality. Most importantly, we show that these graphitic oxide materials are active as unique carbocatalysts for low-temperature aerobic epoxidation of linear alkenes in the absence of initiator or metal. An optimum level of oxidation is necessary and materials produced via conventional permanganate-based methods are far from optimal.
NASA Astrophysics Data System (ADS)
Takada, Noriharu; Nagatsu, Masaaki; Shimada, Michiya
1995-07-01
The temperature dependence of power reflectivity in the synchrotron radiation range was measured for candidate first-wall materials of the fusion reactor, such as B4C-coated isotropic graphite, C/C composite material, silicon carbide (SiC), tungsten (W), molybdenum (Mo) and SUS-316. The measurements were carried out using a vacuum vessel with a pressure of about 3 mTorr to avoid oxidation. Distinct temperature dependence of reflectivity was observed only for B4C-coated isotropic graphite. For the other materials, power reflectivities were insensitive to temperature in the range from 300 K to ˜900 K. Theoretical analysis of the results is also presented.
1989-01-01
channelling and scanning electron microscopy (SEM) of highly oriented pyrolytic graphite ( HOPG ), comparative scratch testing results and some ideas on...electrode graphite , HOPG and carbon fibers also show enhanced wear resistance followoing irradiation (6), the extent of which depends upon the initial...literature dealing with damage effects and physical property changes following neutron irradiation of graphite (single and polycrystalline ) in nuclear
Initial conceptual design study of self-critical nuclear pumped laser systems
NASA Technical Reports Server (NTRS)
Rodgers, R. J.
1979-01-01
An analytical study of self-critical nuclear pumped laser system concepts was performed. Primary emphasis was placed on reactor concepts employing gaseous uranium hexafluoride (UF6) as the fissionable material. Relationships were developed between the key reactor design parameters including reactor power level, critical mass, neutron flux level, reactor size, operating pressure, and UF6 optical properties. The results were used to select a reference conceptual laser system configuration. In the reference configuration, the 3.2 m cubed lasing volume is surrounded by a graphite internal moderator and a region of heavy water. Results of neutronics calculations yield a critical mass of 4.9 U(235) in the form (235)UF6. The configuration appears capable of operating in a continuous steady-state mode. The average gas temperature in the core is 600 K and the UF6 partial pressure within the lasing volume is 0.34 atm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waris, Abdul, E-mail: awaris@fi.itb.ac.id; Novitrian,; Pramuditya, Syeilendra
High temperature engineering test reactor (HTTR) is one of high temperature gas cooled reactor (HTGR) types which has been developed by Japanese Atomic Energy Research Institute (JAERI). The HTTR is a graphite moderator, helium gas coolant, 30 MW thermal output and 950 °C outlet coolant temperature for high temperature test operation. Original HTTR uses UO{sub 2} fuel. In this study, we have evaluated the use of UO{sub 2} and PuO{sub 2} in form of mixed oxide (MOX) fuel in HTTR. The reactor cell calculation was performed by using SRAC 2002 code, with nuclear data library was derived from JENDL3.2. Themore » result shows that HTTR can obtain its criticality condition if the enrichment of {sup 235}U in loaded fuel is 18.0% or above.« less
NASA Astrophysics Data System (ADS)
Kapychev, V.; Davydov, D.; Gorokhov, V.; Ioltukhovskiy, A.; Kazennov, Yu; Tebus, V.; Frolov, V.; Shikov, A.; Shishkov, N.; Kovalenko, V.; Shishkin, N.; Strebkov, Yu
2000-12-01
This paper surveys the modules and materials of blanket tritium-breeding zones developed in the Russian Federation for fusion reactors. Synthesis of lithium orthosilicate, metasilicate and aluminate, fabrication of ceramic pellets and pebbles and experimental reactor units are described. Results of tritium extraction kinetics under irradiation in a water-graphite reactor at a thermal neutron flux of 5×10 13 neutron/(s cm2) are considered. At the present time, development and fabrication of lithium orthosilicate-beryllium modules of the tritium-breeding zone (TBZ), have been carried out within the framework of the ITER and DEMO projects. Two modules containing orthosilicate pellets, porous beryllium and beryllium pebbles are suggested for irradiation tests in the temperature range of 350-700°C. Technical problems associated with manufacturing of the modules are discussed.
ENGINEERING AND CONSTRUCTING THE HALLAM NUCLEAR POWER FACILITY REACTOR STRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahlmeister, J E; Haberer, W V; Casey, D F
1960-12-15
The Hallam Nuclear Power Facility reactor structure, including the cavity liner, is described, and the design philosophy and special design requirements which were developed during the preliminary and final engineering phases of the project are explained. The structure was designed for 600 deg F inlet and 1000 deg F outlet operating sodium temperatures and fabricated of austenitic and ferritic stainless steels. Support for the reactor core components and adequate containment for biological safeguards were readily provided even though quite conservative design philosophy was used. The calculated operating characteristics, including heat generation, temperature distributions and stress levels for full-power operation, aremore » summarized. Ship fabrication and field installation experiences are also briefly related. Results of this project have established that the sodium graphite reactor permits practical and economical fabrication and field erection procedures; considerably higher operating design temperatures are believed possible without radical design changes. Also, larger reactor structures can be similarly constructed for higher capacity (300 to 1000 Mwe) nuclear power plants. (auth)« less
Rout, S P; Payne, L; Walker, S; Scott, T; Heard, P; Eccles, H; Bond, G; Shah, P; Bills, P; Jackson, B R; Boxall, S A; Laws, A P; Charles, C; Williams, S J; Humphreys, P N
2018-03-13
14 C is an important consideration within safety assessments for proposed geological disposal facilities for radioactive wastes, since it is capable of re-entering the biosphere through the generation of 14 C bearing gases. The irradiation of graphite moderators in the UK gas-cooled nuclear power stations has led to the generation of a significant volume of 14 C-containing intermediate level wastes. Some of this 14 C is present as a carbonaceous deposit on channel wall surfaces. Within this study, the potential of biofilm growth upon irradiated and 13 C doped graphite at alkaline pH was investigated. Complex biofilms were established on both active and simulant samples. High throughput sequencing showed the biofilms to be dominated by Alcaligenes sp at pH 9.5 and Dietzia sp at pH 11.0. Surface characterisation revealed that the biofilms were limited to growth upon the graphite surface with no penetration of the deeper porosity. Biofilm formation resulted in the generation of a low porosity surface layer without the removal or modification of the surface deposits or the release of the associated 14 C/ 13 C. Our results indicated that biofilm formation upon irradiated graphite is likely to occur at the pH values studied, without any additional release of the associated 14 C.
Treatment of Irradiated Graphite from French Bugey Reactor - 13424
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Thomas; Poncet, Bernard
2013-07-01
Beginning in 2009, in order to determine an alternative to direct disposal for decommissioned irradiated graphite from EDF's Bugey NPP, Studsvik and EDF began a test program to determine if graphite decontamination and destruction were practicable using Studsvik's thermal organic reduction (THOR) technology. The testing program focused primarily on the release of C-14, H-3, and Cl-36 and also monitored graphite mass loss. For said testing, a bench-scale steam reformer (BSSR) was constructed with the capability of flowing various compositions of gases at temperatures up to 1300 deg. C over uniformly sized particles of graphite for fixed amounts of time. Themore » BSSR was followed by a condenser, thermal oxidizer, and NaOH bubbler system designed to capture H-3 and C-14. Also, in a separate series of testing, high concentration acid and peroxide solutions were used to soak the graphite and leach out and measure Cl-36. A series of gasification tests were performed to scope gas compositions and temperatures for graphite gasification using steam and oxygen. Results suggested higher temperature steam (1100 deg. C vs. 900 deg. C) yielded a practicable gasification rate but that lower temperature (900 deg. C) gasification was also a practicable treatment alternative if oxygen is fed into the process. A series of decontamination tests were performed to determine the release behavior of and extent to which C-14 and H-3 were released from graphite in a high temperature (900-1300 deg. C), low flow roasting gas environment. In general, testing determined that higher temperatures and longer roasting times were efficacious for releasing H-3 completely and the majority (80%) of C-14. Manipulating oxidizing and reducing gas environments was also found to limit graphite mass loss. A series of soaking tests was performed to measure the amount of Cl-36 in the samples of graphite before and after roasting in the BSSR. Similar to C-14 release, these soaking tests revealed that 70-80% Cl-36 is released during roasting tests. (authors)« less
Utilization of TRISO Fuel with LWR Spent Fuel in Fusion-Fission Hybrid Reactor System
NASA Astrophysics Data System (ADS)
Acır, Adem; Altunok, Taner
2010-10-01
HTRs use a high performance particulate TRISO fuel with ceramic multi-layer coatings due to the high burn up capability and very neutronic performance. TRISO fuel because of capable of high burn up and very neutronic performance is conducted in a D-T fusion driven hybrid reactor. In this study, TRISO fuels particles are imbedded body-centered cubic (BCC) in a graphite matrix with a volume fraction of 68%. The neutronic effect of TRISO coated LWR spent fuel in the fuel rod used hybrid reactor on the fuel performance has been investigated for Flibe, Flinabe and Li20Sn80 coolants. The reactor operation time with the different first neutron wall loads is 24 months. Neutron transport calculations are evaluated by using XSDRNPM/SCALE 5 codes with 238 group cross section library. The effect of TRISO coated LWR spent fuel in the fuel rod used hybrid reactor on tritium breeding (TBR), energy multiplication (M), fissile fuel breeding, average burn up values are comparatively investigated. It is shown that the high burn up can be achieved with TRISO fuel in the hybrid reactor.
Vasudevamurthy, G.; Byun, T. S.; Pappano, Pete; ...
2015-03-13
Here we present a comparison of the measured baseline mechanical and physical properties of with grain (WG) and against grain (AG) non-ASTM size NBG-18 graphite. The objectives of the experiments were twofold: (1) assess the variation in properties with grain orientation; (2) establish a correlation between specimen tensile strength and size. The tensile strength of the smallest sized (4 mm diameter) specimens were about 5% higher than the standard specimens (12 mm diameter) but still within one standard deviation of the ASTM specimen size indicating no significant dependence of strength on specimen size. The thermal expansion coefficient and elastic constantsmore » did not show significant dependence on specimen size. Lastly, experimental data indicated that the variation of thermal expansion coefficient and elastic constants were still within 5% between the different grain orientations, confirming the isotropic nature of NBG-18 graphite in physical properties.« less
Interface structure between tetraglyme and graphite
NASA Astrophysics Data System (ADS)
Minato, Taketoshi; Araki, Yuki; Umeda, Kenichi; Yamanaka, Toshiro; Okazaki, Ken-ichi; Onishi, Hiroshi; Abe, Takeshi; Ogumi, Zempachi
2017-09-01
Clarification of the details of the interface structure between liquids and solids is crucial for understanding the fundamental processes of physical functions. Herein, we investigate the structure of the interface between tetraglyme and graphite and propose a model for the interface structure based on the observation of frequency-modulation atomic force microscopy in liquids. The ordering and distorted adsorption of tetraglyme on graphite were observed. It is found that tetraglyme stably adsorbs on graphite. Density functional theory calculations supported the adsorption structure. In the liquid phase, there is a layered structure of the molecular distribution with an average distance of 0.60 nm between layers.
Kane, Joshua J.; Matthews, Austin C.; Orme, Christopher J.; ...
2018-05-05
Understanding “Where?” and “How much?” oxidation has occurred in a nuclear graphite component is critical to predicting any deleterious effects to physical, mechanical, and thermal properties. A key factor in answering these questions is characterizing the effective mass transport rates of gas species in nuclear graphites. Effective gas diffusion coefficients were determined for twenty-six graphite specimens spanning six modern grades of nuclear graphite. A correlation was established for the majority of grades examined allowing a reasonable estimate of the effective diffusion coefficient to be determined purely from an estimate of total porosity. The importance of Knudsen diffusion to the measuredmore » diffusion coefficients is also shown for modern grades. Furthermore, Knudsen diffusion has not historically been considered to contribute to measured diffusion coefficients of nuclear graphite.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, Joshua J.; Matthews, Austin C.; Orme, Christopher J.
Understanding “Where?” and “How much?” oxidation has occurred in a nuclear graphite component is critical to predicting any deleterious effects to physical, mechanical, and thermal properties. A key factor in answering these questions is characterizing the effective mass transport rates of gas species in nuclear graphites. Effective gas diffusion coefficients were determined for twenty-six graphite specimens spanning six modern grades of nuclear graphite. A correlation was established for the majority of grades examined allowing a reasonable estimate of the effective diffusion coefficient to be determined purely from an estimate of total porosity. The importance of Knudsen diffusion to the measuredmore » diffusion coefficients is also shown for modern grades. Furthermore, Knudsen diffusion has not historically been considered to contribute to measured diffusion coefficients of nuclear graphite.« less
Generating Aromatics From CO2 on Mars or Natural Gas on Earth
NASA Technical Reports Server (NTRS)
Muscatello, Anthony C.; Zubrin, Robert; Berggren, Mark
2006-01-01
Methane to aromatics on Mars ( METAMARS ) is the name of a process originally intended as a means of converting Martian atmospheric carbon dioxide to aromatic hydrocarbons and oxygen, which would be used as propellants for spacecraft to return to Earth. The process has been demonstrated on Earth on a laboratory scale. A truncated version of the process could be used on Earth to convert natural gas to aromatic hydrocarbon liquids. The greater (relative to natural gas) density of aromatic hydrocarbon liquids makes it more economically feasible to ship them to distant markets. Hence, this process makes it feasible to exploit some reserves of natural gas that, heretofore, have been considered as being "stranded" too far from markets to be of economic value. In the full version of METAMARS, carbon dioxide is frozen out of the atmosphere and fed to a Sabatier reactor along with hydrogen (which, on Mars, would have been brought from Earth). In the Sabatier reactor, these feedstocks are converted to methane and water. The water is condensed and electrolyzed to oxygen (which is liquefied) and hydrogen (which is recycled to the Sabatier reactor). The methane is sent to an aromatization reactor, wherein, over a molybdenum-on-zeolite catalyst at a temperature 700 C, it is partially converted into aromatic hydrocarbons (specifically, benzene, toluene, and naphthalene) along with hydrogen. The aromatics are collected by freezing, while unreacted methane and hydrogen are separated by a membrane. Most of the hydrogen is recycled to the Sabatier reactor, while the methane and a small portion of the hydrogen are recycled to the aromatization reactor. The partial recycle of hydrogen to the aromatization reactor greatly increases the catalyst lifetime and eases its regeneration by preventing the formation of graphitic carbon, which could damage the catalyst. (Moreover, if graphitic carbon were allowed to form, it would be necessary to use oxygen to remove it.) Because the aromatics contain only one hydrogen atom per carbon atom, METAMARS produces four times as much propellant from a given amount of hydrogen as does a related process that includes the Sabatier reaction and electrolysis but not aromatization. In the terrestrial version of METAMARS, the Sabatier reactor and electrolyzer would be omitted, while the hydrogen/ methane membrane-separating membrane, the aromatization reactor, and the unreacted-gas-recycling subsystem would be retained. Natural gas would be fed directly to the aromatization reactor. Because natural gas consists of higher hydrocarbons in addition to methane, the aromatization subprocess should be more efficient than it is for methane alone.
THETRIS: A MICRO-SCALE TEMPERATURE AND GAS RELEASE MODEL FOR TRISO FUEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Ortensi; A.M. Ougouag
2011-12-01
The dominating mechanism in the passive safety of gas-cooled, graphite-moderated, high-temperature reactors (HTRs) is the Doppler feedback effect. These reactor designs are fueled with sub-millimeter sized kernels formed into TRISO particles that are imbedded in a graphite matrix. The best spatial and temporal representation of the feedback effect is obtained from an accurate approximation of the fuel temperature. Most accident scenarios in HTRs are characterized by large time constants and slow changes in the fuel and moderator temperature fields. In these situations a meso-scale, pebble and compact scale, solution provides a good approximation of the fuel temperature. Micro-scale models aremore » necessary in order to obtain accurate predictions in faster transients or when parameters internal to the TRISO are needed. Since these coated particles constitute one of the fundamental design barriers for the release of fission products, it becomes important to understand the transient behavior inside this containment system. An explicit TRISO fuel temperature model named THETRIS has been developed and incorporated into the CYNOD-THERMIX-KONVEK suite of coupled codes. The code includes gas release models that provide a simple predictive capability of the internal pressure during transients. The new model yields similar results to those obtained with other micro-scale fuel models, but with the added capability to analyze gas release, internal pressure buildup, and effects of a gap in the TRISO. The analyses show the instances when the micro-scale models improve the predictions of the fuel temperature and Doppler feedback. In addition, a sensitivity study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap is included. Although the formation of a gap occurs under special conditions, its consequences on the dynamic behavior of the reactor can cause unexpected responses during fast transients. Nevertheless, the strong Doppler feedback forces the reactor to quickly stabilize.« less
Status of Chronic Oxidation Studies of Graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contescu, Cristian I.; Mee, Robert W.
Graphite will undergo extremely slow, but continuous oxidation by traces of moisture that will be present, albeit at very low levels, in the helium coolant of HTGR. This chronic oxidation may cause degradation of mechanical strength and thermal properties of graphite components if a porous oxidation layer penetrates deep enough in the bulk of graphite components during the lifetime of the reactor. The current research on graphite chronic oxidation is motivated by the acute need to understand the behavior of each graphite grade during prolonged exposure to high temperature chemical attack by moisture. The goal is to provide the elementsmore » needed to develop predictive models for long-time oxidation behavior of graphite components in the cooling helium of HTGR. The tasks derived from this goal are: (1) Oxidation rate measurements in order to determine and validate a comprehensive kinetic model suitable for prediction of intrinsic oxidation rates as a function of temperature and oxidant gas composition; (2) Characterization of effective diffusivity of water vapor in the graphite pore system in order to account for the in-pore transport of moisture; and (3) Development and validation of a predictive model for the penetration depth of the oxidized layer, in order to assess the risk of oxidation caused damage of particular graphite grades after prolonged exposure to the environment of helium coolant in HTGR. The most important and most time consuming of these tasks is the measurement of oxidation rates in accelerated oxidation tests (but still under kinetic control) and the development of a reliable kinetic model. This report summarizes the status of chronic oxidation studies on graphite, and then focuses on model development activities, progress of kinetic measurements, validation of results, and improvement of the kinetic models. Analysis of current and past results obtained with three grades of showed that the classical Langmuir-Hinshelwood model cannot reproduce all data collected so far. Starting from here we propose a modification of the LH model to include temperature activation of graphite surface as a Boltzmann activation function. The enhanced Boltzmann-Langmuir-Hinshelwood model (BLH) was tested successfully on three grades of graphite. The model is a robust, comprehensive mathematical function that allows better fitting of experimental results spanning a wide range of temperature and partial pressures of water vapor and hydrogen. However, the model did not fit satisfactorily the data extracted from the old report on graphite H-451 oxidation by water.« less
6. Workers laying up the graphite core of the 105B ...
6. Workers laying up the graphite core of the 105-B file. In the lower-left can be seen a portion of the rear face of the pile, the top of its shielding wall, and the gun barrels protruding through it. The inside of the front face of the pile and its gun barrels can be seen toward the upper-right side. The angled top of the front shielding wall can be seen in the picture. All four walls were "stepped" in this manner where they joined with another wall or the ceiling to form a "labyrinth" joint, so that radiation would not have a straight route through any gaps in the joints. D-3045 - B Reactor, Richland, Benton County, WA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, M.J.
1980-10-01
Pilot reactor VSR-3 operation in the third quarter was directed to tapping molten alloy product. Modifications to the hearth region included a tapping furnace to maintain taphole temperature, a graphite ring filter to separate carbides from matal and an alumina liner to eliminate carbiding from reaction of alloy with the graphite hearth walls. Tapping was not successful, however, due to high alloy viscosity from a large concentration of carbides. Three runs were made on the pilot crystallizer to determine the effects of alloy composition, cooling rate, tamping rate, remelt temperature and rate on eutectic Al-Si yield.
Nanocarbon: Defect Architectures and Properties
NASA Astrophysics Data System (ADS)
Vuong, Amanda
The allotropes of carbon make its solid phases amongst the most diverse of any element. It can occur naturally as graphite and diamond, which have very different properties that make them suitable for a wide range of technological and commercial purposes. Recent developments in synthetic carbon include Highly Oriented Pyrolytic Graphite (HOPG) and nano-carbons, such as fullerenes, nanotubes and graphene. The main industrial application of bulk graphite is as an electrode material in steel production, but in purified nuclear graphite form, it is also used as a moderator in Advanced Gas-cooled Reactors across the United Kingdom. Both graphene and graphite are damaged over time when subjected to bombardment by electrons, neutrons or ions, and these have a wide range of effects on their physical and electrical properties, depending on the radiation flux and temperature. This research focuses on intrinsic defects in graphene and dimensional change in nuclear graphite. The method used here is computational chemistry, which complements physical experiments. Techniques used comprise of density functional theory (DFT) and molecular dynamics (MD), which are discussed in chapter 2 and chapter 3, respectively. The succeeding chapters describe the results of simulations performed to model defects in graphene and graphite. Chapter 4 presents the results of ab initio DFT calculations performed to investigate vacancy complexes that are formed in AA stacked bilayer graphene. In AB stacking, carbon atoms surrounding the lattice vacancies can form interlayer structures with sp2 bonding that are lower in energy compared to in-plane reconstructions. From the investigation of AA stacking, sp2 interlayer bonding of adjacent multivacancy defects in registry creates a type of stable sp2 bonded wormhole between the layers. Also, a new class of mezzanine structure characterised by sp3 interlayer bonding, resembling a prismatic vacancy loop has also been identified. The mezzanine, which is a V6 hexavacancy variant, where six sp3 carbon atoms sit midway between two carbon layers and bond to both, is substantially more stable than any other vacancy aggregate in AA stacked layers. Chapter 5 presents the results of ab initio DFT calculations performed to investigate the wormhole and mezzanine defect that were identified in chapter 4 and the ramp defect discovered by Trevethan et al.. DFT calculations were performed on these defects in twisted bilayer graphene. From the investigation of vacancy complexes in twisted bilayer graphene, it is found that vacancy complexes are unstable in the twisted region and are more favourable in formation energy when the stacking arrangement is close to AA or AB stacking. It has also been discovered that the ramp defect is more stable in the twisted bilayer graphene compared to the mezzanine defect. Chapter 6 presents the results of ab initio DFT calculations performed to investigate a form of extending defect, prismatic edge dislocation. Suarez-Martinez et al.'s research suggest the armchair core is disconnected from any other layer, whilst the zigzag core is connected. In the investigation here, the curvature of the mezzanine defect allows it to swing between the armchair, zigzag and Klein in the AA stacking. For the AB stacking configuration, the armchair and zigzag core are connected from any other layer. Chapter 7 present results of MD simulations using the adaptive intermolecular reactive empirical bond order (AIREBO) potential to investigate the dimensional change of graphite due to the formation of vacancies present in a single crystal. It has been identified that there is an expansion along the c-axis, whilst a contraction along the a- and b- axes due to the coalescence of vacancy forming in-plane and between the layers. The results here are in good agreement with experimental studies of low temperature irradiation. The final chapter gives conclusions to this work.
Interlayer interactions in graphites.
Chen, Xiaobin; Tian, Fuyang; Persson, Clas; Duan, Wenhui; Chen, Nan-xian
2013-11-06
Based on ab initio calculations of both the ABC- and AB-stacked graphites, interlayer potentials (i.e., graphene-graphene interaction) are obtained as a function of the interlayer spacing using a modified Möbius inversion method, and are used to calculate basic physical properties of graphite. Excellent consistency is observed between the calculated and experimental phonon dispersions of AB-stacked graphite, showing the validity of the interlayer potentials. More importantly, layer-related properties for nonideal structures (e.g., the exfoliation energy, cleave energy, stacking fault energy, surface energy, etc.) can be easily predicted from the interlayer potentials, which promise to be extremely efficient and helpful in studying van der Waals structures.
Wigner, E.P.
1957-09-17
A reactor of the type having coolant liquid circulated through clad fuel elements geometrically arranged in a solid moderator, such as graphite, is described. The core is enclosed in a pressure vessel and suitable shielding, wherein means is provided for circulating vapor through the core to superheat the same. This is accomplished by drawing off the liquid which has been heated in the core due to the fission of the fuel, passing it to a nozzle within a chamber where it flashes into a vapor, and then passing the vapor through separate tubes extending through the moderator to pick up more heat developed in the core due to the fission of the fuel, thereby producing superheated vapor.
Cawley, William E.; Warnick, Robert F.
1982-01-01
1. In a nuclear reactor incorporating a plurality of columns of tubular fuel elements disposed in horizontal tubes in a mass of graphite wherein water flows through the tubes to cool the fuel elements, the improvement comprising at least one control column disposed in a horizontal tube including fewer fuel elements than in a normal column of fuel elements and tubular control elements disposed at both ends of said control column, and means for varying the horizontal displacement of the control column comprising a winch at the upstream end of the control column and a cable extending through the fuel and control elements and attached to the element at the downstream end of the column.
Behavior of graphite under heat load and in contact with a hydrogen plasma
NASA Astrophysics Data System (ADS)
Bohdansky, J.; Croessmann, C. D.; Linke, J.; McDonald, J. M.; Morse, D. H.; Pontau, A. E.; Watson, R. D.; Whitley, J. B.; Goebel, D. M.; Hirooka, Y.; Leung, K.; Conn, R. W.; Roth, J.; Ottenberger, W.; Kotzlowski, H. E.
1987-05-01
Graphite is extensively used in large tokamaks today. In these machines the material is exposed to vacuum, to intense heat loads, and to the edge plasma. The use of graphite in such machines, therefore, depends on the outgassing behavior, the heat shock resistance, and thermochemical properties in a hydrogen plasma. Investigations of these properties made at different laboratories are described here. Experiments conducted at Sandia National Laboratories (SNL), Livermore, and the Max-Planck-Institut für Plasmaphysik (IPP) in Garching showed that the outgassing behavior of fine-grain reactor-grade graphite and carbon fiber composites depends on the pretreatment (manufacturing and/or storage). However, after proper outgassing the samples tested behave similarly in the case of fine-grain graphite, but the outgassing remains high for the carbon fiber composites. Heat shock tests have been made with the Electron Beam Test System (EBTS) at SNL, Albuquerque. Directly cooled graphite samples (FE 159 graphite brazed onto Mo tubes) showed no failure at a heat load of 700 W/cm 2, 20 s; or 10 kW, 1 s. Thermal erosion due to sublimination and particle emission from the graphite surface was observed. This effect is related to the surface temperature and becomes significant at temperatures above 2500°K. Fourteen different types of graphite were tested; the main differences among these samples were the different surface temperatures obtained under the same heating conditions. Cracking due to heat shocks was observed in some of the samples, but none of the carbon fiber composites failed. Thermochemical properties have been tested in the PISCES plasma generator at UCLA for ion energies of around 100 eV. The formation of C-H compounds was observed spectroscopically at sample temperatures of around 600°C. However, this chemical reaction did not lead to erosion as observed in beam experiments but to a drastic change of the surface structure due to redeposition. Carbon-hydrogen lines were still observed at sample temperatures of around 100°C. Under these conditions the erosion yield is high and in agreement with those measured in beam experiments.
Polymer/graphite oxide composites as high-performance materials for electric double layer capacitors
NASA Astrophysics Data System (ADS)
Tien, Chien-Pin; Teng, Hsisheng
A single graphene sheet represents a carbon material with the highest surface area available to accommodating molecules or ions for physical and chemical interactions. Here we demonstrate in an electric double layer capacitor the outstanding performance of graphite oxide for providing a platform for double layer formation. Graphite oxide is generally the intermediate compound for obtaining separated graphene sheets. Instead of reduction with hydrazine, we incorporate graphite oxide with a poly(ethylene oxide)-based polymer and anchor the graphene oxide sheets with poly(propylene oxide) diamines. This polymer/graphite oxide composite shows in a "dry" gel-electrolyte system a double layer capacitance as high as 130 F g -1. The polymer incorporation developed here can significantly diversify the application of graphene-based materials in energy storage devices.
High-temperature annealing of graphite: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Petersen, Andrew; Gillette, Victor
2018-05-01
A modified AIREBO potential was developed to simulate the effects of thermal annealing on the structure and physical properties of damaged graphite. AIREBO parameter modifications were made to reproduce Density Functional Theory interstitial results. These changes to the potential resulted in high-temperature annealing of the model, as measured by stored-energy reduction. These results show some resemblance to experimental high-temperature annealing results, and show promise that annealing effects in graphite are accessible with molecular dynamics and reactive potentials.
Properties of PMR Polyimide composites made with improved high strength graphite fibers
NASA Technical Reports Server (NTRS)
Vannucci, R. D.
1980-01-01
High strength, intermediate modulus graphite fibers were obtained from various commercial suppliers, and were used to fabricate PMR-15 and PMR-2 polyimide composites. The effects of the improved high strength graphite fibers on composite properties after exposure in air at 600 F were investigated. Two of the improved fibers were found to have an adverse effect on the long term performance of PMR composites. The influence of various factors such as fiber physical properties, surface morphology and chemical composition were also examined.
Kia, Kaveh Kazemi; Bonabi, Fahimeh
2012-12-01
A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kia, Kaveh Kazemi; Bonabi, Fahimeh
A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 {mu}s. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through themore » graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.« less
Large-Scale Weibull Analysis of H-451 Nuclear- Grade Graphite Specimen Rupture Data
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Walker, Andrew; Baker, Eric H.; Murthy, Pappu L.; Bratton, Robert L.
2012-01-01
A Weibull analysis was performed of the strength distribution and size effects for 2000 specimens of H-451 nuclear-grade graphite. The data, generated elsewhere, measured the tensile and four-point-flexure room-temperature rupture strength of specimens excised from a single extruded graphite log. Strength variation was compared with specimen location, size, and orientation relative to the parent body. In our study, data were progressively and extensively pooled into larger data sets to discriminate overall trends from local variations and to investigate the strength distribution. The CARES/Life and WeibPar codes were used to investigate issues regarding the size effect, Weibull parameter consistency, and nonlinear stress-strain response. Overall, the Weibull distribution described the behavior of the pooled data very well. However, the issue regarding the smaller-than-expected size effect remained. This exercise illustrated that a conservative approach using a two-parameter Weibull distribution is best for designing graphite components with low probability of failure for the in-core structures in the proposed Generation IV (Gen IV) high-temperature gas-cooled nuclear reactors. This exercise also demonstrated the continuing need to better understand the mechanisms driving stochastic strength response. Extensive appendixes are provided with this report to show all aspects of the rupture data and analytical results.
NASA Astrophysics Data System (ADS)
Kia, Kaveh Kazemi; Bonabi, Fahimeh
2012-12-01
A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.
Crystallization and precipitation of phosphate from swine wastewater by magnesium metal corrosion.
Huang, Haiming; Liu, Jiahui; Jiang, Yang
2015-11-12
This paper presents a unique approach for magnesium dosage in struvite precipitation by Mg metal corrosion. The experimental results showed that using an air bubbling column filled with Mg metal and graphite pellets for the magnesium dosage was the optimal operation mode, which could significantly accelerate the corrosion of the Mg metal pellets due to the presence of graphite granules. The reaction mechanism experiments revealed that the solution pH could be used as the indicator for struvite crystallization by the process. Increases in the Mg metal dosage, mass ratio of graphite and magnesium metal (G:M) and airflow rate could rapidly increase the solution pH. When all three conditions were at 10 g L(-1), 1:1 and 1 L min(-1), respectively, the phosphate recovery efficiency reached 97.5%. To achieve a high level of automation for the phosphate recovery process, a continuous-flow reactor immersed with the graphite-magnesium air bubbling column was designed to harvest the phosphate from actual swine wastewater. Under conditions of intermittently supplementing small amounts of Mg metal pellets, approximately 95% of the phosphate could be stably recovered as struvite of 95.8% (±0.5) purity. An economic analysis indicated that the process proposed was technically simple and economically feasible.
Crystallization and precipitation of phosphate from swine wastewater by magnesium metal corrosion
Huang, Haiming; Liu, Jiahui; Jiang, Yang
2015-01-01
This paper presents a unique approach for magnesium dosage in struvite precipitation by Mg metal corrosion. The experimental results showed that using an air bubbling column filled with Mg metal and graphite pellets for the magnesium dosage was the optimal operation mode, which could significantly accelerate the corrosion of the Mg metal pellets due to the presence of graphite granules. The reaction mechanism experiments revealed that the solution pH could be used as the indicator for struvite crystallization by the process. Increases in the Mg metal dosage, mass ratio of graphite and magnesium metal (G:M) and airflow rate could rapidly increase the solution pH. When all three conditions were at 10 g L–1, 1:1 and 1 L min–1, respectively, the phosphate recovery efficiency reached 97.5%. To achieve a high level of automation for the phosphate recovery process, a continuous-flow reactor immersed with the graphite-magnesium air bubbling column was designed to harvest the phosphate from actual swine wastewater. Under conditions of intermittently supplementing small amounts of Mg metal pellets, approximately 95% of the phosphate could be stably recovered as struvite of 95.8% (±0.5) purity. An economic analysis indicated that the process proposed was technically simple and economically feasible. PMID:26558521
Graphite Microstructural Characterization Using Time-Domain and Correlation-Based Ultrasonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spicer, James
Among techniques that have been used to determine elastic modulus in nuclear graphites, ultrasonic methods have enjoyed wide use and standards using contacting piezoelectric tranducers have been developed to ensure repeatability of these types of measurements. However, the use of couplants and the pressures used to effectively couple transducers to samples can bias measurements and produce results that are not wholly related to the properties of the graphite itself. In this work, we have investigated the use of laser ultrasonic methods for making elastic modulus measurements in nuclear graphites. These methods use laser-based transmitters and receivers to gather data andmore » do not require use of ultrasonic couplants or mechanical contact with the sample. As a result, information directly related to the elastic responses of graphite can be gathered even if the graphite is porous, brittle and compliant. In particular, we have demonstrated the use of laser ultrasonics for the determination of both Young’s modulus and shear modulus in a range of nuclear graphites including those that are being considered for use in future nuclear reactors. These results have been analyzed to assess the contributions of porosity and microcracking to the elastic responses of these graphites. Laser-based methods have also been used to assess the moduli of NBG-18 and IG-110 where samples of each grade were oxidized to produce specific changes in porosity. These data were used to develop new models for the elastic responses of nuclear graphites and these models have been used to infer specific changes in graphite microstructure that occur during oxidation that affect elastic modulus. Specifically, we show how ultrasonic measurements in oxidized graphites are consistent with nano/microscale oxidation processes where basal plane edges react more readily than basal plane surfaces. We have also shown the use of laser-based methods to perform shear-wave birefringence measurements and have shown how these measurements can be used to assess elastic anisotropy in nuclear graphites. Using models developed in this program, ultrasonic data were interpreted to extract orientation distribution coefficients that could be used to represent anisotropy in these materials. This demonstration showed the use of ultrasonic methods to quantify anisotropy and how these methods provide more detailed information than do measurements of thermal expansion – a technique commonly used for assessing anisotropy in nuclear graphites. Finally, we have employed laser-based, ultrasonic-correlation techniques in attempts to quantify aspects of graphite microstructure such as pore size and distribution. Results of these measurements indicate that additional work must be performed to make this ultrasonic approach viable for quantitative microstructural characterization.« less
The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN
NASA Astrophysics Data System (ADS)
Wagemans, Jan; Malambu, Edouard; Borms, Luc; Fiorito, Luca
2016-02-01
The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma) irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f) prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f) prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.
Daniels, F.
1957-11-01
This patent relates to neutronic reactor power plants and discloses a design of a reactor utilizing a mixture of discrete units of a fissionable material, such as uranium carbide, a neutron moderator material, such as graphite, to carry out the chain reaction. A liquid metal, such as bismuth, is used as the coolant and is placed in the reactor chamber with the fissionable and moderator material so that it is boiled by the heat of the reaction, the boiling liquid and vapors passing up through the interstices between the discrete units. The vapor and flue gases coming off the top of the chamber are passed through heat exchangers, to produce steam, for example, and thence through condensers, the condensed coolant being returned to the chamber by gravity and the non- condensible gases being carried off through a stack at the top of the structure.
The early development of neutron diffraction: Science in the wings of the Manhattan Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, Thom; Gawne, Timothy J; Nagler, Stephen E
2012-01-01
Although neutron diffraction was first observed using radioactive decay sources shortly after the discovery of the neutron, it was only with the availability of higher intensity neutron beams from the first nuclear reactors, constructed as part of the Manhattan project, that systematic investigation of Bragg scattering became possible. Remarkably, at a time when the war effort was singularly focused on the development of the atomic bomb, groups working at Oak Ridge and Chicago carried out key measurements and recognized the future utility of neutron diffraction quite independent of its contributions to the measurements of nuclear cross sections. Ernest O. Wollan,more » Lyle B. Borst, and Walter H. Zinn were all able to observe neutron diffraction in 1944 using the X-10 graphite reactor and the CP-3 heavy water reactor.« less
Gupta, Pratima; Parkhey, Piyush
2015-06-01
Rice straw was pretreated using a microwave-assisted alkali pretreatment method. Cellulose recovery was approximately 82 %. This material was hydrolysed in an optimized enzymatic saccharification reaction using cellulase from Lysinibacillus sphaericus. This resulted in saccharification of 49 % of cellulosic biomass into glucose. A single chambered microbial electrolytic cell reactor of volume 2l was built using acrylic plastic sheets with graphite sheet as anode and a stainless-steel mesh as cathode. Shewanella putrefaciens was used as exoelectrogen to oxidize rice straw hydrolysate in the reactor for electrohydrogenesis. The maximum H2 yield obtained was 801 ml H2 g(-1) COD removal. Coulombic efficiency of 88 %, cathodic H2 recovery of 58 % and total H2 recovery of 51 % with an energy efficiency of 74 % were recorded.
NASA Astrophysics Data System (ADS)
Fratoni, Massimiliano
This study investigated the neutronic characteristics of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a novel nuclear reactor concept that combines liquid salt (7LiF-BeF2---flibe) cooling and TRISO coated-particle fuel technology. The use of flibe enables operation at high power density and atmospheric pressure and improves passive decay-heat removal capabilities, but flibe, unlike conventional helium coolant, is not transparent to neutrons. The flibe occupies 40% of the PB-AHTR core volume and absorbs ˜8% of the neutrons, but also acts as an effective neutron moderator. Two novel methodologies were developed for calculating the time dependent and equilibrium core composition: (1) a simplified single pebble model that is relatively fast; (2) a full 3D core model that is accurate and flexible but computationally intensive. A parametric analysis was performed spanning a wide range of fuel kernel diameters and graphite-to-heavy metal atom ratios to determine the attainable burnup and reactivity coefficients. Using 10% enriched uranium ˜130 GWd/tHM burnup was found to be attainable, when the graphite-to-heavy metal atom ratio (C/HM) is in the range of 300 to 400. At this or smaller C/HM ratio all reactivity coefficients examined---coolant temperature, coolant small and full void, fuel temperature, and moderator temperature, were found to be negative. The PB-AHTR performance was compared to that of alternative options for HTRs, including the helium-cooled pebble-bed reactor and prismatic fuel reactors, both gas-cooled and flibe-cooled. The attainable burnup of all designs was found to be similar. The PB-AHTR generates at least 30% more energy per pebble than the He-cooled pebble-bed reactor. Compared to LWRs the PB-AHTR requires 30% less natural uranium and 20% less separative work per unit of electricity generated. For deep burn TRU fuel made from recycled LWR spent fuel, it was found that in a single pass through the core ˜66% of the TRU can be transmuted; this burnup is slightly superior to that attainable in helium-cooled reactors. A preliminary analysis of the modular variant for the PB-AHTR investigated the triple heterogeneity of this design and determined its performance characteristics.
Nuclear Thermal Rocket Simulation in NPSS
NASA Technical Reports Server (NTRS)
Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas M.
2013-01-01
Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic-metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.
Nuclear Thermal Rocket Simulation in NPSS
NASA Technical Reports Server (NTRS)
Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas L.
2013-01-01
Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic- metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.
Mars Mission Analysis Trades Based on Legacy and Future Nuclear Propulsion Options
NASA Astrophysics Data System (ADS)
Joyner, Russell; Lentati, Andrea; Cichon, Jaclyn
2007-01-01
The purpose of this paper is to discuss the results of mission-based system trades when using a nuclear thermal propulsion (NTP) system for Solar System exploration. The results are based on comparing reactor designs that use a ceramic-metallic (CERMET), graphite matrix, graphite composite matrix, or carbide matrix fuel element designs. The composite graphite matrix and CERMET designs have been examined for providing power as well as propulsion. Approaches to the design of the NTP to be discussed will include an examination of graphite, composite, carbide, and CERMET core designs and the attributes of each in regards to performance and power generation capability. The focus is on NTP approaches based on tested fuel materials within a prismatic fuel form per the Argonne National Laboratory testing and the ROVER/NERVA program. NTP concepts have been examined for several years at Pratt & Whitney Rocketdyne for use as the primary propulsion for human missions beyond earth. Recently, an approach was taken to examine the design trades between specific NTP concepts; NERVA-based (UC)C-Graphite, (UC,ZrC)C-Composite, (U,Zr)C-Solid Carbide and UO2-W CERMET. Using Pratt & Whitney Rocketdyne's multidisciplinary design analysis capability, a detailed mission and vehicle model has been used to examine how several of these NTP designs impact a human Mars mission. Trends for the propulsion system mass as a function of power level (i.e. thrust size) for the graphite-carbide and CERMET designs were established and correlated against data created over the past forty years. These were used for the mission trade study. The resulting mission trades presented in this paper used a comprehensive modeling approach that captures the mission, vehicle subsystems, and NTP sizing.
NASA Astrophysics Data System (ADS)
Stavissky, Yurii Ya
2006-12-01
A short review is presented of the development in Russia of intense pulsed neutron sources for physical research — the pulsating fast reactors IBR-1, IBR-30, IBR-2 (Joint Institute for Nuclear Research, Dubna), and the neutron-radiation complex of the Moscow meson factory — the 'Troitsk Trinity' (RAS Institute for Nuclear Research, Troitsk, Moscow region). The possibility of generating giant neutron pulses in beam dumps of superhigh energy accelerators is discussed. In particular, the possibility of producing giant pulsed thermal neutron fluxes in modified beam dumps of the large hadron collider (LHD) under construction at CERN is considered. It is shown that in the case of one-turn extraction ov 7-TeV protons accumulated in the LHC main rings on heavy targets with water or zirconium-hydride moderators placed in the front part of the LHC graphite beam-dump blocks, every 10 hours relatively short (from ~100 µs) thermal neutron pulses with a peak flux density of up to ~1020 neutrons cm-2 s-1 may be produced. The possibility of applying such neutron pulses in physical research is discussed.
10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...
10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...
Proton irradiated graphite grades for a long baseline neutrino facility experiment
NASA Astrophysics Data System (ADS)
Simos, N.; Nocera, P.; Zhong, Z.; Zwaska, R.; Mokhov, N.; Misek, J.; Ammigan, K.; Hurh, P.; Kotsina, Z.
2017-07-01
In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140-180 MeV, to peak fluence of ˜6.1 ×1020 p /cm2 and irradiation temperatures between 120 - 200 °C . The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use as a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young's modulus. The proton fluence level of ˜1020 cm-2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the similarity in microstructural graphite behavior to that under neutron irradiation and the agreement between the fluence threshold of ˜5 ×1020 cm-2 where the graphite lattice undergoes a dramatic change. The confirmed similarity in behavior and agreement in threshold fluences for proton and neutron irradiation effects on graphite reported for the first time in this study will enable the safe utilization of the wealth of neutron irradiation data on graphite that extends to much higher fluences and different temperature regimes by the proton accelerator community searching for multi-MW graphite targets.
Proton irradiated graphite grades for a long baseline neutrino facility experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simos, N.; Nocera, P.; Zhong, Z.
In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ~6.1×10 20 p/cm 2 and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use asmore » a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young’s modulus. The proton fluence level of ~10 20 cm -2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the similarity in microstructural graphite behavior to that under neutron irradiation and the agreement between the fluence threshold of ~5×10 20 cm -2 where the graphite lattice undergoes a dramatic change. The confirmed similarity in behavior and agreement in threshold fluences for proton and neutron irradiation effects on graphite reported for the first time in this study will enable the safe utilization of the wealth of neutron irradiation data on graphite that extends to much higher fluences and different temperature regimes by the proton accelerator community searching for multi-MW graphite targets.« less
Proton irradiated graphite grades for a long baseline neutrino facility experiment
Simos, N.; Nocera, P.; Zhong, Z.; ...
2017-07-24
In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ~6.1×10 20 p/cm 2 and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use asmore » a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young’s modulus. The proton fluence level of ~10 20 cm -2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the similarity in microstructural graphite behavior to that under neutron irradiation and the agreement between the fluence threshold of ~5×10 20 cm -2 where the graphite lattice undergoes a dramatic change. The confirmed similarity in behavior and agreement in threshold fluences for proton and neutron irradiation effects on graphite reported for the first time in this study will enable the safe utilization of the wealth of neutron irradiation data on graphite that extends to much higher fluences and different temperature regimes by the proton accelerator community searching for multi-MW graphite targets.« less
Overview of decade-long development of plasma-facing components at ASIPP
NASA Astrophysics Data System (ADS)
Luo, G.-N.; Liu, G. H.; Li, Q.; Qin, S. G.; Wang, W. J.; Shi, Y. L.; Xie, C. Y.; Chen, Z. M.; Missirlian, M.; Guilhem, D.; Richou, M.; Hirai, T.; Escourbiac, F.; Yao, D. M.; Chen, J. L.; Wang, T. J.; Bucalossi, J.; Merola, M.; Li, J. G.; EAST Team
2017-06-01
The first EAST (Experimental Advanced Superconducting Tokamak) plasma ignited in 2006 with non-actively cooled steel plates as the plasma-facing materials and components (PFMCs) which were then upgraded into full graphite tiles bolted onto water-cooled copper heat sinks in 2008. The first wall was changed further into molybdenum alloy in 2012, while keeping the graphite for both the upper and lower divertors. With the rapid increase in heating and current driving power in EAST, the W/Cu divertor project was launched around the end of 2012, aiming at achieving actively cooled full W/Cu-PFCs for the upper divertor, with heat removal capability up to 10 MW m-2. The W/Cu upper divertor was finished in the spring of 2014, consisting of 80 cassette bodies toroidally assembled. Commissioning of the EAST upper W/Cu divertor in 2014 was unsatisfactory and then several practical measures were implemented to improve the design, welding quality and reliability, which helped us achieve successful commissioning in the 2015 Spring Campaign. In collaboration with the IO and CEA teams, we have demonstrated our technological capability to remove heat loads of 5000 cycles at 10 MW m-2 and 1000 cycles at 20 MW m-2 for the small scale monoblock mockups, and surprisingly over 300 cycles at 20 MW m-2 for the flat-tile ones. The experience and lessons we learned from batch production and commissioning are undoubtedly valuable for ITER (International Thermonuclear Experimental Reactor) engineering validation and tungsten-related plasma physics.
Silicon halide-alkali metal flames as a source of solar grade silicon
NASA Technical Reports Server (NTRS)
Olsen, D. B.; Miller, W. J.
1979-01-01
The feasibility of using alkali metal-silicon halide diffusion flames to produce solar-grade silicon in large quantities and at low cost is demonstrated. Prior work shows that these flames are stable and that relatively high purity silicon can be produced using Na + SiCl4 flames. Silicon of similar purity is obtained from Na + SiF4 flames although yields are lower and product separation and collection are less thermochemically favored. Continuous separation of silicon from the byproduct alkali salt was demonstrated in a heated graphite reactor. The process was scaled up to reduce heat losses and to produce larger samples of silicon. Reagent delivery systems, scaled by a factor of 25, were built and operated at a production rate of 0.5 kg Si/h. Very rapid reactor heating rates are observed with wall temperatures reaching greater than 2000 K. Heat release parameters were measured using a cooled stainless steel reactor tube. A new reactor was designed.
Stager, Jennifer L; Zhang, Xiaoyuan; Logan, Bruce E
2017-12-01
Power generation using microbial fuel cells (MFCs) must provide stable, continuous conversion of organic matter in wastewaters into electricity. However, when relatively small diameter (0.8cm) graphite fiber brush anodes were placed close to the cathodes in MFCs, power generation was unstable during treatment of low strength domestic wastewater. One reactor produced 149mW/m 2 before power generation failed, while the other reactor produced 257mW/m 2 , with both reactors exhibiting severe power overshoot in polarization tests. Using separators or activated carbon cathodes did not result in stable operation as the reactors continued to exhibit power overshoot based on polarization tests. However, adding acetate (1g/L) to the wastewater produced stable performance during fed batch and continuous flow operation, and there was no power overshoot in polarization tests. These results highlight the importance of wastewater strength and brush anode size for producing stable and continuous power in compact MFCs. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stacey, Weston M.
2001-02-01
An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.
Hybridized polymer matrix composites
NASA Technical Reports Server (NTRS)
London, A.
1981-01-01
Design approaches and materials are described from which are fabricated pyrostatic graphite/epoxy (Gr/Ep) laminates that show improved retention of graphite particulates when subjected to burning. Sixteen hybridized plus two standard Gr/Ep laminates were designed, fabricated, and tested in an effort to eliminate the release of carbon (graphite) fiber particles from burned/burning, mechanically disturbed samples. The term pyrostatic is defined as meaning mechanically intact in the presence of fire. Graphite particulate retentive laminates were constructed whose constituent materials, cost of fabrication, and physical and mechanical properties were not significantly different from existing Gr/Ep composites. All but one laminate (a Celion graphite/bis-maleimide polyimide) were based on an off-the-shelf Gr/Ep, the AS-1/3501-5A system. Of the 16 candidates studied, four thin (10-ply) and four thick (50-ply) hybridized composites are recommended.
Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP
NASA Astrophysics Data System (ADS)
Hamzah, Amir; Suwoto; Rohanda, Anis; Adrial, Hery; Bakhri, Syaiful; Sunaryo, Geni Rina
2018-02-01
In the Pebble-bed HTR reactor, the distance between the core and the reactor vessel is very close and the media inside are carbon and He gas. Neutron moderation capability of graphite material is theoretically lower than that of water-moderated reactors. Thus, it is estimated much more the fast neutrons will reach the reactor vessel. The fast neutron collisions with the atoms in the reactor vessel will result in radiation damage and could be reducing the vessel life. The purpose of this study was to obtain the magnitude of neutron fluence in the Pebble-bed HTR reactor vessel. Neutron fluence calculations in the pebble-bed HTR reactor vessel were performed using the MCNP computer program. By determining the tally position, it can be calculated flux, spectrum and neutron fluence in the position of Pebble-bed HTR reactor vessel. The calculations results of total neutron flux and fast neutron flux in the reactor vessel of 1.82x108 n/cm2/s and 1.79x108 n/cm2/s respectively. The fast neutron fluence in the reactor vessel is 3.4x1017 n/cm2 for 60 years reactor operation. Radiation damage in stainless steel material caused by high-energy neutrons (> 1.0 MeV) will occur when it has reached the neutron flux level of 1.0x1024 n/cm2. The neutron fluence results show that there is no radiation damage in the Pebble-bed HTR reactor vessel, so it is predicted that it will be safe to operate at least for 60 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vega, Richard Manuel; Parm, Edward J.; Griffin, Patrick J.
2015-07-01
This report was put together to support the International Atomic Energy Agency (IAEA) REAL- 2016 activity to validate the dosimetry community’s ability to use a consistent set of activation data and to derive consistent spectral characterizations. The report captures details of integral measurements taken in the Annular Core Research Reactor (ACRR) central cavity with the Polyethylene-Lead-Graphite (PLG) bucket, reference neutron benchmark field. The field is described and an “a priori” calculated neutron spectrum is reported, based on MCNP6 calculations, and a subject matter expert (SME) based covariance matrix is given for this “a priori” spectrum. The results of 37 integralmore » dosimetry measurements in the neutron field are reported.« less
Determination of Neutron Spectra in a Graphite Sphere for Fusion Reactor Studies
NASA Astrophysics Data System (ADS)
Bashter, I. B.; Cooper, P. N.
Calculated and experimental results for the neutron spectra at different radii in a graphite sphere irradiated with 14.1 MeV neutrons were shown to be in satisfactory agreement over the energy range 14.1 to 1.8 MeV neutrons. A group of curves were constructed which gives the radius of a graphite sphere shield required to attenuate the neutron intensity to a certain value. The data set used in the present work, with carbon-12 cross section, is shown to be useful for spherical calculations.Translated AbstractDie Bestimmung der Neutronenspektren in einer GraphitkugelDie Übereinstimmung experimentell bestimmter und berechneter Neutronenspektren in Abhängigkeit vom Ort in einer Graphitkugel wird in einem Energiebereich von 14,1 bis 1,8 MeV (bei einer Ausgangsenergie von 14,1 MeV je Neutron) gezeigt. Eine Gruppe von Kurven wird konstruiert, die den für eine bestimmte Dämpfung der Neutronenintensität notwendigen Radius einer Graphitkugel angeben. Es wird nachgewiesen, daß die in der Arbeit benutzte Datenbank für den 12C-Wirkungsquerschnitt in sphärischen Geometrien anwendbar ist.
NASA Astrophysics Data System (ADS)
Zheng, Guiqiu; He, Lingfeng; Carpenter, David; Sridharan, Kumar
2016-12-01
The microstructural developments in the near-surface regions of AISI 316 stainless steel during exposure to molten Li2BeF4 (FLiBe) salt have been investigated with the goal of using this material for the construction of the fluoride salt-cooled high-temperature reactor (FHR), a leading nuclear reactor concept for the next generation nuclear plants (NGNP). Tests were conducted in molten FLiBe salt (melting point: 459 °C) at 700 °C in graphite crucibles and 316 stainless steel crucibles for exposure duration of up to 3000 h. Corrosion-induced microstructural changes in the near-surface regions of the samples were characterized using scanning electron microscopy (SEM) in conjunction with energy dispersive x-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD), and scanning transmission electron microscopy (STEM) with EDS capabilities. Intergranular corrosion attack in the near-surface regions was observed with associated Cr depletion along the grain boundaries. High-angle grain boundaries (15-180°) were particularly prone to intergranular attack and Cr depletion. The depth of attack extended to the depths of 22 μm after 3000-h exposure for the samples tested in graphite crucible, while similar exposure in 316 stainless steel crucible led to the attack depths of only about 11 μm. Testing in graphite crucibles led to the formation of nanometer-scale Mo2C, Cr7C3 and Al4C3 particle phases in the near-surface regions of the material. The copious depletion of Cr in the near-surface regions induced a γ-martensite to α-ferrite phase (FeNix) transformation. Based on the microstructural analysis, a thermal diffusion controlled corrosion model was developed and experimentally validated for predicting long-term corrosion attack depth.
NEUTRONIC REACTOR AND FUEL ELEMENT THEREFOR
Szilard, L.; Young, G.J.
1958-03-01
This patent relates to a reactor design of the type which employs solid fuel elements disposed in channels within the moderator through which channels and around the fuel elements is conveyed a coolant fiuid. The coolant channels are comprised of aluminum tubes extending through a solid moderator such as graphite and the fuel elements are comprised of an elongated solid body of natural uranium jacketed in an aluminum jacket with the ends thereof closed by aluminum caps of substantially greater thickness than the jacket was and in good thermal contact with the fuel material to facilitate the conduction of heat from the central portion of said ends to the coolant surrounding the fuel element to prevent overheating of said central portion.
Articulated limiter blade for a tokamak fusion reactor
Doll, D.W.
1982-10-21
A limiter blade for a large tokomak fusion reactor includes three articulated blade sections for enabling the limiter blade to be adjusted for plasmas of different sizes. Each blade section is formed of a rigid backing plate carrying graphite tiles coated with titanium carbide, and the limiter blade forms a generally elliptic contour in both the poloidal and toroidal directions to uniformly distribute the heat flow to the blade. The limiter blade includes a central blade section movable along the major radius of the vacuum vessel, and upper and lower pivotal blade sections which may be pivoted by linear actuators having rollers held to the back surface of the pivotal blade sections.
Articulated limiter blade for a tokamak fusion reactor
Doll, David W.
1985-01-01
A limiter blade for a large tokomak fusion reactor includes three articulated blade sections for enabling the limiter blade to be adjusted for plasmas of different sizes. Each blade section is formed of a rigid backing plate carrying graphite tiles coated with titanium carbide, and the limiter blade forms a generally elliptic contour in both the poloidal and toroidal directions to uniformly distribute the heat flow to the blade. The limiter blade includes a central blade section movable along the major radius of the vacuum vessel, and upper and lower pivotal blade sections which may be pivoted by linear actuators having rollers held to the back surface of the pivotal blade sections.
Microscale Heat Conduction Models and Doppler Feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawari, Ayman I.; Ougouag, Abderrafi
2015-01-22
The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperaturemore » rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontogeorgakos, D.; Derstine, K.; Wright, A.
2013-06-01
The purpose of the TREAT reactor is to generate large transient neutron pulses in test samples without over-heating the core to simulate fuel assembly accident conditions. The power transients in the present HEU core are inherently self-limiting such that the core prevents itself from overheating even in the event of a reactivity insertion accident. The objective of this study was to support the assessment of the feasibility of the TREAT core conversion based on the present reactor performance metrics and the technical specifications of the HEU core. The LEU fuel assembly studied had the same overall design, materials (UO 2more » particles finely dispersed in graphite) and impurities content as the HEU fuel assembly. The Monte Carlo N–Particle code (MCNP) and the point kinetics code TREKIN were used in the analyses.« less
Research and development of plasma sprayed tungsten coating on graphite and copper substrates
NASA Astrophysics Data System (ADS)
Liu, Xiang; Zhang, Fu; Tao, Shunyan; Cao, Yunzhen; Xu, Zengyu; Liu, Yong; Noda, N.
2007-06-01
Vacuum plasma sprayed tungsten coating on graphite and copper substrates has been prepared. VPS-W coated graphite has multilayered silicon and tungsten interface pre-deposited by physical vapor deposition (PVD) and VPS-W coated copper has graded transition interlayer. VPS-W coating was characterized, and then the high heat flux properties of the coating were examined. Experimental results indicated that both VPS-W coated graphite and VPS-W coated copper could endure 1000 cycles without visible failure under a heat flux of approximately 5 MW/m2 absorbed power density and 5 s pulse duration. A comparison between the present VPS-W coated graphite and VPS-W coated carbon fiber composite (CX-2002U) with Re interface made by Plansee Aktiengesllshaft was carried out. Results show that both Re and Si are suitable as intermediate layer for tungsten coating on carbon substrates.
Properties of PMR polyimide composites made with improved high strength graphite fibers
NASA Technical Reports Server (NTRS)
Vannucci, R. D.
1980-01-01
Recent graphite fiber developments have resulted in high strength, intermediate modulus graphite fibers having improved thermo-oxidative resistance. These improved fibers, obtained from various commercial suppliers, were used to fabricate PMR-15 and PMR-11 polyimide composites. Studies were performed to investigate the effects of the improved high strength graphite fibers on composite properties after exposure in air at 600 F. The use of the more oxidatively resistant fibers did not result in improved performance at 600 F. Two of the improved fibers were found to have an adverse effect on the long-term performance of PMR composites. The influence of various factors such as fiber physical properties, surface morphology and chemical composition are also discussed.
Selecting the Best Graphite for Long-Life, High-Energy Li-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Chengyu; Wood, Marissa; David, Lamuel Abraham
Here, most lithium-ion batteries still rely on intercalation-type graphite materials for anodes, so it is important to consider their role in full cells for applications in electric vehicles. Here, we systematically evaluate the chemical and physical properties of six commercially-available natural and synthetic graphites to establish which factors have the greatest impact on the cycling stability of full cells with nickel-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes. Electrochemical data and post-mortem characterization explain the origin of capacity fade. The NMC811 cathode shows large irreversible capacity loss and impedance growth, accounting for much of full cell degradation. However, six graphite anodes demonstrate significant differencesmore » with respect to structural change, surface area, impedance growth, and SEI chemistry, which impact overall capacity retention. We found long cycle life correlated most strongly with stable graphite crystallite size. In addition, graphites with lower surface area generally had higher coulombic efficiencies during formation cycles, which led to more stable long-term cycling. The best graphite screened here enables a capacity retention around 90% in full pouch cells over extensive long-term cycling compared to only 82% for cells with the lowest performing graphite. The results show that optimal graphite selection improves cycling stability of high energy lithium-ion cells.« less
Selecting the Best Graphite for Long-Life, High-Energy Li-Ion Batteries
Mao, Chengyu; Wood, Marissa; David, Lamuel Abraham; ...
2018-06-16
Here, most lithium-ion batteries still rely on intercalation-type graphite materials for anodes, so it is important to consider their role in full cells for applications in electric vehicles. Here, we systematically evaluate the chemical and physical properties of six commercially-available natural and synthetic graphites to establish which factors have the greatest impact on the cycling stability of full cells with nickel-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes. Electrochemical data and post-mortem characterization explain the origin of capacity fade. The NMC811 cathode shows large irreversible capacity loss and impedance growth, accounting for much of full cell degradation. However, six graphite anodes demonstrate significant differencesmore » with respect to structural change, surface area, impedance growth, and SEI chemistry, which impact overall capacity retention. We found long cycle life correlated most strongly with stable graphite crystallite size. In addition, graphites with lower surface area generally had higher coulombic efficiencies during formation cycles, which led to more stable long-term cycling. The best graphite screened here enables a capacity retention around 90% in full pouch cells over extensive long-term cycling compared to only 82% for cells with the lowest performing graphite. The results show that optimal graphite selection improves cycling stability of high energy lithium-ion cells.« less
Li Experiments at the Tokamak T-11M Toward PFC Concept of Steady State Tokamak-Reactor
NASA Astrophysics Data System (ADS)
Mirnov, S. V.
2009-11-01
As practical method of using a liquid lithium as a renewable plasma-facing component (PCF) for steady state tokamak-reactor the concept of lithium emitter-collector is considered [1]. It is based on lithium filled capillary porous system proposed by V.A. Evtikhin et al. (1996). The lithium circulation process consists of four steps: (1) Li emission from the PFC emitter into the plasma; (2) plasma boundary cooling by non-coronal Li radiation; (3) Li ion capture by the collector (before they are lost to the tokamak chamber wall); (4) Li return from the collector to the emitter. T-11M tokamak experiments have used three local rail limiters made from lithium, molybdenum and graphite as lithium collectors. The lithium behavior was studied by analysis of the witness samples, and by a mobile graphite probe. The key findings are: (1) lithium collection on the ion side of the lithium limiter is 2-3 times larger than on the electron side; (2) total efficiency of Li collection integrated over all three rail limiters can reach 50-70% of the lithium emission during the discharge pulse, while the theoretical limit is about 90%. [1] S.V. Mirnov, J. Nucl. Mat., 390-391, 876 (2009).
NASA Astrophysics Data System (ADS)
Ali, Nur Syazwani Mohd; Hamzah, Khaidzir; Mohamad Idris, Faridah; Hairie Rabir, Mohamad
2018-01-01
The thermal neutron flux measurement has been conducted at the out-core location using self-powered neutron detectors (SPNDs). This work represents the first attempt to study SPNDs as neutron flux sensor for developing the fault detection system (FDS) focusing on neutron flux parameters. The study was conducted to test the reliability of the SPND’s signal by measuring the neutron flux through the interaction between neutrons and emitter materials of the SPNDs. Three SPNDs were used to measure the flux at four different radial locations which located at the fission chamber cylinder, 10cm above graphite reflector, between graphite reflector and tank liner and fuel rack. The measurements were conducted at 750 kW reactor power. The outputs from SPNDs were collected through data acquisition system and were corrected to obtain the actual neutron flux due to delayed responses from SPNDs. The measurements showed that thermal neutron flux between fission chamber location near to the tank liner and fuel rack were between 5.18 × 1011 nv to 8.45 × 109 nv. The average thermal neutron flux showed a good agreement with those from previous studies that has been made using simulation at the same core configuration at the nearest irradiation facilities with detector locations.
NASA Astrophysics Data System (ADS)
Yang, Chun-Yu; Lin, Yung-Hsiang; Wu, Chung-Lun; Cheng, Chih-Hsien; Tsai, Din-Ping; Lin, Gong-Ru
2018-06-01
Comparisons on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fiber lasers (EDFLs) are performed. As opposed to the graphite nano-particles obtained by physically triturating the graphite foil, the tri-layer graphene nano-sheets is obtained by electrochemically exfoliating the graphite foil. To precisely control the size dispersion and the layer number of the exfoliated graphene nano-sheet, both the bias of electrochemical exfoliation and the speed of centrifugation are optimized. Under a threshold exfoliation bias of 3 volts and a centrifugation at 1000 rpm, graphene nano-sheets with an average diameter of 100 ± 40 nm can be obtained. The graphene nano-sheets with an area density of 15 #/µm2 are directly imprinted onto the end-face of a single-mode fiber made patchcord connector inside the EDFL cavity. Such electrochemically exfoliated graphene nano-sheets show comparable saturable absorption with standard single-graphene and perform the self-amplitude modulation better than physically triturated graphite nano-particles. The linear transmittance and modulation depth of the inserted graphene nano-sheets are 92.5% and 53%, respectively. Under the operation with a power gain of 21.5 dB, the EDFL can be passively mode-locked to deliver a pulsewidth of 454.5 fs with a spectral linewidth of 5.6 nm. The time-bandwidth product of 0.31 is close to the transform limit. The Kelly sideband frequency spacing of 1.34 THz is used to calculate the chirp coefficient as ‑0.0015.
Nuclear design analysis of square-lattice honeycomb space nuclear rocket engine
NASA Astrophysics Data System (ADS)
Widargo, Reza; Anghaie, Samim
1999-01-01
The square-lattice honeycomb reactor is designed based on a cylindrical core that is determined to have critical diameter and length of 0.50 m and 0.50 c, respectively. A 0.10-cm thick radial graphite reflector, in addition to a 0.20-m thick axial graphite reflector are used to reduce neutron leakage from the reactor. The core is fueled with solid solution of 93% enriched (U, Zr, Nb)C, which is one of several ternary uranium carbides that are considered for this concept. The fuel is to be fabricated as 2 mm grooved (U, Zr, Nb)C wafers. The fuel wafers are used to form square-lattice honeycomb fuel assemblies, 0.10 m in length with 30% cross-sectional flow area. Five fuel assemblies are stacked up axially to form the reactor core. Based on the 30% void fraction, the width of the square flow channel is about 1.3 mm. The hydrogen propellant is passed through these flow channels and removes the heat from the reactor core. To perform nuclear design analysis, a series of neutron transport and diffusion codes are used. The preliminary results are obtained using a simple four-group cross-section model. To optimize the nuclear design, the fuel densities are varied for each assembly. Tantalum, hafnium and tungsten are considered and used as a replacement for niobium in fuel material to provide water submersion sub-criticality for the reactor. Axial and radial neutron flux and power density distributions are calculated for the core. Results of the neutronic analysis indicate that the core has a relatively fast spectrum. From the results of the thermal hydraulic analyses, eight axial temperature zones are chosen for the calculation of group average cross-sections. An iterative process is conducted to couple the neutronic calculations with the thermal hydraulics calculations. Results of the nuclear design analysis indicate that a compact core can be designed based on ternary uranium carbide square-lattice honeycomb fuel. This design provides a relatively high thrust to weight ratio.
I-NERI Quarterly Technical Report (April 1 to June 30, 2005)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang Oh; Prof. Hee Cheon NO; Prof. John Lee
2005-06-01
The objective of this Korean/United States/laboratory/university collaboration is to develop new advanced computational methods for safety analysis codes for very-high-temperature gas-cooled reactors (VHTGRs) and numerical and experimental validation of these computer codes. This study consists of five tasks for FY-03: (1) development of computational methods for the VHTGR, (2) theoretical modification of aforementioned computer codes for molecular diffusion (RELAP5/ATHENA) and modeling CO and CO2 equilibrium (MELCOR), (3) development of a state-of-the-art methodology for VHTGR neutronic analysis and calculation of accurate power distributions and decay heat deposition rates, (4) reactor cavity cooling system experiment, and (5) graphite oxidation experiment. Second quartermore » of Year 3: (A) Prof. NO and Kim continued Task 1. As a further plant application of GAMMA code, we conducted two analyses: IAEA GT-MHR benchmark calculation for LPCC and air ingress analysis for PMR 600MWt. The GAMMA code shows comparable peak fuel temperature trend to those of other country codes. The analysis results for air ingress show much different trend from that of previous PBR analysis: later onset of natural circulation and less significant rise in graphite temperature. (B) Prof. Park continued Task 2. We have designed new separate effect test device having same heat transfer area and different diameter and total number of U-bands of air cooling pipe. New design has smaller pressure drop in the air cooling pipe than the previous one as designed with larger diameter and less number of U-bands. With the device, additional experiments have been performed to obtain temperature distributions of the water tank, the surface and the center of cooling pipe on axis. The results will be used to optimize the design of SNU-RCCS. (C) Prof. NO continued Task 3. The experimental work of air ingress is going on without any concern: With nuclear graphite IG-110, various kinetic parameters and reaction rates for the C/CO2 reaction were measured. Then, the rates of C/CO2 reaction were compared to the ones of C/O2 reaction. The rate equation for C/CO2 has been developed. (D) INL added models to RELAP5/ATHENA to cacilate the chemical reactions in a VHTR during an air ingress accident. Limited testing of the models indicate that they are calculating a correct special distribution in gas compositions. (E) INL benchmarked NACOK natural circulation data. (F) Professor Lee et al at the University of Michigan (UM) Task 5. The funding was received from the DOE Richland Office at the end of May and the subcontract paperwork was delivered to the UM on the sixth of June. The objective of this task is to develop a state of the art neutronics model for determining power distributions and decay heat deposition rates in a VHTGR core. Our effort during the reporting period covered reactor physics analysis of coated particles and coupled nuclear-thermal-hydraulic (TH) calculations, together with initial calculations for decay heat deposition rates in the core.« less
Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-04-01
This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)
10 CFR 73.37 - Requirements for physical protection of irradiated reactor fuel in transit.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Requirements for physical protection of irradiated reactor... Requirements for physical protection of irradiated reactor fuel in transit. (a) Performance objectives. (1... of irradiated reactor fuel in excess of 100 grams in net weight of irradiated fuel, exclusive of...
10 CFR 73.37 - Requirements for physical protection of irradiated reactor fuel in transit.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Requirements for physical protection of irradiated reactor... Requirements for physical protection of irradiated reactor fuel in transit. (a) Performance objectives. (1... of irradiated reactor fuel in excess of 100 grams in net weight of irradiated fuel, exclusive of...
Oxidation Behavior of Matrix Graphite and Its Effect on Compressive Strength
Zhou, Xiangwen; Contescu, Cristian I.; Zhao, Xi; ...
2017-01-01
Mmore » atrix graphite (G) with incompletely graphitized binder used in high-temperature gas-cooled reactors (HTGRs) is commonly suspected to exhibit lower oxidation resistance in air. In order to reveal the oxidation performance, the oxidation behavior of newly developed A3-3 G at the temperature range from 500 to 950°C in air was studied and the effect of oxidation on the compressive strength of oxidized G specimens was characterized. Results show that temperature has a significant influence on the oxidation behavior of G. The transition temperature between Regimes I and II is ~700°C and the activation energy ( E a ) in Regime I is around 185 kJ/mol, a little lower than that of nuclear graphite, which indicates G is more vulnerable to oxidation. Oxidation at 550°C causes more damage to compressive strength of G than oxidation at 900°C. Comparing with the strength of pristine G specimens, the rate of compressive strength loss is 77.3% after oxidation at 550°C and only 12.5% for oxidation at 900°C. icrostructure images of SE and porosity measurement by ercury Porosimetry indicate that the significant compressive strength loss of G oxidized at 550°C may be attributed to both the uniform pore formation throughout the bulk and the preferential oxidation of the binder.« less
Dosimetric and microdosimetric analyses for blood exposed to reactor-derived thermal neutrons.
Ali, F; Atanackovic, J; Boyer, C; Festarini, A; Kildea, J; Paterson, L C; Rogge, R; Stuart, M; Richardson, R B
2018-06-06
Thermal neutrons are found in reactor, radiotherapy, aircraft, and space environments. The purpose of this study was to characterise the dosimetry and microdosimetry of thermal neutron exposures, using three simulation codes, as a precursor to quantitative radiobiological studies using blood samples. An irradiation line was designed employing a pyrolytic graphite crystal or-alternatively-a super mirror to expose blood samples to thermal neutrons from the National Research Universal reactor to determine radiobiological parameters. The crystal was used when assessing the relative biological effectiveness for dicentric chromosome aberrations, and other biomarkers, in lymphocytes over a low absorbed dose range of 1.2-14 mGy. Higher exposures using a super mirror will allow the additional quantification of mitochondrial responses. The physical size of the thermal neutron fields and their respective wavelength distribution was determined using the McStas Monte Carlo code. Spinning the blood samples produced a spatially uniform absorbed dose as determined from Monte Carlo N-Particle version 6 simulations. The major part (71%) of the total absorbed dose to blood was determined to be from the 14 N(n,p) 14 C reaction and the remainder from the 1 H(n,γ) 2 H reaction. Previous radiobiological experiments at Canadian Nuclear Laboratories involving thermal neutron irradiation of blood yielded a relative biological effectiveness of 26 ± 7. Using the Particle and Heavy Ion Transport Code System, a similar value of ∼19 for the quality factor of thermal neutrons initiating the 14 N(n,p) 14 C reaction in soft tissue was determined by microdosimetric simulations. This calculated quality factor is of similar high value to the experimentally-derived relative biological effectiveness, and indicates the potential of thermal neutrons to induce deleterious health effects in superficial organs such as cataracts of the eye lens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desai, H.B.; Desai, S.R.; Nadkarni, M.N.
1961-01-01
A procedure has been standardized for the determination of boron in cokes, pitches, and graphites. The method consists of fixing the boron present in the sample as calcium borate, ion-exchange separation of boric acid from the associated cations, and the colorimetric determination of boron using the curcumin-trichloracetic acid method. Sulfur which is usually present in pitches and cokes is expected to be oxidized to sulfate during the fixation of boron and hence its effect on the colorimetry has been studied. Application of the procedure to the determination of 0.50 and 1.00 microgram amounts of boron, has given coefficients of variationmore » of l0.0 and 6.7% respectively. (auth)« less
Simplifying microbial electrosynthesis reactor design.
Giddings, Cloelle G S; Nevin, Kelly P; Woodward, Trevor; Lovley, Derek R; Butler, Caitlyn S
2015-01-01
Microbial electrosynthesis, an artificial form of photosynthesis, can efficiently convert carbon dioxide into organic commodities; however, this process has only previously been demonstrated in reactors that have features likely to be a barrier to scale-up. Therefore, the possibility of simplifying reactor design by both eliminating potentiostatic control of the cathode and removing the membrane separating the anode and cathode was investigated with biofilms of Sporomusa ovata. S. ovata reduces carbon dioxide to acetate and acts as the microbial catalyst for plain graphite stick cathodes as the electron donor. In traditional 'H-cell' reactors, where the anode and cathode chambers were separated with a proton-selective membrane, the rates and columbic efficiencies of microbial electrosynthesis remained high when electron delivery at the cathode was powered with a direct current power source rather than with a potentiostat-poised cathode utilized in previous studies. A membrane-less reactor with a direct-current power source with the cathode and anode positioned to avoid oxygen exposure at the cathode, retained high rates of acetate production as well as high columbic and energetic efficiencies. The finding that microbial electrosynthesis is feasible without a membrane separating the anode from the cathode, coupled with a direct current power source supplying the energy for electron delivery, is expected to greatly simplify future reactor design and lower construction costs.
Plasmaron excitations in p(2×2)-K/graphite
NASA Astrophysics Data System (ADS)
Chis, V.; Silkin, V. M.; Hellsing, B.
2014-05-01
Plasmarons formed by the compound of photoelectrons and acoustic surface-plasmon excitations is investigated in the system p(2×2)-K/graphite. The physics behind this type of plasmarons (e plasmarons) differs from the physics of plasmarons recently found in graphene, where the loss feature is argued to result from the photohole-plasmon interaction (h plasmarons). Based on first principles methods we calculate the dispersion of the e-plasmaron excitation rate, which yields a broad feature below the parabolic quantum-well band with a peak about 0.4 eV below the quantum-well band at the Γ¯ point.
Satellite thermal storage systems using metallic phase-change materials
NASA Astrophysics Data System (ADS)
Lauf, R. J.; Hamby, C.
Solar (thermal) dynamic power systems for satellites require a heat storage system capable of operating the engine during eclipse. A system is described in which the phase-change material (PCM) is a metal rather than the more conventional fluoride salts. Thermal storage modules consisting of germanium contained in graphite have good thermal conductivity, low parasitic mass, and are physically and chemically stable. The result is described for thermal cycle testing of graphite capsules containing germanium and several germanium- and silicon-based alloys, as well as some initial tests of the compatibility of graphite with Nb-1 percent Zr structural materials.
NASA Astrophysics Data System (ADS)
Maynard, Raymond K.
An experimental system was constructed in accordance with the standard ASTM C835-06 to measure the total hemispherical emissivity of structural materials of interest in Very High Temperature Reactor (VHTR) systems. The system was tested with304 stainless steel as well as for oxidized and un-oxidized nickel, and good reproducibility and agreement with the literature data was found. Emissivity of Hastelloy X was measured under different conditions that included: (i) "as received" (original sample) from the supplier; (ii) with increased surface roughness; (iii) oxidized, and; (iv) graphite coated. Measurements were made over a wide range of temperatures. Hastelloy X, as received from the supplier, was cleaned before additional roughening of the surface and coating with graphite. The emissivity of the original samples (cleaned after received) varied from around 0.18 to 0.28 in the temperature range of 473 K to 1498 K. The apparent emissivity increased only slightly as the roughness of the surface increased (without corrections for the increased surface area due to the increased surface roughness). When Hastelloy X was coated with graphite or oxidized however, its emissivity was observed to increase substantially. With a deposited graphite layer on the Hastelloy, emissivity increased from 0.2 to 0.53 at 473 K and from 0.25 to 0.6 at 1473 K; a finding that has strong favorable safety implications in terms of decay heat removal in post-accident VHTR environments. Although initial oxidation of Hastelloy X increased the emissivity prolonged oxidation did not significantly increase emissivity. However as there is some oxidation of Hastelloy X used in the construction of VHTRs, this represents an essentially neutral finding in terms of the safety implications in post-accident VHTR environments. The total hemispherical emissivity of Haynes 230 alloy, which is regarded as a leading candidate material for heat exchangers in VHTR systems, was measured under various surface conditions. The emissivity increased from 0.178 at 600 K to 0.235 at 1375 K for Haynes 230 as received sample. The emissivity increased significantly when its surface roughness was increased, or was oxidized in air, or coated with graphite dust, as compared to the as received material. The total hemispherical emissivity of Alloy 617 was measured as a function of temperature. The total emissivity increased from about 0.2 at 600 K to about 0.35 at 1275 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael A. Pope
2011-10-01
The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physicsmore » design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francesco Venneri; Chang-Keun Jo; Jae-Man Noh
2010-09-01
The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physicsmore » design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.« less
The early development of neutron diffraction: science in the wings of the Manhattan Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, T. E., E-mail: masont@ornl.gov; Gawne, T. J.; Nagler, S. E.
2013-01-01
Early neutron diffraction experiments performed in 1944 using the first nuclear reactors are described. Although neutron diffraction was first observed using radioactive decay sources shortly after the discovery of the neutron, it was only with the availability of higher intensity neutron beams from the first nuclear reactors, constructed as part of the Manhattan Project, that systematic investigation of Bragg scattering became possible. Remarkably, at a time when the war effort was singularly focused on the development of the atomic bomb, groups working at Oak Ridge and Chicago carried out key measurements and recognized the future utility of neutron diffraction quitemore » independent of its contributions to the measurement of nuclear cross sections. Ernest O. Wollan, Lyle B. Borst and Walter H. Zinn were all able to observe neutron diffraction in 1944 using the X-10 graphite reactor and the CP-3 heavy water reactor. Subsequent work by Wollan and Clifford G. Shull, who joined Wollan’s group at Oak Ridge in 1946, laid the foundations for widespread application of neutron diffraction as an important research tool.« less
NUCLEAR FISSION CHAIN REACTING SYSTEM
Anderson, H.L.; Brown, H.S.
1961-06-27
The patent describes a reactor consisting of a plurality of tubes passing through a body of heavy water or graphite, a heat exchanger, means for flowing UF/sub 6/ through the tubes and the heat exchangar, and means for bleeding off some of the UF/sub 6/ and separating plutonium therefrom. A specific suggestion contained is that the amount of the UF/sub 6/ outside the reaction unit be a multiple of that within it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luther, Erik Paul; Leckie, Rafael M.; Dombrowski, David E.
This supplemental report describes fuel fabrication efforts conducted for the Idaho National Laboratory Trade Study for the TREAT Conversion project that is exploring the replacement of the HEU (Highly Enriched Uranium) fuel core of the TREAT reactor with LEU (Low Enriched Uranium) fuel. Previous reports have documented fabrication of fuel by the “upgrade” process developed at Los Alamos National Laboratory. These experiments supplement an earlier report that describes efforts to increase the graphite content of extruded fuel and minimize cracking.
NASA Technical Reports Server (NTRS)
Yacobucci, H. G.; Waldron, W. D.; Walowit, J. A.
1973-01-01
The design of bearings for the control system of a fast reactor concept is presented. The bearings are required to operate at temperatures up to 2200 F in one of two fluids, lithium or argon. Basic bearing types are the same regardless of the fluid. Crowned cylindrical journals were selected for radially loaded bearings and modified spherical bearings were selected for bearings under combined thrust and radial loads. Graphite and aluminum oxide are the materials selected for the argon atmosphere bearings while cermet compositions (carbides or nitrides bonded with refractory metals) were selected for the lithium lubricated bearings. Mounting of components is by shrink fit or by axial clamping utilizing differential thermal expansion.
Converting a carbon preform object to a silicon carbide object
NASA Technical Reports Server (NTRS)
Levin, Harry (Inventor)
1990-01-01
A process for converting in depth a carbon or graphite preform object to a silicon carbide object, silicon carbide/silicon object, silicon carbide/carbon-core object, or a silicon carbide/silicon/carbon-core object, by contacting it with silicon liquid and vapor over various lengths of contact time in a reaction chamber. In the process, a stream comprised of a silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a coreactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into the reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. Thus, the precursor gas is decomposed directly to silicon in the reaction chamber. Any stream of decomposition gas and any unreacted precursor gas from the reaction chamber is removed. A carbon or graphite preform object placed in the reaction chamber is contacted with the silicon. The carbon or graphite preform object is recovered from the reactor chamber after it has been converted to a desired silicon carbide, silicon and carbon composition.
Five Lectures on Nuclear Reactors Presented at Cal Tech
DOE R&D Accomplishments Database
Weinberg, Alvin M.
1956-02-10
The basic issues involved in the physics and engineering of nuclear reactors are summarized. Topics discussed include theory of reactor design, technical problems in power reactors, physical problems in nuclear power production, and future developments in nuclear power. (C.H.)
OVERVIEW OF NUCLEAR PHYSICS LABORATORY (IMMEDIATELY EAST OF SPSE REACTOR ...
OVERVIEW OF NUCLEAR PHYSICS LABORATORY (IMMEDIATELY EAST OF SP-SE REACTOR ROOM), LEVEL -15, LOOKING SOUTHWEST. NOTE SLIDING STEEL PLATE DOOR BETWEEN LABORATORY AND REACTOR ROOM - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
Carvallho, Marilda N; da Silva, Karolyne S; Sales, Deivson C S; Freire, Eleonora M P L; Sobrinho, Maurício A M; Ghislandi, Marcos G
2016-01-01
The concept of physical adsorption was applied for the removal of direct and reactive blue textile dyes from industrial effluents. Commercial graphite nanoplatelets were used as substrate, and the quality of the material was characterized by atomic force and transmission electron microscopies. Dye/graphite nanoplatelets water solutions were prepared varying their pH and initial dye concentration. Exceptionally high values (beyond 100 mg/L) for adsorptive capacity of graphite nanoplatelets could be achieved without complicated chemical modifications, and equilibrium and kinetic experiments were performed. Our findings were compared with the state of the art, and compared with theoretical models. Agreement between them was satisfactory, and allowed us to propose novel considerations describing the interactions of the dyes and the graphene planar structure. The work highlights the important role of these interactions, which can govern the mobility of the dye molecules and the amount of layers that can be stacked on the graphite nanoplatelets surface.
Design development of graphite primary structures enables SSTO success
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biagiotti, V.A.; Yahiro, J.S.; Suh, D.E.
1997-01-01
This paper describes the development of a graphite composite wing and a graphite composite intertank primary structure for application toward Single-Stage to Orbit space vehicles such as those under development in NASA{close_quote}s X-33/Reusable Launch Vehicle (RLV) Program. The trade study and designs are based on a Rockwell vertical take-off and horizontal landing (VTHL) wing-body RLV vehicle. Northrop Grumman{close_quote}s approach using a building block development technique is described. Composite Graphite/Bismaleimide (Gr/BMI) material characterization test results are presented. Unique intertank and wing composite subcomponent test article designs are described and test results to date are presented. Wing and intertank Full Scale Sectionmore » Test Article (FSTA) objectives and designs are outlined. Trade studies, supporting building block testing, and FSTA demonstrations combine to develop graphite primary structure composite technology that enables developing X-33/RLV design programs to meet critical SSTO structural weight and operations performance criteria. {copyright} {ital 1997 American Institute of Physics.}« less
Method of Operating a Neutronic Reactor
NASA Astrophysics Data System (ADS)
Fermi, Enrico; Szilard, Leo
This Patent is a later,1 almost faithful, copy of Patent No. 2,708,656 (which is then not reported in the present volume). This revised version was probably prepared (by the authors) in order to correct several misprints of the previous version. As emphasized in The New York Times of May 19, 1955, Patent No. 2,708,656, an "historic Patent, covering the first nuclear reactor", is the first one on this topic issued by the U.S. Patent Office, and served as a reference for the subsequent Patents on the same subject. In this long Patent, the theory, exper- imental data and principles of construction and operation of "any" type of nuclear reactor known at that time are discussed in an extremely detailed way. Various possible fission fragments produced by the reactor, several forms of the uranium employed (metal, oxide and so on, grouped in different geometrical forms), various materials adopted as moderators, several cooling systems, different geometries of the reactors, etc. are considered accurately. The theoretical description, centered around the achievement of a self-sustaining chain reaction, is exhaustive, and great attention is devoted to any possible cause of neutron loss, to the resonance capture of neutrons and to the effect of the presence of relevant impurities in the reactor. The chain production of neutrons in the pile is described in great detail, along with the theoretical arguments underlying the exponential experiment. The problem of the variation of the multiplication factor due to the production of radioactive elements, such as xenon, is discussed extensively. In particular it is pointed out that, although the initial production of xenon lowers the multiplication factor K due to its relevant neutron absorption, it subsequently increases again due to the decay of xenon into another isotope which absorbs fewer neutrons. The building up of reactors with solid (graphite) or liquid (heavy water) moderators is discussed, as well as other possible moderators such as light water or beryllium. In particular, the ratio is given of the absorption cross section to the scattering cross section for several moderators. Procedures for the purification of uranium are described as well. Several methods (i.e., the exponential pile or the "shotgun" method; see Patent No. 2.969,307) are reported for testing the purity against neutron absorption of different materials. The effect of the boron and vanadium impurities in the graphite and light water in the heavy water are considered. Different cooling systems for the reactors are considered and compared in the Patent, based on the circulation of a gas (typically, air) or a liquid (light or heavy water, diphenyl, etc.). The principles and practice for the construction, functioning and control of several kinds of reactors are reported in detail. One reactor considered in the present Patent is a low power uranium-graphite one without cooling system, where the active part consists in (small) cylinders of metallic uranium or pseudo-spheres of uranium oxide (or cylinders of U3O8). The control rods are made of steel with boron inserts, while limitation and safety rods are made of cadmium. In addition, an uranium-graphite pile cooled by air or even by water or diphenyl is considered. It is pointed out that dyphenil should usually be preferred with respect to water, due to its lower absorption of neutrons and to its higher boiling temperature, but the disadvantage related to its use is mainly due to the closed pumping system required and to the possible occurrence of polymerization which makes the fluid viscous. Another kind of reactor described in detail is made of uranium (vertical) bars immersed in heavy water. When, during the operation, heavy water is dissociated into D2 and O2, these two gaseous elements are carried by an inert gas (helium) into a recombination device. The control and safety rods are made of cadmium. Hybrid reactors composed of different lattices in the same neutronic reactor, in order to increase the multiplication factor K, are considered as well. A description of the possible uses of nuclear reactors, other than as power supplies, including the production of collimated beams of fast neutrons, the production of plutonium (a fissionable material usable in other reactors) or several other radioactive isotopes (for possible utilization in medicine) is as well given. As it results clear, no published reference article behind the present Patent exists. Some partial results may be found in several papers2 of Volume II of [Fermi (1962)] (see, for example, [Fermi (1952)]), but here very many technical data and some information of historic interest (mainly on the experiments performed in order to obtain the data reported) are given. The most "relevant" change of Patent No. 2,798,847 with respect to the original Patent No. 2,708,656 is the replacement of the 8 claims of the previous one by the following only one claim, which well summarizes the work done: "A method of operating a neutronic reactor including an active portion having a neutron reproduction ratio substantially in excess of unity in the absence of high neutron absorbing bodies, said method comprising the steps of inserting in the active portion a shim member consisting essentially of a high neutron absorbing body in an amount to reduce the neutron reproduction ratio to a value slightly higher than unit to prevent a dangerous reactivity level, controlling the reaction by moving a control member consisting essentially of a second high neutron absorbing body inwardly and outwardly in response to variations in neutron density, to maintain the neutron reproduction ratio substantially at unity, and withdrawing successive portions of the shim member to the extent necessary to enable the reactor to be controlled by movement of the control member after the neutron reproduction value has been lowered to the point where the outward movement of the control member is insufficient to maintain the neutron reproduction ratio at the desired point, and thus to maintain the range of control effected by such movement of the control member substantially constant despite diminution of neutron reproduction ratio caused by operation of the reactor, the active portion being substantially free of high neutron absorber other than the control member and the shim member."
Fracto-emission from graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Dickinson, J. T.
1983-01-01
Fracto-emission (FE) is the emission of particles and photons during and following crack propagation. Electrons (EE), positive ions (PIE), and excited and ground state neutrals (NE) were observed. Results of a number of experiments involving principally graphite/epoxy composites and Kevlar single fibers are presented. The physical processes responsible for EE and PIE are discussed as well as FE from fiber- and particulate-reinforced composites.
ERIC Educational Resources Information Center
Spudich, Thomas M.; Herrmann, Jennifer K.; Fietkau, Ronald; Edwards, Grant A.
2004-01-01
An experiment is conducted to ascertain trace-level Pb in samples of bovine liver or muscle by applying graphite furnace atomic absorption spectrophotometry (GFAAS). The primary objective is to display the effects of physical and spectral intrusions in determining trace elements, and project the usual methods employed to minimize accuracy errors…
Lii-Rosales, Ann; Han, Yong; Evans, James W.; ...
2018-02-06
Here in this paper, we present an extensive experimental study of the conditions under which Cu forms encapsulated islands under the top surface layers of graphite, as a result of physical vapor deposition of Cu on argon-ion-bombarded graphite. When the substrate is held at 800 K during deposition, conditions are optimal for formation of encapsulated multilayer Cu islands. Deposition temperatures below 600 K favor adsorbed Cu clusters, while deposition temperatures above 800 K favor a different type of feature that is probably a single-layer intercalated Cu island. The multilayer Cu islands are characterized with respect to size and shape, thicknessmore » and continuity of the graphitic overlayer, relationship to graphite steps, and stability in air. The experimental techniques are scanning tunneling microscopy and X-ray photoelectron spectroscopy. We also present an extensive study using density functional theory to compare stabilities of a wide variety of configurations of Cu atoms, Cu clusters, and Cu layers on/under the graphite surface. The only configuration that is significantly more stable under the graphite surface than on top of it, is a single Cu atom. This analysis leads us to conclude that formation of encapsulated Cu islands is kinetically driven, rather than thermodynamically driven.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lii-Rosales, Ann; Han, Yong; Evans, James W.
Here in this paper, we present an extensive experimental study of the conditions under which Cu forms encapsulated islands under the top surface layers of graphite, as a result of physical vapor deposition of Cu on argon-ion-bombarded graphite. When the substrate is held at 800 K during deposition, conditions are optimal for formation of encapsulated multilayer Cu islands. Deposition temperatures below 600 K favor adsorbed Cu clusters, while deposition temperatures above 800 K favor a different type of feature that is probably a single-layer intercalated Cu island. The multilayer Cu islands are characterized with respect to size and shape, thicknessmore » and continuity of the graphitic overlayer, relationship to graphite steps, and stability in air. The experimental techniques are scanning tunneling microscopy and X-ray photoelectron spectroscopy. We also present an extensive study using density functional theory to compare stabilities of a wide variety of configurations of Cu atoms, Cu clusters, and Cu layers on/under the graphite surface. The only configuration that is significantly more stable under the graphite surface than on top of it, is a single Cu atom. This analysis leads us to conclude that formation of encapsulated Cu islands is kinetically driven, rather than thermodynamically driven.« less
NASA Astrophysics Data System (ADS)
Reza, S. M. Mohsin
Design options have been evaluated for the Modular Helium Reactor (MHR) for higher temperature operation. An alternative configuration for the MHR coolant inlet flow path is developed to reduce the peak vessel temperature (PVT). The coolant inlet path is shifted from the annular path between reactor core barrel and vessel wall through the permanent side reflector (PSR). The number and dimensions of coolant holes are varied to optimize the pressure drop, the inlet velocity, and the percentage of graphite removed from the PSR to create this inlet path. With the removal of ˜10% of the graphite from PSR the PVT is reduced from 541°C to 421°C. A new design for the graphite block core has been evaluated and optimized to reduce the inlet coolant temperature with the aim of further reduction of PVT. The dimensions and number of fuel rods and coolant holes, and the triangular pitch have been changed and optimized. Different packing fractions for the new core design have been used to conserve the number of fuel particles. Thermal properties for the fuel elements are calculated and incorporated into these analyses. The inlet temperature, mass flow and bypass flow are optimized to limit the peak fuel temperature (PFT) within an acceptable range. Using both of these modifications together, the PVT is reduced to ˜350°C while keeping the outlet temperature at 950°C and maintaining the PFT within acceptable limits. The vessel and fuel temperatures during low pressure conduction cooldown and high pressure conduction cooldown transients are found to be well below the design limits. The reliability and availability studies for coupled nuclear hydrogen production processes based on the sulfur iodine thermochemical process and high temperature electrolysis process have been accomplished. The fault tree models for both these processes are developed. Using information obtained on system configuration, component failure probability, component repair time and system operating modes and conditions, the system reliability and availability are assessed. Required redundancies are made to improve system reliability and to optimize the plant design for economic performance. The failure rates and outage factors of both processes are found to be well below the maximum acceptable range.
Electron cyclotron resonance plasma reactor for production of carbon stripper foil
NASA Astrophysics Data System (ADS)
Faith Romero, Camille; Kanamori, Keita; Kinsho, Michikazu; Yoshimoto, Masahiro; Wada, Motoi
2018-01-01
A graphite antenna for the production of carbon-containing hydrogen plasmas is being developed to prepare impurity-free charge exchange foils for high-energy synchrotrons. Microwave power at 2.45 GHz frequency drives a coaxial structure antenna with a 12-mm-diameter central graphite cylinder and a tapered surrounding cylinder serving as the ground electrode. The antenna was placed in a linear magnetic field to investigate how it performs under an electron cyclotron resonance (ECR) condition. A clear resonance phenomenon was observed in plasma luminosity, microwave power absorption, and microwave power reflection when the induction current used to produce a linear magnetic field was changed. The antenna realized the best microwave coupling to the plasma with the ECR zone formed 5 mm from the end of the center electrode. The antenna realized stable operation for more than 5 h with 100 W input microwave power and with operating hydrogen pressure from 0.5 to 50 Pa.
Metallic impurities-silicon carbide interaction in HTGR fuel particles
NASA Astrophysics Data System (ADS)
Minato, Kazuo; Ogawa, Toru; Kashimura, Satoru; Fukuda, Kousaku; Shimizu, Michio; Tayama, Yoshinobu; Takahashi, Ishio
1990-12-01
Corrosion of the coating layers of silicon carbide (SiC) by metallic impurities was observed in irradiated Triso-coated uranium dioxide particles for high temperature gas-cooled reactors with an optical microscope and an electron probe micro-analyzer. The SiC layers were attacked from the outside of the particles. The main element observed in the corroded areas was iron, but sometimes iron and nickel were found. These elements must have been contained as impurities in the graphite matrix in which the coated particles were dispersed. Since these elements are more stable thermodynamically in the presence of SiC than in the presence of graphite at irradiation temperatures, they were transferred to the SiC layer to form more stable silicides. During fuel manufacturing processes, intensive care should be taken to prevent the fuel from being contaminated with those elements which react with SiC.
System to continuously produce carbon fiber via microwave assisted plasma processing
White, Terry L [Knoxville, TN; Paulauskas, Felix L [Knoxville, TN; Bigelow, Timothy S [Knoxville, TN
2010-11-02
A system to continuously produce fully carbonized or graphitized carbon fibers using microwave-assisted plasma (MAP) processing comprises an elongated chamber in which a microwave plasma is excited in a selected gas atmosphere. Fiber is drawn continuously through the chamber, entering and exiting through openings designed to minimize in-leakage of air. There is a gradient of microwave power within the chamber with generally higher power near where the fiber exits and lower power near where the fiber enters. Polyacrylonitrile (PAN), pitch, or any other suitable organic/polymeric precursor fibers can be used as a feedstock for the inventive system. Oxidized or partially oxidized PAN or pitch or other polymeric fiber precursors are run continuously through a MAP reactor in an inert, non-oxidizing atmosphere to heat the fibers, drive off the unwanted elements such as oxygen, nitrogen, and hydrogen, and produce carbon or graphite fibers faster than conventionally produced carbon fibers.
EBR-II Reactor Physics Benchmark Evaluation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, Chad L.; Lum, Edward S; Stewart, Ryan
This report provides a reactor physics benchmark evaluation with associated uncertainty quantification for the critical configuration of the April 1986 Experimental Breeder Reactor II Run 138B core configuration.
Graphite fluoride fibers and their applications in the space industry
NASA Technical Reports Server (NTRS)
Hung, Ching-Chen; Long, Martin; Dever, Therese
1990-01-01
Characterization and potential space applications of graphite fluoride fibers from commercially available graphitized carbon fibers are presented. Graphite fluoride fibers with fluorine to carbon ratios of 0.65 and 0.68 were found to have electrical resistivity values of 10(exp 4) and 10(exp 11) Ohms-cm, respectively, and thermal conductivity values of 24 and 5 W/m-K, respectively. At this fluorine content range, the fibers have tensile strength of 0.25 + or - 0.10 GPa (36 + or - 14 ksi), Young's modulus of 170 + or - 30 GPa (25 + or - 5 Msi). The coefficient of thermal expansion value of a sample with fluorine to carbon ratio of 0.61 was found to be 7 ppm/C. These properties change and approach the graphite value as the fluorine content approach 0. Electrically insulative graphite fluoride fiber is at least five times more thermally conductive than fiberglass. Therefore, it can be used as a heat sinking printed circuit board material for low temperature, long life power electronics in spacecraft. Also, partially fluorinated fiber with tailor-made physical properties to meet the requirements of certain engineering design can be produced. For example, a partially fluorinated fiber could have a predetermined CTE value in -1.5 to 7 ppm/C range and would be suitable for use in solar concentrators in solar dynamic power systems. It could also have a predetermined electrical resistivity value suitable for use as a low observable material. Experimental data indicate that slightly fluorinated graphite fibers are more durable in the atomic oxygen environment than pristine graphite. Therefore, fluorination of graphite used in the construction of spacecraft that would be exposed to the low Earth orbit atomic oxygen may protect defect sites in atomic oxygen protective coatings and therefore decrease the rate of degradation of graphite.
Larrosa-Guerrero, Amor; Scott, Keith; Katuri, Krishna P; Godinez, Carlos; Head, Ian M; Curtis, Thomas
2010-08-01
The influence of various carbon anodes; graphite, sponge, paper, cloth, felt, fiber, foam and reticulated vitreous carbon (RVC); on microbial fuel cell (MFC) performance is reported. The feed was brewery wastewater diluted in domestic wastewater. Biofilms were grown at open circuit or under an external load. Microbial diversity was analysed as a function of current and anode material. The bacterial community formed at open circuit was influenced by the anode material. However at closed circuit its role in determining the bacterial consortia formed was less important than the passage of current. The rate and extent of organic matter removal were similar for all materials: over 95% under closed circuit. The biofilm in MFCs working at open circuit and in the control reactors, increased COD removal by up to a factor of nine compared with that for baseline reactors. The average voltage output was 0.6 V at closed circuit, with an external resistor of 300 kOmega and 0.75 V at open circuit for all materials except RVC. The poor performance of this material might be related to the surface area available and concentration polarizations caused by the morphology of the material and the structure of the biofilm. Peak power varied from 1.3 mW m(-2) for RVC to 568 mW m(-2) for graphite with biofilm grown at closed circuit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gryzinski, M.A.; Wielgosz, M.
The multipurpose, high flux research reactor MARIA in Otwock - Swierk is an open-pool type, water and beryllium moderated and graphite reflected. There are two not occupied experimental H1 and H2 horizontal channels with complex of empty rooms beside them. Making use of these two channels is not in conflict with other research or commercial employing channels. They can work simultaneously, moreover commercial channels covers the cost of reactor working. Such conditions give beneficial possibility of creating epithermal neutron stand for researches in various field at the horizontal channel H2 of MARIA reactor (co-organization of research at H1 channel ismore » additionally planned). At the front of experimental channels the neutron flux is strongly thermalized - neutrons with energies above 0.625 eV constitute only ∼2% of the total flux. This thermalized neutron flux will be used to achieve high flux of epithermal neutrons at the level of 2x10{sup 9} n cm{sup -2}s{sup -1} by uranium neutron converter (fast neutron production - conversion of reactor core thermal neutrons to fast neutrons - and then filtering, moderating and finally cutting of unwanted gamma radiation). The intelligent converter will be placed in the reactor pool, near the front of the H2 channel. It will replace one graphite block at the periphery of MARIA graphite reflector. The converter will consist of 20 fuel elements - low enriched uranium plates. A fuel plate will be a part which will measure 110 mm wide by 380 mm long and will consist of a thin layer of uranium sealed between two aluminium plates. These plates, once assembled, form the fuel element used in converter. The plates will be positioned vertically. There are several important requirements which should be taken into account at the converter design stage: -maximum efficiency of the converter for neutrons conversion, -cooling of the converter need to be integrated with the cooling circuit of the reactor pool and if needed equipped with self-cooling system (enhanced comparing to the cooling properties inherent with regular rector pool water flows), -proper cooling conditions can be ensured by an appropriate water flow, so the resistance to flow has to be optimised, -the requirement of the minimum resistance to water flow leads to the openwork design of the fuel element separator, which, on the other hand, has to be strong enough to ensure the needed strength for mechanical load due to the fuel weight and forces associated with the water flow, -the possibility of changing beam and flux qualities by rotating the converter or repositioning the converter plates by moving or replacing with another materials. In order to minimize the neutron activation of the fuel in the converter, the possibility was predicted to remove the converter and to replace it with an aluminium dummy for the time when the beam at the channel H2 is not used. This means that both, the converter and the dummy, have to be easily removable from the converter socket. There has to be also the place in the water pool, near the research stand or in technological pool, where the converter can be safely stored (this place have to be proper for operation with plates i.e. changing amount of plates). Thermal and neutron load of the fuel plates in the converter will be inhomogeneous. In order to equalize these loads, the converter should be designed in such way that it would be possible to change the order of fuel plates. Moreover replacing the amount of the plates gives the opportunity to obtain different fluxes of neutrons (quantitatively and qualitatively i.e. energetically). The project of the converter is based on Monte Carlo calculation concerning neutron production and on Computational Fluid Dynamics (CFD) i.e. modelling of converter for thermodynamical aspects. (authors)« less
An approach to model reactor core nodalization for deterministic safety analysis
NASA Astrophysics Data System (ADS)
Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd
2016-01-01
Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.
An approach to model reactor core nodalization for deterministic safety analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my; Samsudin, Mohd Rafie, E-mail: rafies@tnb.com.my; Mamat Ibrahim, Mohd Rizal, E-mail: m-rizal@nuclearmalaysia.gov.my
Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to bemore » employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH{sub 1.6}, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D{sup ®} computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.« less
New Reactor Physics Benchmark Data in the March 2012 Edition of the IRPhEP Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; J. Blair Briggs; Jim Gulliford
2012-11-01
The International Reactor Physics Experiment Evaluation Project (IRPhEP) was established to preserve integral reactor physics experimental data, including separate or special effects data for nuclear energy and technology applications. Numerous experiments that have been performed worldwide, represent a large investment of infrastructure, expertise, and cost, and are valuable resources of data for present and future research. These valuable assets provide the basis for recording, development, and validation of methods. If the experimental data are lost, the high cost to repeat many of these measurements may be prohibitive. The purpose of the IRPhEP is to provide an extensively peer-reviewed set ofmore » reactor physics-related integral data that can be used by reactor designers and safety analysts to validate the analytical tools used to design next-generation reactors and establish the safety basis for operation of these reactors. Contributors from around the world collaborate in the evaluation and review of selected benchmark experiments for inclusion in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook) [1]. Several new evaluations have been prepared for inclusion in the March 2012 edition of the IRPhEP Handbook.« less
The early development of neutron diffraction: science in the wings of the Manhattan Project
Mason, T. E.; Gawne, T. J.; Nagler, S. E.; Nestor, M. B.; Carpenter, J. M.
2013-01-01
Although neutron diffraction was first observed using radioactive decay sources shortly after the discovery of the neutron, it was only with the availability of higher intensity neutron beams from the first nuclear reactors, constructed as part of the Manhattan Project, that systematic investigation of Bragg scattering became possible. Remarkably, at a time when the war effort was singularly focused on the development of the atomic bomb, groups working at Oak Ridge and Chicago carried out key measurements and recognized the future utility of neutron diffraction quite independent of its contributions to the measurement of nuclear cross sections. Ernest O. Wollan, Lyle B. Borst and Walter H. Zinn were all able to observe neutron diffraction in 1944 using the X-10 graphite reactor and the CP-3 heavy water reactor. Subsequent work by Wollan and Clifford G. Shull, who joined Wollan’s group at Oak Ridge in 1946, laid the foundations for widespread application of neutron diffraction as an important research tool. PMID:23250059
Online Oxide Contamination Measurement and Purification Demonstration
NASA Technical Reports Server (NTRS)
Bradley, D. E.; Godfroy, T. J.; Webster, K. L.; Garber, A. E.; Polzin, K. A.; Childers, D. J.
2011-01-01
Liquid metal sodium-potassium (NaK) has advantageous thermodynamic properties indicating its use as a fission reactor coolant for a surface (lunar, martian) power system. A major area of concern for fission reactor cooling systems is system corrosion due to oxygen contaminants at the high operating temperatures experienced. A small-scale, approximately 4-L capacity, simulated fission reactor cooling system employing NaK as a coolant was fabricated and tested with the goal of demonstrating a noninvasive oxygen detection and purification system. In order to generate prototypical conditions in the simulated cooling system, several system components were designed, fabricated, and tested. These major components were a fully-sealed, magnetically-coupled mechanical NaK pump, a graphite element heated reservoir, a plugging indicator system, and a cold trap. All system components were successfully demonstrated at a maximum system flow rate of approximately 150 cc/s at temperatures up to 550 C. Coolant purification was accomplished using a cold trap before and after plugging operations which showed a relative reduction in oxygen content.
Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries
Dose, W. M.; Piernas-Munoz, M. J.; Maroni, V. A.; ...
2018-02-09
A silicon-graphite blended anode is paired with a high capacity LiFePO 4 reference/counter electrode to track irreversibility and lithium inventory. The LiFePO 4 electrode provides a reliable, flat potential for dQ dV -1 analysis of Li xSi and Li xC electrochemical reactions. We can relate this electrochemistry to the morphological and physical changes taking place.
Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dose, W. M.; Piernas-Munoz, M. J.; Maroni, V. A.
A silicon-graphite blended anode is paired with a high capacity LiFePO 4 reference/counter electrode to track irreversibility and lithium inventory. The LiFePO 4 electrode provides a reliable, flat potential for dQ dV -1 analysis of Li xSi and Li xC electrochemical reactions. We can relate this electrochemistry to the morphological and physical changes taking place.
Electro-Fenton as a feasible advanced treatment process to produce reclaimed water.
Durán Moreno, A; Frontana-Uribe, B A; Ramírez Zamora, R M
2004-01-01
The feasibility of the electro-Fenton process to generate simultaneously both of the Fenton's reagent species (Fe2+/H2O2), was assessed as a potentially more economical alternative to the classical Fenton's reaction to produce reclaimed water. An air-saturated combined wastewater (mixture of municipal and laboratory effluents) was treated in discontinuous and continuous reactors at pH = 3.5. The discontinuous reactor was a 2 L electrochemical laboratory cell fitted with concentric graphite and iron electrodes. The continuous reactor tests used a pilot treatment system comprising the aforementioned electrochemical cell, two clarifiers and one sand filter. Several tests were carried out at different conditions of reaction time (0-60 min) and electrical current values (0.2-1.0 A) in the discontinuous reactor. The best operating conditions were 60 min and 1 A without filtration of effluents. At these conditions, in discontinuous and continuous reactors with filtration, the COD, turbidity and color removal were 65-74.8%, 77-92.3% and 80-100%, respectively. Fecal and total coliforms, Escherichia coli, Shigella and Salmonella sp. were not detected at the end of the pilot treatment system. Electrogeneration of the Fenton's reagent is also economical; its cost is one-fifth the cost reported for Advanced Primary Treatment.
REACTOR PHYSICS QUARTERLY REPORT JANUARY, FEBRUARY, MARCH 1970
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmid, L. C.; Clayton, E. D.; Heineman, R. E.
1970-05-01
The objective of the Reactor Physics Quarterly Report is to inform the scientific community in a timely manner of the technical progress made on the many phases of reactor physics work within the laboratory. The report contains brief technical discussions of accomplishments in all areas where significant progress has been made during the quarter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Leland M. Montierth
2013-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering effects during pebble loading. Core 4 was determined to be acceptable benchmark experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Montierth, Leland M.; Sterbentz, James W.
2014-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering effects during pebble loading. Core 4 was determined to be acceptable benchmark experiment.« less
NASA Astrophysics Data System (ADS)
Souto Mantecon, Francisco Javier
One of the most common and important medical radioisotopes is 99Mo, which is currently produced using the target irradiation technology in heterogeneous nuclear reactors. The medical isotope 99Mo can also be produced from uranium fission using aqueous homogeneous solution reactors. In solution reactors, 99Mo is generated directly in the fuel solution, resulting in potential advantages when compared with the target irradiation process in heterogeneous reactors, such as lower reactor power, less waste heat, and reduction by a factor of about 100 in the generation of spent fuel. The commercial production of medical isotopes in solution reactors requires steady-state operation at about 200 kW. At this power regime, the formation of radiolytic-gas bubbles creates a void volume in the fuel solution that introduces a negative coefficient of reactivity, resulting in power reduction and instabilities that may impede reactor operation for medical-isotope production. A model has been developed considering that reactivity effects are due to the increase in the fuel-solution temperature and the formation of radiolytic-gas bubbles. The model has been validated against experimental results from the Los Alamos National Laboratory uranyl fluoride Solution High-Energy Burst Assembly (SHEBA), and the SILENE uranyl nitrate solution reactor, commissioned at the Commissariat a l'Energie Atomique, in Valduc, France. The model shows the feasibility of solution reactors for the commercial production of medical isotopes and reveals some of the important parameters to consider in their design, including the fuel-solution type, 235U enrichment, uranium concentration, reactor vessel geometry, and neutron reflectors surrounding the reactor vessel. The work presented herein indicates that steady-state operation at 200 kW can be achieved with a solution reactor consisting of 120 L of uranyl nitrate solution enriched up to 20% with 235U and a uranium concentration of 145 kg/m3 in a graphite-reflected cylindrical geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.
Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, goodmore » heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels with 3 cm diameter graphite-based fuel pebbles slowly circulating up through the core. Molten salt coolant (FLiBe) at 700°C flows concurrently (at significantly higher velocity) with the pebbles and is used to remove heat generated in the reactor core (approximately 1280 W/pebble), and supply it to a power conversion system. Refueling equipment continuously sorts spent fuel pebbles and replaces spent or damaged pebbles with fresh fuel. By combining greater or fewer numbers of pebble channel assemblies, multiple reactor designs with varying power levels can be offered. The PB-AHTR design is discussed in detail in Reference [1] and is shown schematically in Fig. 1. Fig. 1. PB-AHTR concept (drawing taken from Peterson et al., Design and Development of the Modular PB-AHTR Proceedings of ICApp 08). Pebble behavior within the core is a key issue in proving the viability of this concept. This includes understanding the behavior of the pebbles thermally, hydraulically, and mechanically (quantifying pebble wear characteristics, flow channel wear, etc). The experiment being developed is an initial step in characterizing the pebble behavior under realistic PB-AHTR operating conditions. It focuses on thermal and hydraulic behavior of a static pebble bed using a convective salt loop to provide prototypic fluid conditions to the bed, and a unique inductive heating technique to provide prototypic heating in the pebbles. The facility design is sufficiently versatile to allow a variety of other experimentation to be performed in the future. The facility can accommodate testing of scaled reactor components or sub-components such as flow diodes, salt-to-salt heat exchangers, and improved pump designs as well as testing of refueling equipment, high temperature instrumentation, and other reactor core designs.« less
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Bauer, Jonathan L.; Maryanski, Michael J.; Heimann, Paula J.; Barlow, Jeremy P.; Gosau, Jan-Michael; Allred, Ronald E.
2010-01-01
This work presents a novel approach to the functionalization of graphite nanoparticles. The technique provides a mechanism for covalent bonding between the filler and matrix, with minimal disruption to the sp2 hybridization of the pristine graphene sheet. Functionalization proceeded by covalently bonding an epoxy monomer to the surface of expanded graphite, via a coupling agent, such that the epoxy concentration was measured as approximately 4 wt.%. The impact of dispersing this material into an epoxy resin was evaluated with respect to the mechanical properties and electrical conductivity of the graphite-epoxy nanocomposite. At a loading as low as 0.5 wt.%, the electrical conductivity was increased by five orders of magnitude relative to the base resin. The material yield strength was increased by 30% and Young s modulus by 50%. These results were realized without compromise to the resin toughness.
Physical and chemical controls on the critical zone
Anderson, S.P.; Von Blanckenburg, F.; White, A.F.
2007-01-01
Geochemists have long recognized a correlation between rates of physical denudation and chemical weathering. What underlies this correlation? The Critical Zone can be considered as a feed-through reactor. Downward advance of the weathering front brings unweathered rock into the reactor. Fluids are supplied through precipitation. The reactor is stirred at the top by biological and physical processes. The balance between advance of the weathering front by mechanical and chemical processes and mass loss by denudation fixes the thickness of the Critical Zone reactor. The internal structure of this reactor is controlled by physical processes that create surface area, determine flow paths, and set the residence time of material in the Critical Zone. All of these impact chemical weathering flux.
The Characterization of Grade PCEA Recycle Graphite Pilot Scale Billets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burchell, Timothy D; Pappano, Peter J
2010-10-01
Here we report the physical properties of a series specimens machined from pilot scale (~ 152 mm diameter x ~305 mm length) grade PCEA recycle billets manufactured by GrafTech. The pilot scale billets were processed with increasing amounts of (unirradiated) graphite (from 20% to 100%) introduced to the formulation with the goal of determining if large fractions of recycle graphite have a deleterious effect on properties. The properties determined include Bulk Density, Electrical Resistivity, Elastic (Young s) Modulus, and Coefficient of Thermal Expansion. Although property variations were observed to be correlated with the recycle fraction, the magnitude of the variationsmore » was noted to be small.« less
Electrode systems for in situ vitrification
Buelt, James L.; Carter, John G.; Eschbach, Eugene A.; FitzPatrick, Vincent F.; Koehmstedt, Paul L.; Morgan, William C.; Oma, Kenton H.; Timmerman, Craig L.
1990-01-01
An electrode comprising a molybdenum rod is received within a conductive collar formed of graphite. The molybdenum rod and the graphite collar may be physically joined at the bottom. A pair of such electrodes are placed in soil containing buried waste material and an electric current is passed therebetween for vitrifying the soil. The graphite collar enhances the thermal conductivity of the combination, bringing heat to the surface, and preventing formation of a cold cap of material above the ground surface. The annulus between the molybdenum rod electrode and the graphite collar is suitably filled with a conductive ceramic powder that sinters upon the molybdenum rod, protecting the same from oxidation as graphite material is consumed, or a metal powder which liquefies at operating temperatures. The center of the molybdenum rod, used with a collar of separately, can be hollow and filled with a powdered metal, such as copper, which liquefies at operating temperatures. Connection to electrodes can be provided below ground level to avoid open circuit due to electrode deterioration, or sacrificial electrodes may be employed when operation is started. Outboard electrodes cna be utilized to square up a vitrified area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snead, Lance; Contescu, Christian I.; Byun, Thak Sang
2016-08-01
The nuclear graphite, IG-110, was irradiated with and without a compressive load of 5 MPa at ~400 *C up to 9.3E25 n/m2 (E > 0.1 MeV). Following irradiation physical properties were studied to compare the effect of graphite irradiation on microstructure developed under compression and in stress-free conditions. Properties included: dimensional change, thermal conductivity, dynamic modulus, and CTE. The effect of stress on open internal porosity was determined through nitrogen adsorption. The IG-110 graphite experienced irradiation-induced creep that is differentiated from irradiation-induced swelling. Irradiation under stress resulted in somewhat greater thermal conductivity and coefficient of thermal expansion. While a significantmore » increase in dynamic modulus occurs, no differentiation between materials irradiated with and without compressive stress was observed. Nitrogen adsorption analysis suggests a difference in pore evolution in the 0.3e40 nm range for graphite irradiated with and without stress, but this evolution is seen to be a small contributor to the overall dimensional change.« less
Snead, Lance L.; Contescu, C. I.; Byun, T. S.; ...
2016-04-23
The nuclear graphite, IG-110, was irradiated with and without a compressive load of 5 MPa at ~400 C up to 9.3x10 25 n/m 2 (E>0.1 MeV.) Following irradiation physical properties were studied to compare the effect of graphite irradiation on microstructure developed under compression and in stress-free condition. Properties included: dimensional change, thermal conductivity, dynamic modulus, and CTE. The effect of stress on open internal porosity was determined through nitrogen adsorption. The IG-110 graphite experienced irradiation-induced creep that is differentiated from irradiation-induced swelling. Irradiation under stress resulted in somewhat greater thermal conductivity and coefficient of thermal expansion. While a significantmore » increase in dynamic modulus occurs, no differentiation between materials irradiated with and without compressive stress was observed. Nitrogen adsorption analysis suggests a difference in pore evolution in the 0.3-40 nm range for graphite irradiated with and without stress, but this evolution is seen to be a small contributor to the overall dimensional change.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1975-09-30
Studies of reactions between core materials and coolant impurities, basic fission product transport mechanisms, core graphite development and testing, the development and testing of recyclable fuel systems, and physics and fuel management studies are described. Materials studies include irradiation capsule tests of both fuel and graphite. Experimental procedures and results are discussed and, where appropriate, the data are presented in tables, graphs, and photographs. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-07-01
This second edition is based on data available on March 15, 1961. Sections on constants necessary for the interpretation of experimental data and on digital computer programs for reactor design and reactor physics have been added. 1344 references. (D.C.W.)
The Sustainable Nuclear Future: Fission and Fusion E.M. Campbell Logos Technologies
NASA Astrophysics Data System (ADS)
Campbell, E. Michael
2010-02-01
Global industrialization, the concern over rising CO2 levels in the atmosphere and other negative environmental effects due to the burning of hydrocarbon fuels and the need to insulate the cost of energy from fuel price volatility have led to a renewed interest in nuclear power. Many of the plants under construction are similar to the existing light water reactors but incorporate modern engineering and enhanced safety features. These reactors, while mature, safe and reliable sources of electrical power have limited efficiency in converting fission power to useful work, require significant amounts of water, and must deal with the issues of nuclear waste (spent fuel), safety, and weapons proliferation. If nuclear power is to sustain its present share of the world's growing energy needs let alone displace carbon based fuels, more than 1000 reactors will be needed by mid century. For this to occur new reactors that are more efficient, versatile in their energy markets, require minimal or no water, produce less waste and more robust waste forms, are inherently safe and minimize proliferation concerns will be necessary. Graphite moderated, ceramic coated fuel, and He cooled designs are reactors that can satisfy these requirements. Along with other generation IV fast reactors that can further reduce the amounts of spent fuel and extend fuel resources, such a nuclear expansion is possible. Furthermore, facilities either in early operations or under construction should demonstrate the next step in fusion energy development in which energy gain is produced. This demonstration will catalyze fusion energy development and lead to the ultimate development of the next generation of nuclear reactors. In this presentation the role of advanced fission reactors and future fusion reactors in the expansion of nuclear power will be discussed including synergies with the existing worldwide nuclear fleet. )
A SPACESHIP WITH NUCLEAR PROPULSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polorny, J.
1962-01-01
ABS>A proposed space vehicle with nuclear propulsion for a round-trip Martian mission is described. It would be powered by a 270-Mw graphite- moderated, U-fueled nuclear reactor with a core 1 m high by 1 m in diameter, and use gas as propellant. The gas would be heated to the maximum temperature in the reactor and additionally accelerated by an electromagnetic field. To this end, small quantities of K would be injected into the gas stream to increase its electric conductivity. The required electrical energy would be produced by liquid-Na-cooled thermionic converters. The vehicle would weigh 115000 kg, including 43000 kgmore » of H propellant with tankage, and 7000 kg of sustenance material for one year. Chemical rockets would launch the vehicle with a crew of three men into an earth orbit where nuclear propulsion would take over. Upon reactor start-up, three heat exchangers (minimum dimensions 30 x 18 m) would be fanned out. A shielded well with a diameter of 2.5 m would protect the crew from radiation during reactor operation, passage through the earth radiation belts, and at periods of solar flares. (OTS)« less
Degradation pathway of malachite green in a novel dual-tank photoelectrochemical catalytic reactor.
Diao, Zenghui; Li, Mingyu; Zeng, Fanyin; Song, Lin; Qiu, Rongliang
2013-09-15
A novel dual-tank photoelectrochemical catalytic reactor was designed to investigate the degradation pathway of malachite green. A thermally formed TiO₂/Ti thin film electrode was used as photoanode, graphite was used as cathode, and a saturated calomel electrode was employed as the reference electrode in the reactor. In the reactor, the anode and cathode tanks were connected by a cation exchange membrane. Results showed that the decolorization ratio of malachite green in the anode and cathode was 98.5 and 96.5% after 120 min, respectively. Malachite green in the two anode and cathode tanks was oxidized, achieving the bipolar double effect. Malachite green in both the anode and cathode tanks exhibited similar catalytic degradation pathways. The double bond of the malachite green molecule was attacked by strong oxidative hydroxyl radicals, after which the organic compound was degraded by the two pathways into 4,4-bis(dimethylamino) benzophenone, 4-(dimethylamino) benzophenone, 4-(dimethylamino) phenol, and other intermediate products. Eventually, malachite green was degraded into oxalic acid as a small molecular organic acid, which was degraded by processes such as demethylation, deamination, nitration, substitution, addition, and other reactions. Copyright © 2013 Elsevier B.V. All rights reserved.
Nodal Diffusion Burnable Poison Treatment for Prismatic Reactor Cores
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. M. Ougouag; R. M. Ferrer
2010-10-01
The prismatic block version of the High Temperature Reactor (HTR) considered as a candidate Very High Temperature Reactor (VHTR)design may use burnable poison pins in locations at some corners of the fuel blocks (i.e., assembly equivalent structures). The presence of any highly absorbing materials, such as these burnable poisons, within fuel blocks for hexagonal geometry, graphite-moderated High Temperature Reactors (HTRs) causes a local inter-block flux depression that most nodal diffusion-based method have failed to properly model or otherwise represent. The location of these burnable poisons near vertices results in an asymmetry in the morphology of the assemblies (or blocks). Hencemore » the resulting inadequacy of traditional homogenization methods, as these “spread” the actually local effect of the burnable poisons throughout the assembly. Furthermore, the actual effect of the burnable poison is primarily local with influence in its immediate vicinity, which happens to include a small region within the same assembly as well as similar regions in the adjacent assemblies. Traditional homogenization methods miss this artifact entirely. This paper presents a novel method for treating the local effect of the burnable poison explicitly in the context of a modern nodal method.« less
NASA Astrophysics Data System (ADS)
Marin, L.; Topala, P.
2017-06-01
The paper presents the results of experimental research on the physics of natural graphite film formation, the establishment of chemical composition and functional properties of the graphite films, formed on metal surfaces, as a result of the action of plasma in the air environment, at a normal pressure, under the electrical discharge in impulse conditions (EDI). The researchings were performed in the frame of doctoral thesis “Research on lessening of the bonding effects between the metallic and nonmetallic surfaces through the graphite films” and aimed to identify the phenomena that occur at the interface metal/ film of graphite, and to identify also the technological applications that it may have the surface treatment for submitting the films of graphite on metallic surfaces achieved through an innovative process of electrical pulsed discharges. After the research works from the PhD theme above mentioned, a number of interesting properties of graphite pellicle have been identified ie reducing of metal surface polarity. This led to drastic decreases for the values of adhesion when bonding of metal surfaces was performed using a structural polyurethane adhesive designed by ICECHIM. Following the thermo-gravimetric analysis, performed of the graphite film obtained by process of electrical pulsed discharges, have been also discovered other interesting properties for this, ie reversible mass additions at specific values of the working temperature Chemical and scanning electron microscopy analysis have revealed that on the metallic surface subjected to electrical pulsed discharges process, outside the graphite film, it is also obtained a series of spatial formation composed of carbon atoms fullerenes type which are responsible for the phenomenon of addition of mass.
Physical aging in graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Kong, E. S. W.
1983-01-01
Sub-Tg annealing has been found to affect the properties of graphite/epoxy composites. The network epoxy studied was based on the chemistry of tetraglycidyl 4,4'-diamino-diphenyl methane (TGDDM) crosslinked by 4,4'-diamino-diphenyl sulfone (DDS). Differential scanning calorimetry, thermal mechanical analysis, and solid-state cross-polarized magic-angle-spinning nuclear magnetic resonance spectroscopy have been utilized in order to characterize this process of recovery towards thermodynamic equilibrium. The volume and enthalpy recovery as well as the 'thermoreversibility' aspects of the physical aging are discussed. This nonequilibrium and time-dependent behavior of network epoxies are considered in view of the increasingly wide applications of TGDDM-DDS epoxies as matrix materials of structural composites in the aerospace industry.
Combustion Of Porous Graphite Particles In Oxygen Enriched Air
NASA Technical Reports Server (NTRS)
Delisle, Andrew J.; Miller, Fletcher J.; Chelliah, Harsha K.
2003-01-01
Combustion of solid fuel particles has many important applications, including power generation and space propulsion systems. The current models available for describing the combustion process of these particles, especially porous solid particles, include various simplifying approximations. One of the most limiting approximations is the lumping of the physical properties of the porous fuel with the heterogeneous chemical reaction rate constants [1]. The primary objective of the present work is to develop a rigorous modeling approach that could decouple such physical and chemical effects from the global heterogeneous reaction rates. For the purpose of validating this model, experiments with porous graphite particles of varying sizes and porosity are being performed under normal and micro gravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McElroy, W.N.; Kellogg, L.S.; Matsumoto, W.Y.
1988-05-01
This report is in response to a request from Westinghouse Hanford Company (WHC) that the PNL National Dosimetry Center (NDC) perform physics-dosimetry analyses (E > MeV) for N Reactor Pressure Tubes 2954 and 3053. As a result of these analyses, and recommendations for additional studies, two physics-dosimetry re-evaluations for Pressure Tube 1165 were also accomplished. The primary objective of Pacific Northwest Laboratories' (PNL) National Dosimetry Center (NDC) physics-dosimetry work for N Reactor was to provide FERRET-SAND II physics-dosimetry results to assist in the assessment of neutron radiation-induced changes in the physical and mechanical properties of N Reactor pressure tubes. 15more » refs., 6 figs., 5 tabs.« less
Reinforcement of cement-based matrices with graphite nanomaterials
NASA Astrophysics Data System (ADS)
Sadiq, Muhammad Maqbool
Cement-based materials offer a desirable balance of compressive strength, moisture resistance, durability, economy and energy-efficiency; their tensile strength, fracture energy and durability in aggressive environments, however, could benefit from further improvements. An option for realizing some of these improvements involves introduction of discrete fibers into concrete. When compared with today's micro-scale (steel, polypropylene, glass, etc.) fibers, graphite nanomaterials (carbon nanotube, nanofiber and graphite nanoplatelet) offer superior geometric, mechanical and physical characteristics. Graphite nanomaterials would realize their reinforcement potential as far as they are thoroughly dispersed within cement-based matrices, and effectively bond to cement hydrates. The research reported herein developed non-covalent and covalent surface modification techniques to improve the dispersion and interfacial interactions of graphite nanomaterials in cement-based matrices with a dense and well graded micro-structure. The most successful approach involved polymer wrapping of nanomaterials for increasing the density of hydrophilic groups on the nanomaterial surface without causing any damage to the their structure. The nanomaterials were characterized using various spectrometry techniques, and SEM (Scanning Electron Microscopy). The graphite nanomaterials were dispersed via selected sonication procedures in the mixing water of the cement-based matrix; conventional mixing and sample preparation techniques were then employed to prepare the cement-based nanocomposite samples, which were subjected to steam curing. Comprehensive engineering and durability characteristics of cement-based nanocomposites were determined and their chemical composition, microstructure and failure mechanisms were also assessed through various spectrometry, thermogravimetry, electron microscopy and elemental analyses. Both functionalized and non-functionalized nanomaterials as well as different micro-scale fibers were used for comparison purposes at different volume fractions. Replicated mixes and tests were considered to provide the basis for statistically reliable inferences. Theoretical studies were conducted in order to develop insight into the reinforcement mechanisms of properly functionalized graphite nanomaterials. The results suggested that modified graphite nanomaterials improve the mechanical performance of cement-based matrices primarily through control of microcrack size and propagation, relying on their close spacing within matrix and dissipation of substantial energy by debonding and frictional pullout over their enormous surface areas. The gains in barrier qualities of cement-based materials with introduction of modified graphite nanomaterials could be attributed to the increased tortuosity of diffusion paths in the presence of closely spaced nanomaterials. Experimental investigations were designed and implemented towards identification of the optimum (nano- and micro-scale) reinforcement systems for high-performance concrete through RSA (Response Surface Analysis). A comprehensive experimental data base was developed on the mechanical, physical and durability characteristics as well as the structure and composition of high-performance cementitious nanocomposites reinforced with modified graphite nanomaterials and/ or different micro-fibers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiangwen; Contescu, Cristian I.; Zhao, Xi
Mmore » atrix graphite (G) with incompletely graphitized binder used in high-temperature gas-cooled reactors (HTGRs) is commonly suspected to exhibit lower oxidation resistance in air. In order to reveal the oxidation performance, the oxidation behavior of newly developed A3-3 G at the temperature range from 500 to 950°C in air was studied and the effect of oxidation on the compressive strength of oxidized G specimens was characterized. Results show that temperature has a significant influence on the oxidation behavior of G. The transition temperature between Regimes I and II is ~700°C and the activation energy ( E a ) in Regime I is around 185 kJ/mol, a little lower than that of nuclear graphite, which indicates G is more vulnerable to oxidation. Oxidation at 550°C causes more damage to compressive strength of G than oxidation at 900°C. Comparing with the strength of pristine G specimens, the rate of compressive strength loss is 77.3% after oxidation at 550°C and only 12.5% for oxidation at 900°C. icrostructure images of SE and porosity measurement by ercury Porosimetry indicate that the significant compressive strength loss of G oxidized at 550°C may be attributed to both the uniform pore formation throughout the bulk and the preferential oxidation of the binder.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostelmann, Friederike; Strydom, Gerhard; Reitsma, Frederik
The quantification of uncertainties in design and safety analysis of reactors is today not only broadly accepted, but in many cases became the preferred way to replace traditional conservative analysis for safety and licensing analysis. The use of a more fundamental methodology is also consistent with the reliable high fidelity physics models and robust, efficient, and accurate codes available today. To facilitate uncertainty analysis applications a comprehensive approach and methodology must be developed and applied, in contrast to the historical approach where sensitivity analysis were performed and uncertainties then determined by a simplified statistical combination of a few important inputmore » parameters. New methodologies are currently under development in the OECD/NEA Light Water Reactor (LWR) Uncertainty Analysis in Best-Estimate Modelling (UAM) benchmark activity. High Temperature Gas-cooled Reactor (HTGR) designs require specific treatment of the double heterogeneous fuel design and large graphite quantities at high temperatures. The IAEA has therefore launched a Coordinated Research Project (CRP) on HTGR Uncertainty Analysis in Modelling (UAM) in 2013 to study uncertainty propagation specifically in the HTGR analysis chain. Two benchmark problems are defined, with the prismatic design represented by the General Atomics (GA) MHTGR-350 and a 250 MW modular pebble bed design similar to the Chinese HTR-PM. Work has started on the first phase and the current CRP status is reported in the paper. A comparison of the Serpent and SCALE/KENO-VI reference Monte Carlo results for Ex. I-1 of the MHTGR-350 design is also included. It was observed that the SCALE/KENO-VI Continuous Energy (CE) k ∞ values were 395 pcm (Ex. I-1a) to 803 pcm (Ex. I-1b) higher than the respective Serpent lattice calculations, and that within the set of the SCALE results, the KENO-VI 238 Multi-Group (MG) k ∞ values were up to 800 pcm lower than the KENO-VI CE values. The use of the latest ENDF-B-VII.1 cross section library in Serpent lead to ~180 pcm lower k ∞ values compared to the older ENDF-B-VII.0 dataset, caused by the modified graphite neutron capture cross section. Furthermore, the fourth beta release of SCALE 6.2 likewise produced lower CE k∞ values when compared to SCALE 6.1, and the improved performance of the new 252-group library available in SCALE 6.2 is especially noteworthy. A SCALE/TSUNAMI uncertainty analysis of the Hot Full Power variant for Ex. I-1a furthermore concluded that the 238U(n,γ) (capture) and 235U(View the MathML source) cross-section covariance matrices contributed the most to the total k ∞ uncertainty of 0.58%.« less
Bostelmann, Friederike; Strydom, Gerhard; Reitsma, Frederik; ...
2016-01-11
The quantification of uncertainties in design and safety analysis of reactors is today not only broadly accepted, but in many cases became the preferred way to replace traditional conservative analysis for safety and licensing analysis. The use of a more fundamental methodology is also consistent with the reliable high fidelity physics models and robust, efficient, and accurate codes available today. To facilitate uncertainty analysis applications a comprehensive approach and methodology must be developed and applied, in contrast to the historical approach where sensitivity analysis were performed and uncertainties then determined by a simplified statistical combination of a few important inputmore » parameters. New methodologies are currently under development in the OECD/NEA Light Water Reactor (LWR) Uncertainty Analysis in Best-Estimate Modelling (UAM) benchmark activity. High Temperature Gas-cooled Reactor (HTGR) designs require specific treatment of the double heterogeneous fuel design and large graphite quantities at high temperatures. The IAEA has therefore launched a Coordinated Research Project (CRP) on HTGR Uncertainty Analysis in Modelling (UAM) in 2013 to study uncertainty propagation specifically in the HTGR analysis chain. Two benchmark problems are defined, with the prismatic design represented by the General Atomics (GA) MHTGR-350 and a 250 MW modular pebble bed design similar to the Chinese HTR-PM. Work has started on the first phase and the current CRP status is reported in the paper. A comparison of the Serpent and SCALE/KENO-VI reference Monte Carlo results for Ex. I-1 of the MHTGR-350 design is also included. It was observed that the SCALE/KENO-VI Continuous Energy (CE) k ∞ values were 395 pcm (Ex. I-1a) to 803 pcm (Ex. I-1b) higher than the respective Serpent lattice calculations, and that within the set of the SCALE results, the KENO-VI 238 Multi-Group (MG) k ∞ values were up to 800 pcm lower than the KENO-VI CE values. The use of the latest ENDF-B-VII.1 cross section library in Serpent lead to ~180 pcm lower k ∞ values compared to the older ENDF-B-VII.0 dataset, caused by the modified graphite neutron capture cross section. Furthermore, the fourth beta release of SCALE 6.2 likewise produced lower CE k∞ values when compared to SCALE 6.1, and the improved performance of the new 252-group library available in SCALE 6.2 is especially noteworthy. A SCALE/TSUNAMI uncertainty analysis of the Hot Full Power variant for Ex. I-1a furthermore concluded that the 238U(n,γ) (capture) and 235U(View the MathML source) cross-section covariance matrices contributed the most to the total k ∞ uncertainty of 0.58%.« less
Synthesis, physical and chemical properties, and potential applications of graphite fluoride fibers
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Long, Martin; Stahl, Mark
1987-01-01
Graphite fluoride fibers can be produced by fluorinating pristine or intercalated graphite fibers. The higher the degree of graphitization of the fibers, the higher the temperature needed to reach the same degree of fluorination. Pitched based fibers were fluorinated to flourine-to-carbon atom rations between 0 and 1. The graphite fluoride fibers with a fluorine-to-carbon atom ration near 1 have extensive visible structural damage. On the other hand, fluorination of fibers pretreated with bromine or fluorine and bromine result in fibers with a fluorine-to-carbon atom ratio nearly equal to 0.5 with no visible structural damage. The electrical resistivity of the fibers is dependent upon the fluorine to carbon atom ratio and ranged from .01 to 10 to the 11th ohm/cm. The thermal conductivity of these fibers ranged from 5 to 73 W/m-k, which is much larger than the thermal conductivity of glass, which is the regular filler in epoxy composites. If graphite fluoride fibers are used as a filler in epoxy or PTFE, the resulting composite may be a high thermal conductivity material with an electrical resistivity in either the insulator or semiconductor range. The electrically insulating product may provide heat transfer with lower temperature gradients than many current electrical insulators. Potential applications are presented.
ERIC Educational Resources Information Center
Bureau of Naval Personnel, Washington, DC.
Basic concepts of nuclear structures, radiation, nuclear reactions, and health physics are presented in this text, prepared for naval officers. Applications to the area of nuclear power are described in connection with pressurized water reactors, experimental boiling water reactors, homogeneous reactor experiments, and experimental breeder…
NASA Technical Reports Server (NTRS)
Noton, B. R. (Editor); Signorelli, R. A.; Street, K. N.; Phillips, L. N.
1978-01-01
Composite materials are discussed with reference to their mechanical and physical properties, fatigue and fracture testing and analysis, nondestructive evaluation, fabrication, and commercial applications. Particular papers are presented on such topics as analysis of mechanical strength data from hybrid laminates of glass and graphite fibers, graphite-aluminum composites, the mechanical behavior of molybdenum-reinforced metal composites, and composite laminate application in magnetic fusion energy superconducting magnet systems.
Handbook explaining the fundamentals of nuclear and atomic physics
NASA Technical Reports Server (NTRS)
Hanlen, D. F.; Morse, W. J.
1969-01-01
Indoctrination document presents nuclear, reactor, and atomic physics in an easy, straightforward manner. The entire subject of nuclear physics including atomic structure ionization, isotopes, radioactivity, and reactor dynamics is discussed.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Physical Protection of Irradiated Reactor Fuel in Transit... Irradiated Reactor Fuel in Transit, Training Program Subject Schedule Pursuant to the provision of § 73.37 of... reactor fuel is required to assure that individuals used as shipment escorts have completed a training...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Physical Protection of Irradiated Reactor Fuel in Transit... Irradiated Reactor Fuel in Transit, Training Program Subject Schedule Pursuant to the provision of § 73.37 of... reactor fuel is required to assure that individuals used as shipment escorts have completed a training...
The Ongoing Impact of the U.S. Fast Reactor Integral Experiments Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Michael A. Pope; Harold F. McFarlane
2012-11-01
The creation of a large database of integral fast reactor physics experiments advanced nuclear science and technology in ways that were unachievable by less capital intensive and operationally challenging approaches. They enabled the compilation of integral physics benchmark data, validated (or not) analytical methods, and provided assurance of future rector designs The integral experiments performed at Argonne National Laboratory (ANL) represent decades of research performed to support fast reactor design and our understanding of neutronics behavior and reactor physics measurements. Experiments began in 1955 with the Zero Power Reactor No. 3 (ZPR-3) and terminated with the Zero Power Physics Reactormore » (ZPPR, originally the Zero Power Plutonium Reactor) in 1990 at the former ANL-West site in Idaho, which is now part of the Idaho National Laboratory (INL). Two additional critical assemblies, ZPR-6 and ZPR-9, operated at the ANL-East site in Illinois. A total of 128 fast reactor assemblies were constructed with these facilities [1]. The infrastructure and measurement capabilities are too expensive to be replicated in the modern era, making the integral database invaluable as the world pushes ahead with development of liquid metal cooled reactors.« less
Phil Wallace and Theoretical Physics at McGill in the 1950's: A Personal Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, John David
In 1946 Philip (Phil) Russell Wallace joined the Mathematics Department of McGill University as an Associate Professor of Applied Mathematics, apparently because A. H. S. Gillson, Dean of Arts and Science, wanted theoretical physicists to be in the Mathematics Department. He came with the dream of creating a theoretical physics group at McGill. By the spring of 1949, Phil was authorized to recruit two junior faculty in Mathematics. He hired Theodore (Ted) F. Morris from U. Toronto, who joined in September 1949, and me, who came in January 1950. The group had begun. Phil Wallace was born in Toronto inmore » 1915 and grew up there. He entered the University of Toronto in 1933, earned a B.A. in mathematics in 1937, a M.A. in 1938, and a Ph.D. in applied mathematics in 1940 under Leopold Infeld. His Ph.D. thesis in general relativity was entitled 'On the relativistic equations of motion in electromagnetic theory.' In 1940 World War II had engulfed Europe and was having its effect on Canada, but the US was still at peace. L. J. Synge, Head of the Applied Mathematics Department at Toronto, told Wallace that people such as he would be needed in war work, but things were not ready quite yet. Hold yourself ready. Phil took a two-year position as lecturer in mathematics at the University of Cincinnati (1940-42); in the fall of 1942 he became a lecturer in mathematics at M.I.T. It was from there that he was recruited by Synge to join the war effort from 1943 to 1946 at N.R.C.'s Montreal Laboratory, the genesis of the Canadian Atomic Energy Project. Phil has described those heady wartime years in these pages. Much of the effort of the theoretical physicists was on nuclear reactor theory and the properties of relevant materials, such as graphite, under long and intense neutron bombardment. In late 1945 Phil was sent for four months to Bristol to learn about the properties of graphite from the esteemed N. F. Mott. This exposure led Phil to a life-long interest in graphite and in condensed matter physics in general. After the war, the group of Montreal Lab theorists dissolved - some had already left for Los Alamos; some went to Chalk River; Volkoff returned to UBC to foster theoretical physics as part of physics in the West; Wallace to do the same in the East. But the path at McGill was not smooth. As a singular anomaly in a pure math department, Phil was tucked away in the corner of some engineering building, remote from the bulk of the mathematicians. And there was no welcoming mat from Physics. As Wallace remarks, 'I took a post at McGill, not surprisingly in the department of Mathematics. Certain complications of academic politics followed, such as jurisdictional disputes over course assignments. Theoretical physicists were treated more or less as foreigners or rivals by at least a segment of the physics department.' 'Why was that?' McGill's attitude about theoretical physics was colored for fifty years by the lingering influence of Ernest Rutherford, who was a faculty member from 1898 to 1907. In his essay about the beginnings of theoretical physics in Canada, Wallace quotes examples of Rutherford's views about theoretical physics. In short, theoretical physics is applied mathematics and has no place in a department devoted to the study of natural phenomena. Because of his eminence and connection to McGill, numerous physics graduates went to the 'Mecca' of Manchester then Cambridge to do a Ph.D. with the great man. Some then returned to the McGill Physics faculty to teach and perpetuate the Rutherfordian view of theory. Although the theoretical physics group at McGill in the 1950s had no official standing and no statutory leader, Phil Wallace was that leader and builder of the group. An inspiration to students and junior colleagues alike, he protected and nurtured us in the sometimes difficult circumstances of citizens without a country.« less
Zöllig, Hanspeter; Fritzsche, Cristina; Morgenroth, Eberhard; Udert, Kai M
2015-02-01
Electrolysis can be a viable technology for ammonia removal from source-separated urine. Compared to biological nitrogen removal, electrolysis is more robust and is highly amenable to automation, which makes it especially attractive for on-site reactors. In electrolytic wastewater treatment, ammonia is usually removed by indirect oxidation through active chlorine which is produced in-situ at elevated anode potentials. However, the evolution of chlorine can lead to the formation of chlorate, perchlorate, chlorinated organic by-products and chloramines that are toxic. This study focuses on using direct ammonia oxidation on graphite at low anode potentials in order to overcome the formation of toxic by-products. With the aid of cyclic voltammetry, we demonstrated that graphite is active for direct ammonia oxidation without concomitant chlorine formation if the anode potential is between 1.1 and 1.6 V vs. SHE (standard hydrogen electrode). A comparison of potentiostatic bulk electrolysis experiments in synthetic stored urine with and without chloride confirmed that ammonia was removed exclusively by continuous direct oxidation. Direct oxidation required high pH values (pH > 9) because free ammonia was the actual reactant. In real stored urine (pH = 9.0), an ammonia removal rate of 2.9 ± 0.3 gN·m(-2)·d(-1) was achieved and the specific energy demand was 42 Wh·gN(-1) at an anode potential of 1.31 V vs. SHE. The measurements of chlorate and perchlorate as well as selected chlorinated organic by-products confirmed that no chlorinated by-products were formed in real urine. Electrode corrosion through graphite exfoliation was prevented and the surface was not poisoned by intermediate oxidation products. We conclude that direct ammonia oxidation on graphite electrodes is a treatment option for source-separated urine with three major advantages: The formation of chlorinated by-products is prevented, less energy is consumed than in indirect ammonia oxidation and readily available and cheap graphite can be used as the electrode material. Copyright © 2014 Elsevier Ltd. All rights reserved.
Analysis of Fission Products on the AGR-1 Capsule Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul A. Demkowicz; Jason M. Harp; Philip L. Winston
2013-03-01
The components of the AGR-1 irradiation capsules were analyzed to determine the retained inventory of fission products in order to determine the extent of in-pile fission product release from the fuel compacts. This includes analysis of (i) the metal capsule components, (ii) the graphite fuel holders, (iii) the graphite spacers, and (iv) the gas exit lines. The fission products most prevalent in the components were Ag-110m, Cs 134, Cs 137, Eu-154, and Sr 90, and the most common location was the metal capsule components and the graphite fuel holders. Gamma scanning of the graphite fuel holders was also performed tomore » determine spatial distribution of Ag-110m and radiocesium. Silver was released from the fuel components in significant fractions. The total Ag-110m inventory found in the capsules ranged from 1.2×10 2 (Capsule 3) to 3.8×10 1 (Capsule 6). Ag-110m was not distributed evenly in the graphite fuel holders, but tended to concentrate at the axial ends of the graphite holders in Capsules 1 and 6 (located at the top and bottom of the test train) and near the axial center in Capsules 2, 3, and 5 (in the center of the test train). The Ag-110m further tended to be concentrated around fuel stacks 1 and 3, the two stacks facing the ATR reactor core and location of higher burnup, neutron fluence, and temperatures compared with Stack 2. Detailed correlation of silver release with fuel type and irradiation temperatures is problematic at the capsule level due to the large range of temperatures experienced by individual fuel compacts in each capsule. A comprehensive Ag 110m mass balance for the capsules was performed using measured inventories of individual compacts and the inventory on the capsule components. For most capsules, the mass balance was within 11% of the predicted inventory. The Ag-110m release from individual compacts often exhibited a very large range within a particular capsule.« less
Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran
2013-03-01
Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ∼10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified.
NASA Astrophysics Data System (ADS)
Kozier, K. S.; Rosinger, H. E.
The evolution and present status of an Atomic Energy of Canada Limited program to develop a small, solid-state, passively cooled reactor power supply known as the Nuclear Battery is reviewed. Key technical features of the Nuclear Battery reactor core include a heat-pipe primary heat transport system, graphite neutron moderator, low-enriched uranium TRISO coated-particle fuel and the use of burnable poisons for long-term reactivity control. An external secondary heat transport system extracts useful heat energy, which may be converted into electricity in an organic Rankine cycle engine or used to produce high-pressure steam. The present reference design is capable of producing about 2400 kW(t) (about 600 kW(e) net) for 15 full-power years. Technical and safety features are described along with recent progress in component hardware development programs and market assessment work.
Evaluation of Lightning Induced Effects in a Graphite Composite Fairing Structure
NASA Technical Reports Server (NTRS)
Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.
2011-01-01
Defining the electromagnetic environment inside a graphite composite fairing due to near-by lightning strikes is of interest to spacecraft developers. This effort develops a transmission-line-matrix (TLM) model with a CST Microstripes to examine induced voltages. on interior wire loops in a composite fairing due to a simulated near-by lightning strike. A physical vehicle-like composite fairing test fixture is constructed to anchor a TLM model in the time domain and a FEKO method of moments model in the frequency domain. Results show that a typical graphite composite fairing provides adequate shielding resulting in a significant reduction in induced voltages on high impedance circuits despite minimal attenuation of peak magnetic fields propagating through space in near-by lightning strike conditions.
Heterogenous Combustion of Porous Graphite Particles in Normal and Microgravity
NASA Technical Reports Server (NTRS)
Chelliah, Harsha K.; Miller, Fletcher J.; Delisle, Andrew J.
2001-01-01
Combustion of solid fuel particles has many important applications, including power generation and space propulsion systems. The current models available for describing the combustion process of these particles, especially porous solid particles, include various simplifying approximations. One of the most limiting approximations is the lumping of the physical properties of the porous fuel with the heterogeneous chemical reaction rate constants. The primary objective of the present work is to develop a rigorous model that could decouple such physical and chemical effects from the global heterogeneous reaction rates. For the purpose of validating this model, experiments with porous graphite particles of varying sizes and porosity are being performed. The details of this experimental and theoretical model development effort are described.
Qualls, A. Louis; Betzler, Benjamin R.; Brown, Nicholas R.; ...
2016-12-21
Engineering demonstration reactors are nuclear reactors built to establish proof of concept for technology options that have never been built. Examples of engineering demonstration reactors include Peach Bottom 1 for high temperature gas-cooled reactors (HTGRs) and Experimental Breeder Reactor-II (EBR-II) for sodium-cooled fast reactors. Historically, engineering demonstrations have played a vital role in advancing the technology readiness level of reactor technologies. Our paper details a preconceptual design for a fluoride salt-cooled engineering demonstration reactor. The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would usemore » tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 7LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. The design philosophy of the FHR DR was focused on safety, near-term deployment, and flexibility. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated as an engineering demonstration with minimal risk and cost. These technologies include TRISO particle fuel, replaceable core structures, and consistent structural material selection for core structures and the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Important capabilities to be demonstrated by building and operating the FHR DR include fabrication and operation of high temperature reactors; heat exchanger performance (including passive decay heat removal); pump performance; and reactivity control; salt chemistry control to maximize vessel life; tritium management; core design methodologies; salt procurement, handling, maintenance and ultimate disposal. It is recognized that non-nuclear separate and integral test efforts (e.g., heated salt loops or loops using simulant fluids) are necessary to develop the technologies that will be demonstrated in the FHR DR.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qualls, A. Louis; Betzler, Benjamin R.; Brown, Nicholas R.
Engineering demonstration reactors are nuclear reactors built to establish proof of concept for technology options that have never been built. Examples of engineering demonstration reactors include Peach Bottom 1 for high temperature gas-cooled reactors (HTGRs) and Experimental Breeder Reactor-II (EBR-II) for sodium-cooled fast reactors. Historically, engineering demonstrations have played a vital role in advancing the technology readiness level of reactor technologies. Our paper details a preconceptual design for a fluoride salt-cooled engineering demonstration reactor. The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would usemore » tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 7LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. The design philosophy of the FHR DR was focused on safety, near-term deployment, and flexibility. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated as an engineering demonstration with minimal risk and cost. These technologies include TRISO particle fuel, replaceable core structures, and consistent structural material selection for core structures and the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Important capabilities to be demonstrated by building and operating the FHR DR include fabrication and operation of high temperature reactors; heat exchanger performance (including passive decay heat removal); pump performance; and reactivity control; salt chemistry control to maximize vessel life; tritium management; core design methodologies; salt procurement, handling, maintenance and ultimate disposal. It is recognized that non-nuclear separate and integral test efforts (e.g., heated salt loops or loops using simulant fluids) are necessary to develop the technologies that will be demonstrated in the FHR DR.« less
NASA Technical Reports Server (NTRS)
Lee, S. C. S.
1979-01-01
Three weaves were evaluated; a balanced plain weave, a balanced 8-harness satin weave, and a semiunidirectional crowfoot satin weave. The current state-of-the-art resin system selected was Fiberite's 934 Epoxy; the advanced resin systems evaluated were Phenolic, Phenolic/Novolac, Benzyl and Bismaleimide. The panels were fabricated for testing on NASA/Ames Research Center's Composites Modification Program. Room temperature mechanical tests only were performed by Hitco; the results are presented.
In situ synthesis and characterization of uranium carbide using high temperature neutron diffraction
NASA Astrophysics Data System (ADS)
Reiche, H. Matthias; Vogel, Sven C.; Tang, Ming
2016-04-01
We investigated the formation of UCx from UO2+x and graphite in situ using neutron diffraction at high temperatures with particular focus on resolving the conflicting reports on the crystal structure of non-quenchable cubic UC2. The agents were UO2 nanopowder, which closely imitates nano grains observed in spent reactor fuels, and graphite powder. In situ neutron diffraction revealed the onset of the UO2 + 2C → UC + CO2 reaction at 1440 °C, with its completion at 1500 °C. Upon further heating, carbon diffuses into the uranium carbide forming C2 groups at the octahedral sites. This resulting high temperature cubic UC2 phase is similar to the NaCl-type structure as proposed by Bowman et al. Our novel experimental data provide insights into the mechanism and kinetics of formation of UC as well as characteristics of the high temperature cubic UC2 phase which agree with proposed rotational rehybridization found from simulations by Wen et al.
Forgery at the Snite Museum of Art? Improving AMS Radiocarbon Dating at the University of Notre Dame
NASA Astrophysics Data System (ADS)
Troyer, Laura; Bagwell, Connor; Anderson, Tyler; Clark, Adam; Nelson, Austin; Skulski, Michael; Collon, Philippe
2017-09-01
The Snite Museum of Art recently obtained several donations of artifacts. Five of the pieces lack sufficient background information to prove authenticity and require further analysis to positively determine the artwork's age. One method to determine the artwork's age is radiocarbon dating via Accelerator Mass Spectrometry (AMS) performed at the University of Notre Dame's Nuclear Science Laboratory. Samples are prepared by combustion of a small amount of material and subsequent reduction to carbon into an iron powder matrix (graphitization). The graphitization procedure affects the maximum measurement rate, and a poor graphitization can be detrimental to the AMS measurement of the sample. Previous graphitization procedures resulted in a particle current too low or inconsistent to optimize AMS measurements. Thus, there was a desire to design and refine the graphitization system. The finalized process yielded physically darker samples and increased sample currents by two orders of magnitude. Additionally, the first testing of the samples was successful, yet analysis of the dates proved inconclusive. AMS measurements will be performed again to obtain better sampling statistics in the hopes of narrowing the reported date ranges. NSF and JINA-CEE.
NASA Astrophysics Data System (ADS)
Purewal, Justin; Wang, John; Graetz, Jason; Soukiazian, Souren; Tataria, Harshad; Verbrugge, Mark W.
2014-12-01
Capacity fade is reported for 1.5 Ah Li-ion batteries containing a mixture of Li-Ni-Co-Mn oxide (NCM) + Li-Mn oxide spinel (LMO) as positive electrode material and a graphite negative electrode. The batteries were cycled at a wide range of temperatures (10 °C-46 °C) and discharge currents (0.5C-6.5C). The measured capacity losses were fit to a simple physics-based model which calculates lithium inventory loss from two related mechanisms: (1) mechanical degradation at the graphite anode particle surface caused by diffusion-induced stresses (DIS) and (2) chemical degradation caused by lithium loss to continued growth of the solid-electrolyte interphase (SEI). These two mechanisms are coupled because lithium is consumed through SEI formation on newly exposed crack surfaces. The growth of crack surface area is modeled as a fatigue phenomenon due to the cyclic stresses generated by repeated lithium insertion and de-insertion of graphite particles. This coupled chemical-mechanical degradation model is consistent with the observed capacity loss features for the NCM + LMO/graphite cells.
Matsumoto, Michio; Saito, Yusuke; Park, Chiyoung; Fukushima, Takanori; Aida, Takuzo
2015-09-01
Graphene has shown much promise as an organic electronic material but, despite recent achievements in the production of few-layer graphene, the quantitative exfoliation of graphite into pristine single-layer graphene has remained one of the main challenges in developing practical devices. Recently, reduced graphene oxide has been recognized as a non-feasible alternative to graphene owing to variable defect types and levels, and attention is turning towards reliable methods for the high-throughput exfoliation of graphite. Here we report that microwave irradiation of graphite suspended in molecularly engineered oligomeric ionic liquids allows for ultrahigh-efficiency exfoliation (93% yield) with a high selectivity (95%) towards 'single-layer' graphene (that is, with thicknesses <1 nm) in a short processing time (30 minutes). The isolated graphene sheets show negligible structural deterioration. They are also readily redispersible in oligomeric ionic liquids up to ~100 mg ml(-1), and form physical gels in which an anisotropic orientation of graphene sheets, once induced by a magnetic field, is maintained.
Synthesis and characterization of covalently bound benzocaine graphite oxide derivative
NASA Astrophysics Data System (ADS)
Kabbani, Ahmad; Kabbani, Mohamad; Safadi, Khadija
2015-09-01
Graphite oxide (GO) derived materials include chemically functionalize or reduced graphene oxide (exfoliated from GO) sheets, assembled paper-like forms , and graphene-based composites GO consists of intact graphitic regions interspersed with sp3-hybridized carbons containing hydroxyl and epoxide functional groups on the top and bottom surfaces of each sheet and sp2-hybridized carbons containing carboxyl and carbonyl groups mostly at the sheet edges. Hence, GO is hydrophilic and readily disperses in water to form stable colloidal suspensions Due to the attached oxygen functional groups, GO was used to prepare different derivatives which result in some physical and chemical properties that are dramatically different from their bulk counterparts .The present work discusses the covalent cross linking of graphite oxide to benzocaine or ethyl ester of para-aminobenzoic acid,structure I,used in many over-the-counter ointment drug.Synthesis is done via diazotization of the amino group.The product is characterized via IR,Raman, X-ray photoelectron spectroscopy as well as electron microscopy.
Lei, Yu; Huang, Zheng-Hong; Yang, Ying; Shen, Wanci; Zheng, Yongping; Sun, Hongyu; Kang, Feiyu
2013-01-01
Li4Ti5O12/activated carbon hybrid supercapacitor can combine the advantages of both lithium-ion battery and supercapacitor, which may meet the requirements for developing high-performance hybrid electric vehicles. Here we proposed a novel “core-shell” porous graphitic carbon (PGC) to replace conventional activated carbon for achieving excellent cell performance. In this PGC structure made from mesocarbon microbead (MCMB), the inner core is composed of porous amorphous carbon, while the outer shell is graphitic carbon. The abundant porosity and the high surface area not only offer sufficient reaction sites to store electrical charge physically, but also can accelerate the liquid electrolyte to penetrate the electrode and the ions to reach the reacting sites. Meanwhile, the outer graphitic shells of the porous carbon microbeads contribute to a conductive network which will remarkably facilitate the electron transportation, and thus can be used to construct a high-rate, high-capacity cathode for hybrid supercapacitor, especially at high current densities. PMID:23963328
NERVA-Derived Nuclear Thermal Propulsion Dual Mode Operation
NASA Astrophysics Data System (ADS)
Zweig, Herbert R.; Hundal, Rolv
1994-07-01
Generation of electrical power using the nuclear heat source of a NERVA-derived nuclear thermal rocket engine is presented. A 111,200 N thrust engine defined in a study for NASA-LeRC in FY92 is the reference engine for a three-engine vehicle for which a 50 kWe capacity is required. Processes are described for energy extraction from the reactor and for converting the energy to electricity. The tie tubes which support the reactor fuel elements are the source of thermal energy. The study focuses on process systems using Stirling cycle energy conversion operating at 980 K and an alternate potassium-Rankine system operating at 1,140 K. Considerations are given of the effect of the power production on turbopump operation, ZrH moderator dissociation, creep strain in the tie tubes, hydrogen permeation through the containment materials, requirements for a backup battery system, and the effects of potential design changes on reactor size and criticality. Nuclear considerations include changing tie tube materials to TZM, changing the moderator to low vapor-pressure yttrium hydride, and changing the fuel form from graphite matrix to a carbon-carbide composite.
75 FR 67636 - Physical Protection of Shipments of Irradiated Reactor Fuel
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-03
...-2010-0340; Draft NUREG-0561, Revision 2] RIN 3150-AI64 Physical Protection of Shipments of Irradiated...- 0561, ``Physical Protection of Shipments of Irradiated Reactor Fuel.'' This document provides guidance to a licensee or applicant for implementation of proposed 10 CFR 73.37, ``Requirements for Physical...
78 FR 31821 - Physical Protection of Shipments of Irradiated Reactor Fuel
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-28
... NUCLEAR REGULATORY COMMISSION 10 CFR Part 73 [NRC-2010-0340; NRC-2009-0163] RIN 3150-AI64 Physical..., ``Physical Protection of Shipments of Irradiated Reactor Fuel.'' This revised document sets forth means... physical protection of spent nuclear fuel (SNF) during transportation by road, rail, and water; and for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C.; Yu, G.; Wang, K.
The physical designs of the new concept reactors which have complex structure, various materials and neutronic energy spectrum, have greatly improved the requirements to the calculation methods and the corresponding computing hardware. Along with the widely used parallel algorithm, heterogeneous platforms architecture has been introduced into numerical computations in reactor physics. Because of the natural parallel characteristics, the CPU-FPGA architecture is often used to accelerate numerical computation. This paper studies the application and features of this kind of heterogeneous platforms used in numerical calculation of reactor physics through practical examples. After the designed neutron diffusion module based on CPU-FPGA architecturemore » achieves a 11.2 speed up factor, it is proved to be feasible to apply this kind of heterogeneous platform into reactor physics. (authors)« less
Eugene P. Wigner's Visionary Contributions to Generations-I through IV Fission Reactors
NASA Astrophysics Data System (ADS)
Carré, Frank
2014-09-01
Among Europe's greatest scientists who fled to Britain and America in the 1930s, Eugene P. Wigner made instrumental advances in reactor physics, reactor design and technology, and spent nuclear fuel processing for both purposes of developing atomic weapons during world-war II and nuclear power afterwards. Wigner who had training in chemical engineering and self-education in physics first gained recognition for his remarkable articles and books on applications of Group theory to Quantum mechanics, Solid state physics and other topics that opened new branches of Physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, J. D.; Briggs, J. B.; Gulliford, J.
Overview of Experiments to Study the Physics of Fast Reactors Represented in the International Directories of Critical and Reactor Experiments John D. Bess Idaho National Laboratory Jim Gulliford, Tatiana Ivanova Nuclear Energy Agency of the Organisation for Economic Cooperation and Development E.V.Rozhikhin, M.Yu.Sem?nov, A.M.Tsibulya Institute of Physics and Power Engineering The study the physics of fast reactors traditionally used the experiments presented in the manual labor of the Working Group on Evaluation of sections CSEWG (ENDF-202) issued by the Brookhaven National Laboratory in 1974. This handbook presents simplified homogeneous model experiments with relevant experimental data, as amended. The Nuclear Energymore » Agency of the Organization for Economic Cooperation and Development coordinates the activities of two international projects on the collection, evaluation and documentation of experimental data - the International Project on the assessment of critical experiments (1994) and the International Project on the assessment of reactor experiments (since 2005). The result of the activities of these projects are replenished every year, an international directory of critical (ICSBEP Handbook) and reactor (IRPhEP Handbook) experiments. The handbooks present detailed models of experiments with minimal amendments. Such models are of particular interest in terms of the settlements modern programs. The directories contain a large number of experiments which are suitable for the study of physics of fast reactors. Many of these experiments were performed at specialized critical stands, such as BFS (Russia), ZPR and ZPPR (USA), the ZEBRA (UK) and the experimental reactor JOYO (Japan), FFTF (USA). Other experiments, such as compact metal assembly, is also of interest in terms of the physics of fast reactors, they have been carried out on the universal critical stands in Russian institutes (VNIITF and VNIIEF) and the US (LANL, LLNL, and others.). Also worth mentioning is the critical experiments with fast reactor fuel rods in water, interesting in terms of justification of nuclear safety during transportation and storage of fresh and spent fuel. These reports provide a detailed review of the experiment, designate the area of their application and include results of calculations on modern systems of constants in comparison with the estimated experimental data.« less
Briefing Book. Volume 1: The Evolution of the Nuclear Non-Proliferation Regime (Fourth Edition).
1998-01-01
usually termed) nuclear reactors. The first of these is that they contain a core or mass of fissile material (the fuel ) which may weigh tens of tons... HTGR is cooled with helium gas and moderated with graphite. Highly enriched uranium is used as fuel (93 per cent U-235), though this may be mixed with...to convert U-238 in a blanket around the core into Pu-239 at a rate faster than its own consumption of fissile material. They thus produce more fuel
Implementation of ALARA at the design stage of Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brissaud, A.; Ridoux, P.
1995-03-01
In the 1970s, Electricite de France (EdF) had limited knowledge and experience of pressurized water reactors (PWRs). Electricity generation by nuclear units was oriented towards gas-graphite reactors, even though EdF had a share in the PWR unit of CHOOZ A-1 (250 MWe, later upgraded to 320 MWe). Some facts about the origin of doses in that king of reactor were known to the research and development (R&D) support staff of EdF, which mainly comprises the French Atomic Commission (CEA), but only a few of EdF`s engineers were aware of these facts. One has to bear in mind that CHOOZ A-1more » only went critical in April 1967 and was officially connected to the grid in May 1970 after some important problems had been solved. Meanwhile, the nuclear program was launched at full speed, beginning with the order for FESSENHEIM 1 in 1970, FESSENHEIM 2 and BUGEY 2 and 3 in 1971. TIHANGE 1, in which EdF had a share, went on-line in September 1975. Also, supposing that EdF had had such knowledge and experience, it is quite evident that it would have been very difficult to modify the lay-out inside the reactor building.« less
Principles and practices of irradiation creep experiment using pressurized mini-bellows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byun, Thak Sang; Li, Meimei; Snead, Lance Lewis
2013-01-01
This article is to describe the key design principles and application practices of the newly developed in-reactor irradiation creep testing technology using pressurized mini-bellows. Miniature creep test frames were designed to fit into the high flux isotope reactor (HFIR) rabbit capsule whose internal diameter is slightly less than 10 mm. The most important consideration for this in-reactor creep testing technology was the ability of the small pressurized metallic bellows to survive irradiation at elevated temperatures while maintaining applied load to the specimen. Conceptual designs have been developed for inducing tension and compression stresses in specimens. Both the theoretical model andmore » the in-furnace test confirmed that a gas-pressurized bellows can produce high enough stress to induce irradiation creep in subsize specimens. Discussion focuses on the possible stress range in specimens induced by the miniature gas-pressurized bellows and the limitations imposed by the size and structure of thin-walled bellows. A brief introduction to the in-reactor creep experiment for graphite is provided to connect to the companion paper describing the application practices and irradiation creep data. An experimental and calculation procedure to obtain in-situ applied stress values from post irradiation in-furnace force measurements is also presented.« less
NASA Astrophysics Data System (ADS)
Chi, Se-Hwan; Kim, Gen-Chan
2008-10-01
The oxidation rate and degree of graphitization (DOG) were determined for some selected nuclear graphite grades (i.e., IG-110, IG-430, NBG-18, NBG-25) and compared in view of their filler coke type (i.e., pitch or petroleum coke) and the physical property of the grades. Oxidation rates were determined at six temperatures between 600 and 960 °C in air by using a three-zone vertical tube furnace at a 10 l/min air flow rate. The specimens were a cylinder with a 25.4 mm diameter and a 25.4 mm length. The DOG was determined based on the lattice parameter c determined from an X-ray diffraction (XRD). Results showed that, even though the four examined nuclear graphite grades showed a highly temperature-sensitive oxidation behavior through out the test temperature range of 600-950 °C, the differences between the grades were not significant. The oxidation rates determined for a 5-10% weight loss at the six temperatures were nearly the same except for 702 and 808 °C, where the pitch coke graphites showed an apparent decrease in their oxidation rate, more so than the petroleum coke graphites. These effects of the coke type reduced or nearly disappeared with an increasing temperature. The average activation energy determined for 608-808 °C was 161.5 ± 7.3 kJ/mol, showing that the dominant oxidation reaction occurred by a chemical control. A relationship between the oxidation rate and DOG was not observed.
Coherent Electron Transfer at the Ag / Graphite Heterojunction Interface
NASA Astrophysics Data System (ADS)
Tan, Shijing; Dai, Yanan; Zhang, Shengmin; Liu, Liming; Zhao, Jin; Petek, Hrvoje
2018-03-01
Charge transfer in transduction of light to electrical or chemical energy at heterojunctions of metals with semiconductors or semimetals is believed to occur by photogenerated hot electrons in metal undergoing incoherent internal photoemission through the heterojunction interface. Charge transfer, however, can also occur coherently by dipole coupling of electronic bands at the heterojunction interface. Microscopic physical insights into how transfer occurs can be elucidated by following the coherent polarization of the donor and acceptor states on the time scale of electronic dephasing. By time-resolved multiphoton photoemission spectroscopy (MPP), we investigate the coherent electron transfer from an interface state that forms upon chemisorption of Ag nanoclusters onto graphite to a σ symmetry interlayer band of graphite. Multidimensional MPP spectroscopy reveals a resonant two-photon transition, which dephases within 10 fs completing the coherent transfer.
Formation Dynamics of Potassium-Based Graphite Intercalation Compounds: An Ab Initio Study
NASA Astrophysics Data System (ADS)
Jiang, Xiankai; Song, Bo; Tománek, David
2018-04-01
This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. We use ab initio molecular dynamics simulations to study the microscopic dynamics of potassium intercalation in graphite. Upon adsorbing on graphite from the vapor phase, K atoms transfer their valence charge to the substrate. K atoms adsorbed on the surface diffuse rapidly along the graphene basal plane and eventually enter the interlayer region following a "U -turn" across the edge, gaining additional energy. This process is promoted at higher coverages associated with higher K pressure, leading to the formation of a stable intercalation compound. We find that the functionalization of graphene edges is an essential prerequisite for intercalation since bare edges reconstruct and reconnect, closing off the entry channels for the atoms.
Neutrino Physics with Nuclear Reactors: An Overview
NASA Astrophysics Data System (ADS)
Ochoa-Ricoux, J. P.
Nuclear reactors provide an excellent environment for studying neutrinos and continue to play a critical role in unveiling the secrets of these elusive particles. A rich experimental program with reactor antineutrinos is currently ongoing, and leads the way in precision measurements of several oscillation parameters and in searching for new physics, such as the existence of light sterile neutrinos. Ongoing experiments have also been able to measure the flux and spectral shape of reactor antineutrinos with unprecedented statistics and as a function of core fuel evolution, uncovering anomalies that will lead to new physics and/or to an improved understanding of antineutrino emission from nuclear reactors. The future looks bright, with an aggressive program of next generation reactor neutrino experiments that will go after some of the biggest open questions in the field. This includes the JUNO experiment, the largest liquid scintillator detector ever constructed which will push the limits of this detection technology.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-24
... NUCLEAR REGULATORY COMMISSION [NRC-2010-0228] Office of New Reactors; Proposed Revision to Standard Review Plan Section 13.6.1, Revision 1 on Physical Security--Combined License and Operating...), Section 13.6.1 on ``Physical Security--Combined License and Operating Reactors,'' (Agencywide Documents...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folsom, Charles; Xing, Changhu; Jensen, Colby
2015-03-01
Accurate modeling capability of thermal conductivity of tristructural-isotropic (TRISO) fuel compacts is important to fuel performance modeling and safety of Generation IV reactors. To date, the effective thermal conductivity (ETC) of tristructural-isotropic (TRISO) fuel compacts has not been measured directly. The composite fuel is a complicated structure comprised of layered particles in a graphite matrix. In this work, finite element modeling is used to validate an analytic ETC model for application to the composite fuel material for particle-volume fractions up to 40%. The effect of each individual layer of a TRISO particle is analyzed showing that the overall ETC ofmore » the compact is most sensitive to the outer layer constituent. In conjunction with the modeling results, the thermal conductivity of matrix-graphite compacts and the ETC of surrogate TRISO fuel compacts have been successfully measured using a previously developed measurement system. The ETC of the surrogate fuel compacts varies between 50 and 30 W m -1 K -1 over a temperature range of 50-600°C. As a result of the numerical modeling and experimental measurements of the fuel compacts, a new model and approach for analyzing the effect of compact constituent materials on ETC is proposed that can estimate the fuel compact ETC with approximately 15-20% more accuracy than the old method. Using the ETC model with measured thermal conductivity of the graphite matrix-only material indicate that, in the composite form, the matrix material has a much greater thermal conductivity, which is attributed to the high anisotropy of graphite thermal conductivity. Therefore, simpler measurements of individual TRISO compact constituents combined with an analytic ETC model, will not provide accurate predictions of overall ETC of the compacts emphasizing the need for measurements of composite, surrogate compacts.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-28
... 3150-AI64 [NRC-2010-0340] Draft NUREG-0561, Revision 2; Physical Protection of Shipments of Irradiated...-0561, ``Physical Protection of Shipments of Irradiated Reactor Fuel.'' This document provides guidance on implementing the provisions of proposed 10 CFR Part 73.37, ``Requirements for Physical Protection...
Study on Utilization of Super Grade Plutonium in Molten Salt Reactor FUJI-U3 using CITATION Code
NASA Astrophysics Data System (ADS)
Wulandari, Cici; Waris, Abdul; Pramuditya, Syeilendra; Asril, Pramutadi AM; Novitrian
2017-07-01
FUJI-U3 type of Molten Salt Reactor (MSR) has a unique design since it consists of three core regions in order to avoid the replacement of graphite as moderator. MSR uses floride as a nuclear fuel salt with the most popular chemical composition is LiF-BeF2-ThF4-233UF4. ThF4 and 233UF4 are the fertile and fissile materials, respectively. On the other hand, LiF and BeF2 working as both fuel and heat transfer medium. In this study, the super grade plutonium will be utilized as substitution of 233U since plutonium is easier to be obtained compared to 233U as main fuel. Neutronics calculation was performed by using PIJ and CITATION modules of SRAC 2002 code with JENDL 3.2 as nuclear data library.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-01
The first section of this volume summarizes the content of the draft environmental impact statement (DEIS) and this Addendum, which together constitute the final environmental impact statement (FEIS) prepared on the decommissioning of eight surplus plutonium production reactors at Hanford. The FEIS consists of two volumes. The first volume is the DEIS as written. The second volume (this Addendum) consists of a summary; Chapter 9, which contains comments on the DEIS and provides DOE`s responses to the comments; Appendix F, which provides additional health effects information; Appendix K, which contains costs of decommissioning in 1990 dollars; Appendix L, which containsmore » additional graphite leaching data; Appendix M, which contains a discussion of accident scenarios; Appendix N, which contains errata; and Appendix 0, which contains reproductions of the letters, transcripts, and exhibits that constitute the record for the public comment period.« less
The role of chemical reactions in the Chernobyl accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grishanin, E. I., E-mail: egrishanin@orexovo.net
2010-12-15
It is shown that chemical reactions played an essential role in the Chernobyl accident at all of its stages. It is important that the reactor before the explosion was at maximal xenon poisoning, and its reactivity, apparently, was not destroyed by the explosion. The reactivity release due to decay of Xe-235 on the second day after the explosion led to a reactor power of 80-110 MW. Owing to this power, the chemical reactions of reduction of uranium, plutonium, and other metals at a temperature of about 2000 Degree-Sign C occurred in the core. The yield of fission products thus sharplymore » increased. Uranium and other metals flew down in the bottom water communications and rooms. After reduction of the uranium and its separation from the graphite, the chain reaction stopped, the temperature of the core decreased, and the activity yield stopped.« less
High-efficiency exfoliation of large-area mono-layer graphene oxide with controlled dimension.
Park, Won Kyu; Yoon, Yeojoon; Song, Young Hyun; Choi, Su Yeon; Kim, Seungdu; Do, Youngjin; Lee, Junghyun; Park, Hyesung; Yoon, Dae Ho; Yang, Woo Seok
2017-11-27
In this work, we introduce a novel and facile method of exfoliating large-area, single-layer graphene oxide using a shearing stress. The shearing stress reactor consists of two concentric cylinders, where the inner cylinder rotates at controlled speed while the outer cylinder is kept stationary. We found that the formation of Taylor vortex flow with shearing stress can effectively exfoliate the graphite oxide, resulting in large-area single- or few-layer graphene oxide (GO) platelets with high yields (>90%) within 60 min of reaction time. Moreover, the lateral size of exfoliated GO sheets was readily tunable by simply controlling the rotational speed of the reactor and reaction time. Our approach for high-efficiency exfoliation of GO with controlled dimension may find its utility in numerous industrial applications including energy storage, conducting composite, electronic device, and supporting frameworks of catalyst.
Portable vibro-acoustic testing system for in situ microstructure characterization and metrology
NASA Astrophysics Data System (ADS)
Smith, James A.; Nichol, Corrie I.; Zuck, Larry D.; Fatemi, Mostafa
2018-04-01
There is a need in research reactors like the one at INL to inspect irradiated materials and structures. The goal of this work is to develop a portable scanning infrastructure for a material characterization technique called vibro-acoustography (VA) that has been developed by the Idaho National laboratory for nuclear applications to characterize fuel, cladding materials, and structures. The proposed VA technology is based on ultrasound and acoustic waves; however, it provides information beyond what is available from the traditional ultrasound techniques and can expand the knowledge on nuclear material characterization and microstructure evolution. This paper will report on the development of a portable scanning system that will be set up to characterize materials and components in open water reactors and canals in situ. We will show some initial laboratory results of images generated by vibro-acoustics of surrogate fuel plates and graphite structures and discuss the design of the portable system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; J. Blair Briggs; Jim Gulliford
2014-10-01
The International Reactor Physics Experiment Evaluation Project (IRPhEP) is a widely recognized world class program. The work of the IRPhEP is documented in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). Integral data from the IRPhEP Handbook is used by reactor safety and design, nuclear data, criticality safety, and analytical methods development specialists, worldwide, to perform necessary validations of their calculational techniques. The IRPhEP Handbook is among the most frequently quoted reference in the nuclear industry and is expected to be a valuable resource for future decades.
High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems.
Mahadevan, Vijay S; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul
2014-08-06
An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.
High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems
Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul
2014-01-01
An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework. PMID:24982250
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R. S.
The following are specific topics of this paper: 1.There is much creativity in the manner in which Dimensional Generator can be applied to a specific programming task [2]. This paper tells how Dimensional Generator was applied to a reactor-physics task. 2. In this first practical use, Dimensional Generator itself proved not to need change, but a better user interface was found necessary, essentially because the relevance of Dimensional Generator to reactor physics was initially underestimated. It is briefly described. 3. The use of Dimensional Generator helps make reactor-physics source code somewhat simpler. That is explained here with brief examples frommore » BURFEL-PC and WIMSBURF. 4. Most importantly, with the help of Dimensional Generator, all erroneous physical expressions were automatically detected. The errors are detailed here (in spite of the author's embarrassment) because they show clearly, both in theory and in practice, how Dimensional Generator offers quality enhancement of reactor-physics programming. (authors)« less
NASA Technical Reports Server (NTRS)
1981-01-01
Progress in the development of processes for production of Celion/LARC-160 graphite-polyimide materials, quality control, and the fabrication of Space Shuttle composite structure components is reported. Liquid chromatographic analyses of three repeatibility batches were performed and are compared to previous Hexcel standard production and to variables study LARC-160 intermediate resins. Development of processes for chopped fiber molding are described and flexural strength, elastic modulus, and other physical and mechanical properties of the molding are presented.
Industrial Applications of Graphite Fluoride Fibers
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Kucera, Donald
1991-01-01
Based on fluorination technology developed during 1934 to 1959, and the fiber technology developed during the 1970s, a new process was developed to produce graphite fluoride fibers. In the process, pitch based graphitized carbon fibers are at first intercalated and deintercalated several times by bromine and iodine, followed by several cycles of nitrogen heating and fluorination at 350 to 370 C. Electrical, mechanical, and thermal properties of this fiber depend on the fluorination process and the fluorine content of the graphite fluoride product. However, these properties are between those of graphite and those of PTFE (Teflon). Therefore, it is considered to be a semiplastic. The physical properties suggest that this new material may have many new and unexplored applications. For example, it can be a thermally conductive electrical insulator. Its coefficient of thermal expansion (CTE) can be adjusted to match that of silicon, and therefore, it can be a heat sinking printed circuit board which is CTE compatible with silicon. Using these fibers in printed circuit boards may provide improved electrical performance and reliability of the electronics on the board over existing designs. Also, since it releases fluorine at 300 C or higher, it can be used as a material to store fluorine and to conduct fluorination. This application may simplify the fluorination process and reduce the risk of handling fluorine.
Space Nuclear Facility test capability at the Baikal-1 and IGR sites Semipalatinsk-21, Kazakhstan
NASA Astrophysics Data System (ADS)
Hill, T. J.; Stanley, M. L.; Martinell, J. S.
1993-01-01
The International Space Technology Assessment Program was established 1/19/92 to take advantage of the availability of Russian space technology and hardware. DOE had two delegations visit CIS and assess its space nuclear power and propulsion technologies. The visit coincided with the Conference on Nuclear Power Engineering in Space Nuclear Rocket Engines at Semipalatinsk-21 (Kurchatov, Kazakhstan) on Sept. 22-25, 1992. Reactor facilities assessed in Semipalatinski-21 included the IVG-1 reactor (a nuclear furnace, which has been modified and now called IVG-1M), the RA reactor, and the Impulse Graphite Reactor (IGR), the CIS version of TREAT. Although the reactor facilities are being maintained satisfactorily, the support infrastructure appears to be degrading. The group assessment is based on two half-day tours of the Baikals-1 test facility and a brief (2 hr) tour of IGR; because of limited time and the large size of the tour group, it was impossible to obtain answers to all prepared questions. Potential benefit is that CIS fuels and facilities may permit USA to conduct a lower priced space nuclear propulsion program while achieving higher performance capability faster, and immediate access to test facilities that cannot be available in this country for 5 years. Information needs to be obtained about available data acquisition capability, accuracy, frequency response, and number of channels. Potential areas of interest with broad application in the U.S. nuclear industry are listed.
Investigation on the Core Bypass Flow in a Very High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Yassin
2013-10-22
Uncertainties associated with the core bypass flow are some of the key issues that directly influence the coolant mass flow distribution and magnitude, and thus the operational core temperature profiles, in the very high-temperature reactor (VHTR). Designers will attempt to configure the core geometry so the core cooling flow rate magnitude and distribution conform to the design values. The objective of this project is to study the bypass flow both experimentally and computationally. Researchers will develop experimental data using state-of-the-art particle image velocimetry in a small test facility. The team will attempt to obtain full field temperature distribution using racksmore » of thermocouples. The experimental data are intended to benchmark computational fluid dynamics (CFD) codes by providing detailed information. These experimental data are urgently needed for validation of the CFD codes. The following are the project tasks: • Construct a small-scale bench-top experiment to resemble the bypass flow between the graphite blocks, varying parameters to address their impact on bypass flow. Wall roughness of the graphite block walls, spacing between the blocks, and temperature of the blocks are some of the parameters to be tested. • Perform CFD to evaluate pre- and post-test calculations and turbulence models, including sensitivity studies to achieve high accuracy. • Develop the state-of-the art large eddy simulation (LES) using appropriate subgrid modeling. • Develop models to be used in systems thermal hydraulics codes to account and estimate the bypass flows. These computer programs include, among others, RELAP3D, MELCOR, GAMMA, and GAS-NET. Actual core bypass flow rate may vary considerably from the design value. Although the uncertainty of the bypass flow rate is not known, some sources have stated that the bypass flow rates in the Fort St. Vrain reactor were between 8 and 25 percent of the total reactor mass flow rate. If bypass flow rates are on the high side, the quantity of cooling flow through the core may be considerably less than the nominal design value, causing some regions of the core to operate at temperatures in excess of the design values. These effects are postulated to lead to localized hot regions in the core that must be considered when evaluating the VHTR operational and accident scenarios.« less
NASA Technical Reports Server (NTRS)
Mikulas, M. M., Jr.; Bush, H. G.; Card, M. F.
1977-01-01
Physical characteristics of large skeletal frameworks for space applications are investigated by analyzing one concept: the tetrahedral truss, which is idealized as a sandwich plate with isotropic faces. Appropriate analytical relations are presented in terms of the truss column element properties which for calculations were taken as slender graphite/epoxy tubes. Column loads, resulting from gravity gradient control and orbital transfer, are found to be small for the class structure investigated. Fundamental frequencies of large truss structures are shown to be an order of magnitude lower than large earth based structures. Permissible loads are shown to result in small lateral deflections of the truss due to low-strain at Euler buckling of the slender graphite/epoxy truss column elements. Lateral thermal deflections are found to be a fraction of the truss depth using graphite/epoxy columns.
NASA Astrophysics Data System (ADS)
Tsubokawa, Yumiko; Ishikawa, Masahiro
2017-09-01
Graphite-bearing polycrystalline olivine and polycrystalline clinopyroxene with submicron to micron grain size were successfully sintered from a single crystal of naturally occurring olivine (Fo88-92Fa12-8: Mg1.76-1.84Fe0.16-0.24SiO4) and a single crystal of naturally occurring clinopyroxene (Di99Hed1: Ca0.92Na0.07Mn0.01Mg0.93Fe0.01Al0.06Si2O6). The milled powders of both these crystals were sintered under argon gas flow at temperatures ranging from 1130 to 1350 °C for 2 h. As the sintering temperature increased, the average grain size of olivine increased from 0.2 to 1.4 µm and that of clinopyroxene increased from 0.1 to 2.4 µm. The porosity of sintered samples remained at an almost-constant volume of 2-5% for olivine and 3-4% for clinopyroxene. The samples sintered from powders milled with ethanol exhibited trace amount of graphite, identified via Raman spectroscopy analysis. As the sintering temperature increased, the intensity of the graphite Raman peak decreased, compared with both olivine and clinopyroxene peaks. The carbon content of the sintered samples was estimated to be a few hundred ppm. The in-plane size ( L a ) of graphite in the sintered olivine was estimated to be <15 nm. Our experiments demonstrate new possibilities for preparing graphite-bearing silicate-mantle mineral rocks, and this method might be useful in understanding the influence of the physical properties of graphite on grain-size-sensitive rheology or the seismic velocity of the Earth's mantle.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Matsumoto, Michio; Saito, Yusuke; Park, Chiyoung; Fukushima, Takanori; Aida, Takuzo
2015-09-01
Graphene has shown much promise as an organic electronic material but, despite recent achievements in the production of few-layer graphene, the quantitative exfoliation of graphite into pristine single-layer graphene has remained one of the main challenges in developing practical devices. Recently, reduced graphene oxide has been recognized as a non-feasible alternative to graphene owing to variable defect types and levels, and attention is turning towards reliable methods for the high-throughput exfoliation of graphite. Here we report that microwave irradiation of graphite suspended in molecularly engineered oligomeric ionic liquids allows for ultrahigh-efficiency exfoliation (93% yield) with a high selectivity (95%) towards ‘single-layer’ graphene (that is, with thicknesses <1 nm) in a short processing time (30 minutes). The isolated graphene sheets show negligible structural deterioration. They are also readily redispersible in oligomeric ionic liquids up to ~100 mg ml-1, and form physical gels in which an anisotropic orientation of graphene sheets, once induced by a magnetic field, is maintained.
Mechanically Induced Graphite-Nanodiamonds-Phase Transformations During High-Energy Ball Milling
NASA Astrophysics Data System (ADS)
El-Eskandarany, M. Sherif
2017-05-01
Due to their unusual mechanical, chemical, physical, optical, and biological properties, nearly spherical-like nanodiamonds have received much attention as desirable advanced nanomaterials for use in a wide spectrum of applications. Although, nanodiamonds can be successfully synthesized by several approaches, applications of high temperature and/or high pressure may restrict the real applications of such strategic nanomaterials. Distinct from the current preparation approaches used for nanodiamonds preparation, here we show a new process for preparing ultrafine nanodiamonds (3-5 nm) embedded in a homogeneous amorphous-carbon matrix. Our process started from high-energy ball milling of commercial graphite powders at ambient temperature under normal atmospheric helium gas pressure. The results have demonstrated graphite-single wall carbon nanotubes-amorphous-carbon-nanodiamonds phase transformations carried out through three subsequent stages of ball milling. Based on XRD and RAMAN analyses, the percentage of nanodiamond phase + C60 (crystalline phase) produced by ball milling was approximately 81%, while the amorphous phase amount was 19%. The pressure generated on the powder together the with temperature increase upon the ball-powder-ball collision is responsible for the phase transformations occurring in graphite powders.
NASA Astrophysics Data System (ADS)
Hubert, Christian; Voss, Kay Obbe; Bender, Markus; Kupka, Katharina; Romanenko, Anton; Severin, Daniel; Trautmann, Christina; Tomut, Marilena
2015-12-01
Due to its excellent thermo-physical properties and radiation hardness, isotropic graphite is presently the most promising material candidate for new high-power ion accelerators which will provide highest beam intensities and energies. Under these extreme conditions, specific accelerator components including production targets and beam protection modules are facing the risk of degradation due to radiation damage. Ion-beam induced damage effects were tested by irradiating polycrystalline, isotropic graphite samples at the UNILAC (GSI, Darmstadt) with 4.8 MeV per nucleon 132Xe, 150Sm, 197Au, and 238U ions applying fluences between 1 × 1011 and 1 × 1014 ions/cm2. The overall damage accumulation and its dependence on energy loss of the ions were studied by in situ 4-point resistivity measurements. With increasing fluence, the electric resistivity increases due to disordering of the graphitic structure. Irradiated samples were also analyzed off-line by means of micro-indentation in order to characterize mesoscale effects such as beam-induced hardening and stress fields within the specimen. With increasing fluence and energy loss, hardening becomes more pronounced.
Code of Federal Regulations, 2014 CFR
2014-01-01
... fuel (100 grams or less) in transit. 73.35 Section 73.35 Energy NUCLEAR REGULATORY COMMISSION... Transit § 73.35 Requirements for physical protection of irradiated reactor fuel (100 grams or less) in... quantity of irradiated reactor fuel weighing 100 grams (0.22 pounds) or less in net weight of irradiated...
Lee, Hyunsoo; Lee, Han-Bo-Ram; Kwon, Sangku; Salmeron, Miquel; Park, Jeong Young
2015-04-28
We report on the physical and chemical properties of atomic steps on the surface of highly oriented pyrolytic graphite (HOPG) investigated using atomic force microscopy. Two types of step edges are identified: internal (formed during crystal growth) and external (formed by mechanical cleavage of bulk HOPG). The external steps exhibit higher friction than the internal steps due to the broken bonds of the exposed edge C atoms, while carbon atoms in the internal steps are not exposed. The reactivity of the atomic steps is manifested in a variety of ways, including the preferential attachment of Pt nanoparticles deposited on HOPG when using atomic layer deposition and KOH clusters formed during drop casting from aqueous solutions. These phenomena imply that only external atomic steps can be used for selective electrodeposition for nanoscale electronic devices.
Development of lightweight reinforced plastic laminates for spacecraft interior applications
NASA Technical Reports Server (NTRS)
Hertz, J.
1975-01-01
Lightweight, Kevlar - reinforced laminating systems that are non-burning, generate little smoke in the space shuttle environment, and are physically equivalent to the fiberglass/polyimide system used in the Apollo program for non-structural cabin panels, racks, etc. Resin systems representing five generic classes were screened as matrices for Kevlar 49 reinforced laminates. Of the systems evaluated, the polyimides were the most promising with the phenolics a close second. Skybond 703 was selected as the most promising resin candidate. With the exception of compression strength, all program goals of physical and mechanical properties were exceeded. Several prototype space shuttle mobility and translation handrail segments were manufactured using Kevlar/epoxy and Kevlar-graphite/epoxy. This application shows significant weight savings over the baseline aluminum configuration used previous. The hybrid Kevlar-graphite/epoxy is more suitable from a processing standpoint.
Long-term influence of physical aging processes in epoxy matrix composites
NASA Technical Reports Server (NTRS)
Kong, E. S. W.
1981-01-01
Selected mechanical properties of (plus or minus 45 degree sub 4s) graphite/epoxy composites were found to be affected by sub T sub g annealing. Postcured specimens of Thornel 300 graphite/Narmco 5208 epoxy were sub T sub G annealed at 413 K (140 C) for ca. 10 to the first through 10 to the fifth powers min., with a prior quenching from above T sub g. The ultimate tensile strength, strain-to-break, and toughness of the composite were found to decrease as a function of sub T sub g annealing time. The time-dependent change in properties can be explained on the basis of physical aging which is related to free volume changes in the non-equilibrium glassy state of network epoxies. The results imply possible changes in composite properties with service time.
NASA Astrophysics Data System (ADS)
Throckmorton, James A.
This dissertation explores the application of a room temperature ionic liquid (RTIL) to problems in the chemistry, processing, and modification of thermosetting polymers. In particular, the solution properties and reaction chemistry of 1-ethyl-3-methyl imidazolium dicyanamide (EMIM-DCN) are applied to problems of nanoparticle dispersion and processing, graphite exfoliation, cyanate ester (CE) cure, and the environmental degradation of CEs. Nanoparticle Dispersion: Nanocomposite processing can be simplified by using the same compound as both a nanoparticle solvent and an initiator for polymerization. This dual-function molecule can be designed both for solvent potential and reaction chemistry. EMIM-DCN, previously shown by our lab to act as an epoxy initiator, is used in the synthesis of silica and acid expanded graphite composites. These composites are then characterized for particle dispersion and physical properties. Individual particle dispersion of silica nanocomposites is shown, and silica nanocomposites at low loading show individual particle dispersion and improved modulus and fracture toughness. GNP nanocomposites show a 70% increase in modulus along with a 10-order of magnitude increase in electrical conductivity at 6.5 vol%, and an electrical percolation threshold of 1.7 vol%. Direct Graphite Exfoliation By Laminar Shear: This work presents a laminar-shear alternative to chemical processing and chaotic flow-fields for the direct exfoliation of graphite and the single-pot preparation of nanocomposites. Additionally, we develop the theory of laminar flow through a 3-roll mill, and apply that theory to the latest developments in the theory of graphite interlayer shear. The resulting nanocomposite shows low electrical percolation (0.5 vol%) and low thickness (1-3 layer) graphite/graphene flakes. Additionally, the effect of processing conditions by rheometry and comparison with solvent-free conditions reveal the interactions between processing and matrix properties and provide insight into the theory of the chemical and physical exfoliation of graphite crystals and the resulting polymer matrix dispersion. Cyanate Ester Cure: Dicyanamide-containing ionic liquids decrease the cure temperature of bi- and tri-functional CEs. During the cure reaction, the dicyanamide anion completely reacts and is incorporated into the triazine network. The cure effect was found in many dicyanamide-containing ionic liquids with diverse cations. This invention creates a novel, ionic thermoset polymer. The dicyanamide initiator provides an alternative to metal and hydroxyl catalysts (which have been shown to accelerate degradation and possess human and environmental toxicity). Additionally, the ionic character of the new polymer, rare among thermosets, lends itself to future research and novel applications. RTIL initiation also paves the way to new CE technologies, including RTIL-CE nanocomposites, prepared by graphite exfoliation and nanocomposite dispersion techniques developed herin.
Developments in Sensitivity Methodologies and the Validation of Reactor Physics Calculations
Palmiotti, Giuseppe; Salvatores, Massimo
2012-01-01
The sensitivity methodologies have been a remarkable story when adopted in the reactor physics field. Sensitivity coefficients can be used for different objectives like uncertainty estimates, design optimization, determination of target accuracy requirements, adjustment of input parameters, and evaluations of the representativity of an experiment with respect to a reference design configuration. A review of the methods used is provided, and several examples illustrate the success of the methodology in reactor physics. A new application as the improvement of nuclear basic parameters using integral experiments is also described.
Fundamental studies of graphene/graphite and graphene-based Schottky photovoltaic devices
NASA Astrophysics Data System (ADS)
Miao, Xiaochang
In the carbon allotropes family, graphene is one of the most versatile members and has been extensively studied since 2004. The goal of this dissertation is not only to investigate the novel fundamental science of graphene and its three-dimensional sibling, graphite, but also to explore graphene's promising potential in modern electronic and optoelectronic devices. The first two chapters provide a concise introduction to the fundamental solid state physics of graphene (as well as graphite) and the physics at the metal/semiconductor interfaces. In the third chapter, we demonstrate the formation of Schottky junctions at the interfaces of graphene (semimetal) and various inorganic semiconductors that play dominating roles in today's semiconductor technology, such as Si, SiC, GaAs and GaN. As shown from their current-voltage (I -V) and capacitance-voltage (C-V) characteristics, the interface physics can be well described within the framework of the Schottky-Mott model. The results are also well consist with that from our previous studies on graphite based Schottky diodes. In the fourth chapter, as an extension of graphene based Schottky work, we investigate the photovoltaic (PV) effect of graphene/Si junctions after chemically doped with an organic polymer (TFSA). The power conversion efficiency of the solar cell improves from 1.9% to 8.6% after TFSA doping, which is the record in all graphene based PVs. The I -V, C-V and external quantum efficiency measurements suggest 12 that such a significant enhancement in the device performance can be attributed to a doping-induced decrease in the series resistance and a simultaneous increase in the built-in potential. In the fifth chapter, we investigate for the first time the effect of uniaxial strains on magneto-transport properties of graphene. We find that low-temperature weak localization effect in monolayer graphene is gradually suppressed under increasing strains, which is due to a strain-induced decreased intervalley-scattering rate. In chapter 6, we study the high vacuum thermal annealing effect on an unconventional ferromagnetism (FM) in highly oriented pyrolytic graphite (HOPG). The FM diminishes and eventually disappears in annealed samples accompanied by improved electrical transport properties and crystallinity. Our results indicate that the FM is mainly coming from the lattice imperfections.
High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems
Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; ...
2014-06-30
An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in ordermore » to reduce the overall numerical uncertainty while leveraging available computational resources. Finally, the coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Progress is reported on fundamental research in: crystal physics, reactions at metal surfaces, spectroscopy of ionic media, structure of metals, theory of alloying, physical properties, sintering, deformation of crystalline solids, x ray diffraction, metallurgy of superconducting materials, and electron microscope studies. Long-randge applied research studies were conducted for: zirconium metallurgy, materials compatibility, solid reactions, fuel element development, mechanical properties, non-destructive testing, and high-temperature materials. Reactor development support work was carried out for: gas-cooled reactor program, molten-salt reactor, high-flux isotope reactor, space-power program, thorium-utilization program, advanced-test reactor, Army Package Power Reactor, Enrico Fermi fast-breeder reactor, and water desalination program. Other programmore » activities, for which research was conducted, included: thermonuclear project, transuraniunn program, and post-irradiation examination laboratory. Separate abstracts were prepared for 30 sections of the report. (B.O.G.)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, D.P. Jr.; Vernetson, W.G.; Ratner, R.T.
The University of Florida Training Reactor (UFTR) facilities including the analytical laboratory are used for a wide range of educational, research, training, and service functions. The UFTR is a 100-kW light-water-cooled, graphite-and-water-moderated modified Argonaut-type reactor. The UFTR utilizes high enriched plate-type fuel in a two-slab arrangement and operates at a 100-kW power level. Since first licensed to operate at 10 kW in 1959, this nonpower reactor facility has had an active but evolving record of continuous service to a wide range of academic, utility, and community users. The services of the UFTR have also been used by various state authoritiesmore » in criminal investigations. Because of its relatively low power and careful laboratory analyses, the UFTR neutron flux characteristics in several ports are not only well characterized but they are also quite invariant with time. As a result, such a facility is well-suited to the application of the multielement analysis using the k{sub o}-standardization method of neutron activation analysis. The analysis of untreated evidential botanical samples presented a unique opportunity to demonstrate implementation of this method at the UFTR facilities.« less
[Studies on photo-electron-chemical catalytic degradation of the malachite green].
Li, Ming-yu; Diao, Zeng-hui; Song, Lin; Wang, Xin-le; Zhang, Yuan-ming
2010-07-01
A novel two-compartment photo-electro-chemical catalytic reactor was designed. The TiO2/Ti thin film electrode thermally formed was used as photo-anode, and graphite as cathode and a saturated calomel electrode (SCE) as the reference electrode in the reactor. The anode compartment and cathode compartment were connected with the ionic exchange membrane in this reactor. Effects of initial pH, initial concentration of malachite green and connective modes between the anode compartment and cathode compartment on the decolorization efficiency of malachite green were investigated. The degradation dynamics of malachite green was studied. Based on the change of UV-visible light spectrum, the degradation process of malachite green was discussed. The experimental results showed that, during the time of 120 min, the decolouring ratio of the malachite green was 97.7% when initial concentration of malachite green is 30 mg x L(-1) and initial pH is 3.0. The catalytic degradation of malachite green was a pseudo-first order reaction. In the degradation process of malachite green the azo bond cleavage and the conjugated system of malachite green were attacked by hydroxyl radical. Simultaneity, the aromatic ring was oxidized. Finally, malachite green was degraded into other small molecular compounds.
Validation of the U.S. NRC NGNP evaluation model with the HTTR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saller, T.; Seker, V.; Downar, T.
2012-07-01
The High Temperature Test Reactor (HTTR) was modeled with TRITON/PARCS. Traditional light water reactor (LWR) homogenization methods rely on the short mean free paths of neutrons in LWR. In gas-cooled, graphite-moderated reactors like the HTTR neutrons have much longer mean free paths and penetrate further into neighboring assemblies than in LWRs. Because of this, conventional lattice calculations with a single assembly may not be valid. In addition to difficulties caused by the longer mean free paths, the HTTR presents unique axial and radial heterogeneities that require additional modifications to the single assembly homogenization method. To handle these challenges, the homogenizationmore » domain is decreased while the computational domain is increased. Instead of homogenizing a single hexagonal fuel assembly, the assembly is split into six triangles on the radial plane and five blocks axially in order to account for the placement of burnable poisons. Furthermore, the radial domain is increased beyond a single fuel assembly to account for spectrum effects from neighboring fuel, reflector, and control rod assemblies. A series of five two-dimensional cases, each closer to the full core, were calculated to evaluate the effectiveness of the homogenization method and cross-sections. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hure, J.; Platzer, R.; Bittel, R.
1959-10-31
The study of the use of ion exchangers at high temperatures was made with a view to the purification of water in reactors. Natural ion exchangers with mineral structures (clay of the montmorillonite type), natural mineral compounds so treated as to give them the properties of ion exchangers (activated graphite), and synthetic mineral compounds (zirconium phosphates and hydroxides and thorium hydroxide) were investigated. The preparation of the minerals is described, and the results obtained with them are discussed in detail. (J.S.R.)
Some problems of brazing technology for the divertor plate manufacturing
NASA Astrophysics Data System (ADS)
Prokofiev, Yu. G.; Barabash, V. R.; Khorunov, V. F.; Maksimova, S. V.; Gervash, A. A.; Fabritsiev, S. A.; Vinokurov, V. F.
1992-09-01
Among the different design options of the ITER reactor divertor, the joints of the carbon-based materials and molybdenum alloys and joints of tungsten and copper alloys are considered. High-temperature brazing is one of the most promising joining methods for the plasma facing and heat sink materials. The use of brazing for creation of W-Cu and graphite-Mo joints are given here. In addition, the investigation results of microstructure, microhardness and mechanical properties of the joints are presented. For W-Cu samples an influence of the neutron irradiation on the joining strength was studied.
10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec... OF PLANTS AND MATERIALS Physical Protection Requirements at Fixed Sites § 73.60 Additional...
10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec... OF PLANTS AND MATERIALS Physical Protection Requirements at Fixed Sites § 73.60 Additional...
10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec... OF PLANTS AND MATERIALS Physical Protection Requirements at Fixed Sites § 73.60 Additional...